SemaExpr.cpp revision d8f4f4330031f893b647662bd5ff1b9ae3da694f
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  if (D->getDeclContext()->isFunctionOrMethod() &&
88      !D->getDeclContext()->Encloses(CurContext)) {
89    // We've found the name of a function or variable that was
90    // declared with external linkage within another function (and,
91    // therefore, a scope where we wouldn't normally see the
92    // declaration). Once we've made sure that no previous declaration
93    // was properly made visible, produce a warning.
94    bool HasGlobalScopedDeclaration = false;
95    for (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); FD;
96         FD = FD->getPreviousDeclaration()) {
97      if (FD->getDeclContext()->isFileContext()) {
98        HasGlobalScopedDeclaration = true;
99        break;
100      }
101    }
102    // FIXME: do the same thing for variable declarations
103
104    if (!HasGlobalScopedDeclaration) {
105      Diag(Loc, diag::warn_use_out_of_scope_declaration) << D;
106      Diag(D->getLocation(), diag::note_previous_declaration);
107    }
108  }
109
110  return false;
111}
112
113//===----------------------------------------------------------------------===//
114//  Standard Promotions and Conversions
115//===----------------------------------------------------------------------===//
116
117/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
118void Sema::DefaultFunctionArrayConversion(Expr *&E) {
119  QualType Ty = E->getType();
120  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
121
122  if (Ty->isFunctionType())
123    ImpCastExprToType(E, Context.getPointerType(Ty));
124  else if (Ty->isArrayType()) {
125    // In C90 mode, arrays only promote to pointers if the array expression is
126    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
127    // type 'array of type' is converted to an expression that has type 'pointer
128    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
129    // that has type 'array of type' ...".  The relevant change is "an lvalue"
130    // (C90) to "an expression" (C99).
131    //
132    // C++ 4.2p1:
133    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
134    // T" can be converted to an rvalue of type "pointer to T".
135    //
136    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
137        E->isLvalue(Context) == Expr::LV_Valid)
138      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
139  }
140}
141
142/// UsualUnaryConversions - Performs various conversions that are common to most
143/// operators (C99 6.3). The conversions of array and function types are
144/// sometimes surpressed. For example, the array->pointer conversion doesn't
145/// apply if the array is an argument to the sizeof or address (&) operators.
146/// In these instances, this routine should *not* be called.
147Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
148  QualType Ty = Expr->getType();
149  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
150
151  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
152    ImpCastExprToType(Expr, Context.IntTy);
153  else
154    DefaultFunctionArrayConversion(Expr);
155
156  return Expr;
157}
158
159/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
160/// do not have a prototype. Arguments that have type float are promoted to
161/// double. All other argument types are converted by UsualUnaryConversions().
162void Sema::DefaultArgumentPromotion(Expr *&Expr) {
163  QualType Ty = Expr->getType();
164  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
165
166  // If this is a 'float' (CVR qualified or typedef) promote to double.
167  if (const BuiltinType *BT = Ty->getAsBuiltinType())
168    if (BT->getKind() == BuiltinType::Float)
169      return ImpCastExprToType(Expr, Context.DoubleTy);
170
171  UsualUnaryConversions(Expr);
172}
173
174// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
175// will warn if the resulting type is not a POD type.
176void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
177  DefaultArgumentPromotion(Expr);
178
179  if (!Expr->getType()->isPODType()) {
180    Diag(Expr->getLocStart(),
181         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
182    Expr->getType() << CT;
183  }
184}
185
186
187/// UsualArithmeticConversions - Performs various conversions that are common to
188/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
189/// routine returns the first non-arithmetic type found. The client is
190/// responsible for emitting appropriate error diagnostics.
191/// FIXME: verify the conversion rules for "complex int" are consistent with
192/// GCC.
193QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
194                                          bool isCompAssign) {
195  if (!isCompAssign) {
196    UsualUnaryConversions(lhsExpr);
197    UsualUnaryConversions(rhsExpr);
198  }
199
200  // For conversion purposes, we ignore any qualifiers.
201  // For example, "const float" and "float" are equivalent.
202  QualType lhs =
203    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
204  QualType rhs =
205    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
206
207  // If both types are identical, no conversion is needed.
208  if (lhs == rhs)
209    return lhs;
210
211  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
212  // The caller can deal with this (e.g. pointer + int).
213  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
214    return lhs;
215
216  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
217  if (!isCompAssign) {
218    ImpCastExprToType(lhsExpr, destType);
219    ImpCastExprToType(rhsExpr, destType);
220  }
221  return destType;
222}
223
224QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
225  // Perform the usual unary conversions. We do this early so that
226  // integral promotions to "int" can allow us to exit early, in the
227  // lhs == rhs check. Also, for conversion purposes, we ignore any
228  // qualifiers.  For example, "const float" and "float" are
229  // equivalent.
230  if (lhs->isPromotableIntegerType())
231    lhs = Context.IntTy;
232  else
233    lhs = lhs.getUnqualifiedType();
234  if (rhs->isPromotableIntegerType())
235    rhs = Context.IntTy;
236  else
237    rhs = rhs.getUnqualifiedType();
238
239  // If both types are identical, no conversion is needed.
240  if (lhs == rhs)
241    return lhs;
242
243  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
244  // The caller can deal with this (e.g. pointer + int).
245  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
246    return lhs;
247
248  // At this point, we have two different arithmetic types.
249
250  // Handle complex types first (C99 6.3.1.8p1).
251  if (lhs->isComplexType() || rhs->isComplexType()) {
252    // if we have an integer operand, the result is the complex type.
253    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
254      // convert the rhs to the lhs complex type.
255      return lhs;
256    }
257    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
258      // convert the lhs to the rhs complex type.
259      return rhs;
260    }
261    // This handles complex/complex, complex/float, or float/complex.
262    // When both operands are complex, the shorter operand is converted to the
263    // type of the longer, and that is the type of the result. This corresponds
264    // to what is done when combining two real floating-point operands.
265    // The fun begins when size promotion occur across type domains.
266    // From H&S 6.3.4: When one operand is complex and the other is a real
267    // floating-point type, the less precise type is converted, within it's
268    // real or complex domain, to the precision of the other type. For example,
269    // when combining a "long double" with a "double _Complex", the
270    // "double _Complex" is promoted to "long double _Complex".
271    int result = Context.getFloatingTypeOrder(lhs, rhs);
272
273    if (result > 0) { // The left side is bigger, convert rhs.
274      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
275    } else if (result < 0) { // The right side is bigger, convert lhs.
276      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
277    }
278    // At this point, lhs and rhs have the same rank/size. Now, make sure the
279    // domains match. This is a requirement for our implementation, C99
280    // does not require this promotion.
281    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
282      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
283        return rhs;
284      } else { // handle "_Complex double, double".
285        return lhs;
286      }
287    }
288    return lhs; // The domain/size match exactly.
289  }
290  // Now handle "real" floating types (i.e. float, double, long double).
291  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
292    // if we have an integer operand, the result is the real floating type.
293    if (rhs->isIntegerType()) {
294      // convert rhs to the lhs floating point type.
295      return lhs;
296    }
297    if (rhs->isComplexIntegerType()) {
298      // convert rhs to the complex floating point type.
299      return Context.getComplexType(lhs);
300    }
301    if (lhs->isIntegerType()) {
302      // convert lhs to the rhs floating point type.
303      return rhs;
304    }
305    if (lhs->isComplexIntegerType()) {
306      // convert lhs to the complex floating point type.
307      return Context.getComplexType(rhs);
308    }
309    // We have two real floating types, float/complex combos were handled above.
310    // Convert the smaller operand to the bigger result.
311    int result = Context.getFloatingTypeOrder(lhs, rhs);
312    if (result > 0) // convert the rhs
313      return lhs;
314    assert(result < 0 && "illegal float comparison");
315    return rhs;   // convert the lhs
316  }
317  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
318    // Handle GCC complex int extension.
319    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
320    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
321
322    if (lhsComplexInt && rhsComplexInt) {
323      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
324                                      rhsComplexInt->getElementType()) >= 0)
325        return lhs; // convert the rhs
326      return rhs;
327    } else if (lhsComplexInt && rhs->isIntegerType()) {
328      // convert the rhs to the lhs complex type.
329      return lhs;
330    } else if (rhsComplexInt && lhs->isIntegerType()) {
331      // convert the lhs to the rhs complex type.
332      return rhs;
333    }
334  }
335  // Finally, we have two differing integer types.
336  // The rules for this case are in C99 6.3.1.8
337  int compare = Context.getIntegerTypeOrder(lhs, rhs);
338  bool lhsSigned = lhs->isSignedIntegerType(),
339       rhsSigned = rhs->isSignedIntegerType();
340  QualType destType;
341  if (lhsSigned == rhsSigned) {
342    // Same signedness; use the higher-ranked type
343    destType = compare >= 0 ? lhs : rhs;
344  } else if (compare != (lhsSigned ? 1 : -1)) {
345    // The unsigned type has greater than or equal rank to the
346    // signed type, so use the unsigned type
347    destType = lhsSigned ? rhs : lhs;
348  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
349    // The two types are different widths; if we are here, that
350    // means the signed type is larger than the unsigned type, so
351    // use the signed type.
352    destType = lhsSigned ? lhs : rhs;
353  } else {
354    // The signed type is higher-ranked than the unsigned type,
355    // but isn't actually any bigger (like unsigned int and long
356    // on most 32-bit systems).  Use the unsigned type corresponding
357    // to the signed type.
358    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
359  }
360  return destType;
361}
362
363//===----------------------------------------------------------------------===//
364//  Semantic Analysis for various Expression Types
365//===----------------------------------------------------------------------===//
366
367
368/// ActOnStringLiteral - The specified tokens were lexed as pasted string
369/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
370/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
371/// multiple tokens.  However, the common case is that StringToks points to one
372/// string.
373///
374Action::OwningExprResult
375Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
376  assert(NumStringToks && "Must have at least one string!");
377
378  StringLiteralParser Literal(StringToks, NumStringToks, PP);
379  if (Literal.hadError)
380    return ExprError();
381
382  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
383  for (unsigned i = 0; i != NumStringToks; ++i)
384    StringTokLocs.push_back(StringToks[i].getLocation());
385
386  QualType StrTy = Context.CharTy;
387  if (Literal.AnyWide) StrTy = Context.getWCharType();
388  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
389
390  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
391  if (getLangOptions().CPlusPlus)
392    StrTy.addConst();
393
394  // Get an array type for the string, according to C99 6.4.5.  This includes
395  // the nul terminator character as well as the string length for pascal
396  // strings.
397  StrTy = Context.getConstantArrayType(StrTy,
398                                   llvm::APInt(32, Literal.GetStringLength()+1),
399                                       ArrayType::Normal, 0);
400
401  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
402  return Owned(StringLiteral::Create(Context, Literal.GetString(),
403                                     Literal.GetStringLength(),
404                                     Literal.AnyWide, StrTy,
405                                     &StringTokLocs[0],
406                                     StringTokLocs.size()));
407}
408
409/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
410/// CurBlock to VD should cause it to be snapshotted (as we do for auto
411/// variables defined outside the block) or false if this is not needed (e.g.
412/// for values inside the block or for globals).
413///
414/// FIXME: This will create BlockDeclRefExprs for global variables,
415/// function references, etc which is suboptimal :) and breaks
416/// things like "integer constant expression" tests.
417static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
418                                              ValueDecl *VD) {
419  // If the value is defined inside the block, we couldn't snapshot it even if
420  // we wanted to.
421  if (CurBlock->TheDecl == VD->getDeclContext())
422    return false;
423
424  // If this is an enum constant or function, it is constant, don't snapshot.
425  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
426    return false;
427
428  // If this is a reference to an extern, static, or global variable, no need to
429  // snapshot it.
430  // FIXME: What about 'const' variables in C++?
431  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
432    return Var->hasLocalStorage();
433
434  return true;
435}
436
437
438
439/// ActOnIdentifierExpr - The parser read an identifier in expression context,
440/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
441/// identifier is used in a function call context.
442/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
443/// class or namespace that the identifier must be a member of.
444Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
445                                                 IdentifierInfo &II,
446                                                 bool HasTrailingLParen,
447                                                 const CXXScopeSpec *SS,
448                                                 bool isAddressOfOperand) {
449  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
450                                  isAddressOfOperand);
451}
452
453/// BuildDeclRefExpr - Build either a DeclRefExpr or a
454/// QualifiedDeclRefExpr based on whether or not SS is a
455/// nested-name-specifier.
456DeclRefExpr *
457Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
458                       bool TypeDependent, bool ValueDependent,
459                       const CXXScopeSpec *SS) {
460  if (SS && !SS->isEmpty())
461    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
462                                              ValueDependent,
463                                              SS->getRange().getBegin());
464  else
465    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
466}
467
468/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
469/// variable corresponding to the anonymous union or struct whose type
470/// is Record.
471static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
472  assert(Record->isAnonymousStructOrUnion() &&
473         "Record must be an anonymous struct or union!");
474
475  // FIXME: Once Decls are directly linked together, this will
476  // be an O(1) operation rather than a slow walk through DeclContext's
477  // vector (which itself will be eliminated). DeclGroups might make
478  // this even better.
479  DeclContext *Ctx = Record->getDeclContext();
480  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
481                               DEnd = Ctx->decls_end();
482       D != DEnd; ++D) {
483    if (*D == Record) {
484      // The object for the anonymous struct/union directly
485      // follows its type in the list of declarations.
486      ++D;
487      assert(D != DEnd && "Missing object for anonymous record");
488      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
489      return *D;
490    }
491  }
492
493  assert(false && "Missing object for anonymous record");
494  return 0;
495}
496
497Sema::OwningExprResult
498Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
499                                               FieldDecl *Field,
500                                               Expr *BaseObjectExpr,
501                                               SourceLocation OpLoc) {
502  assert(Field->getDeclContext()->isRecord() &&
503         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
504         && "Field must be stored inside an anonymous struct or union");
505
506  // Construct the sequence of field member references
507  // we'll have to perform to get to the field in the anonymous
508  // union/struct. The list of members is built from the field
509  // outward, so traverse it backwards to go from an object in
510  // the current context to the field we found.
511  llvm::SmallVector<FieldDecl *, 4> AnonFields;
512  AnonFields.push_back(Field);
513  VarDecl *BaseObject = 0;
514  DeclContext *Ctx = Field->getDeclContext();
515  do {
516    RecordDecl *Record = cast<RecordDecl>(Ctx);
517    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
518    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
519      AnonFields.push_back(AnonField);
520    else {
521      BaseObject = cast<VarDecl>(AnonObject);
522      break;
523    }
524    Ctx = Ctx->getParent();
525  } while (Ctx->isRecord() &&
526           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
527
528  // Build the expression that refers to the base object, from
529  // which we will build a sequence of member references to each
530  // of the anonymous union objects and, eventually, the field we
531  // found via name lookup.
532  bool BaseObjectIsPointer = false;
533  unsigned ExtraQuals = 0;
534  if (BaseObject) {
535    // BaseObject is an anonymous struct/union variable (and is,
536    // therefore, not part of another non-anonymous record).
537    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
538    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
539                                               SourceLocation());
540    ExtraQuals
541      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
542  } else if (BaseObjectExpr) {
543    // The caller provided the base object expression. Determine
544    // whether its a pointer and whether it adds any qualifiers to the
545    // anonymous struct/union fields we're looking into.
546    QualType ObjectType = BaseObjectExpr->getType();
547    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
548      BaseObjectIsPointer = true;
549      ObjectType = ObjectPtr->getPointeeType();
550    }
551    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
552  } else {
553    // We've found a member of an anonymous struct/union that is
554    // inside a non-anonymous struct/union, so in a well-formed
555    // program our base object expression is "this".
556    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
557      if (!MD->isStatic()) {
558        QualType AnonFieldType
559          = Context.getTagDeclType(
560                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
561        QualType ThisType = Context.getTagDeclType(MD->getParent());
562        if ((Context.getCanonicalType(AnonFieldType)
563               == Context.getCanonicalType(ThisType)) ||
564            IsDerivedFrom(ThisType, AnonFieldType)) {
565          // Our base object expression is "this".
566          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
567                                                     MD->getThisType(Context));
568          BaseObjectIsPointer = true;
569        }
570      } else {
571        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
572          << Field->getDeclName());
573      }
574      ExtraQuals = MD->getTypeQualifiers();
575    }
576
577    if (!BaseObjectExpr)
578      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
579        << Field->getDeclName());
580  }
581
582  // Build the implicit member references to the field of the
583  // anonymous struct/union.
584  Expr *Result = BaseObjectExpr;
585  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
586         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
587       FI != FIEnd; ++FI) {
588    QualType MemberType = (*FI)->getType();
589    if (!(*FI)->isMutable()) {
590      unsigned combinedQualifiers
591        = MemberType.getCVRQualifiers() | ExtraQuals;
592      MemberType = MemberType.getQualifiedType(combinedQualifiers);
593    }
594    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
595                                      OpLoc, MemberType);
596    BaseObjectIsPointer = false;
597    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
598    OpLoc = SourceLocation();
599  }
600
601  return Owned(Result);
602}
603
604/// ActOnDeclarationNameExpr - The parser has read some kind of name
605/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
606/// performs lookup on that name and returns an expression that refers
607/// to that name. This routine isn't directly called from the parser,
608/// because the parser doesn't know about DeclarationName. Rather,
609/// this routine is called by ActOnIdentifierExpr,
610/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
611/// which form the DeclarationName from the corresponding syntactic
612/// forms.
613///
614/// HasTrailingLParen indicates whether this identifier is used in a
615/// function call context.  LookupCtx is only used for a C++
616/// qualified-id (foo::bar) to indicate the class or namespace that
617/// the identifier must be a member of.
618///
619/// isAddressOfOperand means that this expression is the direct operand
620/// of an address-of operator. This matters because this is the only
621/// situation where a qualified name referencing a non-static member may
622/// appear outside a member function of this class.
623Sema::OwningExprResult
624Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
625                               DeclarationName Name, bool HasTrailingLParen,
626                               const CXXScopeSpec *SS,
627                               bool isAddressOfOperand) {
628  // Could be enum-constant, value decl, instance variable, etc.
629  if (SS && SS->isInvalid())
630    return ExprError();
631  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
632                                         false, true, Loc);
633
634  NamedDecl *D = 0;
635  if (Lookup.isAmbiguous()) {
636    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
637                            SS && SS->isSet() ? SS->getRange()
638                                              : SourceRange());
639    return ExprError();
640  } else
641    D = Lookup.getAsDecl();
642
643  // If this reference is in an Objective-C method, then ivar lookup happens as
644  // well.
645  IdentifierInfo *II = Name.getAsIdentifierInfo();
646  if (II && getCurMethodDecl()) {
647    // There are two cases to handle here.  1) scoped lookup could have failed,
648    // in which case we should look for an ivar.  2) scoped lookup could have
649    // found a decl, but that decl is outside the current method (i.e. a global
650    // variable).  In these two cases, we do a lookup for an ivar with this
651    // name, if the lookup suceeds, we replace it our current decl.
652    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
653      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
654      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
655        // Check if referencing a field with __attribute__((deprecated)).
656        if (DiagnoseUseOfDecl(IV, Loc))
657          return ExprError();
658
659        // FIXME: This should use a new expr for a direct reference, don't turn
660        // this into Self->ivar, just return a BareIVarExpr or something.
661        IdentifierInfo &II = Context.Idents.get("self");
662        OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
663        ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
664                                  Loc, static_cast<Expr*>(SelfExpr.release()),
665                                  true, true);
666        Context.setFieldDecl(IFace, IV, MRef);
667        return Owned(MRef);
668      }
669    }
670    // Needed to implement property "super.method" notation.
671    if (D == 0 && II->isStr("super")) {
672      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
673                     getCurMethodDecl()->getClassInterface()));
674      return Owned(new (Context) ObjCSuperExpr(Loc, T));
675    }
676  }
677
678  // Determine whether this name might be a candidate for
679  // argument-dependent lookup.
680  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
681             HasTrailingLParen;
682
683  if (ADL && D == 0) {
684    // We've seen something of the form
685    //
686    //   identifier(
687    //
688    // and we did not find any entity by the name
689    // "identifier". However, this identifier is still subject to
690    // argument-dependent lookup, so keep track of the name.
691    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
692                                                          Context.OverloadTy,
693                                                          Loc));
694  }
695
696  if (D == 0) {
697    // Otherwise, this could be an implicitly declared function reference (legal
698    // in C90, extension in C99).
699    if (HasTrailingLParen && II &&
700        !getLangOptions().CPlusPlus) // Not in C++.
701      D = ImplicitlyDefineFunction(Loc, *II, S);
702    else {
703      // If this name wasn't predeclared and if this is not a function call,
704      // diagnose the problem.
705      if (SS && !SS->isEmpty())
706        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
707          << Name << SS->getRange());
708      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
709               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
710        return ExprError(Diag(Loc, diag::err_undeclared_use)
711          << Name.getAsString());
712      else
713        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
714    }
715  }
716
717  // If this is an expression of the form &Class::member, don't build an
718  // implicit member ref, because we want a pointer to the member in general,
719  // not any specific instance's member.
720  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
721    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
722    if (D && isa<CXXRecordDecl>(DC)) {
723      QualType DType;
724      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
725        DType = FD->getType().getNonReferenceType();
726      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
727        DType = Method->getType();
728      } else if (isa<OverloadedFunctionDecl>(D)) {
729        DType = Context.OverloadTy;
730      }
731      // Could be an inner type. That's diagnosed below, so ignore it here.
732      if (!DType.isNull()) {
733        // The pointer is type- and value-dependent if it points into something
734        // dependent.
735        bool Dependent = false;
736        for (; DC; DC = DC->getParent()) {
737          // FIXME: could stop early at namespace scope.
738          if (DC->isRecord()) {
739            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
740            if (Context.getTypeDeclType(Record)->isDependentType()) {
741              Dependent = true;
742              break;
743            }
744          }
745        }
746        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
747      }
748    }
749  }
750
751  // We may have found a field within an anonymous union or struct
752  // (C++ [class.union]).
753  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
754    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
755      return BuildAnonymousStructUnionMemberReference(Loc, FD);
756
757  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
758    if (!MD->isStatic()) {
759      // C++ [class.mfct.nonstatic]p2:
760      //   [...] if name lookup (3.4.1) resolves the name in the
761      //   id-expression to a nonstatic nontype member of class X or of
762      //   a base class of X, the id-expression is transformed into a
763      //   class member access expression (5.2.5) using (*this) (9.3.2)
764      //   as the postfix-expression to the left of the '.' operator.
765      DeclContext *Ctx = 0;
766      QualType MemberType;
767      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
768        Ctx = FD->getDeclContext();
769        MemberType = FD->getType();
770
771        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
772          MemberType = RefType->getPointeeType();
773        else if (!FD->isMutable()) {
774          unsigned combinedQualifiers
775            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
776          MemberType = MemberType.getQualifiedType(combinedQualifiers);
777        }
778      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
779        if (!Method->isStatic()) {
780          Ctx = Method->getParent();
781          MemberType = Method->getType();
782        }
783      } else if (OverloadedFunctionDecl *Ovl
784                   = dyn_cast<OverloadedFunctionDecl>(D)) {
785        for (OverloadedFunctionDecl::function_iterator
786               Func = Ovl->function_begin(),
787               FuncEnd = Ovl->function_end();
788             Func != FuncEnd; ++Func) {
789          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
790            if (!DMethod->isStatic()) {
791              Ctx = Ovl->getDeclContext();
792              MemberType = Context.OverloadTy;
793              break;
794            }
795        }
796      }
797
798      if (Ctx && Ctx->isRecord()) {
799        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
800        QualType ThisType = Context.getTagDeclType(MD->getParent());
801        if ((Context.getCanonicalType(CtxType)
802               == Context.getCanonicalType(ThisType)) ||
803            IsDerivedFrom(ThisType, CtxType)) {
804          // Build the implicit member access expression.
805          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
806                                                 MD->getThisType(Context));
807          return Owned(new (Context) MemberExpr(This, true, D,
808                                                SourceLocation(), MemberType));
809        }
810      }
811    }
812  }
813
814  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
815    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
816      if (MD->isStatic())
817        // "invalid use of member 'x' in static member function"
818        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
819          << FD->getDeclName());
820    }
821
822    // Any other ways we could have found the field in a well-formed
823    // program would have been turned into implicit member expressions
824    // above.
825    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
826      << FD->getDeclName());
827  }
828
829  if (isa<TypedefDecl>(D))
830    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
831  if (isa<ObjCInterfaceDecl>(D))
832    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
833  if (isa<NamespaceDecl>(D))
834    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
835
836  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
837  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
838    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
839                                  false, false, SS));
840  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
841    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
842                                  false, false, SS));
843  ValueDecl *VD = cast<ValueDecl>(D);
844
845  // Check whether this declaration can be used. Note that we suppress
846  // this check when we're going to perform argument-dependent lookup
847  // on this function name, because this might not be the function
848  // that overload resolution actually selects.
849  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
850    return ExprError();
851
852  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
853    // Warn about constructs like:
854    //   if (void *X = foo()) { ... } else { X }.
855    // In the else block, the pointer is always false.
856    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
857      Scope *CheckS = S;
858      while (CheckS) {
859        if (CheckS->isWithinElse() &&
860            CheckS->getControlParent()->isDeclScope(Var)) {
861          if (Var->getType()->isBooleanType())
862            ExprError(Diag(Loc, diag::warn_value_always_false)
863              << Var->getDeclName());
864          else
865            ExprError(Diag(Loc, diag::warn_value_always_zero)
866              << Var->getDeclName());
867          break;
868        }
869
870        // Move up one more control parent to check again.
871        CheckS = CheckS->getControlParent();
872        if (CheckS)
873          CheckS = CheckS->getParent();
874      }
875    }
876  }
877
878  // Only create DeclRefExpr's for valid Decl's.
879  if (VD->isInvalidDecl())
880    return ExprError();
881
882  // If the identifier reference is inside a block, and it refers to a value
883  // that is outside the block, create a BlockDeclRefExpr instead of a
884  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
885  // the block is formed.
886  //
887  // We do not do this for things like enum constants, global variables, etc,
888  // as they do not get snapshotted.
889  //
890  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
891    // Blocks that have these can't be constant.
892    CurBlock->hasBlockDeclRefExprs = true;
893
894    // The BlocksAttr indicates the variable is bound by-reference.
895    if (VD->getAttr<BlocksAttr>())
896      return Owned(new (Context) BlockDeclRefExpr(VD,
897                               VD->getType().getNonReferenceType(), Loc, true));
898
899    // Variable will be bound by-copy, make it const within the closure.
900    VD->getType().addConst();
901    return Owned(new (Context) BlockDeclRefExpr(VD,
902                             VD->getType().getNonReferenceType(), Loc, false));
903  }
904  // If this reference is not in a block or if the referenced variable is
905  // within the block, create a normal DeclRefExpr.
906
907  bool TypeDependent = false;
908  bool ValueDependent = false;
909  if (getLangOptions().CPlusPlus) {
910    // C++ [temp.dep.expr]p3:
911    //   An id-expression is type-dependent if it contains:
912    //     - an identifier that was declared with a dependent type,
913    if (VD->getType()->isDependentType())
914      TypeDependent = true;
915    //     - FIXME: a template-id that is dependent,
916    //     - a conversion-function-id that specifies a dependent type,
917    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
918             Name.getCXXNameType()->isDependentType())
919      TypeDependent = true;
920    //     - a nested-name-specifier that contains a class-name that
921    //       names a dependent type.
922    else if (SS && !SS->isEmpty()) {
923      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
924           DC; DC = DC->getParent()) {
925        // FIXME: could stop early at namespace scope.
926        if (DC->isRecord()) {
927          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
928          if (Context.getTypeDeclType(Record)->isDependentType()) {
929            TypeDependent = true;
930            break;
931          }
932        }
933      }
934    }
935
936    // C++ [temp.dep.constexpr]p2:
937    //
938    //   An identifier is value-dependent if it is:
939    //     - a name declared with a dependent type,
940    if (TypeDependent)
941      ValueDependent = true;
942    //     - the name of a non-type template parameter,
943    else if (isa<NonTypeTemplateParmDecl>(VD))
944      ValueDependent = true;
945    //    - a constant with integral or enumeration type and is
946    //      initialized with an expression that is value-dependent
947    //      (FIXME!).
948  }
949
950  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
951                                TypeDependent, ValueDependent, SS));
952}
953
954Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
955                                                 tok::TokenKind Kind) {
956  PredefinedExpr::IdentType IT;
957
958  switch (Kind) {
959  default: assert(0 && "Unknown simple primary expr!");
960  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
961  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
962  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
963  }
964
965  // Pre-defined identifiers are of type char[x], where x is the length of the
966  // string.
967  unsigned Length;
968  if (FunctionDecl *FD = getCurFunctionDecl())
969    Length = FD->getIdentifier()->getLength();
970  else if (ObjCMethodDecl *MD = getCurMethodDecl())
971    Length = MD->getSynthesizedMethodSize();
972  else {
973    Diag(Loc, diag::ext_predef_outside_function);
974    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
975    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
976  }
977
978
979  llvm::APInt LengthI(32, Length + 1);
980  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
981  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
982  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
983}
984
985Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
986  llvm::SmallString<16> CharBuffer;
987  CharBuffer.resize(Tok.getLength());
988  const char *ThisTokBegin = &CharBuffer[0];
989  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
990
991  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
992                            Tok.getLocation(), PP);
993  if (Literal.hadError())
994    return ExprError();
995
996  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
997
998  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
999                                              Literal.isWide(),
1000                                              type, Tok.getLocation()));
1001}
1002
1003Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1004  // Fast path for a single digit (which is quite common).  A single digit
1005  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1006  if (Tok.getLength() == 1) {
1007    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1008    unsigned IntSize = Context.Target.getIntWidth();
1009    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1010                    Context.IntTy, Tok.getLocation()));
1011  }
1012
1013  llvm::SmallString<512> IntegerBuffer;
1014  // Add padding so that NumericLiteralParser can overread by one character.
1015  IntegerBuffer.resize(Tok.getLength()+1);
1016  const char *ThisTokBegin = &IntegerBuffer[0];
1017
1018  // Get the spelling of the token, which eliminates trigraphs, etc.
1019  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1020
1021  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1022                               Tok.getLocation(), PP);
1023  if (Literal.hadError)
1024    return ExprError();
1025
1026  Expr *Res;
1027
1028  if (Literal.isFloatingLiteral()) {
1029    QualType Ty;
1030    if (Literal.isFloat)
1031      Ty = Context.FloatTy;
1032    else if (!Literal.isLong)
1033      Ty = Context.DoubleTy;
1034    else
1035      Ty = Context.LongDoubleTy;
1036
1037    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1038
1039    // isExact will be set by GetFloatValue().
1040    bool isExact = false;
1041    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1042                                        &isExact, Ty, Tok.getLocation());
1043
1044  } else if (!Literal.isIntegerLiteral()) {
1045    return ExprError();
1046  } else {
1047    QualType Ty;
1048
1049    // long long is a C99 feature.
1050    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1051        Literal.isLongLong)
1052      Diag(Tok.getLocation(), diag::ext_longlong);
1053
1054    // Get the value in the widest-possible width.
1055    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1056
1057    if (Literal.GetIntegerValue(ResultVal)) {
1058      // If this value didn't fit into uintmax_t, warn and force to ull.
1059      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1060      Ty = Context.UnsignedLongLongTy;
1061      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1062             "long long is not intmax_t?");
1063    } else {
1064      // If this value fits into a ULL, try to figure out what else it fits into
1065      // according to the rules of C99 6.4.4.1p5.
1066
1067      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1068      // be an unsigned int.
1069      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1070
1071      // Check from smallest to largest, picking the smallest type we can.
1072      unsigned Width = 0;
1073      if (!Literal.isLong && !Literal.isLongLong) {
1074        // Are int/unsigned possibilities?
1075        unsigned IntSize = Context.Target.getIntWidth();
1076
1077        // Does it fit in a unsigned int?
1078        if (ResultVal.isIntN(IntSize)) {
1079          // Does it fit in a signed int?
1080          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1081            Ty = Context.IntTy;
1082          else if (AllowUnsigned)
1083            Ty = Context.UnsignedIntTy;
1084          Width = IntSize;
1085        }
1086      }
1087
1088      // Are long/unsigned long possibilities?
1089      if (Ty.isNull() && !Literal.isLongLong) {
1090        unsigned LongSize = Context.Target.getLongWidth();
1091
1092        // Does it fit in a unsigned long?
1093        if (ResultVal.isIntN(LongSize)) {
1094          // Does it fit in a signed long?
1095          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1096            Ty = Context.LongTy;
1097          else if (AllowUnsigned)
1098            Ty = Context.UnsignedLongTy;
1099          Width = LongSize;
1100        }
1101      }
1102
1103      // Finally, check long long if needed.
1104      if (Ty.isNull()) {
1105        unsigned LongLongSize = Context.Target.getLongLongWidth();
1106
1107        // Does it fit in a unsigned long long?
1108        if (ResultVal.isIntN(LongLongSize)) {
1109          // Does it fit in a signed long long?
1110          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1111            Ty = Context.LongLongTy;
1112          else if (AllowUnsigned)
1113            Ty = Context.UnsignedLongLongTy;
1114          Width = LongLongSize;
1115        }
1116      }
1117
1118      // If we still couldn't decide a type, we probably have something that
1119      // does not fit in a signed long long, but has no U suffix.
1120      if (Ty.isNull()) {
1121        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1122        Ty = Context.UnsignedLongLongTy;
1123        Width = Context.Target.getLongLongWidth();
1124      }
1125
1126      if (ResultVal.getBitWidth() != Width)
1127        ResultVal.trunc(Width);
1128    }
1129    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1130  }
1131
1132  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1133  if (Literal.isImaginary)
1134    Res = new (Context) ImaginaryLiteral(Res,
1135                                        Context.getComplexType(Res->getType()));
1136
1137  return Owned(Res);
1138}
1139
1140Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1141                                              SourceLocation R, ExprArg Val) {
1142  Expr *E = (Expr *)Val.release();
1143  assert((E != 0) && "ActOnParenExpr() missing expr");
1144  return Owned(new (Context) ParenExpr(L, R, E));
1145}
1146
1147/// The UsualUnaryConversions() function is *not* called by this routine.
1148/// See C99 6.3.2.1p[2-4] for more details.
1149bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1150                                     SourceLocation OpLoc,
1151                                     const SourceRange &ExprRange,
1152                                     bool isSizeof) {
1153  // C99 6.5.3.4p1:
1154  if (isa<FunctionType>(exprType)) {
1155    // alignof(function) is allowed.
1156    if (isSizeof)
1157      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1158    return false;
1159  }
1160
1161  if (exprType->isVoidType()) {
1162    Diag(OpLoc, diag::ext_sizeof_void_type)
1163      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1164    return false;
1165  }
1166
1167  return DiagnoseIncompleteType(OpLoc, exprType,
1168                                isSizeof ? diag::err_sizeof_incomplete_type :
1169                                           diag::err_alignof_incomplete_type,
1170                                ExprRange);
1171}
1172
1173bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1174                            const SourceRange &ExprRange) {
1175  E = E->IgnoreParens();
1176
1177  // alignof decl is always ok.
1178  if (isa<DeclRefExpr>(E))
1179    return false;
1180
1181  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1182    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1183      if (FD->isBitField()) {
1184        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1185        return true;
1186      }
1187      // Other fields are ok.
1188      return false;
1189    }
1190  }
1191  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1192}
1193
1194/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1195/// the same for @c alignof and @c __alignof
1196/// Note that the ArgRange is invalid if isType is false.
1197Action::OwningExprResult
1198Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1199                             void *TyOrEx, const SourceRange &ArgRange) {
1200  // If error parsing type, ignore.
1201  if (TyOrEx == 0) return ExprError();
1202
1203  QualType ArgTy;
1204  SourceRange Range;
1205  if (isType) {
1206    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1207    Range = ArgRange;
1208
1209    // Verify that the operand is valid.
1210    if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
1211      return ExprError();
1212  } else {
1213    // Get the end location.
1214    Expr *ArgEx = (Expr *)TyOrEx;
1215    Range = ArgEx->getSourceRange();
1216    ArgTy = ArgEx->getType();
1217
1218    // Verify that the operand is valid.
1219    bool isInvalid;
1220    if (!isSizeof) {
1221      isInvalid = CheckAlignOfExpr(ArgEx, OpLoc, Range);
1222    } else if (ArgEx->isBitField()) {  // C99 6.5.3.4p1.
1223      Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1224      isInvalid = true;
1225    } else {
1226      isInvalid = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, true);
1227    }
1228
1229    if (isInvalid) {
1230      DeleteExpr(ArgEx);
1231      return ExprError();
1232    }
1233  }
1234
1235  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1236  return Owned(new (Context) SizeOfAlignOfExpr(isSizeof, isType, TyOrEx,
1237                                               Context.getSizeType(), OpLoc,
1238                                               Range.getEnd()));
1239}
1240
1241QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1242  DefaultFunctionArrayConversion(V);
1243
1244  // These operators return the element type of a complex type.
1245  if (const ComplexType *CT = V->getType()->getAsComplexType())
1246    return CT->getElementType();
1247
1248  // Otherwise they pass through real integer and floating point types here.
1249  if (V->getType()->isArithmeticType())
1250    return V->getType();
1251
1252  // Reject anything else.
1253  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1254    << (isReal ? "__real" : "__imag");
1255  return QualType();
1256}
1257
1258
1259
1260Action::OwningExprResult
1261Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1262                          tok::TokenKind Kind, ExprArg Input) {
1263  Expr *Arg = (Expr *)Input.get();
1264
1265  UnaryOperator::Opcode Opc;
1266  switch (Kind) {
1267  default: assert(0 && "Unknown unary op!");
1268  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1269  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1270  }
1271
1272  if (getLangOptions().CPlusPlus &&
1273      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1274    // Which overloaded operator?
1275    OverloadedOperatorKind OverOp =
1276      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1277
1278    // C++ [over.inc]p1:
1279    //
1280    //     [...] If the function is a member function with one
1281    //     parameter (which shall be of type int) or a non-member
1282    //     function with two parameters (the second of which shall be
1283    //     of type int), it defines the postfix increment operator ++
1284    //     for objects of that type. When the postfix increment is
1285    //     called as a result of using the ++ operator, the int
1286    //     argument will have value zero.
1287    Expr *Args[2] = {
1288      Arg,
1289      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1290                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1291    };
1292
1293    // Build the candidate set for overloading
1294    OverloadCandidateSet CandidateSet;
1295    if (AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet))
1296      return ExprError();
1297
1298    // Perform overload resolution.
1299    OverloadCandidateSet::iterator Best;
1300    switch (BestViableFunction(CandidateSet, Best)) {
1301    case OR_Success: {
1302      // We found a built-in operator or an overloaded operator.
1303      FunctionDecl *FnDecl = Best->Function;
1304
1305      if (FnDecl) {
1306        // We matched an overloaded operator. Build a call to that
1307        // operator.
1308
1309        // Convert the arguments.
1310        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1311          if (PerformObjectArgumentInitialization(Arg, Method))
1312            return ExprError();
1313        } else {
1314          // Convert the arguments.
1315          if (PerformCopyInitialization(Arg,
1316                                        FnDecl->getParamDecl(0)->getType(),
1317                                        "passing"))
1318            return ExprError();
1319        }
1320
1321        // Determine the result type
1322        QualType ResultTy
1323          = FnDecl->getType()->getAsFunctionType()->getResultType();
1324        ResultTy = ResultTy.getNonReferenceType();
1325
1326        // Build the actual expression node.
1327        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1328                                                 SourceLocation());
1329        UsualUnaryConversions(FnExpr);
1330
1331        Input.release();
1332        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1333                                                       ResultTy, OpLoc));
1334      } else {
1335        // We matched a built-in operator. Convert the arguments, then
1336        // break out so that we will build the appropriate built-in
1337        // operator node.
1338        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1339                                      "passing"))
1340          return ExprError();
1341
1342        break;
1343      }
1344    }
1345
1346    case OR_No_Viable_Function:
1347      // No viable function; fall through to handling this as a
1348      // built-in operator, which will produce an error message for us.
1349      break;
1350
1351    case OR_Ambiguous:
1352      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1353          << UnaryOperator::getOpcodeStr(Opc)
1354          << Arg->getSourceRange();
1355      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1356      return ExprError();
1357
1358    case OR_Deleted:
1359      Diag(OpLoc, diag::err_ovl_deleted_oper)
1360        << Best->Function->isDeleted()
1361        << UnaryOperator::getOpcodeStr(Opc)
1362        << Arg->getSourceRange();
1363      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1364      return ExprError();
1365    }
1366
1367    // Either we found no viable overloaded operator or we matched a
1368    // built-in operator. In either case, fall through to trying to
1369    // build a built-in operation.
1370  }
1371
1372  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1373                                                 Opc == UnaryOperator::PostInc);
1374  if (result.isNull())
1375    return ExprError();
1376  Input.release();
1377  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1378}
1379
1380Action::OwningExprResult
1381Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1382                              ExprArg Idx, SourceLocation RLoc) {
1383  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1384       *RHSExp = static_cast<Expr*>(Idx.get());
1385
1386  if (getLangOptions().CPlusPlus &&
1387      (LHSExp->getType()->isRecordType() ||
1388       LHSExp->getType()->isEnumeralType() ||
1389       RHSExp->getType()->isRecordType() ||
1390       RHSExp->getType()->isEnumeralType())) {
1391    // Add the appropriate overloaded operators (C++ [over.match.oper])
1392    // to the candidate set.
1393    OverloadCandidateSet CandidateSet;
1394    Expr *Args[2] = { LHSExp, RHSExp };
1395    if (AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1396                              SourceRange(LLoc, RLoc)))
1397      return ExprError();
1398
1399    // Perform overload resolution.
1400    OverloadCandidateSet::iterator Best;
1401    switch (BestViableFunction(CandidateSet, Best)) {
1402    case OR_Success: {
1403      // We found a built-in operator or an overloaded operator.
1404      FunctionDecl *FnDecl = Best->Function;
1405
1406      if (FnDecl) {
1407        // We matched an overloaded operator. Build a call to that
1408        // operator.
1409
1410        // Convert the arguments.
1411        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1412          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1413              PerformCopyInitialization(RHSExp,
1414                                        FnDecl->getParamDecl(0)->getType(),
1415                                        "passing"))
1416            return ExprError();
1417        } else {
1418          // Convert the arguments.
1419          if (PerformCopyInitialization(LHSExp,
1420                                        FnDecl->getParamDecl(0)->getType(),
1421                                        "passing") ||
1422              PerformCopyInitialization(RHSExp,
1423                                        FnDecl->getParamDecl(1)->getType(),
1424                                        "passing"))
1425            return ExprError();
1426        }
1427
1428        // Determine the result type
1429        QualType ResultTy
1430          = FnDecl->getType()->getAsFunctionType()->getResultType();
1431        ResultTy = ResultTy.getNonReferenceType();
1432
1433        // Build the actual expression node.
1434        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1435                                                 SourceLocation());
1436        UsualUnaryConversions(FnExpr);
1437
1438        Base.release();
1439        Idx.release();
1440        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1441                                                       ResultTy, LLoc));
1442      } else {
1443        // We matched a built-in operator. Convert the arguments, then
1444        // break out so that we will build the appropriate built-in
1445        // operator node.
1446        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1447                                      "passing") ||
1448            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1449                                      "passing"))
1450          return ExprError();
1451
1452        break;
1453      }
1454    }
1455
1456    case OR_No_Viable_Function:
1457      // No viable function; fall through to handling this as a
1458      // built-in operator, which will produce an error message for us.
1459      break;
1460
1461    case OR_Ambiguous:
1462      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1463          << "[]"
1464          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1465      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1466      return ExprError();
1467
1468    case OR_Deleted:
1469      Diag(LLoc, diag::err_ovl_deleted_oper)
1470        << Best->Function->isDeleted()
1471        << "[]"
1472        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1473      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1474      return ExprError();
1475    }
1476
1477    // Either we found no viable overloaded operator or we matched a
1478    // built-in operator. In either case, fall through to trying to
1479    // build a built-in operation.
1480  }
1481
1482  // Perform default conversions.
1483  DefaultFunctionArrayConversion(LHSExp);
1484  DefaultFunctionArrayConversion(RHSExp);
1485
1486  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1487
1488  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1489  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1490  // in the subscript position. As a result, we need to derive the array base
1491  // and index from the expression types.
1492  Expr *BaseExpr, *IndexExpr;
1493  QualType ResultType;
1494  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1495    BaseExpr = LHSExp;
1496    IndexExpr = RHSExp;
1497    // FIXME: need to deal with const...
1498    ResultType = PTy->getPointeeType();
1499  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1500     // Handle the uncommon case of "123[Ptr]".
1501    BaseExpr = RHSExp;
1502    IndexExpr = LHSExp;
1503    // FIXME: need to deal with const...
1504    ResultType = PTy->getPointeeType();
1505  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1506    BaseExpr = LHSExp;    // vectors: V[123]
1507    IndexExpr = RHSExp;
1508
1509    // FIXME: need to deal with const...
1510    ResultType = VTy->getElementType();
1511  } else {
1512    return ExprError(Diag(LHSExp->getLocStart(),
1513      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1514  }
1515  // C99 6.5.2.1p1
1516  if (!IndexExpr->getType()->isIntegerType())
1517    return ExprError(Diag(IndexExpr->getLocStart(),
1518      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1519
1520  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1521  // the following check catches trying to index a pointer to a function (e.g.
1522  // void (*)(int)) and pointers to incomplete types.  Functions are not
1523  // objects in C99.
1524  if (!ResultType->isObjectType())
1525    return ExprError(Diag(BaseExpr->getLocStart(),
1526                diag::err_typecheck_subscript_not_object)
1527      << BaseExpr->getType() << BaseExpr->getSourceRange());
1528
1529  Base.release();
1530  Idx.release();
1531  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1532                                                ResultType, RLoc));
1533}
1534
1535QualType Sema::
1536CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1537                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1538  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1539
1540  // The vector accessor can't exceed the number of elements.
1541  const char *compStr = CompName.getName();
1542
1543  // This flag determines whether or not the component is one of the four
1544  // special names that indicate a subset of exactly half the elements are
1545  // to be selected.
1546  bool HalvingSwizzle = false;
1547
1548  // This flag determines whether or not CompName has an 's' char prefix,
1549  // indicating that it is a string of hex values to be used as vector indices.
1550  bool HexSwizzle = *compStr == 's';
1551
1552  // Check that we've found one of the special components, or that the component
1553  // names must come from the same set.
1554  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1555      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1556    HalvingSwizzle = true;
1557  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1558    do
1559      compStr++;
1560    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1561  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1562    do
1563      compStr++;
1564    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1565  }
1566
1567  if (!HalvingSwizzle && *compStr) {
1568    // We didn't get to the end of the string. This means the component names
1569    // didn't come from the same set *or* we encountered an illegal name.
1570    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1571      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1572    return QualType();
1573  }
1574
1575  // Ensure no component accessor exceeds the width of the vector type it
1576  // operates on.
1577  if (!HalvingSwizzle) {
1578    compStr = CompName.getName();
1579
1580    if (HexSwizzle)
1581      compStr++;
1582
1583    while (*compStr) {
1584      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1585        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1586          << baseType << SourceRange(CompLoc);
1587        return QualType();
1588      }
1589    }
1590  }
1591
1592  // If this is a halving swizzle, verify that the base type has an even
1593  // number of elements.
1594  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1595    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1596      << baseType << SourceRange(CompLoc);
1597    return QualType();
1598  }
1599
1600  // The component accessor looks fine - now we need to compute the actual type.
1601  // The vector type is implied by the component accessor. For example,
1602  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1603  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1604  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1605  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1606                                     : CompName.getLength();
1607  if (HexSwizzle)
1608    CompSize--;
1609
1610  if (CompSize == 1)
1611    return vecType->getElementType();
1612
1613  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1614  // Now look up the TypeDefDecl from the vector type. Without this,
1615  // diagostics look bad. We want extended vector types to appear built-in.
1616  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1617    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1618      return Context.getTypedefType(ExtVectorDecls[i]);
1619  }
1620  return VT; // should never get here (a typedef type should always be found).
1621}
1622
1623
1624/// constructSetterName - Return the setter name for the given
1625/// identifier, i.e. "set" + Name where the initial character of Name
1626/// has been capitalized.
1627// FIXME: Merge with same routine in Parser. But where should this
1628// live?
1629static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1630                                           const IdentifierInfo *Name) {
1631  llvm::SmallString<100> SelectorName;
1632  SelectorName = "set";
1633  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1634  SelectorName[3] = toupper(SelectorName[3]);
1635  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1636}
1637
1638Action::OwningExprResult
1639Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1640                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1641                               IdentifierInfo &Member) {
1642  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1643  assert(BaseExpr && "no record expression");
1644
1645  // Perform default conversions.
1646  DefaultFunctionArrayConversion(BaseExpr);
1647
1648  QualType BaseType = BaseExpr->getType();
1649  assert(!BaseType.isNull() && "no type for member expression");
1650
1651  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1652  // must have pointer type, and the accessed type is the pointee.
1653  if (OpKind == tok::arrow) {
1654    if (const PointerType *PT = BaseType->getAsPointerType())
1655      BaseType = PT->getPointeeType();
1656    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1657      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1658                                            MemberLoc, Member));
1659    else
1660      return ExprError(Diag(MemberLoc,
1661                            diag::err_typecheck_member_reference_arrow)
1662        << BaseType << BaseExpr->getSourceRange());
1663  }
1664
1665  // Handle field access to simple records.  This also handles access to fields
1666  // of the ObjC 'id' struct.
1667  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1668    RecordDecl *RDecl = RTy->getDecl();
1669    if (DiagnoseIncompleteType(OpLoc, BaseType,
1670                               diag::err_typecheck_incomplete_tag,
1671                               BaseExpr->getSourceRange()))
1672      return ExprError();
1673
1674    // The record definition is complete, now make sure the member is valid.
1675    // FIXME: Qualified name lookup for C++ is a bit more complicated
1676    // than this.
1677    LookupResult Result
1678      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1679                            LookupMemberName, false);
1680
1681    NamedDecl *MemberDecl = 0;
1682    if (!Result)
1683      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1684               << &Member << BaseExpr->getSourceRange());
1685    else if (Result.isAmbiguous()) {
1686      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1687                              MemberLoc, BaseExpr->getSourceRange());
1688      return ExprError();
1689    } else
1690      MemberDecl = Result;
1691
1692    // If the decl being referenced had an error, return an error for this
1693    // sub-expr without emitting another error, in order to avoid cascading
1694    // error cases.
1695    if (MemberDecl->isInvalidDecl())
1696      return ExprError();
1697
1698    // Check the use of this field
1699    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1700      return ExprError();
1701
1702    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1703      // We may have found a field within an anonymous union or struct
1704      // (C++ [class.union]).
1705      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1706        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1707                                                        BaseExpr, OpLoc);
1708
1709      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1710      // FIXME: Handle address space modifiers
1711      QualType MemberType = FD->getType();
1712      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1713        MemberType = Ref->getPointeeType();
1714      else {
1715        unsigned combinedQualifiers =
1716          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1717        if (FD->isMutable())
1718          combinedQualifiers &= ~QualType::Const;
1719        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1720      }
1721
1722      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1723                                            MemberLoc, MemberType));
1724    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1725      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1726                                  Var, MemberLoc,
1727                                  Var->getType().getNonReferenceType()));
1728    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1729      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1730                                  MemberFn, MemberLoc, MemberFn->getType()));
1731    else if (OverloadedFunctionDecl *Ovl
1732             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1733      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1734                                  MemberLoc, Context.OverloadTy));
1735    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1736      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1737                                            Enum, MemberLoc, Enum->getType()));
1738    else if (isa<TypeDecl>(MemberDecl))
1739      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1740        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1741
1742    // We found a declaration kind that we didn't expect. This is a
1743    // generic error message that tells the user that she can't refer
1744    // to this member with '.' or '->'.
1745    return ExprError(Diag(MemberLoc,
1746                          diag::err_typecheck_member_reference_unknown)
1747      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1748  }
1749
1750  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1751  // (*Obj).ivar.
1752  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1753    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
1754      // If the decl being referenced had an error, return an error for this
1755      // sub-expr without emitting another error, in order to avoid cascading
1756      // error cases.
1757      if (IV->isInvalidDecl())
1758        return ExprError();
1759
1760      // Check whether we can reference this field.
1761      if (DiagnoseUseOfDecl(IV, MemberLoc))
1762        return ExprError();
1763
1764      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1765                                                 MemberLoc, BaseExpr,
1766                                                 OpKind == tok::arrow);
1767      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1768      return Owned(MRef);
1769    }
1770    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1771                       << IFTy->getDecl()->getDeclName() << &Member
1772                       << BaseExpr->getSourceRange());
1773  }
1774
1775  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1776  // pointer to a (potentially qualified) interface type.
1777  const PointerType *PTy;
1778  const ObjCInterfaceType *IFTy;
1779  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1780      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1781    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1782
1783    // Search for a declared property first.
1784    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
1785      // Check whether we can reference this property.
1786      if (DiagnoseUseOfDecl(PD, MemberLoc))
1787        return ExprError();
1788
1789      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1790                                                     MemberLoc, BaseExpr));
1791    }
1792
1793    // Check protocols on qualified interfaces.
1794    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1795         E = IFTy->qual_end(); I != E; ++I)
1796      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1797        // Check whether we can reference this property.
1798        if (DiagnoseUseOfDecl(PD, MemberLoc))
1799          return ExprError();
1800
1801        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1802                                                       MemberLoc, BaseExpr));
1803      }
1804
1805    // If that failed, look for an "implicit" property by seeing if the nullary
1806    // selector is implemented.
1807
1808    // FIXME: The logic for looking up nullary and unary selectors should be
1809    // shared with the code in ActOnInstanceMessage.
1810
1811    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1812    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1813
1814    // If this reference is in an @implementation, check for 'private' methods.
1815    if (!Getter)
1816      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1817        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1818          if (ObjCImplementationDecl *ImpDecl =
1819              ObjCImplementations[ClassDecl->getIdentifier()])
1820            Getter = ImpDecl->getInstanceMethod(Sel);
1821
1822    // Look through local category implementations associated with the class.
1823    if (!Getter) {
1824      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1825        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1826          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1827      }
1828    }
1829    if (Getter) {
1830      // Check if we can reference this property.
1831      if (DiagnoseUseOfDecl(Getter, MemberLoc))
1832        return ExprError();
1833
1834      // If we found a getter then this may be a valid dot-reference, we
1835      // will look for the matching setter, in case it is needed.
1836      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1837                                                       &Member);
1838      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1839      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1840      if (!Setter) {
1841        // If this reference is in an @implementation, also check for 'private'
1842        // methods.
1843        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1844          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1845            if (ObjCImplementationDecl *ImpDecl =
1846                  ObjCImplementations[ClassDecl->getIdentifier()])
1847              Setter = ImpDecl->getInstanceMethod(SetterSel);
1848      }
1849      // Look through local category implementations associated with the class.
1850      if (!Setter) {
1851        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1852          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1853            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1854        }
1855      }
1856
1857      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1858        return ExprError();
1859
1860      // FIXME: we must check that the setter has property type.
1861      return Owned(new (Context) ObjCKVCRefExpr(Getter, Getter->getResultType(),
1862                                      Setter, MemberLoc, BaseExpr));
1863    }
1864
1865    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1866      << &Member << BaseType);
1867  }
1868  // Handle properties on qualified "id" protocols.
1869  const ObjCQualifiedIdType *QIdTy;
1870  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1871    // Check protocols on qualified interfaces.
1872    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1873         E = QIdTy->qual_end(); I != E; ++I) {
1874      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1875        // Check the use of this declaration
1876        if (DiagnoseUseOfDecl(PD, MemberLoc))
1877          return ExprError();
1878
1879        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1880                                                       MemberLoc, BaseExpr));
1881      }
1882      // Also must look for a getter name which uses property syntax.
1883      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1884      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1885        // Check the use of this method.
1886        if (DiagnoseUseOfDecl(OMD, MemberLoc))
1887          return ExprError();
1888
1889        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1890                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1891      }
1892    }
1893
1894    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1895                       << &Member << BaseType);
1896  }
1897  // Handle 'field access' to vectors, such as 'V.xx'.
1898  if (BaseType->isExtVectorType()) {
1899    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1900    if (ret.isNull())
1901      return ExprError();
1902    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
1903                                                    MemberLoc));
1904  }
1905
1906  return ExprError(Diag(MemberLoc,
1907                        diag::err_typecheck_member_reference_struct_union)
1908                     << BaseType << BaseExpr->getSourceRange());
1909}
1910
1911/// ConvertArgumentsForCall - Converts the arguments specified in
1912/// Args/NumArgs to the parameter types of the function FDecl with
1913/// function prototype Proto. Call is the call expression itself, and
1914/// Fn is the function expression. For a C++ member function, this
1915/// routine does not attempt to convert the object argument. Returns
1916/// true if the call is ill-formed.
1917bool
1918Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
1919                              FunctionDecl *FDecl,
1920                              const FunctionTypeProto *Proto,
1921                              Expr **Args, unsigned NumArgs,
1922                              SourceLocation RParenLoc) {
1923  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1924  // assignment, to the types of the corresponding parameter, ...
1925  unsigned NumArgsInProto = Proto->getNumArgs();
1926  unsigned NumArgsToCheck = NumArgs;
1927  bool Invalid = false;
1928
1929  // If too few arguments are available (and we don't have default
1930  // arguments for the remaining parameters), don't make the call.
1931  if (NumArgs < NumArgsInProto) {
1932    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1933      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1934        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1935    // Use default arguments for missing arguments
1936    NumArgsToCheck = NumArgsInProto;
1937    Call->setNumArgs(Context, NumArgsInProto);
1938  }
1939
1940  // If too many are passed and not variadic, error on the extras and drop
1941  // them.
1942  if (NumArgs > NumArgsInProto) {
1943    if (!Proto->isVariadic()) {
1944      Diag(Args[NumArgsInProto]->getLocStart(),
1945           diag::err_typecheck_call_too_many_args)
1946        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1947        << SourceRange(Args[NumArgsInProto]->getLocStart(),
1948                       Args[NumArgs-1]->getLocEnd());
1949      // This deletes the extra arguments.
1950      Call->setNumArgs(Context, NumArgsInProto);
1951      Invalid = true;
1952    }
1953    NumArgsToCheck = NumArgsInProto;
1954  }
1955
1956  // Continue to check argument types (even if we have too few/many args).
1957  for (unsigned i = 0; i != NumArgsToCheck; i++) {
1958    QualType ProtoArgType = Proto->getArgType(i);
1959
1960    Expr *Arg;
1961    if (i < NumArgs) {
1962      Arg = Args[i];
1963
1964      // Pass the argument.
1965      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1966        return true;
1967    } else
1968      // We already type-checked the argument, so we know it works.
1969      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
1970    QualType ArgType = Arg->getType();
1971
1972    Call->setArg(i, Arg);
1973  }
1974
1975  // If this is a variadic call, handle args passed through "...".
1976  if (Proto->isVariadic()) {
1977    VariadicCallType CallType = VariadicFunction;
1978    if (Fn->getType()->isBlockPointerType())
1979      CallType = VariadicBlock; // Block
1980    else if (isa<MemberExpr>(Fn))
1981      CallType = VariadicMethod;
1982
1983    // Promote the arguments (C99 6.5.2.2p7).
1984    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1985      Expr *Arg = Args[i];
1986      DefaultVariadicArgumentPromotion(Arg, CallType);
1987      Call->setArg(i, Arg);
1988    }
1989  }
1990
1991  return Invalid;
1992}
1993
1994/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1995/// This provides the location of the left/right parens and a list of comma
1996/// locations.
1997Action::OwningExprResult
1998Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
1999                    MultiExprArg args,
2000                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2001  unsigned NumArgs = args.size();
2002  Expr *Fn = static_cast<Expr *>(fn.release());
2003  Expr **Args = reinterpret_cast<Expr**>(args.release());
2004  assert(Fn && "no function call expression");
2005  FunctionDecl *FDecl = NULL;
2006  DeclarationName UnqualifiedName;
2007
2008  if (getLangOptions().CPlusPlus) {
2009    // Determine whether this is a dependent call inside a C++ template,
2010    // in which case we won't do any semantic analysis now.
2011    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
2012    bool Dependent = false;
2013    if (Fn->isTypeDependent())
2014      Dependent = true;
2015    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2016      Dependent = true;
2017
2018    if (Dependent)
2019      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2020                                          Context.DependentTy, RParenLoc));
2021
2022    // Determine whether this is a call to an object (C++ [over.call.object]).
2023    if (Fn->getType()->isRecordType())
2024      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2025                                                CommaLocs, RParenLoc));
2026
2027    // Determine whether this is a call to a member function.
2028    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2029      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2030          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2031        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2032                                               CommaLocs, RParenLoc));
2033  }
2034
2035  // If we're directly calling a function, get the appropriate declaration.
2036  DeclRefExpr *DRExpr = NULL;
2037  Expr *FnExpr = Fn;
2038  bool ADL = true;
2039  while (true) {
2040    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2041      FnExpr = IcExpr->getSubExpr();
2042    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2043      // Parentheses around a function disable ADL
2044      // (C++0x [basic.lookup.argdep]p1).
2045      ADL = false;
2046      FnExpr = PExpr->getSubExpr();
2047    } else if (isa<UnaryOperator>(FnExpr) &&
2048               cast<UnaryOperator>(FnExpr)->getOpcode()
2049                 == UnaryOperator::AddrOf) {
2050      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2051    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2052      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2053      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2054      break;
2055    } else if (UnresolvedFunctionNameExpr *DepName
2056                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2057      UnqualifiedName = DepName->getName();
2058      break;
2059    } else {
2060      // Any kind of name that does not refer to a declaration (or
2061      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2062      ADL = false;
2063      break;
2064    }
2065  }
2066
2067  OverloadedFunctionDecl *Ovl = 0;
2068  if (DRExpr) {
2069    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2070    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2071  }
2072
2073  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2074    // We don't perform ADL for implicit declarations of builtins.
2075    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2076      ADL = false;
2077
2078    // We don't perform ADL in C.
2079    if (!getLangOptions().CPlusPlus)
2080      ADL = false;
2081
2082    if (Ovl || ADL) {
2083      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2084                                      UnqualifiedName, LParenLoc, Args,
2085                                      NumArgs, CommaLocs, RParenLoc, ADL);
2086      if (!FDecl)
2087        return ExprError();
2088
2089      // Update Fn to refer to the actual function selected.
2090      Expr *NewFn = 0;
2091      if (QualifiedDeclRefExpr *QDRExpr
2092            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2093        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2094                                                   QDRExpr->getLocation(),
2095                                                   false, false,
2096                                          QDRExpr->getSourceRange().getBegin());
2097      else
2098        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2099                                          Fn->getSourceRange().getBegin());
2100      Fn->Destroy(Context);
2101      Fn = NewFn;
2102    }
2103  }
2104
2105  // Promote the function operand.
2106  UsualUnaryConversions(Fn);
2107
2108  // Make the call expr early, before semantic checks.  This guarantees cleanup
2109  // of arguments and function on error.
2110  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2111                                                               Args, NumArgs,
2112                                                               Context.BoolTy,
2113                                                               RParenLoc));
2114
2115  const FunctionType *FuncT;
2116  if (!Fn->getType()->isBlockPointerType()) {
2117    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2118    // have type pointer to function".
2119    const PointerType *PT = Fn->getType()->getAsPointerType();
2120    if (PT == 0)
2121      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2122        << Fn->getType() << Fn->getSourceRange());
2123    FuncT = PT->getPointeeType()->getAsFunctionType();
2124  } else { // This is a block call.
2125    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2126                getAsFunctionType();
2127  }
2128  if (FuncT == 0)
2129    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2130      << Fn->getType() << Fn->getSourceRange());
2131
2132  // We know the result type of the call, set it.
2133  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2134
2135  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
2136    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2137                                RParenLoc))
2138      return ExprError();
2139  } else {
2140    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
2141
2142    // Promote the arguments (C99 6.5.2.2p6).
2143    for (unsigned i = 0; i != NumArgs; i++) {
2144      Expr *Arg = Args[i];
2145      DefaultArgumentPromotion(Arg);
2146      TheCall->setArg(i, Arg);
2147    }
2148  }
2149
2150  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2151    if (!Method->isStatic())
2152      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2153        << Fn->getSourceRange());
2154
2155  // Do special checking on direct calls to functions.
2156  if (FDecl)
2157    return CheckFunctionCall(FDecl, TheCall.take());
2158
2159  return Owned(TheCall.take());
2160}
2161
2162Action::OwningExprResult
2163Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2164                           SourceLocation RParenLoc, ExprArg InitExpr) {
2165  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2166  QualType literalType = QualType::getFromOpaquePtr(Ty);
2167  // FIXME: put back this assert when initializers are worked out.
2168  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2169  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2170
2171  if (literalType->isArrayType()) {
2172    if (literalType->isVariableArrayType())
2173      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2174        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2175  } else if (DiagnoseIncompleteType(LParenLoc, literalType,
2176                                    diag::err_typecheck_decl_incomplete_type,
2177                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2178    return ExprError();
2179
2180  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2181                            DeclarationName(), /*FIXME:DirectInit=*/false))
2182    return ExprError();
2183
2184  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2185  if (isFileScope) { // 6.5.2.5p3
2186    if (CheckForConstantInitializer(literalExpr, literalType))
2187      return ExprError();
2188  }
2189  InitExpr.release();
2190  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2191                                                 literalExpr, isFileScope));
2192}
2193
2194Action::OwningExprResult
2195Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2196                    InitListDesignations &Designators,
2197                    SourceLocation RBraceLoc) {
2198  unsigned NumInit = initlist.size();
2199  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2200
2201  // Semantic analysis for initializers is done by ActOnDeclarator() and
2202  // CheckInitializer() - it requires knowledge of the object being intialized.
2203
2204  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2205                                               RBraceLoc);
2206  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2207  return Owned(E);
2208}
2209
2210/// CheckCastTypes - Check type constraints for casting between types.
2211bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2212  UsualUnaryConversions(castExpr);
2213
2214  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2215  // type needs to be scalar.
2216  if (castType->isVoidType()) {
2217    // Cast to void allows any expr type.
2218  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2219    // We can't check any more until template instantiation time.
2220  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2221    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2222        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2223        (castType->isStructureType() || castType->isUnionType())) {
2224      // GCC struct/union extension: allow cast to self.
2225      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2226        << castType << castExpr->getSourceRange();
2227    } else if (castType->isUnionType()) {
2228      // GCC cast to union extension
2229      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2230      RecordDecl::field_iterator Field, FieldEnd;
2231      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2232           Field != FieldEnd; ++Field) {
2233        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2234            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2235          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2236            << castExpr->getSourceRange();
2237          break;
2238        }
2239      }
2240      if (Field == FieldEnd)
2241        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2242          << castExpr->getType() << castExpr->getSourceRange();
2243    } else {
2244      // Reject any other conversions to non-scalar types.
2245      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2246        << castType << castExpr->getSourceRange();
2247    }
2248  } else if (!castExpr->getType()->isScalarType() &&
2249             !castExpr->getType()->isVectorType()) {
2250    return Diag(castExpr->getLocStart(),
2251                diag::err_typecheck_expect_scalar_operand)
2252      << castExpr->getType() << castExpr->getSourceRange();
2253  } else if (castExpr->getType()->isVectorType()) {
2254    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2255      return true;
2256  } else if (castType->isVectorType()) {
2257    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2258      return true;
2259  }
2260  return false;
2261}
2262
2263bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2264  assert(VectorTy->isVectorType() && "Not a vector type!");
2265
2266  if (Ty->isVectorType() || Ty->isIntegerType()) {
2267    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2268      return Diag(R.getBegin(),
2269                  Ty->isVectorType() ?
2270                  diag::err_invalid_conversion_between_vectors :
2271                  diag::err_invalid_conversion_between_vector_and_integer)
2272        << VectorTy << Ty << R;
2273  } else
2274    return Diag(R.getBegin(),
2275                diag::err_invalid_conversion_between_vector_and_scalar)
2276      << VectorTy << Ty << R;
2277
2278  return false;
2279}
2280
2281Action::OwningExprResult
2282Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2283                    SourceLocation RParenLoc, ExprArg Op) {
2284  assert((Ty != 0) && (Op.get() != 0) &&
2285         "ActOnCastExpr(): missing type or expr");
2286
2287  Expr *castExpr = static_cast<Expr*>(Op.release());
2288  QualType castType = QualType::getFromOpaquePtr(Ty);
2289
2290  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2291    return ExprError();
2292  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2293                                            LParenLoc, RParenLoc));
2294}
2295
2296/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
2297/// In that case, lex = cond.
2298/// C99 6.5.15
2299QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2300                                        SourceLocation QuestionLoc) {
2301  UsualUnaryConversions(Cond);
2302  UsualUnaryConversions(LHS);
2303  UsualUnaryConversions(RHS);
2304  QualType CondTy = Cond->getType();
2305  QualType LHSTy = LHS->getType();
2306  QualType RHSTy = RHS->getType();
2307
2308  // first, check the condition.
2309  if (!Cond->isTypeDependent()) {
2310    if (!CondTy->isScalarType()) { // C99 6.5.15p2
2311      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2312        << CondTy;
2313      return QualType();
2314    }
2315  }
2316
2317  // Now check the two expressions.
2318  if ((LHS && LHS->isTypeDependent()) || (RHS && RHS->isTypeDependent()))
2319    return Context.DependentTy;
2320
2321  // If both operands have arithmetic type, do the usual arithmetic conversions
2322  // to find a common type: C99 6.5.15p3,5.
2323  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2324    UsualArithmeticConversions(LHS, RHS);
2325    return LHS->getType();
2326  }
2327
2328  // If both operands are the same structure or union type, the result is that
2329  // type.
2330  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2331    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2332      if (LHSRT->getDecl() == RHSRT->getDecl())
2333        // "If both the operands have structure or union type, the result has
2334        // that type."  This implies that CV qualifiers are dropped.
2335        return LHSTy.getUnqualifiedType();
2336  }
2337
2338  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2339  // The following || allows only one side to be void (a GCC-ism).
2340  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2341    if (!LHSTy->isVoidType())
2342      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2343        << RHS->getSourceRange();
2344    if (!RHSTy->isVoidType())
2345      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2346        << LHS->getSourceRange();
2347    ImpCastExprToType(LHS, Context.VoidTy);
2348    ImpCastExprToType(RHS, Context.VoidTy);
2349    return Context.VoidTy;
2350  }
2351  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2352  // the type of the other operand."
2353  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2354       Context.isObjCObjectPointerType(LHSTy)) &&
2355      RHS->isNullPointerConstant(Context)) {
2356    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2357    return LHSTy;
2358  }
2359  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2360       Context.isObjCObjectPointerType(RHSTy)) &&
2361      LHS->isNullPointerConstant(Context)) {
2362    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2363    return RHSTy;
2364  }
2365
2366  // Handle the case where both operands are pointers before we handle null
2367  // pointer constants in case both operands are null pointer constants.
2368  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2369    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2370      // get the "pointed to" types
2371      QualType lhptee = LHSPT->getPointeeType();
2372      QualType rhptee = RHSPT->getPointeeType();
2373
2374      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2375      if (lhptee->isVoidType() &&
2376          rhptee->isIncompleteOrObjectType()) {
2377        // Figure out necessary qualifiers (C99 6.5.15p6)
2378        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2379        QualType destType = Context.getPointerType(destPointee);
2380        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2381        ImpCastExprToType(RHS, destType); // promote to void*
2382        return destType;
2383      }
2384      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2385        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2386        QualType destType = Context.getPointerType(destPointee);
2387        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2388        ImpCastExprToType(RHS, destType); // promote to void*
2389        return destType;
2390      }
2391
2392      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2393        // Two identical pointer types are always compatible.
2394        return LHSTy;
2395      }
2396
2397      QualType compositeType = LHSTy;
2398
2399      // If either type is an Objective-C object type then check
2400      // compatibility according to Objective-C.
2401      if (Context.isObjCObjectPointerType(LHSTy) ||
2402          Context.isObjCObjectPointerType(RHSTy)) {
2403        // If both operands are interfaces and either operand can be
2404        // assigned to the other, use that type as the composite
2405        // type. This allows
2406        //   xxx ? (A*) a : (B*) b
2407        // where B is a subclass of A.
2408        //
2409        // Additionally, as for assignment, if either type is 'id'
2410        // allow silent coercion. Finally, if the types are
2411        // incompatible then make sure to use 'id' as the composite
2412        // type so the result is acceptable for sending messages to.
2413
2414        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2415        // It could return the composite type.
2416        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2417        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2418        if (LHSIface && RHSIface &&
2419            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2420          compositeType = LHSTy;
2421        } else if (LHSIface && RHSIface &&
2422                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2423          compositeType = RHSTy;
2424        } else if (Context.isObjCIdStructType(lhptee) ||
2425                   Context.isObjCIdStructType(rhptee)) {
2426          compositeType = Context.getObjCIdType();
2427        } else {
2428          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2429               << LHSTy << RHSTy
2430               << LHS->getSourceRange() << RHS->getSourceRange();
2431          QualType incompatTy = Context.getObjCIdType();
2432          ImpCastExprToType(LHS, incompatTy);
2433          ImpCastExprToType(RHS, incompatTy);
2434          return incompatTy;
2435        }
2436      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2437                                             rhptee.getUnqualifiedType())) {
2438        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2439          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2440        // In this situation, we assume void* type. No especially good
2441        // reason, but this is what gcc does, and we do have to pick
2442        // to get a consistent AST.
2443        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2444        ImpCastExprToType(LHS, incompatTy);
2445        ImpCastExprToType(RHS, incompatTy);
2446        return incompatTy;
2447      }
2448      // The pointer types are compatible.
2449      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2450      // differently qualified versions of compatible types, the result type is
2451      // a pointer to an appropriately qualified version of the *composite*
2452      // type.
2453      // FIXME: Need to calculate the composite type.
2454      // FIXME: Need to add qualifiers
2455      ImpCastExprToType(LHS, compositeType);
2456      ImpCastExprToType(RHS, compositeType);
2457      return compositeType;
2458    }
2459  }
2460
2461  // Selection between block pointer types is ok as long as they are the same.
2462  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2463      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2464    return LHSTy;
2465
2466  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2467  // evaluates to "struct objc_object *" (and is handled above when comparing
2468  // id with statically typed objects).
2469  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2470    // GCC allows qualified id and any Objective-C type to devolve to
2471    // id. Currently localizing to here until clear this should be
2472    // part of ObjCQualifiedIdTypesAreCompatible.
2473    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2474        (LHSTy->isObjCQualifiedIdType() &&
2475         Context.isObjCObjectPointerType(RHSTy)) ||
2476        (RHSTy->isObjCQualifiedIdType() &&
2477         Context.isObjCObjectPointerType(LHSTy))) {
2478      // FIXME: This is not the correct composite type. This only
2479      // happens to work because id can more or less be used anywhere,
2480      // however this may change the type of method sends.
2481      // FIXME: gcc adds some type-checking of the arguments and emits
2482      // (confusing) incompatible comparison warnings in some
2483      // cases. Investigate.
2484      QualType compositeType = Context.getObjCIdType();
2485      ImpCastExprToType(LHS, compositeType);
2486      ImpCastExprToType(RHS, compositeType);
2487      return compositeType;
2488    }
2489  }
2490
2491  // Otherwise, the operands are not compatible.
2492  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2493    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2494  return QualType();
2495}
2496
2497/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2498/// in the case of a the GNU conditional expr extension.
2499Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2500                                                  SourceLocation ColonLoc,
2501                                                  ExprArg Cond, ExprArg LHS,
2502                                                  ExprArg RHS) {
2503  Expr *CondExpr = (Expr *) Cond.get();
2504  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2505
2506  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2507  // was the condition.
2508  bool isLHSNull = LHSExpr == 0;
2509  if (isLHSNull)
2510    LHSExpr = CondExpr;
2511
2512  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2513                                             RHSExpr, QuestionLoc);
2514  if (result.isNull())
2515    return ExprError();
2516
2517  Cond.release();
2518  LHS.release();
2519  RHS.release();
2520  return Owned(new (Context) ConditionalOperator(CondExpr,
2521                                                 isLHSNull ? 0 : LHSExpr,
2522                                                 RHSExpr, result));
2523}
2524
2525
2526// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2527// being closely modeled after the C99 spec:-). The odd characteristic of this
2528// routine is it effectively iqnores the qualifiers on the top level pointee.
2529// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2530// FIXME: add a couple examples in this comment.
2531Sema::AssignConvertType
2532Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2533  QualType lhptee, rhptee;
2534
2535  // get the "pointed to" type (ignoring qualifiers at the top level)
2536  lhptee = lhsType->getAsPointerType()->getPointeeType();
2537  rhptee = rhsType->getAsPointerType()->getPointeeType();
2538
2539  // make sure we operate on the canonical type
2540  lhptee = Context.getCanonicalType(lhptee);
2541  rhptee = Context.getCanonicalType(rhptee);
2542
2543  AssignConvertType ConvTy = Compatible;
2544
2545  // C99 6.5.16.1p1: This following citation is common to constraints
2546  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2547  // qualifiers of the type *pointed to* by the right;
2548  // FIXME: Handle ExtQualType
2549  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2550    ConvTy = CompatiblePointerDiscardsQualifiers;
2551
2552  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2553  // incomplete type and the other is a pointer to a qualified or unqualified
2554  // version of void...
2555  if (lhptee->isVoidType()) {
2556    if (rhptee->isIncompleteOrObjectType())
2557      return ConvTy;
2558
2559    // As an extension, we allow cast to/from void* to function pointer.
2560    assert(rhptee->isFunctionType());
2561    return FunctionVoidPointer;
2562  }
2563
2564  if (rhptee->isVoidType()) {
2565    if (lhptee->isIncompleteOrObjectType())
2566      return ConvTy;
2567
2568    // As an extension, we allow cast to/from void* to function pointer.
2569    assert(lhptee->isFunctionType());
2570    return FunctionVoidPointer;
2571  }
2572  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2573  // unqualified versions of compatible types, ...
2574  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2575                                  rhptee.getUnqualifiedType()))
2576    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2577  return ConvTy;
2578}
2579
2580/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2581/// block pointer types are compatible or whether a block and normal pointer
2582/// are compatible. It is more restrict than comparing two function pointer
2583// types.
2584Sema::AssignConvertType
2585Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2586                                          QualType rhsType) {
2587  QualType lhptee, rhptee;
2588
2589  // get the "pointed to" type (ignoring qualifiers at the top level)
2590  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2591  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2592
2593  // make sure we operate on the canonical type
2594  lhptee = Context.getCanonicalType(lhptee);
2595  rhptee = Context.getCanonicalType(rhptee);
2596
2597  AssignConvertType ConvTy = Compatible;
2598
2599  // For blocks we enforce that qualifiers are identical.
2600  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2601    ConvTy = CompatiblePointerDiscardsQualifiers;
2602
2603  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2604    return IncompatibleBlockPointer;
2605  return ConvTy;
2606}
2607
2608/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2609/// has code to accommodate several GCC extensions when type checking
2610/// pointers. Here are some objectionable examples that GCC considers warnings:
2611///
2612///  int a, *pint;
2613///  short *pshort;
2614///  struct foo *pfoo;
2615///
2616///  pint = pshort; // warning: assignment from incompatible pointer type
2617///  a = pint; // warning: assignment makes integer from pointer without a cast
2618///  pint = a; // warning: assignment makes pointer from integer without a cast
2619///  pint = pfoo; // warning: assignment from incompatible pointer type
2620///
2621/// As a result, the code for dealing with pointers is more complex than the
2622/// C99 spec dictates.
2623///
2624Sema::AssignConvertType
2625Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2626  // Get canonical types.  We're not formatting these types, just comparing
2627  // them.
2628  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2629  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2630
2631  if (lhsType == rhsType)
2632    return Compatible; // Common case: fast path an exact match.
2633
2634  // If the left-hand side is a reference type, then we are in a
2635  // (rare!) case where we've allowed the use of references in C,
2636  // e.g., as a parameter type in a built-in function. In this case,
2637  // just make sure that the type referenced is compatible with the
2638  // right-hand side type. The caller is responsible for adjusting
2639  // lhsType so that the resulting expression does not have reference
2640  // type.
2641  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2642    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2643      return Compatible;
2644    return Incompatible;
2645  }
2646
2647  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2648    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2649      return Compatible;
2650    // Relax integer conversions like we do for pointers below.
2651    if (rhsType->isIntegerType())
2652      return IntToPointer;
2653    if (lhsType->isIntegerType())
2654      return PointerToInt;
2655    return IncompatibleObjCQualifiedId;
2656  }
2657
2658  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2659    // For ExtVector, allow vector splats; float -> <n x float>
2660    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2661      if (LV->getElementType() == rhsType)
2662        return Compatible;
2663
2664    // If we are allowing lax vector conversions, and LHS and RHS are both
2665    // vectors, the total size only needs to be the same. This is a bitcast;
2666    // no bits are changed but the result type is different.
2667    if (getLangOptions().LaxVectorConversions &&
2668        lhsType->isVectorType() && rhsType->isVectorType()) {
2669      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2670        return IncompatibleVectors;
2671    }
2672    return Incompatible;
2673  }
2674
2675  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2676    return Compatible;
2677
2678  if (isa<PointerType>(lhsType)) {
2679    if (rhsType->isIntegerType())
2680      return IntToPointer;
2681
2682    if (isa<PointerType>(rhsType))
2683      return CheckPointerTypesForAssignment(lhsType, rhsType);
2684
2685    if (rhsType->getAsBlockPointerType()) {
2686      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2687        return Compatible;
2688
2689      // Treat block pointers as objects.
2690      if (getLangOptions().ObjC1 &&
2691          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2692        return Compatible;
2693    }
2694    return Incompatible;
2695  }
2696
2697  if (isa<BlockPointerType>(lhsType)) {
2698    if (rhsType->isIntegerType())
2699      return IntToBlockPointer;
2700
2701    // Treat block pointers as objects.
2702    if (getLangOptions().ObjC1 &&
2703        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2704      return Compatible;
2705
2706    if (rhsType->isBlockPointerType())
2707      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2708
2709    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2710      if (RHSPT->getPointeeType()->isVoidType())
2711        return Compatible;
2712    }
2713    return Incompatible;
2714  }
2715
2716  if (isa<PointerType>(rhsType)) {
2717    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2718    if (lhsType == Context.BoolTy)
2719      return Compatible;
2720
2721    if (lhsType->isIntegerType())
2722      return PointerToInt;
2723
2724    if (isa<PointerType>(lhsType))
2725      return CheckPointerTypesForAssignment(lhsType, rhsType);
2726
2727    if (isa<BlockPointerType>(lhsType) &&
2728        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2729      return Compatible;
2730    return Incompatible;
2731  }
2732
2733  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2734    if (Context.typesAreCompatible(lhsType, rhsType))
2735      return Compatible;
2736  }
2737  return Incompatible;
2738}
2739
2740Sema::AssignConvertType
2741Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2742  if (getLangOptions().CPlusPlus) {
2743    if (!lhsType->isRecordType()) {
2744      // C++ 5.17p3: If the left operand is not of class type, the
2745      // expression is implicitly converted (C++ 4) to the
2746      // cv-unqualified type of the left operand.
2747      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2748                                    "assigning"))
2749        return Incompatible;
2750      else
2751        return Compatible;
2752    }
2753
2754    // FIXME: Currently, we fall through and treat C++ classes like C
2755    // structures.
2756  }
2757
2758  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2759  // a null pointer constant.
2760  if ((lhsType->isPointerType() ||
2761       lhsType->isObjCQualifiedIdType() ||
2762       lhsType->isBlockPointerType())
2763      && rExpr->isNullPointerConstant(Context)) {
2764    ImpCastExprToType(rExpr, lhsType);
2765    return Compatible;
2766  }
2767
2768  // This check seems unnatural, however it is necessary to ensure the proper
2769  // conversion of functions/arrays. If the conversion were done for all
2770  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2771  // expressions that surpress this implicit conversion (&, sizeof).
2772  //
2773  // Suppress this for references: C++ 8.5.3p5.
2774  if (!lhsType->isReferenceType())
2775    DefaultFunctionArrayConversion(rExpr);
2776
2777  Sema::AssignConvertType result =
2778    CheckAssignmentConstraints(lhsType, rExpr->getType());
2779
2780  // C99 6.5.16.1p2: The value of the right operand is converted to the
2781  // type of the assignment expression.
2782  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2783  // so that we can use references in built-in functions even in C.
2784  // The getNonReferenceType() call makes sure that the resulting expression
2785  // does not have reference type.
2786  if (rExpr->getType() != lhsType)
2787    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2788  return result;
2789}
2790
2791Sema::AssignConvertType
2792Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2793  return CheckAssignmentConstraints(lhsType, rhsType);
2794}
2795
2796QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2797  Diag(Loc, diag::err_typecheck_invalid_operands)
2798    << lex->getType() << rex->getType()
2799    << lex->getSourceRange() << rex->getSourceRange();
2800  return QualType();
2801}
2802
2803inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2804                                                              Expr *&rex) {
2805  // For conversion purposes, we ignore any qualifiers.
2806  // For example, "const float" and "float" are equivalent.
2807  QualType lhsType =
2808    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2809  QualType rhsType =
2810    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2811
2812  // If the vector types are identical, return.
2813  if (lhsType == rhsType)
2814    return lhsType;
2815
2816  // Handle the case of a vector & extvector type of the same size and element
2817  // type.  It would be nice if we only had one vector type someday.
2818  if (getLangOptions().LaxVectorConversions) {
2819    // FIXME: Should we warn here?
2820    if (const VectorType *LV = lhsType->getAsVectorType()) {
2821      if (const VectorType *RV = rhsType->getAsVectorType())
2822        if (LV->getElementType() == RV->getElementType() &&
2823            LV->getNumElements() == RV->getNumElements()) {
2824          return lhsType->isExtVectorType() ? lhsType : rhsType;
2825        }
2826    }
2827  }
2828
2829  // If the lhs is an extended vector and the rhs is a scalar of the same type
2830  // or a literal, promote the rhs to the vector type.
2831  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2832    QualType eltType = V->getElementType();
2833
2834    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2835        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2836        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2837      ImpCastExprToType(rex, lhsType);
2838      return lhsType;
2839    }
2840  }
2841
2842  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2843  // promote the lhs to the vector type.
2844  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2845    QualType eltType = V->getElementType();
2846
2847    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2848        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2849        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2850      ImpCastExprToType(lex, rhsType);
2851      return rhsType;
2852    }
2853  }
2854
2855  // You cannot convert between vector values of different size.
2856  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2857    << lex->getType() << rex->getType()
2858    << lex->getSourceRange() << rex->getSourceRange();
2859  return QualType();
2860}
2861
2862inline QualType Sema::CheckMultiplyDivideOperands(
2863  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2864{
2865  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2866    return CheckVectorOperands(Loc, lex, rex);
2867
2868  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2869
2870  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2871    return compType;
2872  return InvalidOperands(Loc, lex, rex);
2873}
2874
2875inline QualType Sema::CheckRemainderOperands(
2876  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2877{
2878  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2879    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2880      return CheckVectorOperands(Loc, lex, rex);
2881    return InvalidOperands(Loc, lex, rex);
2882  }
2883
2884  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2885
2886  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2887    return compType;
2888  return InvalidOperands(Loc, lex, rex);
2889}
2890
2891inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2892  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2893{
2894  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2895    return CheckVectorOperands(Loc, lex, rex);
2896
2897  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2898
2899  // handle the common case first (both operands are arithmetic).
2900  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2901    return compType;
2902
2903  // Put any potential pointer into PExp
2904  Expr* PExp = lex, *IExp = rex;
2905  if (IExp->getType()->isPointerType())
2906    std::swap(PExp, IExp);
2907
2908  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2909    if (IExp->getType()->isIntegerType()) {
2910      // Check for arithmetic on pointers to incomplete types
2911      if (!PTy->getPointeeType()->isObjectType()) {
2912        if (PTy->getPointeeType()->isVoidType()) {
2913          if (getLangOptions().CPlusPlus) {
2914            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
2915              << lex->getSourceRange() << rex->getSourceRange();
2916            return QualType();
2917          }
2918
2919          // GNU extension: arithmetic on pointer to void
2920          Diag(Loc, diag::ext_gnu_void_ptr)
2921            << lex->getSourceRange() << rex->getSourceRange();
2922        } else if (PTy->getPointeeType()->isFunctionType()) {
2923          if (getLangOptions().CPlusPlus) {
2924            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2925              << lex->getType() << lex->getSourceRange();
2926            return QualType();
2927          }
2928
2929          // GNU extension: arithmetic on pointer to function
2930          Diag(Loc, diag::ext_gnu_ptr_func_arith)
2931            << lex->getType() << lex->getSourceRange();
2932        } else {
2933          DiagnoseIncompleteType(Loc, PTy->getPointeeType(),
2934                                 diag::err_typecheck_arithmetic_incomplete_type,
2935                                 lex->getSourceRange(), SourceRange(),
2936                                 lex->getType());
2937          return QualType();
2938        }
2939      }
2940      return PExp->getType();
2941    }
2942  }
2943
2944  return InvalidOperands(Loc, lex, rex);
2945}
2946
2947// C99 6.5.6
2948QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2949                                        SourceLocation Loc, bool isCompAssign) {
2950  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2951    return CheckVectorOperands(Loc, lex, rex);
2952
2953  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2954
2955  // Enforce type constraints: C99 6.5.6p3.
2956
2957  // Handle the common case first (both operands are arithmetic).
2958  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2959    return compType;
2960
2961  // Either ptr - int   or   ptr - ptr.
2962  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2963    QualType lpointee = LHSPTy->getPointeeType();
2964
2965    // The LHS must be an object type, not incomplete, function, etc.
2966    if (!lpointee->isObjectType()) {
2967      // Handle the GNU void* extension.
2968      if (lpointee->isVoidType()) {
2969        Diag(Loc, diag::ext_gnu_void_ptr)
2970          << lex->getSourceRange() << rex->getSourceRange();
2971      } else if (lpointee->isFunctionType()) {
2972        if (getLangOptions().CPlusPlus) {
2973          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2974            << lex->getType() << lex->getSourceRange();
2975          return QualType();
2976        }
2977
2978        // GNU extension: arithmetic on pointer to function
2979        Diag(Loc, diag::ext_gnu_ptr_func_arith)
2980          << lex->getType() << lex->getSourceRange();
2981      } else {
2982        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2983          << lex->getType() << lex->getSourceRange();
2984        return QualType();
2985      }
2986    }
2987
2988    // The result type of a pointer-int computation is the pointer type.
2989    if (rex->getType()->isIntegerType())
2990      return lex->getType();
2991
2992    // Handle pointer-pointer subtractions.
2993    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2994      QualType rpointee = RHSPTy->getPointeeType();
2995
2996      // RHS must be an object type, unless void (GNU).
2997      if (!rpointee->isObjectType()) {
2998        // Handle the GNU void* extension.
2999        if (rpointee->isVoidType()) {
3000          if (!lpointee->isVoidType())
3001            Diag(Loc, diag::ext_gnu_void_ptr)
3002              << lex->getSourceRange() << rex->getSourceRange();
3003        } else if (rpointee->isFunctionType()) {
3004          if (getLangOptions().CPlusPlus) {
3005            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3006              << rex->getType() << rex->getSourceRange();
3007            return QualType();
3008          }
3009
3010          // GNU extension: arithmetic on pointer to function
3011          if (!lpointee->isFunctionType())
3012            Diag(Loc, diag::ext_gnu_ptr_func_arith)
3013              << lex->getType() << lex->getSourceRange();
3014        } else {
3015          Diag(Loc, diag::err_typecheck_sub_ptr_object)
3016            << rex->getType() << rex->getSourceRange();
3017          return QualType();
3018        }
3019      }
3020
3021      // Pointee types must be compatible.
3022      if (!Context.typesAreCompatible(
3023              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3024              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3025        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3026          << lex->getType() << rex->getType()
3027          << lex->getSourceRange() << rex->getSourceRange();
3028        return QualType();
3029      }
3030
3031      return Context.getPointerDiffType();
3032    }
3033  }
3034
3035  return InvalidOperands(Loc, lex, rex);
3036}
3037
3038// C99 6.5.7
3039QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3040                                  bool isCompAssign) {
3041  // C99 6.5.7p2: Each of the operands shall have integer type.
3042  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3043    return InvalidOperands(Loc, lex, rex);
3044
3045  // Shifts don't perform usual arithmetic conversions, they just do integer
3046  // promotions on each operand. C99 6.5.7p3
3047  if (!isCompAssign)
3048    UsualUnaryConversions(lex);
3049  UsualUnaryConversions(rex);
3050
3051  // "The type of the result is that of the promoted left operand."
3052  return lex->getType();
3053}
3054
3055// C99 6.5.8
3056QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3057                                    bool isRelational) {
3058  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3059    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3060
3061  // C99 6.5.8p3 / C99 6.5.9p4
3062  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3063    UsualArithmeticConversions(lex, rex);
3064  else {
3065    UsualUnaryConversions(lex);
3066    UsualUnaryConversions(rex);
3067  }
3068  QualType lType = lex->getType();
3069  QualType rType = rex->getType();
3070
3071  // For non-floating point types, check for self-comparisons of the form
3072  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3073  // often indicate logic errors in the program.
3074  if (!lType->isFloatingType()) {
3075    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3076      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3077        if (DRL->getDecl() == DRR->getDecl())
3078          Diag(Loc, diag::warn_selfcomparison);
3079  }
3080
3081  // The result of comparisons is 'bool' in C++, 'int' in C.
3082  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
3083
3084  if (isRelational) {
3085    if (lType->isRealType() && rType->isRealType())
3086      return ResultTy;
3087  } else {
3088    // Check for comparisons of floating point operands using != and ==.
3089    if (lType->isFloatingType()) {
3090      assert (rType->isFloatingType());
3091      CheckFloatComparison(Loc,lex,rex);
3092    }
3093
3094    if (lType->isArithmeticType() && rType->isArithmeticType())
3095      return ResultTy;
3096  }
3097
3098  bool LHSIsNull = lex->isNullPointerConstant(Context);
3099  bool RHSIsNull = rex->isNullPointerConstant(Context);
3100
3101  // All of the following pointer related warnings are GCC extensions, except
3102  // when handling null pointer constants. One day, we can consider making them
3103  // errors (when -pedantic-errors is enabled).
3104  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3105    QualType LCanPointeeTy =
3106      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3107    QualType RCanPointeeTy =
3108      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3109
3110    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3111        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3112        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3113                                    RCanPointeeTy.getUnqualifiedType()) &&
3114        !Context.areComparableObjCPointerTypes(lType, rType)) {
3115      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3116        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3117    }
3118    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3119    return ResultTy;
3120  }
3121  // Handle block pointer types.
3122  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3123    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3124    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3125
3126    if (!LHSIsNull && !RHSIsNull &&
3127        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3128      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3129        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3130    }
3131    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3132    return ResultTy;
3133  }
3134  // Allow block pointers to be compared with null pointer constants.
3135  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3136      (lType->isPointerType() && rType->isBlockPointerType())) {
3137    if (!LHSIsNull && !RHSIsNull) {
3138      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3139        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3140    }
3141    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3142    return ResultTy;
3143  }
3144
3145  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3146    if (lType->isPointerType() || rType->isPointerType()) {
3147      const PointerType *LPT = lType->getAsPointerType();
3148      const PointerType *RPT = rType->getAsPointerType();
3149      bool LPtrToVoid = LPT ?
3150        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3151      bool RPtrToVoid = RPT ?
3152        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3153
3154      if (!LPtrToVoid && !RPtrToVoid &&
3155          !Context.typesAreCompatible(lType, rType)) {
3156        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3157          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3158        ImpCastExprToType(rex, lType);
3159        return ResultTy;
3160      }
3161      ImpCastExprToType(rex, lType);
3162      return ResultTy;
3163    }
3164    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3165      ImpCastExprToType(rex, lType);
3166      return ResultTy;
3167    } else {
3168      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3169        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3170          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3171        ImpCastExprToType(rex, lType);
3172        return ResultTy;
3173      }
3174    }
3175  }
3176  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3177       rType->isIntegerType()) {
3178    if (!RHSIsNull)
3179      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3180        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3181    ImpCastExprToType(rex, lType); // promote the integer to pointer
3182    return ResultTy;
3183  }
3184  if (lType->isIntegerType() &&
3185      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3186    if (!LHSIsNull)
3187      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3188        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3189    ImpCastExprToType(lex, rType); // promote the integer to pointer
3190    return ResultTy;
3191  }
3192  // Handle block pointers.
3193  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3194    if (!RHSIsNull)
3195      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3196        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3197    ImpCastExprToType(rex, lType); // promote the integer to pointer
3198    return ResultTy;
3199  }
3200  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3201    if (!LHSIsNull)
3202      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3203        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3204    ImpCastExprToType(lex, rType); // promote the integer to pointer
3205    return ResultTy;
3206  }
3207  return InvalidOperands(Loc, lex, rex);
3208}
3209
3210/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3211/// operates on extended vector types.  Instead of producing an IntTy result,
3212/// like a scalar comparison, a vector comparison produces a vector of integer
3213/// types.
3214QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3215                                          SourceLocation Loc,
3216                                          bool isRelational) {
3217  // Check to make sure we're operating on vectors of the same type and width,
3218  // Allowing one side to be a scalar of element type.
3219  QualType vType = CheckVectorOperands(Loc, lex, rex);
3220  if (vType.isNull())
3221    return vType;
3222
3223  QualType lType = lex->getType();
3224  QualType rType = rex->getType();
3225
3226  // For non-floating point types, check for self-comparisons of the form
3227  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3228  // often indicate logic errors in the program.
3229  if (!lType->isFloatingType()) {
3230    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3231      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3232        if (DRL->getDecl() == DRR->getDecl())
3233          Diag(Loc, diag::warn_selfcomparison);
3234  }
3235
3236  // Check for comparisons of floating point operands using != and ==.
3237  if (!isRelational && lType->isFloatingType()) {
3238    assert (rType->isFloatingType());
3239    CheckFloatComparison(Loc,lex,rex);
3240  }
3241
3242  // Return the type for the comparison, which is the same as vector type for
3243  // integer vectors, or an integer type of identical size and number of
3244  // elements for floating point vectors.
3245  if (lType->isIntegerType())
3246    return lType;
3247
3248  const VectorType *VTy = lType->getAsVectorType();
3249  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3250  if (TypeSize == Context.getTypeSize(Context.IntTy))
3251    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3252  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3253    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3254
3255  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3256         "Unhandled vector element size in vector compare");
3257  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3258}
3259
3260inline QualType Sema::CheckBitwiseOperands(
3261  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3262{
3263  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3264    return CheckVectorOperands(Loc, lex, rex);
3265
3266  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3267
3268  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3269    return compType;
3270  return InvalidOperands(Loc, lex, rex);
3271}
3272
3273inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3274  Expr *&lex, Expr *&rex, SourceLocation Loc)
3275{
3276  UsualUnaryConversions(lex);
3277  UsualUnaryConversions(rex);
3278
3279  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3280    return Context.IntTy;
3281  return InvalidOperands(Loc, lex, rex);
3282}
3283
3284/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3285/// is a read-only property; return true if so. A readonly property expression
3286/// depends on various declarations and thus must be treated specially.
3287///
3288static bool IsReadonlyProperty(Expr *E, Sema &S)
3289{
3290  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3291    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3292    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3293      QualType BaseType = PropExpr->getBase()->getType();
3294      if (const PointerType *PTy = BaseType->getAsPointerType())
3295        if (const ObjCInterfaceType *IFTy =
3296            PTy->getPointeeType()->getAsObjCInterfaceType())
3297          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3298            if (S.isPropertyReadonly(PDecl, IFace))
3299              return true;
3300    }
3301  }
3302  return false;
3303}
3304
3305/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3306/// emit an error and return true.  If so, return false.
3307static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3308  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3309  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3310    IsLV = Expr::MLV_ReadonlyProperty;
3311  if (IsLV == Expr::MLV_Valid)
3312    return false;
3313
3314  unsigned Diag = 0;
3315  bool NeedType = false;
3316  switch (IsLV) { // C99 6.5.16p2
3317  default: assert(0 && "Unknown result from isModifiableLvalue!");
3318  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3319  case Expr::MLV_ArrayType:
3320    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3321    NeedType = true;
3322    break;
3323  case Expr::MLV_NotObjectType:
3324    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3325    NeedType = true;
3326    break;
3327  case Expr::MLV_LValueCast:
3328    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3329    break;
3330  case Expr::MLV_InvalidExpression:
3331    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3332    break;
3333  case Expr::MLV_IncompleteType:
3334  case Expr::MLV_IncompleteVoidType:
3335    return S.DiagnoseIncompleteType(Loc, E->getType(),
3336                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3337                                    E->getSourceRange());
3338  case Expr::MLV_DuplicateVectorComponents:
3339    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3340    break;
3341  case Expr::MLV_NotBlockQualified:
3342    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3343    break;
3344  case Expr::MLV_ReadonlyProperty:
3345    Diag = diag::error_readonly_property_assignment;
3346    break;
3347  case Expr::MLV_NoSetterProperty:
3348    Diag = diag::error_nosetter_property_assignment;
3349    break;
3350  }
3351
3352  if (NeedType)
3353    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3354  else
3355    S.Diag(Loc, Diag) << E->getSourceRange();
3356  return true;
3357}
3358
3359
3360
3361// C99 6.5.16.1
3362QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3363                                       SourceLocation Loc,
3364                                       QualType CompoundType) {
3365  // Verify that LHS is a modifiable lvalue, and emit error if not.
3366  if (CheckForModifiableLvalue(LHS, Loc, *this))
3367    return QualType();
3368
3369  QualType LHSType = LHS->getType();
3370  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3371
3372  AssignConvertType ConvTy;
3373  if (CompoundType.isNull()) {
3374    // Simple assignment "x = y".
3375    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3376    // Special case of NSObject attributes on c-style pointer types.
3377    if (ConvTy == IncompatiblePointer &&
3378        ((Context.isObjCNSObjectType(LHSType) &&
3379          Context.isObjCObjectPointerType(RHSType)) ||
3380         (Context.isObjCNSObjectType(RHSType) &&
3381          Context.isObjCObjectPointerType(LHSType))))
3382      ConvTy = Compatible;
3383
3384    // If the RHS is a unary plus or minus, check to see if they = and + are
3385    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3386    // instead of "x += 4".
3387    Expr *RHSCheck = RHS;
3388    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3389      RHSCheck = ICE->getSubExpr();
3390    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3391      if ((UO->getOpcode() == UnaryOperator::Plus ||
3392           UO->getOpcode() == UnaryOperator::Minus) &&
3393          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3394          // Only if the two operators are exactly adjacent.
3395          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
3396        Diag(Loc, diag::warn_not_compound_assign)
3397          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3398          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3399    }
3400  } else {
3401    // Compound assignment "x += y"
3402    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3403  }
3404
3405  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3406                               RHS, "assigning"))
3407    return QualType();
3408
3409  // C99 6.5.16p3: The type of an assignment expression is the type of the
3410  // left operand unless the left operand has qualified type, in which case
3411  // it is the unqualified version of the type of the left operand.
3412  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3413  // is converted to the type of the assignment expression (above).
3414  // C++ 5.17p1: the type of the assignment expression is that of its left
3415  // oprdu.
3416  return LHSType.getUnqualifiedType();
3417}
3418
3419// C99 6.5.17
3420QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3421  // FIXME: what is required for LHS?
3422
3423  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3424  DefaultFunctionArrayConversion(RHS);
3425  return RHS->getType();
3426}
3427
3428/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3429/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3430QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3431                                              bool isInc) {
3432  QualType ResType = Op->getType();
3433  assert(!ResType.isNull() && "no type for increment/decrement expression");
3434
3435  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3436    // Decrement of bool is not allowed.
3437    if (!isInc) {
3438      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3439      return QualType();
3440    }
3441    // Increment of bool sets it to true, but is deprecated.
3442    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3443  } else if (ResType->isRealType()) {
3444    // OK!
3445  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3446    // C99 6.5.2.4p2, 6.5.6p2
3447    if (PT->getPointeeType()->isObjectType()) {
3448      // Pointer to object is ok!
3449    } else if (PT->getPointeeType()->isVoidType()) {
3450      if (getLangOptions().CPlusPlus) {
3451        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3452          << Op->getSourceRange();
3453        return QualType();
3454      }
3455
3456      // Pointer to void is a GNU extension in C.
3457      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3458    } else if (PT->getPointeeType()->isFunctionType()) {
3459      if (getLangOptions().CPlusPlus) {
3460        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3461          << Op->getType() << Op->getSourceRange();
3462        return QualType();
3463      }
3464
3465      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3466        << ResType << Op->getSourceRange();
3467      return QualType();
3468    } else {
3469      DiagnoseIncompleteType(OpLoc, PT->getPointeeType(),
3470                             diag::err_typecheck_arithmetic_incomplete_type,
3471                             Op->getSourceRange(), SourceRange(),
3472                             ResType);
3473      return QualType();
3474    }
3475  } else if (ResType->isComplexType()) {
3476    // C99 does not support ++/-- on complex types, we allow as an extension.
3477    Diag(OpLoc, diag::ext_integer_increment_complex)
3478      << ResType << Op->getSourceRange();
3479  } else {
3480    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3481      << ResType << Op->getSourceRange();
3482    return QualType();
3483  }
3484  // At this point, we know we have a real, complex or pointer type.
3485  // Now make sure the operand is a modifiable lvalue.
3486  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3487    return QualType();
3488  return ResType;
3489}
3490
3491/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3492/// This routine allows us to typecheck complex/recursive expressions
3493/// where the declaration is needed for type checking. We only need to
3494/// handle cases when the expression references a function designator
3495/// or is an lvalue. Here are some examples:
3496///  - &(x) => x
3497///  - &*****f => f for f a function designator.
3498///  - &s.xx => s
3499///  - &s.zz[1].yy -> s, if zz is an array
3500///  - *(x + 1) -> x, if x is an array
3501///  - &"123"[2] -> 0
3502///  - & __real__ x -> x
3503static NamedDecl *getPrimaryDecl(Expr *E) {
3504  switch (E->getStmtClass()) {
3505  case Stmt::DeclRefExprClass:
3506  case Stmt::QualifiedDeclRefExprClass:
3507    return cast<DeclRefExpr>(E)->getDecl();
3508  case Stmt::MemberExprClass:
3509    // Fields cannot be declared with a 'register' storage class.
3510    // &X->f is always ok, even if X is declared register.
3511    if (cast<MemberExpr>(E)->isArrow())
3512      return 0;
3513    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3514  case Stmt::ArraySubscriptExprClass: {
3515    // &X[4] and &4[X] refers to X if X is not a pointer.
3516
3517    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3518    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3519    if (!VD || VD->getType()->isPointerType())
3520      return 0;
3521    else
3522      return VD;
3523  }
3524  case Stmt::UnaryOperatorClass: {
3525    UnaryOperator *UO = cast<UnaryOperator>(E);
3526
3527    switch(UO->getOpcode()) {
3528    case UnaryOperator::Deref: {
3529      // *(X + 1) refers to X if X is not a pointer.
3530      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3531        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3532        if (!VD || VD->getType()->isPointerType())
3533          return 0;
3534        return VD;
3535      }
3536      return 0;
3537    }
3538    case UnaryOperator::Real:
3539    case UnaryOperator::Imag:
3540    case UnaryOperator::Extension:
3541      return getPrimaryDecl(UO->getSubExpr());
3542    default:
3543      return 0;
3544    }
3545  }
3546  case Stmt::BinaryOperatorClass: {
3547    BinaryOperator *BO = cast<BinaryOperator>(E);
3548
3549    // Handle cases involving pointer arithmetic. The result of an
3550    // Assign or AddAssign is not an lvalue so they can be ignored.
3551
3552    // (x + n) or (n + x) => x
3553    if (BO->getOpcode() == BinaryOperator::Add) {
3554      if (BO->getLHS()->getType()->isPointerType()) {
3555        return getPrimaryDecl(BO->getLHS());
3556      } else if (BO->getRHS()->getType()->isPointerType()) {
3557        return getPrimaryDecl(BO->getRHS());
3558      }
3559    }
3560
3561    return 0;
3562  }
3563  case Stmt::ParenExprClass:
3564    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3565  case Stmt::ImplicitCastExprClass:
3566    // &X[4] when X is an array, has an implicit cast from array to pointer.
3567    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3568  default:
3569    return 0;
3570  }
3571}
3572
3573/// CheckAddressOfOperand - The operand of & must be either a function
3574/// designator or an lvalue designating an object. If it is an lvalue, the
3575/// object cannot be declared with storage class register or be a bit field.
3576/// Note: The usual conversions are *not* applied to the operand of the &
3577/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3578/// In C++, the operand might be an overloaded function name, in which case
3579/// we allow the '&' but retain the overloaded-function type.
3580QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3581  if (op->isTypeDependent())
3582    return Context.DependentTy;
3583
3584  if (getLangOptions().C99) {
3585    // Implement C99-only parts of addressof rules.
3586    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3587      if (uOp->getOpcode() == UnaryOperator::Deref)
3588        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3589        // (assuming the deref expression is valid).
3590        return uOp->getSubExpr()->getType();
3591    }
3592    // Technically, there should be a check for array subscript
3593    // expressions here, but the result of one is always an lvalue anyway.
3594  }
3595  NamedDecl *dcl = getPrimaryDecl(op);
3596  Expr::isLvalueResult lval = op->isLvalue(Context);
3597
3598  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3599    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3600      // FIXME: emit more specific diag...
3601      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3602        << op->getSourceRange();
3603      return QualType();
3604    }
3605  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3606    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3607      if (Field->isBitField()) {
3608        Diag(OpLoc, diag::err_typecheck_address_of)
3609          << "bit-field" << op->getSourceRange();
3610        return QualType();
3611      }
3612    }
3613  // Check for Apple extension for accessing vector components.
3614  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
3615           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
3616    Diag(OpLoc, diag::err_typecheck_address_of)
3617      << "vector element" << op->getSourceRange();
3618    return QualType();
3619  } else if (dcl) { // C99 6.5.3.2p1
3620    // We have an lvalue with a decl. Make sure the decl is not declared
3621    // with the register storage-class specifier.
3622    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3623      if (vd->getStorageClass() == VarDecl::Register) {
3624        Diag(OpLoc, diag::err_typecheck_address_of)
3625          << "register variable" << op->getSourceRange();
3626        return QualType();
3627      }
3628    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3629      return Context.OverloadTy;
3630    } else if (isa<FieldDecl>(dcl)) {
3631      // Okay: we can take the address of a field.
3632      // Could be a pointer to member, though, if there is an explicit
3633      // scope qualifier for the class.
3634      if (isa<QualifiedDeclRefExpr>(op)) {
3635        DeclContext *Ctx = dcl->getDeclContext();
3636        if (Ctx && Ctx->isRecord())
3637          return Context.getMemberPointerType(op->getType(),
3638                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3639      }
3640    } else if (isa<FunctionDecl>(dcl)) {
3641      // Okay: we can take the address of a function.
3642      // As above.
3643      if (isa<QualifiedDeclRefExpr>(op)) {
3644        DeclContext *Ctx = dcl->getDeclContext();
3645        if (Ctx && Ctx->isRecord())
3646          return Context.getMemberPointerType(op->getType(),
3647                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3648      }
3649    }
3650    else
3651      assert(0 && "Unknown/unexpected decl type");
3652  }
3653
3654  // If the operand has type "type", the result has type "pointer to type".
3655  return Context.getPointerType(op->getType());
3656}
3657
3658QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3659  UsualUnaryConversions(Op);
3660  QualType Ty = Op->getType();
3661
3662  // Note that per both C89 and C99, this is always legal, even if ptype is an
3663  // incomplete type or void.  It would be possible to warn about dereferencing
3664  // a void pointer, but it's completely well-defined, and such a warning is
3665  // unlikely to catch any mistakes.
3666  if (const PointerType *PT = Ty->getAsPointerType())
3667    return PT->getPointeeType();
3668
3669  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3670    << Ty << Op->getSourceRange();
3671  return QualType();
3672}
3673
3674static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3675  tok::TokenKind Kind) {
3676  BinaryOperator::Opcode Opc;
3677  switch (Kind) {
3678  default: assert(0 && "Unknown binop!");
3679  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
3680  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
3681  case tok::star:                 Opc = BinaryOperator::Mul; break;
3682  case tok::slash:                Opc = BinaryOperator::Div; break;
3683  case tok::percent:              Opc = BinaryOperator::Rem; break;
3684  case tok::plus:                 Opc = BinaryOperator::Add; break;
3685  case tok::minus:                Opc = BinaryOperator::Sub; break;
3686  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3687  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3688  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3689  case tok::less:                 Opc = BinaryOperator::LT; break;
3690  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3691  case tok::greater:              Opc = BinaryOperator::GT; break;
3692  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3693  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3694  case tok::amp:                  Opc = BinaryOperator::And; break;
3695  case tok::caret:                Opc = BinaryOperator::Xor; break;
3696  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3697  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3698  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3699  case tok::equal:                Opc = BinaryOperator::Assign; break;
3700  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3701  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3702  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3703  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3704  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3705  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3706  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3707  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3708  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3709  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3710  case tok::comma:                Opc = BinaryOperator::Comma; break;
3711  }
3712  return Opc;
3713}
3714
3715static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3716  tok::TokenKind Kind) {
3717  UnaryOperator::Opcode Opc;
3718  switch (Kind) {
3719  default: assert(0 && "Unknown unary op!");
3720  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3721  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3722  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3723  case tok::star:         Opc = UnaryOperator::Deref; break;
3724  case tok::plus:         Opc = UnaryOperator::Plus; break;
3725  case tok::minus:        Opc = UnaryOperator::Minus; break;
3726  case tok::tilde:        Opc = UnaryOperator::Not; break;
3727  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3728  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3729  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3730  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3731  }
3732  return Opc;
3733}
3734
3735/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3736/// operator @p Opc at location @c TokLoc. This routine only supports
3737/// built-in operations; ActOnBinOp handles overloaded operators.
3738Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3739                                                  unsigned Op,
3740                                                  Expr *lhs, Expr *rhs) {
3741  QualType ResultTy;  // Result type of the binary operator.
3742  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3743  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3744
3745  switch (Opc) {
3746  default:
3747    assert(0 && "Unknown binary expr!");
3748  case BinaryOperator::Assign:
3749    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3750    break;
3751  case BinaryOperator::PtrMemD:
3752  case BinaryOperator::PtrMemI:
3753    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
3754                                            Opc == BinaryOperator::PtrMemI);
3755    break;
3756  case BinaryOperator::Mul:
3757  case BinaryOperator::Div:
3758    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3759    break;
3760  case BinaryOperator::Rem:
3761    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3762    break;
3763  case BinaryOperator::Add:
3764    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3765    break;
3766  case BinaryOperator::Sub:
3767    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3768    break;
3769  case BinaryOperator::Shl:
3770  case BinaryOperator::Shr:
3771    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3772    break;
3773  case BinaryOperator::LE:
3774  case BinaryOperator::LT:
3775  case BinaryOperator::GE:
3776  case BinaryOperator::GT:
3777    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3778    break;
3779  case BinaryOperator::EQ:
3780  case BinaryOperator::NE:
3781    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3782    break;
3783  case BinaryOperator::And:
3784  case BinaryOperator::Xor:
3785  case BinaryOperator::Or:
3786    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3787    break;
3788  case BinaryOperator::LAnd:
3789  case BinaryOperator::LOr:
3790    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3791    break;
3792  case BinaryOperator::MulAssign:
3793  case BinaryOperator::DivAssign:
3794    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3795    if (!CompTy.isNull())
3796      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3797    break;
3798  case BinaryOperator::RemAssign:
3799    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3800    if (!CompTy.isNull())
3801      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3802    break;
3803  case BinaryOperator::AddAssign:
3804    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3805    if (!CompTy.isNull())
3806      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3807    break;
3808  case BinaryOperator::SubAssign:
3809    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3810    if (!CompTy.isNull())
3811      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3812    break;
3813  case BinaryOperator::ShlAssign:
3814  case BinaryOperator::ShrAssign:
3815    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3816    if (!CompTy.isNull())
3817      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3818    break;
3819  case BinaryOperator::AndAssign:
3820  case BinaryOperator::XorAssign:
3821  case BinaryOperator::OrAssign:
3822    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3823    if (!CompTy.isNull())
3824      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3825    break;
3826  case BinaryOperator::Comma:
3827    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3828    break;
3829  }
3830  if (ResultTy.isNull())
3831    return ExprError();
3832  if (CompTy.isNull())
3833    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
3834  else
3835    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
3836                                                      CompTy, OpLoc));
3837}
3838
3839// Binary Operators.  'Tok' is the token for the operator.
3840Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3841                                          tok::TokenKind Kind,
3842                                          ExprArg LHS, ExprArg RHS) {
3843  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3844  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
3845
3846  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3847  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3848
3849  // If either expression is type-dependent, just build the AST.
3850  // FIXME: We'll need to perform some caching of the result of name
3851  // lookup for operator+.
3852  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3853    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3854      return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc,
3855                                              Context.DependentTy,
3856                                              Context.DependentTy, TokLoc));
3857    else
3858      return Owned(new (Context) BinaryOperator(lhs, rhs, Opc,
3859                                                Context.DependentTy, TokLoc));
3860  }
3861
3862  if (getLangOptions().CPlusPlus && Opc != BinaryOperator::PtrMemD &&
3863      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3864       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3865    // If this is one of the assignment operators, we only perform
3866    // overload resolution if the left-hand side is a class or
3867    // enumeration type (C++ [expr.ass]p3).
3868    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3869        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3870      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3871    }
3872
3873    // Determine which overloaded operator we're dealing with.
3874    static const OverloadedOperatorKind OverOps[] = {
3875      // Overloading .* is not possible.
3876      static_cast<OverloadedOperatorKind>(0), OO_ArrowStar,
3877      OO_Star, OO_Slash, OO_Percent,
3878      OO_Plus, OO_Minus,
3879      OO_LessLess, OO_GreaterGreater,
3880      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3881      OO_EqualEqual, OO_ExclaimEqual,
3882      OO_Amp,
3883      OO_Caret,
3884      OO_Pipe,
3885      OO_AmpAmp,
3886      OO_PipePipe,
3887      OO_Equal, OO_StarEqual,
3888      OO_SlashEqual, OO_PercentEqual,
3889      OO_PlusEqual, OO_MinusEqual,
3890      OO_LessLessEqual, OO_GreaterGreaterEqual,
3891      OO_AmpEqual, OO_CaretEqual,
3892      OO_PipeEqual,
3893      OO_Comma
3894    };
3895    OverloadedOperatorKind OverOp = OverOps[Opc];
3896
3897    // Add the appropriate overloaded operators (C++ [over.match.oper])
3898    // to the candidate set.
3899    OverloadCandidateSet CandidateSet;
3900    Expr *Args[2] = { lhs, rhs };
3901    if (AddOperatorCandidates(OverOp, S, TokLoc, Args, 2, CandidateSet))
3902      return ExprError();
3903
3904    // Perform overload resolution.
3905    OverloadCandidateSet::iterator Best;
3906    switch (BestViableFunction(CandidateSet, Best)) {
3907    case OR_Success: {
3908      // We found a built-in operator or an overloaded operator.
3909      FunctionDecl *FnDecl = Best->Function;
3910
3911      if (FnDecl) {
3912        // We matched an overloaded operator. Build a call to that
3913        // operator.
3914
3915        // Convert the arguments.
3916        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3917          if (PerformObjectArgumentInitialization(lhs, Method) ||
3918              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3919                                        "passing"))
3920            return ExprError();
3921        } else {
3922          // Convert the arguments.
3923          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3924                                        "passing") ||
3925              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3926                                        "passing"))
3927            return ExprError();
3928        }
3929
3930        // Determine the result type
3931        QualType ResultTy
3932          = FnDecl->getType()->getAsFunctionType()->getResultType();
3933        ResultTy = ResultTy.getNonReferenceType();
3934
3935        // Build the actual expression node.
3936        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3937                                                 SourceLocation());
3938        UsualUnaryConversions(FnExpr);
3939
3940        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
3941                                                       ResultTy, TokLoc));
3942      } else {
3943        // We matched a built-in operator. Convert the arguments, then
3944        // break out so that we will build the appropriate built-in
3945        // operator node.
3946        if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0],
3947                                      Best->Conversions[0], "passing") ||
3948            PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1],
3949                                      Best->Conversions[1], "passing"))
3950          return ExprError();
3951
3952        break;
3953      }
3954    }
3955
3956    case OR_No_Viable_Function:
3957      // No viable function; fall through to handling this as a
3958      // built-in operator, which will produce an error message for us.
3959      break;
3960
3961    case OR_Ambiguous:
3962      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3963          << BinaryOperator::getOpcodeStr(Opc)
3964          << lhs->getSourceRange() << rhs->getSourceRange();
3965      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3966      return ExprError();
3967
3968    case OR_Deleted:
3969      Diag(TokLoc, diag::err_ovl_deleted_oper)
3970        << Best->Function->isDeleted()
3971        << BinaryOperator::getOpcodeStr(Opc)
3972        << lhs->getSourceRange() << rhs->getSourceRange();
3973      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3974      return ExprError();
3975    }
3976
3977    // Either we found no viable overloaded operator or we matched a
3978    // built-in operator. In either case, fall through to trying to
3979    // build a built-in operation.
3980  }
3981
3982  // Build a built-in binary operation.
3983  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3984}
3985
3986// Unary Operators.  'Tok' is the token for the operator.
3987Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3988                                            tok::TokenKind Op, ExprArg input) {
3989  // FIXME: Input is modified later, but smart pointer not reassigned.
3990  Expr *Input = (Expr*)input.get();
3991  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3992
3993  if (getLangOptions().CPlusPlus &&
3994      (Input->getType()->isRecordType()
3995       || Input->getType()->isEnumeralType())) {
3996    // Determine which overloaded operator we're dealing with.
3997    static const OverloadedOperatorKind OverOps[] = {
3998      OO_None, OO_None,
3999      OO_PlusPlus, OO_MinusMinus,
4000      OO_Amp, OO_Star,
4001      OO_Plus, OO_Minus,
4002      OO_Tilde, OO_Exclaim,
4003      OO_None, OO_None,
4004      OO_None,
4005      OO_None
4006    };
4007    OverloadedOperatorKind OverOp = OverOps[Opc];
4008
4009    // Add the appropriate overloaded operators (C++ [over.match.oper])
4010    // to the candidate set.
4011    OverloadCandidateSet CandidateSet;
4012    if (OverOp != OO_None &&
4013        AddOperatorCandidates(OverOp, S, OpLoc, &Input, 1, CandidateSet))
4014      return ExprError();
4015
4016    // Perform overload resolution.
4017    OverloadCandidateSet::iterator Best;
4018    switch (BestViableFunction(CandidateSet, Best)) {
4019    case OR_Success: {
4020      // We found a built-in operator or an overloaded operator.
4021      FunctionDecl *FnDecl = Best->Function;
4022
4023      if (FnDecl) {
4024        // We matched an overloaded operator. Build a call to that
4025        // operator.
4026
4027        // Convert the arguments.
4028        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4029          if (PerformObjectArgumentInitialization(Input, Method))
4030            return ExprError();
4031        } else {
4032          // Convert the arguments.
4033          if (PerformCopyInitialization(Input,
4034                                        FnDecl->getParamDecl(0)->getType(),
4035                                        "passing"))
4036            return ExprError();
4037        }
4038
4039        // Determine the result type
4040        QualType ResultTy
4041          = FnDecl->getType()->getAsFunctionType()->getResultType();
4042        ResultTy = ResultTy.getNonReferenceType();
4043
4044        // Build the actual expression node.
4045        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4046                                                 SourceLocation());
4047        UsualUnaryConversions(FnExpr);
4048
4049        input.release();
4050        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, &Input,
4051                                                       1, ResultTy, OpLoc));
4052      } else {
4053        // We matched a built-in operator. Convert the arguments, then
4054        // break out so that we will build the appropriate built-in
4055        // operator node.
4056        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4057                                      Best->Conversions[0], "passing"))
4058          return ExprError();
4059
4060        break;
4061      }
4062    }
4063
4064    case OR_No_Viable_Function:
4065      // No viable function; fall through to handling this as a
4066      // built-in operator, which will produce an error message for us.
4067      break;
4068
4069    case OR_Ambiguous:
4070      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4071          << UnaryOperator::getOpcodeStr(Opc)
4072          << Input->getSourceRange();
4073      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4074      return ExprError();
4075
4076    case OR_Deleted:
4077      Diag(OpLoc, diag::err_ovl_deleted_oper)
4078        << Best->Function->isDeleted()
4079        << UnaryOperator::getOpcodeStr(Opc)
4080        << Input->getSourceRange();
4081      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4082      return ExprError();
4083    }
4084
4085    // Either we found no viable overloaded operator or we matched a
4086    // built-in operator. In either case, fall through to trying to
4087    // build a built-in operation.
4088  }
4089
4090  QualType resultType;
4091  switch (Opc) {
4092  default:
4093    assert(0 && "Unimplemented unary expr!");
4094  case UnaryOperator::PreInc:
4095  case UnaryOperator::PreDec:
4096    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4097                                                Opc == UnaryOperator::PreInc);
4098    break;
4099  case UnaryOperator::AddrOf:
4100    resultType = CheckAddressOfOperand(Input, OpLoc);
4101    break;
4102  case UnaryOperator::Deref:
4103    DefaultFunctionArrayConversion(Input);
4104    resultType = CheckIndirectionOperand(Input, OpLoc);
4105    break;
4106  case UnaryOperator::Plus:
4107  case UnaryOperator::Minus:
4108    UsualUnaryConversions(Input);
4109    resultType = Input->getType();
4110    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4111      break;
4112    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4113             resultType->isEnumeralType())
4114      break;
4115    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4116             Opc == UnaryOperator::Plus &&
4117             resultType->isPointerType())
4118      break;
4119
4120    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4121      << resultType << Input->getSourceRange());
4122  case UnaryOperator::Not: // bitwise complement
4123    UsualUnaryConversions(Input);
4124    resultType = Input->getType();
4125    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4126    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4127      // C99 does not support '~' for complex conjugation.
4128      Diag(OpLoc, diag::ext_integer_complement_complex)
4129        << resultType << Input->getSourceRange();
4130    else if (!resultType->isIntegerType())
4131      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4132        << resultType << Input->getSourceRange());
4133    break;
4134  case UnaryOperator::LNot: // logical negation
4135    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4136    DefaultFunctionArrayConversion(Input);
4137    resultType = Input->getType();
4138    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4139      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4140        << resultType << Input->getSourceRange());
4141    // LNot always has type int. C99 6.5.3.3p5.
4142    // In C++, it's bool. C++ 5.3.1p8
4143    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4144    break;
4145  case UnaryOperator::Real:
4146  case UnaryOperator::Imag:
4147    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4148    break;
4149  case UnaryOperator::Extension:
4150    resultType = Input->getType();
4151    break;
4152  }
4153  if (resultType.isNull())
4154    return ExprError();
4155  input.release();
4156  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4157}
4158
4159/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4160Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4161                                      SourceLocation LabLoc,
4162                                      IdentifierInfo *LabelII) {
4163  // Look up the record for this label identifier.
4164  LabelStmt *&LabelDecl = LabelMap[LabelII];
4165
4166  // If we haven't seen this label yet, create a forward reference. It
4167  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4168  if (LabelDecl == 0)
4169    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4170
4171  // Create the AST node.  The address of a label always has type 'void*'.
4172  return new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4173                                     Context.getPointerType(Context.VoidTy));
4174}
4175
4176Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
4177                                     SourceLocation RPLoc) { // "({..})"
4178  Stmt *SubStmt = static_cast<Stmt*>(substmt);
4179  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4180  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4181
4182  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4183  if (isFileScope) {
4184    return Diag(LPLoc, diag::err_stmtexpr_file_scope);
4185  }
4186
4187  // FIXME: there are a variety of strange constraints to enforce here, for
4188  // example, it is not possible to goto into a stmt expression apparently.
4189  // More semantic analysis is needed.
4190
4191  // FIXME: the last statement in the compount stmt has its value used.  We
4192  // should not warn about it being unused.
4193
4194  // If there are sub stmts in the compound stmt, take the type of the last one
4195  // as the type of the stmtexpr.
4196  QualType Ty = Context.VoidTy;
4197
4198  if (!Compound->body_empty()) {
4199    Stmt *LastStmt = Compound->body_back();
4200    // If LastStmt is a label, skip down through into the body.
4201    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4202      LastStmt = Label->getSubStmt();
4203
4204    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4205      Ty = LastExpr->getType();
4206  }
4207
4208  return new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
4209}
4210
4211Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4212                                            SourceLocation BuiltinLoc,
4213                                            SourceLocation TypeLoc,
4214                                            TypeTy *argty,
4215                                            OffsetOfComponent *CompPtr,
4216                                            unsigned NumComponents,
4217                                            SourceLocation RPLoc) {
4218  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4219  assert(!ArgTy.isNull() && "Missing type argument!");
4220
4221  // We must have at least one component that refers to the type, and the first
4222  // one is known to be a field designator.  Verify that the ArgTy represents
4223  // a struct/union/class.
4224  if (!ArgTy->isRecordType())
4225    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
4226
4227  // Otherwise, create a compound literal expression as the base, and
4228  // iteratively process the offsetof designators.
4229  InitListExpr *IList =
4230      new (Context) InitListExpr(SourceLocation(), 0, 0, SourceLocation());
4231  IList->setType(ArgTy);
4232  Expr *Res =
4233      new (Context) CompoundLiteralExpr(SourceLocation(), ArgTy, IList, false);
4234
4235  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4236  // GCC extension, diagnose them.
4237  if (NumComponents != 1)
4238    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4239      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4240
4241  for (unsigned i = 0; i != NumComponents; ++i) {
4242    const OffsetOfComponent &OC = CompPtr[i];
4243    if (OC.isBrackets) {
4244      // Offset of an array sub-field.  TODO: Should we allow vector elements?
4245      const ArrayType *AT = Context.getAsArrayType(Res->getType());
4246      if (!AT) {
4247        Res->Destroy(Context);
4248        return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
4249      }
4250
4251      // FIXME: C++: Verify that operator[] isn't overloaded.
4252
4253      // C99 6.5.2.1p1
4254      Expr *Idx = static_cast<Expr*>(OC.U.E);
4255      if (!Idx->getType()->isIntegerType())
4256        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
4257          << Idx->getSourceRange();
4258
4259      Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4260                                             OC.LocEnd);
4261      continue;
4262    }
4263
4264    const RecordType *RC = Res->getType()->getAsRecordType();
4265    if (!RC) {
4266      Res->Destroy(Context);
4267      return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
4268    }
4269
4270    // Get the decl corresponding to this.
4271    RecordDecl *RD = RC->getDecl();
4272    FieldDecl *MemberDecl
4273      = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4274                                                        LookupMemberName)
4275                                      .getAsDecl());
4276    if (!MemberDecl)
4277      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
4278       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
4279
4280    // FIXME: C++: Verify that MemberDecl isn't a static field.
4281    // FIXME: Verify that MemberDecl isn't a bitfield.
4282    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4283    // matter here.
4284    Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4285                                   MemberDecl->getType().getNonReferenceType());
4286  }
4287
4288  return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4289                                     Context.getSizeType(), BuiltinLoc);
4290}
4291
4292
4293Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4294                                                TypeTy *arg1, TypeTy *arg2,
4295                                                SourceLocation RPLoc) {
4296  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4297  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4298
4299  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4300
4301  return new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1,
4302                                           argT2, RPLoc);
4303}
4304
4305Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
4306                                       ExprTy *expr1, ExprTy *expr2,
4307                                       SourceLocation RPLoc) {
4308  Expr *CondExpr = static_cast<Expr*>(cond);
4309  Expr *LHSExpr = static_cast<Expr*>(expr1);
4310  Expr *RHSExpr = static_cast<Expr*>(expr2);
4311
4312  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4313
4314  // The conditional expression is required to be a constant expression.
4315  llvm::APSInt condEval(32);
4316  SourceLocation ExpLoc;
4317  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4318    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
4319      << CondExpr->getSourceRange();
4320
4321  // If the condition is > zero, then the AST type is the same as the LSHExpr.
4322  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
4323                                               RHSExpr->getType();
4324  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4325                                  resType, RPLoc);
4326}
4327
4328//===----------------------------------------------------------------------===//
4329// Clang Extensions.
4330//===----------------------------------------------------------------------===//
4331
4332/// ActOnBlockStart - This callback is invoked when a block literal is started.
4333void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4334  // Analyze block parameters.
4335  BlockSemaInfo *BSI = new BlockSemaInfo();
4336
4337  // Add BSI to CurBlock.
4338  BSI->PrevBlockInfo = CurBlock;
4339  CurBlock = BSI;
4340
4341  BSI->ReturnType = 0;
4342  BSI->TheScope = BlockScope;
4343  BSI->hasBlockDeclRefExprs = false;
4344
4345  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4346  PushDeclContext(BlockScope, BSI->TheDecl);
4347}
4348
4349void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4350  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4351
4352  if (ParamInfo.getNumTypeObjects() == 0
4353      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4354    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4355
4356    // The type is entirely optional as well, if none, use DependentTy.
4357    if (T.isNull())
4358      T = Context.DependentTy;
4359
4360    // The parameter list is optional, if there was none, assume ().
4361    if (!T->isFunctionType())
4362      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4363
4364    CurBlock->hasPrototype = true;
4365    CurBlock->isVariadic = false;
4366    Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4367      .getTypePtr();
4368
4369    if (!RetTy->isDependentType())
4370      CurBlock->ReturnType = RetTy;
4371    return;
4372  }
4373
4374  // Analyze arguments to block.
4375  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4376         "Not a function declarator!");
4377  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4378
4379  CurBlock->hasPrototype = FTI.hasPrototype;
4380  CurBlock->isVariadic = true;
4381
4382  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4383  // no arguments, not a function that takes a single void argument.
4384  if (FTI.hasPrototype &&
4385      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4386      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4387        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4388    // empty arg list, don't push any params.
4389    CurBlock->isVariadic = false;
4390  } else if (FTI.hasPrototype) {
4391    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4392      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4393    CurBlock->isVariadic = FTI.isVariadic;
4394    QualType T = GetTypeForDeclarator (ParamInfo, CurScope);
4395
4396    Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4397      .getTypePtr();
4398
4399    if (!RetTy->isDependentType())
4400      CurBlock->ReturnType = RetTy;
4401  }
4402  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
4403
4404  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4405       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4406    // If this has an identifier, add it to the scope stack.
4407    if ((*AI)->getIdentifier())
4408      PushOnScopeChains(*AI, CurBlock->TheScope);
4409}
4410
4411/// ActOnBlockError - If there is an error parsing a block, this callback
4412/// is invoked to pop the information about the block from the action impl.
4413void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4414  // Ensure that CurBlock is deleted.
4415  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4416
4417  // Pop off CurBlock, handle nested blocks.
4418  CurBlock = CurBlock->PrevBlockInfo;
4419
4420  // FIXME: Delete the ParmVarDecl objects as well???
4421
4422}
4423
4424/// ActOnBlockStmtExpr - This is called when the body of a block statement
4425/// literal was successfully completed.  ^(int x){...}
4426Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
4427                                          Scope *CurScope) {
4428  // Ensure that CurBlock is deleted.
4429  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4430  ExprOwningPtr<CompoundStmt> Body(this, static_cast<CompoundStmt*>(body));
4431
4432  PopDeclContext();
4433
4434  // Pop off CurBlock, handle nested blocks.
4435  CurBlock = CurBlock->PrevBlockInfo;
4436
4437  QualType RetTy = Context.VoidTy;
4438  if (BSI->ReturnType)
4439    RetTy = QualType(BSI->ReturnType, 0);
4440
4441  llvm::SmallVector<QualType, 8> ArgTypes;
4442  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4443    ArgTypes.push_back(BSI->Params[i]->getType());
4444
4445  QualType BlockTy;
4446  if (!BSI->hasPrototype)
4447    BlockTy = Context.getFunctionTypeNoProto(RetTy);
4448  else
4449    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4450                                      BSI->isVariadic, 0);
4451
4452  BlockTy = Context.getBlockPointerType(BlockTy);
4453
4454  BSI->TheDecl->setBody(Body.take());
4455  return new (Context) BlockExpr(BSI->TheDecl, BlockTy, BSI->hasBlockDeclRefExprs);
4456}
4457
4458Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4459                                  ExprTy *expr, TypeTy *type,
4460                                  SourceLocation RPLoc) {
4461  Expr *E = static_cast<Expr*>(expr);
4462  QualType T = QualType::getFromOpaquePtr(type);
4463
4464  InitBuiltinVaListType();
4465
4466  // Get the va_list type
4467  QualType VaListType = Context.getBuiltinVaListType();
4468  // Deal with implicit array decay; for example, on x86-64,
4469  // va_list is an array, but it's supposed to decay to
4470  // a pointer for va_arg.
4471  if (VaListType->isArrayType())
4472    VaListType = Context.getArrayDecayedType(VaListType);
4473  // Make sure the input expression also decays appropriately.
4474  UsualUnaryConversions(E);
4475
4476  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4477    return Diag(E->getLocStart(),
4478                diag::err_first_argument_to_va_arg_not_of_type_va_list)
4479      << E->getType() << E->getSourceRange();
4480
4481  // FIXME: Warn if a non-POD type is passed in.
4482
4483  return new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
4484}
4485
4486Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4487  // The type of __null will be int or long, depending on the size of
4488  // pointers on the target.
4489  QualType Ty;
4490  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4491    Ty = Context.IntTy;
4492  else
4493    Ty = Context.LongTy;
4494
4495  return new (Context) GNUNullExpr(Ty, TokenLoc);
4496}
4497
4498bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4499                                    SourceLocation Loc,
4500                                    QualType DstType, QualType SrcType,
4501                                    Expr *SrcExpr, const char *Flavor) {
4502  // Decode the result (notice that AST's are still created for extensions).
4503  bool isInvalid = false;
4504  unsigned DiagKind;
4505  switch (ConvTy) {
4506  default: assert(0 && "Unknown conversion type");
4507  case Compatible: return false;
4508  case PointerToInt:
4509    DiagKind = diag::ext_typecheck_convert_pointer_int;
4510    break;
4511  case IntToPointer:
4512    DiagKind = diag::ext_typecheck_convert_int_pointer;
4513    break;
4514  case IncompatiblePointer:
4515    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4516    break;
4517  case FunctionVoidPointer:
4518    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4519    break;
4520  case CompatiblePointerDiscardsQualifiers:
4521    // If the qualifiers lost were because we were applying the
4522    // (deprecated) C++ conversion from a string literal to a char*
4523    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4524    // Ideally, this check would be performed in
4525    // CheckPointerTypesForAssignment. However, that would require a
4526    // bit of refactoring (so that the second argument is an
4527    // expression, rather than a type), which should be done as part
4528    // of a larger effort to fix CheckPointerTypesForAssignment for
4529    // C++ semantics.
4530    if (getLangOptions().CPlusPlus &&
4531        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4532      return false;
4533    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4534    break;
4535  case IntToBlockPointer:
4536    DiagKind = diag::err_int_to_block_pointer;
4537    break;
4538  case IncompatibleBlockPointer:
4539    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4540    break;
4541  case IncompatibleObjCQualifiedId:
4542    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4543    // it can give a more specific diagnostic.
4544    DiagKind = diag::warn_incompatible_qualified_id;
4545    break;
4546  case IncompatibleVectors:
4547    DiagKind = diag::warn_incompatible_vectors;
4548    break;
4549  case Incompatible:
4550    DiagKind = diag::err_typecheck_convert_incompatible;
4551    isInvalid = true;
4552    break;
4553  }
4554
4555  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4556    << SrcExpr->getSourceRange();
4557  return isInvalid;
4558}
4559
4560bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4561{
4562  Expr::EvalResult EvalResult;
4563
4564  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4565      EvalResult.HasSideEffects) {
4566    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4567
4568    if (EvalResult.Diag) {
4569      // We only show the note if it's not the usual "invalid subexpression"
4570      // or if it's actually in a subexpression.
4571      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4572          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4573        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4574    }
4575
4576    return true;
4577  }
4578
4579  if (EvalResult.Diag) {
4580    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4581      E->getSourceRange();
4582
4583    // Print the reason it's not a constant.
4584    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4585      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4586  }
4587
4588  if (Result)
4589    *Result = EvalResult.Val.getInt();
4590  return false;
4591}
4592