SemaStmt.cpp revision a0c2b21e0d84ad289781e08e14148da6b8b8b76d
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
156      !E->isUnusedResultAWarning(Loc, R1, R2, Context))
157    return;
158
159  // Okay, we have an unused result.  Depending on what the base expression is,
160  // we might want to make a more specific diagnostic.  Check for one of these
161  // cases now.
162  unsigned DiagID = diag::warn_unused_expr;
163  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
164    E = Temps->getSubExpr();
165  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
166    E = TempExpr->getSubExpr();
167
168  if (DiagnoseUnusedComparison(*this, E))
169    return;
170
171  E = E->IgnoreParenImpCasts();
172  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
173    if (E->getType()->isVoidType())
174      return;
175
176    // If the callee has attribute pure, const, or warn_unused_result, warn with
177    // a more specific message to make it clear what is happening.
178    if (const Decl *FD = CE->getCalleeDecl()) {
179      if (FD->getAttr<WarnUnusedResultAttr>()) {
180        Diag(Loc, diag::warn_unused_result) << R1 << R2;
181        return;
182      }
183      if (FD->getAttr<PureAttr>()) {
184        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
185        return;
186      }
187      if (FD->getAttr<ConstAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
189        return;
190      }
191    }
192  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
193    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
194      Diag(Loc, diag::err_arc_unused_init_message) << R1;
195      return;
196    }
197    const ObjCMethodDecl *MD = ME->getMethodDecl();
198    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
199      Diag(Loc, diag::warn_unused_result) << R1 << R2;
200      return;
201    }
202  } else if (isa<PseudoObjectExpr>(E)) {
203    DiagID = diag::warn_unused_property_expr;
204  } else if (const CXXFunctionalCastExpr *FC
205                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
206    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
207        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
208      return;
209  }
210  // Diagnose "(void*) blah" as a typo for "(void) blah".
211  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
212    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
213    QualType T = TI->getType();
214
215    // We really do want to use the non-canonical type here.
216    if (T == Context.VoidPtrTy) {
217      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
218
219      Diag(Loc, diag::warn_unused_voidptr)
220        << FixItHint::CreateRemoval(TL.getStarLoc());
221      return;
222    }
223  }
224
225  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
226}
227
228StmtResult
229Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
230                        MultiStmtArg elts, bool isStmtExpr) {
231  unsigned NumElts = elts.size();
232  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
233  // If we're in C89 mode, check that we don't have any decls after stmts.  If
234  // so, emit an extension diagnostic.
235  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
236    // Note that __extension__ can be around a decl.
237    unsigned i = 0;
238    // Skip over all declarations.
239    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
240      /*empty*/;
241
242    // We found the end of the list or a statement.  Scan for another declstmt.
243    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
244      /*empty*/;
245
246    if (i != NumElts) {
247      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
248      Diag(D->getLocation(), diag::ext_mixed_decls_code);
249    }
250  }
251  // Warn about unused expressions in statements.
252  for (unsigned i = 0; i != NumElts; ++i) {
253    // Ignore statements that are last in a statement expression.
254    if (isStmtExpr && i == NumElts - 1)
255      continue;
256
257    DiagnoseUnusedExprResult(Elts[i]);
258  }
259
260  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
261}
262
263StmtResult
264Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
265                    SourceLocation DotDotDotLoc, Expr *RHSVal,
266                    SourceLocation ColonLoc) {
267  assert((LHSVal != 0) && "missing expression in case statement");
268
269  if (getCurFunction()->SwitchStack.empty()) {
270    Diag(CaseLoc, diag::err_case_not_in_switch);
271    return StmtError();
272  }
273
274  if (!getLangOptions().CPlusPlus0x) {
275    // C99 6.8.4.2p3: The expression shall be an integer constant.
276    // However, GCC allows any evaluatable integer expression.
277    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
278      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
279      if (!LHSVal)
280        return StmtError();
281    }
282
283    // GCC extension: The expression shall be an integer constant.
284
285    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
286      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
287      // Recover from an error by just forgetting about it.
288    }
289  }
290
291  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
292                                        ColonLoc);
293  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
294  return Owned(CS);
295}
296
297/// ActOnCaseStmtBody - This installs a statement as the body of a case.
298void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
299  DiagnoseUnusedExprResult(SubStmt);
300
301  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
302  CS->setSubStmt(SubStmt);
303}
304
305StmtResult
306Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
307                       Stmt *SubStmt, Scope *CurScope) {
308  DiagnoseUnusedExprResult(SubStmt);
309
310  if (getCurFunction()->SwitchStack.empty()) {
311    Diag(DefaultLoc, diag::err_default_not_in_switch);
312    return Owned(SubStmt);
313  }
314
315  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
316  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
317  return Owned(DS);
318}
319
320StmtResult
321Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
322                     SourceLocation ColonLoc, Stmt *SubStmt) {
323
324  // If the label was multiply defined, reject it now.
325  if (TheDecl->getStmt()) {
326    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
327    Diag(TheDecl->getLocation(), diag::note_previous_definition);
328    return Owned(SubStmt);
329  }
330
331  // Otherwise, things are good.  Fill in the declaration and return it.
332  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
333  TheDecl->setStmt(LS);
334  if (!TheDecl->isGnuLocal())
335    TheDecl->setLocation(IdentLoc);
336  return Owned(LS);
337}
338
339StmtResult
340Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
341                  Stmt *thenStmt, SourceLocation ElseLoc,
342                  Stmt *elseStmt) {
343  ExprResult CondResult(CondVal.release());
344
345  VarDecl *ConditionVar = 0;
346  if (CondVar) {
347    ConditionVar = cast<VarDecl>(CondVar);
348    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
349    if (CondResult.isInvalid())
350      return StmtError();
351  }
352  Expr *ConditionExpr = CondResult.takeAs<Expr>();
353  if (!ConditionExpr)
354    return StmtError();
355
356  DiagnoseUnusedExprResult(thenStmt);
357
358  // Warn if the if block has a null body without an else value.
359  // this helps prevent bugs due to typos, such as
360  // if (condition);
361  //   do_stuff();
362  //
363  if (!elseStmt) {
364    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
365      // But do not warn if the body is a macro that expands to nothing, e.g:
366      //
367      // #define CALL(x)
368      // if (condition)
369      //   CALL(0);
370      //
371      if (!stmt->hasLeadingEmptyMacro())
372        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
373  }
374
375  DiagnoseUnusedExprResult(elseStmt);
376
377  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
378                                    thenStmt, ElseLoc, elseStmt));
379}
380
381/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
382/// the specified width and sign.  If an overflow occurs, detect it and emit
383/// the specified diagnostic.
384void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
385                                              unsigned NewWidth, bool NewSign,
386                                              SourceLocation Loc,
387                                              unsigned DiagID) {
388  // Perform a conversion to the promoted condition type if needed.
389  if (NewWidth > Val.getBitWidth()) {
390    // If this is an extension, just do it.
391    Val = Val.extend(NewWidth);
392    Val.setIsSigned(NewSign);
393
394    // If the input was signed and negative and the output is
395    // unsigned, don't bother to warn: this is implementation-defined
396    // behavior.
397    // FIXME: Introduce a second, default-ignored warning for this case?
398  } else if (NewWidth < Val.getBitWidth()) {
399    // If this is a truncation, check for overflow.
400    llvm::APSInt ConvVal(Val);
401    ConvVal = ConvVal.trunc(NewWidth);
402    ConvVal.setIsSigned(NewSign);
403    ConvVal = ConvVal.extend(Val.getBitWidth());
404    ConvVal.setIsSigned(Val.isSigned());
405    if (ConvVal != Val)
406      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
407
408    // Regardless of whether a diagnostic was emitted, really do the
409    // truncation.
410    Val = Val.trunc(NewWidth);
411    Val.setIsSigned(NewSign);
412  } else if (NewSign != Val.isSigned()) {
413    // Convert the sign to match the sign of the condition.  This can cause
414    // overflow as well: unsigned(INTMIN)
415    // We don't diagnose this overflow, because it is implementation-defined
416    // behavior.
417    // FIXME: Introduce a second, default-ignored warning for this case?
418    llvm::APSInt OldVal(Val);
419    Val.setIsSigned(NewSign);
420  }
421}
422
423namespace {
424  struct CaseCompareFunctor {
425    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
426                    const llvm::APSInt &RHS) {
427      return LHS.first < RHS;
428    }
429    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
430                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
431      return LHS.first < RHS.first;
432    }
433    bool operator()(const llvm::APSInt &LHS,
434                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
435      return LHS < RHS.first;
436    }
437  };
438}
439
440/// CmpCaseVals - Comparison predicate for sorting case values.
441///
442static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
443                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
444  if (lhs.first < rhs.first)
445    return true;
446
447  if (lhs.first == rhs.first &&
448      lhs.second->getCaseLoc().getRawEncoding()
449       < rhs.second->getCaseLoc().getRawEncoding())
450    return true;
451  return false;
452}
453
454/// CmpEnumVals - Comparison predicate for sorting enumeration values.
455///
456static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
457                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
458{
459  return lhs.first < rhs.first;
460}
461
462/// EqEnumVals - Comparison preficate for uniqing enumeration values.
463///
464static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
465                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
466{
467  return lhs.first == rhs.first;
468}
469
470/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
471/// potentially integral-promoted expression @p expr.
472static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
473  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
474    expr = cleanups->getSubExpr();
475  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
476    if (impcast->getCastKind() != CK_IntegralCast) break;
477    expr = impcast->getSubExpr();
478  }
479  return expr->getType();
480}
481
482StmtResult
483Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
484                             Decl *CondVar) {
485  ExprResult CondResult;
486
487  VarDecl *ConditionVar = 0;
488  if (CondVar) {
489    ConditionVar = cast<VarDecl>(CondVar);
490    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
491    if (CondResult.isInvalid())
492      return StmtError();
493
494    Cond = CondResult.release();
495  }
496
497  if (!Cond)
498    return StmtError();
499
500  CondResult
501    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
502                          PDiag(diag::err_typecheck_statement_requires_integer),
503                                   PDiag(diag::err_switch_incomplete_class_type)
504                                     << Cond->getSourceRange(),
505                                   PDiag(diag::err_switch_explicit_conversion),
506                                         PDiag(diag::note_switch_conversion),
507                                   PDiag(diag::err_switch_multiple_conversions),
508                                         PDiag(diag::note_switch_conversion),
509                                         PDiag(0),
510                                         /*AllowScopedEnumerations*/ true);
511  if (CondResult.isInvalid()) return StmtError();
512  Cond = CondResult.take();
513
514  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
515  CondResult = UsualUnaryConversions(Cond);
516  if (CondResult.isInvalid()) return StmtError();
517  Cond = CondResult.take();
518
519  if (!CondVar) {
520    CheckImplicitConversions(Cond, SwitchLoc);
521    CondResult = MaybeCreateExprWithCleanups(Cond);
522    if (CondResult.isInvalid())
523      return StmtError();
524    Cond = CondResult.take();
525  }
526
527  getCurFunction()->setHasBranchIntoScope();
528
529  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
530  getCurFunction()->SwitchStack.push_back(SS);
531  return Owned(SS);
532}
533
534static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
535  if (Val.getBitWidth() < BitWidth)
536    Val = Val.extend(BitWidth);
537  else if (Val.getBitWidth() > BitWidth)
538    Val = Val.trunc(BitWidth);
539  Val.setIsSigned(IsSigned);
540}
541
542StmtResult
543Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
544                            Stmt *BodyStmt) {
545  SwitchStmt *SS = cast<SwitchStmt>(Switch);
546  assert(SS == getCurFunction()->SwitchStack.back() &&
547         "switch stack missing push/pop!");
548
549  SS->setBody(BodyStmt, SwitchLoc);
550  getCurFunction()->SwitchStack.pop_back();
551
552  Expr *CondExpr = SS->getCond();
553  if (!CondExpr) return StmtError();
554
555  QualType CondType = CondExpr->getType();
556
557  Expr *CondExprBeforePromotion = CondExpr;
558  QualType CondTypeBeforePromotion =
559      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
560
561  // C++ 6.4.2.p2:
562  // Integral promotions are performed (on the switch condition).
563  //
564  // A case value unrepresentable by the original switch condition
565  // type (before the promotion) doesn't make sense, even when it can
566  // be represented by the promoted type.  Therefore we need to find
567  // the pre-promotion type of the switch condition.
568  if (!CondExpr->isTypeDependent()) {
569    // We have already converted the expression to an integral or enumeration
570    // type, when we started the switch statement. If we don't have an
571    // appropriate type now, just return an error.
572    if (!CondType->isIntegralOrEnumerationType())
573      return StmtError();
574
575    if (CondExpr->isKnownToHaveBooleanValue()) {
576      // switch(bool_expr) {...} is often a programmer error, e.g.
577      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
578      // One can always use an if statement instead of switch(bool_expr).
579      Diag(SwitchLoc, diag::warn_bool_switch_condition)
580          << CondExpr->getSourceRange();
581    }
582  }
583
584  // Get the bitwidth of the switched-on value before promotions.  We must
585  // convert the integer case values to this width before comparison.
586  bool HasDependentValue
587    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
588  unsigned CondWidth
589    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
590  bool CondIsSigned
591    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
592
593  // Accumulate all of the case values in a vector so that we can sort them
594  // and detect duplicates.  This vector contains the APInt for the case after
595  // it has been converted to the condition type.
596  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
597  CaseValsTy CaseVals;
598
599  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
600  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
601  CaseRangesTy CaseRanges;
602
603  DefaultStmt *TheDefaultStmt = 0;
604
605  bool CaseListIsErroneous = false;
606
607  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
608       SC = SC->getNextSwitchCase()) {
609
610    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
611      if (TheDefaultStmt) {
612        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
613        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
614
615        // FIXME: Remove the default statement from the switch block so that
616        // we'll return a valid AST.  This requires recursing down the AST and
617        // finding it, not something we are set up to do right now.  For now,
618        // just lop the entire switch stmt out of the AST.
619        CaseListIsErroneous = true;
620      }
621      TheDefaultStmt = DS;
622
623    } else {
624      CaseStmt *CS = cast<CaseStmt>(SC);
625
626      Expr *Lo = CS->getLHS();
627
628      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
629        HasDependentValue = true;
630        break;
631      }
632
633      llvm::APSInt LoVal;
634
635      if (getLangOptions().CPlusPlus0x) {
636        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
637        // constant expression of the promoted type of the switch condition.
638        ExprResult ConvLo =
639          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
640        if (ConvLo.isInvalid()) {
641          CaseListIsErroneous = true;
642          continue;
643        }
644        Lo = ConvLo.take();
645      } else {
646        // We already verified that the expression has a i-c-e value (C99
647        // 6.8.4.2p3) - get that value now.
648        LoVal = Lo->EvaluateKnownConstInt(Context);
649
650        // If the LHS is not the same type as the condition, insert an implicit
651        // cast.
652        Lo = DefaultLvalueConversion(Lo).take();
653        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
654      }
655
656      // Convert the value to the same width/sign as the condition had prior to
657      // integral promotions.
658      //
659      // FIXME: This causes us to reject valid code:
660      //   switch ((char)c) { case 256: case 0: return 0; }
661      // Here we claim there is a duplicated condition value, but there is not.
662      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
663                                         Lo->getLocStart(),
664                                         diag::warn_case_value_overflow);
665
666      CS->setLHS(Lo);
667
668      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
669      if (CS->getRHS()) {
670        if (CS->getRHS()->isTypeDependent() ||
671            CS->getRHS()->isValueDependent()) {
672          HasDependentValue = true;
673          break;
674        }
675        CaseRanges.push_back(std::make_pair(LoVal, CS));
676      } else
677        CaseVals.push_back(std::make_pair(LoVal, CS));
678    }
679  }
680
681  if (!HasDependentValue) {
682    // If we don't have a default statement, check whether the
683    // condition is constant.
684    llvm::APSInt ConstantCondValue;
685    bool HasConstantCond = false;
686    if (!HasDependentValue && !TheDefaultStmt) {
687      HasConstantCond
688        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
689                                                 Expr::SE_AllowSideEffects);
690      assert(!HasConstantCond ||
691             (ConstantCondValue.getBitWidth() == CondWidth &&
692              ConstantCondValue.isSigned() == CondIsSigned));
693    }
694    bool ShouldCheckConstantCond = HasConstantCond;
695
696    // Sort all the scalar case values so we can easily detect duplicates.
697    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
698
699    if (!CaseVals.empty()) {
700      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
701        if (ShouldCheckConstantCond &&
702            CaseVals[i].first == ConstantCondValue)
703          ShouldCheckConstantCond = false;
704
705        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
706          // If we have a duplicate, report it.
707          Diag(CaseVals[i].second->getLHS()->getLocStart(),
708               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
709          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
710               diag::note_duplicate_case_prev);
711          // FIXME: We really want to remove the bogus case stmt from the
712          // substmt, but we have no way to do this right now.
713          CaseListIsErroneous = true;
714        }
715      }
716    }
717
718    // Detect duplicate case ranges, which usually don't exist at all in
719    // the first place.
720    if (!CaseRanges.empty()) {
721      // Sort all the case ranges by their low value so we can easily detect
722      // overlaps between ranges.
723      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
724
725      // Scan the ranges, computing the high values and removing empty ranges.
726      std::vector<llvm::APSInt> HiVals;
727      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
728        llvm::APSInt &LoVal = CaseRanges[i].first;
729        CaseStmt *CR = CaseRanges[i].second;
730        Expr *Hi = CR->getRHS();
731        llvm::APSInt HiVal;
732
733        if (getLangOptions().CPlusPlus0x) {
734          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
735          // constant expression of the promoted type of the switch condition.
736          ExprResult ConvHi =
737            CheckConvertedConstantExpression(Hi, CondType, HiVal,
738                                             CCEK_CaseValue);
739          if (ConvHi.isInvalid()) {
740            CaseListIsErroneous = true;
741            continue;
742          }
743          Hi = ConvHi.take();
744        } else {
745          HiVal = Hi->EvaluateKnownConstInt(Context);
746
747          // If the RHS is not the same type as the condition, insert an
748          // implicit cast.
749          Hi = DefaultLvalueConversion(Hi).take();
750          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
751        }
752
753        // Convert the value to the same width/sign as the condition.
754        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
755                                           Hi->getLocStart(),
756                                           diag::warn_case_value_overflow);
757
758        CR->setRHS(Hi);
759
760        // If the low value is bigger than the high value, the case is empty.
761        if (LoVal > HiVal) {
762          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
763            << SourceRange(CR->getLHS()->getLocStart(),
764                           Hi->getLocEnd());
765          CaseRanges.erase(CaseRanges.begin()+i);
766          --i, --e;
767          continue;
768        }
769
770        if (ShouldCheckConstantCond &&
771            LoVal <= ConstantCondValue &&
772            ConstantCondValue <= HiVal)
773          ShouldCheckConstantCond = false;
774
775        HiVals.push_back(HiVal);
776      }
777
778      // Rescan the ranges, looking for overlap with singleton values and other
779      // ranges.  Since the range list is sorted, we only need to compare case
780      // ranges with their neighbors.
781      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
782        llvm::APSInt &CRLo = CaseRanges[i].first;
783        llvm::APSInt &CRHi = HiVals[i];
784        CaseStmt *CR = CaseRanges[i].second;
785
786        // Check to see whether the case range overlaps with any
787        // singleton cases.
788        CaseStmt *OverlapStmt = 0;
789        llvm::APSInt OverlapVal(32);
790
791        // Find the smallest value >= the lower bound.  If I is in the
792        // case range, then we have overlap.
793        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
794                                                  CaseVals.end(), CRLo,
795                                                  CaseCompareFunctor());
796        if (I != CaseVals.end() && I->first < CRHi) {
797          OverlapVal  = I->first;   // Found overlap with scalar.
798          OverlapStmt = I->second;
799        }
800
801        // Find the smallest value bigger than the upper bound.
802        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
803        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
804          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
805          OverlapStmt = (I-1)->second;
806        }
807
808        // Check to see if this case stmt overlaps with the subsequent
809        // case range.
810        if (i && CRLo <= HiVals[i-1]) {
811          OverlapVal  = HiVals[i-1];       // Found overlap with range.
812          OverlapStmt = CaseRanges[i-1].second;
813        }
814
815        if (OverlapStmt) {
816          // If we have a duplicate, report it.
817          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
818            << OverlapVal.toString(10);
819          Diag(OverlapStmt->getLHS()->getLocStart(),
820               diag::note_duplicate_case_prev);
821          // FIXME: We really want to remove the bogus case stmt from the
822          // substmt, but we have no way to do this right now.
823          CaseListIsErroneous = true;
824        }
825      }
826    }
827
828    // Complain if we have a constant condition and we didn't find a match.
829    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
830      // TODO: it would be nice if we printed enums as enums, chars as
831      // chars, etc.
832      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
833        << ConstantCondValue.toString(10)
834        << CondExpr->getSourceRange();
835    }
836
837    // Check to see if switch is over an Enum and handles all of its
838    // values.  We only issue a warning if there is not 'default:', but
839    // we still do the analysis to preserve this information in the AST
840    // (which can be used by flow-based analyes).
841    //
842    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
843
844    // If switch has default case, then ignore it.
845    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
846      const EnumDecl *ED = ET->getDecl();
847      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
848        EnumValsTy;
849      EnumValsTy EnumVals;
850
851      // Gather all enum values, set their type and sort them,
852      // allowing easier comparison with CaseVals.
853      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
854           EDI != ED->enumerator_end(); ++EDI) {
855        llvm::APSInt Val = EDI->getInitVal();
856        AdjustAPSInt(Val, CondWidth, CondIsSigned);
857        EnumVals.push_back(std::make_pair(Val, *EDI));
858      }
859      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
860      EnumValsTy::iterator EIend =
861        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
862
863      // See which case values aren't in enum.
864      EnumValsTy::const_iterator EI = EnumVals.begin();
865      for (CaseValsTy::const_iterator CI = CaseVals.begin();
866           CI != CaseVals.end(); CI++) {
867        while (EI != EIend && EI->first < CI->first)
868          EI++;
869        if (EI == EIend || EI->first > CI->first)
870          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
871            << ED->getDeclName();
872      }
873      // See which of case ranges aren't in enum
874      EI = EnumVals.begin();
875      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
876           RI != CaseRanges.end() && EI != EIend; RI++) {
877        while (EI != EIend && EI->first < RI->first)
878          EI++;
879
880        if (EI == EIend || EI->first != RI->first) {
881          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
882            << ED->getDeclName();
883        }
884
885        llvm::APSInt Hi =
886          RI->second->getRHS()->EvaluateKnownConstInt(Context);
887        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
888        while (EI != EIend && EI->first < Hi)
889          EI++;
890        if (EI == EIend || EI->first != Hi)
891          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
892            << ED->getDeclName();
893      }
894
895      // Check which enum vals aren't in switch
896      CaseValsTy::const_iterator CI = CaseVals.begin();
897      CaseRangesTy::const_iterator RI = CaseRanges.begin();
898      bool hasCasesNotInSwitch = false;
899
900      SmallVector<DeclarationName,8> UnhandledNames;
901
902      for (EI = EnumVals.begin(); EI != EIend; EI++){
903        // Drop unneeded case values
904        llvm::APSInt CIVal;
905        while (CI != CaseVals.end() && CI->first < EI->first)
906          CI++;
907
908        if (CI != CaseVals.end() && CI->first == EI->first)
909          continue;
910
911        // Drop unneeded case ranges
912        for (; RI != CaseRanges.end(); RI++) {
913          llvm::APSInt Hi =
914            RI->second->getRHS()->EvaluateKnownConstInt(Context);
915          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
916          if (EI->first <= Hi)
917            break;
918        }
919
920        if (RI == CaseRanges.end() || EI->first < RI->first) {
921          hasCasesNotInSwitch = true;
922          UnhandledNames.push_back(EI->second->getDeclName());
923        }
924      }
925
926      if (TheDefaultStmt && UnhandledNames.empty())
927        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
928
929      // Produce a nice diagnostic if multiple values aren't handled.
930      switch (UnhandledNames.size()) {
931      case 0: break;
932      case 1:
933        Diag(CondExpr->getExprLoc(), TheDefaultStmt
934          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
935          << UnhandledNames[0];
936        break;
937      case 2:
938        Diag(CondExpr->getExprLoc(), TheDefaultStmt
939          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
940          << UnhandledNames[0] << UnhandledNames[1];
941        break;
942      case 3:
943        Diag(CondExpr->getExprLoc(), TheDefaultStmt
944          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
945          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
946        break;
947      default:
948        Diag(CondExpr->getExprLoc(), TheDefaultStmt
949          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
950          << (unsigned)UnhandledNames.size()
951          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
952        break;
953      }
954
955      if (!hasCasesNotInSwitch)
956        SS->setAllEnumCasesCovered();
957    }
958  }
959
960  // FIXME: If the case list was broken is some way, we don't have a good system
961  // to patch it up.  Instead, just return the whole substmt as broken.
962  if (CaseListIsErroneous)
963    return StmtError();
964
965  return Owned(SS);
966}
967
968StmtResult
969Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
970                     Decl *CondVar, Stmt *Body) {
971  ExprResult CondResult(Cond.release());
972
973  VarDecl *ConditionVar = 0;
974  if (CondVar) {
975    ConditionVar = cast<VarDecl>(CondVar);
976    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
977    if (CondResult.isInvalid())
978      return StmtError();
979  }
980  Expr *ConditionExpr = CondResult.take();
981  if (!ConditionExpr)
982    return StmtError();
983
984  DiagnoseUnusedExprResult(Body);
985
986  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
987                                       Body, WhileLoc));
988}
989
990StmtResult
991Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
992                  SourceLocation WhileLoc, SourceLocation CondLParen,
993                  Expr *Cond, SourceLocation CondRParen) {
994  assert(Cond && "ActOnDoStmt(): missing expression");
995
996  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
997  if (CondResult.isInvalid() || CondResult.isInvalid())
998    return StmtError();
999  Cond = CondResult.take();
1000
1001  CheckImplicitConversions(Cond, DoLoc);
1002  CondResult = MaybeCreateExprWithCleanups(Cond);
1003  if (CondResult.isInvalid())
1004    return StmtError();
1005  Cond = CondResult.take();
1006
1007  DiagnoseUnusedExprResult(Body);
1008
1009  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1010}
1011
1012StmtResult
1013Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1014                   Stmt *First, FullExprArg second, Decl *secondVar,
1015                   FullExprArg third,
1016                   SourceLocation RParenLoc, Stmt *Body) {
1017  if (!getLangOptions().CPlusPlus) {
1018    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1019      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1020      // declare identifiers for objects having storage class 'auto' or
1021      // 'register'.
1022      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1023           DI!=DE; ++DI) {
1024        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1025        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1026          VD = 0;
1027        if (VD == 0)
1028          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1029        // FIXME: mark decl erroneous!
1030      }
1031    }
1032  }
1033
1034  ExprResult SecondResult(second.release());
1035  VarDecl *ConditionVar = 0;
1036  if (secondVar) {
1037    ConditionVar = cast<VarDecl>(secondVar);
1038    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1039    if (SecondResult.isInvalid())
1040      return StmtError();
1041  }
1042
1043  Expr *Third  = third.release().takeAs<Expr>();
1044
1045  DiagnoseUnusedExprResult(First);
1046  DiagnoseUnusedExprResult(Third);
1047  DiagnoseUnusedExprResult(Body);
1048
1049  return Owned(new (Context) ForStmt(Context, First,
1050                                     SecondResult.take(), ConditionVar,
1051                                     Third, Body, ForLoc, LParenLoc,
1052                                     RParenLoc));
1053}
1054
1055/// In an Objective C collection iteration statement:
1056///   for (x in y)
1057/// x can be an arbitrary l-value expression.  Bind it up as a
1058/// full-expression.
1059StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1060  CheckImplicitConversions(E);
1061  ExprResult Result = MaybeCreateExprWithCleanups(E);
1062  if (Result.isInvalid()) return StmtError();
1063  return Owned(static_cast<Stmt*>(Result.get()));
1064}
1065
1066ExprResult
1067Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1068  assert(collection);
1069
1070  // Bail out early if we've got a type-dependent expression.
1071  if (collection->isTypeDependent()) return Owned(collection);
1072
1073  // Perform normal l-value conversion.
1074  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1075  if (result.isInvalid())
1076    return ExprError();
1077  collection = result.take();
1078
1079  // The operand needs to have object-pointer type.
1080  // TODO: should we do a contextual conversion?
1081  const ObjCObjectPointerType *pointerType =
1082    collection->getType()->getAs<ObjCObjectPointerType>();
1083  if (!pointerType)
1084    return Diag(forLoc, diag::err_collection_expr_type)
1085             << collection->getType() << collection->getSourceRange();
1086
1087  // Check that the operand provides
1088  //   - countByEnumeratingWithState:objects:count:
1089  const ObjCObjectType *objectType = pointerType->getObjectType();
1090  ObjCInterfaceDecl *iface = objectType->getInterface();
1091
1092  // If we have a forward-declared type, we can't do this check.
1093  // Under ARC, it is an error not to have a forward-declared class.
1094  if (iface &&
1095      RequireCompleteType(forLoc, QualType(objectType, 0),
1096                          getLangOptions().ObjCAutoRefCount
1097                            ? PDiag(diag::err_arc_collection_forward)
1098                                << collection->getSourceRange()
1099                          : PDiag(0))) {
1100    // Otherwise, if we have any useful type information, check that
1101    // the type declares the appropriate method.
1102  } else if (iface || !objectType->qual_empty()) {
1103    IdentifierInfo *selectorIdents[] = {
1104      &Context.Idents.get("countByEnumeratingWithState"),
1105      &Context.Idents.get("objects"),
1106      &Context.Idents.get("count")
1107    };
1108    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1109
1110    ObjCMethodDecl *method = 0;
1111
1112    // If there's an interface, look in both the public and private APIs.
1113    if (iface) {
1114      method = iface->lookupInstanceMethod(selector);
1115      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1116    }
1117
1118    // Also check protocol qualifiers.
1119    if (!method)
1120      method = LookupMethodInQualifiedType(selector, pointerType,
1121                                           /*instance*/ true);
1122
1123    // If we didn't find it anywhere, give up.
1124    if (!method) {
1125      Diag(forLoc, diag::warn_collection_expr_type)
1126        << collection->getType() << selector << collection->getSourceRange();
1127    }
1128
1129    // TODO: check for an incompatible signature?
1130  }
1131
1132  // Wrap up any cleanups in the expression.
1133  return Owned(MaybeCreateExprWithCleanups(collection));
1134}
1135
1136StmtResult
1137Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1138                                 SourceLocation LParenLoc,
1139                                 Stmt *First, Expr *Second,
1140                                 SourceLocation RParenLoc, Stmt *Body) {
1141  if (First) {
1142    QualType FirstType;
1143    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1144      if (!DS->isSingleDecl())
1145        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1146                         diag::err_toomany_element_decls));
1147
1148      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1149      FirstType = D->getType();
1150      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1151      // declare identifiers for objects having storage class 'auto' or
1152      // 'register'.
1153      if (!D->hasLocalStorage())
1154        return StmtError(Diag(D->getLocation(),
1155                              diag::err_non_variable_decl_in_for));
1156    } else {
1157      Expr *FirstE = cast<Expr>(First);
1158      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1159        return StmtError(Diag(First->getLocStart(),
1160                   diag::err_selector_element_not_lvalue)
1161          << First->getSourceRange());
1162
1163      FirstType = static_cast<Expr*>(First)->getType();
1164    }
1165    if (!FirstType->isDependentType() &&
1166        !FirstType->isObjCObjectPointerType() &&
1167        !FirstType->isBlockPointerType())
1168        Diag(ForLoc, diag::err_selector_element_type)
1169          << FirstType << First->getSourceRange();
1170  }
1171
1172  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1173                                                   ForLoc, RParenLoc));
1174}
1175
1176namespace {
1177
1178enum BeginEndFunction {
1179  BEF_begin,
1180  BEF_end
1181};
1182
1183/// Build a variable declaration for a for-range statement.
1184static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1185                                     QualType Type, const char *Name) {
1186  DeclContext *DC = SemaRef.CurContext;
1187  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1188  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1189  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1190                                  TInfo, SC_Auto, SC_None);
1191  Decl->setImplicit();
1192  return Decl;
1193}
1194
1195/// Finish building a variable declaration for a for-range statement.
1196/// \return true if an error occurs.
1197static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1198                                  SourceLocation Loc, int diag) {
1199  // Deduce the type for the iterator variable now rather than leaving it to
1200  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1201  TypeSourceInfo *InitTSI = 0;
1202  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1203      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1204          Sema::DAR_Failed)
1205    SemaRef.Diag(Loc, diag) << Init->getType();
1206  if (!InitTSI) {
1207    Decl->setInvalidDecl();
1208    return true;
1209  }
1210  Decl->setTypeSourceInfo(InitTSI);
1211  Decl->setType(InitTSI->getType());
1212
1213  // In ARC, infer lifetime.
1214  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1215  // we're doing the equivalent of fast iteration.
1216  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1217      SemaRef.inferObjCARCLifetime(Decl))
1218    Decl->setInvalidDecl();
1219
1220  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1221                               /*TypeMayContainAuto=*/false);
1222  SemaRef.FinalizeDeclaration(Decl);
1223  SemaRef.CurContext->addHiddenDecl(Decl);
1224  return false;
1225}
1226
1227/// Produce a note indicating which begin/end function was implicitly called
1228/// by a C++0x for-range statement. This is often not obvious from the code,
1229/// nor from the diagnostics produced when analysing the implicit expressions
1230/// required in a for-range statement.
1231void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1232                                  BeginEndFunction BEF) {
1233  CallExpr *CE = dyn_cast<CallExpr>(E);
1234  if (!CE)
1235    return;
1236  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1237  if (!D)
1238    return;
1239  SourceLocation Loc = D->getLocation();
1240
1241  std::string Description;
1242  bool IsTemplate = false;
1243  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1244    Description = SemaRef.getTemplateArgumentBindingsText(
1245      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1246    IsTemplate = true;
1247  }
1248
1249  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1250    << BEF << IsTemplate << Description << E->getType();
1251}
1252
1253/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1254/// given LookupResult is non-empty, it is assumed to describe a member which
1255/// will be invoked. Otherwise, the function will be found via argument
1256/// dependent lookup.
1257static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1258                                            SourceLocation Loc,
1259                                            VarDecl *Decl,
1260                                            BeginEndFunction BEF,
1261                                            const DeclarationNameInfo &NameInfo,
1262                                            LookupResult &MemberLookup,
1263                                            Expr *Range) {
1264  ExprResult CallExpr;
1265  if (!MemberLookup.empty()) {
1266    ExprResult MemberRef =
1267      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1268                                       /*IsPtr=*/false, CXXScopeSpec(),
1269                                       /*TemplateKWLoc=*/SourceLocation(),
1270                                       /*FirstQualifierInScope=*/0,
1271                                       MemberLookup,
1272                                       /*TemplateArgs=*/0);
1273    if (MemberRef.isInvalid())
1274      return ExprError();
1275    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1276                                     Loc, 0);
1277    if (CallExpr.isInvalid())
1278      return ExprError();
1279  } else {
1280    UnresolvedSet<0> FoundNames;
1281    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1282    // std is an associated namespace.
1283    UnresolvedLookupExpr *Fn =
1284      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1285                                   NestedNameSpecifierLoc(), NameInfo,
1286                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1287                                   FoundNames.begin(), FoundNames.end(),
1288                                   /*LookInStdNamespace=*/true);
1289    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1290                                               0, /*AllowTypoCorrection=*/false);
1291    if (CallExpr.isInvalid()) {
1292      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1293        << Range->getType();
1294      return ExprError();
1295    }
1296  }
1297  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1298                            diag::err_for_range_iter_deduction_failure)) {
1299    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1300    return ExprError();
1301  }
1302  return CallExpr;
1303}
1304
1305}
1306
1307/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1308///
1309/// C++0x [stmt.ranged]:
1310///   A range-based for statement is equivalent to
1311///
1312///   {
1313///     auto && __range = range-init;
1314///     for ( auto __begin = begin-expr,
1315///           __end = end-expr;
1316///           __begin != __end;
1317///           ++__begin ) {
1318///       for-range-declaration = *__begin;
1319///       statement
1320///     }
1321///   }
1322///
1323/// The body of the loop is not available yet, since it cannot be analysed until
1324/// we have determined the type of the for-range-declaration.
1325StmtResult
1326Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1327                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1328                           SourceLocation RParenLoc) {
1329  if (!First || !Range)
1330    return StmtError();
1331
1332  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1333  assert(DS && "first part of for range not a decl stmt");
1334
1335  if (!DS->isSingleDecl()) {
1336    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1337    return StmtError();
1338  }
1339  if (DS->getSingleDecl()->isInvalidDecl())
1340    return StmtError();
1341
1342  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1343    return StmtError();
1344
1345  // Build  auto && __range = range-init
1346  SourceLocation RangeLoc = Range->getLocStart();
1347  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1348                                           Context.getAutoRRefDeductType(),
1349                                           "__range");
1350  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1351                            diag::err_for_range_deduction_failure))
1352    return StmtError();
1353
1354  // Claim the type doesn't contain auto: we've already done the checking.
1355  DeclGroupPtrTy RangeGroup =
1356    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1357  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1358  if (RangeDecl.isInvalid())
1359    return StmtError();
1360
1361  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1362                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1363                              RParenLoc);
1364}
1365
1366/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1367StmtResult
1368Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1369                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1370                           Expr *Inc, Stmt *LoopVarDecl,
1371                           SourceLocation RParenLoc) {
1372  Scope *S = getCurScope();
1373
1374  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1375  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1376  QualType RangeVarType = RangeVar->getType();
1377
1378  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1379  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1380
1381  StmtResult BeginEndDecl = BeginEnd;
1382  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1383
1384  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1385    SourceLocation RangeLoc = RangeVar->getLocation();
1386
1387    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1388
1389    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1390                                                VK_LValue, ColonLoc);
1391    if (BeginRangeRef.isInvalid())
1392      return StmtError();
1393
1394    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1395                                              VK_LValue, ColonLoc);
1396    if (EndRangeRef.isInvalid())
1397      return StmtError();
1398
1399    QualType AutoType = Context.getAutoDeductType();
1400    Expr *Range = RangeVar->getInit();
1401    if (!Range)
1402      return StmtError();
1403    QualType RangeType = Range->getType();
1404
1405    if (RequireCompleteType(RangeLoc, RangeType,
1406                            PDiag(diag::err_for_range_incomplete_type)))
1407      return StmtError();
1408
1409    // Build auto __begin = begin-expr, __end = end-expr.
1410    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1411                                             "__begin");
1412    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1413                                           "__end");
1414
1415    // Build begin-expr and end-expr and attach to __begin and __end variables.
1416    ExprResult BeginExpr, EndExpr;
1417    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1418      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1419      //   __range + __bound, respectively, where __bound is the array bound. If
1420      //   _RangeT is an array of unknown size or an array of incomplete type,
1421      //   the program is ill-formed;
1422
1423      // begin-expr is __range.
1424      BeginExpr = BeginRangeRef;
1425      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1426                                diag::err_for_range_iter_deduction_failure)) {
1427        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1428        return StmtError();
1429      }
1430
1431      // Find the array bound.
1432      ExprResult BoundExpr;
1433      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1434        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1435                                                 Context.getPointerDiffType(),
1436                                                 RangeLoc));
1437      else if (const VariableArrayType *VAT =
1438               dyn_cast<VariableArrayType>(UnqAT))
1439        BoundExpr = VAT->getSizeExpr();
1440      else {
1441        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1442        // UnqAT is not incomplete and Range is not type-dependent.
1443        llvm_unreachable("Unexpected array type in for-range");
1444      }
1445
1446      // end-expr is __range + __bound.
1447      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1448                           BoundExpr.get());
1449      if (EndExpr.isInvalid())
1450        return StmtError();
1451      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1452                                diag::err_for_range_iter_deduction_failure)) {
1453        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1454        return StmtError();
1455      }
1456    } else {
1457      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1458                                        ColonLoc);
1459      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1460                                      ColonLoc);
1461
1462      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1463      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1464
1465      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1466        // - if _RangeT is a class type, the unqualified-ids begin and end are
1467        //   looked up in the scope of class _RangeT as if by class member access
1468        //   lookup (3.4.5), and if either (or both) finds at least one
1469        //   declaration, begin-expr and end-expr are __range.begin() and
1470        //   __range.end(), respectively;
1471        LookupQualifiedName(BeginMemberLookup, D);
1472        LookupQualifiedName(EndMemberLookup, D);
1473
1474        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1475          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1476            << RangeType << BeginMemberLookup.empty();
1477          return StmtError();
1478        }
1479      } else {
1480        // - otherwise, begin-expr and end-expr are begin(__range) and
1481        //   end(__range), respectively, where begin and end are looked up with
1482        //   argument-dependent lookup (3.4.2). For the purposes of this name
1483        //   lookup, namespace std is an associated namespace.
1484      }
1485
1486      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1487                                            BEF_begin, BeginNameInfo,
1488                                            BeginMemberLookup,
1489                                            BeginRangeRef.get());
1490      if (BeginExpr.isInvalid())
1491        return StmtError();
1492
1493      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1494                                          BEF_end, EndNameInfo,
1495                                          EndMemberLookup, EndRangeRef.get());
1496      if (EndExpr.isInvalid())
1497        return StmtError();
1498    }
1499
1500    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1501    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1502    if (!Context.hasSameType(BeginType, EndType)) {
1503      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1504        << BeginType << EndType;
1505      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1506      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1507    }
1508
1509    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1510    // Claim the type doesn't contain auto: we've already done the checking.
1511    DeclGroupPtrTy BeginEndGroup =
1512      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1513    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1514
1515    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1516    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1517                                           VK_LValue, ColonLoc);
1518    if (BeginRef.isInvalid())
1519      return StmtError();
1520
1521    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1522                                         VK_LValue, ColonLoc);
1523    if (EndRef.isInvalid())
1524      return StmtError();
1525
1526    // Build and check __begin != __end expression.
1527    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1528                           BeginRef.get(), EndRef.get());
1529    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1530    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1531    if (NotEqExpr.isInvalid()) {
1532      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1533      if (!Context.hasSameType(BeginType, EndType))
1534        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1535      return StmtError();
1536    }
1537
1538    // Build and check ++__begin expression.
1539    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1540                                VK_LValue, ColonLoc);
1541    if (BeginRef.isInvalid())
1542      return StmtError();
1543
1544    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1545    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1546    if (IncrExpr.isInvalid()) {
1547      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1548      return StmtError();
1549    }
1550
1551    // Build and check *__begin  expression.
1552    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1553                                VK_LValue, ColonLoc);
1554    if (BeginRef.isInvalid())
1555      return StmtError();
1556
1557    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1558    if (DerefExpr.isInvalid()) {
1559      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1560      return StmtError();
1561    }
1562
1563    // Attach  *__begin  as initializer for VD.
1564    if (!LoopVar->isInvalidDecl()) {
1565      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1566                           /*TypeMayContainAuto=*/true);
1567      if (LoopVar->isInvalidDecl())
1568        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1569    }
1570  } else {
1571    // The range is implicitly used as a placeholder when it is dependent.
1572    RangeVar->setUsed();
1573  }
1574
1575  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1576                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1577                                             NotEqExpr.take(), IncrExpr.take(),
1578                                             LoopVarDS, /*Body=*/0, ForLoc,
1579                                             ColonLoc, RParenLoc));
1580}
1581
1582/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1583/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1584/// body cannot be performed until after the type of the range variable is
1585/// determined.
1586StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1587  if (!S || !B)
1588    return StmtError();
1589
1590  cast<CXXForRangeStmt>(S)->setBody(B);
1591  return S;
1592}
1593
1594StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1595                               SourceLocation LabelLoc,
1596                               LabelDecl *TheDecl) {
1597  getCurFunction()->setHasBranchIntoScope();
1598  TheDecl->setUsed();
1599  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1600}
1601
1602StmtResult
1603Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1604                            Expr *E) {
1605  // Convert operand to void*
1606  if (!E->isTypeDependent()) {
1607    QualType ETy = E->getType();
1608    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1609    ExprResult ExprRes = Owned(E);
1610    AssignConvertType ConvTy =
1611      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1612    if (ExprRes.isInvalid())
1613      return StmtError();
1614    E = ExprRes.take();
1615    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1616      return StmtError();
1617    E = MaybeCreateExprWithCleanups(E);
1618  }
1619
1620  getCurFunction()->setHasIndirectGoto();
1621
1622  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1623}
1624
1625StmtResult
1626Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1627  Scope *S = CurScope->getContinueParent();
1628  if (!S) {
1629    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1630    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1631  }
1632
1633  return Owned(new (Context) ContinueStmt(ContinueLoc));
1634}
1635
1636StmtResult
1637Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1638  Scope *S = CurScope->getBreakParent();
1639  if (!S) {
1640    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1641    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1642  }
1643
1644  return Owned(new (Context) BreakStmt(BreakLoc));
1645}
1646
1647/// \brief Determine whether the given expression is a candidate for
1648/// copy elision in either a return statement or a throw expression.
1649///
1650/// \param ReturnType If we're determining the copy elision candidate for
1651/// a return statement, this is the return type of the function. If we're
1652/// determining the copy elision candidate for a throw expression, this will
1653/// be a NULL type.
1654///
1655/// \param E The expression being returned from the function or block, or
1656/// being thrown.
1657///
1658/// \param AllowFunctionParameter Whether we allow function parameters to
1659/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1660/// we re-use this logic to determine whether we should try to move as part of
1661/// a return or throw (which does allow function parameters).
1662///
1663/// \returns The NRVO candidate variable, if the return statement may use the
1664/// NRVO, or NULL if there is no such candidate.
1665const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1666                                             Expr *E,
1667                                             bool AllowFunctionParameter) {
1668  QualType ExprType = E->getType();
1669  // - in a return statement in a function with ...
1670  // ... a class return type ...
1671  if (!ReturnType.isNull()) {
1672    if (!ReturnType->isRecordType())
1673      return 0;
1674    // ... the same cv-unqualified type as the function return type ...
1675    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1676      return 0;
1677  }
1678
1679  // ... the expression is the name of a non-volatile automatic object
1680  // (other than a function or catch-clause parameter)) ...
1681  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1682  if (!DR)
1683    return 0;
1684  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1685  if (!VD)
1686    return 0;
1687
1688  // ...object (other than a function or catch-clause parameter)...
1689  if (VD->getKind() != Decl::Var &&
1690      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
1691    return 0;
1692  if (VD->isExceptionVariable()) return 0;
1693
1694  // ...automatic...
1695  if (!VD->hasLocalStorage()) return 0;
1696
1697  // ...non-volatile...
1698  if (VD->getType().isVolatileQualified()) return 0;
1699  if (VD->getType()->isReferenceType()) return 0;
1700
1701  // __block variables can't be allocated in a way that permits NRVO.
1702  if (VD->hasAttr<BlocksAttr>()) return 0;
1703
1704  // Variables with higher required alignment than their type's ABI
1705  // alignment cannot use NRVO.
1706  if (VD->hasAttr<AlignedAttr>() &&
1707      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
1708    return 0;
1709
1710  return VD;
1711}
1712
1713/// \brief Perform the initialization of a potentially-movable value, which
1714/// is the result of return value.
1715///
1716/// This routine implements C++0x [class.copy]p33, which attempts to treat
1717/// returned lvalues as rvalues in certain cases (to prefer move construction),
1718/// then falls back to treating them as lvalues if that failed.
1719ExprResult
1720Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1721                                      const VarDecl *NRVOCandidate,
1722                                      QualType ResultType,
1723                                      Expr *Value,
1724                                      bool AllowNRVO) {
1725  // C++0x [class.copy]p33:
1726  //   When the criteria for elision of a copy operation are met or would
1727  //   be met save for the fact that the source object is a function
1728  //   parameter, and the object to be copied is designated by an lvalue,
1729  //   overload resolution to select the constructor for the copy is first
1730  //   performed as if the object were designated by an rvalue.
1731  ExprResult Res = ExprError();
1732  if (AllowNRVO &&
1733      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1734    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1735                              Value->getType(), CK_LValueToRValue,
1736                              Value, VK_XValue);
1737
1738    Expr *InitExpr = &AsRvalue;
1739    InitializationKind Kind
1740      = InitializationKind::CreateCopy(Value->getLocStart(),
1741                                       Value->getLocStart());
1742    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1743
1744    //   [...] If overload resolution fails, or if the type of the first
1745    //   parameter of the selected constructor is not an rvalue reference
1746    //   to the object's type (possibly cv-qualified), overload resolution
1747    //   is performed again, considering the object as an lvalue.
1748    if (Seq) {
1749      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1750           StepEnd = Seq.step_end();
1751           Step != StepEnd; ++Step) {
1752        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1753          continue;
1754
1755        CXXConstructorDecl *Constructor
1756        = cast<CXXConstructorDecl>(Step->Function.Function);
1757
1758        const RValueReferenceType *RRefType
1759          = Constructor->getParamDecl(0)->getType()
1760                                                 ->getAs<RValueReferenceType>();
1761
1762        // If we don't meet the criteria, break out now.
1763        if (!RRefType ||
1764            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1765                            Context.getTypeDeclType(Constructor->getParent())))
1766          break;
1767
1768        // Promote "AsRvalue" to the heap, since we now need this
1769        // expression node to persist.
1770        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1771                                         CK_LValueToRValue, Value, 0,
1772                                         VK_XValue);
1773
1774        // Complete type-checking the initialization of the return type
1775        // using the constructor we found.
1776        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1777      }
1778    }
1779  }
1780
1781  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1782  // above, or overload resolution failed. Either way, we need to try
1783  // (again) now with the return value expression as written.
1784  if (Res.isInvalid())
1785    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1786
1787  return Res;
1788}
1789
1790/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
1791/// for capturing scopes.
1792///
1793StmtResult
1794Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1795  // If this is the first return we've seen, infer the return type.
1796  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
1797  // rules which allows multiple return statements.
1798  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
1799  if (CurCap->HasImplicitReturnType) {
1800    QualType ReturnT;
1801    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
1802      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1803      if (Result.isInvalid())
1804        return StmtError();
1805      RetValExp = Result.take();
1806
1807      if (!RetValExp->isTypeDependent())
1808        ReturnT = RetValExp->getType();
1809      else
1810        ReturnT = Context.DependentTy;
1811    } else {
1812      if (RetValExp) {
1813        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
1814        // initializer list, because it is not an expression (even
1815        // though we represent it as one). We still deduce 'void'.
1816        Diag(ReturnLoc, diag::err_lambda_return_init_list)
1817          << RetValExp->getSourceRange();
1818      }
1819
1820      ReturnT = Context.VoidTy;
1821    }
1822    // We require the return types to strictly match here.
1823    if (!CurCap->ReturnType.isNull() &&
1824        !CurCap->ReturnType->isDependentType() &&
1825        !ReturnT->isDependentType() &&
1826        !Context.hasSameType(ReturnT, CurCap->ReturnType)) {
1827      // FIXME: Adapt diagnostic for lambdas.
1828      Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
1829          << ReturnT << CurCap->ReturnType;
1830      return StmtError();
1831    }
1832    CurCap->ReturnType = ReturnT;
1833  }
1834  QualType FnRetType = CurCap->ReturnType;
1835  assert(!FnRetType.isNull());
1836
1837  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap))
1838    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1839      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
1840      return StmtError();
1841    }
1842  // FIXME: [[noreturn]] for lambdas!
1843
1844  // Otherwise, verify that this result type matches the previous one.  We are
1845  // pickier with blocks than for normal functions because we don't have GCC
1846  // compatibility to worry about here.
1847  const VarDecl *NRVOCandidate = 0;
1848  if (FnRetType->isDependentType()) {
1849    // Delay processing for now.  TODO: there are lots of dependent
1850    // types we can conclusively prove aren't void.
1851  } else if (FnRetType->isVoidType()) {
1852    if (RetValExp &&
1853        !(getLangOptions().CPlusPlus &&
1854          (RetValExp->isTypeDependent() ||
1855           RetValExp->getType()->isVoidType()))) {
1856      Diag(ReturnLoc, diag::err_return_block_has_expr);
1857      RetValExp = 0;
1858    }
1859  } else if (!RetValExp) {
1860    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1861  } else if (!RetValExp->isTypeDependent()) {
1862    // we have a non-void block with an expression, continue checking
1863
1864    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1865    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1866    // function return.
1867
1868    // In C++ the return statement is handled via a copy initialization.
1869    // the C version of which boils down to CheckSingleAssignmentConstraints.
1870    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1871    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1872                                                                   FnRetType,
1873                                                          NRVOCandidate != 0);
1874    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1875                                                     FnRetType, RetValExp);
1876    if (Res.isInvalid()) {
1877      // FIXME: Cleanup temporaries here, anyway?
1878      return StmtError();
1879    }
1880    RetValExp = Res.take();
1881    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1882  }
1883
1884  if (RetValExp) {
1885    CheckImplicitConversions(RetValExp, ReturnLoc);
1886    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1887  }
1888  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1889                                                NRVOCandidate);
1890
1891  // If we need to check for the named return value optimization, save the
1892  // return statement in our scope for later processing.
1893  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1894      !CurContext->isDependentContext())
1895    FunctionScopes.back()->Returns.push_back(Result);
1896
1897  return Owned(Result);
1898}
1899
1900StmtResult
1901Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1902  // Check for unexpanded parameter packs.
1903  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1904    return StmtError();
1905
1906  if (isa<CapturingScopeInfo>(getCurFunction()))
1907    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
1908
1909  QualType FnRetType;
1910  QualType DeclaredRetType;
1911  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1912    FnRetType = FD->getResultType();
1913    DeclaredRetType = FnRetType;
1914    if (FD->hasAttr<NoReturnAttr>() ||
1915        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1916      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1917        << FD->getDeclName();
1918  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1919    DeclaredRetType = MD->getResultType();
1920    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1921      // In the implementation of a method with a related return type, the
1922      // type used to type-check the validity of return statements within the
1923      // method body is a pointer to the type of the class being implemented.
1924      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1925      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1926    } else {
1927      FnRetType = DeclaredRetType;
1928    }
1929  } else // If we don't have a function/method context, bail.
1930    return StmtError();
1931
1932  ReturnStmt *Result = 0;
1933  if (FnRetType->isVoidType()) {
1934    if (RetValExp) {
1935      if (!RetValExp->isTypeDependent()) {
1936        // C99 6.8.6.4p1 (ext_ since GCC warns)
1937        unsigned D = diag::ext_return_has_expr;
1938        if (RetValExp->getType()->isVoidType())
1939          D = diag::ext_return_has_void_expr;
1940        else {
1941          ExprResult Result = Owned(RetValExp);
1942          Result = IgnoredValueConversions(Result.take());
1943          if (Result.isInvalid())
1944            return StmtError();
1945          RetValExp = Result.take();
1946          RetValExp = ImpCastExprToType(RetValExp,
1947                                        Context.VoidTy, CK_ToVoid).take();
1948        }
1949
1950        // return (some void expression); is legal in C++.
1951        if (D != diag::ext_return_has_void_expr ||
1952            !getLangOptions().CPlusPlus) {
1953          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1954
1955          int FunctionKind = 0;
1956          if (isa<ObjCMethodDecl>(CurDecl))
1957            FunctionKind = 1;
1958          else if (isa<CXXConstructorDecl>(CurDecl))
1959            FunctionKind = 2;
1960          else if (isa<CXXDestructorDecl>(CurDecl))
1961            FunctionKind = 3;
1962
1963          Diag(ReturnLoc, D)
1964            << CurDecl->getDeclName() << FunctionKind
1965            << RetValExp->getSourceRange();
1966        }
1967      }
1968
1969      CheckImplicitConversions(RetValExp, ReturnLoc);
1970      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1971    }
1972
1973    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1974  } else if (!RetValExp && !FnRetType->isDependentType()) {
1975    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1976    // C99 6.8.6.4p1 (ext_ since GCC warns)
1977    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1978
1979    if (FunctionDecl *FD = getCurFunctionDecl())
1980      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1981    else
1982      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1983    Result = new (Context) ReturnStmt(ReturnLoc);
1984  } else {
1985    const VarDecl *NRVOCandidate = 0;
1986    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1987      // we have a non-void function with an expression, continue checking
1988
1989      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1990      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1991      // function return.
1992
1993      // In C++ the return statement is handled via a copy initialization,
1994      // the C version of which boils down to CheckSingleAssignmentConstraints.
1995      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1996      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1997                                                                     FnRetType,
1998                                                            NRVOCandidate != 0);
1999      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2000                                                       FnRetType, RetValExp);
2001      if (Res.isInvalid()) {
2002        // FIXME: Cleanup temporaries here, anyway?
2003        return StmtError();
2004      }
2005
2006      RetValExp = Res.takeAs<Expr>();
2007      if (RetValExp)
2008        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2009    }
2010
2011    if (RetValExp) {
2012      // If we type-checked an Objective-C method's return type based
2013      // on a related return type, we may need to adjust the return
2014      // type again. Do so now.
2015      if (DeclaredRetType != FnRetType) {
2016        ExprResult result = PerformImplicitConversion(RetValExp,
2017                                                      DeclaredRetType,
2018                                                      AA_Returning);
2019        if (result.isInvalid()) return StmtError();
2020        RetValExp = result.take();
2021      }
2022
2023      CheckImplicitConversions(RetValExp, ReturnLoc);
2024      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2025    }
2026    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2027  }
2028
2029  // If we need to check for the named return value optimization, save the
2030  // return statement in our scope for later processing.
2031  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
2032      !CurContext->isDependentContext())
2033    FunctionScopes.back()->Returns.push_back(Result);
2034
2035  return Owned(Result);
2036}
2037
2038/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2039/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2040/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2041/// provide a strong guidance to not use it.
2042///
2043/// This method checks to see if the argument is an acceptable l-value and
2044/// returns false if it is a case we can handle.
2045static bool CheckAsmLValue(const Expr *E, Sema &S) {
2046  // Type dependent expressions will be checked during instantiation.
2047  if (E->isTypeDependent())
2048    return false;
2049
2050  if (E->isLValue())
2051    return false;  // Cool, this is an lvalue.
2052
2053  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2054  // are supposed to allow.
2055  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2056  if (E != E2 && E2->isLValue()) {
2057    if (!S.getLangOptions().HeinousExtensions)
2058      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2059        << E->getSourceRange();
2060    else
2061      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2062        << E->getSourceRange();
2063    // Accept, even if we emitted an error diagnostic.
2064    return false;
2065  }
2066
2067  // None of the above, just randomly invalid non-lvalue.
2068  return true;
2069}
2070
2071/// isOperandMentioned - Return true if the specified operand # is mentioned
2072/// anywhere in the decomposed asm string.
2073static bool isOperandMentioned(unsigned OpNo,
2074                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2075  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2076    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2077    if (!Piece.isOperand()) continue;
2078
2079    // If this is a reference to the input and if the input was the smaller
2080    // one, then we have to reject this asm.
2081    if (Piece.getOperandNo() == OpNo)
2082      return true;
2083  }
2084
2085  return false;
2086}
2087
2088StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2089                              bool IsVolatile, unsigned NumOutputs,
2090                              unsigned NumInputs, IdentifierInfo **Names,
2091                              MultiExprArg constraints, MultiExprArg exprs,
2092                              Expr *asmString, MultiExprArg clobbers,
2093                              SourceLocation RParenLoc, bool MSAsm) {
2094  unsigned NumClobbers = clobbers.size();
2095  StringLiteral **Constraints =
2096    reinterpret_cast<StringLiteral**>(constraints.get());
2097  Expr **Exprs = exprs.get();
2098  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2099  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2100
2101  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2102
2103  // The parser verifies that there is a string literal here.
2104  if (!AsmString->isAscii())
2105    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2106      << AsmString->getSourceRange());
2107
2108  for (unsigned i = 0; i != NumOutputs; i++) {
2109    StringLiteral *Literal = Constraints[i];
2110    if (!Literal->isAscii())
2111      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2112        << Literal->getSourceRange());
2113
2114    StringRef OutputName;
2115    if (Names[i])
2116      OutputName = Names[i]->getName();
2117
2118    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2119    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2120      return StmtError(Diag(Literal->getLocStart(),
2121                            diag::err_asm_invalid_output_constraint)
2122                       << Info.getConstraintStr());
2123
2124    // Check that the output exprs are valid lvalues.
2125    Expr *OutputExpr = Exprs[i];
2126    if (CheckAsmLValue(OutputExpr, *this)) {
2127      return StmtError(Diag(OutputExpr->getLocStart(),
2128                  diag::err_asm_invalid_lvalue_in_output)
2129        << OutputExpr->getSourceRange());
2130    }
2131
2132    OutputConstraintInfos.push_back(Info);
2133  }
2134
2135  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2136
2137  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2138    StringLiteral *Literal = Constraints[i];
2139    if (!Literal->isAscii())
2140      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2141        << Literal->getSourceRange());
2142
2143    StringRef InputName;
2144    if (Names[i])
2145      InputName = Names[i]->getName();
2146
2147    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2148    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2149                                                NumOutputs, Info)) {
2150      return StmtError(Diag(Literal->getLocStart(),
2151                            diag::err_asm_invalid_input_constraint)
2152                       << Info.getConstraintStr());
2153    }
2154
2155    Expr *InputExpr = Exprs[i];
2156
2157    // Only allow void types for memory constraints.
2158    if (Info.allowsMemory() && !Info.allowsRegister()) {
2159      if (CheckAsmLValue(InputExpr, *this))
2160        return StmtError(Diag(InputExpr->getLocStart(),
2161                              diag::err_asm_invalid_lvalue_in_input)
2162                         << Info.getConstraintStr()
2163                         << InputExpr->getSourceRange());
2164    }
2165
2166    if (Info.allowsRegister()) {
2167      if (InputExpr->getType()->isVoidType()) {
2168        return StmtError(Diag(InputExpr->getLocStart(),
2169                              diag::err_asm_invalid_type_in_input)
2170          << InputExpr->getType() << Info.getConstraintStr()
2171          << InputExpr->getSourceRange());
2172      }
2173    }
2174
2175    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2176    if (Result.isInvalid())
2177      return StmtError();
2178
2179    Exprs[i] = Result.take();
2180    InputConstraintInfos.push_back(Info);
2181  }
2182
2183  // Check that the clobbers are valid.
2184  for (unsigned i = 0; i != NumClobbers; i++) {
2185    StringLiteral *Literal = Clobbers[i];
2186    if (!Literal->isAscii())
2187      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2188        << Literal->getSourceRange());
2189
2190    StringRef Clobber = Literal->getString();
2191
2192    if (!Context.getTargetInfo().isValidClobber(Clobber))
2193      return StmtError(Diag(Literal->getLocStart(),
2194                  diag::err_asm_unknown_register_name) << Clobber);
2195  }
2196
2197  AsmStmt *NS =
2198    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2199                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2200                          AsmString, NumClobbers, Clobbers, RParenLoc);
2201  // Validate the asm string, ensuring it makes sense given the operands we
2202  // have.
2203  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2204  unsigned DiagOffs;
2205  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2206    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2207           << AsmString->getSourceRange();
2208    return StmtError();
2209  }
2210
2211  // Validate tied input operands for type mismatches.
2212  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2213    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2214
2215    // If this is a tied constraint, verify that the output and input have
2216    // either exactly the same type, or that they are int/ptr operands with the
2217    // same size (int/long, int*/long, are ok etc).
2218    if (!Info.hasTiedOperand()) continue;
2219
2220    unsigned TiedTo = Info.getTiedOperand();
2221    unsigned InputOpNo = i+NumOutputs;
2222    Expr *OutputExpr = Exprs[TiedTo];
2223    Expr *InputExpr = Exprs[InputOpNo];
2224
2225    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2226      continue;
2227
2228    QualType InTy = InputExpr->getType();
2229    QualType OutTy = OutputExpr->getType();
2230    if (Context.hasSameType(InTy, OutTy))
2231      continue;  // All types can be tied to themselves.
2232
2233    // Decide if the input and output are in the same domain (integer/ptr or
2234    // floating point.
2235    enum AsmDomain {
2236      AD_Int, AD_FP, AD_Other
2237    } InputDomain, OutputDomain;
2238
2239    if (InTy->isIntegerType() || InTy->isPointerType())
2240      InputDomain = AD_Int;
2241    else if (InTy->isRealFloatingType())
2242      InputDomain = AD_FP;
2243    else
2244      InputDomain = AD_Other;
2245
2246    if (OutTy->isIntegerType() || OutTy->isPointerType())
2247      OutputDomain = AD_Int;
2248    else if (OutTy->isRealFloatingType())
2249      OutputDomain = AD_FP;
2250    else
2251      OutputDomain = AD_Other;
2252
2253    // They are ok if they are the same size and in the same domain.  This
2254    // allows tying things like:
2255    //   void* to int*
2256    //   void* to int            if they are the same size.
2257    //   double to long double   if they are the same size.
2258    //
2259    uint64_t OutSize = Context.getTypeSize(OutTy);
2260    uint64_t InSize = Context.getTypeSize(InTy);
2261    if (OutSize == InSize && InputDomain == OutputDomain &&
2262        InputDomain != AD_Other)
2263      continue;
2264
2265    // If the smaller input/output operand is not mentioned in the asm string,
2266    // then we can promote the smaller one to a larger input and the asm string
2267    // won't notice.
2268    bool SmallerValueMentioned = false;
2269
2270    // If this is a reference to the input and if the input was the smaller
2271    // one, then we have to reject this asm.
2272    if (isOperandMentioned(InputOpNo, Pieces)) {
2273      // This is a use in the asm string of the smaller operand.  Since we
2274      // codegen this by promoting to a wider value, the asm will get printed
2275      // "wrong".
2276      SmallerValueMentioned |= InSize < OutSize;
2277    }
2278    if (isOperandMentioned(TiedTo, Pieces)) {
2279      // If this is a reference to the output, and if the output is the larger
2280      // value, then it's ok because we'll promote the input to the larger type.
2281      SmallerValueMentioned |= OutSize < InSize;
2282    }
2283
2284    // If the smaller value wasn't mentioned in the asm string, and if the
2285    // output was a register, just extend the shorter one to the size of the
2286    // larger one.
2287    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2288        OutputConstraintInfos[TiedTo].allowsRegister())
2289      continue;
2290
2291    // Either both of the operands were mentioned or the smaller one was
2292    // mentioned.  One more special case that we'll allow: if the tied input is
2293    // integer, unmentioned, and is a constant, then we'll allow truncating it
2294    // down to the size of the destination.
2295    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2296        !isOperandMentioned(InputOpNo, Pieces) &&
2297        InputExpr->isEvaluatable(Context)) {
2298      CastKind castKind =
2299        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2300      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2301      Exprs[InputOpNo] = InputExpr;
2302      NS->setInputExpr(i, InputExpr);
2303      continue;
2304    }
2305
2306    Diag(InputExpr->getLocStart(),
2307         diag::err_asm_tying_incompatible_types)
2308      << InTy << OutTy << OutputExpr->getSourceRange()
2309      << InputExpr->getSourceRange();
2310    return StmtError();
2311  }
2312
2313  return Owned(NS);
2314}
2315
2316StmtResult
2317Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2318                           SourceLocation RParen, Decl *Parm,
2319                           Stmt *Body) {
2320  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2321  if (Var && Var->isInvalidDecl())
2322    return StmtError();
2323
2324  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2325}
2326
2327StmtResult
2328Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2329  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2330}
2331
2332StmtResult
2333Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2334                         MultiStmtArg CatchStmts, Stmt *Finally) {
2335  if (!getLangOptions().ObjCExceptions)
2336    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2337
2338  getCurFunction()->setHasBranchProtectedScope();
2339  unsigned NumCatchStmts = CatchStmts.size();
2340  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2341                                     CatchStmts.release(),
2342                                     NumCatchStmts,
2343                                     Finally));
2344}
2345
2346StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2347                                                  Expr *Throw) {
2348  if (Throw) {
2349    Throw = MaybeCreateExprWithCleanups(Throw);
2350    ExprResult Result = DefaultLvalueConversion(Throw);
2351    if (Result.isInvalid())
2352      return StmtError();
2353
2354    Throw = Result.take();
2355    QualType ThrowType = Throw->getType();
2356    // Make sure the expression type is an ObjC pointer or "void *".
2357    if (!ThrowType->isDependentType() &&
2358        !ThrowType->isObjCObjectPointerType()) {
2359      const PointerType *PT = ThrowType->getAs<PointerType>();
2360      if (!PT || !PT->getPointeeType()->isVoidType())
2361        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2362                         << Throw->getType() << Throw->getSourceRange());
2363    }
2364  }
2365
2366  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2367}
2368
2369StmtResult
2370Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2371                           Scope *CurScope) {
2372  if (!getLangOptions().ObjCExceptions)
2373    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2374
2375  if (!Throw) {
2376    // @throw without an expression designates a rethrow (which much occur
2377    // in the context of an @catch clause).
2378    Scope *AtCatchParent = CurScope;
2379    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2380      AtCatchParent = AtCatchParent->getParent();
2381    if (!AtCatchParent)
2382      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2383  }
2384
2385  return BuildObjCAtThrowStmt(AtLoc, Throw);
2386}
2387
2388ExprResult
2389Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2390  ExprResult result = DefaultLvalueConversion(operand);
2391  if (result.isInvalid())
2392    return ExprError();
2393  operand = result.take();
2394
2395  // Make sure the expression type is an ObjC pointer or "void *".
2396  QualType type = operand->getType();
2397  if (!type->isDependentType() &&
2398      !type->isObjCObjectPointerType()) {
2399    const PointerType *pointerType = type->getAs<PointerType>();
2400    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2401      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2402               << type << operand->getSourceRange();
2403  }
2404
2405  // The operand to @synchronized is a full-expression.
2406  return MaybeCreateExprWithCleanups(operand);
2407}
2408
2409StmtResult
2410Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2411                                  Stmt *SyncBody) {
2412  // We can't jump into or indirect-jump out of a @synchronized block.
2413  getCurFunction()->setHasBranchProtectedScope();
2414  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2415}
2416
2417/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2418/// and creates a proper catch handler from them.
2419StmtResult
2420Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2421                         Stmt *HandlerBlock) {
2422  // There's nothing to test that ActOnExceptionDecl didn't already test.
2423  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2424                                          cast_or_null<VarDecl>(ExDecl),
2425                                          HandlerBlock));
2426}
2427
2428StmtResult
2429Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2430  getCurFunction()->setHasBranchProtectedScope();
2431  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2432}
2433
2434namespace {
2435
2436class TypeWithHandler {
2437  QualType t;
2438  CXXCatchStmt *stmt;
2439public:
2440  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2441  : t(type), stmt(statement) {}
2442
2443  // An arbitrary order is fine as long as it places identical
2444  // types next to each other.
2445  bool operator<(const TypeWithHandler &y) const {
2446    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2447      return true;
2448    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2449      return false;
2450    else
2451      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2452  }
2453
2454  bool operator==(const TypeWithHandler& other) const {
2455    return t == other.t;
2456  }
2457
2458  CXXCatchStmt *getCatchStmt() const { return stmt; }
2459  SourceLocation getTypeSpecStartLoc() const {
2460    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2461  }
2462};
2463
2464}
2465
2466/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2467/// handlers and creates a try statement from them.
2468StmtResult
2469Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2470                       MultiStmtArg RawHandlers) {
2471  // Don't report an error if 'try' is used in system headers.
2472  if (!getLangOptions().CXXExceptions &&
2473      !getSourceManager().isInSystemHeader(TryLoc))
2474      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2475
2476  unsigned NumHandlers = RawHandlers.size();
2477  assert(NumHandlers > 0 &&
2478         "The parser shouldn't call this if there are no handlers.");
2479  Stmt **Handlers = RawHandlers.get();
2480
2481  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2482
2483  for (unsigned i = 0; i < NumHandlers; ++i) {
2484    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2485    if (!Handler->getExceptionDecl()) {
2486      if (i < NumHandlers - 1)
2487        return StmtError(Diag(Handler->getLocStart(),
2488                              diag::err_early_catch_all));
2489
2490      continue;
2491    }
2492
2493    const QualType CaughtType = Handler->getCaughtType();
2494    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2495    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2496  }
2497
2498  // Detect handlers for the same type as an earlier one.
2499  if (NumHandlers > 1) {
2500    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2501
2502    TypeWithHandler prev = TypesWithHandlers[0];
2503    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2504      TypeWithHandler curr = TypesWithHandlers[i];
2505
2506      if (curr == prev) {
2507        Diag(curr.getTypeSpecStartLoc(),
2508             diag::warn_exception_caught_by_earlier_handler)
2509          << curr.getCatchStmt()->getCaughtType().getAsString();
2510        Diag(prev.getTypeSpecStartLoc(),
2511             diag::note_previous_exception_handler)
2512          << prev.getCatchStmt()->getCaughtType().getAsString();
2513      }
2514
2515      prev = curr;
2516    }
2517  }
2518
2519  getCurFunction()->setHasBranchProtectedScope();
2520
2521  // FIXME: We should detect handlers that cannot catch anything because an
2522  // earlier handler catches a superclass. Need to find a method that is not
2523  // quadratic for this.
2524  // Neither of these are explicitly forbidden, but every compiler detects them
2525  // and warns.
2526
2527  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2528                                  Handlers, NumHandlers));
2529}
2530
2531StmtResult
2532Sema::ActOnSEHTryBlock(bool IsCXXTry,
2533                       SourceLocation TryLoc,
2534                       Stmt *TryBlock,
2535                       Stmt *Handler) {
2536  assert(TryBlock && Handler);
2537
2538  getCurFunction()->setHasBranchProtectedScope();
2539
2540  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2541}
2542
2543StmtResult
2544Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2545                          Expr *FilterExpr,
2546                          Stmt *Block) {
2547  assert(FilterExpr && Block);
2548
2549  if(!FilterExpr->getType()->isIntegerType()) {
2550    return StmtError(Diag(FilterExpr->getExprLoc(),
2551                     diag::err_filter_expression_integral)
2552                     << FilterExpr->getType());
2553  }
2554
2555  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2556}
2557
2558StmtResult
2559Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2560                           Stmt *Block) {
2561  assert(Block);
2562  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2563}
2564
2565StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2566                                            bool IsIfExists,
2567                                            NestedNameSpecifierLoc QualifierLoc,
2568                                            DeclarationNameInfo NameInfo,
2569                                            Stmt *Nested)
2570{
2571  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2572                                             QualifierLoc, NameInfo,
2573                                             cast<CompoundStmt>(Nested));
2574}
2575
2576
2577StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2578                                            bool IsIfExists,
2579                                            CXXScopeSpec &SS,
2580                                            UnqualifiedId &Name,
2581                                            Stmt *Nested) {
2582  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2583                                    SS.getWithLocInContext(Context),
2584                                    GetNameFromUnqualifiedId(Name),
2585                                    Nested);
2586}
2587