ScheduleDAG.h revision 54e4c36a7349e94a84773afb56eccd4ca65b49e9
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16#define LLVM_CODEGEN_SCHEDULEDAG_H
17
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/GraphTraits.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/PointerIntPair.h"
24
25namespace llvm {
26  struct SUnit;
27  class MachineConstantPool;
28  class MachineFunction;
29  class MachineModuleInfo;
30  class MachineRegisterInfo;
31  class MachineInstr;
32  class TargetRegisterInfo;
33  class ScheduleDAG;
34  class SelectionDAG;
35  class SDNode;
36  class TargetInstrInfo;
37  class TargetInstrDesc;
38  class TargetLowering;
39  class TargetMachine;
40  class TargetRegisterClass;
41  template<class Graph> class GraphWriter;
42
43  /// SDep - Scheduling dependency. This represents one direction of an
44  /// edge in the scheduling DAG.
45  class SDep {
46  public:
47    /// Kind - These are the different kinds of scheduling dependencies.
48    enum Kind {
49      Data,        ///< Regular data dependence (aka true-dependence).
50      Anti,        ///< A register anti-dependedence (aka WAR).
51      Output,      ///< A register output-dependence (aka WAW).
52      Order        ///< Any other ordering dependency.
53    };
54
55  private:
56    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
57    /// indicating the kind of the dependency.
58    PointerIntPair<SUnit *, 2, Kind> Dep;
59
60    /// Contents - A union discriminated by the dependence kind.
61    union {
62      /// Reg - For Data, Anti, and Output dependencies, the associated
63      /// register. For Data dependencies that don't currently have a register
64      /// assigned, this is set to zero.
65      unsigned Reg;
66
67      /// Order - Additional information about Order dependencies.
68      struct {
69        /// isNormalMemory - True if both sides of the dependence
70        /// access memory in non-volatile and fully modeled ways.
71        bool isNormalMemory : 1;
72
73        /// isMustAlias - True if both sides of the dependence are known to
74        /// access the same memory.
75        bool isMustAlias : 1;
76
77        /// isArtificial - True if this is an artificial dependency, meaning
78        /// it is not necessary for program correctness, and may be safely
79        /// deleted if necessary.
80        bool isArtificial : 1;
81      } Order;
82    } Contents;
83
84    /// Latency - The time associated with this edge. Often this is just
85    /// the value of the Latency field of the predecessor, however advanced
86    /// models may provide additional information about specific edges.
87    unsigned Latency;
88
89  public:
90    /// SDep - Construct a null SDep. This is only for use by container
91    /// classes which require default constructors. SUnits may not
92    /// have null SDep edges.
93    SDep() : Dep(0, Data) {}
94
95    /// SDep - Construct an SDep with the specified values.
96    SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
97         bool isNormalMemory = false, bool isMustAlias = false,
98         bool isArtificial = false)
99      : Dep(S, kind), Contents(), Latency(latency) {
100      switch (kind) {
101      case Anti:
102      case Output:
103        assert(Reg != 0 &&
104               "SDep::Anti and SDep::Output must use a non-zero Reg!");
105        // fall through
106      case Data:
107        assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
108        assert(!isArtificial && "isArtificial only applies with SDep::Order!");
109        Contents.Reg = Reg;
110        break;
111      case Order:
112        assert(Reg == 0 && "Reg given for non-register dependence!");
113        Contents.Order.isNormalMemory = isNormalMemory;
114        Contents.Order.isMustAlias = isMustAlias;
115        Contents.Order.isArtificial = isArtificial;
116        break;
117      }
118    }
119
120    bool operator==(const SDep &Other) const {
121      if (Dep != Other.Dep) return false;
122      switch (Dep.getInt()) {
123      case Data:
124      case Anti:
125      case Output:
126        return Contents.Reg == Other.Contents.Reg;
127      case Order:
128        return Contents.Order.isNormalMemory ==
129                 Other.Contents.Order.isNormalMemory &&
130               Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
131               Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
132      }
133      assert(0 && "Invalid dependency kind!");
134      return false;
135    }
136
137    bool operator!=(const SDep &Other) const {
138      return !operator==(Other);
139    }
140
141    /// getLatency - Return the latency value for this edge, which roughly
142    /// means the minimum number of cycles that must elapse between the
143    /// predecessor and the successor, given that they have this edge
144    /// between them.
145    unsigned getLatency() const {
146      return Latency;
147    }
148
149    //// getSUnit - Return the SUnit to which this edge points.
150    SUnit *getSUnit() const {
151      return Dep.getPointer();
152    }
153
154    //// setSUnit - Assign the SUnit to which this edge points.
155    void setSUnit(SUnit *SU) {
156      Dep.setPointer(SU);
157    }
158
159    /// getKind - Return an enum value representing the kind of the dependence.
160    Kind getKind() const {
161      return Dep.getInt();
162    }
163
164    /// isCtrl - Shorthand for getKind() != SDep::Data.
165    bool isCtrl() const {
166      return getKind() != Data;
167    }
168
169    /// isArtificial - Test if this is an Order dependence that is marked
170    /// as "artificial", meaning it isn't necessary for correctness.
171    bool isArtificial() const {
172      return getKind() == Order && Contents.Order.isArtificial;
173    }
174
175    /// isMustAlias - Test if this is an Order dependence that is marked
176    /// as "must alias", meaning that the SUnits at either end of the edge
177    /// have a memory dependence on a known memory location.
178    bool isMustAlias() const {
179      return getKind() == Order && Contents.Order.isMustAlias;
180    }
181
182    /// isAssignedRegDep - Test if this is a Data dependence that is
183    /// associated with a register.
184    bool isAssignedRegDep() const {
185      return getKind() == Data && Contents.Reg != 0;
186    }
187
188    /// getReg - Return the register associated with this edge. This is
189    /// only valid on Data, Anti, and Output edges. On Data edges, this
190    /// value may be zero, meaning there is no associated register.
191    unsigned getReg() const {
192      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
193             "getReg called on non-register dependence edge!");
194      return Contents.Reg;
195    }
196
197    /// setReg - Assign the associated register for this edge. This is
198    /// only valid on Data, Anti, and Output edges. On Anti and Output
199    /// edges, this value must not be zero. On Data edges, the value may
200    /// be zero, which would mean that no specific register is associated
201    /// with this edge.
202    void setReg(unsigned Reg) {
203      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
204             "setReg called on non-register dependence edge!");
205      assert((getKind() != Anti || Reg != 0) &&
206             "SDep::Anti edge cannot use the zero register!");
207      assert((getKind() != Output || Reg != 0) &&
208             "SDep::Output edge cannot use the zero register!");
209      Contents.Reg = Reg;
210    }
211  };
212
213  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
214  struct SUnit {
215  private:
216    SDNode *Node;                       // Representative node.
217    MachineInstr *Instr;                // Alternatively, a MachineInstr.
218  public:
219    SUnit *OrigNode;                    // If not this, the node from which
220                                        // this node was cloned.
221
222    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
223    // is true if the edge is a token chain edge, false if it is a value edge.
224    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
225    SmallVector<SDep, 4> Succs;  // All sunit successors.
226
227    typedef SmallVector<SDep, 4>::iterator pred_iterator;
228    typedef SmallVector<SDep, 4>::iterator succ_iterator;
229    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
230    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
231
232    unsigned NodeNum;                   // Entry # of node in the node vector.
233    unsigned NodeQueueId;               // Queue id of node.
234    unsigned short Latency;             // Node latency.
235    short NumPreds;                     // # of SDep::Data preds.
236    short NumSuccs;                     // # of SDep::Data sucss.
237    short NumPredsLeft;                 // # of preds not scheduled.
238    short NumSuccsLeft;                 // # of succs not scheduled.
239    bool isTwoAddress     : 1;          // Is a two-address instruction.
240    bool isCommutable     : 1;          // Is a commutable instruction.
241    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
242    bool isPending        : 1;          // True once pending.
243    bool isAvailable      : 1;          // True once available.
244    bool isScheduled      : 1;          // True once scheduled.
245    unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
246    unsigned Cycle;                     // Once scheduled, the cycle of the op.
247    unsigned Depth;                     // Node depth;
248    unsigned Height;                    // Node height;
249    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
250    const TargetRegisterClass *CopySrcRC;
251
252    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
253    /// an SDNode and any nodes flagged to it.
254    SUnit(SDNode *node, unsigned nodenum)
255      : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
256        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
257        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
258        isPending(false), isAvailable(false), isScheduled(false),
259        CycleBound(0), Cycle(~0u), Depth(0), Height(0),
260        CopyDstRC(NULL), CopySrcRC(NULL) {}
261
262    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
263    /// a MachineInstr.
264    SUnit(MachineInstr *instr, unsigned nodenum)
265      : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
266        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
267        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
268        isPending(false), isAvailable(false), isScheduled(false),
269        CycleBound(0), Cycle(~0u), Depth(0), Height(0),
270        CopyDstRC(NULL), CopySrcRC(NULL) {}
271
272    /// setNode - Assign the representative SDNode for this SUnit.
273    /// This may be used during pre-regalloc scheduling.
274    void setNode(SDNode *N) {
275      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
276      Node = N;
277    }
278
279    /// getNode - Return the representative SDNode for this SUnit.
280    /// This may be used during pre-regalloc scheduling.
281    SDNode *getNode() const {
282      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
283      return Node;
284    }
285
286    /// setInstr - Assign the instruction for the SUnit.
287    /// This may be used during post-regalloc scheduling.
288    void setInstr(MachineInstr *MI) {
289      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
290      Instr = MI;
291    }
292
293    /// getInstr - Return the representative MachineInstr for this SUnit.
294    /// This may be used during post-regalloc scheduling.
295    MachineInstr *getInstr() const {
296      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
297      return Instr;
298    }
299
300    /// addPred - This adds the specified edge as a pred of the current node if
301    /// not already.  It also adds the current node as a successor of the
302    /// specified node.  This returns true if this is a new pred.
303    bool addPred(const SDep &D) {
304      // If this node already has this depenence, don't add a redundant one.
305      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
306        if (Preds[i] == D)
307          return false;
308      // Add a pred to this SUnit.
309      Preds.push_back(D);
310      // Now add a corresponding succ to N.
311      SDep P = D;
312      P.setSUnit(this);
313      SUnit *N = D.getSUnit();
314      N->Succs.push_back(P);
315      // Update the bookkeeping.
316      if (D.getKind() == SDep::Data) {
317        ++NumPreds;
318        ++N->NumSuccs;
319      }
320      if (!N->isScheduled)
321        ++NumPredsLeft;
322      if (!isScheduled)
323        ++N->NumSuccsLeft;
324      return true;
325    }
326
327    /// removePred - This removes the specified edge as a pred of the current
328    /// node if it exists.  It also removes the current node as a successor of
329    /// the specified node.  This returns true if the edge existed and was
330    /// removed.
331    bool removePred(const SDep &D) {
332      // Find the matching predecessor.
333      for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
334           I != E; ++I)
335        if (*I == D) {
336          bool FoundSucc = false;
337          // Find the corresponding successor in N.
338          SDep P = D;
339          P.setSUnit(this);
340          SUnit *N = D.getSUnit();
341          for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
342                 EE = N->Succs.end(); II != EE; ++II)
343            if (*II == P) {
344              FoundSucc = true;
345              N->Succs.erase(II);
346              break;
347            }
348          assert(FoundSucc && "Mismatching preds / succs lists!");
349          Preds.erase(I);
350          // Update the bookkeeping;
351          if (D.getKind() == SDep::Data) {
352            --NumPreds;
353            --N->NumSuccs;
354          }
355          if (!N->isScheduled)
356            --NumPredsLeft;
357          if (!isScheduled)
358            --N->NumSuccsLeft;
359          return true;
360        }
361      return false;
362    }
363
364    bool isPred(SUnit *N) {
365      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
366        if (Preds[i].getSUnit() == N)
367          return true;
368      return false;
369    }
370
371    bool isSucc(SUnit *N) {
372      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
373        if (Succs[i].getSUnit() == N)
374          return true;
375      return false;
376    }
377
378    void dump(const ScheduleDAG *G) const;
379    void dumpAll(const ScheduleDAG *G) const;
380    void print(raw_ostream &O, const ScheduleDAG *G) const;
381  };
382
383  //===--------------------------------------------------------------------===//
384  /// SchedulingPriorityQueue - This interface is used to plug different
385  /// priorities computation algorithms into the list scheduler. It implements
386  /// the interface of a standard priority queue, where nodes are inserted in
387  /// arbitrary order and returned in priority order.  The computation of the
388  /// priority and the representation of the queue are totally up to the
389  /// implementation to decide.
390  ///
391  class SchedulingPriorityQueue {
392  public:
393    virtual ~SchedulingPriorityQueue() {}
394
395    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
396    virtual void addNode(const SUnit *SU) = 0;
397    virtual void updateNode(const SUnit *SU) = 0;
398    virtual void releaseState() = 0;
399
400    virtual unsigned size() const = 0;
401    virtual bool empty() const = 0;
402    virtual void push(SUnit *U) = 0;
403
404    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
405    virtual SUnit *pop() = 0;
406
407    virtual void remove(SUnit *SU) = 0;
408
409    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
410    /// allows the priority function to adjust the priority of related
411    /// unscheduled nodes, for example.
412    ///
413    virtual void ScheduledNode(SUnit *) {}
414
415    virtual void UnscheduledNode(SUnit *) {}
416  };
417
418  class ScheduleDAG {
419  public:
420    SelectionDAG *DAG;                    // DAG of the current basic block
421    MachineBasicBlock *BB;                // Current basic block
422    const TargetMachine &TM;              // Target processor
423    const TargetInstrInfo *TII;           // Target instruction information
424    const TargetRegisterInfo *TRI;        // Target processor register info
425    TargetLowering *TLI;                  // Target lowering info
426    MachineFunction *MF;                  // Machine function
427    MachineRegisterInfo &MRI;             // Virtual/real register map
428    MachineConstantPool *ConstPool;       // Target constant pool
429    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
430                                          // represent noop instructions.
431    std::vector<SUnit> SUnits;            // The scheduling units.
432
433    ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
434                const TargetMachine &tm);
435
436    virtual ~ScheduleDAG();
437
438    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
439    /// using 'dot'.
440    ///
441    void viewGraph();
442
443    /// Run - perform scheduling.
444    ///
445    void Run();
446
447    /// BuildSchedUnits - Build SUnits and set up their Preds and Succs
448    /// to form the scheduling dependency graph.
449    ///
450    virtual void BuildSchedUnits() = 0;
451
452    /// ComputeLatency - Compute node latency.
453    ///
454    virtual void ComputeLatency(SUnit *SU) { SU->Latency = 1; }
455
456    /// CalculateDepths, CalculateHeights - Calculate node depth / height.
457    ///
458    void CalculateDepths();
459    void CalculateHeights();
460
461  protected:
462    /// EmitNoop - Emit a noop instruction.
463    ///
464    void EmitNoop();
465
466  public:
467    virtual MachineBasicBlock *EmitSchedule() = 0;
468
469    void dumpSchedule() const;
470
471    /// Schedule - Order nodes according to selected style, filling
472    /// in the Sequence member.
473    ///
474    virtual void Schedule() = 0;
475
476    virtual void dumpNode(const SUnit *SU) const = 0;
477
478    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
479    /// of the ScheduleDAG.
480    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
481
482    /// addCustomGraphFeatures - Add custom features for a visualization of
483    /// the ScheduleDAG.
484    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
485
486#ifndef NDEBUG
487    /// VerifySchedule - Verify that all SUnits were scheduled and that
488    /// their state is consistent.
489    void VerifySchedule(bool isBottomUp);
490#endif
491
492  protected:
493    void AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO);
494
495    void EmitCrossRCCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
496
497  private:
498    /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
499    /// physical register has only a single copy use, then coalesced the copy
500    /// if possible.
501    void EmitLiveInCopy(MachineBasicBlock *MBB,
502                        MachineBasicBlock::iterator &InsertPos,
503                        unsigned VirtReg, unsigned PhysReg,
504                        const TargetRegisterClass *RC,
505                        DenseMap<MachineInstr*, unsigned> &CopyRegMap);
506
507    /// EmitLiveInCopies - If this is the first basic block in the function,
508    /// and if it has live ins that need to be copied into vregs, emit the
509    /// copies into the top of the block.
510    void EmitLiveInCopies(MachineBasicBlock *MBB);
511  };
512
513  class SUnitIterator : public forward_iterator<SUnit, ptrdiff_t> {
514    SUnit *Node;
515    unsigned Operand;
516
517    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
518  public:
519    bool operator==(const SUnitIterator& x) const {
520      return Operand == x.Operand;
521    }
522    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
523
524    const SUnitIterator &operator=(const SUnitIterator &I) {
525      assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
526      Operand = I.Operand;
527      return *this;
528    }
529
530    pointer operator*() const {
531      return Node->Preds[Operand].getSUnit();
532    }
533    pointer operator->() const { return operator*(); }
534
535    SUnitIterator& operator++() {                // Preincrement
536      ++Operand;
537      return *this;
538    }
539    SUnitIterator operator++(int) { // Postincrement
540      SUnitIterator tmp = *this; ++*this; return tmp;
541    }
542
543    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
544    static SUnitIterator end  (SUnit *N) {
545      return SUnitIterator(N, (unsigned)N->Preds.size());
546    }
547
548    unsigned getOperand() const { return Operand; }
549    const SUnit *getNode() const { return Node; }
550    /// isCtrlDep - Test if this is not an SDep::Data dependence.
551    bool isCtrlDep() const {
552      return Node->Preds[Operand].isCtrl();
553    }
554    bool isArtificialDep() const {
555      return Node->Preds[Operand].isArtificial();
556    }
557  };
558
559  template <> struct GraphTraits<SUnit*> {
560    typedef SUnit NodeType;
561    typedef SUnitIterator ChildIteratorType;
562    static inline NodeType *getEntryNode(SUnit *N) { return N; }
563    static inline ChildIteratorType child_begin(NodeType *N) {
564      return SUnitIterator::begin(N);
565    }
566    static inline ChildIteratorType child_end(NodeType *N) {
567      return SUnitIterator::end(N);
568    }
569  };
570
571  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
572    typedef std::vector<SUnit>::iterator nodes_iterator;
573    static nodes_iterator nodes_begin(ScheduleDAG *G) {
574      return G->SUnits.begin();
575    }
576    static nodes_iterator nodes_end(ScheduleDAG *G) {
577      return G->SUnits.end();
578    }
579  };
580
581  /// ScheduleDAGTopologicalSort is a class that computes a topological
582  /// ordering for SUnits and provides methods for dynamically updating
583  /// the ordering as new edges are added.
584  ///
585  /// This allows a very fast implementation of IsReachable, for example.
586  ///
587  class ScheduleDAGTopologicalSort {
588    /// SUnits - A reference to the ScheduleDAG's SUnits.
589    std::vector<SUnit> &SUnits;
590
591    /// Index2Node - Maps topological index to the node number.
592    std::vector<int> Index2Node;
593    /// Node2Index - Maps the node number to its topological index.
594    std::vector<int> Node2Index;
595    /// Visited - a set of nodes visited during a DFS traversal.
596    BitVector Visited;
597
598    /// DFS - make a DFS traversal and mark all nodes affected by the
599    /// edge insertion. These nodes will later get new topological indexes
600    /// by means of the Shift method.
601    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
602
603    /// Shift - reassign topological indexes for the nodes in the DAG
604    /// to preserve the topological ordering.
605    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
606
607    /// Allocate - assign the topological index to the node n.
608    void Allocate(int n, int index);
609
610  public:
611    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
612
613    /// InitDAGTopologicalSorting - create the initial topological
614    /// ordering from the DAG to be scheduled.
615    void InitDAGTopologicalSorting();
616
617    /// IsReachable - Checks if SU is reachable from TargetSU.
618    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
619
620    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
621    /// will create a cycle.
622    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
623
624    /// AddPred - Updates the topological ordering to accomodate an edge
625    /// to be added from SUnit X to SUnit Y.
626    void AddPred(SUnit *Y, SUnit *X);
627
628    /// RemovePred - Updates the topological ordering to accomodate an
629    /// an edge to be removed from the specified node N from the predecessors
630    /// of the current node M.
631    void RemovePred(SUnit *M, SUnit *N);
632
633    typedef std::vector<int>::iterator iterator;
634    typedef std::vector<int>::const_iterator const_iterator;
635    iterator begin() { return Index2Node.begin(); }
636    const_iterator begin() const { return Index2Node.begin(); }
637    iterator end() { return Index2Node.end(); }
638    const_iterator end() const { return Index2Node.end(); }
639
640    typedef std::vector<int>::reverse_iterator reverse_iterator;
641    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
642    reverse_iterator rbegin() { return Index2Node.rbegin(); }
643    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
644    reverse_iterator rend() { return Index2Node.rend(); }
645    const_reverse_iterator rend() const { return Index2Node.rend(); }
646  };
647}
648
649#endif
650