SemaStmt.cpp revision 80d4b55db94db2172a04617d1a80feca6bbcea5c
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
156    return;
157
158  // Okay, we have an unused result.  Depending on what the base expression is,
159  // we might want to make a more specific diagnostic.  Check for one of these
160  // cases now.
161  unsigned DiagID = diag::warn_unused_expr;
162  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
163    E = Temps->getSubExpr();
164  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
165    E = TempExpr->getSubExpr();
166
167  if (DiagnoseUnusedComparison(*this, E))
168    return;
169
170  E = E->IgnoreParenImpCasts();
171  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
172    if (E->getType()->isVoidType())
173      return;
174
175    // If the callee has attribute pure, const, or warn_unused_result, warn with
176    // a more specific message to make it clear what is happening.
177    if (const Decl *FD = CE->getCalleeDecl()) {
178      if (FD->getAttr<WarnUnusedResultAttr>()) {
179        Diag(Loc, diag::warn_unused_result) << R1 << R2;
180        return;
181      }
182      if (FD->getAttr<PureAttr>()) {
183        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
184        return;
185      }
186      if (FD->getAttr<ConstAttr>()) {
187        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
188        return;
189      }
190    }
191  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
192    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
193      Diag(Loc, diag::err_arc_unused_init_message) << R1;
194      return;
195    }
196    const ObjCMethodDecl *MD = ME->getMethodDecl();
197    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
198      Diag(Loc, diag::warn_unused_result) << R1 << R2;
199      return;
200    }
201  } else if (isa<PseudoObjectExpr>(E)) {
202    DiagID = diag::warn_unused_property_expr;
203  } else if (const CXXFunctionalCastExpr *FC
204                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
205    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
206        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
207      return;
208  }
209  // Diagnose "(void*) blah" as a typo for "(void) blah".
210  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
211    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
212    QualType T = TI->getType();
213
214    // We really do want to use the non-canonical type here.
215    if (T == Context.VoidPtrTy) {
216      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
217
218      Diag(Loc, diag::warn_unused_voidptr)
219        << FixItHint::CreateRemoval(TL.getStarLoc());
220      return;
221    }
222  }
223
224  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
225}
226
227StmtResult
228Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
229                        MultiStmtArg elts, bool isStmtExpr) {
230  unsigned NumElts = elts.size();
231  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
232  // If we're in C89 mode, check that we don't have any decls after stmts.  If
233  // so, emit an extension diagnostic.
234  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
235    // Note that __extension__ can be around a decl.
236    unsigned i = 0;
237    // Skip over all declarations.
238    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
239      /*empty*/;
240
241    // We found the end of the list or a statement.  Scan for another declstmt.
242    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
243      /*empty*/;
244
245    if (i != NumElts) {
246      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
247      Diag(D->getLocation(), diag::ext_mixed_decls_code);
248    }
249  }
250  // Warn about unused expressions in statements.
251  for (unsigned i = 0; i != NumElts; ++i) {
252    // Ignore statements that are last in a statement expression.
253    if (isStmtExpr && i == NumElts - 1)
254      continue;
255
256    DiagnoseUnusedExprResult(Elts[i]);
257  }
258
259  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
260}
261
262StmtResult
263Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
264                    SourceLocation DotDotDotLoc, Expr *RHSVal,
265                    SourceLocation ColonLoc) {
266  assert((LHSVal != 0) && "missing expression in case statement");
267
268  // C99 6.8.4.2p3: The expression shall be an integer constant.
269  // However, GCC allows any evaluatable integer expression.
270  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
271      VerifyIntegerConstantExpression(LHSVal))
272    return StmtError();
273
274  // GCC extension: The expression shall be an integer constant.
275
276  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
277      VerifyIntegerConstantExpression(RHSVal)) {
278    RHSVal = 0;  // Recover by just forgetting about it.
279  }
280
281  if (getCurFunction()->SwitchStack.empty()) {
282    Diag(CaseLoc, diag::err_case_not_in_switch);
283    return StmtError();
284  }
285
286  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
287                                        ColonLoc);
288  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
289  return Owned(CS);
290}
291
292/// ActOnCaseStmtBody - This installs a statement as the body of a case.
293void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
294  DiagnoseUnusedExprResult(SubStmt);
295
296  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
297  CS->setSubStmt(SubStmt);
298}
299
300StmtResult
301Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
302                       Stmt *SubStmt, Scope *CurScope) {
303  DiagnoseUnusedExprResult(SubStmt);
304
305  if (getCurFunction()->SwitchStack.empty()) {
306    Diag(DefaultLoc, diag::err_default_not_in_switch);
307    return Owned(SubStmt);
308  }
309
310  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
311  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
312  return Owned(DS);
313}
314
315StmtResult
316Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
317                     SourceLocation ColonLoc, Stmt *SubStmt) {
318
319  // If the label was multiply defined, reject it now.
320  if (TheDecl->getStmt()) {
321    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
322    Diag(TheDecl->getLocation(), diag::note_previous_definition);
323    return Owned(SubStmt);
324  }
325
326  // Otherwise, things are good.  Fill in the declaration and return it.
327  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
328  TheDecl->setStmt(LS);
329  if (!TheDecl->isGnuLocal())
330    TheDecl->setLocation(IdentLoc);
331  return Owned(LS);
332}
333
334StmtResult
335Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
336                  Stmt *thenStmt, SourceLocation ElseLoc,
337                  Stmt *elseStmt) {
338  ExprResult CondResult(CondVal.release());
339
340  VarDecl *ConditionVar = 0;
341  if (CondVar) {
342    ConditionVar = cast<VarDecl>(CondVar);
343    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
344    if (CondResult.isInvalid())
345      return StmtError();
346  }
347  Expr *ConditionExpr = CondResult.takeAs<Expr>();
348  if (!ConditionExpr)
349    return StmtError();
350
351  DiagnoseUnusedExprResult(thenStmt);
352
353  // Warn if the if block has a null body without an else value.
354  // this helps prevent bugs due to typos, such as
355  // if (condition);
356  //   do_stuff();
357  //
358  if (!elseStmt) {
359    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
360      // But do not warn if the body is a macro that expands to nothing, e.g:
361      //
362      // #define CALL(x)
363      // if (condition)
364      //   CALL(0);
365      //
366      if (!stmt->hasLeadingEmptyMacro())
367        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
368  }
369
370  DiagnoseUnusedExprResult(elseStmt);
371
372  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
373                                    thenStmt, ElseLoc, elseStmt));
374}
375
376/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
377/// the specified width and sign.  If an overflow occurs, detect it and emit
378/// the specified diagnostic.
379void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
380                                              unsigned NewWidth, bool NewSign,
381                                              SourceLocation Loc,
382                                              unsigned DiagID) {
383  // Perform a conversion to the promoted condition type if needed.
384  if (NewWidth > Val.getBitWidth()) {
385    // If this is an extension, just do it.
386    Val = Val.extend(NewWidth);
387    Val.setIsSigned(NewSign);
388
389    // If the input was signed and negative and the output is
390    // unsigned, don't bother to warn: this is implementation-defined
391    // behavior.
392    // FIXME: Introduce a second, default-ignored warning for this case?
393  } else if (NewWidth < Val.getBitWidth()) {
394    // If this is a truncation, check for overflow.
395    llvm::APSInt ConvVal(Val);
396    ConvVal = ConvVal.trunc(NewWidth);
397    ConvVal.setIsSigned(NewSign);
398    ConvVal = ConvVal.extend(Val.getBitWidth());
399    ConvVal.setIsSigned(Val.isSigned());
400    if (ConvVal != Val)
401      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
402
403    // Regardless of whether a diagnostic was emitted, really do the
404    // truncation.
405    Val = Val.trunc(NewWidth);
406    Val.setIsSigned(NewSign);
407  } else if (NewSign != Val.isSigned()) {
408    // Convert the sign to match the sign of the condition.  This can cause
409    // overflow as well: unsigned(INTMIN)
410    // We don't diagnose this overflow, because it is implementation-defined
411    // behavior.
412    // FIXME: Introduce a second, default-ignored warning for this case?
413    llvm::APSInt OldVal(Val);
414    Val.setIsSigned(NewSign);
415  }
416}
417
418namespace {
419  struct CaseCompareFunctor {
420    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
421                    const llvm::APSInt &RHS) {
422      return LHS.first < RHS;
423    }
424    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
425                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
426      return LHS.first < RHS.first;
427    }
428    bool operator()(const llvm::APSInt &LHS,
429                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
430      return LHS < RHS.first;
431    }
432  };
433}
434
435/// CmpCaseVals - Comparison predicate for sorting case values.
436///
437static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
438                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
439  if (lhs.first < rhs.first)
440    return true;
441
442  if (lhs.first == rhs.first &&
443      lhs.second->getCaseLoc().getRawEncoding()
444       < rhs.second->getCaseLoc().getRawEncoding())
445    return true;
446  return false;
447}
448
449/// CmpEnumVals - Comparison predicate for sorting enumeration values.
450///
451static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
452                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
453{
454  return lhs.first < rhs.first;
455}
456
457/// EqEnumVals - Comparison preficate for uniqing enumeration values.
458///
459static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
460                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
461{
462  return lhs.first == rhs.first;
463}
464
465/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
466/// potentially integral-promoted expression @p expr.
467static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
468  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
469    expr = cleanups->getSubExpr();
470  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
471    if (impcast->getCastKind() != CK_IntegralCast) break;
472    expr = impcast->getSubExpr();
473  }
474  return expr->getType();
475}
476
477StmtResult
478Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
479                             Decl *CondVar) {
480  ExprResult CondResult;
481
482  VarDecl *ConditionVar = 0;
483  if (CondVar) {
484    ConditionVar = cast<VarDecl>(CondVar);
485    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
486    if (CondResult.isInvalid())
487      return StmtError();
488
489    Cond = CondResult.release();
490  }
491
492  if (!Cond)
493    return StmtError();
494
495  CondResult = CheckPlaceholderExpr(Cond);
496  if (CondResult.isInvalid())
497    return StmtError();
498
499  CondResult
500    = ConvertToIntegralOrEnumerationType(SwitchLoc, CondResult.take(),
501                          PDiag(diag::err_typecheck_statement_requires_integer),
502                                   PDiag(diag::err_switch_incomplete_class_type)
503                                     << Cond->getSourceRange(),
504                                   PDiag(diag::err_switch_explicit_conversion),
505                                         PDiag(diag::note_switch_conversion),
506                                   PDiag(diag::err_switch_multiple_conversions),
507                                         PDiag(diag::note_switch_conversion),
508                                         PDiag(0));
509  if (CondResult.isInvalid()) return StmtError();
510  Cond = CondResult.take();
511
512  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
513  CondResult = UsualUnaryConversions(Cond);
514  if (CondResult.isInvalid()) return StmtError();
515  Cond = CondResult.take();
516
517  if (!CondVar) {
518    CheckImplicitConversions(Cond, SwitchLoc);
519    CondResult = MaybeCreateExprWithCleanups(Cond);
520    if (CondResult.isInvalid())
521      return StmtError();
522    Cond = CondResult.take();
523  }
524
525  getCurFunction()->setHasBranchIntoScope();
526
527  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
528  getCurFunction()->SwitchStack.push_back(SS);
529  return Owned(SS);
530}
531
532static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
533  if (Val.getBitWidth() < BitWidth)
534    Val = Val.extend(BitWidth);
535  else if (Val.getBitWidth() > BitWidth)
536    Val = Val.trunc(BitWidth);
537  Val.setIsSigned(IsSigned);
538}
539
540StmtResult
541Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
542                            Stmt *BodyStmt) {
543  SwitchStmt *SS = cast<SwitchStmt>(Switch);
544  assert(SS == getCurFunction()->SwitchStack.back() &&
545         "switch stack missing push/pop!");
546
547  SS->setBody(BodyStmt, SwitchLoc);
548  getCurFunction()->SwitchStack.pop_back();
549
550  Expr *CondExpr = SS->getCond();
551  if (!CondExpr) return StmtError();
552
553  QualType CondType = CondExpr->getType();
554
555  Expr *CondExprBeforePromotion = CondExpr;
556  QualType CondTypeBeforePromotion =
557      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
558
559  // C++ 6.4.2.p2:
560  // Integral promotions are performed (on the switch condition).
561  //
562  // A case value unrepresentable by the original switch condition
563  // type (before the promotion) doesn't make sense, even when it can
564  // be represented by the promoted type.  Therefore we need to find
565  // the pre-promotion type of the switch condition.
566  if (!CondExpr->isTypeDependent()) {
567    // We have already converted the expression to an integral or enumeration
568    // type, when we started the switch statement. If we don't have an
569    // appropriate type now, just return an error.
570    if (!CondType->isIntegralOrEnumerationType())
571      return StmtError();
572
573    if (CondExpr->isKnownToHaveBooleanValue()) {
574      // switch(bool_expr) {...} is often a programmer error, e.g.
575      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
576      // One can always use an if statement instead of switch(bool_expr).
577      Diag(SwitchLoc, diag::warn_bool_switch_condition)
578          << CondExpr->getSourceRange();
579    }
580  }
581
582  // Get the bitwidth of the switched-on value before promotions.  We must
583  // convert the integer case values to this width before comparison.
584  bool HasDependentValue
585    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
586  unsigned CondWidth
587    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
588  bool CondIsSigned
589    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
590
591  // Accumulate all of the case values in a vector so that we can sort them
592  // and detect duplicates.  This vector contains the APInt for the case after
593  // it has been converted to the condition type.
594  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
595  CaseValsTy CaseVals;
596
597  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
598  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
599  CaseRangesTy CaseRanges;
600
601  DefaultStmt *TheDefaultStmt = 0;
602
603  bool CaseListIsErroneous = false;
604
605  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
606       SC = SC->getNextSwitchCase()) {
607
608    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
609      if (TheDefaultStmt) {
610        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
611        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
612
613        // FIXME: Remove the default statement from the switch block so that
614        // we'll return a valid AST.  This requires recursing down the AST and
615        // finding it, not something we are set up to do right now.  For now,
616        // just lop the entire switch stmt out of the AST.
617        CaseListIsErroneous = true;
618      }
619      TheDefaultStmt = DS;
620
621    } else {
622      CaseStmt *CS = cast<CaseStmt>(SC);
623
624      // We already verified that the expression has a i-c-e value (C99
625      // 6.8.4.2p3) - get that value now.
626      Expr *Lo = CS->getLHS();
627
628      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
629        HasDependentValue = true;
630        break;
631      }
632
633      llvm::APSInt LoVal = Lo->EvaluateKnownConstInt(Context);
634
635      // Convert the value to the same width/sign as the condition.
636      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
637                                         Lo->getLocStart(),
638                                         diag::warn_case_value_overflow);
639
640      // If the LHS is not the same type as the condition, insert an implicit
641      // cast.
642      // FIXME: In C++11, the value is a converted constant expression of the
643      // promoted type of the switch condition.
644      Lo = DefaultLvalueConversion(Lo).take();
645      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
646      CS->setLHS(Lo);
647
648      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
649      if (CS->getRHS()) {
650        if (CS->getRHS()->isTypeDependent() ||
651            CS->getRHS()->isValueDependent()) {
652          HasDependentValue = true;
653          break;
654        }
655        CaseRanges.push_back(std::make_pair(LoVal, CS));
656      } else
657        CaseVals.push_back(std::make_pair(LoVal, CS));
658    }
659  }
660
661  if (!HasDependentValue) {
662    // If we don't have a default statement, check whether the
663    // condition is constant.
664    llvm::APSInt ConstantCondValue;
665    bool HasConstantCond = false;
666    if (!HasDependentValue && !TheDefaultStmt) {
667      HasConstantCond
668        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
669                                                 Expr::SE_AllowSideEffects);
670      assert(!HasConstantCond ||
671             (ConstantCondValue.getBitWidth() == CondWidth &&
672              ConstantCondValue.isSigned() == CondIsSigned));
673    }
674    bool ShouldCheckConstantCond = HasConstantCond;
675
676    // Sort all the scalar case values so we can easily detect duplicates.
677    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
678
679    if (!CaseVals.empty()) {
680      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
681        if (ShouldCheckConstantCond &&
682            CaseVals[i].first == ConstantCondValue)
683          ShouldCheckConstantCond = false;
684
685        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
686          // If we have a duplicate, report it.
687          Diag(CaseVals[i].second->getLHS()->getLocStart(),
688               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
689          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
690               diag::note_duplicate_case_prev);
691          // FIXME: We really want to remove the bogus case stmt from the
692          // substmt, but we have no way to do this right now.
693          CaseListIsErroneous = true;
694        }
695      }
696    }
697
698    // Detect duplicate case ranges, which usually don't exist at all in
699    // the first place.
700    if (!CaseRanges.empty()) {
701      // Sort all the case ranges by their low value so we can easily detect
702      // overlaps between ranges.
703      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
704
705      // Scan the ranges, computing the high values and removing empty ranges.
706      std::vector<llvm::APSInt> HiVals;
707      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
708        llvm::APSInt &LoVal = CaseRanges[i].first;
709        CaseStmt *CR = CaseRanges[i].second;
710        Expr *Hi = CR->getRHS();
711        llvm::APSInt HiVal = Hi->EvaluateKnownConstInt(Context);
712
713        // Convert the value to the same width/sign as the condition.
714        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
715                                           Hi->getLocStart(),
716                                           diag::warn_case_value_overflow);
717
718        // If the RHS is not the same type as the condition, insert an implicit
719        // cast.
720        // FIXME: In C++11, the value is a converted constant expression of the
721        // promoted type of the switch condition.
722        Hi = DefaultLvalueConversion(Hi).take();
723        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
724        CR->setRHS(Hi);
725
726        // If the low value is bigger than the high value, the case is empty.
727        if (LoVal > HiVal) {
728          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
729            << SourceRange(CR->getLHS()->getLocStart(),
730                           Hi->getLocEnd());
731          CaseRanges.erase(CaseRanges.begin()+i);
732          --i, --e;
733          continue;
734        }
735
736        if (ShouldCheckConstantCond &&
737            LoVal <= ConstantCondValue &&
738            ConstantCondValue <= HiVal)
739          ShouldCheckConstantCond = false;
740
741        HiVals.push_back(HiVal);
742      }
743
744      // Rescan the ranges, looking for overlap with singleton values and other
745      // ranges.  Since the range list is sorted, we only need to compare case
746      // ranges with their neighbors.
747      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
748        llvm::APSInt &CRLo = CaseRanges[i].first;
749        llvm::APSInt &CRHi = HiVals[i];
750        CaseStmt *CR = CaseRanges[i].second;
751
752        // Check to see whether the case range overlaps with any
753        // singleton cases.
754        CaseStmt *OverlapStmt = 0;
755        llvm::APSInt OverlapVal(32);
756
757        // Find the smallest value >= the lower bound.  If I is in the
758        // case range, then we have overlap.
759        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
760                                                  CaseVals.end(), CRLo,
761                                                  CaseCompareFunctor());
762        if (I != CaseVals.end() && I->first < CRHi) {
763          OverlapVal  = I->first;   // Found overlap with scalar.
764          OverlapStmt = I->second;
765        }
766
767        // Find the smallest value bigger than the upper bound.
768        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
769        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
770          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
771          OverlapStmt = (I-1)->second;
772        }
773
774        // Check to see if this case stmt overlaps with the subsequent
775        // case range.
776        if (i && CRLo <= HiVals[i-1]) {
777          OverlapVal  = HiVals[i-1];       // Found overlap with range.
778          OverlapStmt = CaseRanges[i-1].second;
779        }
780
781        if (OverlapStmt) {
782          // If we have a duplicate, report it.
783          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
784            << OverlapVal.toString(10);
785          Diag(OverlapStmt->getLHS()->getLocStart(),
786               diag::note_duplicate_case_prev);
787          // FIXME: We really want to remove the bogus case stmt from the
788          // substmt, but we have no way to do this right now.
789          CaseListIsErroneous = true;
790        }
791      }
792    }
793
794    // Complain if we have a constant condition and we didn't find a match.
795    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
796      // TODO: it would be nice if we printed enums as enums, chars as
797      // chars, etc.
798      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
799        << ConstantCondValue.toString(10)
800        << CondExpr->getSourceRange();
801    }
802
803    // Check to see if switch is over an Enum and handles all of its
804    // values.  We only issue a warning if there is not 'default:', but
805    // we still do the analysis to preserve this information in the AST
806    // (which can be used by flow-based analyes).
807    //
808    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
809
810    // If switch has default case, then ignore it.
811    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
812      const EnumDecl *ED = ET->getDecl();
813      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
814        EnumValsTy;
815      EnumValsTy EnumVals;
816
817      // Gather all enum values, set their type and sort them,
818      // allowing easier comparison with CaseVals.
819      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
820           EDI != ED->enumerator_end(); ++EDI) {
821        llvm::APSInt Val = EDI->getInitVal();
822        AdjustAPSInt(Val, CondWidth, CondIsSigned);
823        EnumVals.push_back(std::make_pair(Val, *EDI));
824      }
825      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
826      EnumValsTy::iterator EIend =
827        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
828
829      // See which case values aren't in enum.
830      // TODO: we might want to check whether case values are out of the
831      // enum even if we don't want to check whether all cases are handled.
832      if (!TheDefaultStmt) {
833        EnumValsTy::const_iterator EI = EnumVals.begin();
834        for (CaseValsTy::const_iterator CI = CaseVals.begin();
835             CI != CaseVals.end(); CI++) {
836          while (EI != EIend && EI->first < CI->first)
837            EI++;
838          if (EI == EIend || EI->first > CI->first)
839            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
840              << ED->getDeclName();
841        }
842        // See which of case ranges aren't in enum
843        EI = EnumVals.begin();
844        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
845             RI != CaseRanges.end() && EI != EIend; RI++) {
846          while (EI != EIend && EI->first < RI->first)
847            EI++;
848
849          if (EI == EIend || EI->first != RI->first) {
850            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
851              << ED->getDeclName();
852          }
853
854          llvm::APSInt Hi =
855            RI->second->getRHS()->EvaluateKnownConstInt(Context);
856          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
857          while (EI != EIend && EI->first < Hi)
858            EI++;
859          if (EI == EIend || EI->first != Hi)
860            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
861              << ED->getDeclName();
862        }
863      }
864
865      // Check which enum vals aren't in switch
866      CaseValsTy::const_iterator CI = CaseVals.begin();
867      CaseRangesTy::const_iterator RI = CaseRanges.begin();
868      bool hasCasesNotInSwitch = false;
869
870      SmallVector<DeclarationName,8> UnhandledNames;
871
872      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
873        // Drop unneeded case values
874        llvm::APSInt CIVal;
875        while (CI != CaseVals.end() && CI->first < EI->first)
876          CI++;
877
878        if (CI != CaseVals.end() && CI->first == EI->first)
879          continue;
880
881        // Drop unneeded case ranges
882        for (; RI != CaseRanges.end(); RI++) {
883          llvm::APSInt Hi =
884            RI->second->getRHS()->EvaluateKnownConstInt(Context);
885          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
886          if (EI->first <= Hi)
887            break;
888        }
889
890        if (RI == CaseRanges.end() || EI->first < RI->first) {
891          hasCasesNotInSwitch = true;
892          if (!TheDefaultStmt)
893            UnhandledNames.push_back(EI->second->getDeclName());
894        }
895      }
896
897      // Produce a nice diagnostic if multiple values aren't handled.
898      switch (UnhandledNames.size()) {
899      case 0: break;
900      case 1:
901        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
902          << UnhandledNames[0];
903        break;
904      case 2:
905        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
906          << UnhandledNames[0] << UnhandledNames[1];
907        break;
908      case 3:
909        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
910          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
911        break;
912      default:
913        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
914          << (unsigned)UnhandledNames.size()
915          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
916        break;
917      }
918
919      if (!hasCasesNotInSwitch)
920        SS->setAllEnumCasesCovered();
921    }
922  }
923
924  // FIXME: If the case list was broken is some way, we don't have a good system
925  // to patch it up.  Instead, just return the whole substmt as broken.
926  if (CaseListIsErroneous)
927    return StmtError();
928
929  return Owned(SS);
930}
931
932StmtResult
933Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
934                     Decl *CondVar, Stmt *Body) {
935  ExprResult CondResult(Cond.release());
936
937  VarDecl *ConditionVar = 0;
938  if (CondVar) {
939    ConditionVar = cast<VarDecl>(CondVar);
940    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
941    if (CondResult.isInvalid())
942      return StmtError();
943  }
944  Expr *ConditionExpr = CondResult.take();
945  if (!ConditionExpr)
946    return StmtError();
947
948  DiagnoseUnusedExprResult(Body);
949
950  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
951                                       Body, WhileLoc));
952}
953
954StmtResult
955Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
956                  SourceLocation WhileLoc, SourceLocation CondLParen,
957                  Expr *Cond, SourceLocation CondRParen) {
958  assert(Cond && "ActOnDoStmt(): missing expression");
959
960  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
961  if (CondResult.isInvalid() || CondResult.isInvalid())
962    return StmtError();
963  Cond = CondResult.take();
964
965  CheckImplicitConversions(Cond, DoLoc);
966  CondResult = MaybeCreateExprWithCleanups(Cond);
967  if (CondResult.isInvalid())
968    return StmtError();
969  Cond = CondResult.take();
970
971  DiagnoseUnusedExprResult(Body);
972
973  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
974}
975
976StmtResult
977Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
978                   Stmt *First, FullExprArg second, Decl *secondVar,
979                   FullExprArg third,
980                   SourceLocation RParenLoc, Stmt *Body) {
981  if (!getLangOptions().CPlusPlus) {
982    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
983      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
984      // declare identifiers for objects having storage class 'auto' or
985      // 'register'.
986      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
987           DI!=DE; ++DI) {
988        VarDecl *VD = dyn_cast<VarDecl>(*DI);
989        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
990          VD = 0;
991        if (VD == 0)
992          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
993        // FIXME: mark decl erroneous!
994      }
995    }
996  }
997
998  ExprResult SecondResult(second.release());
999  VarDecl *ConditionVar = 0;
1000  if (secondVar) {
1001    ConditionVar = cast<VarDecl>(secondVar);
1002    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1003    if (SecondResult.isInvalid())
1004      return StmtError();
1005  }
1006
1007  Expr *Third  = third.release().takeAs<Expr>();
1008
1009  DiagnoseUnusedExprResult(First);
1010  DiagnoseUnusedExprResult(Third);
1011  DiagnoseUnusedExprResult(Body);
1012
1013  return Owned(new (Context) ForStmt(Context, First,
1014                                     SecondResult.take(), ConditionVar,
1015                                     Third, Body, ForLoc, LParenLoc,
1016                                     RParenLoc));
1017}
1018
1019/// In an Objective C collection iteration statement:
1020///   for (x in y)
1021/// x can be an arbitrary l-value expression.  Bind it up as a
1022/// full-expression.
1023StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1024  CheckImplicitConversions(E);
1025  ExprResult Result = MaybeCreateExprWithCleanups(E);
1026  if (Result.isInvalid()) return StmtError();
1027  return Owned(static_cast<Stmt*>(Result.get()));
1028}
1029
1030ExprResult
1031Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1032  assert(collection);
1033
1034  // Bail out early if we've got a type-dependent expression.
1035  if (collection->isTypeDependent()) return Owned(collection);
1036
1037  // Perform normal l-value conversion.
1038  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1039  if (result.isInvalid())
1040    return ExprError();
1041  collection = result.take();
1042
1043  // The operand needs to have object-pointer type.
1044  // TODO: should we do a contextual conversion?
1045  const ObjCObjectPointerType *pointerType =
1046    collection->getType()->getAs<ObjCObjectPointerType>();
1047  if (!pointerType)
1048    return Diag(forLoc, diag::err_collection_expr_type)
1049             << collection->getType() << collection->getSourceRange();
1050
1051  // Check that the operand provides
1052  //   - countByEnumeratingWithState:objects:count:
1053  const ObjCObjectType *objectType = pointerType->getObjectType();
1054  ObjCInterfaceDecl *iface = objectType->getInterface();
1055
1056  // If we have a forward-declared type, we can't do this check.
1057  // Under ARC, it is an error not to have a forward-declared class.
1058  if (iface &&
1059      RequireCompleteType(forLoc, QualType(objectType, 0),
1060                          getLangOptions().ObjCAutoRefCount
1061                            ? PDiag(diag::err_arc_collection_forward)
1062                                << collection->getSourceRange()
1063                          : PDiag(0))) {
1064    // Otherwise, if we have any useful type information, check that
1065    // the type declares the appropriate method.
1066  } else if (iface || !objectType->qual_empty()) {
1067    IdentifierInfo *selectorIdents[] = {
1068      &Context.Idents.get("countByEnumeratingWithState"),
1069      &Context.Idents.get("objects"),
1070      &Context.Idents.get("count")
1071    };
1072    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1073
1074    ObjCMethodDecl *method = 0;
1075
1076    // If there's an interface, look in both the public and private APIs.
1077    if (iface) {
1078      method = iface->lookupInstanceMethod(selector);
1079      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1080    }
1081
1082    // Also check protocol qualifiers.
1083    if (!method)
1084      method = LookupMethodInQualifiedType(selector, pointerType,
1085                                           /*instance*/ true);
1086
1087    // If we didn't find it anywhere, give up.
1088    if (!method) {
1089      Diag(forLoc, diag::warn_collection_expr_type)
1090        << collection->getType() << selector << collection->getSourceRange();
1091    }
1092
1093    // TODO: check for an incompatible signature?
1094  }
1095
1096  // Wrap up any cleanups in the expression.
1097  return Owned(MaybeCreateExprWithCleanups(collection));
1098}
1099
1100StmtResult
1101Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1102                                 SourceLocation LParenLoc,
1103                                 Stmt *First, Expr *Second,
1104                                 SourceLocation RParenLoc, Stmt *Body) {
1105  if (First) {
1106    QualType FirstType;
1107    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1108      if (!DS->isSingleDecl())
1109        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1110                         diag::err_toomany_element_decls));
1111
1112      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1113      FirstType = D->getType();
1114      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1115      // declare identifiers for objects having storage class 'auto' or
1116      // 'register'.
1117      if (!D->hasLocalStorage())
1118        return StmtError(Diag(D->getLocation(),
1119                              diag::err_non_variable_decl_in_for));
1120    } else {
1121      Expr *FirstE = cast<Expr>(First);
1122      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1123        return StmtError(Diag(First->getLocStart(),
1124                   diag::err_selector_element_not_lvalue)
1125          << First->getSourceRange());
1126
1127      FirstType = static_cast<Expr*>(First)->getType();
1128    }
1129    if (!FirstType->isDependentType() &&
1130        !FirstType->isObjCObjectPointerType() &&
1131        !FirstType->isBlockPointerType())
1132        Diag(ForLoc, diag::err_selector_element_type)
1133          << FirstType << First->getSourceRange();
1134  }
1135
1136  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1137                                                   ForLoc, RParenLoc));
1138}
1139
1140namespace {
1141
1142enum BeginEndFunction {
1143  BEF_begin,
1144  BEF_end
1145};
1146
1147/// Build a variable declaration for a for-range statement.
1148static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1149                                     QualType Type, const char *Name) {
1150  DeclContext *DC = SemaRef.CurContext;
1151  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1152  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1153  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1154                                  TInfo, SC_Auto, SC_None);
1155  Decl->setImplicit();
1156  return Decl;
1157}
1158
1159/// Finish building a variable declaration for a for-range statement.
1160/// \return true if an error occurs.
1161static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1162                                  SourceLocation Loc, int diag) {
1163  // Deduce the type for the iterator variable now rather than leaving it to
1164  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1165  TypeSourceInfo *InitTSI = 0;
1166  if (Init->getType()->isVoidType() ||
1167      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1168    SemaRef.Diag(Loc, diag) << Init->getType();
1169  if (!InitTSI) {
1170    Decl->setInvalidDecl();
1171    return true;
1172  }
1173  Decl->setTypeSourceInfo(InitTSI);
1174  Decl->setType(InitTSI->getType());
1175
1176  // In ARC, infer lifetime.
1177  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1178  // we're doing the equivalent of fast iteration.
1179  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1180      SemaRef.inferObjCARCLifetime(Decl))
1181    Decl->setInvalidDecl();
1182
1183  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1184                               /*TypeMayContainAuto=*/false);
1185  SemaRef.FinalizeDeclaration(Decl);
1186  SemaRef.CurContext->addHiddenDecl(Decl);
1187  return false;
1188}
1189
1190/// Produce a note indicating which begin/end function was implicitly called
1191/// by a C++0x for-range statement. This is often not obvious from the code,
1192/// nor from the diagnostics produced when analysing the implicit expressions
1193/// required in a for-range statement.
1194void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1195                                  BeginEndFunction BEF) {
1196  CallExpr *CE = dyn_cast<CallExpr>(E);
1197  if (!CE)
1198    return;
1199  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1200  if (!D)
1201    return;
1202  SourceLocation Loc = D->getLocation();
1203
1204  std::string Description;
1205  bool IsTemplate = false;
1206  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1207    Description = SemaRef.getTemplateArgumentBindingsText(
1208      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1209    IsTemplate = true;
1210  }
1211
1212  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1213    << BEF << IsTemplate << Description << E->getType();
1214}
1215
1216/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1217/// given LookupResult is non-empty, it is assumed to describe a member which
1218/// will be invoked. Otherwise, the function will be found via argument
1219/// dependent lookup.
1220static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1221                                            SourceLocation Loc,
1222                                            VarDecl *Decl,
1223                                            BeginEndFunction BEF,
1224                                            const DeclarationNameInfo &NameInfo,
1225                                            LookupResult &MemberLookup,
1226                                            Expr *Range) {
1227  ExprResult CallExpr;
1228  if (!MemberLookup.empty()) {
1229    ExprResult MemberRef =
1230      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1231                                       /*IsPtr=*/false, CXXScopeSpec(),
1232                                       /*Qualifier=*/0, MemberLookup,
1233                                       /*TemplateArgs=*/0);
1234    if (MemberRef.isInvalid())
1235      return ExprError();
1236    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1237                                     Loc, 0);
1238    if (CallExpr.isInvalid())
1239      return ExprError();
1240  } else {
1241    UnresolvedSet<0> FoundNames;
1242    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1243    // std is an associated namespace.
1244    UnresolvedLookupExpr *Fn =
1245      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1246                                   NestedNameSpecifierLoc(), NameInfo,
1247                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1248                                   FoundNames.begin(), FoundNames.end(),
1249                                   /*LookInStdNamespace=*/true);
1250    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1251                                               0);
1252    if (CallExpr.isInvalid()) {
1253      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1254        << Range->getType();
1255      return ExprError();
1256    }
1257  }
1258  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1259                            diag::err_for_range_iter_deduction_failure)) {
1260    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1261    return ExprError();
1262  }
1263  return CallExpr;
1264}
1265
1266}
1267
1268/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1269///
1270/// C++0x [stmt.ranged]:
1271///   A range-based for statement is equivalent to
1272///
1273///   {
1274///     auto && __range = range-init;
1275///     for ( auto __begin = begin-expr,
1276///           __end = end-expr;
1277///           __begin != __end;
1278///           ++__begin ) {
1279///       for-range-declaration = *__begin;
1280///       statement
1281///     }
1282///   }
1283///
1284/// The body of the loop is not available yet, since it cannot be analysed until
1285/// we have determined the type of the for-range-declaration.
1286StmtResult
1287Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1288                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1289                           SourceLocation RParenLoc) {
1290  if (!First || !Range)
1291    return StmtError();
1292
1293  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1294  assert(DS && "first part of for range not a decl stmt");
1295
1296  if (!DS->isSingleDecl()) {
1297    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1298    return StmtError();
1299  }
1300  if (DS->getSingleDecl()->isInvalidDecl())
1301    return StmtError();
1302
1303  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1304    return StmtError();
1305
1306  // Build  auto && __range = range-init
1307  SourceLocation RangeLoc = Range->getLocStart();
1308  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1309                                           Context.getAutoRRefDeductType(),
1310                                           "__range");
1311  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1312                            diag::err_for_range_deduction_failure))
1313    return StmtError();
1314
1315  // Claim the type doesn't contain auto: we've already done the checking.
1316  DeclGroupPtrTy RangeGroup =
1317    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1318  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1319  if (RangeDecl.isInvalid())
1320    return StmtError();
1321
1322  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1323                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1324                              RParenLoc);
1325}
1326
1327/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1328StmtResult
1329Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1330                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1331                           Expr *Inc, Stmt *LoopVarDecl,
1332                           SourceLocation RParenLoc) {
1333  Scope *S = getCurScope();
1334
1335  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1336  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1337  QualType RangeVarType = RangeVar->getType();
1338
1339  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1340  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1341
1342  StmtResult BeginEndDecl = BeginEnd;
1343  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1344
1345  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1346    SourceLocation RangeLoc = RangeVar->getLocation();
1347
1348    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1349
1350    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1351                                                VK_LValue, ColonLoc);
1352    if (BeginRangeRef.isInvalid())
1353      return StmtError();
1354
1355    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1356                                              VK_LValue, ColonLoc);
1357    if (EndRangeRef.isInvalid())
1358      return StmtError();
1359
1360    QualType AutoType = Context.getAutoDeductType();
1361    Expr *Range = RangeVar->getInit();
1362    if (!Range)
1363      return StmtError();
1364    QualType RangeType = Range->getType();
1365
1366    if (RequireCompleteType(RangeLoc, RangeType,
1367                            PDiag(diag::err_for_range_incomplete_type)))
1368      return StmtError();
1369
1370    // Build auto __begin = begin-expr, __end = end-expr.
1371    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1372                                             "__begin");
1373    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1374                                           "__end");
1375
1376    // Build begin-expr and end-expr and attach to __begin and __end variables.
1377    ExprResult BeginExpr, EndExpr;
1378    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1379      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1380      //   __range + __bound, respectively, where __bound is the array bound. If
1381      //   _RangeT is an array of unknown size or an array of incomplete type,
1382      //   the program is ill-formed;
1383
1384      // begin-expr is __range.
1385      BeginExpr = BeginRangeRef;
1386      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1387                                diag::err_for_range_iter_deduction_failure)) {
1388        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1389        return StmtError();
1390      }
1391
1392      // Find the array bound.
1393      ExprResult BoundExpr;
1394      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1395        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1396                                                 Context.getPointerDiffType(),
1397                                                 RangeLoc));
1398      else if (const VariableArrayType *VAT =
1399               dyn_cast<VariableArrayType>(UnqAT))
1400        BoundExpr = VAT->getSizeExpr();
1401      else {
1402        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1403        // UnqAT is not incomplete and Range is not type-dependent.
1404        llvm_unreachable("Unexpected array type in for-range");
1405      }
1406
1407      // end-expr is __range + __bound.
1408      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1409                           BoundExpr.get());
1410      if (EndExpr.isInvalid())
1411        return StmtError();
1412      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1413                                diag::err_for_range_iter_deduction_failure)) {
1414        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1415        return StmtError();
1416      }
1417    } else {
1418      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1419                                        ColonLoc);
1420      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1421                                      ColonLoc);
1422
1423      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1424      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1425
1426      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1427        // - if _RangeT is a class type, the unqualified-ids begin and end are
1428        //   looked up in the scope of class _RangeT as if by class member access
1429        //   lookup (3.4.5), and if either (or both) finds at least one
1430        //   declaration, begin-expr and end-expr are __range.begin() and
1431        //   __range.end(), respectively;
1432        LookupQualifiedName(BeginMemberLookup, D);
1433        LookupQualifiedName(EndMemberLookup, D);
1434
1435        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1436          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1437            << RangeType << BeginMemberLookup.empty();
1438          return StmtError();
1439        }
1440      } else {
1441        // - otherwise, begin-expr and end-expr are begin(__range) and
1442        //   end(__range), respectively, where begin and end are looked up with
1443        //   argument-dependent lookup (3.4.2). For the purposes of this name
1444        //   lookup, namespace std is an associated namespace.
1445      }
1446
1447      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1448                                            BEF_begin, BeginNameInfo,
1449                                            BeginMemberLookup,
1450                                            BeginRangeRef.get());
1451      if (BeginExpr.isInvalid())
1452        return StmtError();
1453
1454      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1455                                          BEF_end, EndNameInfo,
1456                                          EndMemberLookup, EndRangeRef.get());
1457      if (EndExpr.isInvalid())
1458        return StmtError();
1459    }
1460
1461    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1462    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1463    if (!Context.hasSameType(BeginType, EndType)) {
1464      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1465        << BeginType << EndType;
1466      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1467      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1468    }
1469
1470    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1471    // Claim the type doesn't contain auto: we've already done the checking.
1472    DeclGroupPtrTy BeginEndGroup =
1473      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1474    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1475
1476    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1477    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1478                                           VK_LValue, ColonLoc);
1479    if (BeginRef.isInvalid())
1480      return StmtError();
1481
1482    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1483                                         VK_LValue, ColonLoc);
1484    if (EndRef.isInvalid())
1485      return StmtError();
1486
1487    // Build and check __begin != __end expression.
1488    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1489                           BeginRef.get(), EndRef.get());
1490    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1491    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1492    if (NotEqExpr.isInvalid()) {
1493      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1494      if (!Context.hasSameType(BeginType, EndType))
1495        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1496      return StmtError();
1497    }
1498
1499    // Build and check ++__begin expression.
1500    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1501                                VK_LValue, ColonLoc);
1502    if (BeginRef.isInvalid())
1503      return StmtError();
1504
1505    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1506    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1507    if (IncrExpr.isInvalid()) {
1508      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1509      return StmtError();
1510    }
1511
1512    // Build and check *__begin  expression.
1513    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1514                                VK_LValue, ColonLoc);
1515    if (BeginRef.isInvalid())
1516      return StmtError();
1517
1518    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1519    if (DerefExpr.isInvalid()) {
1520      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1521      return StmtError();
1522    }
1523
1524    // Attach  *__begin  as initializer for VD.
1525    if (!LoopVar->isInvalidDecl()) {
1526      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1527                           /*TypeMayContainAuto=*/true);
1528      if (LoopVar->isInvalidDecl())
1529        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1530    }
1531  } else {
1532    // The range is implicitly used as a placeholder when it is dependent.
1533    RangeVar->setUsed();
1534  }
1535
1536  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1537                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1538                                             NotEqExpr.take(), IncrExpr.take(),
1539                                             LoopVarDS, /*Body=*/0, ForLoc,
1540                                             ColonLoc, RParenLoc));
1541}
1542
1543/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1544/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1545/// body cannot be performed until after the type of the range variable is
1546/// determined.
1547StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1548  if (!S || !B)
1549    return StmtError();
1550
1551  cast<CXXForRangeStmt>(S)->setBody(B);
1552  return S;
1553}
1554
1555StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1556                               SourceLocation LabelLoc,
1557                               LabelDecl *TheDecl) {
1558  getCurFunction()->setHasBranchIntoScope();
1559  TheDecl->setUsed();
1560  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1561}
1562
1563StmtResult
1564Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1565                            Expr *E) {
1566  // Convert operand to void*
1567  if (!E->isTypeDependent()) {
1568    QualType ETy = E->getType();
1569    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1570    ExprResult ExprRes = Owned(E);
1571    AssignConvertType ConvTy =
1572      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1573    if (ExprRes.isInvalid())
1574      return StmtError();
1575    E = ExprRes.take();
1576    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1577      return StmtError();
1578  }
1579
1580  getCurFunction()->setHasIndirectGoto();
1581
1582  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1583}
1584
1585StmtResult
1586Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1587  Scope *S = CurScope->getContinueParent();
1588  if (!S) {
1589    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1590    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1591  }
1592
1593  return Owned(new (Context) ContinueStmt(ContinueLoc));
1594}
1595
1596StmtResult
1597Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1598  Scope *S = CurScope->getBreakParent();
1599  if (!S) {
1600    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1601    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1602  }
1603
1604  return Owned(new (Context) BreakStmt(BreakLoc));
1605}
1606
1607/// \brief Determine whether the given expression is a candidate for
1608/// copy elision in either a return statement or a throw expression.
1609///
1610/// \param ReturnType If we're determining the copy elision candidate for
1611/// a return statement, this is the return type of the function. If we're
1612/// determining the copy elision candidate for a throw expression, this will
1613/// be a NULL type.
1614///
1615/// \param E The expression being returned from the function or block, or
1616/// being thrown.
1617///
1618/// \param AllowFunctionParameter Whether we allow function parameters to
1619/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1620/// we re-use this logic to determine whether we should try to move as part of
1621/// a return or throw (which does allow function parameters).
1622///
1623/// \returns The NRVO candidate variable, if the return statement may use the
1624/// NRVO, or NULL if there is no such candidate.
1625const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1626                                             Expr *E,
1627                                             bool AllowFunctionParameter) {
1628  QualType ExprType = E->getType();
1629  // - in a return statement in a function with ...
1630  // ... a class return type ...
1631  if (!ReturnType.isNull()) {
1632    if (!ReturnType->isRecordType())
1633      return 0;
1634    // ... the same cv-unqualified type as the function return type ...
1635    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1636      return 0;
1637  }
1638
1639  // ... the expression is the name of a non-volatile automatic object
1640  // (other than a function or catch-clause parameter)) ...
1641  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1642  if (!DR)
1643    return 0;
1644  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1645  if (!VD)
1646    return 0;
1647
1648  // ...object (other than a function or catch-clause parameter)...
1649  if (VD->getKind() != Decl::Var &&
1650      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
1651    return 0;
1652  if (VD->isExceptionVariable()) return 0;
1653
1654  // ...automatic...
1655  if (!VD->hasLocalStorage()) return 0;
1656
1657  // ...non-volatile...
1658  if (VD->getType().isVolatileQualified()) return 0;
1659  if (VD->getType()->isReferenceType()) return 0;
1660
1661  // __block variables can't be allocated in a way that permits NRVO.
1662  if (VD->hasAttr<BlocksAttr>()) return 0;
1663
1664  // Variables with higher required alignment than their type's ABI
1665  // alignment cannot use NRVO.
1666  if (VD->hasAttr<AlignedAttr>() &&
1667      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
1668    return 0;
1669
1670  return VD;
1671}
1672
1673/// \brief Perform the initialization of a potentially-movable value, which
1674/// is the result of return value.
1675///
1676/// This routine implements C++0x [class.copy]p33, which attempts to treat
1677/// returned lvalues as rvalues in certain cases (to prefer move construction),
1678/// then falls back to treating them as lvalues if that failed.
1679ExprResult
1680Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1681                                      const VarDecl *NRVOCandidate,
1682                                      QualType ResultType,
1683                                      Expr *Value,
1684                                      bool AllowNRVO) {
1685  // C++0x [class.copy]p33:
1686  //   When the criteria for elision of a copy operation are met or would
1687  //   be met save for the fact that the source object is a function
1688  //   parameter, and the object to be copied is designated by an lvalue,
1689  //   overload resolution to select the constructor for the copy is first
1690  //   performed as if the object were designated by an rvalue.
1691  ExprResult Res = ExprError();
1692  if (AllowNRVO &&
1693      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1694    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1695                              Value->getType(), CK_LValueToRValue,
1696                              Value, VK_XValue);
1697
1698    Expr *InitExpr = &AsRvalue;
1699    InitializationKind Kind
1700      = InitializationKind::CreateCopy(Value->getLocStart(),
1701                                       Value->getLocStart());
1702    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1703
1704    //   [...] If overload resolution fails, or if the type of the first
1705    //   parameter of the selected constructor is not an rvalue reference
1706    //   to the object's type (possibly cv-qualified), overload resolution
1707    //   is performed again, considering the object as an lvalue.
1708    if (Seq) {
1709      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1710           StepEnd = Seq.step_end();
1711           Step != StepEnd; ++Step) {
1712        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1713          continue;
1714
1715        CXXConstructorDecl *Constructor
1716        = cast<CXXConstructorDecl>(Step->Function.Function);
1717
1718        const RValueReferenceType *RRefType
1719          = Constructor->getParamDecl(0)->getType()
1720                                                 ->getAs<RValueReferenceType>();
1721
1722        // If we don't meet the criteria, break out now.
1723        if (!RRefType ||
1724            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1725                            Context.getTypeDeclType(Constructor->getParent())))
1726          break;
1727
1728        // Promote "AsRvalue" to the heap, since we now need this
1729        // expression node to persist.
1730        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1731                                         CK_LValueToRValue, Value, 0,
1732                                         VK_XValue);
1733
1734        // Complete type-checking the initialization of the return type
1735        // using the constructor we found.
1736        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1737      }
1738    }
1739  }
1740
1741  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1742  // above, or overload resolution failed. Either way, we need to try
1743  // (again) now with the return value expression as written.
1744  if (Res.isInvalid())
1745    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1746
1747  return Res;
1748}
1749
1750/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1751///
1752StmtResult
1753Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1754  // If this is the first return we've seen in the block, infer the type of
1755  // the block from it.
1756  BlockScopeInfo *CurBlock = getCurBlock();
1757  if (CurBlock->TheDecl->blockMissingReturnType()) {
1758    QualType BlockReturnT;
1759    if (RetValExp) {
1760      // Don't call UsualUnaryConversions(), since we don't want to do
1761      // integer promotions here.
1762      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1763      if (Result.isInvalid())
1764        return StmtError();
1765      RetValExp = Result.take();
1766
1767      if (!RetValExp->isTypeDependent()) {
1768        BlockReturnT = RetValExp->getType();
1769        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1770          // We have to remove a 'const' added to copied-in variable which was
1771          // part of the implementation spec. and not the actual qualifier for
1772          // the variable.
1773          if (CDRE->isConstQualAdded())
1774            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1775        }
1776      } else
1777        BlockReturnT = Context.DependentTy;
1778    } else
1779        BlockReturnT = Context.VoidTy;
1780    if (!CurBlock->ReturnType.isNull() && !CurBlock->ReturnType->isDependentType()
1781        && !BlockReturnT->isDependentType()
1782        // when block's return type is not specified, all return types
1783        // must strictly match.
1784        && !Context.hasSameType(BlockReturnT, CurBlock->ReturnType)) {
1785        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
1786            << BlockReturnT << CurBlock->ReturnType;
1787        return StmtError();
1788    }
1789    CurBlock->ReturnType = BlockReturnT;
1790  }
1791  QualType FnRetType = CurBlock->ReturnType;
1792
1793  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1794    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1795      << getCurFunctionOrMethodDecl()->getDeclName();
1796    return StmtError();
1797  }
1798
1799  // Otherwise, verify that this result type matches the previous one.  We are
1800  // pickier with blocks than for normal functions because we don't have GCC
1801  // compatibility to worry about here.
1802  const VarDecl *NRVOCandidate = 0;
1803  if (FnRetType->isDependentType()) {
1804    // Delay processing for now.  TODO: there are lots of dependent
1805    // types we can conclusively prove aren't void.
1806  } else if (FnRetType->isVoidType()) {
1807    if (RetValExp &&
1808        !(getLangOptions().CPlusPlus &&
1809          (RetValExp->isTypeDependent() ||
1810           RetValExp->getType()->isVoidType()))) {
1811      Diag(ReturnLoc, diag::err_return_block_has_expr);
1812      RetValExp = 0;
1813    }
1814  } else if (!RetValExp) {
1815    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1816  } else if (!RetValExp->isTypeDependent()) {
1817    // we have a non-void block with an expression, continue checking
1818
1819    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1820    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1821    // function return.
1822
1823    // In C++ the return statement is handled via a copy initialization.
1824    // the C version of which boils down to CheckSingleAssignmentConstraints.
1825    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1826    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1827                                                                   FnRetType,
1828                                                          NRVOCandidate != 0);
1829    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1830                                                     FnRetType, RetValExp);
1831    if (Res.isInvalid()) {
1832      // FIXME: Cleanup temporaries here, anyway?
1833      return StmtError();
1834    }
1835    RetValExp = Res.take();
1836    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1837  }
1838
1839  if (RetValExp) {
1840    CheckImplicitConversions(RetValExp, ReturnLoc);
1841    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1842  }
1843  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1844                                                NRVOCandidate);
1845
1846  // If we need to check for the named return value optimization, save the
1847  // return statement in our scope for later processing.
1848  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1849      !CurContext->isDependentContext())
1850    FunctionScopes.back()->Returns.push_back(Result);
1851
1852  return Owned(Result);
1853}
1854
1855StmtResult
1856Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1857  // Check for unexpanded parameter packs.
1858  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1859    return StmtError();
1860
1861  if (getCurBlock())
1862    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1863
1864  QualType FnRetType;
1865  QualType DeclaredRetType;
1866  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1867    FnRetType = FD->getResultType();
1868    DeclaredRetType = FnRetType;
1869    if (FD->hasAttr<NoReturnAttr>() ||
1870        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1871      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1872        << getCurFunctionOrMethodDecl()->getDeclName();
1873  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1874    DeclaredRetType = MD->getResultType();
1875    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1876      // In the implementation of a method with a related return type, the
1877      // type used to type-check the validity of return statements within the
1878      // method body is a pointer to the type of the class being implemented.
1879      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1880      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1881    } else {
1882      FnRetType = DeclaredRetType;
1883    }
1884  } else // If we don't have a function/method context, bail.
1885    return StmtError();
1886
1887  ReturnStmt *Result = 0;
1888  if (FnRetType->isVoidType()) {
1889    if (RetValExp) {
1890      if (!RetValExp->isTypeDependent()) {
1891        // C99 6.8.6.4p1 (ext_ since GCC warns)
1892        unsigned D = diag::ext_return_has_expr;
1893        if (RetValExp->getType()->isVoidType())
1894          D = diag::ext_return_has_void_expr;
1895        else {
1896          ExprResult Result = Owned(RetValExp);
1897          Result = IgnoredValueConversions(Result.take());
1898          if (Result.isInvalid())
1899            return StmtError();
1900          RetValExp = Result.take();
1901          RetValExp = ImpCastExprToType(RetValExp,
1902                                        Context.VoidTy, CK_ToVoid).take();
1903        }
1904
1905        // return (some void expression); is legal in C++.
1906        if (D != diag::ext_return_has_void_expr ||
1907            !getLangOptions().CPlusPlus) {
1908          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1909
1910          int FunctionKind = 0;
1911          if (isa<ObjCMethodDecl>(CurDecl))
1912            FunctionKind = 1;
1913          else if (isa<CXXConstructorDecl>(CurDecl))
1914            FunctionKind = 2;
1915          else if (isa<CXXDestructorDecl>(CurDecl))
1916            FunctionKind = 3;
1917
1918          Diag(ReturnLoc, D)
1919            << CurDecl->getDeclName() << FunctionKind
1920            << RetValExp->getSourceRange();
1921        }
1922      }
1923
1924      CheckImplicitConversions(RetValExp, ReturnLoc);
1925      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1926    }
1927
1928    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1929  } else if (!RetValExp && !FnRetType->isDependentType()) {
1930    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1931    // C99 6.8.6.4p1 (ext_ since GCC warns)
1932    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1933
1934    if (FunctionDecl *FD = getCurFunctionDecl())
1935      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1936    else
1937      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1938    Result = new (Context) ReturnStmt(ReturnLoc);
1939  } else {
1940    const VarDecl *NRVOCandidate = 0;
1941    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1942      // we have a non-void function with an expression, continue checking
1943
1944      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1945      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1946      // function return.
1947
1948      // In C++ the return statement is handled via a copy initialization,
1949      // the C version of which boils down to CheckSingleAssignmentConstraints.
1950      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1951      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1952                                                                     FnRetType,
1953                                                            NRVOCandidate != 0);
1954      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1955                                                       FnRetType, RetValExp);
1956      if (Res.isInvalid()) {
1957        // FIXME: Cleanup temporaries here, anyway?
1958        return StmtError();
1959      }
1960
1961      RetValExp = Res.takeAs<Expr>();
1962      if (RetValExp)
1963        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1964    }
1965
1966    if (RetValExp) {
1967      // If we type-checked an Objective-C method's return type based
1968      // on a related return type, we may need to adjust the return
1969      // type again. Do so now.
1970      if (DeclaredRetType != FnRetType) {
1971        ExprResult result = PerformImplicitConversion(RetValExp,
1972                                                      DeclaredRetType,
1973                                                      AA_Returning);
1974        if (result.isInvalid()) return StmtError();
1975        RetValExp = result.take();
1976      }
1977
1978      CheckImplicitConversions(RetValExp, ReturnLoc);
1979      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1980    }
1981    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1982  }
1983
1984  // If we need to check for the named return value optimization, save the
1985  // return statement in our scope for later processing.
1986  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1987      !CurContext->isDependentContext())
1988    FunctionScopes.back()->Returns.push_back(Result);
1989
1990  return Owned(Result);
1991}
1992
1993/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1994/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1995/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1996/// provide a strong guidance to not use it.
1997///
1998/// This method checks to see if the argument is an acceptable l-value and
1999/// returns false if it is a case we can handle.
2000static bool CheckAsmLValue(const Expr *E, Sema &S) {
2001  // Type dependent expressions will be checked during instantiation.
2002  if (E->isTypeDependent())
2003    return false;
2004
2005  if (E->isLValue())
2006    return false;  // Cool, this is an lvalue.
2007
2008  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2009  // are supposed to allow.
2010  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2011  if (E != E2 && E2->isLValue()) {
2012    if (!S.getLangOptions().HeinousExtensions)
2013      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2014        << E->getSourceRange();
2015    else
2016      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2017        << E->getSourceRange();
2018    // Accept, even if we emitted an error diagnostic.
2019    return false;
2020  }
2021
2022  // None of the above, just randomly invalid non-lvalue.
2023  return true;
2024}
2025
2026/// isOperandMentioned - Return true if the specified operand # is mentioned
2027/// anywhere in the decomposed asm string.
2028static bool isOperandMentioned(unsigned OpNo,
2029                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2030  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2031    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2032    if (!Piece.isOperand()) continue;
2033
2034    // If this is a reference to the input and if the input was the smaller
2035    // one, then we have to reject this asm.
2036    if (Piece.getOperandNo() == OpNo)
2037      return true;
2038  }
2039
2040  return false;
2041}
2042
2043StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2044                              bool IsVolatile, unsigned NumOutputs,
2045                              unsigned NumInputs, IdentifierInfo **Names,
2046                              MultiExprArg constraints, MultiExprArg exprs,
2047                              Expr *asmString, MultiExprArg clobbers,
2048                              SourceLocation RParenLoc, bool MSAsm) {
2049  unsigned NumClobbers = clobbers.size();
2050  StringLiteral **Constraints =
2051    reinterpret_cast<StringLiteral**>(constraints.get());
2052  Expr **Exprs = exprs.get();
2053  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2054  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2055
2056  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2057
2058  // The parser verifies that there is a string literal here.
2059  if (!AsmString->isAscii())
2060    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2061      << AsmString->getSourceRange());
2062
2063  for (unsigned i = 0; i != NumOutputs; i++) {
2064    StringLiteral *Literal = Constraints[i];
2065    if (!Literal->isAscii())
2066      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2067        << Literal->getSourceRange());
2068
2069    StringRef OutputName;
2070    if (Names[i])
2071      OutputName = Names[i]->getName();
2072
2073    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2074    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2075      return StmtError(Diag(Literal->getLocStart(),
2076                            diag::err_asm_invalid_output_constraint)
2077                       << Info.getConstraintStr());
2078
2079    // Check that the output exprs are valid lvalues.
2080    Expr *OutputExpr = Exprs[i];
2081    if (CheckAsmLValue(OutputExpr, *this)) {
2082      return StmtError(Diag(OutputExpr->getLocStart(),
2083                  diag::err_asm_invalid_lvalue_in_output)
2084        << OutputExpr->getSourceRange());
2085    }
2086
2087    OutputConstraintInfos.push_back(Info);
2088  }
2089
2090  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2091
2092  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2093    StringLiteral *Literal = Constraints[i];
2094    if (!Literal->isAscii())
2095      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2096        << Literal->getSourceRange());
2097
2098    StringRef InputName;
2099    if (Names[i])
2100      InputName = Names[i]->getName();
2101
2102    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2103    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2104                                                NumOutputs, Info)) {
2105      return StmtError(Diag(Literal->getLocStart(),
2106                            diag::err_asm_invalid_input_constraint)
2107                       << Info.getConstraintStr());
2108    }
2109
2110    Expr *InputExpr = Exprs[i];
2111
2112    // Only allow void types for memory constraints.
2113    if (Info.allowsMemory() && !Info.allowsRegister()) {
2114      if (CheckAsmLValue(InputExpr, *this))
2115        return StmtError(Diag(InputExpr->getLocStart(),
2116                              diag::err_asm_invalid_lvalue_in_input)
2117                         << Info.getConstraintStr()
2118                         << InputExpr->getSourceRange());
2119    }
2120
2121    if (Info.allowsRegister()) {
2122      if (InputExpr->getType()->isVoidType()) {
2123        return StmtError(Diag(InputExpr->getLocStart(),
2124                              diag::err_asm_invalid_type_in_input)
2125          << InputExpr->getType() << Info.getConstraintStr()
2126          << InputExpr->getSourceRange());
2127      }
2128    }
2129
2130    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2131    if (Result.isInvalid())
2132      return StmtError();
2133
2134    Exprs[i] = Result.take();
2135    InputConstraintInfos.push_back(Info);
2136  }
2137
2138  // Check that the clobbers are valid.
2139  for (unsigned i = 0; i != NumClobbers; i++) {
2140    StringLiteral *Literal = Clobbers[i];
2141    if (!Literal->isAscii())
2142      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2143        << Literal->getSourceRange());
2144
2145    StringRef Clobber = Literal->getString();
2146
2147    if (!Context.getTargetInfo().isValidClobber(Clobber))
2148      return StmtError(Diag(Literal->getLocStart(),
2149                  diag::err_asm_unknown_register_name) << Clobber);
2150  }
2151
2152  AsmStmt *NS =
2153    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2154                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2155                          AsmString, NumClobbers, Clobbers, RParenLoc);
2156  // Validate the asm string, ensuring it makes sense given the operands we
2157  // have.
2158  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2159  unsigned DiagOffs;
2160  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2161    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2162           << AsmString->getSourceRange();
2163    return StmtError();
2164  }
2165
2166  // Validate tied input operands for type mismatches.
2167  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2168    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2169
2170    // If this is a tied constraint, verify that the output and input have
2171    // either exactly the same type, or that they are int/ptr operands with the
2172    // same size (int/long, int*/long, are ok etc).
2173    if (!Info.hasTiedOperand()) continue;
2174
2175    unsigned TiedTo = Info.getTiedOperand();
2176    unsigned InputOpNo = i+NumOutputs;
2177    Expr *OutputExpr = Exprs[TiedTo];
2178    Expr *InputExpr = Exprs[InputOpNo];
2179
2180    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2181      continue;
2182
2183    QualType InTy = InputExpr->getType();
2184    QualType OutTy = OutputExpr->getType();
2185    if (Context.hasSameType(InTy, OutTy))
2186      continue;  // All types can be tied to themselves.
2187
2188    // Decide if the input and output are in the same domain (integer/ptr or
2189    // floating point.
2190    enum AsmDomain {
2191      AD_Int, AD_FP, AD_Other
2192    } InputDomain, OutputDomain;
2193
2194    if (InTy->isIntegerType() || InTy->isPointerType())
2195      InputDomain = AD_Int;
2196    else if (InTy->isRealFloatingType())
2197      InputDomain = AD_FP;
2198    else
2199      InputDomain = AD_Other;
2200
2201    if (OutTy->isIntegerType() || OutTy->isPointerType())
2202      OutputDomain = AD_Int;
2203    else if (OutTy->isRealFloatingType())
2204      OutputDomain = AD_FP;
2205    else
2206      OutputDomain = AD_Other;
2207
2208    // They are ok if they are the same size and in the same domain.  This
2209    // allows tying things like:
2210    //   void* to int*
2211    //   void* to int            if they are the same size.
2212    //   double to long double   if they are the same size.
2213    //
2214    uint64_t OutSize = Context.getTypeSize(OutTy);
2215    uint64_t InSize = Context.getTypeSize(InTy);
2216    if (OutSize == InSize && InputDomain == OutputDomain &&
2217        InputDomain != AD_Other)
2218      continue;
2219
2220    // If the smaller input/output operand is not mentioned in the asm string,
2221    // then we can promote the smaller one to a larger input and the asm string
2222    // won't notice.
2223    bool SmallerValueMentioned = false;
2224
2225    // If this is a reference to the input and if the input was the smaller
2226    // one, then we have to reject this asm.
2227    if (isOperandMentioned(InputOpNo, Pieces)) {
2228      // This is a use in the asm string of the smaller operand.  Since we
2229      // codegen this by promoting to a wider value, the asm will get printed
2230      // "wrong".
2231      SmallerValueMentioned |= InSize < OutSize;
2232    }
2233    if (isOperandMentioned(TiedTo, Pieces)) {
2234      // If this is a reference to the output, and if the output is the larger
2235      // value, then it's ok because we'll promote the input to the larger type.
2236      SmallerValueMentioned |= OutSize < InSize;
2237    }
2238
2239    // If the smaller value wasn't mentioned in the asm string, and if the
2240    // output was a register, just extend the shorter one to the size of the
2241    // larger one.
2242    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2243        OutputConstraintInfos[TiedTo].allowsRegister())
2244      continue;
2245
2246    // Either both of the operands were mentioned or the smaller one was
2247    // mentioned.  One more special case that we'll allow: if the tied input is
2248    // integer, unmentioned, and is a constant, then we'll allow truncating it
2249    // down to the size of the destination.
2250    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2251        !isOperandMentioned(InputOpNo, Pieces) &&
2252        InputExpr->isEvaluatable(Context)) {
2253      CastKind castKind =
2254        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2255      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2256      Exprs[InputOpNo] = InputExpr;
2257      NS->setInputExpr(i, InputExpr);
2258      continue;
2259    }
2260
2261    Diag(InputExpr->getLocStart(),
2262         diag::err_asm_tying_incompatible_types)
2263      << InTy << OutTy << OutputExpr->getSourceRange()
2264      << InputExpr->getSourceRange();
2265    return StmtError();
2266  }
2267
2268  return Owned(NS);
2269}
2270
2271StmtResult
2272Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2273                           SourceLocation RParen, Decl *Parm,
2274                           Stmt *Body) {
2275  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2276  if (Var && Var->isInvalidDecl())
2277    return StmtError();
2278
2279  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2280}
2281
2282StmtResult
2283Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2284  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2285}
2286
2287StmtResult
2288Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2289                         MultiStmtArg CatchStmts, Stmt *Finally) {
2290  if (!getLangOptions().ObjCExceptions)
2291    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2292
2293  getCurFunction()->setHasBranchProtectedScope();
2294  unsigned NumCatchStmts = CatchStmts.size();
2295  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2296                                     CatchStmts.release(),
2297                                     NumCatchStmts,
2298                                     Finally));
2299}
2300
2301StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2302                                                  Expr *Throw) {
2303  if (Throw) {
2304    Throw = MaybeCreateExprWithCleanups(Throw);
2305    ExprResult Result = DefaultLvalueConversion(Throw);
2306    if (Result.isInvalid())
2307      return StmtError();
2308
2309    Throw = Result.take();
2310    QualType ThrowType = Throw->getType();
2311    // Make sure the expression type is an ObjC pointer or "void *".
2312    if (!ThrowType->isDependentType() &&
2313        !ThrowType->isObjCObjectPointerType()) {
2314      const PointerType *PT = ThrowType->getAs<PointerType>();
2315      if (!PT || !PT->getPointeeType()->isVoidType())
2316        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2317                         << Throw->getType() << Throw->getSourceRange());
2318    }
2319  }
2320
2321  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2322}
2323
2324StmtResult
2325Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2326                           Scope *CurScope) {
2327  if (!getLangOptions().ObjCExceptions)
2328    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2329
2330  if (!Throw) {
2331    // @throw without an expression designates a rethrow (which much occur
2332    // in the context of an @catch clause).
2333    Scope *AtCatchParent = CurScope;
2334    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2335      AtCatchParent = AtCatchParent->getParent();
2336    if (!AtCatchParent)
2337      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2338  }
2339
2340  return BuildObjCAtThrowStmt(AtLoc, Throw);
2341}
2342
2343ExprResult
2344Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2345  ExprResult result = DefaultLvalueConversion(operand);
2346  if (result.isInvalid())
2347    return ExprError();
2348  operand = result.take();
2349
2350  // Make sure the expression type is an ObjC pointer or "void *".
2351  QualType type = operand->getType();
2352  if (!type->isDependentType() &&
2353      !type->isObjCObjectPointerType()) {
2354    const PointerType *pointerType = type->getAs<PointerType>();
2355    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2356      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2357               << type << operand->getSourceRange();
2358  }
2359
2360  // The operand to @synchronized is a full-expression.
2361  return MaybeCreateExprWithCleanups(operand);
2362}
2363
2364StmtResult
2365Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2366                                  Stmt *SyncBody) {
2367  // We can't jump into or indirect-jump out of a @synchronized block.
2368  getCurFunction()->setHasBranchProtectedScope();
2369  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2370}
2371
2372/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2373/// and creates a proper catch handler from them.
2374StmtResult
2375Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2376                         Stmt *HandlerBlock) {
2377  // There's nothing to test that ActOnExceptionDecl didn't already test.
2378  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2379                                          cast_or_null<VarDecl>(ExDecl),
2380                                          HandlerBlock));
2381}
2382
2383StmtResult
2384Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2385  getCurFunction()->setHasBranchProtectedScope();
2386  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2387}
2388
2389namespace {
2390
2391class TypeWithHandler {
2392  QualType t;
2393  CXXCatchStmt *stmt;
2394public:
2395  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2396  : t(type), stmt(statement) {}
2397
2398  // An arbitrary order is fine as long as it places identical
2399  // types next to each other.
2400  bool operator<(const TypeWithHandler &y) const {
2401    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2402      return true;
2403    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2404      return false;
2405    else
2406      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2407  }
2408
2409  bool operator==(const TypeWithHandler& other) const {
2410    return t == other.t;
2411  }
2412
2413  CXXCatchStmt *getCatchStmt() const { return stmt; }
2414  SourceLocation getTypeSpecStartLoc() const {
2415    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2416  }
2417};
2418
2419}
2420
2421/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2422/// handlers and creates a try statement from them.
2423StmtResult
2424Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2425                       MultiStmtArg RawHandlers) {
2426  // Don't report an error if 'try' is used in system headers.
2427  if (!getLangOptions().CXXExceptions &&
2428      !getSourceManager().isInSystemHeader(TryLoc))
2429      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2430
2431  unsigned NumHandlers = RawHandlers.size();
2432  assert(NumHandlers > 0 &&
2433         "The parser shouldn't call this if there are no handlers.");
2434  Stmt **Handlers = RawHandlers.get();
2435
2436  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2437
2438  for (unsigned i = 0; i < NumHandlers; ++i) {
2439    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2440    if (!Handler->getExceptionDecl()) {
2441      if (i < NumHandlers - 1)
2442        return StmtError(Diag(Handler->getLocStart(),
2443                              diag::err_early_catch_all));
2444
2445      continue;
2446    }
2447
2448    const QualType CaughtType = Handler->getCaughtType();
2449    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2450    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2451  }
2452
2453  // Detect handlers for the same type as an earlier one.
2454  if (NumHandlers > 1) {
2455    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2456
2457    TypeWithHandler prev = TypesWithHandlers[0];
2458    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2459      TypeWithHandler curr = TypesWithHandlers[i];
2460
2461      if (curr == prev) {
2462        Diag(curr.getTypeSpecStartLoc(),
2463             diag::warn_exception_caught_by_earlier_handler)
2464          << curr.getCatchStmt()->getCaughtType().getAsString();
2465        Diag(prev.getTypeSpecStartLoc(),
2466             diag::note_previous_exception_handler)
2467          << prev.getCatchStmt()->getCaughtType().getAsString();
2468      }
2469
2470      prev = curr;
2471    }
2472  }
2473
2474  getCurFunction()->setHasBranchProtectedScope();
2475
2476  // FIXME: We should detect handlers that cannot catch anything because an
2477  // earlier handler catches a superclass. Need to find a method that is not
2478  // quadratic for this.
2479  // Neither of these are explicitly forbidden, but every compiler detects them
2480  // and warns.
2481
2482  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2483                                  Handlers, NumHandlers));
2484}
2485
2486StmtResult
2487Sema::ActOnSEHTryBlock(bool IsCXXTry,
2488                       SourceLocation TryLoc,
2489                       Stmt *TryBlock,
2490                       Stmt *Handler) {
2491  assert(TryBlock && Handler);
2492
2493  getCurFunction()->setHasBranchProtectedScope();
2494
2495  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2496}
2497
2498StmtResult
2499Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2500                          Expr *FilterExpr,
2501                          Stmt *Block) {
2502  assert(FilterExpr && Block);
2503
2504  if(!FilterExpr->getType()->isIntegerType()) {
2505    return StmtError(Diag(FilterExpr->getExprLoc(),
2506                     diag::err_filter_expression_integral)
2507                     << FilterExpr->getType());
2508  }
2509
2510  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2511}
2512
2513StmtResult
2514Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2515                           Stmt *Block) {
2516  assert(Block);
2517  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2518}
2519
2520StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2521                                            bool IsIfExists,
2522                                            NestedNameSpecifierLoc QualifierLoc,
2523                                            DeclarationNameInfo NameInfo,
2524                                            Stmt *Nested)
2525{
2526  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2527                                             QualifierLoc, NameInfo,
2528                                             cast<CompoundStmt>(Nested));
2529}
2530
2531
2532StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2533                                            bool IsIfExists,
2534                                            CXXScopeSpec &SS,
2535                                            UnqualifiedId &Name,
2536                                            Stmt *Nested) {
2537  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2538                                    SS.getWithLocInContext(Context),
2539                                    GetNameFromUnqualifiedId(Name),
2540                                    Nested);
2541}
2542