ScheduleDAG.h revision cf6b6131dd0da37903a6e3a5173ea12aa8263713
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers. This encapsulates the scheduling DAG,
12// which is shared between SelectionDAG and MachineInstr scheduling.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
17#define LLVM_CODEGEN_SCHEDULEDAG_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/BitVector.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/PointerIntPair.h"
26
27namespace llvm {
28  class AliasAnalysis;
29  class SUnit;
30  class MachineConstantPool;
31  class MachineFunction;
32  class MachineRegisterInfo;
33  class MachineInstr;
34  struct MCSchedClassDesc;
35  class TargetRegisterInfo;
36  class ScheduleDAG;
37  class SDNode;
38  class TargetInstrInfo;
39  class MCInstrDesc;
40  class TargetMachine;
41  class TargetRegisterClass;
42  template<class Graph> class GraphWriter;
43
44  /// SDep - Scheduling dependency. This represents one direction of an
45  /// edge in the scheduling DAG.
46  class SDep {
47  public:
48    /// Kind - These are the different kinds of scheduling dependencies.
49    enum Kind {
50      Data,        ///< Regular data dependence (aka true-dependence).
51      Anti,        ///< A register anti-dependedence (aka WAR).
52      Output,      ///< A register output-dependence (aka WAW).
53      Order        ///< Any other ordering dependency.
54    };
55
56    enum OrderKind {
57      Barrier,      ///< An unknown scheduling barrier.
58      MayAliasMem,  ///< Nonvolatile load/Store instructions that may alias.
59      MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
60      Artificial,   ///< Arbitrary weak DAG edge (no actual dependence).
61      Cluster       ///< Weak DAG edge linking a chain of clustered instrs.
62    };
63
64  private:
65    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
66    /// indicating the kind of the dependency.
67    PointerIntPair<SUnit *, 2, Kind> Dep;
68
69    /// Contents - A union discriminated by the dependence kind.
70    union {
71      /// Reg - For Data, Anti, and Output dependencies, the associated
72      /// register. For Data dependencies that don't currently have a register
73      /// assigned, this is set to zero.
74      unsigned Reg;
75
76      /// Order - Additional information about Order dependencies.
77      unsigned OrdKind; // enum OrderKind
78    } Contents;
79
80    /// Latency - The time associated with this edge. Often this is just
81    /// the value of the Latency field of the predecessor, however advanced
82    /// models may provide additional information about specific edges.
83    unsigned Latency;
84    /// Record MinLatency seperately from "expected" Latency.
85    ///
86    /// FIXME: this field is not packed on LP64. Convert to 16-bit DAG edge
87    /// latency after introducing saturating truncation.
88    unsigned MinLatency;
89
90  public:
91    /// SDep - Construct a null SDep. This is only for use by container
92    /// classes which require default constructors. SUnits may not
93    /// have null SDep edges.
94    SDep() : Dep(0, Data) {}
95
96    /// SDep - Construct an SDep with the specified values.
97    SDep(SUnit *S, Kind kind, unsigned Reg)
98      : Dep(S, kind), Contents() {
99      switch (kind) {
100      default:
101        llvm_unreachable("Reg given for non-register dependence!");
102      case Anti:
103      case Output:
104        assert(Reg != 0 &&
105               "SDep::Anti and SDep::Output must use a non-zero Reg!");
106        Contents.Reg = Reg;
107        Latency = 0;
108        break;
109      case Data:
110        Contents.Reg = Reg;
111        Latency = 1;
112        break;
113      }
114      MinLatency = Latency;
115    }
116    SDep(SUnit *S, OrderKind kind)
117      : Dep(S, Order), Contents(), Latency(0), MinLatency(0) {
118      Contents.OrdKind = kind;
119    }
120
121    /// Return true if the specified SDep is equivalent except for latency.
122    bool overlaps(const SDep &Other) const {
123      if (Dep != Other.Dep) return false;
124      switch (Dep.getInt()) {
125      case Data:
126      case Anti:
127      case Output:
128        return Contents.Reg == Other.Contents.Reg;
129      case Order:
130        return Contents.OrdKind == Other.Contents.OrdKind;
131      }
132      llvm_unreachable("Invalid dependency kind!");
133    }
134
135    bool operator==(const SDep &Other) const {
136      return overlaps(Other)
137        && Latency == Other.Latency && MinLatency == Other.MinLatency;
138    }
139
140    bool operator!=(const SDep &Other) const {
141      return !operator==(Other);
142    }
143
144    /// getLatency - Return the latency value for this edge, which roughly
145    /// means the minimum number of cycles that must elapse between the
146    /// predecessor and the successor, given that they have this edge
147    /// between them.
148    unsigned getLatency() const {
149      return Latency;
150    }
151
152    /// setLatency - Set the latency for this edge.
153    void setLatency(unsigned Lat) {
154      Latency = Lat;
155    }
156
157    /// getMinLatency - Return the minimum latency for this edge. Minimum
158    /// latency is used for scheduling groups, while normal (expected) latency
159    /// is for instruction cost and critical path.
160    unsigned getMinLatency() const {
161      return MinLatency;
162    }
163
164    /// setMinLatency - Set the minimum latency for this edge.
165    void setMinLatency(unsigned Lat) {
166      MinLatency = Lat;
167    }
168
169    //// getSUnit - Return the SUnit to which this edge points.
170    SUnit *getSUnit() const {
171      return Dep.getPointer();
172    }
173
174    //// setSUnit - Assign the SUnit to which this edge points.
175    void setSUnit(SUnit *SU) {
176      Dep.setPointer(SU);
177    }
178
179    /// getKind - Return an enum value representing the kind of the dependence.
180    Kind getKind() const {
181      return Dep.getInt();
182    }
183
184    /// isCtrl - Shorthand for getKind() != SDep::Data.
185    bool isCtrl() const {
186      return getKind() != Data;
187    }
188
189    /// isNormalMemory - Test if this is an Order dependence between two
190    /// memory accesses where both sides of the dependence access memory
191    /// in non-volatile and fully modeled ways.
192    bool isNormalMemory() const {
193      return getKind() == Order && (Contents.OrdKind == MayAliasMem
194                                    || Contents.OrdKind == MustAliasMem);
195    }
196
197    /// isMustAlias - Test if this is an Order dependence that is marked
198    /// as "must alias", meaning that the SUnits at either end of the edge
199    /// have a memory dependence on a known memory location.
200    bool isMustAlias() const {
201      return getKind() == Order && Contents.OrdKind == MustAliasMem;
202    }
203
204    /// isWeak - Test if this a weak dependence. Weak dependencies are
205    /// considered DAG edges for height computation and other heuristics, but do
206    /// not force ordering. Breaking a weak edge may require the scheduler to
207    /// compensate, for example by inserting a copy.
208    bool isWeak() const {
209      return getKind() == Order && Contents.OrdKind == Cluster;
210    }
211
212    /// isArtificial - Test if this is an Order dependence that is marked
213    /// as "artificial", meaning it isn't necessary for correctness.
214    bool isArtificial() const {
215      return getKind() == Order && Contents.OrdKind == Artificial;
216    }
217
218    /// isCluster - Test if this is an Order dependence that is marked
219    /// as "cluster", meaning it is artificial and wants to be adjacent.
220    bool isCluster() const {
221      return getKind() == Order && Contents.OrdKind == Cluster;
222    }
223
224    /// isAssignedRegDep - Test if this is a Data dependence that is
225    /// associated with a register.
226    bool isAssignedRegDep() const {
227      return getKind() == Data && Contents.Reg != 0;
228    }
229
230    /// getReg - Return the register associated with this edge. This is
231    /// only valid on Data, Anti, and Output edges. On Data edges, this
232    /// value may be zero, meaning there is no associated register.
233    unsigned getReg() const {
234      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
235             "getReg called on non-register dependence edge!");
236      return Contents.Reg;
237    }
238
239    /// setReg - Assign the associated register for this edge. This is
240    /// only valid on Data, Anti, and Output edges. On Anti and Output
241    /// edges, this value must not be zero. On Data edges, the value may
242    /// be zero, which would mean that no specific register is associated
243    /// with this edge.
244    void setReg(unsigned Reg) {
245      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
246             "setReg called on non-register dependence edge!");
247      assert((getKind() != Anti || Reg != 0) &&
248             "SDep::Anti edge cannot use the zero register!");
249      assert((getKind() != Output || Reg != 0) &&
250             "SDep::Output edge cannot use the zero register!");
251      Contents.Reg = Reg;
252    }
253  };
254
255  template <>
256  struct isPodLike<SDep> { static const bool value = true; };
257
258  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
259  class SUnit {
260  private:
261    SDNode *Node;                       // Representative node.
262    MachineInstr *Instr;                // Alternatively, a MachineInstr.
263  public:
264    SUnit *OrigNode;                    // If not this, the node from which
265                                        // this node was cloned.
266                                        // (SD scheduling only)
267
268    const MCSchedClassDesc *SchedClass; // NULL or resolved SchedClass.
269
270    // Preds/Succs - The SUnits before/after us in the graph.
271    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
272    SmallVector<SDep, 4> Succs;  // All sunit successors.
273
274    typedef SmallVector<SDep, 4>::iterator pred_iterator;
275    typedef SmallVector<SDep, 4>::iterator succ_iterator;
276    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
277    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
278
279    unsigned NodeNum;                   // Entry # of node in the node vector.
280    unsigned NodeQueueId;               // Queue id of node.
281    unsigned NumPreds;                  // # of SDep::Data preds.
282    unsigned NumSuccs;                  // # of SDep::Data sucss.
283    unsigned NumPredsLeft;              // # of preds not scheduled.
284    unsigned NumSuccsLeft;              // # of succs not scheduled.
285    unsigned WeakPredsLeft;             // # of weak preds not scheduled.
286    unsigned WeakSuccsLeft;             // # of weak succs not scheduled.
287    unsigned short NumRegDefsLeft;      // # of reg defs with no scheduled use.
288    unsigned short Latency;             // Node latency.
289    bool isVRegCycle      : 1;          // May use and def the same vreg.
290    bool isCall           : 1;          // Is a function call.
291    bool isCallOp         : 1;          // Is a function call operand.
292    bool isTwoAddress     : 1;          // Is a two-address instruction.
293    bool isCommutable     : 1;          // Is a commutable instruction.
294    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
295    bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
296    bool isPending        : 1;          // True once pending.
297    bool isAvailable      : 1;          // True once available.
298    bool isScheduled      : 1;          // True once scheduled.
299    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
300    bool isScheduleLow    : 1;          // True if preferable to schedule low.
301    bool isCloned         : 1;          // True if this node has been cloned.
302    Sched::Preference SchedulingPref;   // Scheduling preference.
303
304  private:
305    bool isDepthCurrent   : 1;          // True if Depth is current.
306    bool isHeightCurrent  : 1;          // True if Height is current.
307    unsigned Depth;                     // Node depth.
308    unsigned Height;                    // Node height.
309  public:
310    unsigned TopReadyCycle; // Cycle relative to start when node is ready.
311    unsigned BotReadyCycle; // Cycle relative to end when node is ready.
312
313    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
314    const TargetRegisterClass *CopySrcRC;
315
316    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
317    /// an SDNode and any nodes flagged to it.
318    SUnit(SDNode *node, unsigned nodenum)
319      : Node(node), Instr(0), OrigNode(0), SchedClass(0), NodeNum(nodenum),
320        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
321        NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
322        Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
323        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
324        hasPhysRegClobbers(false), isPending(false), isAvailable(false),
325        isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
326        isCloned(false), SchedulingPref(Sched::None),
327        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
328        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
329
330    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
331    /// a MachineInstr.
332    SUnit(MachineInstr *instr, unsigned nodenum)
333      : Node(0), Instr(instr), OrigNode(0), SchedClass(0), NodeNum(nodenum),
334        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
335        NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
336        Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
337        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
338        hasPhysRegClobbers(false), isPending(false), isAvailable(false),
339        isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
340        isCloned(false), SchedulingPref(Sched::None),
341        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
342        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
343
344    /// SUnit - Construct a placeholder SUnit.
345    SUnit()
346      : Node(0), Instr(0), OrigNode(0), SchedClass(0), NodeNum(~0u),
347        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
348        NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
349        Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
350        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
351        hasPhysRegClobbers(false), isPending(false), isAvailable(false),
352        isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
353        isCloned(false), SchedulingPref(Sched::None),
354        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
355        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
356
357    /// setNode - Assign the representative SDNode for this SUnit.
358    /// This may be used during pre-regalloc scheduling.
359    void setNode(SDNode *N) {
360      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
361      Node = N;
362    }
363
364    /// getNode - Return the representative SDNode for this SUnit.
365    /// This may be used during pre-regalloc scheduling.
366    SDNode *getNode() const {
367      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
368      return Node;
369    }
370
371    /// isInstr - Return true if this SUnit refers to a machine instruction as
372    /// opposed to an SDNode.
373    bool isInstr() const { return Instr; }
374
375    /// setInstr - Assign the instruction for the SUnit.
376    /// This may be used during post-regalloc scheduling.
377    void setInstr(MachineInstr *MI) {
378      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
379      Instr = MI;
380    }
381
382    /// getInstr - Return the representative MachineInstr for this SUnit.
383    /// This may be used during post-regalloc scheduling.
384    MachineInstr *getInstr() const {
385      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
386      return Instr;
387    }
388
389    /// addPred - This adds the specified edge as a pred of the current node if
390    /// not already.  It also adds the current node as a successor of the
391    /// specified node.
392    bool addPred(const SDep &D, bool Required = true);
393
394    /// removePred - This removes the specified edge as a pred of the current
395    /// node if it exists.  It also removes the current node as a successor of
396    /// the specified node.
397    void removePred(const SDep &D);
398
399    /// getDepth - Return the depth of this node, which is the length of the
400    /// maximum path up to any node which has no predecessors.
401    unsigned getDepth() const {
402      if (!isDepthCurrent)
403        const_cast<SUnit *>(this)->ComputeDepth();
404      return Depth;
405    }
406
407    /// getHeight - Return the height of this node, which is the length of the
408    /// maximum path down to any node which has no successors.
409    unsigned getHeight() const {
410      if (!isHeightCurrent)
411        const_cast<SUnit *>(this)->ComputeHeight();
412      return Height;
413    }
414
415    /// setDepthToAtLeast - If NewDepth is greater than this node's
416    /// depth value, set it to be the new depth value. This also
417    /// recursively marks successor nodes dirty.
418    void setDepthToAtLeast(unsigned NewDepth);
419
420    /// setDepthToAtLeast - If NewDepth is greater than this node's
421    /// depth value, set it to be the new height value. This also
422    /// recursively marks predecessor nodes dirty.
423    void setHeightToAtLeast(unsigned NewHeight);
424
425    /// setDepthDirty - Set a flag in this node to indicate that its
426    /// stored Depth value will require recomputation the next time
427    /// getDepth() is called.
428    void setDepthDirty();
429
430    /// setHeightDirty - Set a flag in this node to indicate that its
431    /// stored Height value will require recomputation the next time
432    /// getHeight() is called.
433    void setHeightDirty();
434
435    /// isPred - Test if node N is a predecessor of this node.
436    bool isPred(SUnit *N) {
437      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
438        if (Preds[i].getSUnit() == N)
439          return true;
440      return false;
441    }
442
443    /// isSucc - Test if node N is a successor of this node.
444    bool isSucc(SUnit *N) {
445      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
446        if (Succs[i].getSUnit() == N)
447          return true;
448      return false;
449    }
450
451    bool isTopReady() const {
452      return NumPredsLeft == 0;
453    }
454    bool isBottomReady() const {
455      return NumSuccsLeft == 0;
456    }
457
458    void dump(const ScheduleDAG *G) const;
459    void dumpAll(const ScheduleDAG *G) const;
460    void print(raw_ostream &O, const ScheduleDAG *G) const;
461
462  private:
463    void ComputeDepth();
464    void ComputeHeight();
465  };
466
467  //===--------------------------------------------------------------------===//
468  /// SchedulingPriorityQueue - This interface is used to plug different
469  /// priorities computation algorithms into the list scheduler. It implements
470  /// the interface of a standard priority queue, where nodes are inserted in
471  /// arbitrary order and returned in priority order.  The computation of the
472  /// priority and the representation of the queue are totally up to the
473  /// implementation to decide.
474  ///
475  class SchedulingPriorityQueue {
476    virtual void anchor();
477    unsigned CurCycle;
478    bool HasReadyFilter;
479  public:
480    SchedulingPriorityQueue(bool rf = false):
481      CurCycle(0), HasReadyFilter(rf) {}
482    virtual ~SchedulingPriorityQueue() {}
483
484    virtual bool isBottomUp() const = 0;
485
486    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
487    virtual void addNode(const SUnit *SU) = 0;
488    virtual void updateNode(const SUnit *SU) = 0;
489    virtual void releaseState() = 0;
490
491    virtual bool empty() const = 0;
492
493    bool hasReadyFilter() const { return HasReadyFilter; }
494
495    virtual bool tracksRegPressure() const { return false; }
496
497    virtual bool isReady(SUnit *) const {
498      assert(!HasReadyFilter && "The ready filter must override isReady()");
499      return true;
500    }
501    virtual void push(SUnit *U) = 0;
502
503    void push_all(const std::vector<SUnit *> &Nodes) {
504      for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
505           E = Nodes.end(); I != E; ++I)
506        push(*I);
507    }
508
509    virtual SUnit *pop() = 0;
510
511    virtual void remove(SUnit *SU) = 0;
512
513    virtual void dump(ScheduleDAG *) const {}
514
515    /// scheduledNode - As each node is scheduled, this method is invoked.  This
516    /// allows the priority function to adjust the priority of related
517    /// unscheduled nodes, for example.
518    ///
519    virtual void scheduledNode(SUnit *) {}
520
521    virtual void unscheduledNode(SUnit *) {}
522
523    void setCurCycle(unsigned Cycle) {
524      CurCycle = Cycle;
525    }
526
527    unsigned getCurCycle() const {
528      return CurCycle;
529    }
530  };
531
532  class ScheduleDAG {
533  public:
534    const TargetMachine &TM;              // Target processor
535    const TargetInstrInfo *TII;           // Target instruction information
536    const TargetRegisterInfo *TRI;        // Target processor register info
537    MachineFunction &MF;                  // Machine function
538    MachineRegisterInfo &MRI;             // Virtual/real register map
539    std::vector<SUnit> SUnits;            // The scheduling units.
540    SUnit EntrySU;                        // Special node for the region entry.
541    SUnit ExitSU;                         // Special node for the region exit.
542
543#ifdef NDEBUG
544    static const bool StressSched = false;
545#else
546    bool StressSched;
547#endif
548
549    explicit ScheduleDAG(MachineFunction &mf);
550
551    virtual ~ScheduleDAG();
552
553    /// clearDAG - clear the DAG state (between regions).
554    void clearDAG();
555
556    /// getInstrDesc - Return the MCInstrDesc of this SUnit.
557    /// Return NULL for SDNodes without a machine opcode.
558    const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
559      if (SU->isInstr()) return &SU->getInstr()->getDesc();
560      return getNodeDesc(SU->getNode());
561    }
562
563    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
564    /// using 'dot'.
565    ///
566    void viewGraph(const Twine &Name, const Twine &Title);
567    void viewGraph();
568
569    virtual void dumpNode(const SUnit *SU) const = 0;
570
571    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
572    /// of the ScheduleDAG.
573    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
574
575    /// getDAGLabel - Return a label for the region of code covered by the DAG.
576    virtual std::string getDAGName() const = 0;
577
578    /// addCustomGraphFeatures - Add custom features for a visualization of
579    /// the ScheduleDAG.
580    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
581
582#ifndef NDEBUG
583    /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
584    /// their state is consistent. Return the number of scheduled SUnits.
585    unsigned VerifyScheduledDAG(bool isBottomUp);
586#endif
587
588  private:
589    // Return the MCInstrDesc of this SDNode or NULL.
590    const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
591  };
592
593  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
594                                             SUnit, ptrdiff_t> {
595    SUnit *Node;
596    unsigned Operand;
597
598    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
599  public:
600    bool operator==(const SUnitIterator& x) const {
601      return Operand == x.Operand;
602    }
603    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
604
605    const SUnitIterator &operator=(const SUnitIterator &I) {
606      assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
607      Operand = I.Operand;
608      return *this;
609    }
610
611    pointer operator*() const {
612      return Node->Preds[Operand].getSUnit();
613    }
614    pointer operator->() const { return operator*(); }
615
616    SUnitIterator& operator++() {                // Preincrement
617      ++Operand;
618      return *this;
619    }
620    SUnitIterator operator++(int) { // Postincrement
621      SUnitIterator tmp = *this; ++*this; return tmp;
622    }
623
624    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
625    static SUnitIterator end  (SUnit *N) {
626      return SUnitIterator(N, (unsigned)N->Preds.size());
627    }
628
629    unsigned getOperand() const { return Operand; }
630    const SUnit *getNode() const { return Node; }
631    /// isCtrlDep - Test if this is not an SDep::Data dependence.
632    bool isCtrlDep() const {
633      return getSDep().isCtrl();
634    }
635    bool isArtificialDep() const {
636      return getSDep().isArtificial();
637    }
638    const SDep &getSDep() const {
639      return Node->Preds[Operand];
640    }
641  };
642
643  template <> struct GraphTraits<SUnit*> {
644    typedef SUnit NodeType;
645    typedef SUnitIterator ChildIteratorType;
646    static inline NodeType *getEntryNode(SUnit *N) { return N; }
647    static inline ChildIteratorType child_begin(NodeType *N) {
648      return SUnitIterator::begin(N);
649    }
650    static inline ChildIteratorType child_end(NodeType *N) {
651      return SUnitIterator::end(N);
652    }
653  };
654
655  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
656    typedef std::vector<SUnit>::iterator nodes_iterator;
657    static nodes_iterator nodes_begin(ScheduleDAG *G) {
658      return G->SUnits.begin();
659    }
660    static nodes_iterator nodes_end(ScheduleDAG *G) {
661      return G->SUnits.end();
662    }
663  };
664
665  /// ScheduleDAGTopologicalSort is a class that computes a topological
666  /// ordering for SUnits and provides methods for dynamically updating
667  /// the ordering as new edges are added.
668  ///
669  /// This allows a very fast implementation of IsReachable, for example.
670  ///
671  class ScheduleDAGTopologicalSort {
672    /// SUnits - A reference to the ScheduleDAG's SUnits.
673    std::vector<SUnit> &SUnits;
674    SUnit *ExitSU;
675
676    /// Index2Node - Maps topological index to the node number.
677    std::vector<int> Index2Node;
678    /// Node2Index - Maps the node number to its topological index.
679    std::vector<int> Node2Index;
680    /// Visited - a set of nodes visited during a DFS traversal.
681    BitVector Visited;
682
683    /// DFS - make a DFS traversal and mark all nodes affected by the
684    /// edge insertion. These nodes will later get new topological indexes
685    /// by means of the Shift method.
686    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
687
688    /// Shift - reassign topological indexes for the nodes in the DAG
689    /// to preserve the topological ordering.
690    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
691
692    /// Allocate - assign the topological index to the node n.
693    void Allocate(int n, int index);
694
695  public:
696    ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
697
698    /// InitDAGTopologicalSorting - create the initial topological
699    /// ordering from the DAG to be scheduled.
700    void InitDAGTopologicalSorting();
701
702    /// IsReachable - Checks if SU is reachable from TargetSU.
703    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
704
705    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
706    /// will create a cycle.
707    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
708
709    /// AddPred - Updates the topological ordering to accommodate an edge
710    /// to be added from SUnit X to SUnit Y.
711    void AddPred(SUnit *Y, SUnit *X);
712
713    /// RemovePred - Updates the topological ordering to accommodate an
714    /// an edge to be removed from the specified node N from the predecessors
715    /// of the current node M.
716    void RemovePred(SUnit *M, SUnit *N);
717
718    typedef std::vector<int>::iterator iterator;
719    typedef std::vector<int>::const_iterator const_iterator;
720    iterator begin() { return Index2Node.begin(); }
721    const_iterator begin() const { return Index2Node.begin(); }
722    iterator end() { return Index2Node.end(); }
723    const_iterator end() const { return Index2Node.end(); }
724
725    typedef std::vector<int>::reverse_iterator reverse_iterator;
726    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
727    reverse_iterator rbegin() { return Index2Node.rbegin(); }
728    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
729    reverse_iterator rend() { return Index2Node.rend(); }
730    const_reverse_iterator rend() const { return Index2Node.rend(); }
731  };
732}
733
734#endif
735