ScheduleDAG.h revision 6f0d024a534af18d9e60b3ea757376cd8a3a980e
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for SelectionDAG-based instruction scheduler.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16#define LLVM_CODEGEN_SCHEDULEDAG_H
17
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/GraphTraits.h"
21#include "llvm/ADT/SmallSet.h"
22
23namespace llvm {
24  struct InstrStage;
25  struct SUnit;
26  class MachineConstantPool;
27  class MachineFunction;
28  class MachineModuleInfo;
29  class MachineRegisterInfo;
30  class MachineInstr;
31  class TargetRegisterInfo;
32  class SelectionDAG;
33  class SelectionDAGISel;
34  class TargetInstrInfo;
35  class TargetInstrDesc;
36  class TargetMachine;
37  class TargetRegisterClass;
38
39  /// HazardRecognizer - This determines whether or not an instruction can be
40  /// issued this cycle, and whether or not a noop needs to be inserted to handle
41  /// the hazard.
42  class HazardRecognizer {
43  public:
44    virtual ~HazardRecognizer();
45
46    enum HazardType {
47      NoHazard,      // This instruction can be emitted at this cycle.
48      Hazard,        // This instruction can't be emitted at this cycle.
49      NoopHazard     // This instruction can't be emitted, and needs noops.
50    };
51
52    /// getHazardType - Return the hazard type of emitting this node.  There are
53    /// three possible results.  Either:
54    ///  * NoHazard: it is legal to issue this instruction on this cycle.
55    ///  * Hazard: issuing this instruction would stall the machine.  If some
56    ///     other instruction is available, issue it first.
57    ///  * NoopHazard: issuing this instruction would break the program.  If
58    ///     some other instruction can be issued, do so, otherwise issue a noop.
59    virtual HazardType getHazardType(SDNode *Node) {
60      return NoHazard;
61    }
62
63    /// EmitInstruction - This callback is invoked when an instruction is
64    /// emitted, to advance the hazard state.
65    virtual void EmitInstruction(SDNode *Node) {
66    }
67
68    /// AdvanceCycle - This callback is invoked when no instructions can be
69    /// issued on this cycle without a hazard.  This should increment the
70    /// internal state of the hazard recognizer so that previously "Hazard"
71    /// instructions will now not be hazards.
72    virtual void AdvanceCycle() {
73    }
74
75    /// EmitNoop - This callback is invoked when a noop was added to the
76    /// instruction stream.
77    virtual void EmitNoop() {
78    }
79  };
80
81  /// SDep - Scheduling dependency. It keeps track of dependent nodes,
82  /// cost of the depdenency, etc.
83  struct SDep {
84    SUnit    *Dep;           // Dependent - either a predecessor or a successor.
85    unsigned  Reg;           // If non-zero, this dep is a phy register dependency.
86    int       Cost;          // Cost of the dependency.
87    bool      isCtrl    : 1; // True iff it's a control dependency.
88    bool      isSpecial : 1; // True iff it's a special ctrl dep added during sched.
89    SDep(SUnit *d, unsigned r, int t, bool c, bool s)
90      : Dep(d), Reg(r), Cost(t), isCtrl(c), isSpecial(s) {}
91  };
92
93  /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
94  /// a group of nodes flagged together.
95  struct SUnit {
96    SDNode *Node;                       // Representative node.
97    SmallVector<SDNode*,4> FlaggedNodes;// All nodes flagged to Node.
98    unsigned InstanceNo;                // Instance#. One SDNode can be multiple
99                                        // SUnit due to cloning.
100
101    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
102    // is true if the edge is a token chain edge, false if it is a value edge.
103    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
104    SmallVector<SDep, 4> Succs;  // All sunit successors.
105
106    typedef SmallVector<SDep, 4>::iterator pred_iterator;
107    typedef SmallVector<SDep, 4>::iterator succ_iterator;
108    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
109    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
110
111    unsigned NodeNum;                   // Entry # of node in the node vector.
112    unsigned short Latency;             // Node latency.
113    short NumPreds;                     // # of preds.
114    short NumSuccs;                     // # of sucss.
115    short NumPredsLeft;                 // # of preds not scheduled.
116    short NumSuccsLeft;                 // # of succs not scheduled.
117    bool isTwoAddress     : 1;          // Is a two-address instruction.
118    bool isCommutable     : 1;          // Is a commutable instruction.
119    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
120    bool isPending        : 1;          // True once pending.
121    bool isAvailable      : 1;          // True once available.
122    bool isScheduled      : 1;          // True once scheduled.
123    unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
124    unsigned Cycle;                     // Once scheduled, the cycle of the op.
125    unsigned Depth;                     // Node depth;
126    unsigned Height;                    // Node height;
127    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
128    const TargetRegisterClass *CopySrcRC;
129
130    SUnit(SDNode *node, unsigned nodenum)
131      : Node(node), InstanceNo(0), NodeNum(nodenum), Latency(0),
132        NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
133        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
134        isPending(false), isAvailable(false), isScheduled(false),
135        CycleBound(0), Cycle(0), Depth(0), Height(0),
136        CopyDstRC(NULL), CopySrcRC(NULL) {}
137
138    /// addPred - This adds the specified node as a pred of the current node if
139    /// not already.  This returns true if this is a new pred.
140    bool addPred(SUnit *N, bool isCtrl, bool isSpecial,
141                 unsigned PhyReg = 0, int Cost = 1) {
142      for (unsigned i = 0, e = Preds.size(); i != e; ++i)
143        if (Preds[i].Dep == N &&
144            Preds[i].isCtrl == isCtrl && Preds[i].isSpecial == isSpecial)
145          return false;
146      Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isSpecial));
147      N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl, isSpecial));
148      if (!isCtrl) {
149        ++NumPreds;
150        ++N->NumSuccs;
151      }
152      if (!N->isScheduled)
153        ++NumPredsLeft;
154      if (!isScheduled)
155        ++N->NumSuccsLeft;
156      return true;
157    }
158
159    bool removePred(SUnit *N, bool isCtrl, bool isSpecial) {
160      for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
161           I != E; ++I)
162        if (I->Dep == N && I->isCtrl == isCtrl && I->isSpecial == isSpecial) {
163          bool FoundSucc = false;
164          for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
165                 EE = N->Succs.end(); II != EE; ++II)
166            if (II->Dep == this &&
167                II->isCtrl == isCtrl && II->isSpecial == isSpecial) {
168              FoundSucc = true;
169              N->Succs.erase(II);
170              break;
171            }
172          assert(FoundSucc && "Mismatching preds / succs lists!");
173          Preds.erase(I);
174          if (!isCtrl) {
175            --NumPreds;
176            --N->NumSuccs;
177          }
178          if (!N->isScheduled)
179            --NumPredsLeft;
180          if (!isScheduled)
181            --N->NumSuccsLeft;
182          return true;
183        }
184      return false;
185    }
186
187    bool isPred(SUnit *N) {
188      for (unsigned i = 0, e = Preds.size(); i != e; ++i)
189        if (Preds[i].Dep == N)
190          return true;
191      return false;
192    }
193
194    bool isSucc(SUnit *N) {
195      for (unsigned i = 0, e = Succs.size(); i != e; ++i)
196        if (Succs[i].Dep == N)
197          return true;
198      return false;
199    }
200
201    void dump(const SelectionDAG *G) const;
202    void dumpAll(const SelectionDAG *G) const;
203  };
204
205  //===--------------------------------------------------------------------===//
206  /// SchedulingPriorityQueue - This interface is used to plug different
207  /// priorities computation algorithms into the list scheduler. It implements
208  /// the interface of a standard priority queue, where nodes are inserted in
209  /// arbitrary order and returned in priority order.  The computation of the
210  /// priority and the representation of the queue are totally up to the
211  /// implementation to decide.
212  ///
213  class SchedulingPriorityQueue {
214  public:
215    virtual ~SchedulingPriorityQueue() {}
216
217    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &SUMap,
218                           std::vector<SUnit> &SUnits) = 0;
219    virtual void addNode(const SUnit *SU) = 0;
220    virtual void updateNode(const SUnit *SU) = 0;
221    virtual void releaseState() = 0;
222
223    virtual unsigned size() const = 0;
224    virtual bool empty() const = 0;
225    virtual void push(SUnit *U) = 0;
226
227    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
228    virtual SUnit *pop() = 0;
229
230    virtual void remove(SUnit *SU) = 0;
231
232    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
233    /// allows the priority function to adjust the priority of node that have
234    /// already been emitted.
235    virtual void ScheduledNode(SUnit *Node) {}
236
237    virtual void UnscheduledNode(SUnit *Node) {}
238  };
239
240  class ScheduleDAG {
241  public:
242    SelectionDAG &DAG;                    // DAG of the current basic block
243    MachineBasicBlock *BB;                // Current basic block
244    const TargetMachine &TM;              // Target processor
245    const TargetInstrInfo *TII;           // Target instruction information
246    const TargetRegisterInfo *TRI;        // Target processor register info
247    MachineFunction *MF;                  // Machine function
248    MachineRegisterInfo &RegInfo;         // Virtual/real register map
249    MachineConstantPool *ConstPool;       // Target constant pool
250    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
251                                          // represent noop instructions.
252    DenseMap<SDNode*, std::vector<SUnit*> > SUnitMap;
253                                          // SDNode to SUnit mapping (n -> n).
254    std::vector<SUnit> SUnits;            // The scheduling units.
255    SmallSet<SDNode*, 16> CommuteSet;     // Nodes the should be commuted.
256
257    ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb,
258                const TargetMachine &tm);
259
260    virtual ~ScheduleDAG() {}
261
262    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
263    /// using 'dot'.
264    ///
265    void viewGraph();
266
267    /// Run - perform scheduling.
268    ///
269    MachineBasicBlock *Run();
270
271    /// isPassiveNode - Return true if the node is a non-scheduled leaf.
272    ///
273    static bool isPassiveNode(SDNode *Node) {
274      if (isa<ConstantSDNode>(Node))       return true;
275      if (isa<RegisterSDNode>(Node))       return true;
276      if (isa<GlobalAddressSDNode>(Node))  return true;
277      if (isa<BasicBlockSDNode>(Node))     return true;
278      if (isa<FrameIndexSDNode>(Node))     return true;
279      if (isa<ConstantPoolSDNode>(Node))   return true;
280      if (isa<JumpTableSDNode>(Node))      return true;
281      if (isa<ExternalSymbolSDNode>(Node)) return true;
282      if (isa<MemOperandSDNode>(Node))     return true;
283      return false;
284    }
285
286    /// NewSUnit - Creates a new SUnit and return a ptr to it.
287    ///
288    SUnit *NewSUnit(SDNode *N) {
289      SUnits.push_back(SUnit(N, SUnits.size()));
290      return &SUnits.back();
291    }
292
293    /// Clone - Creates a clone of the specified SUnit. It does not copy the
294    /// predecessors / successors info nor the temporary scheduling states.
295    SUnit *Clone(SUnit *N);
296
297    /// BuildSchedUnits - Build SUnits from the selection dag that we are input.
298    /// This SUnit graph is similar to the SelectionDAG, but represents flagged
299    /// together nodes with a single SUnit.
300    void BuildSchedUnits();
301
302    /// ComputeLatency - Compute node latency.
303    ///
304    void ComputeLatency(SUnit *SU);
305
306    /// CalculateDepths, CalculateHeights - Calculate node depth / height.
307    ///
308    void CalculateDepths();
309    void CalculateHeights();
310
311    /// CountResults - The results of target nodes have register or immediate
312    /// operands first, then an optional chain, and optional flag operands
313    /// (which do not go into the machine instrs.)
314    static unsigned CountResults(SDNode *Node);
315
316    /// CountOperands - The inputs to target nodes have any actual inputs first,
317    /// followed by optional memory operands chain operand, then flag operands.
318    /// Compute the number of actual operands that  will go into the machine
319    /// instr.
320    static unsigned CountOperands(SDNode *Node);
321
322    /// CountMemOperands - Find the index of the last MemOperandSDNode
323    static unsigned CountMemOperands(SDNode *Node);
324
325    /// EmitNode - Generate machine code for an node and needed dependencies.
326    /// VRBaseMap contains, for each already emitted node, the first virtual
327    /// register number for the results of the node.
328    ///
329    void EmitNode(SDNode *Node, unsigned InstNo,
330                  DenseMap<SDOperand, unsigned> &VRBaseMap);
331
332    /// EmitNoop - Emit a noop instruction.
333    ///
334    void EmitNoop();
335
336    void EmitCrossRCCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
337
338    /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
339    /// implicit physical register output.
340    void EmitCopyFromReg(SDNode *Node, unsigned ResNo, unsigned InstNo,
341                         unsigned SrcReg,
342                         DenseMap<SDOperand, unsigned> &VRBaseMap);
343
344    void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
345                                const TargetInstrDesc &II,
346                                DenseMap<SDOperand, unsigned> &VRBaseMap);
347
348    void EmitSchedule();
349
350    void dumpSchedule() const;
351
352    /// Schedule - Order nodes according to selected style.
353    ///
354    virtual void Schedule() {}
355
356  private:
357    /// EmitSubregNode - Generate machine code for subreg nodes.
358    ///
359    void EmitSubregNode(SDNode *Node,
360                        DenseMap<SDOperand, unsigned> &VRBaseMap);
361
362    void AddOperand(MachineInstr *MI, SDOperand Op, unsigned IIOpNum,
363                    const TargetInstrDesc *II,
364                    DenseMap<SDOperand, unsigned> &VRBaseMap);
365
366    void AddMemOperand(MachineInstr *MI, const MemOperand &MO);
367  };
368
369  /// createBURRListDAGScheduler - This creates a bottom up register usage
370  /// reduction list scheduler.
371  ScheduleDAG* createBURRListDAGScheduler(SelectionDAGISel *IS,
372                                          SelectionDAG *DAG,
373                                          MachineBasicBlock *BB);
374
375  /// createTDRRListDAGScheduler - This creates a top down register usage
376  /// reduction list scheduler.
377  ScheduleDAG* createTDRRListDAGScheduler(SelectionDAGISel *IS,
378                                          SelectionDAG *DAG,
379                                          MachineBasicBlock *BB);
380
381  /// createTDListDAGScheduler - This creates a top-down list scheduler with
382  /// a hazard recognizer.
383  ScheduleDAG* createTDListDAGScheduler(SelectionDAGISel *IS,
384                                        SelectionDAG *DAG,
385                                        MachineBasicBlock *BB);
386
387  /// createDefaultScheduler - This creates an instruction scheduler appropriate
388  /// for the target.
389  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
390                                      SelectionDAG *DAG,
391                                      MachineBasicBlock *BB);
392
393  class SUnitIterator : public forward_iterator<SUnit, ptrdiff_t> {
394    SUnit *Node;
395    unsigned Operand;
396
397    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
398  public:
399    bool operator==(const SUnitIterator& x) const {
400      return Operand == x.Operand;
401    }
402    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
403
404    const SUnitIterator &operator=(const SUnitIterator &I) {
405      assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
406      Operand = I.Operand;
407      return *this;
408    }
409
410    pointer operator*() const {
411      return Node->Preds[Operand].Dep;
412    }
413    pointer operator->() const { return operator*(); }
414
415    SUnitIterator& operator++() {                // Preincrement
416      ++Operand;
417      return *this;
418    }
419    SUnitIterator operator++(int) { // Postincrement
420      SUnitIterator tmp = *this; ++*this; return tmp;
421    }
422
423    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
424    static SUnitIterator end  (SUnit *N) {
425      return SUnitIterator(N, N->Preds.size());
426    }
427
428    unsigned getOperand() const { return Operand; }
429    const SUnit *getNode() const { return Node; }
430    bool isCtrlDep() const { return Node->Preds[Operand].isCtrl; }
431  };
432
433  template <> struct GraphTraits<SUnit*> {
434    typedef SUnit NodeType;
435    typedef SUnitIterator ChildIteratorType;
436    static inline NodeType *getEntryNode(SUnit *N) { return N; }
437    static inline ChildIteratorType child_begin(NodeType *N) {
438      return SUnitIterator::begin(N);
439    }
440    static inline ChildIteratorType child_end(NodeType *N) {
441      return SUnitIterator::end(N);
442    }
443  };
444
445  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
446    typedef std::vector<SUnit>::iterator nodes_iterator;
447    static nodes_iterator nodes_begin(ScheduleDAG *G) {
448      return G->SUnits.begin();
449    }
450    static nodes_iterator nodes_end(ScheduleDAG *G) {
451      return G->SUnits.end();
452    }
453  };
454}
455
456#endif
457