SemaStmt.cpp revision 4b9c2d235fb9449e249d74f48ecfec601650de93
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
156    return;
157
158  // Okay, we have an unused result.  Depending on what the base expression is,
159  // we might want to make a more specific diagnostic.  Check for one of these
160  // cases now.
161  unsigned DiagID = diag::warn_unused_expr;
162  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
163    E = Temps->getSubExpr();
164  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
165    E = TempExpr->getSubExpr();
166
167  if (DiagnoseUnusedComparison(*this, E))
168    return;
169
170  E = E->IgnoreParenImpCasts();
171  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
172    if (E->getType()->isVoidType())
173      return;
174
175    // If the callee has attribute pure, const, or warn_unused_result, warn with
176    // a more specific message to make it clear what is happening.
177    if (const Decl *FD = CE->getCalleeDecl()) {
178      if (FD->getAttr<WarnUnusedResultAttr>()) {
179        Diag(Loc, diag::warn_unused_result) << R1 << R2;
180        return;
181      }
182      if (FD->getAttr<PureAttr>()) {
183        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
184        return;
185      }
186      if (FD->getAttr<ConstAttr>()) {
187        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
188        return;
189      }
190    }
191  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
192    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
193      Diag(Loc, diag::err_arc_unused_init_message) << R1;
194      return;
195    }
196    const ObjCMethodDecl *MD = ME->getMethodDecl();
197    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
198      Diag(Loc, diag::warn_unused_result) << R1 << R2;
199      return;
200    }
201  } else if (isa<PseudoObjectExpr>(E)) {
202    DiagID = diag::warn_unused_property_expr;
203  } else if (const CXXFunctionalCastExpr *FC
204                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
205    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
206        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
207      return;
208  }
209  // Diagnose "(void*) blah" as a typo for "(void) blah".
210  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
211    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
212    QualType T = TI->getType();
213
214    // We really do want to use the non-canonical type here.
215    if (T == Context.VoidPtrTy) {
216      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
217
218      Diag(Loc, diag::warn_unused_voidptr)
219        << FixItHint::CreateRemoval(TL.getStarLoc());
220      return;
221    }
222  }
223
224  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
225}
226
227StmtResult
228Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
229                        MultiStmtArg elts, bool isStmtExpr) {
230  unsigned NumElts = elts.size();
231  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
232  // If we're in C89 mode, check that we don't have any decls after stmts.  If
233  // so, emit an extension diagnostic.
234  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
235    // Note that __extension__ can be around a decl.
236    unsigned i = 0;
237    // Skip over all declarations.
238    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
239      /*empty*/;
240
241    // We found the end of the list or a statement.  Scan for another declstmt.
242    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
243      /*empty*/;
244
245    if (i != NumElts) {
246      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
247      Diag(D->getLocation(), diag::ext_mixed_decls_code);
248    }
249  }
250  // Warn about unused expressions in statements.
251  for (unsigned i = 0; i != NumElts; ++i) {
252    // Ignore statements that are last in a statement expression.
253    if (isStmtExpr && i == NumElts - 1)
254      continue;
255
256    DiagnoseUnusedExprResult(Elts[i]);
257  }
258
259  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
260}
261
262StmtResult
263Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
264                    SourceLocation DotDotDotLoc, Expr *RHSVal,
265                    SourceLocation ColonLoc) {
266  assert((LHSVal != 0) && "missing expression in case statement");
267
268  // C99 6.8.4.2p3: The expression shall be an integer constant.
269  // However, GCC allows any evaluatable integer expression.
270  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
271      VerifyIntegerConstantExpression(LHSVal))
272    return StmtError();
273
274  // GCC extension: The expression shall be an integer constant.
275
276  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
277      VerifyIntegerConstantExpression(RHSVal)) {
278    RHSVal = 0;  // Recover by just forgetting about it.
279  }
280
281  if (getCurFunction()->SwitchStack.empty()) {
282    Diag(CaseLoc, diag::err_case_not_in_switch);
283    return StmtError();
284  }
285
286  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
287                                        ColonLoc);
288  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
289  return Owned(CS);
290}
291
292/// ActOnCaseStmtBody - This installs a statement as the body of a case.
293void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
294  DiagnoseUnusedExprResult(SubStmt);
295
296  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
297  CS->setSubStmt(SubStmt);
298}
299
300StmtResult
301Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
302                       Stmt *SubStmt, Scope *CurScope) {
303  DiagnoseUnusedExprResult(SubStmt);
304
305  if (getCurFunction()->SwitchStack.empty()) {
306    Diag(DefaultLoc, diag::err_default_not_in_switch);
307    return Owned(SubStmt);
308  }
309
310  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
311  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
312  return Owned(DS);
313}
314
315StmtResult
316Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
317                     SourceLocation ColonLoc, Stmt *SubStmt) {
318
319  // If the label was multiply defined, reject it now.
320  if (TheDecl->getStmt()) {
321    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
322    Diag(TheDecl->getLocation(), diag::note_previous_definition);
323    return Owned(SubStmt);
324  }
325
326  // Otherwise, things are good.  Fill in the declaration and return it.
327  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
328  TheDecl->setStmt(LS);
329  if (!TheDecl->isGnuLocal())
330    TheDecl->setLocation(IdentLoc);
331  return Owned(LS);
332}
333
334StmtResult
335Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
336                  Stmt *thenStmt, SourceLocation ElseLoc,
337                  Stmt *elseStmt) {
338  ExprResult CondResult(CondVal.release());
339
340  VarDecl *ConditionVar = 0;
341  if (CondVar) {
342    ConditionVar = cast<VarDecl>(CondVar);
343    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
344    if (CondResult.isInvalid())
345      return StmtError();
346  }
347  Expr *ConditionExpr = CondResult.takeAs<Expr>();
348  if (!ConditionExpr)
349    return StmtError();
350
351  DiagnoseUnusedExprResult(thenStmt);
352
353  // Warn if the if block has a null body without an else value.
354  // this helps prevent bugs due to typos, such as
355  // if (condition);
356  //   do_stuff();
357  //
358  if (!elseStmt) {
359    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
360      // But do not warn if the body is a macro that expands to nothing, e.g:
361      //
362      // #define CALL(x)
363      // if (condition)
364      //   CALL(0);
365      //
366      if (!stmt->hasLeadingEmptyMacro())
367        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
368  }
369
370  DiagnoseUnusedExprResult(elseStmt);
371
372  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
373                                    thenStmt, ElseLoc, elseStmt));
374}
375
376/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
377/// the specified width and sign.  If an overflow occurs, detect it and emit
378/// the specified diagnostic.
379void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
380                                              unsigned NewWidth, bool NewSign,
381                                              SourceLocation Loc,
382                                              unsigned DiagID) {
383  // Perform a conversion to the promoted condition type if needed.
384  if (NewWidth > Val.getBitWidth()) {
385    // If this is an extension, just do it.
386    Val = Val.extend(NewWidth);
387    Val.setIsSigned(NewSign);
388
389    // If the input was signed and negative and the output is
390    // unsigned, don't bother to warn: this is implementation-defined
391    // behavior.
392    // FIXME: Introduce a second, default-ignored warning for this case?
393  } else if (NewWidth < Val.getBitWidth()) {
394    // If this is a truncation, check for overflow.
395    llvm::APSInt ConvVal(Val);
396    ConvVal = ConvVal.trunc(NewWidth);
397    ConvVal.setIsSigned(NewSign);
398    ConvVal = ConvVal.extend(Val.getBitWidth());
399    ConvVal.setIsSigned(Val.isSigned());
400    if (ConvVal != Val)
401      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
402
403    // Regardless of whether a diagnostic was emitted, really do the
404    // truncation.
405    Val = Val.trunc(NewWidth);
406    Val.setIsSigned(NewSign);
407  } else if (NewSign != Val.isSigned()) {
408    // Convert the sign to match the sign of the condition.  This can cause
409    // overflow as well: unsigned(INTMIN)
410    // We don't diagnose this overflow, because it is implementation-defined
411    // behavior.
412    // FIXME: Introduce a second, default-ignored warning for this case?
413    llvm::APSInt OldVal(Val);
414    Val.setIsSigned(NewSign);
415  }
416}
417
418namespace {
419  struct CaseCompareFunctor {
420    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
421                    const llvm::APSInt &RHS) {
422      return LHS.first < RHS;
423    }
424    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
425                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
426      return LHS.first < RHS.first;
427    }
428    bool operator()(const llvm::APSInt &LHS,
429                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
430      return LHS < RHS.first;
431    }
432  };
433}
434
435/// CmpCaseVals - Comparison predicate for sorting case values.
436///
437static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
438                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
439  if (lhs.first < rhs.first)
440    return true;
441
442  if (lhs.first == rhs.first &&
443      lhs.second->getCaseLoc().getRawEncoding()
444       < rhs.second->getCaseLoc().getRawEncoding())
445    return true;
446  return false;
447}
448
449/// CmpEnumVals - Comparison predicate for sorting enumeration values.
450///
451static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
452                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
453{
454  return lhs.first < rhs.first;
455}
456
457/// EqEnumVals - Comparison preficate for uniqing enumeration values.
458///
459static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
460                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
461{
462  return lhs.first == rhs.first;
463}
464
465/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
466/// potentially integral-promoted expression @p expr.
467static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
468  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
469    expr = cleanups->getSubExpr();
470  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
471    if (impcast->getCastKind() != CK_IntegralCast) break;
472    expr = impcast->getSubExpr();
473  }
474  return expr->getType();
475}
476
477StmtResult
478Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
479                             Decl *CondVar) {
480  ExprResult CondResult;
481
482  VarDecl *ConditionVar = 0;
483  if (CondVar) {
484    ConditionVar = cast<VarDecl>(CondVar);
485    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
486    if (CondResult.isInvalid())
487      return StmtError();
488
489    Cond = CondResult.release();
490  }
491
492  if (!Cond)
493    return StmtError();
494
495  CondResult = CheckPlaceholderExpr(Cond);
496  if (CondResult.isInvalid())
497    return StmtError();
498
499  CondResult
500    = ConvertToIntegralOrEnumerationType(SwitchLoc, CondResult.take(),
501                          PDiag(diag::err_typecheck_statement_requires_integer),
502                                   PDiag(diag::err_switch_incomplete_class_type)
503                                     << Cond->getSourceRange(),
504                                   PDiag(diag::err_switch_explicit_conversion),
505                                         PDiag(diag::note_switch_conversion),
506                                   PDiag(diag::err_switch_multiple_conversions),
507                                         PDiag(diag::note_switch_conversion),
508                                         PDiag(0));
509  if (CondResult.isInvalid()) return StmtError();
510  Cond = CondResult.take();
511
512  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
513  CondResult = UsualUnaryConversions(Cond);
514  if (CondResult.isInvalid()) return StmtError();
515  Cond = CondResult.take();
516
517  if (!CondVar) {
518    CheckImplicitConversions(Cond, SwitchLoc);
519    CondResult = MaybeCreateExprWithCleanups(Cond);
520    if (CondResult.isInvalid())
521      return StmtError();
522    Cond = CondResult.take();
523  }
524
525  getCurFunction()->setHasBranchIntoScope();
526
527  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
528  getCurFunction()->SwitchStack.push_back(SS);
529  return Owned(SS);
530}
531
532static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
533  if (Val.getBitWidth() < BitWidth)
534    Val = Val.extend(BitWidth);
535  else if (Val.getBitWidth() > BitWidth)
536    Val = Val.trunc(BitWidth);
537  Val.setIsSigned(IsSigned);
538}
539
540StmtResult
541Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
542                            Stmt *BodyStmt) {
543  SwitchStmt *SS = cast<SwitchStmt>(Switch);
544  assert(SS == getCurFunction()->SwitchStack.back() &&
545         "switch stack missing push/pop!");
546
547  SS->setBody(BodyStmt, SwitchLoc);
548  getCurFunction()->SwitchStack.pop_back();
549
550  Expr *CondExpr = SS->getCond();
551  if (!CondExpr) return StmtError();
552
553  QualType CondType = CondExpr->getType();
554
555  Expr *CondExprBeforePromotion = CondExpr;
556  QualType CondTypeBeforePromotion =
557      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
558
559  // C++ 6.4.2.p2:
560  // Integral promotions are performed (on the switch condition).
561  //
562  // A case value unrepresentable by the original switch condition
563  // type (before the promotion) doesn't make sense, even when it can
564  // be represented by the promoted type.  Therefore we need to find
565  // the pre-promotion type of the switch condition.
566  if (!CondExpr->isTypeDependent()) {
567    // We have already converted the expression to an integral or enumeration
568    // type, when we started the switch statement. If we don't have an
569    // appropriate type now, just return an error.
570    if (!CondType->isIntegralOrEnumerationType())
571      return StmtError();
572
573    if (CondExpr->isKnownToHaveBooleanValue()) {
574      // switch(bool_expr) {...} is often a programmer error, e.g.
575      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
576      // One can always use an if statement instead of switch(bool_expr).
577      Diag(SwitchLoc, diag::warn_bool_switch_condition)
578          << CondExpr->getSourceRange();
579    }
580  }
581
582  // Get the bitwidth of the switched-on value before promotions.  We must
583  // convert the integer case values to this width before comparison.
584  bool HasDependentValue
585    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
586  unsigned CondWidth
587    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
588  bool CondIsSigned
589    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
590
591  // Accumulate all of the case values in a vector so that we can sort them
592  // and detect duplicates.  This vector contains the APInt for the case after
593  // it has been converted to the condition type.
594  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
595  CaseValsTy CaseVals;
596
597  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
598  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
599  CaseRangesTy CaseRanges;
600
601  DefaultStmt *TheDefaultStmt = 0;
602
603  bool CaseListIsErroneous = false;
604
605  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
606       SC = SC->getNextSwitchCase()) {
607
608    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
609      if (TheDefaultStmt) {
610        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
611        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
612
613        // FIXME: Remove the default statement from the switch block so that
614        // we'll return a valid AST.  This requires recursing down the AST and
615        // finding it, not something we are set up to do right now.  For now,
616        // just lop the entire switch stmt out of the AST.
617        CaseListIsErroneous = true;
618      }
619      TheDefaultStmt = DS;
620
621    } else {
622      CaseStmt *CS = cast<CaseStmt>(SC);
623
624      // We already verified that the expression has a i-c-e value (C99
625      // 6.8.4.2p3) - get that value now.
626      Expr *Lo = CS->getLHS();
627
628      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
629        HasDependentValue = true;
630        break;
631      }
632
633      llvm::APSInt LoVal = Lo->EvaluateKnownConstInt(Context);
634
635      // Convert the value to the same width/sign as the condition.
636      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
637                                         Lo->getLocStart(),
638                                         diag::warn_case_value_overflow);
639
640      // If the LHS is not the same type as the condition, insert an implicit
641      // cast.
642      // FIXME: In C++11, the value is a converted constant expression of the
643      // promoted type of the switch condition.
644      Lo = DefaultLvalueConversion(Lo).take();
645      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
646      CS->setLHS(Lo);
647
648      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
649      if (CS->getRHS()) {
650        if (CS->getRHS()->isTypeDependent() ||
651            CS->getRHS()->isValueDependent()) {
652          HasDependentValue = true;
653          break;
654        }
655        CaseRanges.push_back(std::make_pair(LoVal, CS));
656      } else
657        CaseVals.push_back(std::make_pair(LoVal, CS));
658    }
659  }
660
661  if (!HasDependentValue) {
662    // If we don't have a default statement, check whether the
663    // condition is constant.
664    llvm::APSInt ConstantCondValue;
665    bool HasConstantCond = false;
666    bool ShouldCheckConstantCond = false;
667    if (!HasDependentValue && !TheDefaultStmt) {
668      Expr::EvalResult Result;
669      HasConstantCond
670        = CondExprBeforePromotion->EvaluateAsRValue(Result, Context);
671      if (HasConstantCond) {
672        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
673        ConstantCondValue = Result.Val.getInt();
674        ShouldCheckConstantCond = true;
675
676        assert(ConstantCondValue.getBitWidth() == CondWidth &&
677               ConstantCondValue.isSigned() == CondIsSigned);
678      }
679    }
680
681    // Sort all the scalar case values so we can easily detect duplicates.
682    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
683
684    if (!CaseVals.empty()) {
685      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
686        if (ShouldCheckConstantCond &&
687            CaseVals[i].first == ConstantCondValue)
688          ShouldCheckConstantCond = false;
689
690        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
691          // If we have a duplicate, report it.
692          Diag(CaseVals[i].second->getLHS()->getLocStart(),
693               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
694          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
695               diag::note_duplicate_case_prev);
696          // FIXME: We really want to remove the bogus case stmt from the
697          // substmt, but we have no way to do this right now.
698          CaseListIsErroneous = true;
699        }
700      }
701    }
702
703    // Detect duplicate case ranges, which usually don't exist at all in
704    // the first place.
705    if (!CaseRanges.empty()) {
706      // Sort all the case ranges by their low value so we can easily detect
707      // overlaps between ranges.
708      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
709
710      // Scan the ranges, computing the high values and removing empty ranges.
711      std::vector<llvm::APSInt> HiVals;
712      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
713        llvm::APSInt &LoVal = CaseRanges[i].first;
714        CaseStmt *CR = CaseRanges[i].second;
715        Expr *Hi = CR->getRHS();
716        llvm::APSInt HiVal = Hi->EvaluateKnownConstInt(Context);
717
718        // Convert the value to the same width/sign as the condition.
719        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
720                                           Hi->getLocStart(),
721                                           diag::warn_case_value_overflow);
722
723        // If the RHS is not the same type as the condition, insert an implicit
724        // cast.
725        // FIXME: In C++11, the value is a converted constant expression of the
726        // promoted type of the switch condition.
727        Hi = DefaultLvalueConversion(Hi).take();
728        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
729        CR->setRHS(Hi);
730
731        // If the low value is bigger than the high value, the case is empty.
732        if (LoVal > HiVal) {
733          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
734            << SourceRange(CR->getLHS()->getLocStart(),
735                           Hi->getLocEnd());
736          CaseRanges.erase(CaseRanges.begin()+i);
737          --i, --e;
738          continue;
739        }
740
741        if (ShouldCheckConstantCond &&
742            LoVal <= ConstantCondValue &&
743            ConstantCondValue <= HiVal)
744          ShouldCheckConstantCond = false;
745
746        HiVals.push_back(HiVal);
747      }
748
749      // Rescan the ranges, looking for overlap with singleton values and other
750      // ranges.  Since the range list is sorted, we only need to compare case
751      // ranges with their neighbors.
752      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
753        llvm::APSInt &CRLo = CaseRanges[i].first;
754        llvm::APSInt &CRHi = HiVals[i];
755        CaseStmt *CR = CaseRanges[i].second;
756
757        // Check to see whether the case range overlaps with any
758        // singleton cases.
759        CaseStmt *OverlapStmt = 0;
760        llvm::APSInt OverlapVal(32);
761
762        // Find the smallest value >= the lower bound.  If I is in the
763        // case range, then we have overlap.
764        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
765                                                  CaseVals.end(), CRLo,
766                                                  CaseCompareFunctor());
767        if (I != CaseVals.end() && I->first < CRHi) {
768          OverlapVal  = I->first;   // Found overlap with scalar.
769          OverlapStmt = I->second;
770        }
771
772        // Find the smallest value bigger than the upper bound.
773        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
774        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
775          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
776          OverlapStmt = (I-1)->second;
777        }
778
779        // Check to see if this case stmt overlaps with the subsequent
780        // case range.
781        if (i && CRLo <= HiVals[i-1]) {
782          OverlapVal  = HiVals[i-1];       // Found overlap with range.
783          OverlapStmt = CaseRanges[i-1].second;
784        }
785
786        if (OverlapStmt) {
787          // If we have a duplicate, report it.
788          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
789            << OverlapVal.toString(10);
790          Diag(OverlapStmt->getLHS()->getLocStart(),
791               diag::note_duplicate_case_prev);
792          // FIXME: We really want to remove the bogus case stmt from the
793          // substmt, but we have no way to do this right now.
794          CaseListIsErroneous = true;
795        }
796      }
797    }
798
799    // Complain if we have a constant condition and we didn't find a match.
800    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
801      // TODO: it would be nice if we printed enums as enums, chars as
802      // chars, etc.
803      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
804        << ConstantCondValue.toString(10)
805        << CondExpr->getSourceRange();
806    }
807
808    // Check to see if switch is over an Enum and handles all of its
809    // values.  We only issue a warning if there is not 'default:', but
810    // we still do the analysis to preserve this information in the AST
811    // (which can be used by flow-based analyes).
812    //
813    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
814
815    // If switch has default case, then ignore it.
816    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
817      const EnumDecl *ED = ET->getDecl();
818      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
819        EnumValsTy;
820      EnumValsTy EnumVals;
821
822      // Gather all enum values, set their type and sort them,
823      // allowing easier comparison with CaseVals.
824      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
825           EDI != ED->enumerator_end(); ++EDI) {
826        llvm::APSInt Val = EDI->getInitVal();
827        AdjustAPSInt(Val, CondWidth, CondIsSigned);
828        EnumVals.push_back(std::make_pair(Val, *EDI));
829      }
830      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
831      EnumValsTy::iterator EIend =
832        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
833
834      // See which case values aren't in enum.
835      // TODO: we might want to check whether case values are out of the
836      // enum even if we don't want to check whether all cases are handled.
837      if (!TheDefaultStmt) {
838        EnumValsTy::const_iterator EI = EnumVals.begin();
839        for (CaseValsTy::const_iterator CI = CaseVals.begin();
840             CI != CaseVals.end(); CI++) {
841          while (EI != EIend && EI->first < CI->first)
842            EI++;
843          if (EI == EIend || EI->first > CI->first)
844            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
845              << ED->getDeclName();
846        }
847        // See which of case ranges aren't in enum
848        EI = EnumVals.begin();
849        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
850             RI != CaseRanges.end() && EI != EIend; RI++) {
851          while (EI != EIend && EI->first < RI->first)
852            EI++;
853
854          if (EI == EIend || EI->first != RI->first) {
855            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
856              << ED->getDeclName();
857          }
858
859          llvm::APSInt Hi =
860            RI->second->getRHS()->EvaluateKnownConstInt(Context);
861          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
862          while (EI != EIend && EI->first < Hi)
863            EI++;
864          if (EI == EIend || EI->first != Hi)
865            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
866              << ED->getDeclName();
867        }
868      }
869
870      // Check which enum vals aren't in switch
871      CaseValsTy::const_iterator CI = CaseVals.begin();
872      CaseRangesTy::const_iterator RI = CaseRanges.begin();
873      bool hasCasesNotInSwitch = false;
874
875      SmallVector<DeclarationName,8> UnhandledNames;
876
877      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
878        // Drop unneeded case values
879        llvm::APSInt CIVal;
880        while (CI != CaseVals.end() && CI->first < EI->first)
881          CI++;
882
883        if (CI != CaseVals.end() && CI->first == EI->first)
884          continue;
885
886        // Drop unneeded case ranges
887        for (; RI != CaseRanges.end(); RI++) {
888          llvm::APSInt Hi =
889            RI->second->getRHS()->EvaluateKnownConstInt(Context);
890          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
891          if (EI->first <= Hi)
892            break;
893        }
894
895        if (RI == CaseRanges.end() || EI->first < RI->first) {
896          hasCasesNotInSwitch = true;
897          if (!TheDefaultStmt)
898            UnhandledNames.push_back(EI->second->getDeclName());
899        }
900      }
901
902      // Produce a nice diagnostic if multiple values aren't handled.
903      switch (UnhandledNames.size()) {
904      case 0: break;
905      case 1:
906        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
907          << UnhandledNames[0];
908        break;
909      case 2:
910        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
911          << UnhandledNames[0] << UnhandledNames[1];
912        break;
913      case 3:
914        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
915          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
916        break;
917      default:
918        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
919          << (unsigned)UnhandledNames.size()
920          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
921        break;
922      }
923
924      if (!hasCasesNotInSwitch)
925        SS->setAllEnumCasesCovered();
926    }
927  }
928
929  // FIXME: If the case list was broken is some way, we don't have a good system
930  // to patch it up.  Instead, just return the whole substmt as broken.
931  if (CaseListIsErroneous)
932    return StmtError();
933
934  return Owned(SS);
935}
936
937StmtResult
938Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
939                     Decl *CondVar, Stmt *Body) {
940  ExprResult CondResult(Cond.release());
941
942  VarDecl *ConditionVar = 0;
943  if (CondVar) {
944    ConditionVar = cast<VarDecl>(CondVar);
945    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
946    if (CondResult.isInvalid())
947      return StmtError();
948  }
949  Expr *ConditionExpr = CondResult.take();
950  if (!ConditionExpr)
951    return StmtError();
952
953  DiagnoseUnusedExprResult(Body);
954
955  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
956                                       Body, WhileLoc));
957}
958
959StmtResult
960Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
961                  SourceLocation WhileLoc, SourceLocation CondLParen,
962                  Expr *Cond, SourceLocation CondRParen) {
963  assert(Cond && "ActOnDoStmt(): missing expression");
964
965  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
966  if (CondResult.isInvalid() || CondResult.isInvalid())
967    return StmtError();
968  Cond = CondResult.take();
969
970  CheckImplicitConversions(Cond, DoLoc);
971  CondResult = MaybeCreateExprWithCleanups(Cond);
972  if (CondResult.isInvalid())
973    return StmtError();
974  Cond = CondResult.take();
975
976  DiagnoseUnusedExprResult(Body);
977
978  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
979}
980
981StmtResult
982Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
983                   Stmt *First, FullExprArg second, Decl *secondVar,
984                   FullExprArg third,
985                   SourceLocation RParenLoc, Stmt *Body) {
986  if (!getLangOptions().CPlusPlus) {
987    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
988      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
989      // declare identifiers for objects having storage class 'auto' or
990      // 'register'.
991      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
992           DI!=DE; ++DI) {
993        VarDecl *VD = dyn_cast<VarDecl>(*DI);
994        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
995          VD = 0;
996        if (VD == 0)
997          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
998        // FIXME: mark decl erroneous!
999      }
1000    }
1001  }
1002
1003  ExprResult SecondResult(second.release());
1004  VarDecl *ConditionVar = 0;
1005  if (secondVar) {
1006    ConditionVar = cast<VarDecl>(secondVar);
1007    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1008    if (SecondResult.isInvalid())
1009      return StmtError();
1010  }
1011
1012  Expr *Third  = third.release().takeAs<Expr>();
1013
1014  DiagnoseUnusedExprResult(First);
1015  DiagnoseUnusedExprResult(Third);
1016  DiagnoseUnusedExprResult(Body);
1017
1018  return Owned(new (Context) ForStmt(Context, First,
1019                                     SecondResult.take(), ConditionVar,
1020                                     Third, Body, ForLoc, LParenLoc,
1021                                     RParenLoc));
1022}
1023
1024/// In an Objective C collection iteration statement:
1025///   for (x in y)
1026/// x can be an arbitrary l-value expression.  Bind it up as a
1027/// full-expression.
1028StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1029  CheckImplicitConversions(E);
1030  ExprResult Result = MaybeCreateExprWithCleanups(E);
1031  if (Result.isInvalid()) return StmtError();
1032  return Owned(static_cast<Stmt*>(Result.get()));
1033}
1034
1035ExprResult
1036Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1037  assert(collection);
1038
1039  // Bail out early if we've got a type-dependent expression.
1040  if (collection->isTypeDependent()) return Owned(collection);
1041
1042  // Perform normal l-value conversion.
1043  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1044  if (result.isInvalid())
1045    return ExprError();
1046  collection = result.take();
1047
1048  // The operand needs to have object-pointer type.
1049  // TODO: should we do a contextual conversion?
1050  const ObjCObjectPointerType *pointerType =
1051    collection->getType()->getAs<ObjCObjectPointerType>();
1052  if (!pointerType)
1053    return Diag(forLoc, diag::err_collection_expr_type)
1054             << collection->getType() << collection->getSourceRange();
1055
1056  // Check that the operand provides
1057  //   - countByEnumeratingWithState:objects:count:
1058  const ObjCObjectType *objectType = pointerType->getObjectType();
1059  ObjCInterfaceDecl *iface = objectType->getInterface();
1060
1061  // If we have a forward-declared type, we can't do this check.
1062  if (iface && iface->isForwardDecl()) {
1063    // This is ill-formed under ARC.
1064    if (getLangOptions().ObjCAutoRefCount) {
1065      Diag(forLoc, diag::err_arc_collection_forward)
1066        << pointerType->getPointeeType() << collection->getSourceRange();
1067    }
1068
1069    // Otherwise, if we have any useful type information, check that
1070    // the type declares the appropriate method.
1071  } else if (iface || !objectType->qual_empty()) {
1072    IdentifierInfo *selectorIdents[] = {
1073      &Context.Idents.get("countByEnumeratingWithState"),
1074      &Context.Idents.get("objects"),
1075      &Context.Idents.get("count")
1076    };
1077    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1078
1079    ObjCMethodDecl *method = 0;
1080
1081    // If there's an interface, look in both the public and private APIs.
1082    if (iface) {
1083      method = iface->lookupInstanceMethod(selector);
1084      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1085    }
1086
1087    // Also check protocol qualifiers.
1088    if (!method)
1089      method = LookupMethodInQualifiedType(selector, pointerType,
1090                                           /*instance*/ true);
1091
1092    // If we didn't find it anywhere, give up.
1093    if (!method) {
1094      Diag(forLoc, diag::warn_collection_expr_type)
1095        << collection->getType() << selector << collection->getSourceRange();
1096    }
1097
1098    // TODO: check for an incompatible signature?
1099  }
1100
1101  // Wrap up any cleanups in the expression.
1102  return Owned(MaybeCreateExprWithCleanups(collection));
1103}
1104
1105StmtResult
1106Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1107                                 SourceLocation LParenLoc,
1108                                 Stmt *First, Expr *Second,
1109                                 SourceLocation RParenLoc, Stmt *Body) {
1110  if (First) {
1111    QualType FirstType;
1112    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1113      if (!DS->isSingleDecl())
1114        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1115                         diag::err_toomany_element_decls));
1116
1117      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1118      FirstType = D->getType();
1119      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1120      // declare identifiers for objects having storage class 'auto' or
1121      // 'register'.
1122      if (!D->hasLocalStorage())
1123        return StmtError(Diag(D->getLocation(),
1124                              diag::err_non_variable_decl_in_for));
1125    } else {
1126      Expr *FirstE = cast<Expr>(First);
1127      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1128        return StmtError(Diag(First->getLocStart(),
1129                   diag::err_selector_element_not_lvalue)
1130          << First->getSourceRange());
1131
1132      FirstType = static_cast<Expr*>(First)->getType();
1133    }
1134    if (!FirstType->isDependentType() &&
1135        !FirstType->isObjCObjectPointerType() &&
1136        !FirstType->isBlockPointerType())
1137        Diag(ForLoc, diag::err_selector_element_type)
1138          << FirstType << First->getSourceRange();
1139  }
1140
1141  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1142                                                   ForLoc, RParenLoc));
1143}
1144
1145namespace {
1146
1147enum BeginEndFunction {
1148  BEF_begin,
1149  BEF_end
1150};
1151
1152/// Build a variable declaration for a for-range statement.
1153static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1154                                     QualType Type, const char *Name) {
1155  DeclContext *DC = SemaRef.CurContext;
1156  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1157  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1158  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1159                                  TInfo, SC_Auto, SC_None);
1160  Decl->setImplicit();
1161  return Decl;
1162}
1163
1164/// Finish building a variable declaration for a for-range statement.
1165/// \return true if an error occurs.
1166static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1167                                  SourceLocation Loc, int diag) {
1168  // Deduce the type for the iterator variable now rather than leaving it to
1169  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1170  TypeSourceInfo *InitTSI = 0;
1171  if (Init->getType()->isVoidType() ||
1172      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1173    SemaRef.Diag(Loc, diag) << Init->getType();
1174  if (!InitTSI) {
1175    Decl->setInvalidDecl();
1176    return true;
1177  }
1178  Decl->setTypeSourceInfo(InitTSI);
1179  Decl->setType(InitTSI->getType());
1180
1181  // In ARC, infer lifetime.
1182  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1183  // we're doing the equivalent of fast iteration.
1184  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1185      SemaRef.inferObjCARCLifetime(Decl))
1186    Decl->setInvalidDecl();
1187
1188  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1189                               /*TypeMayContainAuto=*/false);
1190  SemaRef.FinalizeDeclaration(Decl);
1191  SemaRef.CurContext->addHiddenDecl(Decl);
1192  return false;
1193}
1194
1195/// Produce a note indicating which begin/end function was implicitly called
1196/// by a C++0x for-range statement. This is often not obvious from the code,
1197/// nor from the diagnostics produced when analysing the implicit expressions
1198/// required in a for-range statement.
1199void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1200                                  BeginEndFunction BEF) {
1201  CallExpr *CE = dyn_cast<CallExpr>(E);
1202  if (!CE)
1203    return;
1204  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1205  if (!D)
1206    return;
1207  SourceLocation Loc = D->getLocation();
1208
1209  std::string Description;
1210  bool IsTemplate = false;
1211  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1212    Description = SemaRef.getTemplateArgumentBindingsText(
1213      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1214    IsTemplate = true;
1215  }
1216
1217  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1218    << BEF << IsTemplate << Description << E->getType();
1219}
1220
1221/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1222/// given LookupResult is non-empty, it is assumed to describe a member which
1223/// will be invoked. Otherwise, the function will be found via argument
1224/// dependent lookup.
1225static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1226                                            SourceLocation Loc,
1227                                            VarDecl *Decl,
1228                                            BeginEndFunction BEF,
1229                                            const DeclarationNameInfo &NameInfo,
1230                                            LookupResult &MemberLookup,
1231                                            Expr *Range) {
1232  ExprResult CallExpr;
1233  if (!MemberLookup.empty()) {
1234    ExprResult MemberRef =
1235      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1236                                       /*IsPtr=*/false, CXXScopeSpec(),
1237                                       /*Qualifier=*/0, MemberLookup,
1238                                       /*TemplateArgs=*/0);
1239    if (MemberRef.isInvalid())
1240      return ExprError();
1241    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1242                                     Loc, 0);
1243    if (CallExpr.isInvalid())
1244      return ExprError();
1245  } else {
1246    UnresolvedSet<0> FoundNames;
1247    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1248    // std is an associated namespace.
1249    UnresolvedLookupExpr *Fn =
1250      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1251                                   NestedNameSpecifierLoc(), NameInfo,
1252                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1253                                   FoundNames.begin(), FoundNames.end(),
1254                                   /*LookInStdNamespace=*/true);
1255    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1256                                               0);
1257    if (CallExpr.isInvalid()) {
1258      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1259        << Range->getType();
1260      return ExprError();
1261    }
1262  }
1263  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1264                            diag::err_for_range_iter_deduction_failure)) {
1265    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1266    return ExprError();
1267  }
1268  return CallExpr;
1269}
1270
1271}
1272
1273/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1274///
1275/// C++0x [stmt.ranged]:
1276///   A range-based for statement is equivalent to
1277///
1278///   {
1279///     auto && __range = range-init;
1280///     for ( auto __begin = begin-expr,
1281///           __end = end-expr;
1282///           __begin != __end;
1283///           ++__begin ) {
1284///       for-range-declaration = *__begin;
1285///       statement
1286///     }
1287///   }
1288///
1289/// The body of the loop is not available yet, since it cannot be analysed until
1290/// we have determined the type of the for-range-declaration.
1291StmtResult
1292Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1293                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1294                           SourceLocation RParenLoc) {
1295  if (!First || !Range)
1296    return StmtError();
1297
1298  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1299  assert(DS && "first part of for range not a decl stmt");
1300
1301  if (!DS->isSingleDecl()) {
1302    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1303    return StmtError();
1304  }
1305  if (DS->getSingleDecl()->isInvalidDecl())
1306    return StmtError();
1307
1308  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1309    return StmtError();
1310
1311  // Build  auto && __range = range-init
1312  SourceLocation RangeLoc = Range->getLocStart();
1313  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1314                                           Context.getAutoRRefDeductType(),
1315                                           "__range");
1316  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1317                            diag::err_for_range_deduction_failure))
1318    return StmtError();
1319
1320  // Claim the type doesn't contain auto: we've already done the checking.
1321  DeclGroupPtrTy RangeGroup =
1322    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1323  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1324  if (RangeDecl.isInvalid())
1325    return StmtError();
1326
1327  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1328                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1329                              RParenLoc);
1330}
1331
1332/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1333StmtResult
1334Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1335                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1336                           Expr *Inc, Stmt *LoopVarDecl,
1337                           SourceLocation RParenLoc) {
1338  Scope *S = getCurScope();
1339
1340  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1341  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1342  QualType RangeVarType = RangeVar->getType();
1343
1344  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1345  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1346
1347  StmtResult BeginEndDecl = BeginEnd;
1348  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1349
1350  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1351    SourceLocation RangeLoc = RangeVar->getLocation();
1352
1353    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1354
1355    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1356                                                VK_LValue, ColonLoc);
1357    if (BeginRangeRef.isInvalid())
1358      return StmtError();
1359
1360    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1361                                              VK_LValue, ColonLoc);
1362    if (EndRangeRef.isInvalid())
1363      return StmtError();
1364
1365    QualType AutoType = Context.getAutoDeductType();
1366    Expr *Range = RangeVar->getInit();
1367    if (!Range)
1368      return StmtError();
1369    QualType RangeType = Range->getType();
1370
1371    if (RequireCompleteType(RangeLoc, RangeType,
1372                            PDiag(diag::err_for_range_incomplete_type)))
1373      return StmtError();
1374
1375    // Build auto __begin = begin-expr, __end = end-expr.
1376    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1377                                             "__begin");
1378    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1379                                           "__end");
1380
1381    // Build begin-expr and end-expr and attach to __begin and __end variables.
1382    ExprResult BeginExpr, EndExpr;
1383    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1384      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1385      //   __range + __bound, respectively, where __bound is the array bound. If
1386      //   _RangeT is an array of unknown size or an array of incomplete type,
1387      //   the program is ill-formed;
1388
1389      // begin-expr is __range.
1390      BeginExpr = BeginRangeRef;
1391      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1392                                diag::err_for_range_iter_deduction_failure)) {
1393        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1394        return StmtError();
1395      }
1396
1397      // Find the array bound.
1398      ExprResult BoundExpr;
1399      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1400        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1401                                                 Context.getPointerDiffType(),
1402                                                 RangeLoc));
1403      else if (const VariableArrayType *VAT =
1404               dyn_cast<VariableArrayType>(UnqAT))
1405        BoundExpr = VAT->getSizeExpr();
1406      else {
1407        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1408        // UnqAT is not incomplete and Range is not type-dependent.
1409        llvm_unreachable("Unexpected array type in for-range");
1410      }
1411
1412      // end-expr is __range + __bound.
1413      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1414                           BoundExpr.get());
1415      if (EndExpr.isInvalid())
1416        return StmtError();
1417      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1418                                diag::err_for_range_iter_deduction_failure)) {
1419        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1420        return StmtError();
1421      }
1422    } else {
1423      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1424                                        ColonLoc);
1425      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1426                                      ColonLoc);
1427
1428      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1429      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1430
1431      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1432        // - if _RangeT is a class type, the unqualified-ids begin and end are
1433        //   looked up in the scope of class _RangeT as if by class member access
1434        //   lookup (3.4.5), and if either (or both) finds at least one
1435        //   declaration, begin-expr and end-expr are __range.begin() and
1436        //   __range.end(), respectively;
1437        LookupQualifiedName(BeginMemberLookup, D);
1438        LookupQualifiedName(EndMemberLookup, D);
1439
1440        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1441          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1442            << RangeType << BeginMemberLookup.empty();
1443          return StmtError();
1444        }
1445      } else {
1446        // - otherwise, begin-expr and end-expr are begin(__range) and
1447        //   end(__range), respectively, where begin and end are looked up with
1448        //   argument-dependent lookup (3.4.2). For the purposes of this name
1449        //   lookup, namespace std is an associated namespace.
1450      }
1451
1452      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1453                                            BEF_begin, BeginNameInfo,
1454                                            BeginMemberLookup,
1455                                            BeginRangeRef.get());
1456      if (BeginExpr.isInvalid())
1457        return StmtError();
1458
1459      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1460                                          BEF_end, EndNameInfo,
1461                                          EndMemberLookup, EndRangeRef.get());
1462      if (EndExpr.isInvalid())
1463        return StmtError();
1464    }
1465
1466    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1467    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1468    if (!Context.hasSameType(BeginType, EndType)) {
1469      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1470        << BeginType << EndType;
1471      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1472      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1473    }
1474
1475    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1476    // Claim the type doesn't contain auto: we've already done the checking.
1477    DeclGroupPtrTy BeginEndGroup =
1478      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1479    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1480
1481    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1482    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1483                                           VK_LValue, ColonLoc);
1484    if (BeginRef.isInvalid())
1485      return StmtError();
1486
1487    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1488                                         VK_LValue, ColonLoc);
1489    if (EndRef.isInvalid())
1490      return StmtError();
1491
1492    // Build and check __begin != __end expression.
1493    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1494                           BeginRef.get(), EndRef.get());
1495    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1496    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1497    if (NotEqExpr.isInvalid()) {
1498      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1499      if (!Context.hasSameType(BeginType, EndType))
1500        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1501      return StmtError();
1502    }
1503
1504    // Build and check ++__begin expression.
1505    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1506                                VK_LValue, ColonLoc);
1507    if (BeginRef.isInvalid())
1508      return StmtError();
1509
1510    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1511    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1512    if (IncrExpr.isInvalid()) {
1513      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1514      return StmtError();
1515    }
1516
1517    // Build and check *__begin  expression.
1518    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1519                                VK_LValue, ColonLoc);
1520    if (BeginRef.isInvalid())
1521      return StmtError();
1522
1523    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1524    if (DerefExpr.isInvalid()) {
1525      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1526      return StmtError();
1527    }
1528
1529    // Attach  *__begin  as initializer for VD.
1530    if (!LoopVar->isInvalidDecl()) {
1531      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1532                           /*TypeMayContainAuto=*/true);
1533      if (LoopVar->isInvalidDecl())
1534        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1535    }
1536  } else {
1537    // The range is implicitly used as a placeholder when it is dependent.
1538    RangeVar->setUsed();
1539  }
1540
1541  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1542                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1543                                             NotEqExpr.take(), IncrExpr.take(),
1544                                             LoopVarDS, /*Body=*/0, ForLoc,
1545                                             ColonLoc, RParenLoc));
1546}
1547
1548/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1549/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1550/// body cannot be performed until after the type of the range variable is
1551/// determined.
1552StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1553  if (!S || !B)
1554    return StmtError();
1555
1556  cast<CXXForRangeStmt>(S)->setBody(B);
1557  return S;
1558}
1559
1560StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1561                               SourceLocation LabelLoc,
1562                               LabelDecl *TheDecl) {
1563  getCurFunction()->setHasBranchIntoScope();
1564  TheDecl->setUsed();
1565  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1566}
1567
1568StmtResult
1569Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1570                            Expr *E) {
1571  // Convert operand to void*
1572  if (!E->isTypeDependent()) {
1573    QualType ETy = E->getType();
1574    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1575    ExprResult ExprRes = Owned(E);
1576    AssignConvertType ConvTy =
1577      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1578    if (ExprRes.isInvalid())
1579      return StmtError();
1580    E = ExprRes.take();
1581    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1582      return StmtError();
1583  }
1584
1585  getCurFunction()->setHasIndirectGoto();
1586
1587  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1588}
1589
1590StmtResult
1591Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1592  Scope *S = CurScope->getContinueParent();
1593  if (!S) {
1594    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1595    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1596  }
1597
1598  return Owned(new (Context) ContinueStmt(ContinueLoc));
1599}
1600
1601StmtResult
1602Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1603  Scope *S = CurScope->getBreakParent();
1604  if (!S) {
1605    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1606    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1607  }
1608
1609  return Owned(new (Context) BreakStmt(BreakLoc));
1610}
1611
1612/// \brief Determine whether the given expression is a candidate for
1613/// copy elision in either a return statement or a throw expression.
1614///
1615/// \param ReturnType If we're determining the copy elision candidate for
1616/// a return statement, this is the return type of the function. If we're
1617/// determining the copy elision candidate for a throw expression, this will
1618/// be a NULL type.
1619///
1620/// \param E The expression being returned from the function or block, or
1621/// being thrown.
1622///
1623/// \param AllowFunctionParameter Whether we allow function parameters to
1624/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1625/// we re-use this logic to determine whether we should try to move as part of
1626/// a return or throw (which does allow function parameters).
1627///
1628/// \returns The NRVO candidate variable, if the return statement may use the
1629/// NRVO, or NULL if there is no such candidate.
1630const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1631                                             Expr *E,
1632                                             bool AllowFunctionParameter) {
1633  QualType ExprType = E->getType();
1634  // - in a return statement in a function with ...
1635  // ... a class return type ...
1636  if (!ReturnType.isNull()) {
1637    if (!ReturnType->isRecordType())
1638      return 0;
1639    // ... the same cv-unqualified type as the function return type ...
1640    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1641      return 0;
1642  }
1643
1644  // ... the expression is the name of a non-volatile automatic object
1645  // (other than a function or catch-clause parameter)) ...
1646  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1647  if (!DR)
1648    return 0;
1649  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1650  if (!VD)
1651    return 0;
1652
1653  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1654      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1655      !VD->getType().isVolatileQualified() &&
1656      ((VD->getKind() == Decl::Var) ||
1657       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1658    return VD;
1659
1660  return 0;
1661}
1662
1663/// \brief Perform the initialization of a potentially-movable value, which
1664/// is the result of return value.
1665///
1666/// This routine implements C++0x [class.copy]p33, which attempts to treat
1667/// returned lvalues as rvalues in certain cases (to prefer move construction),
1668/// then falls back to treating them as lvalues if that failed.
1669ExprResult
1670Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1671                                      const VarDecl *NRVOCandidate,
1672                                      QualType ResultType,
1673                                      Expr *Value,
1674                                      bool AllowNRVO) {
1675  // C++0x [class.copy]p33:
1676  //   When the criteria for elision of a copy operation are met or would
1677  //   be met save for the fact that the source object is a function
1678  //   parameter, and the object to be copied is designated by an lvalue,
1679  //   overload resolution to select the constructor for the copy is first
1680  //   performed as if the object were designated by an rvalue.
1681  ExprResult Res = ExprError();
1682  if (AllowNRVO &&
1683      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1684    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1685                              Value->getType(), CK_LValueToRValue,
1686                              Value, VK_XValue);
1687
1688    Expr *InitExpr = &AsRvalue;
1689    InitializationKind Kind
1690      = InitializationKind::CreateCopy(Value->getLocStart(),
1691                                       Value->getLocStart());
1692    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1693
1694    //   [...] If overload resolution fails, or if the type of the first
1695    //   parameter of the selected constructor is not an rvalue reference
1696    //   to the object's type (possibly cv-qualified), overload resolution
1697    //   is performed again, considering the object as an lvalue.
1698    if (Seq) {
1699      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1700           StepEnd = Seq.step_end();
1701           Step != StepEnd; ++Step) {
1702        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1703          continue;
1704
1705        CXXConstructorDecl *Constructor
1706        = cast<CXXConstructorDecl>(Step->Function.Function);
1707
1708        const RValueReferenceType *RRefType
1709          = Constructor->getParamDecl(0)->getType()
1710                                                 ->getAs<RValueReferenceType>();
1711
1712        // If we don't meet the criteria, break out now.
1713        if (!RRefType ||
1714            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1715                            Context.getTypeDeclType(Constructor->getParent())))
1716          break;
1717
1718        // Promote "AsRvalue" to the heap, since we now need this
1719        // expression node to persist.
1720        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1721                                         CK_LValueToRValue, Value, 0,
1722                                         VK_XValue);
1723
1724        // Complete type-checking the initialization of the return type
1725        // using the constructor we found.
1726        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1727      }
1728    }
1729  }
1730
1731  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1732  // above, or overload resolution failed. Either way, we need to try
1733  // (again) now with the return value expression as written.
1734  if (Res.isInvalid())
1735    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1736
1737  return Res;
1738}
1739
1740/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1741///
1742StmtResult
1743Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1744  // If this is the first return we've seen in the block, infer the type of
1745  // the block from it.
1746  BlockScopeInfo *CurBlock = getCurBlock();
1747  if (CurBlock->ReturnType.isNull()) {
1748    if (RetValExp) {
1749      // Don't call UsualUnaryConversions(), since we don't want to do
1750      // integer promotions here.
1751      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1752      if (Result.isInvalid())
1753        return StmtError();
1754      RetValExp = Result.take();
1755
1756      if (!RetValExp->isTypeDependent()) {
1757        CurBlock->ReturnType = RetValExp->getType();
1758        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1759          // We have to remove a 'const' added to copied-in variable which was
1760          // part of the implementation spec. and not the actual qualifier for
1761          // the variable.
1762          if (CDRE->isConstQualAdded())
1763            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1764        }
1765      } else
1766        CurBlock->ReturnType = Context.DependentTy;
1767    } else
1768      CurBlock->ReturnType = Context.VoidTy;
1769  }
1770  QualType FnRetType = CurBlock->ReturnType;
1771
1772  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1773    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1774      << getCurFunctionOrMethodDecl()->getDeclName();
1775    return StmtError();
1776  }
1777
1778  // Otherwise, verify that this result type matches the previous one.  We are
1779  // pickier with blocks than for normal functions because we don't have GCC
1780  // compatibility to worry about here.
1781  const VarDecl *NRVOCandidate = 0;
1782  if (FnRetType->isDependentType()) {
1783    // Delay processing for now.  TODO: there are lots of dependent
1784    // types we can conclusively prove aren't void.
1785  } else if (FnRetType->isVoidType()) {
1786    if (RetValExp &&
1787        !(getLangOptions().CPlusPlus &&
1788          (RetValExp->isTypeDependent() ||
1789           RetValExp->getType()->isVoidType()))) {
1790      Diag(ReturnLoc, diag::err_return_block_has_expr);
1791      RetValExp = 0;
1792    }
1793  } else if (!RetValExp) {
1794    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1795  } else if (!RetValExp->isTypeDependent()) {
1796    // we have a non-void block with an expression, continue checking
1797
1798    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1799    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1800    // function return.
1801
1802    // In C++ the return statement is handled via a copy initialization.
1803    // the C version of which boils down to CheckSingleAssignmentConstraints.
1804    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1805    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1806                                                                   FnRetType,
1807                                                           NRVOCandidate != 0);
1808    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1809                                                     FnRetType, RetValExp);
1810    if (Res.isInvalid()) {
1811      // FIXME: Cleanup temporaries here, anyway?
1812      return StmtError();
1813    }
1814    RetValExp = Res.take();
1815    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1816  }
1817
1818  if (RetValExp) {
1819    CheckImplicitConversions(RetValExp, ReturnLoc);
1820    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1821  }
1822  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1823                                                NRVOCandidate);
1824
1825  // If we need to check for the named return value optimization, save the
1826  // return statement in our scope for later processing.
1827  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1828      !CurContext->isDependentContext())
1829    FunctionScopes.back()->Returns.push_back(Result);
1830
1831  return Owned(Result);
1832}
1833
1834StmtResult
1835Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1836  // Check for unexpanded parameter packs.
1837  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1838    return StmtError();
1839
1840  if (getCurBlock())
1841    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1842
1843  QualType FnRetType;
1844  QualType DeclaredRetType;
1845  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1846    FnRetType = FD->getResultType();
1847    DeclaredRetType = FnRetType;
1848    if (FD->hasAttr<NoReturnAttr>() ||
1849        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1850      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1851        << getCurFunctionOrMethodDecl()->getDeclName();
1852  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1853    DeclaredRetType = MD->getResultType();
1854    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1855      // In the implementation of a method with a related return type, the
1856      // type used to type-check the validity of return statements within the
1857      // method body is a pointer to the type of the class being implemented.
1858      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1859      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1860    } else {
1861      FnRetType = DeclaredRetType;
1862    }
1863  } else // If we don't have a function/method context, bail.
1864    return StmtError();
1865
1866  ReturnStmt *Result = 0;
1867  if (FnRetType->isVoidType()) {
1868    if (RetValExp) {
1869      if (!RetValExp->isTypeDependent()) {
1870        // C99 6.8.6.4p1 (ext_ since GCC warns)
1871        unsigned D = diag::ext_return_has_expr;
1872        if (RetValExp->getType()->isVoidType())
1873          D = diag::ext_return_has_void_expr;
1874        else {
1875          ExprResult Result = Owned(RetValExp);
1876          Result = IgnoredValueConversions(Result.take());
1877          if (Result.isInvalid())
1878            return StmtError();
1879          RetValExp = Result.take();
1880          RetValExp = ImpCastExprToType(RetValExp,
1881                                        Context.VoidTy, CK_ToVoid).take();
1882        }
1883
1884        // return (some void expression); is legal in C++.
1885        if (D != diag::ext_return_has_void_expr ||
1886            !getLangOptions().CPlusPlus) {
1887          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1888
1889          int FunctionKind = 0;
1890          if (isa<ObjCMethodDecl>(CurDecl))
1891            FunctionKind = 1;
1892          else if (isa<CXXConstructorDecl>(CurDecl))
1893            FunctionKind = 2;
1894          else if (isa<CXXDestructorDecl>(CurDecl))
1895            FunctionKind = 3;
1896
1897          Diag(ReturnLoc, D)
1898            << CurDecl->getDeclName() << FunctionKind
1899            << RetValExp->getSourceRange();
1900        }
1901      }
1902
1903      CheckImplicitConversions(RetValExp, ReturnLoc);
1904      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1905    }
1906
1907    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1908  } else if (!RetValExp && !FnRetType->isDependentType()) {
1909    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1910    // C99 6.8.6.4p1 (ext_ since GCC warns)
1911    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1912
1913    if (FunctionDecl *FD = getCurFunctionDecl())
1914      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1915    else
1916      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1917    Result = new (Context) ReturnStmt(ReturnLoc);
1918  } else {
1919    const VarDecl *NRVOCandidate = 0;
1920    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1921      // we have a non-void function with an expression, continue checking
1922
1923      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1924      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1925      // function return.
1926
1927      // In C++ the return statement is handled via a copy initialization,
1928      // the C version of which boils down to CheckSingleAssignmentConstraints.
1929      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1930      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1931                                                                     FnRetType,
1932                                                            NRVOCandidate != 0);
1933      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1934                                                       FnRetType, RetValExp);
1935      if (Res.isInvalid()) {
1936        // FIXME: Cleanup temporaries here, anyway?
1937        return StmtError();
1938      }
1939
1940      RetValExp = Res.takeAs<Expr>();
1941      if (RetValExp)
1942        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1943    }
1944
1945    if (RetValExp) {
1946      // If we type-checked an Objective-C method's return type based
1947      // on a related return type, we may need to adjust the return
1948      // type again. Do so now.
1949      if (DeclaredRetType != FnRetType) {
1950        ExprResult result = PerformImplicitConversion(RetValExp,
1951                                                      DeclaredRetType,
1952                                                      AA_Returning);
1953        if (result.isInvalid()) return StmtError();
1954        RetValExp = result.take();
1955      }
1956
1957      CheckImplicitConversions(RetValExp, ReturnLoc);
1958      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1959    }
1960    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1961  }
1962
1963  // If we need to check for the named return value optimization, save the
1964  // return statement in our scope for later processing.
1965  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1966      !CurContext->isDependentContext())
1967    FunctionScopes.back()->Returns.push_back(Result);
1968
1969  return Owned(Result);
1970}
1971
1972/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1973/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1974/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1975/// provide a strong guidance to not use it.
1976///
1977/// This method checks to see if the argument is an acceptable l-value and
1978/// returns false if it is a case we can handle.
1979static bool CheckAsmLValue(const Expr *E, Sema &S) {
1980  // Type dependent expressions will be checked during instantiation.
1981  if (E->isTypeDependent())
1982    return false;
1983
1984  if (E->isLValue())
1985    return false;  // Cool, this is an lvalue.
1986
1987  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1988  // are supposed to allow.
1989  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1990  if (E != E2 && E2->isLValue()) {
1991    if (!S.getLangOptions().HeinousExtensions)
1992      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1993        << E->getSourceRange();
1994    else
1995      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1996        << E->getSourceRange();
1997    // Accept, even if we emitted an error diagnostic.
1998    return false;
1999  }
2000
2001  // None of the above, just randomly invalid non-lvalue.
2002  return true;
2003}
2004
2005/// isOperandMentioned - Return true if the specified operand # is mentioned
2006/// anywhere in the decomposed asm string.
2007static bool isOperandMentioned(unsigned OpNo,
2008                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2009  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2010    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2011    if (!Piece.isOperand()) continue;
2012
2013    // If this is a reference to the input and if the input was the smaller
2014    // one, then we have to reject this asm.
2015    if (Piece.getOperandNo() == OpNo)
2016      return true;
2017  }
2018
2019  return false;
2020}
2021
2022StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2023                              bool IsVolatile, unsigned NumOutputs,
2024                              unsigned NumInputs, IdentifierInfo **Names,
2025                              MultiExprArg constraints, MultiExprArg exprs,
2026                              Expr *asmString, MultiExprArg clobbers,
2027                              SourceLocation RParenLoc, bool MSAsm) {
2028  unsigned NumClobbers = clobbers.size();
2029  StringLiteral **Constraints =
2030    reinterpret_cast<StringLiteral**>(constraints.get());
2031  Expr **Exprs = exprs.get();
2032  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2033  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2034
2035  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2036
2037  // The parser verifies that there is a string literal here.
2038  if (!AsmString->isAscii())
2039    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2040      << AsmString->getSourceRange());
2041
2042  for (unsigned i = 0; i != NumOutputs; i++) {
2043    StringLiteral *Literal = Constraints[i];
2044    if (!Literal->isAscii())
2045      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2046        << Literal->getSourceRange());
2047
2048    StringRef OutputName;
2049    if (Names[i])
2050      OutputName = Names[i]->getName();
2051
2052    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2053    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2054      return StmtError(Diag(Literal->getLocStart(),
2055                            diag::err_asm_invalid_output_constraint)
2056                       << Info.getConstraintStr());
2057
2058    // Check that the output exprs are valid lvalues.
2059    Expr *OutputExpr = Exprs[i];
2060    if (CheckAsmLValue(OutputExpr, *this)) {
2061      return StmtError(Diag(OutputExpr->getLocStart(),
2062                  diag::err_asm_invalid_lvalue_in_output)
2063        << OutputExpr->getSourceRange());
2064    }
2065
2066    OutputConstraintInfos.push_back(Info);
2067  }
2068
2069  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2070
2071  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2072    StringLiteral *Literal = Constraints[i];
2073    if (!Literal->isAscii())
2074      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2075        << Literal->getSourceRange());
2076
2077    StringRef InputName;
2078    if (Names[i])
2079      InputName = Names[i]->getName();
2080
2081    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2082    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2083                                                NumOutputs, Info)) {
2084      return StmtError(Diag(Literal->getLocStart(),
2085                            diag::err_asm_invalid_input_constraint)
2086                       << Info.getConstraintStr());
2087    }
2088
2089    Expr *InputExpr = Exprs[i];
2090
2091    // Only allow void types for memory constraints.
2092    if (Info.allowsMemory() && !Info.allowsRegister()) {
2093      if (CheckAsmLValue(InputExpr, *this))
2094        return StmtError(Diag(InputExpr->getLocStart(),
2095                              diag::err_asm_invalid_lvalue_in_input)
2096                         << Info.getConstraintStr()
2097                         << InputExpr->getSourceRange());
2098    }
2099
2100    if (Info.allowsRegister()) {
2101      if (InputExpr->getType()->isVoidType()) {
2102        return StmtError(Diag(InputExpr->getLocStart(),
2103                              diag::err_asm_invalid_type_in_input)
2104          << InputExpr->getType() << Info.getConstraintStr()
2105          << InputExpr->getSourceRange());
2106      }
2107    }
2108
2109    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2110    if (Result.isInvalid())
2111      return StmtError();
2112
2113    Exprs[i] = Result.take();
2114    InputConstraintInfos.push_back(Info);
2115  }
2116
2117  // Check that the clobbers are valid.
2118  for (unsigned i = 0; i != NumClobbers; i++) {
2119    StringLiteral *Literal = Clobbers[i];
2120    if (!Literal->isAscii())
2121      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2122        << Literal->getSourceRange());
2123
2124    StringRef Clobber = Literal->getString();
2125
2126    if (!Context.getTargetInfo().isValidClobber(Clobber))
2127      return StmtError(Diag(Literal->getLocStart(),
2128                  diag::err_asm_unknown_register_name) << Clobber);
2129  }
2130
2131  AsmStmt *NS =
2132    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2133                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2134                          AsmString, NumClobbers, Clobbers, RParenLoc);
2135  // Validate the asm string, ensuring it makes sense given the operands we
2136  // have.
2137  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2138  unsigned DiagOffs;
2139  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2140    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2141           << AsmString->getSourceRange();
2142    return StmtError();
2143  }
2144
2145  // Validate tied input operands for type mismatches.
2146  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2147    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2148
2149    // If this is a tied constraint, verify that the output and input have
2150    // either exactly the same type, or that they are int/ptr operands with the
2151    // same size (int/long, int*/long, are ok etc).
2152    if (!Info.hasTiedOperand()) continue;
2153
2154    unsigned TiedTo = Info.getTiedOperand();
2155    unsigned InputOpNo = i+NumOutputs;
2156    Expr *OutputExpr = Exprs[TiedTo];
2157    Expr *InputExpr = Exprs[InputOpNo];
2158
2159    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2160      continue;
2161
2162    QualType InTy = InputExpr->getType();
2163    QualType OutTy = OutputExpr->getType();
2164    if (Context.hasSameType(InTy, OutTy))
2165      continue;  // All types can be tied to themselves.
2166
2167    // Decide if the input and output are in the same domain (integer/ptr or
2168    // floating point.
2169    enum AsmDomain {
2170      AD_Int, AD_FP, AD_Other
2171    } InputDomain, OutputDomain;
2172
2173    if (InTy->isIntegerType() || InTy->isPointerType())
2174      InputDomain = AD_Int;
2175    else if (InTy->isRealFloatingType())
2176      InputDomain = AD_FP;
2177    else
2178      InputDomain = AD_Other;
2179
2180    if (OutTy->isIntegerType() || OutTy->isPointerType())
2181      OutputDomain = AD_Int;
2182    else if (OutTy->isRealFloatingType())
2183      OutputDomain = AD_FP;
2184    else
2185      OutputDomain = AD_Other;
2186
2187    // They are ok if they are the same size and in the same domain.  This
2188    // allows tying things like:
2189    //   void* to int*
2190    //   void* to int            if they are the same size.
2191    //   double to long double   if they are the same size.
2192    //
2193    uint64_t OutSize = Context.getTypeSize(OutTy);
2194    uint64_t InSize = Context.getTypeSize(InTy);
2195    if (OutSize == InSize && InputDomain == OutputDomain &&
2196        InputDomain != AD_Other)
2197      continue;
2198
2199    // If the smaller input/output operand is not mentioned in the asm string,
2200    // then we can promote the smaller one to a larger input and the asm string
2201    // won't notice.
2202    bool SmallerValueMentioned = false;
2203
2204    // If this is a reference to the input and if the input was the smaller
2205    // one, then we have to reject this asm.
2206    if (isOperandMentioned(InputOpNo, Pieces)) {
2207      // This is a use in the asm string of the smaller operand.  Since we
2208      // codegen this by promoting to a wider value, the asm will get printed
2209      // "wrong".
2210      SmallerValueMentioned |= InSize < OutSize;
2211    }
2212    if (isOperandMentioned(TiedTo, Pieces)) {
2213      // If this is a reference to the output, and if the output is the larger
2214      // value, then it's ok because we'll promote the input to the larger type.
2215      SmallerValueMentioned |= OutSize < InSize;
2216    }
2217
2218    // If the smaller value wasn't mentioned in the asm string, and if the
2219    // output was a register, just extend the shorter one to the size of the
2220    // larger one.
2221    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2222        OutputConstraintInfos[TiedTo].allowsRegister())
2223      continue;
2224
2225    // Either both of the operands were mentioned or the smaller one was
2226    // mentioned.  One more special case that we'll allow: if the tied input is
2227    // integer, unmentioned, and is a constant, then we'll allow truncating it
2228    // down to the size of the destination.
2229    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2230        !isOperandMentioned(InputOpNo, Pieces) &&
2231        InputExpr->isEvaluatable(Context)) {
2232      CastKind castKind =
2233        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2234      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2235      Exprs[InputOpNo] = InputExpr;
2236      NS->setInputExpr(i, InputExpr);
2237      continue;
2238    }
2239
2240    Diag(InputExpr->getLocStart(),
2241         diag::err_asm_tying_incompatible_types)
2242      << InTy << OutTy << OutputExpr->getSourceRange()
2243      << InputExpr->getSourceRange();
2244    return StmtError();
2245  }
2246
2247  return Owned(NS);
2248}
2249
2250StmtResult
2251Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2252                           SourceLocation RParen, Decl *Parm,
2253                           Stmt *Body) {
2254  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2255  if (Var && Var->isInvalidDecl())
2256    return StmtError();
2257
2258  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2259}
2260
2261StmtResult
2262Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2263  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2264}
2265
2266StmtResult
2267Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2268                         MultiStmtArg CatchStmts, Stmt *Finally) {
2269  if (!getLangOptions().ObjCExceptions)
2270    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2271
2272  getCurFunction()->setHasBranchProtectedScope();
2273  unsigned NumCatchStmts = CatchStmts.size();
2274  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2275                                     CatchStmts.release(),
2276                                     NumCatchStmts,
2277                                     Finally));
2278}
2279
2280StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2281                                                  Expr *Throw) {
2282  if (Throw) {
2283    Throw = MaybeCreateExprWithCleanups(Throw);
2284    ExprResult Result = DefaultLvalueConversion(Throw);
2285    if (Result.isInvalid())
2286      return StmtError();
2287
2288    Throw = Result.take();
2289    QualType ThrowType = Throw->getType();
2290    // Make sure the expression type is an ObjC pointer or "void *".
2291    if (!ThrowType->isDependentType() &&
2292        !ThrowType->isObjCObjectPointerType()) {
2293      const PointerType *PT = ThrowType->getAs<PointerType>();
2294      if (!PT || !PT->getPointeeType()->isVoidType())
2295        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2296                         << Throw->getType() << Throw->getSourceRange());
2297    }
2298  }
2299
2300  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2301}
2302
2303StmtResult
2304Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2305                           Scope *CurScope) {
2306  if (!getLangOptions().ObjCExceptions)
2307    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2308
2309  if (!Throw) {
2310    // @throw without an expression designates a rethrow (which much occur
2311    // in the context of an @catch clause).
2312    Scope *AtCatchParent = CurScope;
2313    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2314      AtCatchParent = AtCatchParent->getParent();
2315    if (!AtCatchParent)
2316      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2317  }
2318
2319  return BuildObjCAtThrowStmt(AtLoc, Throw);
2320}
2321
2322ExprResult
2323Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2324  ExprResult result = DefaultLvalueConversion(operand);
2325  if (result.isInvalid())
2326    return ExprError();
2327  operand = result.take();
2328
2329  // Make sure the expression type is an ObjC pointer or "void *".
2330  QualType type = operand->getType();
2331  if (!type->isDependentType() &&
2332      !type->isObjCObjectPointerType()) {
2333    const PointerType *pointerType = type->getAs<PointerType>();
2334    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2335      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2336               << type << operand->getSourceRange();
2337  }
2338
2339  // The operand to @synchronized is a full-expression.
2340  return MaybeCreateExprWithCleanups(operand);
2341}
2342
2343StmtResult
2344Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2345                                  Stmt *SyncBody) {
2346  // We can't jump into or indirect-jump out of a @synchronized block.
2347  getCurFunction()->setHasBranchProtectedScope();
2348  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2349}
2350
2351/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2352/// and creates a proper catch handler from them.
2353StmtResult
2354Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2355                         Stmt *HandlerBlock) {
2356  // There's nothing to test that ActOnExceptionDecl didn't already test.
2357  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2358                                          cast_or_null<VarDecl>(ExDecl),
2359                                          HandlerBlock));
2360}
2361
2362StmtResult
2363Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2364  getCurFunction()->setHasBranchProtectedScope();
2365  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2366}
2367
2368namespace {
2369
2370class TypeWithHandler {
2371  QualType t;
2372  CXXCatchStmt *stmt;
2373public:
2374  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2375  : t(type), stmt(statement) {}
2376
2377  // An arbitrary order is fine as long as it places identical
2378  // types next to each other.
2379  bool operator<(const TypeWithHandler &y) const {
2380    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2381      return true;
2382    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2383      return false;
2384    else
2385      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2386  }
2387
2388  bool operator==(const TypeWithHandler& other) const {
2389    return t == other.t;
2390  }
2391
2392  CXXCatchStmt *getCatchStmt() const { return stmt; }
2393  SourceLocation getTypeSpecStartLoc() const {
2394    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2395  }
2396};
2397
2398}
2399
2400/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2401/// handlers and creates a try statement from them.
2402StmtResult
2403Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2404                       MultiStmtArg RawHandlers) {
2405  // Don't report an error if 'try' is used in system headers.
2406  if (!getLangOptions().CXXExceptions &&
2407      !getSourceManager().isInSystemHeader(TryLoc))
2408      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2409
2410  unsigned NumHandlers = RawHandlers.size();
2411  assert(NumHandlers > 0 &&
2412         "The parser shouldn't call this if there are no handlers.");
2413  Stmt **Handlers = RawHandlers.get();
2414
2415  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2416
2417  for (unsigned i = 0; i < NumHandlers; ++i) {
2418    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2419    if (!Handler->getExceptionDecl()) {
2420      if (i < NumHandlers - 1)
2421        return StmtError(Diag(Handler->getLocStart(),
2422                              diag::err_early_catch_all));
2423
2424      continue;
2425    }
2426
2427    const QualType CaughtType = Handler->getCaughtType();
2428    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2429    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2430  }
2431
2432  // Detect handlers for the same type as an earlier one.
2433  if (NumHandlers > 1) {
2434    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2435
2436    TypeWithHandler prev = TypesWithHandlers[0];
2437    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2438      TypeWithHandler curr = TypesWithHandlers[i];
2439
2440      if (curr == prev) {
2441        Diag(curr.getTypeSpecStartLoc(),
2442             diag::warn_exception_caught_by_earlier_handler)
2443          << curr.getCatchStmt()->getCaughtType().getAsString();
2444        Diag(prev.getTypeSpecStartLoc(),
2445             diag::note_previous_exception_handler)
2446          << prev.getCatchStmt()->getCaughtType().getAsString();
2447      }
2448
2449      prev = curr;
2450    }
2451  }
2452
2453  getCurFunction()->setHasBranchProtectedScope();
2454
2455  // FIXME: We should detect handlers that cannot catch anything because an
2456  // earlier handler catches a superclass. Need to find a method that is not
2457  // quadratic for this.
2458  // Neither of these are explicitly forbidden, but every compiler detects them
2459  // and warns.
2460
2461  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2462                                  Handlers, NumHandlers));
2463}
2464
2465StmtResult
2466Sema::ActOnSEHTryBlock(bool IsCXXTry,
2467                       SourceLocation TryLoc,
2468                       Stmt *TryBlock,
2469                       Stmt *Handler) {
2470  assert(TryBlock && Handler);
2471
2472  getCurFunction()->setHasBranchProtectedScope();
2473
2474  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2475}
2476
2477StmtResult
2478Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2479                          Expr *FilterExpr,
2480                          Stmt *Block) {
2481  assert(FilterExpr && Block);
2482
2483  if(!FilterExpr->getType()->isIntegerType()) {
2484    return StmtError(Diag(FilterExpr->getExprLoc(),
2485                     diag::err_filter_expression_integral)
2486                     << FilterExpr->getType());
2487  }
2488
2489  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2490}
2491
2492StmtResult
2493Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2494                           Stmt *Block) {
2495  assert(Block);
2496  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2497}
2498
2499StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2500                                            bool IsIfExists,
2501                                            NestedNameSpecifierLoc QualifierLoc,
2502                                            DeclarationNameInfo NameInfo,
2503                                            Stmt *Nested)
2504{
2505  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2506                                             QualifierLoc, NameInfo,
2507                                             cast<CompoundStmt>(Nested));
2508}
2509
2510
2511StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2512                                            bool IsIfExists,
2513                                            CXXScopeSpec &SS,
2514                                            UnqualifiedId &Name,
2515                                            Stmt *Nested) {
2516  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2517                                    SS.getWithLocInContext(Context),
2518                                    GetNameFromUnqualifiedId(Name),
2519                                    Nested);
2520}
2521