ScheduleDAG.h revision 475871a144eb604ddaf37503397ba0941442e5fb
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for SelectionDAG-based instruction scheduler.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16#define LLVM_CODEGEN_SCHEDULEDAG_H
17
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/GraphTraits.h"
22#include "llvm/ADT/SmallSet.h"
23
24namespace llvm {
25  struct InstrStage;
26  struct SUnit;
27  class MachineConstantPool;
28  class MachineFunction;
29  class MachineModuleInfo;
30  class MachineRegisterInfo;
31  class MachineInstr;
32  class TargetRegisterInfo;
33  class SelectionDAG;
34  class SelectionDAGISel;
35  class TargetInstrInfo;
36  class TargetInstrDesc;
37  class TargetLowering;
38  class TargetMachine;
39  class TargetRegisterClass;
40
41  /// HazardRecognizer - This determines whether or not an instruction can be
42  /// issued this cycle, and whether or not a noop needs to be inserted to handle
43  /// the hazard.
44  class HazardRecognizer {
45  public:
46    virtual ~HazardRecognizer();
47
48    enum HazardType {
49      NoHazard,      // This instruction can be emitted at this cycle.
50      Hazard,        // This instruction can't be emitted at this cycle.
51      NoopHazard     // This instruction can't be emitted, and needs noops.
52    };
53
54    /// getHazardType - Return the hazard type of emitting this node.  There are
55    /// three possible results.  Either:
56    ///  * NoHazard: it is legal to issue this instruction on this cycle.
57    ///  * Hazard: issuing this instruction would stall the machine.  If some
58    ///     other instruction is available, issue it first.
59    ///  * NoopHazard: issuing this instruction would break the program.  If
60    ///     some other instruction can be issued, do so, otherwise issue a noop.
61    virtual HazardType getHazardType(SDNode *) {
62      return NoHazard;
63    }
64
65    /// EmitInstruction - This callback is invoked when an instruction is
66    /// emitted, to advance the hazard state.
67    virtual void EmitInstruction(SDNode *) {}
68
69    /// AdvanceCycle - This callback is invoked when no instructions can be
70    /// issued on this cycle without a hazard.  This should increment the
71    /// internal state of the hazard recognizer so that previously "Hazard"
72    /// instructions will now not be hazards.
73    virtual void AdvanceCycle() {}
74
75    /// EmitNoop - This callback is invoked when a noop was added to the
76    /// instruction stream.
77    virtual void EmitNoop() {}
78  };
79
80  /// SDep - Scheduling dependency. It keeps track of dependent nodes,
81  /// cost of the depdenency, etc.
82  struct SDep {
83    SUnit    *Dep;           // Dependent - either a predecessor or a successor.
84    unsigned  Reg;           // If non-zero, this dep is a phy register dependency.
85    int       Cost;          // Cost of the dependency.
86    bool      isCtrl    : 1; // True iff it's a control dependency.
87    bool      isSpecial : 1; // True iff it's a special ctrl dep added during sched.
88    SDep(SUnit *d, unsigned r, int t, bool c, bool s)
89      : Dep(d), Reg(r), Cost(t), isCtrl(c), isSpecial(s) {}
90  };
91
92  /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
93  /// a group of nodes flagged together.
94  struct SUnit {
95    SDNode *Node;                       // Representative node.
96    SmallVector<SDNode*,4> FlaggedNodes;// All nodes flagged to Node.
97    SUnit *OrigNode;                    // If not this, the node from which
98                                        // this node was cloned.
99
100    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
101    // is true if the edge is a token chain edge, false if it is a value edge.
102    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
103    SmallVector<SDep, 4> Succs;  // All sunit successors.
104
105    typedef SmallVector<SDep, 4>::iterator pred_iterator;
106    typedef SmallVector<SDep, 4>::iterator succ_iterator;
107    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
108    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
109
110    unsigned NodeNum;                   // Entry # of node in the node vector.
111    unsigned NodeQueueId;               // Queue id of node.
112    unsigned short Latency;             // Node latency.
113    short NumPreds;                     // # of preds.
114    short NumSuccs;                     // # of sucss.
115    short NumPredsLeft;                 // # of preds not scheduled.
116    short NumSuccsLeft;                 // # of succs not scheduled.
117    bool isTwoAddress     : 1;          // Is a two-address instruction.
118    bool isCommutable     : 1;          // Is a commutable instruction.
119    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
120    bool isPending        : 1;          // True once pending.
121    bool isAvailable      : 1;          // True once available.
122    bool isScheduled      : 1;          // True once scheduled.
123    unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
124    unsigned Cycle;                     // Once scheduled, the cycle of the op.
125    unsigned Depth;                     // Node depth;
126    unsigned Height;                    // Node height;
127    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
128    const TargetRegisterClass *CopySrcRC;
129
130    SUnit(SDNode *node, unsigned nodenum)
131      : Node(node), OrigNode(0), NodeNum(nodenum), NodeQueueId(0), Latency(0),
132        NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
133        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
134        isPending(false), isAvailable(false), isScheduled(false),
135        CycleBound(0), Cycle(0), Depth(0), Height(0),
136        CopyDstRC(NULL), CopySrcRC(NULL) {}
137
138    /// addPred - This adds the specified node as a pred of the current node if
139    /// not already.  This returns true if this is a new pred.
140    bool addPred(SUnit *N, bool isCtrl, bool isSpecial,
141                 unsigned PhyReg = 0, int Cost = 1) {
142      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
143        if (Preds[i].Dep == N &&
144            Preds[i].isCtrl == isCtrl && Preds[i].isSpecial == isSpecial)
145          return false;
146      Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isSpecial));
147      N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl, isSpecial));
148      if (!isCtrl) {
149        ++NumPreds;
150        ++N->NumSuccs;
151      }
152      if (!N->isScheduled)
153        ++NumPredsLeft;
154      if (!isScheduled)
155        ++N->NumSuccsLeft;
156      return true;
157    }
158
159    bool removePred(SUnit *N, bool isCtrl, bool isSpecial) {
160      for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
161           I != E; ++I)
162        if (I->Dep == N && I->isCtrl == isCtrl && I->isSpecial == isSpecial) {
163          bool FoundSucc = false;
164          for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
165                 EE = N->Succs.end(); II != EE; ++II)
166            if (II->Dep == this &&
167                II->isCtrl == isCtrl && II->isSpecial == isSpecial) {
168              FoundSucc = true;
169              N->Succs.erase(II);
170              break;
171            }
172          assert(FoundSucc && "Mismatching preds / succs lists!");
173          Preds.erase(I);
174          if (!isCtrl) {
175            --NumPreds;
176            --N->NumSuccs;
177          }
178          if (!N->isScheduled)
179            --NumPredsLeft;
180          if (!isScheduled)
181            --N->NumSuccsLeft;
182          return true;
183        }
184      return false;
185    }
186
187    bool isPred(SUnit *N) {
188      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
189        if (Preds[i].Dep == N)
190          return true;
191      return false;
192    }
193
194    bool isSucc(SUnit *N) {
195      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
196        if (Succs[i].Dep == N)
197          return true;
198      return false;
199    }
200
201    void dump(const SelectionDAG *G) const;
202    void dumpAll(const SelectionDAG *G) const;
203  };
204
205  //===--------------------------------------------------------------------===//
206  /// SchedulingPriorityQueue - This interface is used to plug different
207  /// priorities computation algorithms into the list scheduler. It implements
208  /// the interface of a standard priority queue, where nodes are inserted in
209  /// arbitrary order and returned in priority order.  The computation of the
210  /// priority and the representation of the queue are totally up to the
211  /// implementation to decide.
212  ///
213  class SchedulingPriorityQueue {
214  public:
215    virtual ~SchedulingPriorityQueue() {}
216
217    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
218    virtual void addNode(const SUnit *SU) = 0;
219    virtual void updateNode(const SUnit *SU) = 0;
220    virtual void releaseState() = 0;
221
222    virtual unsigned size() const = 0;
223    virtual bool empty() const = 0;
224    virtual void push(SUnit *U) = 0;
225
226    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
227    virtual SUnit *pop() = 0;
228
229    virtual void remove(SUnit *SU) = 0;
230
231    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
232    /// allows the priority function to adjust the priority of related
233    /// unscheduled nodes, for example.
234    ///
235    virtual void ScheduledNode(SUnit *) {}
236
237    virtual void UnscheduledNode(SUnit *) {}
238  };
239
240  class ScheduleDAG {
241  public:
242    SelectionDAG &DAG;                    // DAG of the current basic block
243    MachineBasicBlock *BB;                // Current basic block
244    const TargetMachine &TM;              // Target processor
245    const TargetInstrInfo *TII;           // Target instruction information
246    const TargetRegisterInfo *TRI;        // Target processor register info
247    TargetLowering *TLI;                  // Target lowering info
248    MachineFunction *MF;                  // Machine function
249    MachineRegisterInfo &MRI;             // Virtual/real register map
250    MachineConstantPool *ConstPool;       // Target constant pool
251    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
252                                          // represent noop instructions.
253    std::vector<SUnit> SUnits;            // The scheduling units.
254    SmallSet<SDNode*, 16> CommuteSet;     // Nodes that should be commuted.
255
256    ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb,
257                const TargetMachine &tm);
258
259    virtual ~ScheduleDAG() {}
260
261    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
262    /// using 'dot'.
263    ///
264    void viewGraph();
265
266    /// Run - perform scheduling.
267    ///
268    void Run();
269
270    /// isPassiveNode - Return true if the node is a non-scheduled leaf.
271    ///
272    static bool isPassiveNode(SDNode *Node) {
273      if (isa<ConstantSDNode>(Node))       return true;
274      if (isa<ConstantFPSDNode>(Node))     return true;
275      if (isa<RegisterSDNode>(Node))       return true;
276      if (isa<GlobalAddressSDNode>(Node))  return true;
277      if (isa<BasicBlockSDNode>(Node))     return true;
278      if (isa<FrameIndexSDNode>(Node))     return true;
279      if (isa<ConstantPoolSDNode>(Node))   return true;
280      if (isa<JumpTableSDNode>(Node))      return true;
281      if (isa<ExternalSymbolSDNode>(Node)) return true;
282      if (isa<MemOperandSDNode>(Node))     return true;
283      if (Node->getOpcode() == ISD::EntryToken) return true;
284      return false;
285    }
286
287    /// NewSUnit - Creates a new SUnit and return a ptr to it.
288    ///
289    SUnit *NewSUnit(SDNode *N) {
290      SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
291      SUnits.back().OrigNode = &SUnits.back();
292      return &SUnits.back();
293    }
294
295    /// Clone - Creates a clone of the specified SUnit. It does not copy the
296    /// predecessors / successors info nor the temporary scheduling states.
297    SUnit *Clone(SUnit *N);
298
299    /// BuildSchedUnits - Build SUnits from the selection dag that we are input.
300    /// This SUnit graph is similar to the SelectionDAG, but represents flagged
301    /// together nodes with a single SUnit.
302    void BuildSchedUnits();
303
304    /// ComputeLatency - Compute node latency.
305    ///
306    void ComputeLatency(SUnit *SU);
307
308    /// CalculateDepths, CalculateHeights - Calculate node depth / height.
309    ///
310    void CalculateDepths();
311    void CalculateHeights();
312
313    /// CountResults - The results of target nodes have register or immediate
314    /// operands first, then an optional chain, and optional flag operands
315    /// (which do not go into the machine instrs.)
316    static unsigned CountResults(SDNode *Node);
317
318    /// CountOperands - The inputs to target nodes have any actual inputs first,
319    /// followed by special operands that describe memory references, then an
320    /// optional chain operand, then flag operands.  Compute the number of
321    /// actual operands that will go into the resulting MachineInstr.
322    static unsigned CountOperands(SDNode *Node);
323
324    /// ComputeMemOperandsEnd - Find the index one past the last
325    /// MemOperandSDNode operand
326    static unsigned ComputeMemOperandsEnd(SDNode *Node);
327
328    /// EmitNode - Generate machine code for an node and needed dependencies.
329    /// VRBaseMap contains, for each already emitted node, the first virtual
330    /// register number for the results of the node.
331    ///
332    void EmitNode(SDNode *Node, bool IsClone,
333                  DenseMap<SDValue, unsigned> &VRBaseMap);
334
335    /// EmitNoop - Emit a noop instruction.
336    ///
337    void EmitNoop();
338
339    MachineBasicBlock *EmitSchedule();
340
341    void dumpSchedule() const;
342
343    /// Schedule - Order nodes according to selected style, filling
344    /// in the Sequence member.
345    ///
346    virtual void Schedule() = 0;
347
348  private:
349    /// EmitSubregNode - Generate machine code for subreg nodes.
350    ///
351    void EmitSubregNode(SDNode *Node,
352                        DenseMap<SDValue, unsigned> &VRBaseMap);
353
354    /// getVR - Return the virtual register corresponding to the specified result
355    /// of the specified node.
356    unsigned getVR(SDValue Op, DenseMap<SDValue, unsigned> &VRBaseMap);
357
358    /// getDstOfCopyToRegUse - If the only use of the specified result number of
359    /// node is a CopyToReg, return its destination register. Return 0 otherwise.
360    unsigned getDstOfOnlyCopyToRegUse(SDNode *Node, unsigned ResNo) const;
361
362    void AddOperand(MachineInstr *MI, SDValue Op, unsigned IIOpNum,
363                    const TargetInstrDesc *II,
364                    DenseMap<SDValue, unsigned> &VRBaseMap);
365
366    void AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO);
367
368    void EmitCrossRCCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
369
370    /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
371    /// implicit physical register output.
372    void EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone,
373                         unsigned SrcReg,
374                         DenseMap<SDValue, unsigned> &VRBaseMap);
375
376    void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
377                                const TargetInstrDesc &II,
378                                DenseMap<SDValue, unsigned> &VRBaseMap);
379
380    /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
381    /// physical register has only a single copy use, then coalesced the copy
382    /// if possible.
383    void EmitLiveInCopy(MachineBasicBlock *MBB,
384                        MachineBasicBlock::iterator &InsertPos,
385                        unsigned VirtReg, unsigned PhysReg,
386                        const TargetRegisterClass *RC,
387                        DenseMap<MachineInstr*, unsigned> &CopyRegMap);
388
389    /// EmitLiveInCopies - If this is the first basic block in the function,
390    /// and if it has live ins that need to be copied into vregs, emit the
391    /// copies into the top of the block.
392    void EmitLiveInCopies(MachineBasicBlock *MBB);
393  };
394
395  /// createBURRListDAGScheduler - This creates a bottom up register usage
396  /// reduction list scheduler.
397  ScheduleDAG* createBURRListDAGScheduler(SelectionDAGISel *IS,
398                                          SelectionDAG *DAG,
399                                          MachineBasicBlock *BB,
400                                          bool Fast);
401
402  /// createTDRRListDAGScheduler - This creates a top down register usage
403  /// reduction list scheduler.
404  ScheduleDAG* createTDRRListDAGScheduler(SelectionDAGISel *IS,
405                                          SelectionDAG *DAG,
406                                          MachineBasicBlock *BB,
407                                          bool Fast);
408
409  /// createTDListDAGScheduler - This creates a top-down list scheduler with
410  /// a hazard recognizer.
411  ScheduleDAG* createTDListDAGScheduler(SelectionDAGISel *IS,
412                                        SelectionDAG *DAG,
413                                        MachineBasicBlock *BB,
414                                        bool Fast);
415
416  /// createDefaultScheduler - This creates an instruction scheduler appropriate
417  /// for the target.
418  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
419                                      SelectionDAG *DAG,
420                                      MachineBasicBlock *BB,
421                                      bool Fast);
422
423  class SUnitIterator : public forward_iterator<SUnit, ptrdiff_t> {
424    SUnit *Node;
425    unsigned Operand;
426
427    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
428  public:
429    bool operator==(const SUnitIterator& x) const {
430      return Operand == x.Operand;
431    }
432    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
433
434    const SUnitIterator &operator=(const SUnitIterator &I) {
435      assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
436      Operand = I.Operand;
437      return *this;
438    }
439
440    pointer operator*() const {
441      return Node->Preds[Operand].Dep;
442    }
443    pointer operator->() const { return operator*(); }
444
445    SUnitIterator& operator++() {                // Preincrement
446      ++Operand;
447      return *this;
448    }
449    SUnitIterator operator++(int) { // Postincrement
450      SUnitIterator tmp = *this; ++*this; return tmp;
451    }
452
453    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
454    static SUnitIterator end  (SUnit *N) {
455      return SUnitIterator(N, (unsigned)N->Preds.size());
456    }
457
458    unsigned getOperand() const { return Operand; }
459    const SUnit *getNode() const { return Node; }
460    bool isCtrlDep() const { return Node->Preds[Operand].isCtrl; }
461    bool isSpecialDep() const { return Node->Preds[Operand].isSpecial; }
462  };
463
464  template <> struct GraphTraits<SUnit*> {
465    typedef SUnit NodeType;
466    typedef SUnitIterator ChildIteratorType;
467    static inline NodeType *getEntryNode(SUnit *N) { return N; }
468    static inline ChildIteratorType child_begin(NodeType *N) {
469      return SUnitIterator::begin(N);
470    }
471    static inline ChildIteratorType child_end(NodeType *N) {
472      return SUnitIterator::end(N);
473    }
474  };
475
476  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
477    typedef std::vector<SUnit>::iterator nodes_iterator;
478    static nodes_iterator nodes_begin(ScheduleDAG *G) {
479      return G->SUnits.begin();
480    }
481    static nodes_iterator nodes_end(ScheduleDAG *G) {
482      return G->SUnits.end();
483    }
484  };
485}
486
487#endif
488