ParallelJIT.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Parallel JIT
11//
12// This test program creates two LLVM functions then calls them from three
13// separate threads.  It requires the pthreads library.
14// The three threads are created and then block waiting on a condition variable.
15// Once all threads are blocked on the conditional variable, the main thread
16// wakes them up. This complicated work is performed so that all three threads
17// call into the JIT at the same time (or the best possible approximation of the
18// same time). This test had assertion errors until I got the locking right.
19
20#include "llvm/ExecutionEngine/GenericValue.h"
21#include "llvm/ExecutionEngine/Interpreter.h"
22#include "llvm/ExecutionEngine/JIT.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/IR/Module.h"
28#include "llvm/Support/TargetSelect.h"
29#include <iostream>
30#include <pthread.h>
31using namespace llvm;
32
33static Function* createAdd1(Module *M) {
34  // Create the add1 function entry and insert this entry into module M.  The
35  // function will have a return type of "int" and take an argument of "int".
36  // The '0' terminates the list of argument types.
37  Function *Add1F =
38    cast<Function>(M->getOrInsertFunction("add1",
39                                          Type::getInt32Ty(M->getContext()),
40                                          Type::getInt32Ty(M->getContext()),
41                                          (Type *)0));
42
43  // Add a basic block to the function. As before, it automatically inserts
44  // because of the last argument.
45  BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
46
47  // Get pointers to the constant `1'.
48  Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
49
50  // Get pointers to the integer argument of the add1 function...
51  assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
52  Argument *ArgX = Add1F->arg_begin();  // Get the arg
53  ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
54
55  // Create the add instruction, inserting it into the end of BB.
56  Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
57
58  // Create the return instruction and add it to the basic block
59  ReturnInst::Create(M->getContext(), Add, BB);
60
61  // Now, function add1 is ready.
62  return Add1F;
63}
64
65static Function *CreateFibFunction(Module *M) {
66  // Create the fib function and insert it into module M.  This function is said
67  // to return an int and take an int parameter.
68  Function *FibF =
69    cast<Function>(M->getOrInsertFunction("fib",
70                                          Type::getInt32Ty(M->getContext()),
71                                          Type::getInt32Ty(M->getContext()),
72                                          (Type *)0));
73
74  // Add a basic block to the function.
75  BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
76
77  // Get pointers to the constants.
78  Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
79  Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
80
81  // Get pointer to the integer argument of the add1 function...
82  Argument *ArgX = FibF->arg_begin();   // Get the arg.
83  ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
84
85  // Create the true_block.
86  BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
87  // Create an exit block.
88  BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
89
90  // Create the "if (arg < 2) goto exitbb"
91  Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
92  BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
93
94  // Create: ret int 1
95  ReturnInst::Create(M->getContext(), One, RetBB);
96
97  // create fib(x-1)
98  Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
99  Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
100
101  // create fib(x-2)
102  Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
103  Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
104
105  // fib(x-1)+fib(x-2)
106  Value *Sum =
107    BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
108
109  // Create the return instruction and add it to the basic block
110  ReturnInst::Create(M->getContext(), Sum, RecurseBB);
111
112  return FibF;
113}
114
115struct threadParams {
116  ExecutionEngine* EE;
117  Function* F;
118  int value;
119};
120
121// We block the subthreads just before they begin to execute:
122// we want all of them to call into the JIT at the same time,
123// to verify that the locking is working correctly.
124class WaitForThreads
125{
126public:
127  WaitForThreads()
128  {
129    n = 0;
130    waitFor = 0;
131
132    int result = pthread_cond_init( &condition, NULL );
133    assert( result == 0 );
134
135    result = pthread_mutex_init( &mutex, NULL );
136    assert( result == 0 );
137  }
138
139  ~WaitForThreads()
140  {
141    int result = pthread_cond_destroy( &condition );
142    (void)result;
143    assert( result == 0 );
144
145    result = pthread_mutex_destroy( &mutex );
146    assert( result == 0 );
147  }
148
149  // All threads will stop here until another thread calls releaseThreads
150  void block()
151  {
152    int result = pthread_mutex_lock( &mutex );
153    (void)result;
154    assert( result == 0 );
155    n ++;
156    //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
157
158    assert( waitFor == 0 || n <= waitFor );
159    if ( waitFor > 0 && n == waitFor )
160    {
161      // There are enough threads blocked that we can release all of them
162      std::cout << "Unblocking threads from block()" << std::endl;
163      unblockThreads();
164    }
165    else
166    {
167      // We just need to wait until someone unblocks us
168      result = pthread_cond_wait( &condition, &mutex );
169      assert( result == 0 );
170    }
171
172    // unlock the mutex before returning
173    result = pthread_mutex_unlock( &mutex );
174    assert( result == 0 );
175  }
176
177  // If there are num or more threads blocked, it will signal them all
178  // Otherwise, this thread blocks until there are enough OTHER threads
179  // blocked
180  void releaseThreads( size_t num )
181  {
182    int result = pthread_mutex_lock( &mutex );
183    (void)result;
184    assert( result == 0 );
185
186    if ( n >= num ) {
187      std::cout << "Unblocking threads from releaseThreads()" << std::endl;
188      unblockThreads();
189    }
190    else
191    {
192      waitFor = num;
193      pthread_cond_wait( &condition, &mutex );
194    }
195
196    // unlock the mutex before returning
197    result = pthread_mutex_unlock( &mutex );
198    assert( result == 0 );
199  }
200
201private:
202  void unblockThreads()
203  {
204    // Reset the counters to zero: this way, if any new threads
205    // enter while threads are exiting, they will block instead
206    // of triggering a new release of threads
207    n = 0;
208
209    // Reset waitFor to zero: this way, if waitFor threads enter
210    // while threads are exiting, they will block instead of
211    // triggering a new release of threads
212    waitFor = 0;
213
214    int result = pthread_cond_broadcast( &condition );
215    (void)result;
216    assert(result == 0);
217  }
218
219  size_t n;
220  size_t waitFor;
221  pthread_cond_t condition;
222  pthread_mutex_t mutex;
223};
224
225static WaitForThreads synchronize;
226
227void* callFunc( void* param )
228{
229  struct threadParams* p = (struct threadParams*) param;
230
231  // Call the `foo' function with no arguments:
232  std::vector<GenericValue> Args(1);
233  Args[0].IntVal = APInt(32, p->value);
234
235  synchronize.block(); // wait until other threads are at this point
236  GenericValue gv = p->EE->runFunction(p->F, Args);
237
238  return (void*)(intptr_t)gv.IntVal.getZExtValue();
239}
240
241int main() {
242  InitializeNativeTarget();
243  LLVMContext Context;
244
245  // Create some module to put our function into it.
246  Module *M = new Module("test", Context);
247
248  Function* add1F = createAdd1( M );
249  Function* fibF = CreateFibFunction( M );
250
251  // Now we create the JIT.
252  ExecutionEngine* EE = EngineBuilder(M).create();
253
254  //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
255  //~ std::cout << "\n\nRunning foo: " << std::flush;
256
257  // Create one thread for add1 and two threads for fib
258  struct threadParams add1 = { EE, add1F, 1000 };
259  struct threadParams fib1 = { EE, fibF, 39 };
260  struct threadParams fib2 = { EE, fibF, 42 };
261
262  pthread_t add1Thread;
263  int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
264  if ( result != 0 ) {
265          std::cerr << "Could not create thread" << std::endl;
266          return 1;
267  }
268
269  pthread_t fibThread1;
270  result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
271  if ( result != 0 ) {
272          std::cerr << "Could not create thread" << std::endl;
273          return 1;
274  }
275
276  pthread_t fibThread2;
277  result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
278  if ( result != 0 ) {
279          std::cerr << "Could not create thread" << std::endl;
280          return 1;
281  }
282
283  synchronize.releaseThreads(3); // wait until other threads are at this point
284
285  void* returnValue;
286  result = pthread_join( add1Thread, &returnValue );
287  if ( result != 0 ) {
288          std::cerr << "Could not join thread" << std::endl;
289          return 1;
290  }
291  std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
292
293  result = pthread_join( fibThread1, &returnValue );
294  if ( result != 0 ) {
295          std::cerr << "Could not join thread" << std::endl;
296          return 1;
297  }
298  std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
299
300  result = pthread_join( fibThread2, &returnValue );
301  if ( result != 0 ) {
302          std::cerr << "Could not join thread" << std::endl;
303          return 1;
304  }
305  std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
306
307  return 0;
308}
309