1// Copyright (C) 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4 **********************************************************************
5 *   Copyright (C) 1999-2016, International Business Machines
6 *   Corporation and others.  All Rights Reserved.
7 **********************************************************************
8 *   Date        Name        Description
9 *   11/17/99    aliu        Creation.
10 **********************************************************************
11 */
12
13#include "utypeinfo.h"  // for 'typeid' to work
14
15#include "unicode/utypes.h"
16
17#if !UCONFIG_NO_TRANSLITERATION
18
19#include "unicode/putil.h"
20#include "unicode/translit.h"
21#include "unicode/locid.h"
22#include "unicode/msgfmt.h"
23#include "unicode/rep.h"
24#include "unicode/resbund.h"
25#include "unicode/unifilt.h"
26#include "unicode/uniset.h"
27#include "unicode/uscript.h"
28#include "unicode/strenum.h"
29#include "unicode/utf16.h"
30#include "cpdtrans.h"
31#include "nultrans.h"
32#include "rbt_data.h"
33#include "rbt_pars.h"
34#include "rbt.h"
35#include "transreg.h"
36#include "name2uni.h"
37#include "nortrans.h"
38#include "remtrans.h"
39#include "titletrn.h"
40#include "tolowtrn.h"
41#include "toupptrn.h"
42#include "uni2name.h"
43#include "brktrans.h"
44#include "esctrn.h"
45#include "unesctrn.h"
46#include "tridpars.h"
47#include "anytrans.h"
48#include "util.h"
49#include "hash.h"
50#include "mutex.h"
51#include "ucln_in.h"
52#include "uassert.h"
53#include "cmemory.h"
54#include "cstring.h"
55#include "uinvchar.h"
56
57static const UChar TARGET_SEP  = 0x002D; /*-*/
58static const UChar ID_DELIM    = 0x003B; /*;*/
59static const UChar VARIANT_SEP = 0x002F; // '/'
60
61/**
62 * Prefix for resource bundle key for the display name for a
63 * transliterator.  The ID is appended to this to form the key.
64 * The resource bundle value should be a String.
65 */
66static const char RB_DISPLAY_NAME_PREFIX[] = "%Translit%%";
67
68/**
69 * Prefix for resource bundle key for the display name for a
70 * transliterator SCRIPT.  The ID is appended to this to form the key.
71 * The resource bundle value should be a String.
72 */
73static const char RB_SCRIPT_DISPLAY_NAME_PREFIX[] = "%Translit%";
74
75/**
76 * Resource bundle key for display name pattern.
77 * The resource bundle value should be a String forming a
78 * MessageFormat pattern, e.g.:
79 * "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}".
80 */
81static const char RB_DISPLAY_NAME_PATTERN[] = "TransliteratorNamePattern";
82
83/**
84 * Resource bundle key for the list of RuleBasedTransliterator IDs.
85 * The resource bundle value should be a String[] with each element
86 * being a valid ID.  The ID will be appended to RB_RULE_BASED_PREFIX
87 * to obtain the class name in which the RB_RULE key will be sought.
88 */
89static const char RB_RULE_BASED_IDS[] = "RuleBasedTransliteratorIDs";
90
91/**
92 * The mutex controlling access to registry object.
93 */
94static UMutex registryMutex = U_MUTEX_INITIALIZER;
95
96/**
97 * System transliterator registry; non-null when initialized.
98 */
99static icu::TransliteratorRegistry* registry = 0;
100
101// Macro to check/initialize the registry. ONLY USE WITHIN
102// MUTEX. Avoids function call when registry is initialized.
103#define HAVE_REGISTRY(status) (registry!=0 || initializeRegistry(status))
104
105U_NAMESPACE_BEGIN
106
107UOBJECT_DEFINE_ABSTRACT_RTTI_IMPLEMENTATION(Transliterator)
108
109/**
110 * Return TRUE if the given UTransPosition is valid for text of
111 * the given length.
112 */
113static inline UBool positionIsValid(UTransPosition& index, int32_t len) {
114    return !(index.contextStart < 0 ||
115             index.start < index.contextStart ||
116             index.limit < index.start ||
117             index.contextLimit < index.limit ||
118             len < index.contextLimit);
119}
120
121/**
122 * Default constructor.
123 * @param theID the string identifier for this transliterator
124 * @param theFilter the filter.  Any character for which
125 * <tt>filter.contains()</tt> returns <tt>FALSE</tt> will not be
126 * altered by this transliterator.  If <tt>filter</tt> is
127 * <tt>null</tt> then no filtering is applied.
128 */
129Transliterator::Transliterator(const UnicodeString& theID,
130                               UnicodeFilter* adoptedFilter) :
131    UObject(), ID(theID), filter(adoptedFilter),
132    maximumContextLength(0)
133{
134    // NUL-terminate the ID string, which is a non-aliased copy.
135    ID.append((UChar)0);
136    ID.truncate(ID.length()-1);
137}
138
139/**
140 * Destructor.
141 */
142Transliterator::~Transliterator() {
143    if (filter) {
144        delete filter;
145    }
146}
147
148/**
149 * Copy constructor.
150 */
151Transliterator::Transliterator(const Transliterator& other) :
152    UObject(other), ID(other.ID), filter(0),
153    maximumContextLength(other.maximumContextLength)
154{
155    // NUL-terminate the ID string, which is a non-aliased copy.
156    ID.append((UChar)0);
157    ID.truncate(ID.length()-1);
158
159    if (other.filter != 0) {
160        // We own the filter, so we must have our own copy
161        filter = (UnicodeFilter*) other.filter->clone();
162    }
163}
164
165Transliterator* Transliterator::clone() const {
166    return NULL;
167}
168
169/**
170 * Assignment operator.
171 */
172Transliterator& Transliterator::operator=(const Transliterator& other) {
173    ID = other.ID;
174    // NUL-terminate the ID string
175    ID.getTerminatedBuffer();
176
177    maximumContextLength = other.maximumContextLength;
178    adoptFilter((other.filter == 0) ? 0 : (UnicodeFilter*) other.filter->clone());
179    return *this;
180}
181
182/**
183 * Transliterates a segment of a string.  <code>Transliterator</code> API.
184 * @param text the string to be transliterated
185 * @param start the beginning index, inclusive; <code>0 <= start
186 * <= limit</code>.
187 * @param limit the ending index, exclusive; <code>start <= limit
188 * <= text.length()</code>.
189 * @return the new limit index, or -1
190 */
191int32_t Transliterator::transliterate(Replaceable& text,
192                                      int32_t start, int32_t limit) const {
193    if (start < 0 ||
194        limit < start ||
195        text.length() < limit) {
196        return -1;
197    }
198
199    UTransPosition offsets;
200    offsets.contextStart= start;
201    offsets.contextLimit = limit;
202    offsets.start = start;
203    offsets.limit = limit;
204    filteredTransliterate(text, offsets, FALSE, TRUE);
205    return offsets.limit;
206}
207
208/**
209 * Transliterates an entire string in place. Convenience method.
210 * @param text the string to be transliterated
211 */
212void Transliterator::transliterate(Replaceable& text) const {
213    transliterate(text, 0, text.length());
214}
215
216/**
217 * Transliterates the portion of the text buffer that can be
218 * transliterated unambiguosly after new text has been inserted,
219 * typically as a result of a keyboard event.  The new text in
220 * <code>insertion</code> will be inserted into <code>text</code>
221 * at <code>index.contextLimit</code>, advancing
222 * <code>index.contextLimit</code> by <code>insertion.length()</code>.
223 * Then the transliterator will try to transliterate characters of
224 * <code>text</code> between <code>index.start</code> and
225 * <code>index.contextLimit</code>.  Characters before
226 * <code>index.start</code> will not be changed.
227 *
228 * <p>Upon return, values in <code>index</code> will be updated.
229 * <code>index.contextStart</code> will be advanced to the first
230 * character that future calls to this method will read.
231 * <code>index.start</code> and <code>index.contextLimit</code> will
232 * be adjusted to delimit the range of text that future calls to
233 * this method may change.
234 *
235 * <p>Typical usage of this method begins with an initial call
236 * with <code>index.contextStart</code> and <code>index.contextLimit</code>
237 * set to indicate the portion of <code>text</code> to be
238 * transliterated, and <code>index.start == index.contextStart</code>.
239 * Thereafter, <code>index</code> can be used without
240 * modification in future calls, provided that all changes to
241 * <code>text</code> are made via this method.
242 *
243 * <p>This method assumes that future calls may be made that will
244 * insert new text into the buffer.  As a result, it only performs
245 * unambiguous transliterations.  After the last call to this
246 * method, there may be untransliterated text that is waiting for
247 * more input to resolve an ambiguity.  In order to perform these
248 * pending transliterations, clients should call {@link
249 * #finishKeyboardTransliteration} after the last call to this
250 * method has been made.
251 *
252 * @param text the buffer holding transliterated and untransliterated text
253 * @param index an array of three integers.
254 *
255 * <ul><li><code>index.contextStart</code>: the beginning index,
256 * inclusive; <code>0 <= index.contextStart <= index.contextLimit</code>.
257 *
258 * <li><code>index.contextLimit</code>: the ending index, exclusive;
259 * <code>index.contextStart <= index.contextLimit <= text.length()</code>.
260 * <code>insertion</code> is inserted at
261 * <code>index.contextLimit</code>.
262 *
263 * <li><code>index.start</code>: the next character to be
264 * considered for transliteration; <code>index.contextStart <=
265 * index.start <= index.contextLimit</code>.  Characters before
266 * <code>index.start</code> will not be changed by future calls
267 * to this method.</ul>
268 *
269 * @param insertion text to be inserted and possibly
270 * transliterated into the translation buffer at
271 * <code>index.contextLimit</code>.  If <code>null</code> then no text
272 * is inserted.
273 * @see #START
274 * @see #LIMIT
275 * @see #CURSOR
276 * @see #handleTransliterate
277 * @exception IllegalArgumentException if <code>index</code>
278 * is invalid
279 */
280void Transliterator::transliterate(Replaceable& text,
281                                   UTransPosition& index,
282                                   const UnicodeString& insertion,
283                                   UErrorCode &status) const {
284    _transliterate(text, index, &insertion, status);
285}
286
287/**
288 * Transliterates the portion of the text buffer that can be
289 * transliterated unambiguosly after a new character has been
290 * inserted, typically as a result of a keyboard event.  This is a
291 * convenience method; see {@link
292 * #transliterate(Replaceable, int[], String)} for details.
293 * @param text the buffer holding transliterated and
294 * untransliterated text
295 * @param index an array of three integers.  See {@link
296 * #transliterate(Replaceable, int[], String)}.
297 * @param insertion text to be inserted and possibly
298 * transliterated into the translation buffer at
299 * <code>index.contextLimit</code>.
300 * @see #transliterate(Replaceable, int[], String)
301 */
302void Transliterator::transliterate(Replaceable& text,
303                                   UTransPosition& index,
304                                   UChar32 insertion,
305                                   UErrorCode& status) const {
306    UnicodeString str(insertion);
307    _transliterate(text, index, &str, status);
308}
309
310/**
311 * Transliterates the portion of the text buffer that can be
312 * transliterated unambiguosly.  This is a convenience method; see
313 * {@link #transliterate(Replaceable, int[], String)} for
314 * details.
315 * @param text the buffer holding transliterated and
316 * untransliterated text
317 * @param index an array of three integers.  See {@link
318 * #transliterate(Replaceable, int[], String)}.
319 * @see #transliterate(Replaceable, int[], String)
320 */
321void Transliterator::transliterate(Replaceable& text,
322                                   UTransPosition& index,
323                                   UErrorCode& status) const {
324    _transliterate(text, index, 0, status);
325}
326
327/**
328 * Finishes any pending transliterations that were waiting for
329 * more characters.  Clients should call this method as the last
330 * call after a sequence of one or more calls to
331 * <code>transliterate()</code>.
332 * @param text the buffer holding transliterated and
333 * untransliterated text.
334 * @param index the array of indices previously passed to {@link
335 * #transliterate}
336 */
337void Transliterator::finishTransliteration(Replaceable& text,
338                                           UTransPosition& index) const {
339    if (!positionIsValid(index, text.length())) {
340        return;
341    }
342
343    filteredTransliterate(text, index, FALSE, TRUE);
344}
345
346/**
347 * This internal method does keyboard transliteration.  If the
348 * 'insertion' is non-null then we append it to 'text' before
349 * proceeding.  This method calls through to the pure virtual
350 * framework method handleTransliterate() to do the actual
351 * work.
352 */
353void Transliterator::_transliterate(Replaceable& text,
354                                    UTransPosition& index,
355                                    const UnicodeString* insertion,
356                                    UErrorCode &status) const {
357    if (U_FAILURE(status)) {
358        return;
359    }
360
361    if (!positionIsValid(index, text.length())) {
362        status = U_ILLEGAL_ARGUMENT_ERROR;
363        return;
364    }
365
366//    int32_t originalStart = index.contextStart;
367    if (insertion != 0) {
368        text.handleReplaceBetween(index.limit, index.limit, *insertion);
369        index.limit += insertion->length();
370        index.contextLimit += insertion->length();
371    }
372
373    if (index.limit > 0 &&
374        U16_IS_LEAD(text.charAt(index.limit - 1))) {
375        // Oops, there is a dangling lead surrogate in the buffer.
376        // This will break most transliterators, since they will
377        // assume it is part of a pair.  Don't transliterate until
378        // more text comes in.
379        return;
380    }
381
382    filteredTransliterate(text, index, TRUE, TRUE);
383
384#if 0
385    // TODO
386    // I CAN'T DO what I'm attempting below now that the Kleene star
387    // operator is supported.  For example, in the rule
388
389    //   ([:Lu:]+) { x } > $1;
390
391    // what is the maximum context length?  getMaximumContextLength()
392    // will return 1, but this is just the length of the ante context
393    // part of the pattern string -- 1 character, which is a standin
394    // for a Quantifier, which contains a StringMatcher, which
395    // contains a UnicodeSet.
396
397    // There is a complicated way to make this work again, and that's
398    // to add a "maximum left context" protocol into the
399    // UnicodeMatcher hierarchy.  At present I'm not convinced this is
400    // worth it.
401
402    // ---
403
404    // The purpose of the code below is to keep the context small
405    // while doing incremental transliteration.  When part of the left
406    // context (between contextStart and start) is no longer needed,
407    // we try to advance contextStart past that portion.  We use the
408    // maximum context length to do so.
409    int32_t newCS = index.start;
410    int32_t n = getMaximumContextLength();
411    while (newCS > originalStart && n-- > 0) {
412        --newCS;
413        newCS -= U16_LENGTH(text.char32At(newCS)) - 1;
414    }
415    index.contextStart = uprv_max(newCS, originalStart);
416#endif
417}
418
419/**
420 * This method breaks up the input text into runs of unfiltered
421 * characters.  It passes each such run to
422 * <subclass>.handleTransliterate().  Subclasses that can handle the
423 * filter logic more efficiently themselves may override this method.
424 *
425 * All transliteration calls in this class go through this method.
426 */
427void Transliterator::filteredTransliterate(Replaceable& text,
428                                           UTransPosition& index,
429                                           UBool incremental,
430                                           UBool rollback) const {
431    // Short circuit path for transliterators with no filter in
432    // non-incremental mode.
433    if (filter == 0 && !rollback) {
434        handleTransliterate(text, index, incremental);
435        return;
436    }
437
438    //----------------------------------------------------------------------
439    // This method processes text in two groupings:
440    //
441    // RUNS -- A run is a contiguous group of characters which are contained
442    // in the filter for this transliterator (filter.contains(ch) == TRUE).
443    // Text outside of runs may appear as context but it is not modified.
444    // The start and limit Position values are narrowed to each run.
445    //
446    // PASSES (incremental only) -- To make incremental mode work correctly,
447    // each run is broken up into n passes, where n is the length (in code
448    // points) of the run.  Each pass contains the first n characters.  If a
449    // pass is completely transliterated, it is committed, and further passes
450    // include characters after the committed text.  If a pass is blocked,
451    // and does not transliterate completely, then this method rolls back
452    // the changes made during the pass, extends the pass by one code point,
453    // and tries again.
454    //----------------------------------------------------------------------
455
456    // globalLimit is the limit value for the entire operation.  We
457    // set index.limit to the end of each unfiltered run before
458    // calling handleTransliterate(), so we need to maintain the real
459    // value of index.limit here.  After each transliteration, we
460    // update globalLimit for insertions or deletions that have
461    // happened.
462    int32_t globalLimit = index.limit;
463
464    // If there is a non-null filter, then break the input text up.  Say the
465    // input text has the form:
466    //   xxxabcxxdefxx
467    // where 'x' represents a filtered character (filter.contains('x') ==
468    // false).  Then we break this up into:
469    //   xxxabc xxdef xx
470    // Each pass through the loop consumes a run of filtered
471    // characters (which are ignored) and a subsequent run of
472    // unfiltered characters (which are transliterated).
473
474    for (;;) {
475
476        if (filter != NULL) {
477            // Narrow the range to be transliterated to the first segment
478            // of unfiltered characters at or after index.start.
479
480            // Advance past filtered chars
481            UChar32 c;
482            while (index.start < globalLimit &&
483                   !filter->contains(c=text.char32At(index.start))) {
484                index.start += U16_LENGTH(c);
485            }
486
487            // Find the end of this run of unfiltered chars
488            index.limit = index.start;
489            while (index.limit < globalLimit &&
490                   filter->contains(c=text.char32At(index.limit))) {
491                index.limit += U16_LENGTH(c);
492            }
493        }
494
495        // Check to see if the unfiltered run is empty.  This only
496        // happens at the end of the string when all the remaining
497        // characters are filtered.
498        if (index.limit == index.start) {
499            // assert(index.start == globalLimit);
500            break;
501        }
502
503        // Is this run incremental?  If there is additional
504        // filtered text (if limit < globalLimit) then we pass in
505        // an incremental value of FALSE to force the subclass to
506        // complete the transliteration for this run.
507        UBool isIncrementalRun =
508            (index.limit < globalLimit ? FALSE : incremental);
509
510        int32_t delta;
511
512        // Implement rollback.  To understand the need for rollback,
513        // consider the following transliterator:
514        //
515        //  "t" is "a > A;"
516        //  "u" is "A > b;"
517        //  "v" is a compound of "t; NFD; u" with a filter [:Ll:]
518        //
519        // Now apply "c" to the input text "a".  The result is "b".  But if
520        // the transliteration is done incrementally, then the NFD holds
521        // things up after "t" has already transformed "a" to "A".  When
522        // finishTransliterate() is called, "A" is _not_ processed because
523        // it gets excluded by the [:Ll:] filter, and the end result is "A"
524        // -- incorrect.  The problem is that the filter is applied to a
525        // partially-transliterated result, when we only want it to apply to
526        // input text.  Although this example hinges on a compound
527        // transliterator containing NFD and a specific filter, it can
528        // actually happen with any transliterator which may do a partial
529        // transformation in incremental mode into characters outside its
530        // filter.
531        //
532        // To handle this, when in incremental mode we supply characters to
533        // handleTransliterate() in several passes.  Each pass adds one more
534        // input character to the input text.  That is, for input "ABCD", we
535        // first try "A", then "AB", then "ABC", and finally "ABCD".  If at
536        // any point we block (upon return, start < limit) then we roll
537        // back.  If at any point we complete the run (upon return start ==
538        // limit) then we commit that run.
539
540        if (rollback && isIncrementalRun) {
541
542            int32_t runStart = index.start;
543            int32_t runLimit = index.limit;
544            int32_t runLength =  runLimit - runStart;
545
546            // Make a rollback copy at the end of the string
547            int32_t rollbackOrigin = text.length();
548            text.copy(runStart, runLimit, rollbackOrigin);
549
550            // Variables reflecting the commitment of completely
551            // transliterated text.  passStart is the runStart, advanced
552            // past committed text.  rollbackStart is the rollbackOrigin,
553            // advanced past rollback text that corresponds to committed
554            // text.
555            int32_t passStart = runStart;
556            int32_t rollbackStart = rollbackOrigin;
557
558            // The limit for each pass; we advance by one code point with
559            // each iteration.
560            int32_t passLimit = index.start;
561
562            // Total length, in 16-bit code units, of uncommitted text.
563            // This is the length to be rolled back.
564            int32_t uncommittedLength = 0;
565
566            // Total delta (change in length) for all passes
567            int32_t totalDelta = 0;
568
569            // PASS MAIN LOOP -- Start with a single character, and extend
570            // the text by one character at a time.  Roll back partial
571            // transliterations and commit complete transliterations.
572            for (;;) {
573                // Length of additional code point, either one or two
574                int32_t charLength = U16_LENGTH(text.char32At(passLimit));
575                passLimit += charLength;
576                if (passLimit > runLimit) {
577                    break;
578                }
579                uncommittedLength += charLength;
580
581                index.limit = passLimit;
582
583                // Delegate to subclass for actual transliteration.  Upon
584                // return, start will be updated to point after the
585                // transliterated text, and limit and contextLimit will be
586                // adjusted for length changes.
587                handleTransliterate(text, index, TRUE);
588
589                delta = index.limit - passLimit; // change in length
590
591                // We failed to completely transliterate this pass.
592                // Roll back the text.  Indices remain unchanged; reset
593                // them where necessary.
594                if (index.start != index.limit) {
595                    // Find the rollbackStart, adjusted for length changes
596                    // and the deletion of partially transliterated text.
597                    int32_t rs = rollbackStart + delta - (index.limit - passStart);
598
599                    // Delete the partially transliterated text
600                    text.handleReplaceBetween(passStart, index.limit, UnicodeString());
601
602                    // Copy the rollback text back
603                    text.copy(rs, rs + uncommittedLength, passStart);
604
605                    // Restore indices to their original values
606                    index.start = passStart;
607                    index.limit = passLimit;
608                    index.contextLimit -= delta;
609                }
610
611                // We did completely transliterate this pass.  Update the
612                // commit indices to record how far we got.  Adjust indices
613                // for length change.
614                else {
615                    // Move the pass indices past the committed text.
616                    passStart = passLimit = index.start;
617
618                    // Adjust the rollbackStart for length changes and move
619                    // it past the committed text.  All characters we've
620                    // processed to this point are committed now, so zero
621                    // out the uncommittedLength.
622                    rollbackStart += delta + uncommittedLength;
623                    uncommittedLength = 0;
624
625                    // Adjust indices for length changes.
626                    runLimit += delta;
627                    totalDelta += delta;
628                }
629            }
630
631            // Adjust overall limit and rollbackOrigin for insertions and
632            // deletions.  Don't need to worry about contextLimit because
633            // handleTransliterate() maintains that.
634            rollbackOrigin += totalDelta;
635            globalLimit += totalDelta;
636
637            // Delete the rollback copy
638            text.handleReplaceBetween(rollbackOrigin, rollbackOrigin + runLength, UnicodeString());
639
640            // Move start past committed text
641            index.start = passStart;
642        }
643
644        else {
645            // Delegate to subclass for actual transliteration.
646            int32_t limit = index.limit;
647            handleTransliterate(text, index, isIncrementalRun);
648            delta = index.limit - limit; // change in length
649
650            // In a properly written transliterator, start == limit after
651            // handleTransliterate() returns when incremental is false.
652            // Catch cases where the subclass doesn't do this, and throw
653            // an exception.  (Just pinning start to limit is a bad idea,
654            // because what's probably happening is that the subclass
655            // isn't transliterating all the way to the end, and it should
656            // in non-incremental mode.)
657            if (!incremental && index.start != index.limit) {
658                // We can't throw an exception, so just fudge things
659                index.start = index.limit;
660            }
661
662            // Adjust overall limit for insertions/deletions.  Don't need
663            // to worry about contextLimit because handleTransliterate()
664            // maintains that.
665            globalLimit += delta;
666        }
667
668        if (filter == NULL || isIncrementalRun) {
669            break;
670        }
671
672        // If we did completely transliterate this
673        // run, then repeat with the next unfiltered run.
674    }
675
676    // Start is valid where it is.  Limit needs to be put back where
677    // it was, modulo adjustments for deletions/insertions.
678    index.limit = globalLimit;
679}
680
681void Transliterator::filteredTransliterate(Replaceable& text,
682                                           UTransPosition& index,
683                                           UBool incremental) const {
684    filteredTransliterate(text, index, incremental, FALSE);
685}
686
687/**
688 * Method for subclasses to use to set the maximum context length.
689 * @see #getMaximumContextLength
690 */
691void Transliterator::setMaximumContextLength(int32_t maxContextLength) {
692    maximumContextLength = maxContextLength;
693}
694
695/**
696 * Returns a programmatic identifier for this transliterator.
697 * If this identifier is passed to <code>getInstance()</code>, it
698 * will return this object, if it has been registered.
699 * @see #registerInstance
700 * @see #getAvailableIDs
701 */
702const UnicodeString& Transliterator::getID(void) const {
703    return ID;
704}
705
706/**
707 * Returns a name for this transliterator that is appropriate for
708 * display to the user in the default locale.  See {@link
709 * #getDisplayName(Locale)} for details.
710 */
711UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& ID,
712                                              UnicodeString& result) {
713    return getDisplayName(ID, Locale::getDefault(), result);
714}
715
716/**
717 * Returns a name for this transliterator that is appropriate for
718 * display to the user in the given locale.  This name is taken
719 * from the locale resource data in the standard manner of the
720 * <code>java.text</code> package.
721 *
722 * <p>If no localized names exist in the system resource bundles,
723 * a name is synthesized using a localized
724 * <code>MessageFormat</code> pattern from the resource data.  The
725 * arguments to this pattern are an integer followed by one or two
726 * strings.  The integer is the number of strings, either 1 or 2.
727 * The strings are formed by splitting the ID for this
728 * transliterator at the first TARGET_SEP.  If there is no TARGET_SEP, then the
729 * entire ID forms the only string.
730 * @param inLocale the Locale in which the display name should be
731 * localized.
732 * @see java.text.MessageFormat
733 */
734UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& id,
735                                              const Locale& inLocale,
736                                              UnicodeString& result) {
737    UErrorCode status = U_ZERO_ERROR;
738
739    ResourceBundle bundle(U_ICUDATA_TRANSLIT, inLocale, status);
740
741    // Suspend checking status until later...
742
743    result.truncate(0);
744
745    // Normalize the ID
746    UnicodeString source, target, variant;
747    UBool sawSource;
748    TransliteratorIDParser::IDtoSTV(id, source, target, variant, sawSource);
749    if (target.length() < 1) {
750        // No target; malformed id
751        return result;
752    }
753    if (variant.length() > 0) { // Change "Foo" to "/Foo"
754        variant.insert(0, VARIANT_SEP);
755    }
756    UnicodeString ID(source);
757    ID.append(TARGET_SEP).append(target).append(variant);
758
759    // build the char* key
760    if (uprv_isInvariantUString(ID.getBuffer(), ID.length())) {
761        char key[200];
762        uprv_strcpy(key, RB_DISPLAY_NAME_PREFIX);
763        int32_t length=(int32_t)uprv_strlen(RB_DISPLAY_NAME_PREFIX);
764        ID.extract(0, (int32_t)(sizeof(key)-length), key+length, (int32_t)(sizeof(key)-length), US_INV);
765
766        // Try to retrieve a UnicodeString from the bundle.
767        UnicodeString resString = bundle.getStringEx(key, status);
768
769        if (U_SUCCESS(status) && resString.length() != 0) {
770            return result = resString; // [sic] assign & return
771        }
772
773#if !UCONFIG_NO_FORMATTING
774        // We have failed to get a name from the locale data.  This is
775        // typical, since most transliterators will not have localized
776        // name data.  The next step is to retrieve the MessageFormat
777        // pattern from the locale data and to use it to synthesize the
778        // name from the ID.
779
780        status = U_ZERO_ERROR;
781        resString = bundle.getStringEx(RB_DISPLAY_NAME_PATTERN, status);
782
783        if (U_SUCCESS(status) && resString.length() != 0) {
784            MessageFormat msg(resString, inLocale, status);
785            // Suspend checking status until later...
786
787            // We pass either 2 or 3 Formattable objects to msg.
788            Formattable args[3];
789            int32_t nargs;
790            args[0].setLong(2); // # of args to follow
791            args[1].setString(source);
792            args[2].setString(target);
793            nargs = 3;
794
795            // Use display names for the scripts, if they exist
796            UnicodeString s;
797            length=(int32_t)uprv_strlen(RB_SCRIPT_DISPLAY_NAME_PREFIX);
798            for (int j=1; j<=2; ++j) {
799                status = U_ZERO_ERROR;
800                uprv_strcpy(key, RB_SCRIPT_DISPLAY_NAME_PREFIX);
801                args[j].getString(s);
802                if (uprv_isInvariantUString(s.getBuffer(), s.length())) {
803                    s.extract(0, sizeof(key)-length-1, key+length, (int32_t)sizeof(key)-length-1, US_INV);
804
805                    resString = bundle.getStringEx(key, status);
806
807                    if (U_SUCCESS(status)) {
808                        args[j] = resString;
809                    }
810                }
811            }
812
813            status = U_ZERO_ERROR;
814            FieldPosition pos; // ignored by msg
815            msg.format(args, nargs, result, pos, status);
816            if (U_SUCCESS(status)) {
817                result.append(variant);
818                return result;
819            }
820        }
821#endif
822    }
823
824    // We should not reach this point unless there is something
825    // wrong with the build or the RB_DISPLAY_NAME_PATTERN has
826    // been deleted from the root RB_LOCALE_ELEMENTS resource.
827    result = ID;
828    return result;
829}
830
831/**
832 * Returns the filter used by this transliterator, or <tt>null</tt>
833 * if this transliterator uses no filter.  Caller musn't delete
834 * the result!
835 */
836const UnicodeFilter* Transliterator::getFilter(void) const {
837    return filter;
838}
839
840/**
841 * Returns the filter used by this transliterator, or
842 * <tt>NULL</tt> if this transliterator uses no filter.  The
843 * caller must eventually delete the result.  After this call,
844 * this transliterator's filter is set to <tt>NULL</tt>.
845 */
846UnicodeFilter* Transliterator::orphanFilter(void) {
847    UnicodeFilter *result = filter;
848    filter = NULL;
849    return result;
850}
851
852/**
853 * Changes the filter used by this transliterator.  If the filter
854 * is set to <tt>null</tt> then no filtering will occur.
855 *
856 * <p>Callers must take care if a transliterator is in use by
857 * multiple threads.  The filter should not be changed by one
858 * thread while another thread may be transliterating.
859 */
860void Transliterator::adoptFilter(UnicodeFilter* filterToAdopt) {
861    delete filter;
862    filter = filterToAdopt;
863}
864
865/**
866 * Returns this transliterator's inverse.  See the class
867 * documentation for details.  This implementation simply inverts
868 * the two entities in the ID and attempts to retrieve the
869 * resulting transliterator.  That is, if <code>getID()</code>
870 * returns "A-B", then this method will return the result of
871 * <code>getInstance("B-A")</code>, or <code>null</code> if that
872 * call fails.
873 *
874 * <p>This method does not take filtering into account.  The
875 * returned transliterator will have no filter.
876 *
877 * <p>Subclasses with knowledge of their inverse may wish to
878 * override this method.
879 *
880 * @return a transliterator that is an inverse, not necessarily
881 * exact, of this transliterator, or <code>null</code> if no such
882 * transliterator is registered.
883 * @see #registerInstance
884 */
885Transliterator* Transliterator::createInverse(UErrorCode& status) const {
886    UParseError parseError;
887    return Transliterator::createInstance(ID, UTRANS_REVERSE,parseError,status);
888}
889
890Transliterator* U_EXPORT2
891Transliterator::createInstance(const UnicodeString& ID,
892                                UTransDirection dir,
893                                UErrorCode& status)
894{
895    UParseError parseError;
896    return createInstance(ID, dir, parseError, status);
897}
898
899/**
900 * Returns a <code>Transliterator</code> object given its ID.
901 * The ID must be either a system transliterator ID or a ID registered
902 * using <code>registerInstance()</code>.
903 *
904 * @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code>
905 * @return A <code>Transliterator</code> object with the given ID
906 * @see #registerInstance
907 * @see #getAvailableIDs
908 * @see #getID
909 */
910Transliterator* U_EXPORT2
911Transliterator::createInstance(const UnicodeString& ID,
912                                UTransDirection dir,
913                                UParseError& parseError,
914                                UErrorCode& status)
915{
916    if (U_FAILURE(status)) {
917        return 0;
918    }
919
920    UnicodeString canonID;
921    UVector list(status);
922    if (U_FAILURE(status)) {
923        return NULL;
924    }
925
926    UnicodeSet* globalFilter;
927    // TODO add code for parseError...currently unused, but
928    // later may be used by parsing code...
929    if (!TransliteratorIDParser::parseCompoundID(ID, dir, canonID, list, globalFilter)) {
930        status = U_INVALID_ID;
931        return NULL;
932    }
933
934    TransliteratorIDParser::instantiateList(list, status);
935    if (U_FAILURE(status)) {
936        return NULL;
937    }
938
939    U_ASSERT(list.size() > 0);
940    Transliterator* t = NULL;
941
942    if (list.size() > 1 || canonID.indexOf(ID_DELIM) >= 0) {
943        // [NOTE: If it's a compoundID, we instantiate a CompoundTransliterator even if it only
944        // has one child transliterator.  This is so that toRules() will return the right thing
945        // (without any inactive ID), but our main ID still comes out correct.  That is, if we
946        // instantiate "(Lower);Latin-Greek;", we want the rules to come out as "::Latin-Greek;"
947        // even though the ID is "(Lower);Latin-Greek;".
948        t = new CompoundTransliterator(list, parseError, status);
949    }
950    else {
951        t = (Transliterator*)list.elementAt(0);
952    }
953    // Check null pointer
954    if (t != NULL) {
955        t->setID(canonID);
956        if (globalFilter != NULL) {
957            t->adoptFilter(globalFilter);
958        }
959    }
960    else if (U_SUCCESS(status)) {
961        status = U_MEMORY_ALLOCATION_ERROR;
962    }
963    return t;
964}
965
966/**
967 * Create a transliterator from a basic ID.  This is an ID
968 * containing only the forward direction source, target, and
969 * variant.
970 * @param id a basic ID of the form S-T or S-T/V.
971 * @return a newly created Transliterator or null if the ID is
972 * invalid.
973 */
974Transliterator* Transliterator::createBasicInstance(const UnicodeString& id,
975                                                    const UnicodeString* canon) {
976    UParseError pe;
977    UErrorCode ec = U_ZERO_ERROR;
978    TransliteratorAlias* alias = 0;
979    Transliterator* t = 0;
980
981    umtx_lock(&registryMutex);
982    if (HAVE_REGISTRY(ec)) {
983        t = registry->get(id, alias, ec);
984    }
985    umtx_unlock(&registryMutex);
986
987    if (U_FAILURE(ec)) {
988        delete t;
989        delete alias;
990        return 0;
991    }
992
993    // We may have not gotten a transliterator:  Because we can't
994    // instantiate a transliterator from inside TransliteratorRegistry::
995    // get() (that would deadlock), we sometimes pass back an alias.  This
996    // contains the data we need to finish the instantiation outside the
997    // registry mutex.  The alias may, in turn, generate another alias, so
998    // we handle aliases in a loop.  The max times through the loop is two.
999    // [alan]
1000    while (alias != 0) {
1001        U_ASSERT(t==0);
1002        // Rule-based aliases are handled with TransliteratorAlias::
1003        // parse(), followed by TransliteratorRegistry::reget().
1004        // Other aliases are handled with TransliteratorAlias::create().
1005        if (alias->isRuleBased()) {
1006            // Step 1. parse
1007            TransliteratorParser parser(ec);
1008            alias->parse(parser, pe, ec);
1009            delete alias;
1010            alias = 0;
1011
1012            // Step 2. reget
1013            umtx_lock(&registryMutex);
1014            if (HAVE_REGISTRY(ec)) {
1015                t = registry->reget(id, parser, alias, ec);
1016            }
1017            umtx_unlock(&registryMutex);
1018
1019            // Step 3. Loop back around!
1020        } else {
1021            t = alias->create(pe, ec);
1022            delete alias;
1023            alias = 0;
1024            break;
1025        }
1026        if (U_FAILURE(ec)) {
1027            delete t;
1028            delete alias;
1029            t = NULL;
1030            break;
1031        }
1032    }
1033
1034    if (t != NULL && canon != NULL) {
1035        t->setID(*canon);
1036    }
1037
1038    return t;
1039}
1040
1041/**
1042 * Returns a <code>Transliterator</code> object constructed from
1043 * the given rule string.  This will be a RuleBasedTransliterator,
1044 * if the rule string contains only rules, or a
1045 * CompoundTransliterator, if it contains ID blocks, or a
1046 * NullTransliterator, if it contains ID blocks which parse as
1047 * empty for the given direction.
1048 */
1049Transliterator* U_EXPORT2
1050Transliterator::createFromRules(const UnicodeString& ID,
1051                                const UnicodeString& rules,
1052                                UTransDirection dir,
1053                                UParseError& parseError,
1054                                UErrorCode& status)
1055{
1056    Transliterator* t = NULL;
1057
1058    TransliteratorParser parser(status);
1059    parser.parse(rules, dir, parseError, status);
1060
1061    if (U_FAILURE(status)) {
1062        return 0;
1063    }
1064
1065    // NOTE: The logic here matches that in TransliteratorRegistry.
1066    if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 0) {
1067        t = new NullTransliterator();
1068    }
1069    else if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 1) {
1070        t = new RuleBasedTransliterator(ID, (TransliterationRuleData*)parser.dataVector.orphanElementAt(0), TRUE);
1071    }
1072    else if (parser.idBlockVector.size() == 1 && parser.dataVector.size() == 0) {
1073        // idBlock, no data -- this is an alias.  The ID has
1074        // been munged from reverse into forward mode, if
1075        // necessary, so instantiate the ID in the forward
1076        // direction.
1077        if (parser.compoundFilter != NULL) {
1078            UnicodeString filterPattern;
1079            parser.compoundFilter->toPattern(filterPattern, FALSE);
1080            t = createInstance(filterPattern + UnicodeString(ID_DELIM)
1081                    + *((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status);
1082        }
1083        else
1084            t = createInstance(*((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status);
1085
1086
1087        if (t != NULL) {
1088            t->setID(ID);
1089        }
1090    }
1091    else {
1092        UVector transliterators(status);
1093        int32_t passNumber = 1;
1094
1095        int32_t limit = parser.idBlockVector.size();
1096        if (parser.dataVector.size() > limit)
1097            limit = parser.dataVector.size();
1098
1099        for (int32_t i = 0; i < limit; i++) {
1100            if (i < parser.idBlockVector.size()) {
1101                UnicodeString* idBlock = (UnicodeString*)parser.idBlockVector.elementAt(i);
1102                if (!idBlock->isEmpty()) {
1103                    Transliterator* temp = createInstance(*idBlock, UTRANS_FORWARD, parseError, status);
1104                    if (temp != NULL && typeid(*temp) != typeid(NullTransliterator))
1105                        transliterators.addElement(temp, status);
1106                    else
1107                        delete temp;
1108                }
1109            }
1110            if (!parser.dataVector.isEmpty()) {
1111                TransliterationRuleData* data = (TransliterationRuleData*)parser.dataVector.orphanElementAt(0);
1112                // TODO: Should passNumber be turned into a decimal-string representation (1 -> "1")?
1113                RuleBasedTransliterator* temprbt = new RuleBasedTransliterator(UnicodeString(CompoundTransliterator::PASS_STRING) + UnicodeString(passNumber++),
1114                        data, TRUE);
1115                // Check if NULL before adding it to transliterators to avoid future usage of NULL pointer.
1116                if (temprbt == NULL) {
1117                	status = U_MEMORY_ALLOCATION_ERROR;
1118                	return t;
1119                }
1120                transliterators.addElement(temprbt, status);
1121            }
1122        }
1123
1124        t = new CompoundTransliterator(transliterators, passNumber - 1, parseError, status);
1125        // Null pointer check
1126        if (t != NULL) {
1127            t->setID(ID);
1128            t->adoptFilter(parser.orphanCompoundFilter());
1129        }
1130    }
1131    if (U_SUCCESS(status) && t == NULL) {
1132        status = U_MEMORY_ALLOCATION_ERROR;
1133    }
1134    return t;
1135}
1136
1137UnicodeString& Transliterator::toRules(UnicodeString& rulesSource,
1138                                       UBool escapeUnprintable) const {
1139    // The base class implementation of toRules munges the ID into
1140    // the correct format.  That is: foo => ::foo
1141    if (escapeUnprintable) {
1142        rulesSource.truncate(0);
1143        UnicodeString id = getID();
1144        for (int32_t i=0; i<id.length();) {
1145            UChar32 c = id.char32At(i);
1146            if (!ICU_Utility::escapeUnprintable(rulesSource, c)) {
1147                rulesSource.append(c);
1148            }
1149            i += U16_LENGTH(c);
1150        }
1151    } else {
1152        rulesSource = getID();
1153    }
1154    // KEEP in sync with rbt_pars
1155    rulesSource.insert(0, UNICODE_STRING_SIMPLE("::"));
1156    rulesSource.append(ID_DELIM);
1157    return rulesSource;
1158}
1159
1160int32_t Transliterator::countElements() const {
1161    const CompoundTransliterator* ct = dynamic_cast<const CompoundTransliterator*>(this);
1162    return ct != NULL ? ct->getCount() : 0;
1163}
1164
1165const Transliterator& Transliterator::getElement(int32_t index, UErrorCode& ec) const {
1166    if (U_FAILURE(ec)) {
1167        return *this;
1168    }
1169    const CompoundTransliterator* cpd = dynamic_cast<const CompoundTransliterator*>(this);
1170    int32_t n = (cpd == NULL) ? 1 : cpd->getCount();
1171    if (index < 0 || index >= n) {
1172        ec = U_INDEX_OUTOFBOUNDS_ERROR;
1173        return *this;
1174    } else {
1175        return (n == 1) ? *this : cpd->getTransliterator(index);
1176    }
1177}
1178
1179UnicodeSet& Transliterator::getSourceSet(UnicodeSet& result) const {
1180    handleGetSourceSet(result);
1181    if (filter != NULL) {
1182        UnicodeSet* filterSet = dynamic_cast<UnicodeSet*>(filter);
1183        UBool deleteFilterSet = FALSE;
1184        // Most, but not all filters will be UnicodeSets.  Optimize for
1185        // the high-runner case.
1186        if (filterSet == NULL) {
1187            filterSet = new UnicodeSet();
1188            // Check null pointer
1189            if (filterSet == NULL) {
1190                return result;
1191            }
1192            deleteFilterSet = TRUE;
1193            filter->addMatchSetTo(*filterSet);
1194        }
1195        result.retainAll(*filterSet);
1196        if (deleteFilterSet) {
1197            delete filterSet;
1198        }
1199    }
1200    return result;
1201}
1202
1203void Transliterator::handleGetSourceSet(UnicodeSet& result) const {
1204    result.clear();
1205}
1206
1207UnicodeSet& Transliterator::getTargetSet(UnicodeSet& result) const {
1208    return result.clear();
1209}
1210
1211// For public consumption
1212void U_EXPORT2 Transliterator::registerFactory(const UnicodeString& id,
1213                                     Transliterator::Factory factory,
1214                                     Transliterator::Token context) {
1215    Mutex lock(&registryMutex);
1216    UErrorCode ec = U_ZERO_ERROR;
1217    if (HAVE_REGISTRY(ec)) {
1218        _registerFactory(id, factory, context);
1219    }
1220}
1221
1222// To be called only by Transliterator subclasses that are called
1223// to register themselves by initializeRegistry().
1224void Transliterator::_registerFactory(const UnicodeString& id,
1225                                      Transliterator::Factory factory,
1226                                      Transliterator::Token context) {
1227    UErrorCode ec = U_ZERO_ERROR;
1228    registry->put(id, factory, context, TRUE, ec);
1229}
1230
1231// To be called only by Transliterator subclasses that are called
1232// to register themselves by initializeRegistry().
1233void Transliterator::_registerSpecialInverse(const UnicodeString& target,
1234                                             const UnicodeString& inverseTarget,
1235                                             UBool bidirectional) {
1236    UErrorCode status = U_ZERO_ERROR;
1237    TransliteratorIDParser::registerSpecialInverse(target, inverseTarget, bidirectional, status);
1238}
1239
1240/**
1241 * Registers a instance <tt>obj</tt> of a subclass of
1242 * <code>Transliterator</code> with the system.  This object must
1243 * implement the <tt>clone()</tt> method.  When
1244 * <tt>getInstance()</tt> is called with an ID string that is
1245 * equal to <tt>obj.getID()</tt>, then <tt>obj.clone()</tt> is
1246 * returned.
1247 *
1248 * @param obj an instance of subclass of
1249 * <code>Transliterator</code> that defines <tt>clone()</tt>
1250 * @see #getInstance
1251 * @see #unregister
1252 */
1253void U_EXPORT2 Transliterator::registerInstance(Transliterator* adoptedPrototype) {
1254    Mutex lock(&registryMutex);
1255    UErrorCode ec = U_ZERO_ERROR;
1256    if (HAVE_REGISTRY(ec)) {
1257        _registerInstance(adoptedPrototype);
1258    }
1259}
1260
1261void Transliterator::_registerInstance(Transliterator* adoptedPrototype) {
1262    UErrorCode ec = U_ZERO_ERROR;
1263    registry->put(adoptedPrototype, TRUE, ec);
1264}
1265
1266void U_EXPORT2 Transliterator::registerAlias(const UnicodeString& aliasID,
1267                                             const UnicodeString& realID) {
1268    Mutex lock(&registryMutex);
1269    UErrorCode ec = U_ZERO_ERROR;
1270    if (HAVE_REGISTRY(ec)) {
1271        _registerAlias(aliasID, realID);
1272    }
1273}
1274
1275void Transliterator::_registerAlias(const UnicodeString& aliasID,
1276                                    const UnicodeString& realID) {
1277    UErrorCode ec = U_ZERO_ERROR;
1278    registry->put(aliasID, realID, FALSE, TRUE, ec);
1279}
1280
1281/**
1282 * Unregisters a transliterator or class.  This may be either
1283 * a system transliterator or a user transliterator or class.
1284 *
1285 * @param ID the ID of the transliterator or class
1286 * @see #registerInstance
1287
1288 */
1289void U_EXPORT2 Transliterator::unregister(const UnicodeString& ID) {
1290    Mutex lock(&registryMutex);
1291    UErrorCode ec = U_ZERO_ERROR;
1292    if (HAVE_REGISTRY(ec)) {
1293        registry->remove(ID);
1294    }
1295}
1296
1297/**
1298 * == OBSOLETE - remove in ICU 3.4 ==
1299 * Return the number of IDs currently registered with the system.
1300 * To retrieve the actual IDs, call getAvailableID(i) with
1301 * i from 0 to countAvailableIDs() - 1.
1302 */
1303int32_t U_EXPORT2 Transliterator::countAvailableIDs(void) {
1304    int32_t retVal = 0;
1305    Mutex lock(&registryMutex);
1306    UErrorCode ec = U_ZERO_ERROR;
1307    if (HAVE_REGISTRY(ec)) {
1308        retVal = registry->countAvailableIDs();
1309    }
1310    return retVal;
1311}
1312
1313/**
1314 * == OBSOLETE - remove in ICU 3.4 ==
1315 * Return the index-th available ID.  index must be between 0
1316 * and countAvailableIDs() - 1, inclusive.  If index is out of
1317 * range, the result of getAvailableID(0) is returned.
1318 */
1319const UnicodeString& U_EXPORT2 Transliterator::getAvailableID(int32_t index) {
1320    const UnicodeString* result = NULL;
1321    umtx_lock(&registryMutex);
1322    UErrorCode ec = U_ZERO_ERROR;
1323    if (HAVE_REGISTRY(ec)) {
1324        result = &registry->getAvailableID(index);
1325    }
1326    umtx_unlock(&registryMutex);
1327    U_ASSERT(result != NULL); // fail if no registry
1328    return *result;
1329}
1330
1331StringEnumeration* U_EXPORT2 Transliterator::getAvailableIDs(UErrorCode& ec) {
1332    if (U_FAILURE(ec)) return NULL;
1333    StringEnumeration* result = NULL;
1334    umtx_lock(&registryMutex);
1335    if (HAVE_REGISTRY(ec)) {
1336        result = registry->getAvailableIDs();
1337    }
1338    umtx_unlock(&registryMutex);
1339    if (result == NULL) {
1340        ec = U_INTERNAL_TRANSLITERATOR_ERROR;
1341    }
1342    return result;
1343}
1344
1345int32_t U_EXPORT2 Transliterator::countAvailableSources(void) {
1346    Mutex lock(&registryMutex);
1347    UErrorCode ec = U_ZERO_ERROR;
1348    return HAVE_REGISTRY(ec) ? _countAvailableSources() : 0;
1349}
1350
1351UnicodeString& U_EXPORT2 Transliterator::getAvailableSource(int32_t index,
1352                                                  UnicodeString& result) {
1353    Mutex lock(&registryMutex);
1354    UErrorCode ec = U_ZERO_ERROR;
1355    if (HAVE_REGISTRY(ec)) {
1356        _getAvailableSource(index, result);
1357    }
1358    return result;
1359}
1360
1361int32_t U_EXPORT2 Transliterator::countAvailableTargets(const UnicodeString& source) {
1362    Mutex lock(&registryMutex);
1363    UErrorCode ec = U_ZERO_ERROR;
1364    return HAVE_REGISTRY(ec) ? _countAvailableTargets(source) : 0;
1365}
1366
1367UnicodeString& U_EXPORT2 Transliterator::getAvailableTarget(int32_t index,
1368                                                  const UnicodeString& source,
1369                                                  UnicodeString& result) {
1370    Mutex lock(&registryMutex);
1371    UErrorCode ec = U_ZERO_ERROR;
1372    if (HAVE_REGISTRY(ec)) {
1373        _getAvailableTarget(index, source, result);
1374    }
1375    return result;
1376}
1377
1378int32_t U_EXPORT2 Transliterator::countAvailableVariants(const UnicodeString& source,
1379                                               const UnicodeString& target) {
1380    Mutex lock(&registryMutex);
1381    UErrorCode ec = U_ZERO_ERROR;
1382    return HAVE_REGISTRY(ec) ? _countAvailableVariants(source, target) : 0;
1383}
1384
1385UnicodeString& U_EXPORT2 Transliterator::getAvailableVariant(int32_t index,
1386                                                   const UnicodeString& source,
1387                                                   const UnicodeString& target,
1388                                                   UnicodeString& result) {
1389    Mutex lock(&registryMutex);
1390    UErrorCode ec = U_ZERO_ERROR;
1391    if (HAVE_REGISTRY(ec)) {
1392        _getAvailableVariant(index, source, target, result);
1393    }
1394    return result;
1395}
1396
1397int32_t Transliterator::_countAvailableSources(void) {
1398    return registry->countAvailableSources();
1399}
1400
1401UnicodeString& Transliterator::_getAvailableSource(int32_t index,
1402                                                  UnicodeString& result) {
1403    return registry->getAvailableSource(index, result);
1404}
1405
1406int32_t Transliterator::_countAvailableTargets(const UnicodeString& source) {
1407    return registry->countAvailableTargets(source);
1408}
1409
1410UnicodeString& Transliterator::_getAvailableTarget(int32_t index,
1411                                                  const UnicodeString& source,
1412                                                  UnicodeString& result) {
1413    return registry->getAvailableTarget(index, source, result);
1414}
1415
1416int32_t Transliterator::_countAvailableVariants(const UnicodeString& source,
1417                                               const UnicodeString& target) {
1418    return registry->countAvailableVariants(source, target);
1419}
1420
1421UnicodeString& Transliterator::_getAvailableVariant(int32_t index,
1422                                                   const UnicodeString& source,
1423                                                   const UnicodeString& target,
1424                                                   UnicodeString& result) {
1425    return registry->getAvailableVariant(index, source, target, result);
1426}
1427
1428#ifdef U_USE_DEPRECATED_TRANSLITERATOR_API
1429
1430/**
1431 * Method for subclasses to use to obtain a character in the given
1432 * string, with filtering.
1433 * @deprecated the new architecture provides filtering at the top
1434 * level.  This method will be removed Dec 31 2001.
1435 */
1436UChar Transliterator::filteredCharAt(const Replaceable& text, int32_t i) const {
1437    UChar c;
1438    const UnicodeFilter* localFilter = getFilter();
1439    return (localFilter == 0) ? text.charAt(i) :
1440        (localFilter->contains(c = text.charAt(i)) ? c : (UChar)0xFFFE);
1441}
1442
1443#endif
1444
1445/**
1446 * If the registry is initialized, return TRUE.  If not, initialize it
1447 * and return TRUE.  If the registry cannot be initialized, return
1448 * FALSE (rare).
1449 *
1450 * IMPORTANT: Upon entry, registryMutex must be LOCKED.  The entire
1451 * initialization is done with the lock held.  There is NO REASON to
1452 * unlock, since no other thread that is waiting on the registryMutex
1453 * cannot itself proceed until the registry is initialized.
1454 */
1455UBool Transliterator::initializeRegistry(UErrorCode &status) {
1456    if (registry != 0) {
1457        return TRUE;
1458    }
1459
1460    registry = new TransliteratorRegistry(status);
1461    if (registry == 0 || U_FAILURE(status)) {
1462        delete registry;
1463        registry = 0;
1464        return FALSE; // can't create registry, no recovery
1465    }
1466
1467    /* The following code parses the index table located in
1468     * icu/data/translit/root.txt.  The index is an n x 4 table
1469     * that follows this format:
1470     *  <id>{
1471     *      file{
1472     *          resource{"<resource>"}
1473     *          direction{"<direction>"}
1474     *      }
1475     *  }
1476     *  <id>{
1477     *      internal{
1478     *          resource{"<resource>"}
1479     *          direction{"<direction"}
1480     *       }
1481     *  }
1482     *  <id>{
1483     *      alias{"<getInstanceArg"}
1484     *  }
1485     * <id> is the ID of the system transliterator being defined.  These
1486     * are public IDs enumerated by Transliterator.getAvailableIDs(),
1487     * unless the second field is "internal".
1488     *
1489     * <resource> is a ResourceReader resource name.  Currently these refer
1490     * to file names under com/ibm/text/resources.  This string is passed
1491     * directly to ResourceReader, together with <encoding>.
1492     *
1493     * <direction> is either "FORWARD" or "REVERSE".
1494     *
1495     * <getInstanceArg> is a string to be passed directly to
1496     * Transliterator.getInstance().  The returned Transliterator object
1497     * then has its ID changed to <id> and is returned.
1498     *
1499     * The extra blank field on "alias" lines is to make the array square.
1500     */
1501    //static const char translit_index[] = "translit_index";
1502
1503    UResourceBundle *bundle, *transIDs, *colBund;
1504    bundle = ures_open(U_ICUDATA_TRANSLIT, NULL/*open default locale*/, &status);
1505    transIDs = ures_getByKey(bundle, RB_RULE_BASED_IDS, 0, &status);
1506    const UnicodeString T_PART = UNICODE_STRING_SIMPLE("-t-");
1507
1508    int32_t row, maxRows;
1509    if (U_SUCCESS(status)) {
1510        maxRows = ures_getSize(transIDs);
1511        for (row = 0; row < maxRows; row++) {
1512            colBund = ures_getByIndex(transIDs, row, 0, &status);
1513            if (U_SUCCESS(status)) {
1514                UnicodeString id(ures_getKey(colBund), -1, US_INV);
1515                if(id.indexOf(T_PART) != -1) {
1516                    ures_close(colBund);
1517                    continue;
1518                }
1519                UResourceBundle* res = ures_getNextResource(colBund, NULL, &status);
1520                const char* typeStr = ures_getKey(res);
1521                UChar type;
1522                u_charsToUChars(typeStr, &type, 1);
1523
1524                if (U_SUCCESS(status)) {
1525                    int32_t len = 0;
1526                    const UChar *resString;
1527                    switch (type) {
1528                    case 0x66: // 'f'
1529                    case 0x69: // 'i'
1530                        // 'file' or 'internal';
1531                        // row[2]=resource, row[3]=direction
1532                        {
1533
1534                            resString = ures_getStringByKey(res, "resource", &len, &status);
1535                            UBool visible = (type == 0x0066 /*f*/);
1536                            UTransDirection dir =
1537                                (ures_getUnicodeStringByKey(res, "direction", &status).charAt(0) ==
1538                                 0x0046 /*F*/) ?
1539                                UTRANS_FORWARD : UTRANS_REVERSE;
1540                            registry->put(id, UnicodeString(TRUE, resString, len), dir, TRUE, visible, status);
1541                        }
1542                        break;
1543                    case 0x61: // 'a'
1544                        // 'alias'; row[2]=createInstance argument
1545                        resString = ures_getString(res, &len, &status);
1546                        registry->put(id, UnicodeString(TRUE, resString, len), TRUE, TRUE, status);
1547                        break;
1548                    }
1549                }
1550                ures_close(res);
1551            }
1552            ures_close(colBund);
1553        }
1554    }
1555
1556    ures_close(transIDs);
1557    ures_close(bundle);
1558
1559    // Manually add prototypes that the system knows about to the
1560    // cache.  This is how new non-rule-based transliterators are
1561    // added to the system.
1562
1563    // This is to allow for null pointer check
1564    NullTransliterator* tempNullTranslit = new NullTransliterator();
1565    LowercaseTransliterator* tempLowercaseTranslit = new LowercaseTransliterator();
1566    UppercaseTransliterator* tempUppercaseTranslit = new UppercaseTransliterator();
1567    TitlecaseTransliterator* tempTitlecaseTranslit = new TitlecaseTransliterator();
1568    UnicodeNameTransliterator* tempUnicodeTranslit = new UnicodeNameTransliterator();
1569    NameUnicodeTransliterator* tempNameUnicodeTranslit = new NameUnicodeTransliterator();
1570#if !UCONFIG_NO_BREAK_ITERATION
1571     // TODO: could or should these transliterators be referenced polymorphically once constructed?
1572     BreakTransliterator* tempBreakTranslit         = new BreakTransliterator();
1573#endif
1574    // Check for null pointers
1575    if (tempNullTranslit == NULL || tempLowercaseTranslit == NULL || tempUppercaseTranslit == NULL ||
1576        tempTitlecaseTranslit == NULL || tempUnicodeTranslit == NULL ||
1577#if !UCONFIG_NO_BREAK_ITERATION
1578        tempBreakTranslit == NULL ||
1579#endif
1580        tempNameUnicodeTranslit == NULL )
1581    {
1582        delete tempNullTranslit;
1583        delete tempLowercaseTranslit;
1584        delete tempUppercaseTranslit;
1585        delete tempTitlecaseTranslit;
1586        delete tempUnicodeTranslit;
1587        delete tempNameUnicodeTranslit;
1588#if !UCONFIG_NO_BREAK_ITERATION
1589        delete tempBreakTranslit;
1590#endif
1591        // Since there was an error, remove registry
1592        delete registry;
1593        registry = NULL;
1594
1595        status = U_MEMORY_ALLOCATION_ERROR;
1596        return 0;
1597    }
1598
1599    registry->put(tempNullTranslit, TRUE, status);
1600    registry->put(tempLowercaseTranslit, TRUE, status);
1601    registry->put(tempUppercaseTranslit, TRUE, status);
1602    registry->put(tempTitlecaseTranslit, TRUE, status);
1603    registry->put(tempUnicodeTranslit, TRUE, status);
1604    registry->put(tempNameUnicodeTranslit, TRUE, status);
1605#if !UCONFIG_NO_BREAK_ITERATION
1606    registry->put(tempBreakTranslit, FALSE, status);   // FALSE means invisible.
1607#endif
1608
1609    RemoveTransliterator::registerIDs(); // Must be within mutex
1610    EscapeTransliterator::registerIDs();
1611    UnescapeTransliterator::registerIDs();
1612    NormalizationTransliterator::registerIDs();
1613    AnyTransliterator::registerIDs();
1614
1615    _registerSpecialInverse(UNICODE_STRING_SIMPLE("Null"),
1616                            UNICODE_STRING_SIMPLE("Null"), FALSE);
1617    _registerSpecialInverse(UNICODE_STRING_SIMPLE("Upper"),
1618                            UNICODE_STRING_SIMPLE("Lower"), TRUE);
1619    _registerSpecialInverse(UNICODE_STRING_SIMPLE("Title"),
1620                            UNICODE_STRING_SIMPLE("Lower"), FALSE);
1621
1622    ucln_i18n_registerCleanup(UCLN_I18N_TRANSLITERATOR, utrans_transliterator_cleanup);
1623
1624    return TRUE;
1625}
1626
1627U_NAMESPACE_END
1628
1629// Defined in transreg.h:
1630
1631/**
1632 * Release all static memory held by transliterator.  This will
1633 * necessarily invalidate any rule-based transliterators held by the
1634 * user, because RBTs hold pointers to common data objects.
1635 */
1636U_CFUNC UBool utrans_transliterator_cleanup(void) {
1637    U_NAMESPACE_USE
1638    TransliteratorIDParser::cleanup();
1639    if (registry) {
1640        delete registry;
1641        registry = NULL;
1642    }
1643    return TRUE;
1644}
1645
1646#endif /* #if !UCONFIG_NO_TRANSLITERATION */
1647
1648//eof
1649