1/*
2 * jfdctint.c
3 *
4 * This file was part of the Independent JPEG Group's software.
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2015, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
10 *
11 * This file contains a slow-but-accurate integer implementation of the
12 * forward DCT (Discrete Cosine Transform).
13 *
14 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
15 * on each column.  Direct algorithms are also available, but they are
16 * much more complex and seem not to be any faster when reduced to code.
17 *
18 * This implementation is based on an algorithm described in
19 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
20 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
21 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
22 * The primary algorithm described there uses 11 multiplies and 29 adds.
23 * We use their alternate method with 12 multiplies and 32 adds.
24 * The advantage of this method is that no data path contains more than one
25 * multiplication; this allows a very simple and accurate implementation in
26 * scaled fixed-point arithmetic, with a minimal number of shifts.
27 */
28
29#define JPEG_INTERNALS
30#include "jinclude.h"
31#include "jpeglib.h"
32#include "jdct.h"               /* Private declarations for DCT subsystem */
33
34#ifdef DCT_ISLOW_SUPPORTED
35
36
37/*
38 * This module is specialized to the case DCTSIZE = 8.
39 */
40
41#if DCTSIZE != 8
42  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
43#endif
44
45
46/*
47 * The poop on this scaling stuff is as follows:
48 *
49 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
50 * larger than the true DCT outputs.  The final outputs are therefore
51 * a factor of N larger than desired; since N=8 this can be cured by
52 * a simple right shift at the end of the algorithm.  The advantage of
53 * this arrangement is that we save two multiplications per 1-D DCT,
54 * because the y0 and y4 outputs need not be divided by sqrt(N).
55 * In the IJG code, this factor of 8 is removed by the quantization step
56 * (in jcdctmgr.c), NOT in this module.
57 *
58 * We have to do addition and subtraction of the integer inputs, which
59 * is no problem, and multiplication by fractional constants, which is
60 * a problem to do in integer arithmetic.  We multiply all the constants
61 * by CONST_SCALE and convert them to integer constants (thus retaining
62 * CONST_BITS bits of precision in the constants).  After doing a
63 * multiplication we have to divide the product by CONST_SCALE, with proper
64 * rounding, to produce the correct output.  This division can be done
65 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
66 * as long as possible so that partial sums can be added together with
67 * full fractional precision.
68 *
69 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
70 * they are represented to better-than-integral precision.  These outputs
71 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
72 * with the recommended scaling.  (For 12-bit sample data, the intermediate
73 * array is JLONG anyway.)
74 *
75 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
76 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
77 * shows that the values given below are the most effective.
78 */
79
80#if BITS_IN_JSAMPLE == 8
81#define CONST_BITS  13
82#define PASS1_BITS  2
83#else
84#define CONST_BITS  13
85#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
86#endif
87
88/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
89 * causing a lot of useless floating-point operations at run time.
90 * To get around this we use the following pre-calculated constants.
91 * If you change CONST_BITS you may want to add appropriate values.
92 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
93 */
94
95#if CONST_BITS == 13
96#define FIX_0_298631336  ((JLONG)  2446)        /* FIX(0.298631336) */
97#define FIX_0_390180644  ((JLONG)  3196)        /* FIX(0.390180644) */
98#define FIX_0_541196100  ((JLONG)  4433)        /* FIX(0.541196100) */
99#define FIX_0_765366865  ((JLONG)  6270)        /* FIX(0.765366865) */
100#define FIX_0_899976223  ((JLONG)  7373)        /* FIX(0.899976223) */
101#define FIX_1_175875602  ((JLONG)  9633)        /* FIX(1.175875602) */
102#define FIX_1_501321110  ((JLONG)  12299)       /* FIX(1.501321110) */
103#define FIX_1_847759065  ((JLONG)  15137)       /* FIX(1.847759065) */
104#define FIX_1_961570560  ((JLONG)  16069)       /* FIX(1.961570560) */
105#define FIX_2_053119869  ((JLONG)  16819)       /* FIX(2.053119869) */
106#define FIX_2_562915447  ((JLONG)  20995)       /* FIX(2.562915447) */
107#define FIX_3_072711026  ((JLONG)  25172)       /* FIX(3.072711026) */
108#else
109#define FIX_0_298631336  FIX(0.298631336)
110#define FIX_0_390180644  FIX(0.390180644)
111#define FIX_0_541196100  FIX(0.541196100)
112#define FIX_0_765366865  FIX(0.765366865)
113#define FIX_0_899976223  FIX(0.899976223)
114#define FIX_1_175875602  FIX(1.175875602)
115#define FIX_1_501321110  FIX(1.501321110)
116#define FIX_1_847759065  FIX(1.847759065)
117#define FIX_1_961570560  FIX(1.961570560)
118#define FIX_2_053119869  FIX(2.053119869)
119#define FIX_2_562915447  FIX(2.562915447)
120#define FIX_3_072711026  FIX(3.072711026)
121#endif
122
123
124/* Multiply an JLONG variable by an JLONG constant to yield an JLONG result.
125 * For 8-bit samples with the recommended scaling, all the variable
126 * and constant values involved are no more than 16 bits wide, so a
127 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
128 * For 12-bit samples, a full 32-bit multiplication will be needed.
129 */
130
131#if BITS_IN_JSAMPLE == 8
132#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
133#else
134#define MULTIPLY(var,const)  ((var) * (const))
135#endif
136
137
138/*
139 * Perform the forward DCT on one block of samples.
140 */
141
142GLOBAL(void)
143jpeg_fdct_islow (DCTELEM *data)
144{
145  JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
146  JLONG tmp10, tmp11, tmp12, tmp13;
147  JLONG z1, z2, z3, z4, z5;
148  DCTELEM *dataptr;
149  int ctr;
150  SHIFT_TEMPS
151
152  /* Pass 1: process rows. */
153  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
154  /* furthermore, we scale the results by 2**PASS1_BITS. */
155
156  dataptr = data;
157  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
158    tmp0 = dataptr[0] + dataptr[7];
159    tmp7 = dataptr[0] - dataptr[7];
160    tmp1 = dataptr[1] + dataptr[6];
161    tmp6 = dataptr[1] - dataptr[6];
162    tmp2 = dataptr[2] + dataptr[5];
163    tmp5 = dataptr[2] - dataptr[5];
164    tmp3 = dataptr[3] + dataptr[4];
165    tmp4 = dataptr[3] - dataptr[4];
166
167    /* Even part per LL&M figure 1 --- note that published figure is faulty;
168     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
169     */
170
171    tmp10 = tmp0 + tmp3;
172    tmp13 = tmp0 - tmp3;
173    tmp11 = tmp1 + tmp2;
174    tmp12 = tmp1 - tmp2;
175
176    dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
177    dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
178
179    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
180    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
181                                   CONST_BITS-PASS1_BITS);
182    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
183                                   CONST_BITS-PASS1_BITS);
184
185    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
186     * cK represents cos(K*pi/16).
187     * i0..i3 in the paper are tmp4..tmp7 here.
188     */
189
190    z1 = tmp4 + tmp7;
191    z2 = tmp5 + tmp6;
192    z3 = tmp4 + tmp6;
193    z4 = tmp5 + tmp7;
194    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
195
196    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
197    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
198    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
199    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
200    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
201    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
202    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
203    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
204
205    z3 += z5;
206    z4 += z5;
207
208    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
209    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
210    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
211    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
212
213    dataptr += DCTSIZE;         /* advance pointer to next row */
214  }
215
216  /* Pass 2: process columns.
217   * We remove the PASS1_BITS scaling, but leave the results scaled up
218   * by an overall factor of 8.
219   */
220
221  dataptr = data;
222  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
223    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
224    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
225    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
226    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
227    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
228    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
229    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
230    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
231
232    /* Even part per LL&M figure 1 --- note that published figure is faulty;
233     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
234     */
235
236    tmp10 = tmp0 + tmp3;
237    tmp13 = tmp0 - tmp3;
238    tmp11 = tmp1 + tmp2;
239    tmp12 = tmp1 - tmp2;
240
241    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
242    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
243
244    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
245    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
246                                           CONST_BITS+PASS1_BITS);
247    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
248                                           CONST_BITS+PASS1_BITS);
249
250    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
251     * cK represents cos(K*pi/16).
252     * i0..i3 in the paper are tmp4..tmp7 here.
253     */
254
255    z1 = tmp4 + tmp7;
256    z2 = tmp5 + tmp6;
257    z3 = tmp4 + tmp6;
258    z4 = tmp5 + tmp7;
259    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
260
261    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
262    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
263    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
264    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
265    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
266    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
267    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
268    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
269
270    z3 += z5;
271    z4 += z5;
272
273    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
274                                           CONST_BITS+PASS1_BITS);
275    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
276                                           CONST_BITS+PASS1_BITS);
277    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
278                                           CONST_BITS+PASS1_BITS);
279    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
280                                           CONST_BITS+PASS1_BITS);
281
282    dataptr++;                  /* advance pointer to next column */
283  }
284}
285
286#endif /* DCT_ISLOW_SUPPORTED */
287