ScheduleDAG.h revision 89bf4f2f5e6f54fe6382f07c515e36adc9e0c9c2
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16#define LLVM_CODEGEN_SCHEDULEDAG_H
17
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/GraphTraits.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/PointerIntPair.h"
24
25namespace llvm {
26  struct SUnit;
27  class MachineConstantPool;
28  class MachineFunction;
29  class MachineModuleInfo;
30  class MachineRegisterInfo;
31  class MachineInstr;
32  class TargetRegisterInfo;
33  class ScheduleDAG;
34  class SelectionDAG;
35  class SDNode;
36  class TargetInstrInfo;
37  class TargetInstrDesc;
38  class TargetLowering;
39  class TargetMachine;
40  class TargetRegisterClass;
41  template<class Graph> class GraphWriter;
42
43  /// SDep - Scheduling dependency. This represents one direction of an
44  /// edge in the scheduling DAG.
45  class SDep {
46  public:
47    /// Kind - These are the different kinds of scheduling dependencies.
48    enum Kind {
49      Data,        ///< Regular data dependence (aka true-dependence).
50      Anti,        ///< A register anti-dependedence (aka WAR).
51      Output,      ///< A register output-dependence (aka WAW).
52      Order        ///< Any other ordering dependency.
53    };
54
55  private:
56    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
57    /// indicating the kind of the dependency.
58    PointerIntPair<SUnit *, 2, Kind> Dep;
59
60    /// Contents - A union discriminated by the dependence kind.
61    union {
62      /// Reg - For Data, Anti, and Output dependencies, the associated
63      /// register. For Data dependencies that don't currently have a register
64      /// assigned, this is set to zero.
65      unsigned Reg;
66
67      /// Order - Additional information about Order dependencies.
68      struct {
69        /// isNormalMemory - True if both sides of the dependence
70        /// access memory in non-volatile and fully modeled ways.
71        bool isNormalMemory : 1;
72
73        /// isMustAlias - True if both sides of the dependence are known to
74        /// access the same memory.
75        bool isMustAlias : 1;
76
77        /// isArtificial - True if this is an artificial dependency, meaning
78        /// it is not necessary for program correctness, and may be safely
79        /// deleted if necessary.
80        bool isArtificial : 1;
81      } Order;
82    } Contents;
83
84    /// Latency - The time associated with this edge. Often this is just
85    /// the value of the Latency field of the predecessor, however advanced
86    /// models may provide additional information about specific edges.
87    unsigned Latency;
88
89  public:
90    /// SDep - Construct a null SDep. This is only for use by container
91    /// classes which require default constructors. SUnits may not
92    /// have null SDep edges.
93    SDep() : Dep(0, Data) {}
94
95    /// SDep - Construct an SDep with the specified values.
96    SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
97         bool isNormalMemory = false, bool isMustAlias = false,
98         bool isArtificial = false)
99      : Dep(S, kind), Contents(), Latency(latency) {
100      switch (kind) {
101      case Anti:
102      case Output:
103        assert(Reg != 0 &&
104               "SDep::Anti and SDep::Output must use a non-zero Reg!");
105        // fall through
106      case Data:
107        assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
108        assert(!isArtificial && "isArtificial only applies with SDep::Order!");
109        Contents.Reg = Reg;
110        break;
111      case Order:
112        assert(Reg == 0 && "Reg given for non-register dependence!");
113        Contents.Order.isNormalMemory = isNormalMemory;
114        Contents.Order.isMustAlias = isMustAlias;
115        Contents.Order.isArtificial = isArtificial;
116        break;
117      }
118    }
119
120    bool operator==(const SDep &Other) const {
121      if (Dep != Other.Dep || Latency != Other.Latency) return false;
122      switch (Dep.getInt()) {
123      case Data:
124      case Anti:
125      case Output:
126        return Contents.Reg == Other.Contents.Reg;
127      case Order:
128        return Contents.Order.isNormalMemory ==
129                 Other.Contents.Order.isNormalMemory &&
130               Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
131               Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
132      }
133      assert(0 && "Invalid dependency kind!");
134      return false;
135    }
136
137    bool operator!=(const SDep &Other) const {
138      return !operator==(Other);
139    }
140
141    /// getLatency - Return the latency value for this edge, which roughly
142    /// means the minimum number of cycles that must elapse between the
143    /// predecessor and the successor, given that they have this edge
144    /// between them.
145    unsigned getLatency() const {
146      return Latency;
147    }
148
149    //// getSUnit - Return the SUnit to which this edge points.
150    SUnit *getSUnit() const {
151      return Dep.getPointer();
152    }
153
154    //// setSUnit - Assign the SUnit to which this edge points.
155    void setSUnit(SUnit *SU) {
156      Dep.setPointer(SU);
157    }
158
159    /// getKind - Return an enum value representing the kind of the dependence.
160    Kind getKind() const {
161      return Dep.getInt();
162    }
163
164    /// isCtrl - Shorthand for getKind() != SDep::Data.
165    bool isCtrl() const {
166      return getKind() != Data;
167    }
168
169    /// isMustAlias - Test if this is an Order dependence that is marked
170    /// as "must alias", meaning that the SUnits at either end of the edge
171    /// have a memory dependence on a known memory location.
172    bool isMustAlias() const {
173      return getKind() == Order && Contents.Order.isMustAlias;
174    }
175
176    /// isArtificial - Test if this is an Order dependence that is marked
177    /// as "artificial", meaning it isn't necessary for correctness.
178    bool isArtificial() const {
179      return getKind() == Order && Contents.Order.isArtificial;
180    }
181
182    /// isAssignedRegDep - Test if this is a Data dependence that is
183    /// associated with a register.
184    bool isAssignedRegDep() const {
185      return getKind() == Data && Contents.Reg != 0;
186    }
187
188    /// getReg - Return the register associated with this edge. This is
189    /// only valid on Data, Anti, and Output edges. On Data edges, this
190    /// value may be zero, meaning there is no associated register.
191    unsigned getReg() const {
192      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
193             "getReg called on non-register dependence edge!");
194      return Contents.Reg;
195    }
196
197    /// setReg - Assign the associated register for this edge. This is
198    /// only valid on Data, Anti, and Output edges. On Anti and Output
199    /// edges, this value must not be zero. On Data edges, the value may
200    /// be zero, which would mean that no specific register is associated
201    /// with this edge.
202    void setReg(unsigned Reg) {
203      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
204             "setReg called on non-register dependence edge!");
205      assert((getKind() != Anti || Reg != 0) &&
206             "SDep::Anti edge cannot use the zero register!");
207      assert((getKind() != Output || Reg != 0) &&
208             "SDep::Output edge cannot use the zero register!");
209      Contents.Reg = Reg;
210    }
211  };
212
213  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
214  struct SUnit {
215  private:
216    SDNode *Node;                       // Representative node.
217    MachineInstr *Instr;                // Alternatively, a MachineInstr.
218  public:
219    SUnit *OrigNode;                    // If not this, the node from which
220                                        // this node was cloned.
221
222    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
223    // is true if the edge is a token chain edge, false if it is a value edge.
224    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
225    SmallVector<SDep, 4> Succs;  // All sunit successors.
226
227    typedef SmallVector<SDep, 4>::iterator pred_iterator;
228    typedef SmallVector<SDep, 4>::iterator succ_iterator;
229    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
230    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
231
232    unsigned NodeNum;                   // Entry # of node in the node vector.
233    unsigned NodeQueueId;               // Queue id of node.
234    unsigned short Latency;             // Node latency.
235    short NumPreds;                     // # of SDep::Data preds.
236    short NumSuccs;                     // # of SDep::Data sucss.
237    short NumPredsLeft;                 // # of preds not scheduled.
238    short NumSuccsLeft;                 // # of succs not scheduled.
239    bool isTwoAddress     : 1;          // Is a two-address instruction.
240    bool isCommutable     : 1;          // Is a commutable instruction.
241    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
242    bool isPending        : 1;          // True once pending.
243    bool isAvailable      : 1;          // True once available.
244    bool isScheduled      : 1;          // True once scheduled.
245    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
246  private:
247    bool isDepthCurrent   : 1;          // True if Depth is current.
248    bool isHeightCurrent  : 1;          // True if Height is current.
249    unsigned Depth;                     // Node depth.
250    unsigned Height;                    // Node height.
251  public:
252    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
253    const TargetRegisterClass *CopySrcRC;
254
255    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
256    /// an SDNode and any nodes flagged to it.
257    SUnit(SDNode *node, unsigned nodenum)
258      : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
259        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
260        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
261        isPending(false), isAvailable(false), isScheduled(false),
262        isScheduleHigh(false), isDepthCurrent(false), isHeightCurrent(false),
263        Depth(0), Height(0),
264        CopyDstRC(NULL), CopySrcRC(NULL) {}
265
266    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
267    /// a MachineInstr.
268    SUnit(MachineInstr *instr, unsigned nodenum)
269      : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
270        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
271        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
272        isPending(false), isAvailable(false), isScheduled(false),
273        isScheduleHigh(false), isDepthCurrent(false), isHeightCurrent(false),
274        Depth(0), Height(0),
275        CopyDstRC(NULL), CopySrcRC(NULL) {}
276
277    /// setNode - Assign the representative SDNode for this SUnit.
278    /// This may be used during pre-regalloc scheduling.
279    void setNode(SDNode *N) {
280      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
281      Node = N;
282    }
283
284    /// getNode - Return the representative SDNode for this SUnit.
285    /// This may be used during pre-regalloc scheduling.
286    SDNode *getNode() const {
287      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
288      return Node;
289    }
290
291    /// setInstr - Assign the instruction for the SUnit.
292    /// This may be used during post-regalloc scheduling.
293    void setInstr(MachineInstr *MI) {
294      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
295      Instr = MI;
296    }
297
298    /// getInstr - Return the representative MachineInstr for this SUnit.
299    /// This may be used during post-regalloc scheduling.
300    MachineInstr *getInstr() const {
301      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
302      return Instr;
303    }
304
305    /// addPred - This adds the specified edge as a pred of the current node if
306    /// not already.  It also adds the current node as a successor of the
307    /// specified node.
308    void addPred(const SDep &D);
309
310    /// removePred - This removes the specified edge as a pred of the current
311    /// node if it exists.  It also removes the current node as a successor of
312    /// the specified node.
313    void removePred(const SDep &D);
314
315    /// getDepth - Return the depth of this node, which is the length of the
316    /// maximum path up to any node with has no predecessors.
317    unsigned getDepth() const {
318      if (!isDepthCurrent) const_cast<SUnit *>(this)->ComputeDepth();
319      return Depth;
320    }
321
322    /// getHeight - Return the height of this node, which is the length of the
323    /// maximum path down to any node with has no successors.
324    unsigned getHeight() const {
325      if (!isHeightCurrent) const_cast<SUnit *>(this)->ComputeHeight();
326      return Height;
327    }
328
329    /// setDepthToAtLeast - If NewDepth is greater than this node's depth
330    /// value, set it to be the new depth value. This also recursively
331    /// marks successor nodes dirty.
332    void setDepthToAtLeast(unsigned NewDepth);
333
334    /// setDepthToAtLeast - If NewDepth is greater than this node's depth
335    /// value, set it to be the new height value. This also recursively
336    /// marks predecessor nodes dirty.
337    void setHeightToAtLeast(unsigned NewHeight);
338
339    /// setDepthDirty - Set a flag in this node to indicate that its
340    /// stored Depth value will require recomputation the next time
341    /// getDepth() is called.
342    void setDepthDirty();
343
344    /// setHeightDirty - Set a flag in this node to indicate that its
345    /// stored Height value will require recomputation the next time
346    /// getHeight() is called.
347    void setHeightDirty();
348
349    /// isPred - Test if node N is a predecessor of this node.
350    bool isPred(SUnit *N) {
351      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
352        if (Preds[i].getSUnit() == N)
353          return true;
354      return false;
355    }
356
357    /// isSucc - Test if node N is a successor of this node.
358    bool isSucc(SUnit *N) {
359      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
360        if (Succs[i].getSUnit() == N)
361          return true;
362      return false;
363    }
364
365    void dump(const ScheduleDAG *G) const;
366    void dumpAll(const ScheduleDAG *G) const;
367    void print(raw_ostream &O, const ScheduleDAG *G) const;
368
369  private:
370    void ComputeDepth();
371    void ComputeHeight();
372  };
373
374  //===--------------------------------------------------------------------===//
375  /// SchedulingPriorityQueue - This interface is used to plug different
376  /// priorities computation algorithms into the list scheduler. It implements
377  /// the interface of a standard priority queue, where nodes are inserted in
378  /// arbitrary order and returned in priority order.  The computation of the
379  /// priority and the representation of the queue are totally up to the
380  /// implementation to decide.
381  ///
382  class SchedulingPriorityQueue {
383  public:
384    virtual ~SchedulingPriorityQueue() {}
385
386    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
387    virtual void addNode(const SUnit *SU) = 0;
388    virtual void updateNode(const SUnit *SU) = 0;
389    virtual void releaseState() = 0;
390
391    virtual unsigned size() const = 0;
392    virtual bool empty() const = 0;
393    virtual void push(SUnit *U) = 0;
394
395    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
396    virtual SUnit *pop() = 0;
397
398    virtual void remove(SUnit *SU) = 0;
399
400    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
401    /// allows the priority function to adjust the priority of related
402    /// unscheduled nodes, for example.
403    ///
404    virtual void ScheduledNode(SUnit *) {}
405
406    virtual void UnscheduledNode(SUnit *) {}
407  };
408
409  class ScheduleDAG {
410  public:
411    SelectionDAG *DAG;                    // DAG of the current basic block
412    MachineBasicBlock *BB;                // Current basic block
413    const TargetMachine &TM;              // Target processor
414    const TargetInstrInfo *TII;           // Target instruction information
415    const TargetRegisterInfo *TRI;        // Target processor register info
416    TargetLowering *TLI;                  // Target lowering info
417    MachineFunction *MF;                  // Machine function
418    MachineRegisterInfo &MRI;             // Virtual/real register map
419    MachineConstantPool *ConstPool;       // Target constant pool
420    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
421                                          // represent noop instructions.
422    std::vector<SUnit> SUnits;            // The scheduling units.
423
424    ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
425                const TargetMachine &tm);
426
427    virtual ~ScheduleDAG();
428
429    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
430    /// using 'dot'.
431    ///
432    void viewGraph();
433
434    /// Run - perform scheduling.
435    ///
436    void Run();
437
438    /// BuildSchedUnits - Build SUnits and set up their Preds and Succs
439    /// to form the scheduling dependency graph.
440    ///
441    virtual void BuildSchedUnits() = 0;
442
443    /// ComputeLatency - Compute node latency.
444    ///
445    virtual void ComputeLatency(SUnit *SU) = 0;
446
447  protected:
448    /// EmitNoop - Emit a noop instruction.
449    ///
450    void EmitNoop();
451
452  public:
453    virtual MachineBasicBlock *EmitSchedule() = 0;
454
455    void dumpSchedule() const;
456
457    /// Schedule - Order nodes according to selected style, filling
458    /// in the Sequence member.
459    ///
460    virtual void Schedule() = 0;
461
462    virtual void dumpNode(const SUnit *SU) const = 0;
463
464    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
465    /// of the ScheduleDAG.
466    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
467
468    /// addCustomGraphFeatures - Add custom features for a visualization of
469    /// the ScheduleDAG.
470    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
471
472#ifndef NDEBUG
473    /// VerifySchedule - Verify that all SUnits were scheduled and that
474    /// their state is consistent.
475    void VerifySchedule(bool isBottomUp);
476#endif
477
478  protected:
479    void AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO);
480
481    void EmitCrossRCCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
482
483    /// ForceUnitLatencies - Return true if all scheduling edges should be given a
484    /// latency value of one.  The default is to return false; schedulers may
485    /// override this as needed.
486    virtual bool ForceUnitLatencies() const { return false; }
487
488  private:
489    /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
490    /// physical register has only a single copy use, then coalesced the copy
491    /// if possible.
492    void EmitLiveInCopy(MachineBasicBlock *MBB,
493                        MachineBasicBlock::iterator &InsertPos,
494                        unsigned VirtReg, unsigned PhysReg,
495                        const TargetRegisterClass *RC,
496                        DenseMap<MachineInstr*, unsigned> &CopyRegMap);
497
498    /// EmitLiveInCopies - If this is the first basic block in the function,
499    /// and if it has live ins that need to be copied into vregs, emit the
500    /// copies into the top of the block.
501    void EmitLiveInCopies(MachineBasicBlock *MBB);
502  };
503
504  class SUnitIterator : public forward_iterator<SUnit, ptrdiff_t> {
505    SUnit *Node;
506    unsigned Operand;
507
508    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
509  public:
510    bool operator==(const SUnitIterator& x) const {
511      return Operand == x.Operand;
512    }
513    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
514
515    const SUnitIterator &operator=(const SUnitIterator &I) {
516      assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
517      Operand = I.Operand;
518      return *this;
519    }
520
521    pointer operator*() const {
522      return Node->Preds[Operand].getSUnit();
523    }
524    pointer operator->() const { return operator*(); }
525
526    SUnitIterator& operator++() {                // Preincrement
527      ++Operand;
528      return *this;
529    }
530    SUnitIterator operator++(int) { // Postincrement
531      SUnitIterator tmp = *this; ++*this; return tmp;
532    }
533
534    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
535    static SUnitIterator end  (SUnit *N) {
536      return SUnitIterator(N, (unsigned)N->Preds.size());
537    }
538
539    unsigned getOperand() const { return Operand; }
540    const SUnit *getNode() const { return Node; }
541    /// isCtrlDep - Test if this is not an SDep::Data dependence.
542    bool isCtrlDep() const {
543      return getSDep().isCtrl();
544    }
545    bool isArtificialDep() const {
546      return getSDep().isArtificial();
547    }
548    const SDep &getSDep() const {
549      return Node->Preds[Operand];
550    }
551  };
552
553  template <> struct GraphTraits<SUnit*> {
554    typedef SUnit NodeType;
555    typedef SUnitIterator ChildIteratorType;
556    static inline NodeType *getEntryNode(SUnit *N) { return N; }
557    static inline ChildIteratorType child_begin(NodeType *N) {
558      return SUnitIterator::begin(N);
559    }
560    static inline ChildIteratorType child_end(NodeType *N) {
561      return SUnitIterator::end(N);
562    }
563  };
564
565  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
566    typedef std::vector<SUnit>::iterator nodes_iterator;
567    static nodes_iterator nodes_begin(ScheduleDAG *G) {
568      return G->SUnits.begin();
569    }
570    static nodes_iterator nodes_end(ScheduleDAG *G) {
571      return G->SUnits.end();
572    }
573  };
574
575  /// ScheduleDAGTopologicalSort is a class that computes a topological
576  /// ordering for SUnits and provides methods for dynamically updating
577  /// the ordering as new edges are added.
578  ///
579  /// This allows a very fast implementation of IsReachable, for example.
580  ///
581  class ScheduleDAGTopologicalSort {
582    /// SUnits - A reference to the ScheduleDAG's SUnits.
583    std::vector<SUnit> &SUnits;
584
585    /// Index2Node - Maps topological index to the node number.
586    std::vector<int> Index2Node;
587    /// Node2Index - Maps the node number to its topological index.
588    std::vector<int> Node2Index;
589    /// Visited - a set of nodes visited during a DFS traversal.
590    BitVector Visited;
591
592    /// DFS - make a DFS traversal and mark all nodes affected by the
593    /// edge insertion. These nodes will later get new topological indexes
594    /// by means of the Shift method.
595    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
596
597    /// Shift - reassign topological indexes for the nodes in the DAG
598    /// to preserve the topological ordering.
599    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
600
601    /// Allocate - assign the topological index to the node n.
602    void Allocate(int n, int index);
603
604  public:
605    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
606
607    /// InitDAGTopologicalSorting - create the initial topological
608    /// ordering from the DAG to be scheduled.
609    void InitDAGTopologicalSorting();
610
611    /// IsReachable - Checks if SU is reachable from TargetSU.
612    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
613
614    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
615    /// will create a cycle.
616    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
617
618    /// AddPred - Updates the topological ordering to accomodate an edge
619    /// to be added from SUnit X to SUnit Y.
620    void AddPred(SUnit *Y, SUnit *X);
621
622    /// RemovePred - Updates the topological ordering to accomodate an
623    /// an edge to be removed from the specified node N from the predecessors
624    /// of the current node M.
625    void RemovePred(SUnit *M, SUnit *N);
626
627    typedef std::vector<int>::iterator iterator;
628    typedef std::vector<int>::const_iterator const_iterator;
629    iterator begin() { return Index2Node.begin(); }
630    const_iterator begin() const { return Index2Node.begin(); }
631    iterator end() { return Index2Node.end(); }
632    const_iterator end() const { return Index2Node.end(); }
633
634    typedef std::vector<int>::reverse_iterator reverse_iterator;
635    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
636    reverse_iterator rbegin() { return Index2Node.rbegin(); }
637    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
638    reverse_iterator rend() { return Index2Node.rend(); }
639    const_reverse_iterator rend() const { return Index2Node.rend(); }
640  };
641}
642
643#endif
644