SemaStmt.cpp revision 4d3db4eb6caa49a7cdbfe1798728ce4b23cd0b53
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/SmallVector.h"
35using namespace clang;
36using namespace sema;
37
38StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
39  Expr *E = expr.get();
40  if (!E) // FIXME: FullExprArg has no error state?
41    return StmtError();
42
43  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
44  // void expression for its side effects.  Conversion to void allows any
45  // operand, even incomplete types.
46
47  // Same thing in for stmt first clause (when expr) and third clause.
48  return Owned(static_cast<Stmt*>(E));
49}
50
51
52StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
53                               bool HasLeadingEmptyMacro) {
54  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
55}
56
57StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
58                               SourceLocation EndLoc) {
59  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
60
61  // If we have an invalid decl, just return an error.
62  if (DG.isNull()) return StmtError();
63
64  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
65}
66
67void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
68  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
69
70  // If we have an invalid decl, just return.
71  if (DG.isNull() || !DG.isSingleDecl()) return;
72  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
73
74  // suppress any potential 'unused variable' warning.
75  var->setUsed();
76
77  // foreach variables are never actually initialized in the way that
78  // the parser came up with.
79  var->setInit(0);
80
81  // In ARC, we don't need to retain the iteration variable of a fast
82  // enumeration loop.  Rather than actually trying to catch that
83  // during declaration processing, we remove the consequences here.
84  if (getLangOpts().ObjCAutoRefCount) {
85    QualType type = var->getType();
86
87    // Only do this if we inferred the lifetime.  Inferred lifetime
88    // will show up as a local qualifier because explicit lifetime
89    // should have shown up as an AttributedType instead.
90    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
91      // Add 'const' and mark the variable as pseudo-strong.
92      var->setType(type.withConst());
93      var->setARCPseudoStrong(true);
94    }
95  }
96}
97
98/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
99///
100/// Adding a cast to void (or other expression wrappers) will prevent the
101/// warning from firing.
102static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
103  SourceLocation Loc;
104  bool IsNotEqual, CanAssign;
105
106  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
107    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
108      return false;
109
110    Loc = Op->getOperatorLoc();
111    IsNotEqual = Op->getOpcode() == BO_NE;
112    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
113  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
114    if (Op->getOperator() != OO_EqualEqual &&
115        Op->getOperator() != OO_ExclaimEqual)
116      return false;
117
118    Loc = Op->getOperatorLoc();
119    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
120    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
121  } else {
122    // Not a typo-prone comparison.
123    return false;
124  }
125
126  // Suppress warnings when the operator, suspicious as it may be, comes from
127  // a macro expansion.
128  if (Loc.isMacroID())
129    return false;
130
131  S.Diag(Loc, diag::warn_unused_comparison)
132    << (unsigned)IsNotEqual << E->getSourceRange();
133
134  // If the LHS is a plausible entity to assign to, provide a fixit hint to
135  // correct common typos.
136  if (CanAssign) {
137    if (IsNotEqual)
138      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
139        << FixItHint::CreateReplacement(Loc, "|=");
140    else
141      S.Diag(Loc, diag::note_equality_comparison_to_assign)
142        << FixItHint::CreateReplacement(Loc, "=");
143  }
144
145  return true;
146}
147
148void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
149  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
150    return DiagnoseUnusedExprResult(Label->getSubStmt());
151
152  const Expr *E = dyn_cast_or_null<Expr>(S);
153  if (!E)
154    return;
155
156  const Expr *WarnExpr;
157  SourceLocation Loc;
158  SourceRange R1, R2;
159  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
160      !E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
161    return;
162
163  // Okay, we have an unused result.  Depending on what the base expression is,
164  // we might want to make a more specific diagnostic.  Check for one of these
165  // cases now.
166  unsigned DiagID = diag::warn_unused_expr;
167  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
168    E = Temps->getSubExpr();
169  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
170    E = TempExpr->getSubExpr();
171
172  if (DiagnoseUnusedComparison(*this, E))
173    return;
174
175  E = WarnExpr;
176  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
177    if (E->getType()->isVoidType())
178      return;
179
180    // If the callee has attribute pure, const, or warn_unused_result, warn with
181    // a more specific message to make it clear what is happening.
182    if (const Decl *FD = CE->getCalleeDecl()) {
183      if (FD->getAttr<WarnUnusedResultAttr>()) {
184        Diag(Loc, diag::warn_unused_result) << R1 << R2;
185        return;
186      }
187      if (FD->getAttr<PureAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
189        return;
190      }
191      if (FD->getAttr<ConstAttr>()) {
192        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
193        return;
194      }
195    }
196  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
197    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
198      Diag(Loc, diag::err_arc_unused_init_message) << R1;
199      return;
200    }
201    const ObjCMethodDecl *MD = ME->getMethodDecl();
202    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
203      Diag(Loc, diag::warn_unused_result) << R1 << R2;
204      return;
205    }
206  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
207    const Expr *Source = POE->getSyntacticForm();
208    if (isa<ObjCSubscriptRefExpr>(Source))
209      DiagID = diag::warn_unused_container_subscript_expr;
210    else
211      DiagID = diag::warn_unused_property_expr;
212  } else if (const CXXFunctionalCastExpr *FC
213                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
214    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
215        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
216      return;
217  }
218  // Diagnose "(void*) blah" as a typo for "(void) blah".
219  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
220    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
221    QualType T = TI->getType();
222
223    // We really do want to use the non-canonical type here.
224    if (T == Context.VoidPtrTy) {
225      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
226
227      Diag(Loc, diag::warn_unused_voidptr)
228        << FixItHint::CreateRemoval(TL.getStarLoc());
229      return;
230    }
231  }
232
233  if (E->isGLValue() && E->getType().isVolatileQualified()) {
234    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
235    return;
236  }
237
238  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
239}
240
241void Sema::ActOnStartOfCompoundStmt() {
242  PushCompoundScope();
243}
244
245void Sema::ActOnFinishOfCompoundStmt() {
246  PopCompoundScope();
247}
248
249sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
250  return getCurFunction()->CompoundScopes.back();
251}
252
253StmtResult
254Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
255                        MultiStmtArg elts, bool isStmtExpr) {
256  unsigned NumElts = elts.size();
257  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
258  // If we're in C89 mode, check that we don't have any decls after stmts.  If
259  // so, emit an extension diagnostic.
260  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
261    // Note that __extension__ can be around a decl.
262    unsigned i = 0;
263    // Skip over all declarations.
264    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
265      /*empty*/;
266
267    // We found the end of the list or a statement.  Scan for another declstmt.
268    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
269      /*empty*/;
270
271    if (i != NumElts) {
272      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
273      Diag(D->getLocation(), diag::ext_mixed_decls_code);
274    }
275  }
276  // Warn about unused expressions in statements.
277  for (unsigned i = 0; i != NumElts; ++i) {
278    // Ignore statements that are last in a statement expression.
279    if (isStmtExpr && i == NumElts - 1)
280      continue;
281
282    DiagnoseUnusedExprResult(Elts[i]);
283  }
284
285  // Check for suspicious empty body (null statement) in `for' and `while'
286  // statements.  Don't do anything for template instantiations, this just adds
287  // noise.
288  if (NumElts != 0 && !CurrentInstantiationScope &&
289      getCurCompoundScope().HasEmptyLoopBodies) {
290    for (unsigned i = 0; i != NumElts - 1; ++i)
291      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
292  }
293
294  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
295}
296
297StmtResult
298Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
299                    SourceLocation DotDotDotLoc, Expr *RHSVal,
300                    SourceLocation ColonLoc) {
301  assert((LHSVal != 0) && "missing expression in case statement");
302
303  if (getCurFunction()->SwitchStack.empty()) {
304    Diag(CaseLoc, diag::err_case_not_in_switch);
305    return StmtError();
306  }
307
308  if (!getLangOpts().CPlusPlus0x) {
309    // C99 6.8.4.2p3: The expression shall be an integer constant.
310    // However, GCC allows any evaluatable integer expression.
311    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
312      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
313      if (!LHSVal)
314        return StmtError();
315    }
316
317    // GCC extension: The expression shall be an integer constant.
318
319    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
320      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
321      // Recover from an error by just forgetting about it.
322    }
323  }
324
325  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
326                                        ColonLoc);
327  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
328  return Owned(CS);
329}
330
331/// ActOnCaseStmtBody - This installs a statement as the body of a case.
332void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
333  DiagnoseUnusedExprResult(SubStmt);
334
335  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
336  CS->setSubStmt(SubStmt);
337}
338
339StmtResult
340Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
341                       Stmt *SubStmt, Scope *CurScope) {
342  DiagnoseUnusedExprResult(SubStmt);
343
344  if (getCurFunction()->SwitchStack.empty()) {
345    Diag(DefaultLoc, diag::err_default_not_in_switch);
346    return Owned(SubStmt);
347  }
348
349  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
350  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
351  return Owned(DS);
352}
353
354StmtResult
355Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
356                     SourceLocation ColonLoc, Stmt *SubStmt) {
357  // If the label was multiply defined, reject it now.
358  if (TheDecl->getStmt()) {
359    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
360    Diag(TheDecl->getLocation(), diag::note_previous_definition);
361    return Owned(SubStmt);
362  }
363
364  // Otherwise, things are good.  Fill in the declaration and return it.
365  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
366  TheDecl->setStmt(LS);
367  if (!TheDecl->isGnuLocal())
368    TheDecl->setLocation(IdentLoc);
369  return Owned(LS);
370}
371
372StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
373                                     const AttrVec &Attrs,
374                                     Stmt *SubStmt) {
375  // Fill in the declaration and return it. Variable length will require to
376  // change this to AttributedStmt::Create(Context, ....);
377  // and probably using ArrayRef
378  AttributedStmt *LS = new (Context) AttributedStmt(AttrLoc, Attrs, SubStmt);
379  return Owned(LS);
380}
381
382StmtResult
383Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
384                  Stmt *thenStmt, SourceLocation ElseLoc,
385                  Stmt *elseStmt) {
386  ExprResult CondResult(CondVal.release());
387
388  VarDecl *ConditionVar = 0;
389  if (CondVar) {
390    ConditionVar = cast<VarDecl>(CondVar);
391    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
392    if (CondResult.isInvalid())
393      return StmtError();
394  }
395  Expr *ConditionExpr = CondResult.takeAs<Expr>();
396  if (!ConditionExpr)
397    return StmtError();
398
399  DiagnoseUnusedExprResult(thenStmt);
400
401  if (!elseStmt) {
402    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
403                          diag::warn_empty_if_body);
404  }
405
406  DiagnoseUnusedExprResult(elseStmt);
407
408  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
409                                    thenStmt, ElseLoc, elseStmt));
410}
411
412/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
413/// the specified width and sign.  If an overflow occurs, detect it and emit
414/// the specified diagnostic.
415void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
416                                              unsigned NewWidth, bool NewSign,
417                                              SourceLocation Loc,
418                                              unsigned DiagID) {
419  // Perform a conversion to the promoted condition type if needed.
420  if (NewWidth > Val.getBitWidth()) {
421    // If this is an extension, just do it.
422    Val = Val.extend(NewWidth);
423    Val.setIsSigned(NewSign);
424
425    // If the input was signed and negative and the output is
426    // unsigned, don't bother to warn: this is implementation-defined
427    // behavior.
428    // FIXME: Introduce a second, default-ignored warning for this case?
429  } else if (NewWidth < Val.getBitWidth()) {
430    // If this is a truncation, check for overflow.
431    llvm::APSInt ConvVal(Val);
432    ConvVal = ConvVal.trunc(NewWidth);
433    ConvVal.setIsSigned(NewSign);
434    ConvVal = ConvVal.extend(Val.getBitWidth());
435    ConvVal.setIsSigned(Val.isSigned());
436    if (ConvVal != Val)
437      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
438
439    // Regardless of whether a diagnostic was emitted, really do the
440    // truncation.
441    Val = Val.trunc(NewWidth);
442    Val.setIsSigned(NewSign);
443  } else if (NewSign != Val.isSigned()) {
444    // Convert the sign to match the sign of the condition.  This can cause
445    // overflow as well: unsigned(INTMIN)
446    // We don't diagnose this overflow, because it is implementation-defined
447    // behavior.
448    // FIXME: Introduce a second, default-ignored warning for this case?
449    llvm::APSInt OldVal(Val);
450    Val.setIsSigned(NewSign);
451  }
452}
453
454namespace {
455  struct CaseCompareFunctor {
456    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
457                    const llvm::APSInt &RHS) {
458      return LHS.first < RHS;
459    }
460    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
461                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
462      return LHS.first < RHS.first;
463    }
464    bool operator()(const llvm::APSInt &LHS,
465                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
466      return LHS < RHS.first;
467    }
468  };
469}
470
471/// CmpCaseVals - Comparison predicate for sorting case values.
472///
473static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
474                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
475  if (lhs.first < rhs.first)
476    return true;
477
478  if (lhs.first == rhs.first &&
479      lhs.second->getCaseLoc().getRawEncoding()
480       < rhs.second->getCaseLoc().getRawEncoding())
481    return true;
482  return false;
483}
484
485/// CmpEnumVals - Comparison predicate for sorting enumeration values.
486///
487static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
488                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
489{
490  return lhs.first < rhs.first;
491}
492
493/// EqEnumVals - Comparison preficate for uniqing enumeration values.
494///
495static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
496                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
497{
498  return lhs.first == rhs.first;
499}
500
501/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
502/// potentially integral-promoted expression @p expr.
503static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
504  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
505    expr = cleanups->getSubExpr();
506  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
507    if (impcast->getCastKind() != CK_IntegralCast) break;
508    expr = impcast->getSubExpr();
509  }
510  return expr->getType();
511}
512
513StmtResult
514Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
515                             Decl *CondVar) {
516  ExprResult CondResult;
517
518  VarDecl *ConditionVar = 0;
519  if (CondVar) {
520    ConditionVar = cast<VarDecl>(CondVar);
521    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
522    if (CondResult.isInvalid())
523      return StmtError();
524
525    Cond = CondResult.release();
526  }
527
528  if (!Cond)
529    return StmtError();
530
531  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
532    Expr *Cond;
533
534  public:
535    SwitchConvertDiagnoser(Expr *Cond)
536      : ICEConvertDiagnoser(false, true), Cond(Cond) { }
537
538    virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
539                                             QualType T) {
540      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
541    }
542
543    virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
544                                                 QualType T) {
545      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
546               << T << Cond->getSourceRange();
547    }
548
549    virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
550                                                   QualType T,
551                                                   QualType ConvTy) {
552      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
553    }
554
555    virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
556                                               QualType ConvTy) {
557      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
558        << ConvTy->isEnumeralType() << ConvTy;
559    }
560
561    virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
562                                                QualType T) {
563      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
564    }
565
566    virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
567                                            QualType ConvTy) {
568      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
569      << ConvTy->isEnumeralType() << ConvTy;
570    }
571
572    virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
573                                                 QualType T,
574                                                 QualType ConvTy) {
575      return DiagnosticBuilder::getEmpty();
576    }
577  } SwitchDiagnoser(Cond);
578
579  CondResult
580    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
581                                         /*AllowScopedEnumerations*/ true);
582  if (CondResult.isInvalid()) return StmtError();
583  Cond = CondResult.take();
584
585  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
586  CondResult = UsualUnaryConversions(Cond);
587  if (CondResult.isInvalid()) return StmtError();
588  Cond = CondResult.take();
589
590  if (!CondVar) {
591    CheckImplicitConversions(Cond, SwitchLoc);
592    CondResult = MaybeCreateExprWithCleanups(Cond);
593    if (CondResult.isInvalid())
594      return StmtError();
595    Cond = CondResult.take();
596  }
597
598  getCurFunction()->setHasBranchIntoScope();
599
600  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
601  getCurFunction()->SwitchStack.push_back(SS);
602  return Owned(SS);
603}
604
605static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
606  if (Val.getBitWidth() < BitWidth)
607    Val = Val.extend(BitWidth);
608  else if (Val.getBitWidth() > BitWidth)
609    Val = Val.trunc(BitWidth);
610  Val.setIsSigned(IsSigned);
611}
612
613StmtResult
614Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
615                            Stmt *BodyStmt) {
616  SwitchStmt *SS = cast<SwitchStmt>(Switch);
617  assert(SS == getCurFunction()->SwitchStack.back() &&
618         "switch stack missing push/pop!");
619
620  SS->setBody(BodyStmt, SwitchLoc);
621  getCurFunction()->SwitchStack.pop_back();
622
623  Expr *CondExpr = SS->getCond();
624  if (!CondExpr) return StmtError();
625
626  QualType CondType = CondExpr->getType();
627
628  Expr *CondExprBeforePromotion = CondExpr;
629  QualType CondTypeBeforePromotion =
630      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
631
632  // C++ 6.4.2.p2:
633  // Integral promotions are performed (on the switch condition).
634  //
635  // A case value unrepresentable by the original switch condition
636  // type (before the promotion) doesn't make sense, even when it can
637  // be represented by the promoted type.  Therefore we need to find
638  // the pre-promotion type of the switch condition.
639  if (!CondExpr->isTypeDependent()) {
640    // We have already converted the expression to an integral or enumeration
641    // type, when we started the switch statement. If we don't have an
642    // appropriate type now, just return an error.
643    if (!CondType->isIntegralOrEnumerationType())
644      return StmtError();
645
646    if (CondExpr->isKnownToHaveBooleanValue()) {
647      // switch(bool_expr) {...} is often a programmer error, e.g.
648      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
649      // One can always use an if statement instead of switch(bool_expr).
650      Diag(SwitchLoc, diag::warn_bool_switch_condition)
651          << CondExpr->getSourceRange();
652    }
653  }
654
655  // Get the bitwidth of the switched-on value before promotions.  We must
656  // convert the integer case values to this width before comparison.
657  bool HasDependentValue
658    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
659  unsigned CondWidth
660    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
661  bool CondIsSigned
662    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
663
664  // Accumulate all of the case values in a vector so that we can sort them
665  // and detect duplicates.  This vector contains the APInt for the case after
666  // it has been converted to the condition type.
667  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
668  CaseValsTy CaseVals;
669
670  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
671  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
672  CaseRangesTy CaseRanges;
673
674  DefaultStmt *TheDefaultStmt = 0;
675
676  bool CaseListIsErroneous = false;
677
678  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
679       SC = SC->getNextSwitchCase()) {
680
681    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
682      if (TheDefaultStmt) {
683        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
684        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
685
686        // FIXME: Remove the default statement from the switch block so that
687        // we'll return a valid AST.  This requires recursing down the AST and
688        // finding it, not something we are set up to do right now.  For now,
689        // just lop the entire switch stmt out of the AST.
690        CaseListIsErroneous = true;
691      }
692      TheDefaultStmt = DS;
693
694    } else {
695      CaseStmt *CS = cast<CaseStmt>(SC);
696
697      Expr *Lo = CS->getLHS();
698
699      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
700        HasDependentValue = true;
701        break;
702      }
703
704      llvm::APSInt LoVal;
705
706      if (getLangOpts().CPlusPlus0x) {
707        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
708        // constant expression of the promoted type of the switch condition.
709        ExprResult ConvLo =
710          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
711        if (ConvLo.isInvalid()) {
712          CaseListIsErroneous = true;
713          continue;
714        }
715        Lo = ConvLo.take();
716      } else {
717        // We already verified that the expression has a i-c-e value (C99
718        // 6.8.4.2p3) - get that value now.
719        LoVal = Lo->EvaluateKnownConstInt(Context);
720
721        // If the LHS is not the same type as the condition, insert an implicit
722        // cast.
723        Lo = DefaultLvalueConversion(Lo).take();
724        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
725      }
726
727      // Convert the value to the same width/sign as the condition had prior to
728      // integral promotions.
729      //
730      // FIXME: This causes us to reject valid code:
731      //   switch ((char)c) { case 256: case 0: return 0; }
732      // Here we claim there is a duplicated condition value, but there is not.
733      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
734                                         Lo->getLocStart(),
735                                         diag::warn_case_value_overflow);
736
737      CS->setLHS(Lo);
738
739      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
740      if (CS->getRHS()) {
741        if (CS->getRHS()->isTypeDependent() ||
742            CS->getRHS()->isValueDependent()) {
743          HasDependentValue = true;
744          break;
745        }
746        CaseRanges.push_back(std::make_pair(LoVal, CS));
747      } else
748        CaseVals.push_back(std::make_pair(LoVal, CS));
749    }
750  }
751
752  if (!HasDependentValue) {
753    // If we don't have a default statement, check whether the
754    // condition is constant.
755    llvm::APSInt ConstantCondValue;
756    bool HasConstantCond = false;
757    if (!HasDependentValue && !TheDefaultStmt) {
758      HasConstantCond
759        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
760                                                 Expr::SE_AllowSideEffects);
761      assert(!HasConstantCond ||
762             (ConstantCondValue.getBitWidth() == CondWidth &&
763              ConstantCondValue.isSigned() == CondIsSigned));
764    }
765    bool ShouldCheckConstantCond = HasConstantCond;
766
767    // Sort all the scalar case values so we can easily detect duplicates.
768    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
769
770    if (!CaseVals.empty()) {
771      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
772        if (ShouldCheckConstantCond &&
773            CaseVals[i].first == ConstantCondValue)
774          ShouldCheckConstantCond = false;
775
776        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
777          // If we have a duplicate, report it.
778          // First, determine if either case value has a name
779          StringRef PrevString, CurrString;
780          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
781          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
782          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
783            PrevString = DeclRef->getDecl()->getName();
784          }
785          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
786            CurrString = DeclRef->getDecl()->getName();
787          }
788          llvm::SmallString<16> CaseValStr;
789          CaseVals[i-1].first.toString(CaseValStr);
790
791          if (PrevString == CurrString)
792            Diag(CaseVals[i].second->getLHS()->getLocStart(),
793                 diag::err_duplicate_case) <<
794                 (PrevString.empty() ? CaseValStr.str() : PrevString);
795          else
796            Diag(CaseVals[i].second->getLHS()->getLocStart(),
797                 diag::err_duplicate_case_differing_expr) <<
798                 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
799                 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
800                 CaseValStr;
801
802          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
803               diag::note_duplicate_case_prev);
804          // FIXME: We really want to remove the bogus case stmt from the
805          // substmt, but we have no way to do this right now.
806          CaseListIsErroneous = true;
807        }
808      }
809    }
810
811    // Detect duplicate case ranges, which usually don't exist at all in
812    // the first place.
813    if (!CaseRanges.empty()) {
814      // Sort all the case ranges by their low value so we can easily detect
815      // overlaps between ranges.
816      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
817
818      // Scan the ranges, computing the high values and removing empty ranges.
819      std::vector<llvm::APSInt> HiVals;
820      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
821        llvm::APSInt &LoVal = CaseRanges[i].first;
822        CaseStmt *CR = CaseRanges[i].second;
823        Expr *Hi = CR->getRHS();
824        llvm::APSInt HiVal;
825
826        if (getLangOpts().CPlusPlus0x) {
827          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
828          // constant expression of the promoted type of the switch condition.
829          ExprResult ConvHi =
830            CheckConvertedConstantExpression(Hi, CondType, HiVal,
831                                             CCEK_CaseValue);
832          if (ConvHi.isInvalid()) {
833            CaseListIsErroneous = true;
834            continue;
835          }
836          Hi = ConvHi.take();
837        } else {
838          HiVal = Hi->EvaluateKnownConstInt(Context);
839
840          // If the RHS is not the same type as the condition, insert an
841          // implicit cast.
842          Hi = DefaultLvalueConversion(Hi).take();
843          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
844        }
845
846        // Convert the value to the same width/sign as the condition.
847        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
848                                           Hi->getLocStart(),
849                                           diag::warn_case_value_overflow);
850
851        CR->setRHS(Hi);
852
853        // If the low value is bigger than the high value, the case is empty.
854        if (LoVal > HiVal) {
855          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
856            << SourceRange(CR->getLHS()->getLocStart(),
857                           Hi->getLocEnd());
858          CaseRanges.erase(CaseRanges.begin()+i);
859          --i, --e;
860          continue;
861        }
862
863        if (ShouldCheckConstantCond &&
864            LoVal <= ConstantCondValue &&
865            ConstantCondValue <= HiVal)
866          ShouldCheckConstantCond = false;
867
868        HiVals.push_back(HiVal);
869      }
870
871      // Rescan the ranges, looking for overlap with singleton values and other
872      // ranges.  Since the range list is sorted, we only need to compare case
873      // ranges with their neighbors.
874      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
875        llvm::APSInt &CRLo = CaseRanges[i].first;
876        llvm::APSInt &CRHi = HiVals[i];
877        CaseStmt *CR = CaseRanges[i].second;
878
879        // Check to see whether the case range overlaps with any
880        // singleton cases.
881        CaseStmt *OverlapStmt = 0;
882        llvm::APSInt OverlapVal(32);
883
884        // Find the smallest value >= the lower bound.  If I is in the
885        // case range, then we have overlap.
886        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
887                                                  CaseVals.end(), CRLo,
888                                                  CaseCompareFunctor());
889        if (I != CaseVals.end() && I->first < CRHi) {
890          OverlapVal  = I->first;   // Found overlap with scalar.
891          OverlapStmt = I->second;
892        }
893
894        // Find the smallest value bigger than the upper bound.
895        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
896        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
897          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
898          OverlapStmt = (I-1)->second;
899        }
900
901        // Check to see if this case stmt overlaps with the subsequent
902        // case range.
903        if (i && CRLo <= HiVals[i-1]) {
904          OverlapVal  = HiVals[i-1];       // Found overlap with range.
905          OverlapStmt = CaseRanges[i-1].second;
906        }
907
908        if (OverlapStmt) {
909          // If we have a duplicate, report it.
910          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
911            << OverlapVal.toString(10);
912          Diag(OverlapStmt->getLHS()->getLocStart(),
913               diag::note_duplicate_case_prev);
914          // FIXME: We really want to remove the bogus case stmt from the
915          // substmt, but we have no way to do this right now.
916          CaseListIsErroneous = true;
917        }
918      }
919    }
920
921    // Complain if we have a constant condition and we didn't find a match.
922    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
923      // TODO: it would be nice if we printed enums as enums, chars as
924      // chars, etc.
925      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
926        << ConstantCondValue.toString(10)
927        << CondExpr->getSourceRange();
928    }
929
930    // Check to see if switch is over an Enum and handles all of its
931    // values.  We only issue a warning if there is not 'default:', but
932    // we still do the analysis to preserve this information in the AST
933    // (which can be used by flow-based analyes).
934    //
935    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
936
937    // If switch has default case, then ignore it.
938    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
939      const EnumDecl *ED = ET->getDecl();
940      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
941        EnumValsTy;
942      EnumValsTy EnumVals;
943
944      // Gather all enum values, set their type and sort them,
945      // allowing easier comparison with CaseVals.
946      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
947           EDI != ED->enumerator_end(); ++EDI) {
948        llvm::APSInt Val = EDI->getInitVal();
949        AdjustAPSInt(Val, CondWidth, CondIsSigned);
950        EnumVals.push_back(std::make_pair(Val, *EDI));
951      }
952      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
953      EnumValsTy::iterator EIend =
954        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
955
956      // See which case values aren't in enum.
957      EnumValsTy::const_iterator EI = EnumVals.begin();
958      for (CaseValsTy::const_iterator CI = CaseVals.begin();
959           CI != CaseVals.end(); CI++) {
960        while (EI != EIend && EI->first < CI->first)
961          EI++;
962        if (EI == EIend || EI->first > CI->first)
963          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
964            << CondTypeBeforePromotion;
965      }
966      // See which of case ranges aren't in enum
967      EI = EnumVals.begin();
968      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
969           RI != CaseRanges.end() && EI != EIend; RI++) {
970        while (EI != EIend && EI->first < RI->first)
971          EI++;
972
973        if (EI == EIend || EI->first != RI->first) {
974          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
975            << CondTypeBeforePromotion;
976        }
977
978        llvm::APSInt Hi =
979          RI->second->getRHS()->EvaluateKnownConstInt(Context);
980        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
981        while (EI != EIend && EI->first < Hi)
982          EI++;
983        if (EI == EIend || EI->first != Hi)
984          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
985            << CondTypeBeforePromotion;
986      }
987
988      // Check which enum vals aren't in switch
989      CaseValsTy::const_iterator CI = CaseVals.begin();
990      CaseRangesTy::const_iterator RI = CaseRanges.begin();
991      bool hasCasesNotInSwitch = false;
992
993      SmallVector<DeclarationName,8> UnhandledNames;
994
995      for (EI = EnumVals.begin(); EI != EIend; EI++){
996        // Drop unneeded case values
997        llvm::APSInt CIVal;
998        while (CI != CaseVals.end() && CI->first < EI->first)
999          CI++;
1000
1001        if (CI != CaseVals.end() && CI->first == EI->first)
1002          continue;
1003
1004        // Drop unneeded case ranges
1005        for (; RI != CaseRanges.end(); RI++) {
1006          llvm::APSInt Hi =
1007            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1008          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1009          if (EI->first <= Hi)
1010            break;
1011        }
1012
1013        if (RI == CaseRanges.end() || EI->first < RI->first) {
1014          hasCasesNotInSwitch = true;
1015          UnhandledNames.push_back(EI->second->getDeclName());
1016        }
1017      }
1018
1019      if (TheDefaultStmt && UnhandledNames.empty())
1020        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1021
1022      // Produce a nice diagnostic if multiple values aren't handled.
1023      switch (UnhandledNames.size()) {
1024      case 0: break;
1025      case 1:
1026        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1027          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1028          << UnhandledNames[0];
1029        break;
1030      case 2:
1031        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1032          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1033          << UnhandledNames[0] << UnhandledNames[1];
1034        break;
1035      case 3:
1036        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1037          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1038          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1039        break;
1040      default:
1041        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1042          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1043          << (unsigned)UnhandledNames.size()
1044          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1045        break;
1046      }
1047
1048      if (!hasCasesNotInSwitch)
1049        SS->setAllEnumCasesCovered();
1050    }
1051  }
1052
1053  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1054                        diag::warn_empty_switch_body);
1055
1056  // FIXME: If the case list was broken is some way, we don't have a good system
1057  // to patch it up.  Instead, just return the whole substmt as broken.
1058  if (CaseListIsErroneous)
1059    return StmtError();
1060
1061  return Owned(SS);
1062}
1063
1064StmtResult
1065Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1066                     Decl *CondVar, Stmt *Body) {
1067  ExprResult CondResult(Cond.release());
1068
1069  VarDecl *ConditionVar = 0;
1070  if (CondVar) {
1071    ConditionVar = cast<VarDecl>(CondVar);
1072    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1073    if (CondResult.isInvalid())
1074      return StmtError();
1075  }
1076  Expr *ConditionExpr = CondResult.take();
1077  if (!ConditionExpr)
1078    return StmtError();
1079
1080  DiagnoseUnusedExprResult(Body);
1081
1082  if (isa<NullStmt>(Body))
1083    getCurCompoundScope().setHasEmptyLoopBodies();
1084
1085  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1086                                       Body, WhileLoc));
1087}
1088
1089StmtResult
1090Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1091                  SourceLocation WhileLoc, SourceLocation CondLParen,
1092                  Expr *Cond, SourceLocation CondRParen) {
1093  assert(Cond && "ActOnDoStmt(): missing expression");
1094
1095  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1096  if (CondResult.isInvalid() || CondResult.isInvalid())
1097    return StmtError();
1098  Cond = CondResult.take();
1099
1100  CheckImplicitConversions(Cond, DoLoc);
1101  CondResult = MaybeCreateExprWithCleanups(Cond);
1102  if (CondResult.isInvalid())
1103    return StmtError();
1104  Cond = CondResult.take();
1105
1106  DiagnoseUnusedExprResult(Body);
1107
1108  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1109}
1110
1111namespace {
1112  // This visitor will traverse a conditional statement and store all
1113  // the evaluated decls into a vector.  Simple is set to true if none
1114  // of the excluded constructs are used.
1115  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1116    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1117    llvm::SmallVector<SourceRange, 10> &Ranges;
1118    bool Simple;
1119public:
1120  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1121
1122  DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1123                llvm::SmallVector<SourceRange, 10> &Ranges) :
1124      Inherited(S.Context),
1125      Decls(Decls),
1126      Ranges(Ranges),
1127      Simple(true) {}
1128
1129  bool isSimple() { return Simple; }
1130
1131  // Replaces the method in EvaluatedExprVisitor.
1132  void VisitMemberExpr(MemberExpr* E) {
1133    Simple = false;
1134  }
1135
1136  // Any Stmt not whitelisted will cause the condition to be marked complex.
1137  void VisitStmt(Stmt *S) {
1138    Simple = false;
1139  }
1140
1141  void VisitBinaryOperator(BinaryOperator *E) {
1142    Visit(E->getLHS());
1143    Visit(E->getRHS());
1144  }
1145
1146  void VisitCastExpr(CastExpr *E) {
1147    Visit(E->getSubExpr());
1148  }
1149
1150  void VisitUnaryOperator(UnaryOperator *E) {
1151    // Skip checking conditionals with derefernces.
1152    if (E->getOpcode() == UO_Deref)
1153      Simple = false;
1154    else
1155      Visit(E->getSubExpr());
1156  }
1157
1158  void VisitConditionalOperator(ConditionalOperator *E) {
1159    Visit(E->getCond());
1160    Visit(E->getTrueExpr());
1161    Visit(E->getFalseExpr());
1162  }
1163
1164  void VisitParenExpr(ParenExpr *E) {
1165    Visit(E->getSubExpr());
1166  }
1167
1168  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1169    Visit(E->getOpaqueValue()->getSourceExpr());
1170    Visit(E->getFalseExpr());
1171  }
1172
1173  void VisitIntegerLiteral(IntegerLiteral *E) { }
1174  void VisitFloatingLiteral(FloatingLiteral *E) { }
1175  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1176  void VisitCharacterLiteral(CharacterLiteral *E) { }
1177  void VisitGNUNullExpr(GNUNullExpr *E) { }
1178  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1179
1180  void VisitDeclRefExpr(DeclRefExpr *E) {
1181    VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1182    if (!VD) return;
1183
1184    Ranges.push_back(E->getSourceRange());
1185
1186    Decls.insert(VD);
1187  }
1188
1189  }; // end class DeclExtractor
1190
1191  // DeclMatcher checks to see if the decls are used in a non-evauluated
1192  // context.
1193  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1194    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1195    bool FoundDecl;
1196
1197public:
1198  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1199
1200  DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1201      Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1202    if (!Statement) return;
1203
1204    Visit(Statement);
1205  }
1206
1207  void VisitReturnStmt(ReturnStmt *S) {
1208    FoundDecl = true;
1209  }
1210
1211  void VisitBreakStmt(BreakStmt *S) {
1212    FoundDecl = true;
1213  }
1214
1215  void VisitGotoStmt(GotoStmt *S) {
1216    FoundDecl = true;
1217  }
1218
1219  void VisitCastExpr(CastExpr *E) {
1220    if (E->getCastKind() == CK_LValueToRValue)
1221      CheckLValueToRValueCast(E->getSubExpr());
1222    else
1223      Visit(E->getSubExpr());
1224  }
1225
1226  void CheckLValueToRValueCast(Expr *E) {
1227    E = E->IgnoreParenImpCasts();
1228
1229    if (isa<DeclRefExpr>(E)) {
1230      return;
1231    }
1232
1233    if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1234      Visit(CO->getCond());
1235      CheckLValueToRValueCast(CO->getTrueExpr());
1236      CheckLValueToRValueCast(CO->getFalseExpr());
1237      return;
1238    }
1239
1240    if (BinaryConditionalOperator *BCO =
1241            dyn_cast<BinaryConditionalOperator>(E)) {
1242      CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1243      CheckLValueToRValueCast(BCO->getFalseExpr());
1244      return;
1245    }
1246
1247    Visit(E);
1248  }
1249
1250  void VisitDeclRefExpr(DeclRefExpr *E) {
1251    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1252      if (Decls.count(VD))
1253        FoundDecl = true;
1254  }
1255
1256  bool FoundDeclInUse() { return FoundDecl; }
1257
1258  };  // end class DeclMatcher
1259
1260  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1261                                        Expr *Third, Stmt *Body) {
1262    // Condition is empty
1263    if (!Second) return;
1264
1265    if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1266                                   Second->getLocStart())
1267        == DiagnosticsEngine::Ignored)
1268      return;
1269
1270    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1271    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1272    llvm::SmallVector<SourceRange, 10> Ranges;
1273    DeclExtractor DE(S, Decls, Ranges);
1274    DE.Visit(Second);
1275
1276    // Don't analyze complex conditionals.
1277    if (!DE.isSimple()) return;
1278
1279    // No decls found.
1280    if (Decls.size() == 0) return;
1281
1282    // Don't warn on volatile, static, or global variables.
1283    for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1284                                                  E = Decls.end();
1285         I != E; ++I)
1286      if ((*I)->getType().isVolatileQualified() ||
1287          (*I)->hasGlobalStorage()) return;
1288
1289    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1290        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1291        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1292      return;
1293
1294    // Load decl names into diagnostic.
1295    if (Decls.size() > 4)
1296      PDiag << 0;
1297    else {
1298      PDiag << Decls.size();
1299      for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1300                                                    E = Decls.end();
1301           I != E; ++I)
1302        PDiag << (*I)->getDeclName();
1303    }
1304
1305    // Load SourceRanges into diagnostic if there is room.
1306    // Otherwise, load the SourceRange of the conditional expression.
1307    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1308      for (llvm::SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1309                                                        E = Ranges.end();
1310           I != E; ++I)
1311        PDiag << *I;
1312    else
1313      PDiag << Second->getSourceRange();
1314
1315    S.Diag(Ranges.begin()->getBegin(), PDiag);
1316  }
1317
1318} // end namespace
1319
1320StmtResult
1321Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1322                   Stmt *First, FullExprArg second, Decl *secondVar,
1323                   FullExprArg third,
1324                   SourceLocation RParenLoc, Stmt *Body) {
1325  if (!getLangOpts().CPlusPlus) {
1326    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1327      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1328      // declare identifiers for objects having storage class 'auto' or
1329      // 'register'.
1330      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1331           DI!=DE; ++DI) {
1332        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1333        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1334          VD = 0;
1335        if (VD == 0)
1336          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1337        // FIXME: mark decl erroneous!
1338      }
1339    }
1340  }
1341
1342  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1343
1344  ExprResult SecondResult(second.release());
1345  VarDecl *ConditionVar = 0;
1346  if (secondVar) {
1347    ConditionVar = cast<VarDecl>(secondVar);
1348    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1349    if (SecondResult.isInvalid())
1350      return StmtError();
1351  }
1352
1353  Expr *Third  = third.release().takeAs<Expr>();
1354
1355  DiagnoseUnusedExprResult(First);
1356  DiagnoseUnusedExprResult(Third);
1357  DiagnoseUnusedExprResult(Body);
1358
1359  if (isa<NullStmt>(Body))
1360    getCurCompoundScope().setHasEmptyLoopBodies();
1361
1362  return Owned(new (Context) ForStmt(Context, First,
1363                                     SecondResult.take(), ConditionVar,
1364                                     Third, Body, ForLoc, LParenLoc,
1365                                     RParenLoc));
1366}
1367
1368/// In an Objective C collection iteration statement:
1369///   for (x in y)
1370/// x can be an arbitrary l-value expression.  Bind it up as a
1371/// full-expression.
1372StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1373  // Reduce placeholder expressions here.  Note that this rejects the
1374  // use of pseudo-object l-values in this position.
1375  ExprResult result = CheckPlaceholderExpr(E);
1376  if (result.isInvalid()) return StmtError();
1377  E = result.take();
1378
1379  CheckImplicitConversions(E);
1380
1381  result = MaybeCreateExprWithCleanups(E);
1382  if (result.isInvalid()) return StmtError();
1383
1384  return Owned(static_cast<Stmt*>(result.take()));
1385}
1386
1387ExprResult
1388Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1389  if (!collection)
1390    return ExprError();
1391
1392  // Bail out early if we've got a type-dependent expression.
1393  if (collection->isTypeDependent()) return Owned(collection);
1394
1395  // Perform normal l-value conversion.
1396  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1397  if (result.isInvalid())
1398    return ExprError();
1399  collection = result.take();
1400
1401  // The operand needs to have object-pointer type.
1402  // TODO: should we do a contextual conversion?
1403  const ObjCObjectPointerType *pointerType =
1404    collection->getType()->getAs<ObjCObjectPointerType>();
1405  if (!pointerType)
1406    return Diag(forLoc, diag::err_collection_expr_type)
1407             << collection->getType() << collection->getSourceRange();
1408
1409  // Check that the operand provides
1410  //   - countByEnumeratingWithState:objects:count:
1411  const ObjCObjectType *objectType = pointerType->getObjectType();
1412  ObjCInterfaceDecl *iface = objectType->getInterface();
1413
1414  // If we have a forward-declared type, we can't do this check.
1415  // Under ARC, it is an error not to have a forward-declared class.
1416  if (iface &&
1417      RequireCompleteType(forLoc, QualType(objectType, 0),
1418                          getLangOpts().ObjCAutoRefCount
1419                            ? diag::err_arc_collection_forward
1420                            : 0,
1421                          collection)) {
1422    // Otherwise, if we have any useful type information, check that
1423    // the type declares the appropriate method.
1424  } else if (iface || !objectType->qual_empty()) {
1425    IdentifierInfo *selectorIdents[] = {
1426      &Context.Idents.get("countByEnumeratingWithState"),
1427      &Context.Idents.get("objects"),
1428      &Context.Idents.get("count")
1429    };
1430    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1431
1432    ObjCMethodDecl *method = 0;
1433
1434    // If there's an interface, look in both the public and private APIs.
1435    if (iface) {
1436      method = iface->lookupInstanceMethod(selector);
1437      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1438    }
1439
1440    // Also check protocol qualifiers.
1441    if (!method)
1442      method = LookupMethodInQualifiedType(selector, pointerType,
1443                                           /*instance*/ true);
1444
1445    // If we didn't find it anywhere, give up.
1446    if (!method) {
1447      Diag(forLoc, diag::warn_collection_expr_type)
1448        << collection->getType() << selector << collection->getSourceRange();
1449    }
1450
1451    // TODO: check for an incompatible signature?
1452  }
1453
1454  // Wrap up any cleanups in the expression.
1455  return Owned(MaybeCreateExprWithCleanups(collection));
1456}
1457
1458StmtResult
1459Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1460                                 SourceLocation LParenLoc,
1461                                 Stmt *First, Expr *collection,
1462                                 SourceLocation RParenLoc) {
1463
1464  ExprResult CollectionExprResult =
1465    CheckObjCForCollectionOperand(ForLoc, collection);
1466
1467  if (First) {
1468    QualType FirstType;
1469    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1470      if (!DS->isSingleDecl())
1471        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1472                         diag::err_toomany_element_decls));
1473
1474      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1475      FirstType = D->getType();
1476      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1477      // declare identifiers for objects having storage class 'auto' or
1478      // 'register'.
1479      if (!D->hasLocalStorage())
1480        return StmtError(Diag(D->getLocation(),
1481                              diag::err_non_variable_decl_in_for));
1482    } else {
1483      Expr *FirstE = cast<Expr>(First);
1484      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1485        return StmtError(Diag(First->getLocStart(),
1486                   diag::err_selector_element_not_lvalue)
1487          << First->getSourceRange());
1488
1489      FirstType = static_cast<Expr*>(First)->getType();
1490    }
1491    if (!FirstType->isDependentType() &&
1492        !FirstType->isObjCObjectPointerType() &&
1493        !FirstType->isBlockPointerType())
1494        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1495                           << FirstType << First->getSourceRange());
1496  }
1497
1498  if (CollectionExprResult.isInvalid())
1499    return StmtError();
1500
1501  return Owned(new (Context) ObjCForCollectionStmt(First,
1502                                                   CollectionExprResult.take(), 0,
1503                                                   ForLoc, RParenLoc));
1504}
1505
1506namespace {
1507
1508enum BeginEndFunction {
1509  BEF_begin,
1510  BEF_end
1511};
1512
1513/// Build a variable declaration for a for-range statement.
1514static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1515                                     QualType Type, const char *Name) {
1516  DeclContext *DC = SemaRef.CurContext;
1517  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1518  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1519  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1520                                  TInfo, SC_Auto, SC_None);
1521  Decl->setImplicit();
1522  return Decl;
1523}
1524
1525/// Finish building a variable declaration for a for-range statement.
1526/// \return true if an error occurs.
1527static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1528                                  SourceLocation Loc, int diag) {
1529  // Deduce the type for the iterator variable now rather than leaving it to
1530  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1531  TypeSourceInfo *InitTSI = 0;
1532  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1533      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1534          Sema::DAR_Failed)
1535    SemaRef.Diag(Loc, diag) << Init->getType();
1536  if (!InitTSI) {
1537    Decl->setInvalidDecl();
1538    return true;
1539  }
1540  Decl->setTypeSourceInfo(InitTSI);
1541  Decl->setType(InitTSI->getType());
1542
1543  // In ARC, infer lifetime.
1544  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1545  // we're doing the equivalent of fast iteration.
1546  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1547      SemaRef.inferObjCARCLifetime(Decl))
1548    Decl->setInvalidDecl();
1549
1550  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1551                               /*TypeMayContainAuto=*/false);
1552  SemaRef.FinalizeDeclaration(Decl);
1553  SemaRef.CurContext->addHiddenDecl(Decl);
1554  return false;
1555}
1556
1557/// Produce a note indicating which begin/end function was implicitly called
1558/// by a C++0x for-range statement. This is often not obvious from the code,
1559/// nor from the diagnostics produced when analysing the implicit expressions
1560/// required in a for-range statement.
1561void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1562                                  BeginEndFunction BEF) {
1563  CallExpr *CE = dyn_cast<CallExpr>(E);
1564  if (!CE)
1565    return;
1566  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1567  if (!D)
1568    return;
1569  SourceLocation Loc = D->getLocation();
1570
1571  std::string Description;
1572  bool IsTemplate = false;
1573  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1574    Description = SemaRef.getTemplateArgumentBindingsText(
1575      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1576    IsTemplate = true;
1577  }
1578
1579  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1580    << BEF << IsTemplate << Description << E->getType();
1581}
1582
1583/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1584/// given LookupResult is non-empty, it is assumed to describe a member which
1585/// will be invoked. Otherwise, the function will be found via argument
1586/// dependent lookup.
1587static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1588                                            SourceLocation Loc,
1589                                            VarDecl *Decl,
1590                                            BeginEndFunction BEF,
1591                                            const DeclarationNameInfo &NameInfo,
1592                                            LookupResult &MemberLookup,
1593                                            Expr *Range) {
1594  ExprResult CallExpr;
1595  if (!MemberLookup.empty()) {
1596    ExprResult MemberRef =
1597      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1598                                       /*IsPtr=*/false, CXXScopeSpec(),
1599                                       /*TemplateKWLoc=*/SourceLocation(),
1600                                       /*FirstQualifierInScope=*/0,
1601                                       MemberLookup,
1602                                       /*TemplateArgs=*/0);
1603    if (MemberRef.isInvalid())
1604      return ExprError();
1605    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1606                                     Loc, 0);
1607    if (CallExpr.isInvalid())
1608      return ExprError();
1609  } else {
1610    UnresolvedSet<0> FoundNames;
1611    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1612    // std is an associated namespace.
1613    UnresolvedLookupExpr *Fn =
1614      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1615                                   NestedNameSpecifierLoc(), NameInfo,
1616                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1617                                   FoundNames.begin(), FoundNames.end(),
1618                                   /*LookInStdNamespace=*/true);
1619    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1620                                               0, /*AllowTypoCorrection=*/false);
1621    if (CallExpr.isInvalid()) {
1622      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1623        << Range->getType();
1624      return ExprError();
1625    }
1626  }
1627  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1628                            diag::err_for_range_iter_deduction_failure)) {
1629    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1630    return ExprError();
1631  }
1632  return CallExpr;
1633}
1634
1635}
1636
1637static bool ObjCEnumerationCollection(Expr *Collection) {
1638  return !Collection->isTypeDependent()
1639          && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1640}
1641
1642/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1643///
1644/// C++0x [stmt.ranged]:
1645///   A range-based for statement is equivalent to
1646///
1647///   {
1648///     auto && __range = range-init;
1649///     for ( auto __begin = begin-expr,
1650///           __end = end-expr;
1651///           __begin != __end;
1652///           ++__begin ) {
1653///       for-range-declaration = *__begin;
1654///       statement
1655///     }
1656///   }
1657///
1658/// The body of the loop is not available yet, since it cannot be analysed until
1659/// we have determined the type of the for-range-declaration.
1660StmtResult
1661Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1662                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1663                           SourceLocation RParenLoc) {
1664  if (!First || !Range)
1665    return StmtError();
1666
1667  if (ObjCEnumerationCollection(Range))
1668    return ActOnObjCForCollectionStmt(ForLoc, LParenLoc, First, Range,
1669                                      RParenLoc);
1670
1671  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1672  assert(DS && "first part of for range not a decl stmt");
1673
1674  if (!DS->isSingleDecl()) {
1675    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1676    return StmtError();
1677  }
1678  if (DS->getSingleDecl()->isInvalidDecl())
1679    return StmtError();
1680
1681  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1682    return StmtError();
1683
1684  // Build  auto && __range = range-init
1685  SourceLocation RangeLoc = Range->getLocStart();
1686  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1687                                           Context.getAutoRRefDeductType(),
1688                                           "__range");
1689  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1690                            diag::err_for_range_deduction_failure))
1691    return StmtError();
1692
1693  // Claim the type doesn't contain auto: we've already done the checking.
1694  DeclGroupPtrTy RangeGroup =
1695    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1696  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1697  if (RangeDecl.isInvalid())
1698    return StmtError();
1699
1700  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1701                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1702                              RParenLoc);
1703}
1704
1705/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1706StmtResult
1707Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1708                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1709                           Expr *Inc, Stmt *LoopVarDecl,
1710                           SourceLocation RParenLoc) {
1711  Scope *S = getCurScope();
1712
1713  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1714  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1715  QualType RangeVarType = RangeVar->getType();
1716
1717  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1718  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1719
1720  StmtResult BeginEndDecl = BeginEnd;
1721  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1722
1723  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1724    SourceLocation RangeLoc = RangeVar->getLocation();
1725
1726    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1727
1728    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1729                                                VK_LValue, ColonLoc);
1730    if (BeginRangeRef.isInvalid())
1731      return StmtError();
1732
1733    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1734                                              VK_LValue, ColonLoc);
1735    if (EndRangeRef.isInvalid())
1736      return StmtError();
1737
1738    QualType AutoType = Context.getAutoDeductType();
1739    Expr *Range = RangeVar->getInit();
1740    if (!Range)
1741      return StmtError();
1742    QualType RangeType = Range->getType();
1743
1744    if (RequireCompleteType(RangeLoc, RangeType,
1745                            diag::err_for_range_incomplete_type))
1746      return StmtError();
1747
1748    // Build auto __begin = begin-expr, __end = end-expr.
1749    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1750                                             "__begin");
1751    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1752                                           "__end");
1753
1754    // Build begin-expr and end-expr and attach to __begin and __end variables.
1755    ExprResult BeginExpr, EndExpr;
1756    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1757      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1758      //   __range + __bound, respectively, where __bound is the array bound. If
1759      //   _RangeT is an array of unknown size or an array of incomplete type,
1760      //   the program is ill-formed;
1761
1762      // begin-expr is __range.
1763      BeginExpr = BeginRangeRef;
1764      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1765                                diag::err_for_range_iter_deduction_failure)) {
1766        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1767        return StmtError();
1768      }
1769
1770      // Find the array bound.
1771      ExprResult BoundExpr;
1772      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1773        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1774                                                 Context.getPointerDiffType(),
1775                                                 RangeLoc));
1776      else if (const VariableArrayType *VAT =
1777               dyn_cast<VariableArrayType>(UnqAT))
1778        BoundExpr = VAT->getSizeExpr();
1779      else {
1780        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1781        // UnqAT is not incomplete and Range is not type-dependent.
1782        llvm_unreachable("Unexpected array type in for-range");
1783      }
1784
1785      // end-expr is __range + __bound.
1786      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1787                           BoundExpr.get());
1788      if (EndExpr.isInvalid())
1789        return StmtError();
1790      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1791                                diag::err_for_range_iter_deduction_failure)) {
1792        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1793        return StmtError();
1794      }
1795    } else {
1796      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1797                                        ColonLoc);
1798      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1799                                      ColonLoc);
1800
1801      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1802      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1803
1804      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1805        // - if _RangeT is a class type, the unqualified-ids begin and end are
1806        //   looked up in the scope of class _RangeT as if by class member access
1807        //   lookup (3.4.5), and if either (or both) finds at least one
1808        //   declaration, begin-expr and end-expr are __range.begin() and
1809        //   __range.end(), respectively;
1810        LookupQualifiedName(BeginMemberLookup, D);
1811        LookupQualifiedName(EndMemberLookup, D);
1812
1813        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1814          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1815            << RangeType << BeginMemberLookup.empty();
1816          return StmtError();
1817        }
1818      } else {
1819        // - otherwise, begin-expr and end-expr are begin(__range) and
1820        //   end(__range), respectively, where begin and end are looked up with
1821        //   argument-dependent lookup (3.4.2). For the purposes of this name
1822        //   lookup, namespace std is an associated namespace.
1823      }
1824
1825      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1826                                            BEF_begin, BeginNameInfo,
1827                                            BeginMemberLookup,
1828                                            BeginRangeRef.get());
1829      if (BeginExpr.isInvalid())
1830        return StmtError();
1831
1832      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1833                                          BEF_end, EndNameInfo,
1834                                          EndMemberLookup, EndRangeRef.get());
1835      if (EndExpr.isInvalid())
1836        return StmtError();
1837    }
1838
1839    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1840    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1841    if (!Context.hasSameType(BeginType, EndType)) {
1842      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1843        << BeginType << EndType;
1844      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1845      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1846    }
1847
1848    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1849    // Claim the type doesn't contain auto: we've already done the checking.
1850    DeclGroupPtrTy BeginEndGroup =
1851      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1852    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1853
1854    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1855    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1856                                           VK_LValue, ColonLoc);
1857    if (BeginRef.isInvalid())
1858      return StmtError();
1859
1860    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1861                                         VK_LValue, ColonLoc);
1862    if (EndRef.isInvalid())
1863      return StmtError();
1864
1865    // Build and check __begin != __end expression.
1866    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1867                           BeginRef.get(), EndRef.get());
1868    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1869    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1870    if (NotEqExpr.isInvalid()) {
1871      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1872      if (!Context.hasSameType(BeginType, EndType))
1873        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1874      return StmtError();
1875    }
1876
1877    // Build and check ++__begin expression.
1878    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1879                                VK_LValue, ColonLoc);
1880    if (BeginRef.isInvalid())
1881      return StmtError();
1882
1883    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1884    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1885    if (IncrExpr.isInvalid()) {
1886      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1887      return StmtError();
1888    }
1889
1890    // Build and check *__begin  expression.
1891    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1892                                VK_LValue, ColonLoc);
1893    if (BeginRef.isInvalid())
1894      return StmtError();
1895
1896    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1897    if (DerefExpr.isInvalid()) {
1898      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1899      return StmtError();
1900    }
1901
1902    // Attach  *__begin  as initializer for VD.
1903    if (!LoopVar->isInvalidDecl()) {
1904      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1905                           /*TypeMayContainAuto=*/true);
1906      if (LoopVar->isInvalidDecl())
1907        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1908    }
1909  } else {
1910    // The range is implicitly used as a placeholder when it is dependent.
1911    RangeVar->setUsed();
1912  }
1913
1914  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1915                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1916                                             NotEqExpr.take(), IncrExpr.take(),
1917                                             LoopVarDS, /*Body=*/0, ForLoc,
1918                                             ColonLoc, RParenLoc));
1919}
1920
1921/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
1922/// statement.
1923StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
1924  if (!S || !B)
1925    return StmtError();
1926  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
1927
1928  ForStmt->setBody(B);
1929  return S;
1930}
1931
1932/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1933/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1934/// body cannot be performed until after the type of the range variable is
1935/// determined.
1936StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1937  if (!S || !B)
1938    return StmtError();
1939
1940  if (isa<ObjCForCollectionStmt>(S))
1941    return FinishObjCForCollectionStmt(S, B);
1942
1943  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
1944  ForStmt->setBody(B);
1945
1946  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
1947                        diag::warn_empty_range_based_for_body);
1948
1949  return S;
1950}
1951
1952StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1953                               SourceLocation LabelLoc,
1954                               LabelDecl *TheDecl) {
1955  getCurFunction()->setHasBranchIntoScope();
1956  TheDecl->setUsed();
1957  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1958}
1959
1960StmtResult
1961Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1962                            Expr *E) {
1963  // Convert operand to void*
1964  if (!E->isTypeDependent()) {
1965    QualType ETy = E->getType();
1966    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1967    ExprResult ExprRes = Owned(E);
1968    AssignConvertType ConvTy =
1969      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1970    if (ExprRes.isInvalid())
1971      return StmtError();
1972    E = ExprRes.take();
1973    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1974      return StmtError();
1975    E = MaybeCreateExprWithCleanups(E);
1976  }
1977
1978  getCurFunction()->setHasIndirectGoto();
1979
1980  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1981}
1982
1983StmtResult
1984Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1985  Scope *S = CurScope->getContinueParent();
1986  if (!S) {
1987    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1988    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1989  }
1990
1991  return Owned(new (Context) ContinueStmt(ContinueLoc));
1992}
1993
1994StmtResult
1995Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1996  Scope *S = CurScope->getBreakParent();
1997  if (!S) {
1998    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1999    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2000  }
2001
2002  return Owned(new (Context) BreakStmt(BreakLoc));
2003}
2004
2005/// \brief Determine whether the given expression is a candidate for
2006/// copy elision in either a return statement or a throw expression.
2007///
2008/// \param ReturnType If we're determining the copy elision candidate for
2009/// a return statement, this is the return type of the function. If we're
2010/// determining the copy elision candidate for a throw expression, this will
2011/// be a NULL type.
2012///
2013/// \param E The expression being returned from the function or block, or
2014/// being thrown.
2015///
2016/// \param AllowFunctionParameter Whether we allow function parameters to
2017/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2018/// we re-use this logic to determine whether we should try to move as part of
2019/// a return or throw (which does allow function parameters).
2020///
2021/// \returns The NRVO candidate variable, if the return statement may use the
2022/// NRVO, or NULL if there is no such candidate.
2023const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2024                                             Expr *E,
2025                                             bool AllowFunctionParameter) {
2026  QualType ExprType = E->getType();
2027  // - in a return statement in a function with ...
2028  // ... a class return type ...
2029  if (!ReturnType.isNull()) {
2030    if (!ReturnType->isRecordType())
2031      return 0;
2032    // ... the same cv-unqualified type as the function return type ...
2033    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2034      return 0;
2035  }
2036
2037  // ... the expression is the name of a non-volatile automatic object
2038  // (other than a function or catch-clause parameter)) ...
2039  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2040  if (!DR)
2041    return 0;
2042  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2043  if (!VD)
2044    return 0;
2045
2046  // ...object (other than a function or catch-clause parameter)...
2047  if (VD->getKind() != Decl::Var &&
2048      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2049    return 0;
2050  if (VD->isExceptionVariable()) return 0;
2051
2052  // ...automatic...
2053  if (!VD->hasLocalStorage()) return 0;
2054
2055  // ...non-volatile...
2056  if (VD->getType().isVolatileQualified()) return 0;
2057  if (VD->getType()->isReferenceType()) return 0;
2058
2059  // __block variables can't be allocated in a way that permits NRVO.
2060  if (VD->hasAttr<BlocksAttr>()) return 0;
2061
2062  // Variables with higher required alignment than their type's ABI
2063  // alignment cannot use NRVO.
2064  if (VD->hasAttr<AlignedAttr>() &&
2065      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2066    return 0;
2067
2068  return VD;
2069}
2070
2071/// \brief Perform the initialization of a potentially-movable value, which
2072/// is the result of return value.
2073///
2074/// This routine implements C++0x [class.copy]p33, which attempts to treat
2075/// returned lvalues as rvalues in certain cases (to prefer move construction),
2076/// then falls back to treating them as lvalues if that failed.
2077ExprResult
2078Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2079                                      const VarDecl *NRVOCandidate,
2080                                      QualType ResultType,
2081                                      Expr *Value,
2082                                      bool AllowNRVO) {
2083  // C++0x [class.copy]p33:
2084  //   When the criteria for elision of a copy operation are met or would
2085  //   be met save for the fact that the source object is a function
2086  //   parameter, and the object to be copied is designated by an lvalue,
2087  //   overload resolution to select the constructor for the copy is first
2088  //   performed as if the object were designated by an rvalue.
2089  ExprResult Res = ExprError();
2090  if (AllowNRVO &&
2091      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2092    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2093                              Value->getType(), CK_NoOp, Value, VK_XValue);
2094
2095    Expr *InitExpr = &AsRvalue;
2096    InitializationKind Kind
2097      = InitializationKind::CreateCopy(Value->getLocStart(),
2098                                       Value->getLocStart());
2099    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2100
2101    //   [...] If overload resolution fails, or if the type of the first
2102    //   parameter of the selected constructor is not an rvalue reference
2103    //   to the object's type (possibly cv-qualified), overload resolution
2104    //   is performed again, considering the object as an lvalue.
2105    if (Seq) {
2106      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2107           StepEnd = Seq.step_end();
2108           Step != StepEnd; ++Step) {
2109        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2110          continue;
2111
2112        CXXConstructorDecl *Constructor
2113        = cast<CXXConstructorDecl>(Step->Function.Function);
2114
2115        const RValueReferenceType *RRefType
2116          = Constructor->getParamDecl(0)->getType()
2117                                                 ->getAs<RValueReferenceType>();
2118
2119        // If we don't meet the criteria, break out now.
2120        if (!RRefType ||
2121            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2122                            Context.getTypeDeclType(Constructor->getParent())))
2123          break;
2124
2125        // Promote "AsRvalue" to the heap, since we now need this
2126        // expression node to persist.
2127        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2128                                         CK_NoOp, Value, 0, VK_XValue);
2129
2130        // Complete type-checking the initialization of the return type
2131        // using the constructor we found.
2132        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2133      }
2134    }
2135  }
2136
2137  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2138  // above, or overload resolution failed. Either way, we need to try
2139  // (again) now with the return value expression as written.
2140  if (Res.isInvalid())
2141    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2142
2143  return Res;
2144}
2145
2146/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2147/// for capturing scopes.
2148///
2149StmtResult
2150Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2151  // If this is the first return we've seen, infer the return type.
2152  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2153  // rules which allows multiple return statements.
2154  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2155  QualType FnRetType = CurCap->ReturnType;
2156
2157  // For blocks/lambdas with implicit return types, we check each return
2158  // statement individually, and deduce the common return type when the block
2159  // or lambda is completed.
2160  if (CurCap->HasImplicitReturnType) {
2161    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2162      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2163      if (Result.isInvalid())
2164        return StmtError();
2165      RetValExp = Result.take();
2166
2167      if (!RetValExp->isTypeDependent())
2168        FnRetType = RetValExp->getType();
2169      else
2170        FnRetType = CurCap->ReturnType = Context.DependentTy;
2171    } else {
2172      if (RetValExp) {
2173        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2174        // initializer list, because it is not an expression (even
2175        // though we represent it as one). We still deduce 'void'.
2176        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2177          << RetValExp->getSourceRange();
2178      }
2179
2180      FnRetType = Context.VoidTy;
2181    }
2182
2183    // Although we'll properly infer the type of the block once it's completed,
2184    // make sure we provide a return type now for better error recovery.
2185    if (CurCap->ReturnType.isNull())
2186      CurCap->ReturnType = FnRetType;
2187  }
2188  assert(!FnRetType.isNull());
2189
2190  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2191    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2192      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2193      return StmtError();
2194    }
2195  } else {
2196    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2197    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2198      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2199      return StmtError();
2200    }
2201  }
2202
2203  // Otherwise, verify that this result type matches the previous one.  We are
2204  // pickier with blocks than for normal functions because we don't have GCC
2205  // compatibility to worry about here.
2206  const VarDecl *NRVOCandidate = 0;
2207  if (FnRetType->isDependentType()) {
2208    // Delay processing for now.  TODO: there are lots of dependent
2209    // types we can conclusively prove aren't void.
2210  } else if (FnRetType->isVoidType()) {
2211    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2212        !(getLangOpts().CPlusPlus &&
2213          (RetValExp->isTypeDependent() ||
2214           RetValExp->getType()->isVoidType()))) {
2215      if (!getLangOpts().CPlusPlus &&
2216          RetValExp->getType()->isVoidType())
2217        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2218      else {
2219        Diag(ReturnLoc, diag::err_return_block_has_expr);
2220        RetValExp = 0;
2221      }
2222    }
2223  } else if (!RetValExp) {
2224    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2225  } else if (!RetValExp->isTypeDependent()) {
2226    // we have a non-void block with an expression, continue checking
2227
2228    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2229    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2230    // function return.
2231
2232    // In C++ the return statement is handled via a copy initialization.
2233    // the C version of which boils down to CheckSingleAssignmentConstraints.
2234    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2235    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2236                                                                   FnRetType,
2237                                                          NRVOCandidate != 0);
2238    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2239                                                     FnRetType, RetValExp);
2240    if (Res.isInvalid()) {
2241      // FIXME: Cleanup temporaries here, anyway?
2242      return StmtError();
2243    }
2244    RetValExp = Res.take();
2245    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2246  }
2247
2248  if (RetValExp) {
2249    CheckImplicitConversions(RetValExp, ReturnLoc);
2250    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2251  }
2252  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2253                                                NRVOCandidate);
2254
2255  // If we need to check for the named return value optimization,
2256  // or if we need to infer the return type,
2257  // save the return statement in our scope for later processing.
2258  if (CurCap->HasImplicitReturnType ||
2259      (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2260       !CurContext->isDependentContext()))
2261    FunctionScopes.back()->Returns.push_back(Result);
2262
2263  return Owned(Result);
2264}
2265
2266StmtResult
2267Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2268  // Check for unexpanded parameter packs.
2269  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2270    return StmtError();
2271
2272  if (isa<CapturingScopeInfo>(getCurFunction()))
2273    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2274
2275  QualType FnRetType;
2276  QualType RelatedRetType;
2277  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2278    FnRetType = FD->getResultType();
2279    if (FD->hasAttr<NoReturnAttr>() ||
2280        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
2281      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2282        << FD->getDeclName();
2283  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2284    FnRetType = MD->getResultType();
2285    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2286      // In the implementation of a method with a related return type, the
2287      // type used to type-check the validity of return statements within the
2288      // method body is a pointer to the type of the class being implemented.
2289      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2290      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2291    }
2292  } else // If we don't have a function/method context, bail.
2293    return StmtError();
2294
2295  ReturnStmt *Result = 0;
2296  if (FnRetType->isVoidType()) {
2297    if (RetValExp) {
2298      if (isa<InitListExpr>(RetValExp)) {
2299        // We simply never allow init lists as the return value of void
2300        // functions. This is compatible because this was never allowed before,
2301        // so there's no legacy code to deal with.
2302        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2303        int FunctionKind = 0;
2304        if (isa<ObjCMethodDecl>(CurDecl))
2305          FunctionKind = 1;
2306        else if (isa<CXXConstructorDecl>(CurDecl))
2307          FunctionKind = 2;
2308        else if (isa<CXXDestructorDecl>(CurDecl))
2309          FunctionKind = 3;
2310
2311        Diag(ReturnLoc, diag::err_return_init_list)
2312          << CurDecl->getDeclName() << FunctionKind
2313          << RetValExp->getSourceRange();
2314
2315        // Drop the expression.
2316        RetValExp = 0;
2317      } else if (!RetValExp->isTypeDependent()) {
2318        // C99 6.8.6.4p1 (ext_ since GCC warns)
2319        unsigned D = diag::ext_return_has_expr;
2320        if (RetValExp->getType()->isVoidType())
2321          D = diag::ext_return_has_void_expr;
2322        else {
2323          ExprResult Result = Owned(RetValExp);
2324          Result = IgnoredValueConversions(Result.take());
2325          if (Result.isInvalid())
2326            return StmtError();
2327          RetValExp = Result.take();
2328          RetValExp = ImpCastExprToType(RetValExp,
2329                                        Context.VoidTy, CK_ToVoid).take();
2330        }
2331
2332        // return (some void expression); is legal in C++.
2333        if (D != diag::ext_return_has_void_expr ||
2334            !getLangOpts().CPlusPlus) {
2335          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2336
2337          int FunctionKind = 0;
2338          if (isa<ObjCMethodDecl>(CurDecl))
2339            FunctionKind = 1;
2340          else if (isa<CXXConstructorDecl>(CurDecl))
2341            FunctionKind = 2;
2342          else if (isa<CXXDestructorDecl>(CurDecl))
2343            FunctionKind = 3;
2344
2345          Diag(ReturnLoc, D)
2346            << CurDecl->getDeclName() << FunctionKind
2347            << RetValExp->getSourceRange();
2348        }
2349      }
2350
2351      if (RetValExp) {
2352        CheckImplicitConversions(RetValExp, ReturnLoc);
2353        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2354      }
2355    }
2356
2357    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2358  } else if (!RetValExp && !FnRetType->isDependentType()) {
2359    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2360    // C99 6.8.6.4p1 (ext_ since GCC warns)
2361    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2362
2363    if (FunctionDecl *FD = getCurFunctionDecl())
2364      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2365    else
2366      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2367    Result = new (Context) ReturnStmt(ReturnLoc);
2368  } else {
2369    const VarDecl *NRVOCandidate = 0;
2370    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2371      // we have a non-void function with an expression, continue checking
2372
2373      if (!RelatedRetType.isNull()) {
2374        // If we have a related result type, perform an extra conversion here.
2375        // FIXME: The diagnostics here don't really describe what is happening.
2376        InitializedEntity Entity =
2377            InitializedEntity::InitializeTemporary(RelatedRetType);
2378
2379        ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2380                                                   RetValExp);
2381        if (Res.isInvalid()) {
2382          // FIXME: Cleanup temporaries here, anyway?
2383          return StmtError();
2384        }
2385        RetValExp = Res.takeAs<Expr>();
2386      }
2387
2388      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2389      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2390      // function return.
2391
2392      // In C++ the return statement is handled via a copy initialization,
2393      // the C version of which boils down to CheckSingleAssignmentConstraints.
2394      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2395      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2396                                                                     FnRetType,
2397                                                            NRVOCandidate != 0);
2398      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2399                                                       FnRetType, RetValExp);
2400      if (Res.isInvalid()) {
2401        // FIXME: Cleanup temporaries here, anyway?
2402        return StmtError();
2403      }
2404
2405      RetValExp = Res.takeAs<Expr>();
2406      if (RetValExp)
2407        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2408    }
2409
2410    if (RetValExp) {
2411      CheckImplicitConversions(RetValExp, ReturnLoc);
2412      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2413    }
2414    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2415  }
2416
2417  // If we need to check for the named return value optimization, save the
2418  // return statement in our scope for later processing.
2419  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2420      !CurContext->isDependentContext())
2421    FunctionScopes.back()->Returns.push_back(Result);
2422
2423  return Owned(Result);
2424}
2425
2426/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2427/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2428/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2429/// provide a strong guidance to not use it.
2430///
2431/// This method checks to see if the argument is an acceptable l-value and
2432/// returns false if it is a case we can handle.
2433static bool CheckAsmLValue(const Expr *E, Sema &S) {
2434  // Type dependent expressions will be checked during instantiation.
2435  if (E->isTypeDependent())
2436    return false;
2437
2438  if (E->isLValue())
2439    return false;  // Cool, this is an lvalue.
2440
2441  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2442  // are supposed to allow.
2443  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2444  if (E != E2 && E2->isLValue()) {
2445    if (!S.getLangOpts().HeinousExtensions)
2446      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2447        << E->getSourceRange();
2448    else
2449      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2450        << E->getSourceRange();
2451    // Accept, even if we emitted an error diagnostic.
2452    return false;
2453  }
2454
2455  // None of the above, just randomly invalid non-lvalue.
2456  return true;
2457}
2458
2459/// isOperandMentioned - Return true if the specified operand # is mentioned
2460/// anywhere in the decomposed asm string.
2461static bool isOperandMentioned(unsigned OpNo,
2462                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2463  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2464    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2465    if (!Piece.isOperand()) continue;
2466
2467    // If this is a reference to the input and if the input was the smaller
2468    // one, then we have to reject this asm.
2469    if (Piece.getOperandNo() == OpNo)
2470      return true;
2471  }
2472  return false;
2473}
2474
2475StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2476                              bool IsVolatile, unsigned NumOutputs,
2477                              unsigned NumInputs, IdentifierInfo **Names,
2478                              MultiExprArg constraints, MultiExprArg exprs,
2479                              Expr *asmString, MultiExprArg clobbers,
2480                              SourceLocation RParenLoc, bool MSAsm) {
2481  unsigned NumClobbers = clobbers.size();
2482  StringLiteral **Constraints =
2483    reinterpret_cast<StringLiteral**>(constraints.get());
2484  Expr **Exprs = exprs.get();
2485  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2486  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2487
2488  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2489
2490  // The parser verifies that there is a string literal here.
2491  if (!AsmString->isAscii())
2492    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2493      << AsmString->getSourceRange());
2494
2495  for (unsigned i = 0; i != NumOutputs; i++) {
2496    StringLiteral *Literal = Constraints[i];
2497    if (!Literal->isAscii())
2498      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2499        << Literal->getSourceRange());
2500
2501    StringRef OutputName;
2502    if (Names[i])
2503      OutputName = Names[i]->getName();
2504
2505    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2506    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2507      return StmtError(Diag(Literal->getLocStart(),
2508                            diag::err_asm_invalid_output_constraint)
2509                       << Info.getConstraintStr());
2510
2511    // Check that the output exprs are valid lvalues.
2512    Expr *OutputExpr = Exprs[i];
2513    if (CheckAsmLValue(OutputExpr, *this)) {
2514      return StmtError(Diag(OutputExpr->getLocStart(),
2515                  diag::err_asm_invalid_lvalue_in_output)
2516        << OutputExpr->getSourceRange());
2517    }
2518
2519    OutputConstraintInfos.push_back(Info);
2520  }
2521
2522  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2523
2524  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2525    StringLiteral *Literal = Constraints[i];
2526    if (!Literal->isAscii())
2527      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2528        << Literal->getSourceRange());
2529
2530    StringRef InputName;
2531    if (Names[i])
2532      InputName = Names[i]->getName();
2533
2534    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2535    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2536                                                NumOutputs, Info)) {
2537      return StmtError(Diag(Literal->getLocStart(),
2538                            diag::err_asm_invalid_input_constraint)
2539                       << Info.getConstraintStr());
2540    }
2541
2542    Expr *InputExpr = Exprs[i];
2543
2544    // Only allow void types for memory constraints.
2545    if (Info.allowsMemory() && !Info.allowsRegister()) {
2546      if (CheckAsmLValue(InputExpr, *this))
2547        return StmtError(Diag(InputExpr->getLocStart(),
2548                              diag::err_asm_invalid_lvalue_in_input)
2549                         << Info.getConstraintStr()
2550                         << InputExpr->getSourceRange());
2551    }
2552
2553    if (Info.allowsRegister()) {
2554      if (InputExpr->getType()->isVoidType()) {
2555        return StmtError(Diag(InputExpr->getLocStart(),
2556                              diag::err_asm_invalid_type_in_input)
2557          << InputExpr->getType() << Info.getConstraintStr()
2558          << InputExpr->getSourceRange());
2559      }
2560    }
2561
2562    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2563    if (Result.isInvalid())
2564      return StmtError();
2565
2566    Exprs[i] = Result.take();
2567    InputConstraintInfos.push_back(Info);
2568  }
2569
2570  // Check that the clobbers are valid.
2571  for (unsigned i = 0; i != NumClobbers; i++) {
2572    StringLiteral *Literal = Clobbers[i];
2573    if (!Literal->isAscii())
2574      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2575        << Literal->getSourceRange());
2576
2577    StringRef Clobber = Literal->getString();
2578
2579    if (!Context.getTargetInfo().isValidClobber(Clobber))
2580      return StmtError(Diag(Literal->getLocStart(),
2581                  diag::err_asm_unknown_register_name) << Clobber);
2582  }
2583
2584  AsmStmt *NS =
2585    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2586                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2587                          AsmString, NumClobbers, Clobbers, RParenLoc);
2588  // Validate the asm string, ensuring it makes sense given the operands we
2589  // have.
2590  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2591  unsigned DiagOffs;
2592  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2593    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2594           << AsmString->getSourceRange();
2595    return StmtError();
2596  }
2597
2598  // Validate tied input operands for type mismatches.
2599  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2600    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2601
2602    // If this is a tied constraint, verify that the output and input have
2603    // either exactly the same type, or that they are int/ptr operands with the
2604    // same size (int/long, int*/long, are ok etc).
2605    if (!Info.hasTiedOperand()) continue;
2606
2607    unsigned TiedTo = Info.getTiedOperand();
2608    unsigned InputOpNo = i+NumOutputs;
2609    Expr *OutputExpr = Exprs[TiedTo];
2610    Expr *InputExpr = Exprs[InputOpNo];
2611
2612    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2613      continue;
2614
2615    QualType InTy = InputExpr->getType();
2616    QualType OutTy = OutputExpr->getType();
2617    if (Context.hasSameType(InTy, OutTy))
2618      continue;  // All types can be tied to themselves.
2619
2620    // Decide if the input and output are in the same domain (integer/ptr or
2621    // floating point.
2622    enum AsmDomain {
2623      AD_Int, AD_FP, AD_Other
2624    } InputDomain, OutputDomain;
2625
2626    if (InTy->isIntegerType() || InTy->isPointerType())
2627      InputDomain = AD_Int;
2628    else if (InTy->isRealFloatingType())
2629      InputDomain = AD_FP;
2630    else
2631      InputDomain = AD_Other;
2632
2633    if (OutTy->isIntegerType() || OutTy->isPointerType())
2634      OutputDomain = AD_Int;
2635    else if (OutTy->isRealFloatingType())
2636      OutputDomain = AD_FP;
2637    else
2638      OutputDomain = AD_Other;
2639
2640    // They are ok if they are the same size and in the same domain.  This
2641    // allows tying things like:
2642    //   void* to int*
2643    //   void* to int            if they are the same size.
2644    //   double to long double   if they are the same size.
2645    //
2646    uint64_t OutSize = Context.getTypeSize(OutTy);
2647    uint64_t InSize = Context.getTypeSize(InTy);
2648    if (OutSize == InSize && InputDomain == OutputDomain &&
2649        InputDomain != AD_Other)
2650      continue;
2651
2652    // If the smaller input/output operand is not mentioned in the asm string,
2653    // then we can promote the smaller one to a larger input and the asm string
2654    // won't notice.
2655    bool SmallerValueMentioned = false;
2656
2657    // If this is a reference to the input and if the input was the smaller
2658    // one, then we have to reject this asm.
2659    if (isOperandMentioned(InputOpNo, Pieces)) {
2660      // This is a use in the asm string of the smaller operand.  Since we
2661      // codegen this by promoting to a wider value, the asm will get printed
2662      // "wrong".
2663      SmallerValueMentioned |= InSize < OutSize;
2664    }
2665    if (isOperandMentioned(TiedTo, Pieces)) {
2666      // If this is a reference to the output, and if the output is the larger
2667      // value, then it's ok because we'll promote the input to the larger type.
2668      SmallerValueMentioned |= OutSize < InSize;
2669    }
2670
2671    // If the smaller value wasn't mentioned in the asm string, and if the
2672    // output was a register, just extend the shorter one to the size of the
2673    // larger one.
2674    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2675        OutputConstraintInfos[TiedTo].allowsRegister())
2676      continue;
2677
2678    // Either both of the operands were mentioned or the smaller one was
2679    // mentioned.  One more special case that we'll allow: if the tied input is
2680    // integer, unmentioned, and is a constant, then we'll allow truncating it
2681    // down to the size of the destination.
2682    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2683        !isOperandMentioned(InputOpNo, Pieces) &&
2684        InputExpr->isEvaluatable(Context)) {
2685      CastKind castKind =
2686        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2687      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2688      Exprs[InputOpNo] = InputExpr;
2689      NS->setInputExpr(i, InputExpr);
2690      continue;
2691    }
2692
2693    Diag(InputExpr->getLocStart(),
2694         diag::err_asm_tying_incompatible_types)
2695      << InTy << OutTy << OutputExpr->getSourceRange()
2696      << InputExpr->getSourceRange();
2697    return StmtError();
2698  }
2699
2700  return Owned(NS);
2701}
2702
2703StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc,
2704                                std::string &AsmString,
2705                                SourceLocation EndLoc) {
2706  // MS-style inline assembly is not fully supported, so emit a warning.
2707  Diag(AsmLoc, diag::warn_unsupported_msasm);
2708
2709  MSAsmStmt *NS =
2710    new (Context) MSAsmStmt(Context, AsmLoc, AsmString, EndLoc);
2711
2712  return Owned(NS);
2713}
2714
2715StmtResult
2716Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2717                           SourceLocation RParen, Decl *Parm,
2718                           Stmt *Body) {
2719  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2720  if (Var && Var->isInvalidDecl())
2721    return StmtError();
2722
2723  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2724}
2725
2726StmtResult
2727Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2728  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2729}
2730
2731StmtResult
2732Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2733                         MultiStmtArg CatchStmts, Stmt *Finally) {
2734  if (!getLangOpts().ObjCExceptions)
2735    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2736
2737  getCurFunction()->setHasBranchProtectedScope();
2738  unsigned NumCatchStmts = CatchStmts.size();
2739  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2740                                     CatchStmts.release(),
2741                                     NumCatchStmts,
2742                                     Finally));
2743}
2744
2745StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2746  if (Throw) {
2747    ExprResult Result = DefaultLvalueConversion(Throw);
2748    if (Result.isInvalid())
2749      return StmtError();
2750
2751    Throw = MaybeCreateExprWithCleanups(Result.take());
2752    QualType ThrowType = Throw->getType();
2753    // Make sure the expression type is an ObjC pointer or "void *".
2754    if (!ThrowType->isDependentType() &&
2755        !ThrowType->isObjCObjectPointerType()) {
2756      const PointerType *PT = ThrowType->getAs<PointerType>();
2757      if (!PT || !PT->getPointeeType()->isVoidType())
2758        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2759                         << Throw->getType() << Throw->getSourceRange());
2760    }
2761  }
2762
2763  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2764}
2765
2766StmtResult
2767Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2768                           Scope *CurScope) {
2769  if (!getLangOpts().ObjCExceptions)
2770    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2771
2772  if (!Throw) {
2773    // @throw without an expression designates a rethrow (which much occur
2774    // in the context of an @catch clause).
2775    Scope *AtCatchParent = CurScope;
2776    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2777      AtCatchParent = AtCatchParent->getParent();
2778    if (!AtCatchParent)
2779      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2780  }
2781  return BuildObjCAtThrowStmt(AtLoc, Throw);
2782}
2783
2784ExprResult
2785Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2786  ExprResult result = DefaultLvalueConversion(operand);
2787  if (result.isInvalid())
2788    return ExprError();
2789  operand = result.take();
2790
2791  // Make sure the expression type is an ObjC pointer or "void *".
2792  QualType type = operand->getType();
2793  if (!type->isDependentType() &&
2794      !type->isObjCObjectPointerType()) {
2795    const PointerType *pointerType = type->getAs<PointerType>();
2796    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2797      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2798               << type << operand->getSourceRange();
2799  }
2800
2801  // The operand to @synchronized is a full-expression.
2802  return MaybeCreateExprWithCleanups(operand);
2803}
2804
2805StmtResult
2806Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2807                                  Stmt *SyncBody) {
2808  // We can't jump into or indirect-jump out of a @synchronized block.
2809  getCurFunction()->setHasBranchProtectedScope();
2810  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2811}
2812
2813/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2814/// and creates a proper catch handler from them.
2815StmtResult
2816Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2817                         Stmt *HandlerBlock) {
2818  // There's nothing to test that ActOnExceptionDecl didn't already test.
2819  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2820                                          cast_or_null<VarDecl>(ExDecl),
2821                                          HandlerBlock));
2822}
2823
2824StmtResult
2825Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2826  getCurFunction()->setHasBranchProtectedScope();
2827  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2828}
2829
2830namespace {
2831
2832class TypeWithHandler {
2833  QualType t;
2834  CXXCatchStmt *stmt;
2835public:
2836  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2837  : t(type), stmt(statement) {}
2838
2839  // An arbitrary order is fine as long as it places identical
2840  // types next to each other.
2841  bool operator<(const TypeWithHandler &y) const {
2842    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2843      return true;
2844    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2845      return false;
2846    else
2847      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2848  }
2849
2850  bool operator==(const TypeWithHandler& other) const {
2851    return t == other.t;
2852  }
2853
2854  CXXCatchStmt *getCatchStmt() const { return stmt; }
2855  SourceLocation getTypeSpecStartLoc() const {
2856    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2857  }
2858};
2859
2860}
2861
2862/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2863/// handlers and creates a try statement from them.
2864StmtResult
2865Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2866                       MultiStmtArg RawHandlers) {
2867  // Don't report an error if 'try' is used in system headers.
2868  if (!getLangOpts().CXXExceptions &&
2869      !getSourceManager().isInSystemHeader(TryLoc))
2870      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2871
2872  unsigned NumHandlers = RawHandlers.size();
2873  assert(NumHandlers > 0 &&
2874         "The parser shouldn't call this if there are no handlers.");
2875  Stmt **Handlers = RawHandlers.get();
2876
2877  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2878
2879  for (unsigned i = 0; i < NumHandlers; ++i) {
2880    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2881    if (!Handler->getExceptionDecl()) {
2882      if (i < NumHandlers - 1)
2883        return StmtError(Diag(Handler->getLocStart(),
2884                              diag::err_early_catch_all));
2885
2886      continue;
2887    }
2888
2889    const QualType CaughtType = Handler->getCaughtType();
2890    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2891    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2892  }
2893
2894  // Detect handlers for the same type as an earlier one.
2895  if (NumHandlers > 1) {
2896    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2897
2898    TypeWithHandler prev = TypesWithHandlers[0];
2899    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2900      TypeWithHandler curr = TypesWithHandlers[i];
2901
2902      if (curr == prev) {
2903        Diag(curr.getTypeSpecStartLoc(),
2904             diag::warn_exception_caught_by_earlier_handler)
2905          << curr.getCatchStmt()->getCaughtType().getAsString();
2906        Diag(prev.getTypeSpecStartLoc(),
2907             diag::note_previous_exception_handler)
2908          << prev.getCatchStmt()->getCaughtType().getAsString();
2909      }
2910
2911      prev = curr;
2912    }
2913  }
2914
2915  getCurFunction()->setHasBranchProtectedScope();
2916
2917  // FIXME: We should detect handlers that cannot catch anything because an
2918  // earlier handler catches a superclass. Need to find a method that is not
2919  // quadratic for this.
2920  // Neither of these are explicitly forbidden, but every compiler detects them
2921  // and warns.
2922
2923  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2924                                  Handlers, NumHandlers));
2925}
2926
2927StmtResult
2928Sema::ActOnSEHTryBlock(bool IsCXXTry,
2929                       SourceLocation TryLoc,
2930                       Stmt *TryBlock,
2931                       Stmt *Handler) {
2932  assert(TryBlock && Handler);
2933
2934  getCurFunction()->setHasBranchProtectedScope();
2935
2936  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2937}
2938
2939StmtResult
2940Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2941                          Expr *FilterExpr,
2942                          Stmt *Block) {
2943  assert(FilterExpr && Block);
2944
2945  if(!FilterExpr->getType()->isIntegerType()) {
2946    return StmtError(Diag(FilterExpr->getExprLoc(),
2947                     diag::err_filter_expression_integral)
2948                     << FilterExpr->getType());
2949  }
2950
2951  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2952}
2953
2954StmtResult
2955Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2956                           Stmt *Block) {
2957  assert(Block);
2958  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2959}
2960
2961StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2962                                            bool IsIfExists,
2963                                            NestedNameSpecifierLoc QualifierLoc,
2964                                            DeclarationNameInfo NameInfo,
2965                                            Stmt *Nested)
2966{
2967  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2968                                             QualifierLoc, NameInfo,
2969                                             cast<CompoundStmt>(Nested));
2970}
2971
2972
2973StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2974                                            bool IsIfExists,
2975                                            CXXScopeSpec &SS,
2976                                            UnqualifiedId &Name,
2977                                            Stmt *Nested) {
2978  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2979                                    SS.getWithLocInContext(Context),
2980                                    GetNameFromUnqualifiedId(Name),
2981                                    Nested);
2982}
2983