1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11// work around "uninitialized" warnings and give that option some testing
12#define EIGEN_INITIALIZE_MATRICES_BY_ZERO
13
14#ifndef EIGEN_NO_STATIC_ASSERT
15#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
16#endif
17
18#if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3)
19
20#ifndef EIGEN_DONT_VECTORIZE
21#define EIGEN_DONT_VECTORIZE
22#endif
23
24#endif
25
26static bool g_called;
27#define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }
28
29#include "main.h"
30
31using namespace std;
32
33#define VERIFY_MIX_SCALAR(XPR,REF) \
34  g_called = false; \
35  VERIFY_IS_APPROX(XPR,REF); \
36  VERIFY( g_called && #XPR" not properly optimized");
37
38template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
39{
40  typedef std::complex<float>   CF;
41  typedef std::complex<double>  CD;
42  typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
43  typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
44  typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
45  typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
46  typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
47  typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
48  typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
49  typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
50
51  Mat_f mf    = Mat_f::Random(size,size);
52  Mat_d md    = mf.template cast<double>();
53  //Mat_d rd    = md;
54  Mat_cf mcf  = Mat_cf::Random(size,size);
55  Mat_cd mcd  = mcf.template cast<complex<double> >();
56  Mat_cd rcd = mcd;
57  Vec_f vf    = Vec_f::Random(size,1);
58  Vec_d vd    = vf.template cast<double>();
59  Vec_cf vcf  = Vec_cf::Random(size,1);
60  Vec_cd vcd  = vcf.template cast<complex<double> >();
61  float           sf  = internal::random<float>();
62  double          sd  = internal::random<double>();
63  complex<float>  scf = internal::random<complex<float> >();
64  complex<double> scd = internal::random<complex<double> >();
65
66  mf+mf;
67
68  float  epsf = std::sqrt(std::numeric_limits<float> ::min EIGEN_EMPTY ());
69  double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY ());
70
71  while(std::abs(sf )<epsf) sf  = internal::random<float>();
72  while(std::abs(sd )<epsd) sf  = internal::random<double>();
73  while(std::abs(scf)<epsf) scf = internal::random<CF>();
74  while(std::abs(scd)<epsd) scd = internal::random<CD>();
75
76//   VERIFY_RAISES_ASSERT(mf+md); // does not even compile
77
78#ifdef EIGEN_DONT_VECTORIZE
79  VERIFY_RAISES_ASSERT(vf=vd);
80  VERIFY_RAISES_ASSERT(vf+=vd);
81#endif
82
83  // check scalar products
84  VERIFY_MIX_SCALAR(vcf * sf , vcf * complex<float>(sf));
85  VERIFY_MIX_SCALAR(sd * vcd , complex<double>(sd) * vcd);
86  VERIFY_MIX_SCALAR(vf * scf , vf.template cast<complex<float> >() * scf);
87  VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast<complex<double> >());
88
89  VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex<float>(2));
90  VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex<float>(2.1));
91  VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2));
92  VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex<float>(2.1));
93
94  // check scalar quotients
95  VERIFY_MIX_SCALAR(vcf / sf , vcf / complex<float>(sf));
96  VERIFY_MIX_SCALAR(vf / scf , vf.template cast<complex<float> >() / scf);
97  VERIFY_MIX_SCALAR(vf.array()  / scf, vf.template cast<complex<float> >().array() / scf);
98  VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast<complex<double> >().array());
99
100  // check scalar increment
101  VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex<float>(sf));
102  VERIFY_MIX_SCALAR(sd  + vcd.array(), complex<double>(sd) + vcd.array());
103  VERIFY_MIX_SCALAR(vf.array()  + scf, vf.template cast<complex<float> >().array() + scf);
104  VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast<complex<double> >().array());
105
106  // check scalar subtractions
107  VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex<float>(sf));
108  VERIFY_MIX_SCALAR(sd  - vcd.array(), complex<double>(sd) - vcd.array());
109  VERIFY_MIX_SCALAR(vf.array()  - scf, vf.template cast<complex<float> >().array() - scf);
110  VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast<complex<double> >().array());
111
112  // check scalar powers
113  VERIFY_MIX_SCALAR( pow(vcf.array(), sf),        Eigen::pow(vcf.array(), complex<float>(sf)) );
114  VERIFY_MIX_SCALAR( vcf.array().pow(sf) ,        Eigen::pow(vcf.array(), complex<float>(sf)) );
115  VERIFY_MIX_SCALAR( pow(sd, vcd.array()),        Eigen::pow(complex<double>(sd), vcd.array()) );
116  VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
117  VERIFY_MIX_SCALAR( vf.array().pow(scf) ,        Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
118  VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()) );
119
120  // check dot product
121  vf.dot(vf);
122#if 0 // we get other compilation errors here than just static asserts
123  VERIFY_RAISES_ASSERT(vd.dot(vf));
124#endif
125  VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
126
127  // check diagonal product
128  VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
129  VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
130  VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
131  VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
132
133//   vd.asDiagonal() * mf;    // does not even compile
134//   vcd.asDiagonal() * mf;   // does not even compile
135
136  // check inner product
137  VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
138
139  // check outer product
140  VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
141
142  // coeff wise product
143
144  VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
145
146  Mat_cd mcd2 = mcd;
147  VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
148
149  // check matrix-matrix products
150  VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
151  VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
152  VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
153  VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
154
155  VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
156  VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
157  VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
158  VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
159
160  VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd);
161  VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>());
162  VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint());
163  VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint());
164  VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint());
165  VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint());
166
167  VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf);
168  VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>());
169  VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint());
170  VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint());
171  VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint());
172  VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint());
173
174  VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
175  VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
176  VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
177  VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
178
179  VERIFY_IS_APPROX(sf*vcf.adjoint()*mf,  sf*vcf.adjoint()*mf.template cast<CF>().eval());
180  VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
181  VERIFY_IS_APPROX(sf*vf.adjoint()*mcf,  sf*vf.adjoint().template cast<CF>().eval()*mcf);
182  VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
183
184  VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
185  VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
186  VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
187  VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
188
189  VERIFY_IS_APPROX(sd*vcd.adjoint()*md,  sd*vcd.adjoint()*md.template cast<CD>().eval());
190  VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
191  VERIFY_IS_APPROX(sd*vd.adjoint()*mcd,  sd*vd.adjoint().template cast<CD>().eval()*mcd);
192  VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
193
194  VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
195  VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>());
196  VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(),  sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>());
197  VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>());
198  VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
199  VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>());
200  VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>());
201  VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>());
202
203  // Not supported yet: trmm
204//   VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(),  sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>());
205//   VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>());
206//   VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(),  sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>());
207//   VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>());
208
209  // Not supported yet: symv
210//   VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
211//   VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>());
212//   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>());
213//   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
214
215  // Not supported yet: symm
216//   VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
217//   VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
218//   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
219//   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
220
221  rcd.setZero();
222  VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md),
223                   Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
224  VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd),
225                   Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
226  VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md),
227                   Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
228  VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd),
229                   Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
230
231
232  VERIFY_IS_APPROX( md.array()  * mcd.array(), md.template cast<CD>().eval().array() * mcd.array() );
233  VERIFY_IS_APPROX( mcd.array() * md.array(),  mcd.array() * md.template cast<CD>().eval().array() );
234
235  VERIFY_IS_APPROX( md.array()  + mcd.array(), md.template cast<CD>().eval().array() + mcd.array() );
236  VERIFY_IS_APPROX( mcd.array() + md.array(),  mcd.array() + md.template cast<CD>().eval().array() );
237
238  VERIFY_IS_APPROX( md.array()  - mcd.array(), md.template cast<CD>().eval().array() - mcd.array() );
239  VERIFY_IS_APPROX( mcd.array() - md.array(),  mcd.array() - md.template cast<CD>().eval().array() );
240
241  if(mcd.array().abs().minCoeff()>epsd)
242  {
243    VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array() );
244  }
245  if(md.array().abs().minCoeff()>epsd)
246  {
247    VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array() );
248  }
249
250  if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd)
251  {
252    VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
253    VERIFY_IS_APPROX( mcd.array().pow(md.array()),  mcd.array().pow(md.template cast<CD>().eval().array()) );
254
255    VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
256    VERIFY_IS_APPROX( pow(mcd.array(),md.array()),  mcd.array().pow(md.template cast<CD>().eval().array()) );
257  }
258
259  rcd = mcd;
260  VERIFY_IS_APPROX( rcd = md, md.template cast<CD>().eval() );
261  rcd = mcd;
262  VERIFY_IS_APPROX( rcd += md, mcd + md.template cast<CD>().eval() );
263  rcd = mcd;
264  VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast<CD>().eval() );
265  rcd = mcd;
266  VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array() );
267  rcd = mcd;
268  if(md.array().abs().minCoeff()>epsd)
269  {
270    VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array() );
271  }
272
273  rcd = mcd;
274  VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast<CD>().eval()) + mcd*(md.template cast<CD>().eval()));
275
276  VERIFY_IS_APPROX( rcd.noalias()  = md*md,       ((md*md).eval().template cast<CD>()) );
277  rcd = mcd;
278  VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast<CD>()) );
279  rcd = mcd;
280  VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast<CD>()) );
281
282  VERIFY_IS_APPROX( rcd.noalias()  = mcd + md*md,       mcd + ((md*md).eval().template cast<CD>()) );
283  rcd = mcd;
284  VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast<CD>()) );
285  rcd = mcd;
286  VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md,           - ((md*md).eval().template cast<CD>()) );
287}
288
289void test_mixingtypes()
290{
291  for(int i = 0; i < g_repeat; i++) {
292    CALL_SUBTEST_1(mixingtypes<3>());
293    CALL_SUBTEST_2(mixingtypes<4>());
294    CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
295
296    CALL_SUBTEST_4(mixingtypes<3>());
297    CALL_SUBTEST_5(mixingtypes<4>());
298    CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
299  }
300}
301