SemaStmt.cpp revision 3940ce83438e2332ba541f4e65e700fbefe0c7a8
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34using namespace clang;
35using namespace sema;
36
37StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
38  Expr *E = expr.get();
39  if (!E) // FIXME: FullExprArg has no error state?
40    return StmtError();
41
42  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
43  // void expression for its side effects.  Conversion to void allows any
44  // operand, even incomplete types.
45
46  // Same thing in for stmt first clause (when expr) and third clause.
47  return Owned(static_cast<Stmt*>(E));
48}
49
50
51StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
52                               bool HasLeadingEmptyMacro) {
53  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
54}
55
56StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
57                               SourceLocation EndLoc) {
58  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
59
60  // If we have an invalid decl, just return an error.
61  if (DG.isNull()) return StmtError();
62
63  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
64}
65
66void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
67  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
68
69  // If we have an invalid decl, just return.
70  if (DG.isNull() || !DG.isSingleDecl()) return;
71  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
72
73  // suppress any potential 'unused variable' warning.
74  var->setUsed();
75
76  // foreach variables are never actually initialized in the way that
77  // the parser came up with.
78  var->setInit(0);
79
80  // In ARC, we don't need to retain the iteration variable of a fast
81  // enumeration loop.  Rather than actually trying to catch that
82  // during declaration processing, we remove the consequences here.
83  if (getLangOpts().ObjCAutoRefCount) {
84    QualType type = var->getType();
85
86    // Only do this if we inferred the lifetime.  Inferred lifetime
87    // will show up as a local qualifier because explicit lifetime
88    // should have shown up as an AttributedType instead.
89    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
90      // Add 'const' and mark the variable as pseudo-strong.
91      var->setType(type.withConst());
92      var->setARCPseudoStrong(true);
93    }
94  }
95}
96
97/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
98///
99/// Adding a cast to void (or other expression wrappers) will prevent the
100/// warning from firing.
101static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
102  SourceLocation Loc;
103  bool IsNotEqual, CanAssign;
104
105  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
106    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
107      return false;
108
109    Loc = Op->getOperatorLoc();
110    IsNotEqual = Op->getOpcode() == BO_NE;
111    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
112  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
113    if (Op->getOperator() != OO_EqualEqual &&
114        Op->getOperator() != OO_ExclaimEqual)
115      return false;
116
117    Loc = Op->getOperatorLoc();
118    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
119    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
120  } else {
121    // Not a typo-prone comparison.
122    return false;
123  }
124
125  // Suppress warnings when the operator, suspicious as it may be, comes from
126  // a macro expansion.
127  if (Loc.isMacroID())
128    return false;
129
130  S.Diag(Loc, diag::warn_unused_comparison)
131    << (unsigned)IsNotEqual << E->getSourceRange();
132
133  // If the LHS is a plausible entity to assign to, provide a fixit hint to
134  // correct common typos.
135  if (CanAssign) {
136    if (IsNotEqual)
137      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
138        << FixItHint::CreateReplacement(Loc, "|=");
139    else
140      S.Diag(Loc, diag::note_equality_comparison_to_assign)
141        << FixItHint::CreateReplacement(Loc, "=");
142  }
143
144  return true;
145}
146
147void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
148  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
149    return DiagnoseUnusedExprResult(Label->getSubStmt());
150
151  const Expr *E = dyn_cast_or_null<Expr>(S);
152  if (!E)
153    return;
154
155  SourceLocation Loc;
156  SourceRange R1, R2;
157  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
158      !E->isUnusedResultAWarning(Loc, R1, R2, Context))
159    return;
160
161  // Okay, we have an unused result.  Depending on what the base expression is,
162  // we might want to make a more specific diagnostic.  Check for one of these
163  // cases now.
164  unsigned DiagID = diag::warn_unused_expr;
165  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
166    E = Temps->getSubExpr();
167  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
168    E = TempExpr->getSubExpr();
169
170  if (DiagnoseUnusedComparison(*this, E))
171    return;
172
173  E = E->IgnoreParenImpCasts();
174  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
175    if (E->getType()->isVoidType())
176      return;
177
178    // If the callee has attribute pure, const, or warn_unused_result, warn with
179    // a more specific message to make it clear what is happening.
180    if (const Decl *FD = CE->getCalleeDecl()) {
181      if (FD->getAttr<WarnUnusedResultAttr>()) {
182        Diag(Loc, diag::warn_unused_result) << R1 << R2;
183        return;
184      }
185      if (FD->getAttr<PureAttr>()) {
186        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
187        return;
188      }
189      if (FD->getAttr<ConstAttr>()) {
190        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
191        return;
192      }
193    }
194  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
195    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
196      Diag(Loc, diag::err_arc_unused_init_message) << R1;
197      return;
198    }
199    const ObjCMethodDecl *MD = ME->getMethodDecl();
200    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
201      Diag(Loc, diag::warn_unused_result) << R1 << R2;
202      return;
203    }
204  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
205    const Expr *Source = POE->getSyntacticForm();
206    if (isa<ObjCSubscriptRefExpr>(Source))
207      DiagID = diag::warn_unused_container_subscript_expr;
208    else
209      DiagID = diag::warn_unused_property_expr;
210  } else if (const CXXFunctionalCastExpr *FC
211                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
212    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
213        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
214      return;
215  }
216  // Diagnose "(void*) blah" as a typo for "(void) blah".
217  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
218    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
219    QualType T = TI->getType();
220
221    // We really do want to use the non-canonical type here.
222    if (T == Context.VoidPtrTy) {
223      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
224
225      Diag(Loc, diag::warn_unused_voidptr)
226        << FixItHint::CreateRemoval(TL.getStarLoc());
227      return;
228    }
229  }
230
231  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
232}
233
234void Sema::ActOnStartOfCompoundStmt() {
235  PushCompoundScope();
236}
237
238void Sema::ActOnFinishOfCompoundStmt() {
239  PopCompoundScope();
240}
241
242sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
243  return getCurFunction()->CompoundScopes.back();
244}
245
246StmtResult
247Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
248                        MultiStmtArg elts, bool isStmtExpr) {
249  unsigned NumElts = elts.size();
250  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
251  // If we're in C89 mode, check that we don't have any decls after stmts.  If
252  // so, emit an extension diagnostic.
253  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
254    // Note that __extension__ can be around a decl.
255    unsigned i = 0;
256    // Skip over all declarations.
257    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
258      /*empty*/;
259
260    // We found the end of the list or a statement.  Scan for another declstmt.
261    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
262      /*empty*/;
263
264    if (i != NumElts) {
265      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
266      Diag(D->getLocation(), diag::ext_mixed_decls_code);
267    }
268  }
269  // Warn about unused expressions in statements.
270  for (unsigned i = 0; i != NumElts; ++i) {
271    // Ignore statements that are last in a statement expression.
272    if (isStmtExpr && i == NumElts - 1)
273      continue;
274
275    DiagnoseUnusedExprResult(Elts[i]);
276  }
277
278  // Check for suspicious empty body (null statement) in `for' and `while'
279  // statements.  Don't do anything for template instantiations, this just adds
280  // noise.
281  if (NumElts != 0 && !CurrentInstantiationScope &&
282      getCurCompoundScope().HasEmptyLoopBodies) {
283    for (unsigned i = 0; i != NumElts - 1; ++i)
284      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
285  }
286
287  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
288}
289
290StmtResult
291Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
292                    SourceLocation DotDotDotLoc, Expr *RHSVal,
293                    SourceLocation ColonLoc) {
294  assert((LHSVal != 0) && "missing expression in case statement");
295
296  if (getCurFunction()->SwitchStack.empty()) {
297    Diag(CaseLoc, diag::err_case_not_in_switch);
298    return StmtError();
299  }
300
301  if (!getLangOpts().CPlusPlus0x) {
302    // C99 6.8.4.2p3: The expression shall be an integer constant.
303    // However, GCC allows any evaluatable integer expression.
304    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
305      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
306      if (!LHSVal)
307        return StmtError();
308    }
309
310    // GCC extension: The expression shall be an integer constant.
311
312    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
313      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
314      // Recover from an error by just forgetting about it.
315    }
316  }
317
318  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
319                                        ColonLoc);
320  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
321  return Owned(CS);
322}
323
324/// ActOnCaseStmtBody - This installs a statement as the body of a case.
325void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
326  DiagnoseUnusedExprResult(SubStmt);
327
328  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
329  CS->setSubStmt(SubStmt);
330}
331
332StmtResult
333Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
334                       Stmt *SubStmt, Scope *CurScope) {
335  DiagnoseUnusedExprResult(SubStmt);
336
337  if (getCurFunction()->SwitchStack.empty()) {
338    Diag(DefaultLoc, diag::err_default_not_in_switch);
339    return Owned(SubStmt);
340  }
341
342  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
343  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
344  return Owned(DS);
345}
346
347StmtResult
348Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
349                     SourceLocation ColonLoc, Stmt *SubStmt) {
350  // If the label was multiply defined, reject it now.
351  if (TheDecl->getStmt()) {
352    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
353    Diag(TheDecl->getLocation(), diag::note_previous_definition);
354    return Owned(SubStmt);
355  }
356
357  // Otherwise, things are good.  Fill in the declaration and return it.
358  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
359  TheDecl->setStmt(LS);
360  if (!TheDecl->isGnuLocal())
361    TheDecl->setLocation(IdentLoc);
362  return Owned(LS);
363}
364
365StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
366                                     const AttrVec &Attrs,
367                                     Stmt *SubStmt) {
368  // Fill in the declaration and return it. Variable length will require to
369  // change this to AttributedStmt::Create(Context, ....);
370  // and probably using ArrayRef
371  AttributedStmt *LS = new (Context) AttributedStmt(AttrLoc, Attrs, SubStmt);
372  return Owned(LS);
373}
374
375StmtResult
376Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
377                  Stmt *thenStmt, SourceLocation ElseLoc,
378                  Stmt *elseStmt) {
379  ExprResult CondResult(CondVal.release());
380
381  VarDecl *ConditionVar = 0;
382  if (CondVar) {
383    ConditionVar = cast<VarDecl>(CondVar);
384    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
385    if (CondResult.isInvalid())
386      return StmtError();
387  }
388  Expr *ConditionExpr = CondResult.takeAs<Expr>();
389  if (!ConditionExpr)
390    return StmtError();
391
392  DiagnoseUnusedExprResult(thenStmt);
393
394  if (!elseStmt) {
395    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
396                          diag::warn_empty_if_body);
397  }
398
399  DiagnoseUnusedExprResult(elseStmt);
400
401  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
402                                    thenStmt, ElseLoc, elseStmt));
403}
404
405/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
406/// the specified width and sign.  If an overflow occurs, detect it and emit
407/// the specified diagnostic.
408void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
409                                              unsigned NewWidth, bool NewSign,
410                                              SourceLocation Loc,
411                                              unsigned DiagID) {
412  // Perform a conversion to the promoted condition type if needed.
413  if (NewWidth > Val.getBitWidth()) {
414    // If this is an extension, just do it.
415    Val = Val.extend(NewWidth);
416    Val.setIsSigned(NewSign);
417
418    // If the input was signed and negative and the output is
419    // unsigned, don't bother to warn: this is implementation-defined
420    // behavior.
421    // FIXME: Introduce a second, default-ignored warning for this case?
422  } else if (NewWidth < Val.getBitWidth()) {
423    // If this is a truncation, check for overflow.
424    llvm::APSInt ConvVal(Val);
425    ConvVal = ConvVal.trunc(NewWidth);
426    ConvVal.setIsSigned(NewSign);
427    ConvVal = ConvVal.extend(Val.getBitWidth());
428    ConvVal.setIsSigned(Val.isSigned());
429    if (ConvVal != Val)
430      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
431
432    // Regardless of whether a diagnostic was emitted, really do the
433    // truncation.
434    Val = Val.trunc(NewWidth);
435    Val.setIsSigned(NewSign);
436  } else if (NewSign != Val.isSigned()) {
437    // Convert the sign to match the sign of the condition.  This can cause
438    // overflow as well: unsigned(INTMIN)
439    // We don't diagnose this overflow, because it is implementation-defined
440    // behavior.
441    // FIXME: Introduce a second, default-ignored warning for this case?
442    llvm::APSInt OldVal(Val);
443    Val.setIsSigned(NewSign);
444  }
445}
446
447namespace {
448  struct CaseCompareFunctor {
449    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
450                    const llvm::APSInt &RHS) {
451      return LHS.first < RHS;
452    }
453    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
454                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
455      return LHS.first < RHS.first;
456    }
457    bool operator()(const llvm::APSInt &LHS,
458                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
459      return LHS < RHS.first;
460    }
461  };
462}
463
464/// CmpCaseVals - Comparison predicate for sorting case values.
465///
466static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
467                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
468  if (lhs.first < rhs.first)
469    return true;
470
471  if (lhs.first == rhs.first &&
472      lhs.second->getCaseLoc().getRawEncoding()
473       < rhs.second->getCaseLoc().getRawEncoding())
474    return true;
475  return false;
476}
477
478/// CmpEnumVals - Comparison predicate for sorting enumeration values.
479///
480static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
481                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
482{
483  return lhs.first < rhs.first;
484}
485
486/// EqEnumVals - Comparison preficate for uniqing enumeration values.
487///
488static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
489                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
490{
491  return lhs.first == rhs.first;
492}
493
494/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
495/// potentially integral-promoted expression @p expr.
496static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
497  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
498    expr = cleanups->getSubExpr();
499  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
500    if (impcast->getCastKind() != CK_IntegralCast) break;
501    expr = impcast->getSubExpr();
502  }
503  return expr->getType();
504}
505
506StmtResult
507Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
508                             Decl *CondVar) {
509  ExprResult CondResult;
510
511  VarDecl *ConditionVar = 0;
512  if (CondVar) {
513    ConditionVar = cast<VarDecl>(CondVar);
514    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
515    if (CondResult.isInvalid())
516      return StmtError();
517
518    Cond = CondResult.release();
519  }
520
521  if (!Cond)
522    return StmtError();
523
524  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
525    Expr *Cond;
526
527  public:
528    SwitchConvertDiagnoser(Expr *Cond)
529      : ICEConvertDiagnoser(false, true), Cond(Cond) { }
530
531    virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
532                                             QualType T) {
533      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
534    }
535
536    virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
537                                                 QualType T) {
538      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
539               << T << Cond->getSourceRange();
540    }
541
542    virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
543                                                   QualType T,
544                                                   QualType ConvTy) {
545      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
546    }
547
548    virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
549                                               QualType ConvTy) {
550      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
551        << ConvTy->isEnumeralType() << ConvTy;
552    }
553
554    virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
555                                                QualType T) {
556      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
557    }
558
559    virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
560                                            QualType ConvTy) {
561      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
562      << ConvTy->isEnumeralType() << ConvTy;
563    }
564
565    virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
566                                                 QualType T,
567                                                 QualType ConvTy) {
568      return DiagnosticBuilder::getEmpty();
569    }
570  } SwitchDiagnoser(Cond);
571
572  CondResult
573    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
574                                         /*AllowScopedEnumerations*/ true);
575  if (CondResult.isInvalid()) return StmtError();
576  Cond = CondResult.take();
577
578  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
579  CondResult = UsualUnaryConversions(Cond);
580  if (CondResult.isInvalid()) return StmtError();
581  Cond = CondResult.take();
582
583  if (!CondVar) {
584    CheckImplicitConversions(Cond, SwitchLoc);
585    CondResult = MaybeCreateExprWithCleanups(Cond);
586    if (CondResult.isInvalid())
587      return StmtError();
588    Cond = CondResult.take();
589  }
590
591  getCurFunction()->setHasBranchIntoScope();
592
593  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
594  getCurFunction()->SwitchStack.push_back(SS);
595  return Owned(SS);
596}
597
598static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
599  if (Val.getBitWidth() < BitWidth)
600    Val = Val.extend(BitWidth);
601  else if (Val.getBitWidth() > BitWidth)
602    Val = Val.trunc(BitWidth);
603  Val.setIsSigned(IsSigned);
604}
605
606StmtResult
607Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
608                            Stmt *BodyStmt) {
609  SwitchStmt *SS = cast<SwitchStmt>(Switch);
610  assert(SS == getCurFunction()->SwitchStack.back() &&
611         "switch stack missing push/pop!");
612
613  SS->setBody(BodyStmt, SwitchLoc);
614  getCurFunction()->SwitchStack.pop_back();
615
616  Expr *CondExpr = SS->getCond();
617  if (!CondExpr) return StmtError();
618
619  QualType CondType = CondExpr->getType();
620
621  Expr *CondExprBeforePromotion = CondExpr;
622  QualType CondTypeBeforePromotion =
623      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
624
625  // C++ 6.4.2.p2:
626  // Integral promotions are performed (on the switch condition).
627  //
628  // A case value unrepresentable by the original switch condition
629  // type (before the promotion) doesn't make sense, even when it can
630  // be represented by the promoted type.  Therefore we need to find
631  // the pre-promotion type of the switch condition.
632  if (!CondExpr->isTypeDependent()) {
633    // We have already converted the expression to an integral or enumeration
634    // type, when we started the switch statement. If we don't have an
635    // appropriate type now, just return an error.
636    if (!CondType->isIntegralOrEnumerationType())
637      return StmtError();
638
639    if (CondExpr->isKnownToHaveBooleanValue()) {
640      // switch(bool_expr) {...} is often a programmer error, e.g.
641      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
642      // One can always use an if statement instead of switch(bool_expr).
643      Diag(SwitchLoc, diag::warn_bool_switch_condition)
644          << CondExpr->getSourceRange();
645    }
646  }
647
648  // Get the bitwidth of the switched-on value before promotions.  We must
649  // convert the integer case values to this width before comparison.
650  bool HasDependentValue
651    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
652  unsigned CondWidth
653    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
654  bool CondIsSigned
655    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
656
657  // Accumulate all of the case values in a vector so that we can sort them
658  // and detect duplicates.  This vector contains the APInt for the case after
659  // it has been converted to the condition type.
660  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
661  CaseValsTy CaseVals;
662
663  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
664  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
665  CaseRangesTy CaseRanges;
666
667  DefaultStmt *TheDefaultStmt = 0;
668
669  bool CaseListIsErroneous = false;
670
671  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
672       SC = SC->getNextSwitchCase()) {
673
674    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
675      if (TheDefaultStmt) {
676        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
677        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
678
679        // FIXME: Remove the default statement from the switch block so that
680        // we'll return a valid AST.  This requires recursing down the AST and
681        // finding it, not something we are set up to do right now.  For now,
682        // just lop the entire switch stmt out of the AST.
683        CaseListIsErroneous = true;
684      }
685      TheDefaultStmt = DS;
686
687    } else {
688      CaseStmt *CS = cast<CaseStmt>(SC);
689
690      Expr *Lo = CS->getLHS();
691
692      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
693        HasDependentValue = true;
694        break;
695      }
696
697      llvm::APSInt LoVal;
698
699      if (getLangOpts().CPlusPlus0x) {
700        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
701        // constant expression of the promoted type of the switch condition.
702        ExprResult ConvLo =
703          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
704        if (ConvLo.isInvalid()) {
705          CaseListIsErroneous = true;
706          continue;
707        }
708        Lo = ConvLo.take();
709      } else {
710        // We already verified that the expression has a i-c-e value (C99
711        // 6.8.4.2p3) - get that value now.
712        LoVal = Lo->EvaluateKnownConstInt(Context);
713
714        // If the LHS is not the same type as the condition, insert an implicit
715        // cast.
716        Lo = DefaultLvalueConversion(Lo).take();
717        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
718      }
719
720      // Convert the value to the same width/sign as the condition had prior to
721      // integral promotions.
722      //
723      // FIXME: This causes us to reject valid code:
724      //   switch ((char)c) { case 256: case 0: return 0; }
725      // Here we claim there is a duplicated condition value, but there is not.
726      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
727                                         Lo->getLocStart(),
728                                         diag::warn_case_value_overflow);
729
730      CS->setLHS(Lo);
731
732      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
733      if (CS->getRHS()) {
734        if (CS->getRHS()->isTypeDependent() ||
735            CS->getRHS()->isValueDependent()) {
736          HasDependentValue = true;
737          break;
738        }
739        CaseRanges.push_back(std::make_pair(LoVal, CS));
740      } else
741        CaseVals.push_back(std::make_pair(LoVal, CS));
742    }
743  }
744
745  if (!HasDependentValue) {
746    // If we don't have a default statement, check whether the
747    // condition is constant.
748    llvm::APSInt ConstantCondValue;
749    bool HasConstantCond = false;
750    if (!HasDependentValue && !TheDefaultStmt) {
751      HasConstantCond
752        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
753                                                 Expr::SE_AllowSideEffects);
754      assert(!HasConstantCond ||
755             (ConstantCondValue.getBitWidth() == CondWidth &&
756              ConstantCondValue.isSigned() == CondIsSigned));
757    }
758    bool ShouldCheckConstantCond = HasConstantCond;
759
760    // Sort all the scalar case values so we can easily detect duplicates.
761    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
762
763    if (!CaseVals.empty()) {
764      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
765        if (ShouldCheckConstantCond &&
766            CaseVals[i].first == ConstantCondValue)
767          ShouldCheckConstantCond = false;
768
769        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
770          // If we have a duplicate, report it.
771          // First, determine if either case value has a name
772          StringRef PrevString, CurrString;
773          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
774          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
775          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
776            PrevString = DeclRef->getDecl()->getName();
777          }
778          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
779            CurrString = DeclRef->getDecl()->getName();
780          }
781          std::string CaseValStr = CaseVals[i-1].first.toString(10);
782
783          if (PrevString == CurrString)
784            Diag(CaseVals[i].second->getLHS()->getLocStart(),
785                 diag::err_duplicate_case) <<
786                 (PrevString.empty() ? CaseValStr : PrevString.str());
787          else
788            Diag(CaseVals[i].second->getLHS()->getLocStart(),
789                 diag::err_duplicate_case_differing_expr) <<
790                 (PrevString.empty() ? CaseValStr : PrevString.str()) <<
791                 (CurrString.empty() ? CaseValStr : CurrString.str()) <<
792                 CaseValStr;
793
794          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
795               diag::note_duplicate_case_prev);
796          // FIXME: We really want to remove the bogus case stmt from the
797          // substmt, but we have no way to do this right now.
798          CaseListIsErroneous = true;
799        }
800      }
801    }
802
803    // Detect duplicate case ranges, which usually don't exist at all in
804    // the first place.
805    if (!CaseRanges.empty()) {
806      // Sort all the case ranges by their low value so we can easily detect
807      // overlaps between ranges.
808      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
809
810      // Scan the ranges, computing the high values and removing empty ranges.
811      std::vector<llvm::APSInt> HiVals;
812      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
813        llvm::APSInt &LoVal = CaseRanges[i].first;
814        CaseStmt *CR = CaseRanges[i].second;
815        Expr *Hi = CR->getRHS();
816        llvm::APSInt HiVal;
817
818        if (getLangOpts().CPlusPlus0x) {
819          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
820          // constant expression of the promoted type of the switch condition.
821          ExprResult ConvHi =
822            CheckConvertedConstantExpression(Hi, CondType, HiVal,
823                                             CCEK_CaseValue);
824          if (ConvHi.isInvalid()) {
825            CaseListIsErroneous = true;
826            continue;
827          }
828          Hi = ConvHi.take();
829        } else {
830          HiVal = Hi->EvaluateKnownConstInt(Context);
831
832          // If the RHS is not the same type as the condition, insert an
833          // implicit cast.
834          Hi = DefaultLvalueConversion(Hi).take();
835          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
836        }
837
838        // Convert the value to the same width/sign as the condition.
839        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
840                                           Hi->getLocStart(),
841                                           diag::warn_case_value_overflow);
842
843        CR->setRHS(Hi);
844
845        // If the low value is bigger than the high value, the case is empty.
846        if (LoVal > HiVal) {
847          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
848            << SourceRange(CR->getLHS()->getLocStart(),
849                           Hi->getLocEnd());
850          CaseRanges.erase(CaseRanges.begin()+i);
851          --i, --e;
852          continue;
853        }
854
855        if (ShouldCheckConstantCond &&
856            LoVal <= ConstantCondValue &&
857            ConstantCondValue <= HiVal)
858          ShouldCheckConstantCond = false;
859
860        HiVals.push_back(HiVal);
861      }
862
863      // Rescan the ranges, looking for overlap with singleton values and other
864      // ranges.  Since the range list is sorted, we only need to compare case
865      // ranges with their neighbors.
866      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
867        llvm::APSInt &CRLo = CaseRanges[i].first;
868        llvm::APSInt &CRHi = HiVals[i];
869        CaseStmt *CR = CaseRanges[i].second;
870
871        // Check to see whether the case range overlaps with any
872        // singleton cases.
873        CaseStmt *OverlapStmt = 0;
874        llvm::APSInt OverlapVal(32);
875
876        // Find the smallest value >= the lower bound.  If I is in the
877        // case range, then we have overlap.
878        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
879                                                  CaseVals.end(), CRLo,
880                                                  CaseCompareFunctor());
881        if (I != CaseVals.end() && I->first < CRHi) {
882          OverlapVal  = I->first;   // Found overlap with scalar.
883          OverlapStmt = I->second;
884        }
885
886        // Find the smallest value bigger than the upper bound.
887        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
888        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
889          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
890          OverlapStmt = (I-1)->second;
891        }
892
893        // Check to see if this case stmt overlaps with the subsequent
894        // case range.
895        if (i && CRLo <= HiVals[i-1]) {
896          OverlapVal  = HiVals[i-1];       // Found overlap with range.
897          OverlapStmt = CaseRanges[i-1].second;
898        }
899
900        if (OverlapStmt) {
901          // If we have a duplicate, report it.
902          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
903            << OverlapVal.toString(10);
904          Diag(OverlapStmt->getLHS()->getLocStart(),
905               diag::note_duplicate_case_prev);
906          // FIXME: We really want to remove the bogus case stmt from the
907          // substmt, but we have no way to do this right now.
908          CaseListIsErroneous = true;
909        }
910      }
911    }
912
913    // Complain if we have a constant condition and we didn't find a match.
914    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
915      // TODO: it would be nice if we printed enums as enums, chars as
916      // chars, etc.
917      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
918        << ConstantCondValue.toString(10)
919        << CondExpr->getSourceRange();
920    }
921
922    // Check to see if switch is over an Enum and handles all of its
923    // values.  We only issue a warning if there is not 'default:', but
924    // we still do the analysis to preserve this information in the AST
925    // (which can be used by flow-based analyes).
926    //
927    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
928
929    // If switch has default case, then ignore it.
930    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
931      const EnumDecl *ED = ET->getDecl();
932      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
933        EnumValsTy;
934      EnumValsTy EnumVals;
935
936      // Gather all enum values, set their type and sort them,
937      // allowing easier comparison with CaseVals.
938      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
939           EDI != ED->enumerator_end(); ++EDI) {
940        llvm::APSInt Val = EDI->getInitVal();
941        AdjustAPSInt(Val, CondWidth, CondIsSigned);
942        EnumVals.push_back(std::make_pair(Val, &*EDI));
943      }
944      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
945      EnumValsTy::iterator EIend =
946        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
947
948      // See which case values aren't in enum.
949      EnumValsTy::const_iterator EI = EnumVals.begin();
950      for (CaseValsTy::const_iterator CI = CaseVals.begin();
951           CI != CaseVals.end(); CI++) {
952        while (EI != EIend && EI->first < CI->first)
953          EI++;
954        if (EI == EIend || EI->first > CI->first)
955          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
956            << CondTypeBeforePromotion;
957      }
958      // See which of case ranges aren't in enum
959      EI = EnumVals.begin();
960      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
961           RI != CaseRanges.end() && EI != EIend; RI++) {
962        while (EI != EIend && EI->first < RI->first)
963          EI++;
964
965        if (EI == EIend || EI->first != RI->first) {
966          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
967            << CondTypeBeforePromotion;
968        }
969
970        llvm::APSInt Hi =
971          RI->second->getRHS()->EvaluateKnownConstInt(Context);
972        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
973        while (EI != EIend && EI->first < Hi)
974          EI++;
975        if (EI == EIend || EI->first != Hi)
976          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
977            << CondTypeBeforePromotion;
978      }
979
980      // Check which enum vals aren't in switch
981      CaseValsTy::const_iterator CI = CaseVals.begin();
982      CaseRangesTy::const_iterator RI = CaseRanges.begin();
983      bool hasCasesNotInSwitch = false;
984
985      SmallVector<DeclarationName,8> UnhandledNames;
986
987      for (EI = EnumVals.begin(); EI != EIend; EI++){
988        // Drop unneeded case values
989        llvm::APSInt CIVal;
990        while (CI != CaseVals.end() && CI->first < EI->first)
991          CI++;
992
993        if (CI != CaseVals.end() && CI->first == EI->first)
994          continue;
995
996        // Drop unneeded case ranges
997        for (; RI != CaseRanges.end(); RI++) {
998          llvm::APSInt Hi =
999            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1000          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1001          if (EI->first <= Hi)
1002            break;
1003        }
1004
1005        if (RI == CaseRanges.end() || EI->first < RI->first) {
1006          hasCasesNotInSwitch = true;
1007          UnhandledNames.push_back(EI->second->getDeclName());
1008        }
1009      }
1010
1011      if (TheDefaultStmt && UnhandledNames.empty())
1012        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1013
1014      // Produce a nice diagnostic if multiple values aren't handled.
1015      switch (UnhandledNames.size()) {
1016      case 0: break;
1017      case 1:
1018        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1019          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1020          << UnhandledNames[0];
1021        break;
1022      case 2:
1023        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1024          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1025          << UnhandledNames[0] << UnhandledNames[1];
1026        break;
1027      case 3:
1028        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1029          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1030          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1031        break;
1032      default:
1033        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1034          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1035          << (unsigned)UnhandledNames.size()
1036          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1037        break;
1038      }
1039
1040      if (!hasCasesNotInSwitch)
1041        SS->setAllEnumCasesCovered();
1042    }
1043  }
1044
1045  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1046                        diag::warn_empty_switch_body);
1047
1048  // FIXME: If the case list was broken is some way, we don't have a good system
1049  // to patch it up.  Instead, just return the whole substmt as broken.
1050  if (CaseListIsErroneous)
1051    return StmtError();
1052
1053  return Owned(SS);
1054}
1055
1056StmtResult
1057Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1058                     Decl *CondVar, Stmt *Body) {
1059  ExprResult CondResult(Cond.release());
1060
1061  VarDecl *ConditionVar = 0;
1062  if (CondVar) {
1063    ConditionVar = cast<VarDecl>(CondVar);
1064    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1065    if (CondResult.isInvalid())
1066      return StmtError();
1067  }
1068  Expr *ConditionExpr = CondResult.take();
1069  if (!ConditionExpr)
1070    return StmtError();
1071
1072  DiagnoseUnusedExprResult(Body);
1073
1074  if (isa<NullStmt>(Body))
1075    getCurCompoundScope().setHasEmptyLoopBodies();
1076
1077  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1078                                       Body, WhileLoc));
1079}
1080
1081StmtResult
1082Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1083                  SourceLocation WhileLoc, SourceLocation CondLParen,
1084                  Expr *Cond, SourceLocation CondRParen) {
1085  assert(Cond && "ActOnDoStmt(): missing expression");
1086
1087  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1088  if (CondResult.isInvalid() || CondResult.isInvalid())
1089    return StmtError();
1090  Cond = CondResult.take();
1091
1092  CheckImplicitConversions(Cond, DoLoc);
1093  CondResult = MaybeCreateExprWithCleanups(Cond);
1094  if (CondResult.isInvalid())
1095    return StmtError();
1096  Cond = CondResult.take();
1097
1098  DiagnoseUnusedExprResult(Body);
1099
1100  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1101}
1102
1103namespace {
1104  // This visitor will traverse a conditional statement and store all
1105  // the evaluated decls into a vector.  Simple is set to true if none
1106  // of the excluded constructs are used.
1107  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1108    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1109    llvm::SmallVector<SourceRange, 10> &Ranges;
1110    bool Simple;
1111    PartialDiagnostic &PDiag;
1112public:
1113  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1114
1115  DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1116                llvm::SmallVector<SourceRange, 10> &Ranges,
1117                PartialDiagnostic &PDiag) :
1118      Inherited(S.Context),
1119      Decls(Decls),
1120      Ranges(Ranges),
1121      Simple(true),
1122      PDiag(PDiag) {}
1123
1124  bool isSimple() { return Simple; }
1125
1126  // Replaces the method in EvaluatedExprVisitor.
1127  void VisitMemberExpr(MemberExpr* E) {
1128    Simple = false;
1129  }
1130
1131  // Any Stmt not whitelisted will cause the condition to be marked complex.
1132  void VisitStmt(Stmt *S) {
1133    Simple = false;
1134  }
1135
1136  void VisitBinaryOperator(BinaryOperator *E) {
1137    Visit(E->getLHS());
1138    Visit(E->getRHS());
1139  }
1140
1141  void VisitCastExpr(CastExpr *E) {
1142    Visit(E->getSubExpr());
1143  }
1144
1145  void VisitUnaryOperator(UnaryOperator *E) {
1146    // Skip checking conditionals with derefernces.
1147    if (E->getOpcode() == UO_Deref)
1148      Simple = false;
1149    else
1150      Visit(E->getSubExpr());
1151  }
1152
1153  void VisitConditionalOperator(ConditionalOperator *E) {
1154    Visit(E->getCond());
1155    Visit(E->getTrueExpr());
1156    Visit(E->getFalseExpr());
1157  }
1158
1159  void VisitParenExpr(ParenExpr *E) {
1160    Visit(E->getSubExpr());
1161  }
1162
1163  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1164    Visit(E->getOpaqueValue()->getSourceExpr());
1165    Visit(E->getFalseExpr());
1166  }
1167
1168  void VisitIntegerLiteral(IntegerLiteral *E) { }
1169  void VisitFloatingLiteral(FloatingLiteral *E) { }
1170  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1171  void VisitCharacterLiteral(CharacterLiteral *E) { }
1172  void VisitGNUNullExpr(GNUNullExpr *E) { }
1173  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1174
1175  void VisitDeclRefExpr(DeclRefExpr *E) {
1176    VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1177    if (!VD) return;
1178
1179    Ranges.push_back(E->getSourceRange());
1180
1181    Decls.insert(VD);
1182  }
1183
1184  }; // end class DeclExtractor
1185
1186  // DeclMatcher checks to see if the decls are used in a non-evauluated
1187  // context.
1188  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1189    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1190    bool FoundDecl;
1191    //bool EvalDecl;
1192
1193public:
1194  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1195
1196  DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1197      Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1198    if (!Statement) return;
1199
1200    Visit(Statement);
1201  }
1202
1203  void VisitReturnStmt(ReturnStmt *S) {
1204    FoundDecl = true;
1205  }
1206
1207  void VisitBreakStmt(BreakStmt *S) {
1208    FoundDecl = true;
1209  }
1210
1211  void VisitGotoStmt(GotoStmt *S) {
1212    FoundDecl = true;
1213  }
1214
1215  void VisitCastExpr(CastExpr *E) {
1216    if (E->getCastKind() == CK_LValueToRValue)
1217      CheckLValueToRValueCast(E->getSubExpr());
1218    else
1219      Visit(E->getSubExpr());
1220  }
1221
1222  void CheckLValueToRValueCast(Expr *E) {
1223    E = E->IgnoreParenImpCasts();
1224
1225    if (isa<DeclRefExpr>(E)) {
1226      return;
1227    }
1228
1229    if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1230      Visit(CO->getCond());
1231      CheckLValueToRValueCast(CO->getTrueExpr());
1232      CheckLValueToRValueCast(CO->getFalseExpr());
1233      return;
1234    }
1235
1236    if (BinaryConditionalOperator *BCO =
1237            dyn_cast<BinaryConditionalOperator>(E)) {
1238      CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1239      CheckLValueToRValueCast(BCO->getFalseExpr());
1240      return;
1241    }
1242
1243    Visit(E);
1244  }
1245
1246  void VisitDeclRefExpr(DeclRefExpr *E) {
1247    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1248      if (Decls.count(VD))
1249        FoundDecl = true;
1250  }
1251
1252  bool FoundDeclInUse() { return FoundDecl; }
1253
1254  };  // end class DeclMatcher
1255
1256  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1257                                        Expr *Third, Stmt *Body) {
1258    // Condition is empty
1259    if (!Second) return;
1260
1261    if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1262                                   Second->getLocStart())
1263        == DiagnosticsEngine::Ignored)
1264      return;
1265
1266    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1267    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1268    llvm::SmallVector<SourceRange, 10> Ranges;
1269    DeclExtractor DE(S, Decls, Ranges, PDiag);
1270    DE.Visit(Second);
1271
1272    // Don't analyze complex conditionals.
1273    if (!DE.isSimple()) return;
1274
1275    // No decls found.
1276    if (Decls.size() == 0) return;
1277
1278    // Don't warn on volatile, static, or global variables.
1279    for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1280                                                  E = Decls.end();
1281         I != E; ++I)
1282      if ((*I)->getType().isVolatileQualified() ||
1283          (*I)->hasGlobalStorage()) return;
1284
1285    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1286        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1287        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1288      return;
1289
1290    // Load decl names into diagnostic.
1291    if (Decls.size() > 4)
1292      PDiag << 0;
1293    else {
1294      PDiag << Decls.size();
1295      for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1296                                                    E = Decls.end();
1297           I != E; ++I)
1298        PDiag << (*I)->getDeclName();
1299    }
1300
1301    // Load SourceRanges into diagnostic if there is room.
1302    // Otherwise, load the SourceRange of the conditional expression.
1303    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1304      for (llvm::SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1305                                                        E = Ranges.end();
1306           I != E; ++I)
1307        PDiag << *I;
1308    else
1309      PDiag << Second->getSourceRange();
1310
1311    S.Diag(Ranges.begin()->getBegin(), PDiag);
1312  }
1313
1314} // end namespace
1315
1316StmtResult
1317Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1318                   Stmt *First, FullExprArg second, Decl *secondVar,
1319                   FullExprArg third,
1320                   SourceLocation RParenLoc, Stmt *Body) {
1321  if (!getLangOpts().CPlusPlus) {
1322    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1323      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1324      // declare identifiers for objects having storage class 'auto' or
1325      // 'register'.
1326      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1327           DI!=DE; ++DI) {
1328        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1329        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1330          VD = 0;
1331        if (VD == 0)
1332          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1333        // FIXME: mark decl erroneous!
1334      }
1335    }
1336  }
1337
1338  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1339
1340  ExprResult SecondResult(second.release());
1341  VarDecl *ConditionVar = 0;
1342  if (secondVar) {
1343    ConditionVar = cast<VarDecl>(secondVar);
1344    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1345    if (SecondResult.isInvalid())
1346      return StmtError();
1347  }
1348
1349  Expr *Third  = third.release().takeAs<Expr>();
1350
1351  DiagnoseUnusedExprResult(First);
1352  DiagnoseUnusedExprResult(Third);
1353  DiagnoseUnusedExprResult(Body);
1354
1355  if (isa<NullStmt>(Body))
1356    getCurCompoundScope().setHasEmptyLoopBodies();
1357
1358  return Owned(new (Context) ForStmt(Context, First,
1359                                     SecondResult.take(), ConditionVar,
1360                                     Third, Body, ForLoc, LParenLoc,
1361                                     RParenLoc));
1362}
1363
1364/// In an Objective C collection iteration statement:
1365///   for (x in y)
1366/// x can be an arbitrary l-value expression.  Bind it up as a
1367/// full-expression.
1368StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1369  // Reduce placeholder expressions here.  Note that this rejects the
1370  // use of pseudo-object l-values in this position.
1371  ExprResult result = CheckPlaceholderExpr(E);
1372  if (result.isInvalid()) return StmtError();
1373  E = result.take();
1374
1375  CheckImplicitConversions(E);
1376
1377  result = MaybeCreateExprWithCleanups(E);
1378  if (result.isInvalid()) return StmtError();
1379
1380  return Owned(static_cast<Stmt*>(result.take()));
1381}
1382
1383ExprResult
1384Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1385  assert(collection);
1386
1387  // Bail out early if we've got a type-dependent expression.
1388  if (collection->isTypeDependent()) return Owned(collection);
1389
1390  // Perform normal l-value conversion.
1391  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1392  if (result.isInvalid())
1393    return ExprError();
1394  collection = result.take();
1395
1396  // The operand needs to have object-pointer type.
1397  // TODO: should we do a contextual conversion?
1398  const ObjCObjectPointerType *pointerType =
1399    collection->getType()->getAs<ObjCObjectPointerType>();
1400  if (!pointerType)
1401    return Diag(forLoc, diag::err_collection_expr_type)
1402             << collection->getType() << collection->getSourceRange();
1403
1404  // Check that the operand provides
1405  //   - countByEnumeratingWithState:objects:count:
1406  const ObjCObjectType *objectType = pointerType->getObjectType();
1407  ObjCInterfaceDecl *iface = objectType->getInterface();
1408
1409  // If we have a forward-declared type, we can't do this check.
1410  // Under ARC, it is an error not to have a forward-declared class.
1411  if (iface &&
1412      RequireCompleteType(forLoc, QualType(objectType, 0),
1413                          getLangOpts().ObjCAutoRefCount
1414                            ? diag::err_arc_collection_forward
1415                            : 0,
1416                          collection)) {
1417    // Otherwise, if we have any useful type information, check that
1418    // the type declares the appropriate method.
1419  } else if (iface || !objectType->qual_empty()) {
1420    IdentifierInfo *selectorIdents[] = {
1421      &Context.Idents.get("countByEnumeratingWithState"),
1422      &Context.Idents.get("objects"),
1423      &Context.Idents.get("count")
1424    };
1425    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1426
1427    ObjCMethodDecl *method = 0;
1428
1429    // If there's an interface, look in both the public and private APIs.
1430    if (iface) {
1431      method = iface->lookupInstanceMethod(selector);
1432      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1433    }
1434
1435    // Also check protocol qualifiers.
1436    if (!method)
1437      method = LookupMethodInQualifiedType(selector, pointerType,
1438                                           /*instance*/ true);
1439
1440    // If we didn't find it anywhere, give up.
1441    if (!method) {
1442      Diag(forLoc, diag::warn_collection_expr_type)
1443        << collection->getType() << selector << collection->getSourceRange();
1444    }
1445
1446    // TODO: check for an incompatible signature?
1447  }
1448
1449  // Wrap up any cleanups in the expression.
1450  return Owned(MaybeCreateExprWithCleanups(collection));
1451}
1452
1453StmtResult
1454Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1455                                 SourceLocation LParenLoc,
1456                                 Stmt *First, Expr *Second,
1457                                 SourceLocation RParenLoc, Stmt *Body) {
1458  if (First) {
1459    QualType FirstType;
1460    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1461      if (!DS->isSingleDecl())
1462        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1463                         diag::err_toomany_element_decls));
1464
1465      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1466      FirstType = D->getType();
1467      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1468      // declare identifiers for objects having storage class 'auto' or
1469      // 'register'.
1470      if (!D->hasLocalStorage())
1471        return StmtError(Diag(D->getLocation(),
1472                              diag::err_non_variable_decl_in_for));
1473    } else {
1474      Expr *FirstE = cast<Expr>(First);
1475      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1476        return StmtError(Diag(First->getLocStart(),
1477                   diag::err_selector_element_not_lvalue)
1478          << First->getSourceRange());
1479
1480      FirstType = static_cast<Expr*>(First)->getType();
1481    }
1482    if (!FirstType->isDependentType() &&
1483        !FirstType->isObjCObjectPointerType() &&
1484        !FirstType->isBlockPointerType())
1485        Diag(ForLoc, diag::err_selector_element_type)
1486          << FirstType << First->getSourceRange();
1487  }
1488
1489  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1490                                                   ForLoc, RParenLoc));
1491}
1492
1493namespace {
1494
1495enum BeginEndFunction {
1496  BEF_begin,
1497  BEF_end
1498};
1499
1500/// Build a variable declaration for a for-range statement.
1501static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1502                                     QualType Type, const char *Name) {
1503  DeclContext *DC = SemaRef.CurContext;
1504  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1505  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1506  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1507                                  TInfo, SC_Auto, SC_None);
1508  Decl->setImplicit();
1509  return Decl;
1510}
1511
1512/// Finish building a variable declaration for a for-range statement.
1513/// \return true if an error occurs.
1514static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1515                                  SourceLocation Loc, int diag) {
1516  // Deduce the type for the iterator variable now rather than leaving it to
1517  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1518  TypeSourceInfo *InitTSI = 0;
1519  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1520      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1521          Sema::DAR_Failed)
1522    SemaRef.Diag(Loc, diag) << Init->getType();
1523  if (!InitTSI) {
1524    Decl->setInvalidDecl();
1525    return true;
1526  }
1527  Decl->setTypeSourceInfo(InitTSI);
1528  Decl->setType(InitTSI->getType());
1529
1530  // In ARC, infer lifetime.
1531  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1532  // we're doing the equivalent of fast iteration.
1533  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1534      SemaRef.inferObjCARCLifetime(Decl))
1535    Decl->setInvalidDecl();
1536
1537  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1538                               /*TypeMayContainAuto=*/false);
1539  SemaRef.FinalizeDeclaration(Decl);
1540  SemaRef.CurContext->addHiddenDecl(Decl);
1541  return false;
1542}
1543
1544/// Produce a note indicating which begin/end function was implicitly called
1545/// by a C++0x for-range statement. This is often not obvious from the code,
1546/// nor from the diagnostics produced when analysing the implicit expressions
1547/// required in a for-range statement.
1548void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1549                                  BeginEndFunction BEF) {
1550  CallExpr *CE = dyn_cast<CallExpr>(E);
1551  if (!CE)
1552    return;
1553  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1554  if (!D)
1555    return;
1556  SourceLocation Loc = D->getLocation();
1557
1558  std::string Description;
1559  bool IsTemplate = false;
1560  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1561    Description = SemaRef.getTemplateArgumentBindingsText(
1562      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1563    IsTemplate = true;
1564  }
1565
1566  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1567    << BEF << IsTemplate << Description << E->getType();
1568}
1569
1570/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1571/// given LookupResult is non-empty, it is assumed to describe a member which
1572/// will be invoked. Otherwise, the function will be found via argument
1573/// dependent lookup.
1574static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1575                                            SourceLocation Loc,
1576                                            VarDecl *Decl,
1577                                            BeginEndFunction BEF,
1578                                            const DeclarationNameInfo &NameInfo,
1579                                            LookupResult &MemberLookup,
1580                                            Expr *Range) {
1581  ExprResult CallExpr;
1582  if (!MemberLookup.empty()) {
1583    ExprResult MemberRef =
1584      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1585                                       /*IsPtr=*/false, CXXScopeSpec(),
1586                                       /*TemplateKWLoc=*/SourceLocation(),
1587                                       /*FirstQualifierInScope=*/0,
1588                                       MemberLookup,
1589                                       /*TemplateArgs=*/0);
1590    if (MemberRef.isInvalid())
1591      return ExprError();
1592    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1593                                     Loc, 0);
1594    if (CallExpr.isInvalid())
1595      return ExprError();
1596  } else {
1597    UnresolvedSet<0> FoundNames;
1598    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1599    // std is an associated namespace.
1600    UnresolvedLookupExpr *Fn =
1601      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1602                                   NestedNameSpecifierLoc(), NameInfo,
1603                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1604                                   FoundNames.begin(), FoundNames.end(),
1605                                   /*LookInStdNamespace=*/true);
1606    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1607                                               0, /*AllowTypoCorrection=*/false);
1608    if (CallExpr.isInvalid()) {
1609      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1610        << Range->getType();
1611      return ExprError();
1612    }
1613  }
1614  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1615                            diag::err_for_range_iter_deduction_failure)) {
1616    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1617    return ExprError();
1618  }
1619  return CallExpr;
1620}
1621
1622}
1623
1624/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1625///
1626/// C++0x [stmt.ranged]:
1627///   A range-based for statement is equivalent to
1628///
1629///   {
1630///     auto && __range = range-init;
1631///     for ( auto __begin = begin-expr,
1632///           __end = end-expr;
1633///           __begin != __end;
1634///           ++__begin ) {
1635///       for-range-declaration = *__begin;
1636///       statement
1637///     }
1638///   }
1639///
1640/// The body of the loop is not available yet, since it cannot be analysed until
1641/// we have determined the type of the for-range-declaration.
1642StmtResult
1643Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1644                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1645                           SourceLocation RParenLoc) {
1646  if (!First || !Range)
1647    return StmtError();
1648
1649  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1650  assert(DS && "first part of for range not a decl stmt");
1651
1652  if (!DS->isSingleDecl()) {
1653    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1654    return StmtError();
1655  }
1656  if (DS->getSingleDecl()->isInvalidDecl())
1657    return StmtError();
1658
1659  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1660    return StmtError();
1661
1662  // Build  auto && __range = range-init
1663  SourceLocation RangeLoc = Range->getLocStart();
1664  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1665                                           Context.getAutoRRefDeductType(),
1666                                           "__range");
1667  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1668                            diag::err_for_range_deduction_failure))
1669    return StmtError();
1670
1671  // Claim the type doesn't contain auto: we've already done the checking.
1672  DeclGroupPtrTy RangeGroup =
1673    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1674  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1675  if (RangeDecl.isInvalid())
1676    return StmtError();
1677
1678  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1679                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1680                              RParenLoc);
1681}
1682
1683/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1684StmtResult
1685Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1686                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1687                           Expr *Inc, Stmt *LoopVarDecl,
1688                           SourceLocation RParenLoc) {
1689  Scope *S = getCurScope();
1690
1691  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1692  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1693  QualType RangeVarType = RangeVar->getType();
1694
1695  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1696  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1697
1698  StmtResult BeginEndDecl = BeginEnd;
1699  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1700
1701  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1702    SourceLocation RangeLoc = RangeVar->getLocation();
1703
1704    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1705
1706    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1707                                                VK_LValue, ColonLoc);
1708    if (BeginRangeRef.isInvalid())
1709      return StmtError();
1710
1711    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1712                                              VK_LValue, ColonLoc);
1713    if (EndRangeRef.isInvalid())
1714      return StmtError();
1715
1716    QualType AutoType = Context.getAutoDeductType();
1717    Expr *Range = RangeVar->getInit();
1718    if (!Range)
1719      return StmtError();
1720    QualType RangeType = Range->getType();
1721
1722    if (RequireCompleteType(RangeLoc, RangeType,
1723                            diag::err_for_range_incomplete_type))
1724      return StmtError();
1725
1726    // Build auto __begin = begin-expr, __end = end-expr.
1727    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1728                                             "__begin");
1729    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1730                                           "__end");
1731
1732    // Build begin-expr and end-expr and attach to __begin and __end variables.
1733    ExprResult BeginExpr, EndExpr;
1734    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1735      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1736      //   __range + __bound, respectively, where __bound is the array bound. If
1737      //   _RangeT is an array of unknown size or an array of incomplete type,
1738      //   the program is ill-formed;
1739
1740      // begin-expr is __range.
1741      BeginExpr = BeginRangeRef;
1742      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1743                                diag::err_for_range_iter_deduction_failure)) {
1744        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1745        return StmtError();
1746      }
1747
1748      // Find the array bound.
1749      ExprResult BoundExpr;
1750      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1751        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1752                                                 Context.getPointerDiffType(),
1753                                                 RangeLoc));
1754      else if (const VariableArrayType *VAT =
1755               dyn_cast<VariableArrayType>(UnqAT))
1756        BoundExpr = VAT->getSizeExpr();
1757      else {
1758        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1759        // UnqAT is not incomplete and Range is not type-dependent.
1760        llvm_unreachable("Unexpected array type in for-range");
1761      }
1762
1763      // end-expr is __range + __bound.
1764      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1765                           BoundExpr.get());
1766      if (EndExpr.isInvalid())
1767        return StmtError();
1768      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1769                                diag::err_for_range_iter_deduction_failure)) {
1770        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1771        return StmtError();
1772      }
1773    } else {
1774      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1775                                        ColonLoc);
1776      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1777                                      ColonLoc);
1778
1779      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1780      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1781
1782      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1783        // - if _RangeT is a class type, the unqualified-ids begin and end are
1784        //   looked up in the scope of class _RangeT as if by class member access
1785        //   lookup (3.4.5), and if either (or both) finds at least one
1786        //   declaration, begin-expr and end-expr are __range.begin() and
1787        //   __range.end(), respectively;
1788        LookupQualifiedName(BeginMemberLookup, D);
1789        LookupQualifiedName(EndMemberLookup, D);
1790
1791        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1792          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1793            << RangeType << BeginMemberLookup.empty();
1794          return StmtError();
1795        }
1796      } else {
1797        // - otherwise, begin-expr and end-expr are begin(__range) and
1798        //   end(__range), respectively, where begin and end are looked up with
1799        //   argument-dependent lookup (3.4.2). For the purposes of this name
1800        //   lookup, namespace std is an associated namespace.
1801      }
1802
1803      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1804                                            BEF_begin, BeginNameInfo,
1805                                            BeginMemberLookup,
1806                                            BeginRangeRef.get());
1807      if (BeginExpr.isInvalid())
1808        return StmtError();
1809
1810      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1811                                          BEF_end, EndNameInfo,
1812                                          EndMemberLookup, EndRangeRef.get());
1813      if (EndExpr.isInvalid())
1814        return StmtError();
1815    }
1816
1817    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1818    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1819    if (!Context.hasSameType(BeginType, EndType)) {
1820      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1821        << BeginType << EndType;
1822      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1823      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1824    }
1825
1826    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1827    // Claim the type doesn't contain auto: we've already done the checking.
1828    DeclGroupPtrTy BeginEndGroup =
1829      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1830    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1831
1832    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1833    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1834                                           VK_LValue, ColonLoc);
1835    if (BeginRef.isInvalid())
1836      return StmtError();
1837
1838    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1839                                         VK_LValue, ColonLoc);
1840    if (EndRef.isInvalid())
1841      return StmtError();
1842
1843    // Build and check __begin != __end expression.
1844    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1845                           BeginRef.get(), EndRef.get());
1846    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1847    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1848    if (NotEqExpr.isInvalid()) {
1849      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1850      if (!Context.hasSameType(BeginType, EndType))
1851        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1852      return StmtError();
1853    }
1854
1855    // Build and check ++__begin expression.
1856    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1857                                VK_LValue, ColonLoc);
1858    if (BeginRef.isInvalid())
1859      return StmtError();
1860
1861    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1862    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1863    if (IncrExpr.isInvalid()) {
1864      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1865      return StmtError();
1866    }
1867
1868    // Build and check *__begin  expression.
1869    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1870                                VK_LValue, ColonLoc);
1871    if (BeginRef.isInvalid())
1872      return StmtError();
1873
1874    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1875    if (DerefExpr.isInvalid()) {
1876      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1877      return StmtError();
1878    }
1879
1880    // Attach  *__begin  as initializer for VD.
1881    if (!LoopVar->isInvalidDecl()) {
1882      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1883                           /*TypeMayContainAuto=*/true);
1884      if (LoopVar->isInvalidDecl())
1885        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1886    }
1887  } else {
1888    // The range is implicitly used as a placeholder when it is dependent.
1889    RangeVar->setUsed();
1890  }
1891
1892  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1893                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1894                                             NotEqExpr.take(), IncrExpr.take(),
1895                                             LoopVarDS, /*Body=*/0, ForLoc,
1896                                             ColonLoc, RParenLoc));
1897}
1898
1899/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1900/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1901/// body cannot be performed until after the type of the range variable is
1902/// determined.
1903StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1904  if (!S || !B)
1905    return StmtError();
1906
1907  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
1908  ForStmt->setBody(B);
1909
1910  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
1911                        diag::warn_empty_range_based_for_body);
1912
1913  return S;
1914}
1915
1916StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1917                               SourceLocation LabelLoc,
1918                               LabelDecl *TheDecl) {
1919  getCurFunction()->setHasBranchIntoScope();
1920  TheDecl->setUsed();
1921  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1922}
1923
1924StmtResult
1925Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1926                            Expr *E) {
1927  // Convert operand to void*
1928  if (!E->isTypeDependent()) {
1929    QualType ETy = E->getType();
1930    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1931    ExprResult ExprRes = Owned(E);
1932    AssignConvertType ConvTy =
1933      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1934    if (ExprRes.isInvalid())
1935      return StmtError();
1936    E = ExprRes.take();
1937    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1938      return StmtError();
1939    E = MaybeCreateExprWithCleanups(E);
1940  }
1941
1942  getCurFunction()->setHasIndirectGoto();
1943
1944  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1945}
1946
1947StmtResult
1948Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1949  Scope *S = CurScope->getContinueParent();
1950  if (!S) {
1951    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1952    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1953  }
1954
1955  return Owned(new (Context) ContinueStmt(ContinueLoc));
1956}
1957
1958StmtResult
1959Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1960  Scope *S = CurScope->getBreakParent();
1961  if (!S) {
1962    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1963    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1964  }
1965
1966  return Owned(new (Context) BreakStmt(BreakLoc));
1967}
1968
1969/// \brief Determine whether the given expression is a candidate for
1970/// copy elision in either a return statement or a throw expression.
1971///
1972/// \param ReturnType If we're determining the copy elision candidate for
1973/// a return statement, this is the return type of the function. If we're
1974/// determining the copy elision candidate for a throw expression, this will
1975/// be a NULL type.
1976///
1977/// \param E The expression being returned from the function or block, or
1978/// being thrown.
1979///
1980/// \param AllowFunctionParameter Whether we allow function parameters to
1981/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1982/// we re-use this logic to determine whether we should try to move as part of
1983/// a return or throw (which does allow function parameters).
1984///
1985/// \returns The NRVO candidate variable, if the return statement may use the
1986/// NRVO, or NULL if there is no such candidate.
1987const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1988                                             Expr *E,
1989                                             bool AllowFunctionParameter) {
1990  QualType ExprType = E->getType();
1991  // - in a return statement in a function with ...
1992  // ... a class return type ...
1993  if (!ReturnType.isNull()) {
1994    if (!ReturnType->isRecordType())
1995      return 0;
1996    // ... the same cv-unqualified type as the function return type ...
1997    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1998      return 0;
1999  }
2000
2001  // ... the expression is the name of a non-volatile automatic object
2002  // (other than a function or catch-clause parameter)) ...
2003  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2004  if (!DR)
2005    return 0;
2006  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2007  if (!VD)
2008    return 0;
2009
2010  // ...object (other than a function or catch-clause parameter)...
2011  if (VD->getKind() != Decl::Var &&
2012      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2013    return 0;
2014  if (VD->isExceptionVariable()) return 0;
2015
2016  // ...automatic...
2017  if (!VD->hasLocalStorage()) return 0;
2018
2019  // ...non-volatile...
2020  if (VD->getType().isVolatileQualified()) return 0;
2021  if (VD->getType()->isReferenceType()) return 0;
2022
2023  // __block variables can't be allocated in a way that permits NRVO.
2024  if (VD->hasAttr<BlocksAttr>()) return 0;
2025
2026  // Variables with higher required alignment than their type's ABI
2027  // alignment cannot use NRVO.
2028  if (VD->hasAttr<AlignedAttr>() &&
2029      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2030    return 0;
2031
2032  return VD;
2033}
2034
2035/// \brief Perform the initialization of a potentially-movable value, which
2036/// is the result of return value.
2037///
2038/// This routine implements C++0x [class.copy]p33, which attempts to treat
2039/// returned lvalues as rvalues in certain cases (to prefer move construction),
2040/// then falls back to treating them as lvalues if that failed.
2041ExprResult
2042Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2043                                      const VarDecl *NRVOCandidate,
2044                                      QualType ResultType,
2045                                      Expr *Value,
2046                                      bool AllowNRVO) {
2047  // C++0x [class.copy]p33:
2048  //   When the criteria for elision of a copy operation are met or would
2049  //   be met save for the fact that the source object is a function
2050  //   parameter, and the object to be copied is designated by an lvalue,
2051  //   overload resolution to select the constructor for the copy is first
2052  //   performed as if the object were designated by an rvalue.
2053  ExprResult Res = ExprError();
2054  if (AllowNRVO &&
2055      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2056    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2057                              Value->getType(), CK_NoOp, Value, VK_XValue);
2058
2059    Expr *InitExpr = &AsRvalue;
2060    InitializationKind Kind
2061      = InitializationKind::CreateCopy(Value->getLocStart(),
2062                                       Value->getLocStart());
2063    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2064
2065    //   [...] If overload resolution fails, or if the type of the first
2066    //   parameter of the selected constructor is not an rvalue reference
2067    //   to the object's type (possibly cv-qualified), overload resolution
2068    //   is performed again, considering the object as an lvalue.
2069    if (Seq) {
2070      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2071           StepEnd = Seq.step_end();
2072           Step != StepEnd; ++Step) {
2073        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2074          continue;
2075
2076        CXXConstructorDecl *Constructor
2077        = cast<CXXConstructorDecl>(Step->Function.Function);
2078
2079        const RValueReferenceType *RRefType
2080          = Constructor->getParamDecl(0)->getType()
2081                                                 ->getAs<RValueReferenceType>();
2082
2083        // If we don't meet the criteria, break out now.
2084        if (!RRefType ||
2085            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2086                            Context.getTypeDeclType(Constructor->getParent())))
2087          break;
2088
2089        // Promote "AsRvalue" to the heap, since we now need this
2090        // expression node to persist.
2091        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2092                                         CK_NoOp, Value, 0, VK_XValue);
2093
2094        // Complete type-checking the initialization of the return type
2095        // using the constructor we found.
2096        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2097      }
2098    }
2099  }
2100
2101  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2102  // above, or overload resolution failed. Either way, we need to try
2103  // (again) now with the return value expression as written.
2104  if (Res.isInvalid())
2105    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2106
2107  return Res;
2108}
2109
2110/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2111/// for capturing scopes.
2112///
2113StmtResult
2114Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2115  // If this is the first return we've seen, infer the return type.
2116  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2117  // rules which allows multiple return statements.
2118  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2119  if (CurCap->HasImplicitReturnType) {
2120    QualType ReturnT;
2121    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2122      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2123      if (Result.isInvalid())
2124        return StmtError();
2125      RetValExp = Result.take();
2126
2127      if (!RetValExp->isTypeDependent())
2128        ReturnT = RetValExp->getType();
2129      else
2130        ReturnT = Context.DependentTy;
2131    } else {
2132      if (RetValExp) {
2133        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2134        // initializer list, because it is not an expression (even
2135        // though we represent it as one). We still deduce 'void'.
2136        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2137          << RetValExp->getSourceRange();
2138      }
2139
2140      ReturnT = Context.VoidTy;
2141    }
2142    // We require the return types to strictly match here.
2143    if (!CurCap->ReturnType.isNull() &&
2144        !CurCap->ReturnType->isDependentType() &&
2145        !ReturnT->isDependentType() &&
2146        !Context.hasSameType(ReturnT, CurCap->ReturnType)) {
2147      Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
2148          << ReturnT << CurCap->ReturnType
2149          << (getCurLambda() != 0);
2150      return StmtError();
2151    }
2152    CurCap->ReturnType = ReturnT;
2153  }
2154  QualType FnRetType = CurCap->ReturnType;
2155  assert(!FnRetType.isNull());
2156
2157  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2158    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2159      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2160      return StmtError();
2161    }
2162  } else {
2163    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2164    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2165      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2166      return StmtError();
2167    }
2168  }
2169
2170  // Otherwise, verify that this result type matches the previous one.  We are
2171  // pickier with blocks than for normal functions because we don't have GCC
2172  // compatibility to worry about here.
2173  const VarDecl *NRVOCandidate = 0;
2174  if (FnRetType->isDependentType()) {
2175    // Delay processing for now.  TODO: there are lots of dependent
2176    // types we can conclusively prove aren't void.
2177  } else if (FnRetType->isVoidType()) {
2178    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2179        !(getLangOpts().CPlusPlus &&
2180          (RetValExp->isTypeDependent() ||
2181           RetValExp->getType()->isVoidType()))) {
2182      if (!getLangOpts().CPlusPlus &&
2183          RetValExp->getType()->isVoidType())
2184        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2185      else {
2186        Diag(ReturnLoc, diag::err_return_block_has_expr);
2187        RetValExp = 0;
2188      }
2189    }
2190  } else if (!RetValExp) {
2191    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2192  } else if (!RetValExp->isTypeDependent()) {
2193    // we have a non-void block with an expression, continue checking
2194
2195    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2196    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2197    // function return.
2198
2199    // In C++ the return statement is handled via a copy initialization.
2200    // the C version of which boils down to CheckSingleAssignmentConstraints.
2201    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2202    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2203                                                                   FnRetType,
2204                                                          NRVOCandidate != 0);
2205    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2206                                                     FnRetType, RetValExp);
2207    if (Res.isInvalid()) {
2208      // FIXME: Cleanup temporaries here, anyway?
2209      return StmtError();
2210    }
2211    RetValExp = Res.take();
2212    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2213  }
2214
2215  if (RetValExp) {
2216    CheckImplicitConversions(RetValExp, ReturnLoc);
2217    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2218  }
2219  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2220                                                NRVOCandidate);
2221
2222  // If we need to check for the named return value optimization, save the
2223  // return statement in our scope for later processing.
2224  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2225      !CurContext->isDependentContext())
2226    FunctionScopes.back()->Returns.push_back(Result);
2227
2228  return Owned(Result);
2229}
2230
2231StmtResult
2232Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2233  // Check for unexpanded parameter packs.
2234  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2235    return StmtError();
2236
2237  if (isa<CapturingScopeInfo>(getCurFunction()))
2238    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2239
2240  QualType FnRetType;
2241  QualType RelatedRetType;
2242  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2243    FnRetType = FD->getResultType();
2244    if (FD->hasAttr<NoReturnAttr>() ||
2245        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
2246      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2247        << FD->getDeclName();
2248  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2249    FnRetType = MD->getResultType();
2250    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2251      // In the implementation of a method with a related return type, the
2252      // type used to type-check the validity of return statements within the
2253      // method body is a pointer to the type of the class being implemented.
2254      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2255      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2256    }
2257  } else // If we don't have a function/method context, bail.
2258    return StmtError();
2259
2260  ReturnStmt *Result = 0;
2261  if (FnRetType->isVoidType()) {
2262    if (RetValExp) {
2263      if (isa<InitListExpr>(RetValExp)) {
2264        // We simply never allow init lists as the return value of void
2265        // functions. This is compatible because this was never allowed before,
2266        // so there's no legacy code to deal with.
2267        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2268        int FunctionKind = 0;
2269        if (isa<ObjCMethodDecl>(CurDecl))
2270          FunctionKind = 1;
2271        else if (isa<CXXConstructorDecl>(CurDecl))
2272          FunctionKind = 2;
2273        else if (isa<CXXDestructorDecl>(CurDecl))
2274          FunctionKind = 3;
2275
2276        Diag(ReturnLoc, diag::err_return_init_list)
2277          << CurDecl->getDeclName() << FunctionKind
2278          << RetValExp->getSourceRange();
2279
2280        // Drop the expression.
2281        RetValExp = 0;
2282      } else if (!RetValExp->isTypeDependent()) {
2283        // C99 6.8.6.4p1 (ext_ since GCC warns)
2284        unsigned D = diag::ext_return_has_expr;
2285        if (RetValExp->getType()->isVoidType())
2286          D = diag::ext_return_has_void_expr;
2287        else {
2288          ExprResult Result = Owned(RetValExp);
2289          Result = IgnoredValueConversions(Result.take());
2290          if (Result.isInvalid())
2291            return StmtError();
2292          RetValExp = Result.take();
2293          RetValExp = ImpCastExprToType(RetValExp,
2294                                        Context.VoidTy, CK_ToVoid).take();
2295        }
2296
2297        // return (some void expression); is legal in C++.
2298        if (D != diag::ext_return_has_void_expr ||
2299            !getLangOpts().CPlusPlus) {
2300          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2301
2302          int FunctionKind = 0;
2303          if (isa<ObjCMethodDecl>(CurDecl))
2304            FunctionKind = 1;
2305          else if (isa<CXXConstructorDecl>(CurDecl))
2306            FunctionKind = 2;
2307          else if (isa<CXXDestructorDecl>(CurDecl))
2308            FunctionKind = 3;
2309
2310          Diag(ReturnLoc, D)
2311            << CurDecl->getDeclName() << FunctionKind
2312            << RetValExp->getSourceRange();
2313        }
2314      }
2315
2316      if (RetValExp) {
2317        CheckImplicitConversions(RetValExp, ReturnLoc);
2318        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2319      }
2320    }
2321
2322    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2323  } else if (!RetValExp && !FnRetType->isDependentType()) {
2324    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2325    // C99 6.8.6.4p1 (ext_ since GCC warns)
2326    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2327
2328    if (FunctionDecl *FD = getCurFunctionDecl())
2329      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2330    else
2331      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2332    Result = new (Context) ReturnStmt(ReturnLoc);
2333  } else {
2334    const VarDecl *NRVOCandidate = 0;
2335    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2336      // we have a non-void function with an expression, continue checking
2337
2338      if (!RelatedRetType.isNull()) {
2339        // If we have a related result type, perform an extra conversion here.
2340        // FIXME: The diagnostics here don't really describe what is happening.
2341        InitializedEntity Entity =
2342            InitializedEntity::InitializeTemporary(RelatedRetType);
2343
2344        ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2345                                                   RetValExp);
2346        if (Res.isInvalid()) {
2347          // FIXME: Cleanup temporaries here, anyway?
2348          return StmtError();
2349        }
2350        RetValExp = Res.takeAs<Expr>();
2351      }
2352
2353      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2354      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2355      // function return.
2356
2357      // In C++ the return statement is handled via a copy initialization,
2358      // the C version of which boils down to CheckSingleAssignmentConstraints.
2359      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2360      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2361                                                                     FnRetType,
2362                                                            NRVOCandidate != 0);
2363      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2364                                                       FnRetType, RetValExp);
2365      if (Res.isInvalid()) {
2366        // FIXME: Cleanup temporaries here, anyway?
2367        return StmtError();
2368      }
2369
2370      RetValExp = Res.takeAs<Expr>();
2371      if (RetValExp)
2372        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2373    }
2374
2375    if (RetValExp) {
2376      CheckImplicitConversions(RetValExp, ReturnLoc);
2377      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2378    }
2379    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2380  }
2381
2382  // If we need to check for the named return value optimization, save the
2383  // return statement in our scope for later processing.
2384  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2385      !CurContext->isDependentContext())
2386    FunctionScopes.back()->Returns.push_back(Result);
2387
2388  return Owned(Result);
2389}
2390
2391/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2392/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2393/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2394/// provide a strong guidance to not use it.
2395///
2396/// This method checks to see if the argument is an acceptable l-value and
2397/// returns false if it is a case we can handle.
2398static bool CheckAsmLValue(const Expr *E, Sema &S) {
2399  // Type dependent expressions will be checked during instantiation.
2400  if (E->isTypeDependent())
2401    return false;
2402
2403  if (E->isLValue())
2404    return false;  // Cool, this is an lvalue.
2405
2406  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2407  // are supposed to allow.
2408  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2409  if (E != E2 && E2->isLValue()) {
2410    if (!S.getLangOpts().HeinousExtensions)
2411      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2412        << E->getSourceRange();
2413    else
2414      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2415        << E->getSourceRange();
2416    // Accept, even if we emitted an error diagnostic.
2417    return false;
2418  }
2419
2420  // None of the above, just randomly invalid non-lvalue.
2421  return true;
2422}
2423
2424/// isOperandMentioned - Return true if the specified operand # is mentioned
2425/// anywhere in the decomposed asm string.
2426static bool isOperandMentioned(unsigned OpNo,
2427                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2428  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2429    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2430    if (!Piece.isOperand()) continue;
2431
2432    // If this is a reference to the input and if the input was the smaller
2433    // one, then we have to reject this asm.
2434    if (Piece.getOperandNo() == OpNo)
2435      return true;
2436  }
2437
2438  return false;
2439}
2440
2441StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2442                              bool IsVolatile, unsigned NumOutputs,
2443                              unsigned NumInputs, IdentifierInfo **Names,
2444                              MultiExprArg constraints, MultiExprArg exprs,
2445                              Expr *asmString, MultiExprArg clobbers,
2446                              SourceLocation RParenLoc, bool MSAsm) {
2447  unsigned NumClobbers = clobbers.size();
2448  StringLiteral **Constraints =
2449    reinterpret_cast<StringLiteral**>(constraints.get());
2450  Expr **Exprs = exprs.get();
2451  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2452  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2453
2454  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2455
2456  // The parser verifies that there is a string literal here.
2457  if (!AsmString->isAscii())
2458    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2459      << AsmString->getSourceRange());
2460
2461  for (unsigned i = 0; i != NumOutputs; i++) {
2462    StringLiteral *Literal = Constraints[i];
2463    if (!Literal->isAscii())
2464      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2465        << Literal->getSourceRange());
2466
2467    StringRef OutputName;
2468    if (Names[i])
2469      OutputName = Names[i]->getName();
2470
2471    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2472    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2473      return StmtError(Diag(Literal->getLocStart(),
2474                            diag::err_asm_invalid_output_constraint)
2475                       << Info.getConstraintStr());
2476
2477    // Check that the output exprs are valid lvalues.
2478    Expr *OutputExpr = Exprs[i];
2479    if (CheckAsmLValue(OutputExpr, *this)) {
2480      return StmtError(Diag(OutputExpr->getLocStart(),
2481                  diag::err_asm_invalid_lvalue_in_output)
2482        << OutputExpr->getSourceRange());
2483    }
2484
2485    OutputConstraintInfos.push_back(Info);
2486  }
2487
2488  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2489
2490  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2491    StringLiteral *Literal = Constraints[i];
2492    if (!Literal->isAscii())
2493      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2494        << Literal->getSourceRange());
2495
2496    StringRef InputName;
2497    if (Names[i])
2498      InputName = Names[i]->getName();
2499
2500    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2501    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2502                                                NumOutputs, Info)) {
2503      return StmtError(Diag(Literal->getLocStart(),
2504                            diag::err_asm_invalid_input_constraint)
2505                       << Info.getConstraintStr());
2506    }
2507
2508    Expr *InputExpr = Exprs[i];
2509
2510    // Only allow void types for memory constraints.
2511    if (Info.allowsMemory() && !Info.allowsRegister()) {
2512      if (CheckAsmLValue(InputExpr, *this))
2513        return StmtError(Diag(InputExpr->getLocStart(),
2514                              diag::err_asm_invalid_lvalue_in_input)
2515                         << Info.getConstraintStr()
2516                         << InputExpr->getSourceRange());
2517    }
2518
2519    if (Info.allowsRegister()) {
2520      if (InputExpr->getType()->isVoidType()) {
2521        return StmtError(Diag(InputExpr->getLocStart(),
2522                              diag::err_asm_invalid_type_in_input)
2523          << InputExpr->getType() << Info.getConstraintStr()
2524          << InputExpr->getSourceRange());
2525      }
2526    }
2527
2528    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2529    if (Result.isInvalid())
2530      return StmtError();
2531
2532    Exprs[i] = Result.take();
2533    InputConstraintInfos.push_back(Info);
2534  }
2535
2536  // Check that the clobbers are valid.
2537  for (unsigned i = 0; i != NumClobbers; i++) {
2538    StringLiteral *Literal = Clobbers[i];
2539    if (!Literal->isAscii())
2540      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2541        << Literal->getSourceRange());
2542
2543    StringRef Clobber = Literal->getString();
2544
2545    if (!Context.getTargetInfo().isValidClobber(Clobber))
2546      return StmtError(Diag(Literal->getLocStart(),
2547                  diag::err_asm_unknown_register_name) << Clobber);
2548  }
2549
2550  AsmStmt *NS =
2551    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2552                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2553                          AsmString, NumClobbers, Clobbers, RParenLoc);
2554  // Validate the asm string, ensuring it makes sense given the operands we
2555  // have.
2556  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2557  unsigned DiagOffs;
2558  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2559    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2560           << AsmString->getSourceRange();
2561    return StmtError();
2562  }
2563
2564  // Validate tied input operands for type mismatches.
2565  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2566    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2567
2568    // If this is a tied constraint, verify that the output and input have
2569    // either exactly the same type, or that they are int/ptr operands with the
2570    // same size (int/long, int*/long, are ok etc).
2571    if (!Info.hasTiedOperand()) continue;
2572
2573    unsigned TiedTo = Info.getTiedOperand();
2574    unsigned InputOpNo = i+NumOutputs;
2575    Expr *OutputExpr = Exprs[TiedTo];
2576    Expr *InputExpr = Exprs[InputOpNo];
2577
2578    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2579      continue;
2580
2581    QualType InTy = InputExpr->getType();
2582    QualType OutTy = OutputExpr->getType();
2583    if (Context.hasSameType(InTy, OutTy))
2584      continue;  // All types can be tied to themselves.
2585
2586    // Decide if the input and output are in the same domain (integer/ptr or
2587    // floating point.
2588    enum AsmDomain {
2589      AD_Int, AD_FP, AD_Other
2590    } InputDomain, OutputDomain;
2591
2592    if (InTy->isIntegerType() || InTy->isPointerType())
2593      InputDomain = AD_Int;
2594    else if (InTy->isRealFloatingType())
2595      InputDomain = AD_FP;
2596    else
2597      InputDomain = AD_Other;
2598
2599    if (OutTy->isIntegerType() || OutTy->isPointerType())
2600      OutputDomain = AD_Int;
2601    else if (OutTy->isRealFloatingType())
2602      OutputDomain = AD_FP;
2603    else
2604      OutputDomain = AD_Other;
2605
2606    // They are ok if they are the same size and in the same domain.  This
2607    // allows tying things like:
2608    //   void* to int*
2609    //   void* to int            if they are the same size.
2610    //   double to long double   if they are the same size.
2611    //
2612    uint64_t OutSize = Context.getTypeSize(OutTy);
2613    uint64_t InSize = Context.getTypeSize(InTy);
2614    if (OutSize == InSize && InputDomain == OutputDomain &&
2615        InputDomain != AD_Other)
2616      continue;
2617
2618    // If the smaller input/output operand is not mentioned in the asm string,
2619    // then we can promote the smaller one to a larger input and the asm string
2620    // won't notice.
2621    bool SmallerValueMentioned = false;
2622
2623    // If this is a reference to the input and if the input was the smaller
2624    // one, then we have to reject this asm.
2625    if (isOperandMentioned(InputOpNo, Pieces)) {
2626      // This is a use in the asm string of the smaller operand.  Since we
2627      // codegen this by promoting to a wider value, the asm will get printed
2628      // "wrong".
2629      SmallerValueMentioned |= InSize < OutSize;
2630    }
2631    if (isOperandMentioned(TiedTo, Pieces)) {
2632      // If this is a reference to the output, and if the output is the larger
2633      // value, then it's ok because we'll promote the input to the larger type.
2634      SmallerValueMentioned |= OutSize < InSize;
2635    }
2636
2637    // If the smaller value wasn't mentioned in the asm string, and if the
2638    // output was a register, just extend the shorter one to the size of the
2639    // larger one.
2640    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2641        OutputConstraintInfos[TiedTo].allowsRegister())
2642      continue;
2643
2644    // Either both of the operands were mentioned or the smaller one was
2645    // mentioned.  One more special case that we'll allow: if the tied input is
2646    // integer, unmentioned, and is a constant, then we'll allow truncating it
2647    // down to the size of the destination.
2648    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2649        !isOperandMentioned(InputOpNo, Pieces) &&
2650        InputExpr->isEvaluatable(Context)) {
2651      CastKind castKind =
2652        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2653      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2654      Exprs[InputOpNo] = InputExpr;
2655      NS->setInputExpr(i, InputExpr);
2656      continue;
2657    }
2658
2659    Diag(InputExpr->getLocStart(),
2660         diag::err_asm_tying_incompatible_types)
2661      << InTy << OutTy << OutputExpr->getSourceRange()
2662      << InputExpr->getSourceRange();
2663    return StmtError();
2664  }
2665
2666  return Owned(NS);
2667}
2668
2669StmtResult
2670Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2671                           SourceLocation RParen, Decl *Parm,
2672                           Stmt *Body) {
2673  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2674  if (Var && Var->isInvalidDecl())
2675    return StmtError();
2676
2677  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2678}
2679
2680StmtResult
2681Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2682  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2683}
2684
2685StmtResult
2686Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2687                         MultiStmtArg CatchStmts, Stmt *Finally) {
2688  if (!getLangOpts().ObjCExceptions)
2689    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2690
2691  getCurFunction()->setHasBranchProtectedScope();
2692  unsigned NumCatchStmts = CatchStmts.size();
2693  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2694                                     CatchStmts.release(),
2695                                     NumCatchStmts,
2696                                     Finally));
2697}
2698
2699StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2700  if (Throw) {
2701    ExprResult Result = DefaultLvalueConversion(Throw);
2702    if (Result.isInvalid())
2703      return StmtError();
2704
2705    Throw = MaybeCreateExprWithCleanups(Result.take());
2706    QualType ThrowType = Throw->getType();
2707    // Make sure the expression type is an ObjC pointer or "void *".
2708    if (!ThrowType->isDependentType() &&
2709        !ThrowType->isObjCObjectPointerType()) {
2710      const PointerType *PT = ThrowType->getAs<PointerType>();
2711      if (!PT || !PT->getPointeeType()->isVoidType())
2712        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2713                         << Throw->getType() << Throw->getSourceRange());
2714    }
2715  }
2716
2717  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2718}
2719
2720StmtResult
2721Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2722                           Scope *CurScope) {
2723  if (!getLangOpts().ObjCExceptions)
2724    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2725
2726  if (!Throw) {
2727    // @throw without an expression designates a rethrow (which much occur
2728    // in the context of an @catch clause).
2729    Scope *AtCatchParent = CurScope;
2730    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2731      AtCatchParent = AtCatchParent->getParent();
2732    if (!AtCatchParent)
2733      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2734  }
2735
2736  return BuildObjCAtThrowStmt(AtLoc, Throw);
2737}
2738
2739ExprResult
2740Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2741  ExprResult result = DefaultLvalueConversion(operand);
2742  if (result.isInvalid())
2743    return ExprError();
2744  operand = result.take();
2745
2746  // Make sure the expression type is an ObjC pointer or "void *".
2747  QualType type = operand->getType();
2748  if (!type->isDependentType() &&
2749      !type->isObjCObjectPointerType()) {
2750    const PointerType *pointerType = type->getAs<PointerType>();
2751    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2752      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2753               << type << operand->getSourceRange();
2754  }
2755
2756  // The operand to @synchronized is a full-expression.
2757  return MaybeCreateExprWithCleanups(operand);
2758}
2759
2760StmtResult
2761Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2762                                  Stmt *SyncBody) {
2763  // We can't jump into or indirect-jump out of a @synchronized block.
2764  getCurFunction()->setHasBranchProtectedScope();
2765  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2766}
2767
2768/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2769/// and creates a proper catch handler from them.
2770StmtResult
2771Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2772                         Stmt *HandlerBlock) {
2773  // There's nothing to test that ActOnExceptionDecl didn't already test.
2774  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2775                                          cast_or_null<VarDecl>(ExDecl),
2776                                          HandlerBlock));
2777}
2778
2779StmtResult
2780Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2781  getCurFunction()->setHasBranchProtectedScope();
2782  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2783}
2784
2785namespace {
2786
2787class TypeWithHandler {
2788  QualType t;
2789  CXXCatchStmt *stmt;
2790public:
2791  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2792  : t(type), stmt(statement) {}
2793
2794  // An arbitrary order is fine as long as it places identical
2795  // types next to each other.
2796  bool operator<(const TypeWithHandler &y) const {
2797    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2798      return true;
2799    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2800      return false;
2801    else
2802      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2803  }
2804
2805  bool operator==(const TypeWithHandler& other) const {
2806    return t == other.t;
2807  }
2808
2809  CXXCatchStmt *getCatchStmt() const { return stmt; }
2810  SourceLocation getTypeSpecStartLoc() const {
2811    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2812  }
2813};
2814
2815}
2816
2817/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2818/// handlers and creates a try statement from them.
2819StmtResult
2820Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2821                       MultiStmtArg RawHandlers) {
2822  // Don't report an error if 'try' is used in system headers.
2823  if (!getLangOpts().CXXExceptions &&
2824      !getSourceManager().isInSystemHeader(TryLoc))
2825      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2826
2827  unsigned NumHandlers = RawHandlers.size();
2828  assert(NumHandlers > 0 &&
2829         "The parser shouldn't call this if there are no handlers.");
2830  Stmt **Handlers = RawHandlers.get();
2831
2832  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2833
2834  for (unsigned i = 0; i < NumHandlers; ++i) {
2835    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2836    if (!Handler->getExceptionDecl()) {
2837      if (i < NumHandlers - 1)
2838        return StmtError(Diag(Handler->getLocStart(),
2839                              diag::err_early_catch_all));
2840
2841      continue;
2842    }
2843
2844    const QualType CaughtType = Handler->getCaughtType();
2845    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2846    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2847  }
2848
2849  // Detect handlers for the same type as an earlier one.
2850  if (NumHandlers > 1) {
2851    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2852
2853    TypeWithHandler prev = TypesWithHandlers[0];
2854    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2855      TypeWithHandler curr = TypesWithHandlers[i];
2856
2857      if (curr == prev) {
2858        Diag(curr.getTypeSpecStartLoc(),
2859             diag::warn_exception_caught_by_earlier_handler)
2860          << curr.getCatchStmt()->getCaughtType().getAsString();
2861        Diag(prev.getTypeSpecStartLoc(),
2862             diag::note_previous_exception_handler)
2863          << prev.getCatchStmt()->getCaughtType().getAsString();
2864      }
2865
2866      prev = curr;
2867    }
2868  }
2869
2870  getCurFunction()->setHasBranchProtectedScope();
2871
2872  // FIXME: We should detect handlers that cannot catch anything because an
2873  // earlier handler catches a superclass. Need to find a method that is not
2874  // quadratic for this.
2875  // Neither of these are explicitly forbidden, but every compiler detects them
2876  // and warns.
2877
2878  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2879                                  Handlers, NumHandlers));
2880}
2881
2882StmtResult
2883Sema::ActOnSEHTryBlock(bool IsCXXTry,
2884                       SourceLocation TryLoc,
2885                       Stmt *TryBlock,
2886                       Stmt *Handler) {
2887  assert(TryBlock && Handler);
2888
2889  getCurFunction()->setHasBranchProtectedScope();
2890
2891  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2892}
2893
2894StmtResult
2895Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2896                          Expr *FilterExpr,
2897                          Stmt *Block) {
2898  assert(FilterExpr && Block);
2899
2900  if(!FilterExpr->getType()->isIntegerType()) {
2901    return StmtError(Diag(FilterExpr->getExprLoc(),
2902                     diag::err_filter_expression_integral)
2903                     << FilterExpr->getType());
2904  }
2905
2906  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2907}
2908
2909StmtResult
2910Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2911                           Stmt *Block) {
2912  assert(Block);
2913  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2914}
2915
2916StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2917                                            bool IsIfExists,
2918                                            NestedNameSpecifierLoc QualifierLoc,
2919                                            DeclarationNameInfo NameInfo,
2920                                            Stmt *Nested)
2921{
2922  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2923                                             QualifierLoc, NameInfo,
2924                                             cast<CompoundStmt>(Nested));
2925}
2926
2927
2928StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2929                                            bool IsIfExists,
2930                                            CXXScopeSpec &SS,
2931                                            UnqualifiedId &Name,
2932                                            Stmt *Nested) {
2933  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2934                                    SS.getWithLocInContext(Context),
2935                                    GetNameFromUnqualifiedId(Name),
2936                                    Nested);
2937}
2938