1bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant/*
2bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * This code implements the MD5 message-digest algorithm.
3f5256e16dfc425c1d466f6308d4026d529ce9e0bHoward Hinnant * The algorithm is due to Ron Rivest.	This code was
4bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * written by Colin Plumb in 1993, no copyright is claimed.
5b64f8b07c104c6cc986570ac8ee0ed16a9f23976Howard Hinnant * This code is in the public domain; do with it what you wish.
6b64f8b07c104c6cc986570ac8ee0ed16a9f23976Howard Hinnant *
7bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * Equivalent code is available from RSA Data Security, Inc.
8bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * This code has been tested against that, and is equivalent,
9bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * except that you don't need to include two pages of legalese
10bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * with every copy.
11bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant *
12bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * To compute the message digest of a chunk of bytes, declare an
13bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * MD5Context structure, pass it to MD5Init, call MD5Update as
14bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * needed on buffers full of bytes, and then call MD5Final, which
15bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * will fill a supplied 16-byte array with the digest.
16bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant */
17bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant
18bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant/* Brutally hacked by John Walker back from ANSI C to K&R (no
19bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant   prototypes) to maintain the tradition that Netfone will compile
20bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant   with Sun's original "cc". */
21bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant
22bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant#include "md5.h"
23bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant
24bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant
25bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant#ifndef HIGHFIRST
26bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant#define byteReverse(buf, len)	/* Nothing */
27bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant#else
28bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant/*
29bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant * Note: this code is harmless on little-endian machines.
30bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant */
31bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnantstatic void
32bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard HinnantbyteReverse(unsigned char *buf,
33bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant	    unsigned longs)
34bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant{
35bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant    uint32_t t;
36bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant    do {
37bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant	t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
38bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant	    ((unsigned) buf[1] << 8 | buf[0]);
39bc8d3f97eb5c958007f2713238472e0c1c8fe02Howard Hinnant	*(uint32_t *) buf = t;
40	buf += 4;
41    } while (--longs);
42}
43#endif
44
45
46/* The four core functions - F1 is optimized somewhat */
47
48/* #define F1(x, y, z) (x & y | ~x & z) */
49#define F1(x, y, z) (z ^ (x & (y ^ z)))
50#define F2(x, y, z) F1(z, x, y)
51#define F3(x, y, z) (x ^ y ^ z)
52#define F4(x, y, z) (y ^ (x | ~z))
53
54/* This is the central step in the MD5 algorithm. */
55#define MD5STEP(f, w, x, y, z, data, s) \
56	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
57
58/*
59 * The core of the MD5 algorithm, this alters an existing MD5 hash to
60 * reflect the addition of 16 longwords of new data.  MD5Update blocks
61 * the data and converts bytes into longwords for this routine.
62 */
63static void
64MD5Transform(uint32_t buf[4],
65	     uint32_t in[16])
66{
67  uint32_t a, b, c, d;
68
69    a = buf[0];
70    b = buf[1];
71    c = buf[2];
72    d = buf[3];
73
74    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
75    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
76    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
77    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
78    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
79    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
80    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
81    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
82    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
83    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
84    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
85    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
86    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
87    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
88    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
89    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
90
91    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
92    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
93    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
94    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
95    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
96    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
97    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
98    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
99    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
100    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
101    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
102    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
103    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
104    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
105    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
106    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
107
108    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
109    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
110    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
111    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
112    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
113    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
114    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
115    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
116    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
117    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
118    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
119    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
120    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
121    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
122    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
123    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
124
125    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
126    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
127    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
128    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
129    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
130    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
131    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
132    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
133    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
134    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
135    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
136    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
137    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
138    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
139    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
140    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
141
142    buf[0] += a;
143    buf[1] += b;
144    buf[2] += c;
145    buf[3] += d;
146}
147
148
149/*
150 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
151 * initialization constants.
152 */
153void
154MD5Init(struct MD5Context *ctx)
155{
156    ctx->buf[0] = 0x67452301;
157    ctx->buf[1] = 0xefcdab89;
158    ctx->buf[2] = 0x98badcfe;
159    ctx->buf[3] = 0x10325476;
160
161    ctx->bits[0] = 0;
162    ctx->bits[1] = 0;
163}
164
165/*
166 * Update context to reflect the concatenation of another buffer full
167 * of bytes.
168 */
169void
170MD5Update(struct MD5Context *ctx,
171	  const void *data,
172	  unsigned len)
173{
174    const unsigned char *buf = data;
175    uint32_t t;
176
177    /* Update bitcount */
178
179    t = ctx->bits[0];
180    if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
181	ctx->bits[1]++; 	/* Carry from low to high */
182    ctx->bits[1] += len >> 29;
183
184    t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
185
186    /* Handle any leading odd-sized chunks */
187
188    if (t) {
189	unsigned char *p = (unsigned char *) ctx->in + t;
190
191	t = 64 - t;
192	if (len < t) {
193	    memcpy(p, buf, len);
194	    return;
195	}
196	memcpy(p, buf, t);
197	byteReverse(ctx->in, 16);
198	MD5Transform(ctx->buf, (uint32_t *) ctx->in);
199	buf += t;
200	len -= t;
201    }
202    /* Process data in 64-byte chunks */
203
204    while (len >= 64) {
205	memcpy(ctx->in, buf, 64);
206	byteReverse(ctx->in, 16);
207	MD5Transform(ctx->buf, (uint32_t *) ctx->in);
208	buf += 64;
209	len -= 64;
210    }
211
212    /* Handle any remaining bytes of data. */
213
214    memcpy(ctx->in, buf, len);
215}
216
217/*
218 * Final wrapup - pad to 64-byte boundary with the bit pattern
219 * 1 0* (64-bit count of bits processed, MSB-first)
220 */
221void
222MD5Final (unsigned char digest[16],
223          struct MD5Context *ctx)
224{
225  unsigned count;
226  unsigned char *p;
227
228  /* Compute number of bytes mod 64 */
229  count = (ctx->bits[0] >> 3) & 0x3F;
230
231  /* Set the first char of padding to 0x80.  This is safe since there is
232     always at least one byte free */
233  p = ctx->in + count;
234  *p++ = 0x80;
235
236  /* Bytes of padding needed to make 64 bytes */
237  count = 64 - 1 - count;
238
239  /* Pad out to 56 mod 64 */
240  if (count < 8)
241    {
242      /* Two lots of padding:  Pad the first block to 64 bytes */
243      memset(p, 0, count);
244      byteReverse(ctx->in, 16);
245      MD5Transform(ctx->buf, (uint32_t *) ctx->in);
246
247      /* Now fill the next block with 56 bytes */
248      memset(ctx->in, 0, 56);
249    }
250  else
251    {
252      /* Pad block to 56 bytes */
253      memset(p, 0, count - 8);
254    }
255  byteReverse(ctx->in, 14);
256
257  /* Append length in bits and transform */
258  ((uint32_t *) ctx->in)[14] = ctx->bits[0];
259  ((uint32_t *) ctx->in)[15] = ctx->bits[1];
260
261  MD5Transform(ctx->buf, (uint32_t *) ctx->in);
262  byteReverse((unsigned char *) ctx->buf, 4);
263  memcpy(digest, ctx->buf, 16);
264  memset(ctx, 0, sizeof(struct MD5Context));        /* In case it's sensitive */
265}
266
267/* end of md5.c */
268