ScheduleDAG.h revision f7119393a97c2a10757084b6bc186380f8c19a73
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16#define LLVM_CODEGEN_SCHEDULEDAG_H
17
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/GraphTraits.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/PointerIntPair.h"
24
25namespace llvm {
26  struct SUnit;
27  class MachineConstantPool;
28  class MachineFunction;
29  class MachineModuleInfo;
30  class MachineRegisterInfo;
31  class MachineInstr;
32  class TargetRegisterInfo;
33  class ScheduleDAG;
34  class SelectionDAG;
35  class SDNode;
36  class TargetInstrInfo;
37  class TargetInstrDesc;
38  class TargetLowering;
39  class TargetMachine;
40  class TargetRegisterClass;
41  template<class Graph> class GraphWriter;
42
43  /// SDep - Scheduling dependency. This represents one direction of an
44  /// edge in the scheduling DAG.
45  class SDep {
46  public:
47    /// Kind - These are the different kinds of scheduling dependencies.
48    enum Kind {
49      Data,        ///< Regular data dependence (aka true-dependence).
50      Anti,        ///< A register anti-dependedence (aka WAR).
51      Output,      ///< A register output-dependence (aka WAW).
52      Order        ///< Any other ordering dependency.
53    };
54
55  private:
56    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
57    /// indicating the kind of the dependency.
58    PointerIntPair<SUnit *, 2, Kind> Dep;
59
60    /// Contents - A union discriminated by the dependence kind.
61    union {
62      /// Reg - For Data, Anti, and Output dependencies, the associated
63      /// register. For Data dependencies that don't currently have a register
64      /// assigned, this is set to zero.
65      unsigned Reg;
66
67      /// Order - Additional information about Order dependencies.
68      struct {
69        /// isNormalMemory - True if both sides of the dependence
70        /// access memory in non-volatile and fully modeled ways.
71        bool isNormalMemory : 1;
72
73        /// isMustAlias - True if both sides of the dependence are known to
74        /// access the same memory.
75        bool isMustAlias : 1;
76
77        /// isArtificial - True if this is an artificial dependency, meaning
78        /// it is not necessary for program correctness, and may be safely
79        /// deleted if necessary.
80        bool isArtificial : 1;
81      } Order;
82    } Contents;
83
84    /// Latency - The time associated with this edge. Often this is just
85    /// the value of the Latency field of the predecessor, however advanced
86    /// models may provide additional information about specific edges.
87    unsigned Latency;
88
89  public:
90    /// SDep - Construct a null SDep. This is only for use by container
91    /// classes which require default constructors. SUnits may not
92    /// have null SDep edges.
93    SDep() : Dep(0, Data) {}
94
95    /// SDep - Construct an SDep with the specified values.
96    SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
97         bool isNormalMemory = false, bool isMustAlias = false,
98         bool isArtificial = false)
99      : Dep(S, kind), Contents(), Latency(latency) {
100      switch (kind) {
101      case Anti:
102      case Output:
103        assert(Reg != 0 &&
104               "SDep::Anti and SDep::Output must use a non-zero Reg!");
105        // fall through
106      case Data:
107        assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
108        assert(!isArtificial && "isArtificial only applies with SDep::Order!");
109        Contents.Reg = Reg;
110        break;
111      case Order:
112        assert(Reg == 0 && "Reg given for non-register dependence!");
113        Contents.Order.isNormalMemory = isNormalMemory;
114        Contents.Order.isMustAlias = isMustAlias;
115        Contents.Order.isArtificial = isArtificial;
116        break;
117      }
118    }
119
120    bool operator==(const SDep &Other) const {
121      if (Dep != Other.Dep || Latency != Other.Latency) return false;
122      switch (Dep.getInt()) {
123      case Data:
124      case Anti:
125      case Output:
126        return Contents.Reg == Other.Contents.Reg;
127      case Order:
128        return Contents.Order.isNormalMemory ==
129                 Other.Contents.Order.isNormalMemory &&
130               Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
131               Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
132      }
133      assert(0 && "Invalid dependency kind!");
134      return false;
135    }
136
137    bool operator!=(const SDep &Other) const {
138      return !operator==(Other);
139    }
140
141    /// getLatency - Return the latency value for this edge, which roughly
142    /// means the minimum number of cycles that must elapse between the
143    /// predecessor and the successor, given that they have this edge
144    /// between them.
145    unsigned getLatency() const {
146      return Latency;
147    }
148
149    //// getSUnit - Return the SUnit to which this edge points.
150    SUnit *getSUnit() const {
151      return Dep.getPointer();
152    }
153
154    //// setSUnit - Assign the SUnit to which this edge points.
155    void setSUnit(SUnit *SU) {
156      Dep.setPointer(SU);
157    }
158
159    /// getKind - Return an enum value representing the kind of the dependence.
160    Kind getKind() const {
161      return Dep.getInt();
162    }
163
164    /// isCtrl - Shorthand for getKind() != SDep::Data.
165    bool isCtrl() const {
166      return getKind() != Data;
167    }
168
169    /// isNormalMemory - Test if this is an Order dependence between two
170    /// memory accesses where both sides of the dependence access memory
171    /// in non-volatile and fully modeled ways.
172    bool isNormalMemory() const {
173      return getKind() == Order && Contents.Order.isNormalMemory;
174    }
175
176    /// isMustAlias - Test if this is an Order dependence that is marked
177    /// as "must alias", meaning that the SUnits at either end of the edge
178    /// have a memory dependence on a known memory location.
179    bool isMustAlias() const {
180      return getKind() == Order && Contents.Order.isMustAlias;
181    }
182
183    /// isArtificial - Test if this is an Order dependence that is marked
184    /// as "artificial", meaning it isn't necessary for correctness.
185    bool isArtificial() const {
186      return getKind() == Order && Contents.Order.isArtificial;
187    }
188
189    /// isAssignedRegDep - Test if this is a Data dependence that is
190    /// associated with a register.
191    bool isAssignedRegDep() const {
192      return getKind() == Data && Contents.Reg != 0;
193    }
194
195    /// getReg - Return the register associated with this edge. This is
196    /// only valid on Data, Anti, and Output edges. On Data edges, this
197    /// value may be zero, meaning there is no associated register.
198    unsigned getReg() const {
199      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
200             "getReg called on non-register dependence edge!");
201      return Contents.Reg;
202    }
203
204    /// setReg - Assign the associated register for this edge. This is
205    /// only valid on Data, Anti, and Output edges. On Anti and Output
206    /// edges, this value must not be zero. On Data edges, the value may
207    /// be zero, which would mean that no specific register is associated
208    /// with this edge.
209    void setReg(unsigned Reg) {
210      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
211             "setReg called on non-register dependence edge!");
212      assert((getKind() != Anti || Reg != 0) &&
213             "SDep::Anti edge cannot use the zero register!");
214      assert((getKind() != Output || Reg != 0) &&
215             "SDep::Output edge cannot use the zero register!");
216      Contents.Reg = Reg;
217    }
218  };
219
220  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
221  struct SUnit {
222  private:
223    SDNode *Node;                       // Representative node.
224    MachineInstr *Instr;                // Alternatively, a MachineInstr.
225  public:
226    SUnit *OrigNode;                    // If not this, the node from which
227                                        // this node was cloned.
228
229    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
230    // is true if the edge is a token chain edge, false if it is a value edge.
231    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
232    SmallVector<SDep, 4> Succs;  // All sunit successors.
233
234    typedef SmallVector<SDep, 4>::iterator pred_iterator;
235    typedef SmallVector<SDep, 4>::iterator succ_iterator;
236    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
237    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
238
239    unsigned NodeNum;                   // Entry # of node in the node vector.
240    unsigned NodeQueueId;               // Queue id of node.
241    unsigned short Latency;             // Node latency.
242    short NumPreds;                     // # of SDep::Data preds.
243    short NumSuccs;                     // # of SDep::Data sucss.
244    short NumPredsLeft;                 // # of preds not scheduled.
245    short NumSuccsLeft;                 // # of succs not scheduled.
246    bool isTwoAddress     : 1;          // Is a two-address instruction.
247    bool isCommutable     : 1;          // Is a commutable instruction.
248    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
249    bool isPending        : 1;          // True once pending.
250    bool isAvailable      : 1;          // True once available.
251    bool isScheduled      : 1;          // True once scheduled.
252    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
253    bool isCloned         : 1;          // True if this node has been cloned.
254  private:
255    bool isDepthCurrent   : 1;          // True if Depth is current.
256    bool isHeightCurrent  : 1;          // True if Height is current.
257    unsigned Depth;                     // Node depth.
258    unsigned Height;                    // Node height.
259  public:
260    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
261    const TargetRegisterClass *CopySrcRC;
262
263    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
264    /// an SDNode and any nodes flagged to it.
265    SUnit(SDNode *node, unsigned nodenum)
266      : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
267        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
268        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
269        isPending(false), isAvailable(false), isScheduled(false),
270        isScheduleHigh(false), isCloned(false),
271        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
272        CopyDstRC(NULL), CopySrcRC(NULL) {}
273
274    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
275    /// a MachineInstr.
276    SUnit(MachineInstr *instr, unsigned nodenum)
277      : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
278        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
279        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
280        isPending(false), isAvailable(false), isScheduled(false),
281        isScheduleHigh(false), isCloned(false),
282        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
283        CopyDstRC(NULL), CopySrcRC(NULL) {}
284
285    /// setNode - Assign the representative SDNode for this SUnit.
286    /// This may be used during pre-regalloc scheduling.
287    void setNode(SDNode *N) {
288      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
289      Node = N;
290    }
291
292    /// getNode - Return the representative SDNode for this SUnit.
293    /// This may be used during pre-regalloc scheduling.
294    SDNode *getNode() const {
295      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
296      return Node;
297    }
298
299    /// setInstr - Assign the instruction for the SUnit.
300    /// This may be used during post-regalloc scheduling.
301    void setInstr(MachineInstr *MI) {
302      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
303      Instr = MI;
304    }
305
306    /// getInstr - Return the representative MachineInstr for this SUnit.
307    /// This may be used during post-regalloc scheduling.
308    MachineInstr *getInstr() const {
309      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
310      return Instr;
311    }
312
313    /// addPred - This adds the specified edge as a pred of the current node if
314    /// not already.  It also adds the current node as a successor of the
315    /// specified node.
316    void addPred(const SDep &D);
317
318    /// removePred - This removes the specified edge as a pred of the current
319    /// node if it exists.  It also removes the current node as a successor of
320    /// the specified node.
321    void removePred(const SDep &D);
322
323    /// getDepth - Return the depth of this node, which is the length of the
324    /// maximum path up to any node with has no predecessors.
325    unsigned getDepth() const {
326      if (!isDepthCurrent) const_cast<SUnit *>(this)->ComputeDepth();
327      return Depth;
328    }
329
330    /// getHeight - Return the height of this node, which is the length of the
331    /// maximum path down to any node with has no successors.
332    unsigned getHeight() const {
333      if (!isHeightCurrent) const_cast<SUnit *>(this)->ComputeHeight();
334      return Height;
335    }
336
337    /// setDepthToAtLeast - If NewDepth is greater than this node's depth
338    /// value, set it to be the new depth value. This also recursively
339    /// marks successor nodes dirty.
340    void setDepthToAtLeast(unsigned NewDepth);
341
342    /// setDepthToAtLeast - If NewDepth is greater than this node's depth
343    /// value, set it to be the new height value. This also recursively
344    /// marks predecessor nodes dirty.
345    void setHeightToAtLeast(unsigned NewHeight);
346
347    /// setDepthDirty - Set a flag in this node to indicate that its
348    /// stored Depth value will require recomputation the next time
349    /// getDepth() is called.
350    void setDepthDirty();
351
352    /// setHeightDirty - Set a flag in this node to indicate that its
353    /// stored Height value will require recomputation the next time
354    /// getHeight() is called.
355    void setHeightDirty();
356
357    /// isPred - Test if node N is a predecessor of this node.
358    bool isPred(SUnit *N) {
359      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
360        if (Preds[i].getSUnit() == N)
361          return true;
362      return false;
363    }
364
365    /// isSucc - Test if node N is a successor of this node.
366    bool isSucc(SUnit *N) {
367      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
368        if (Succs[i].getSUnit() == N)
369          return true;
370      return false;
371    }
372
373    void dump(const ScheduleDAG *G) const;
374    void dumpAll(const ScheduleDAG *G) const;
375    void print(raw_ostream &O, const ScheduleDAG *G) const;
376
377  private:
378    void ComputeDepth();
379    void ComputeHeight();
380  };
381
382  //===--------------------------------------------------------------------===//
383  /// SchedulingPriorityQueue - This interface is used to plug different
384  /// priorities computation algorithms into the list scheduler. It implements
385  /// the interface of a standard priority queue, where nodes are inserted in
386  /// arbitrary order and returned in priority order.  The computation of the
387  /// priority and the representation of the queue are totally up to the
388  /// implementation to decide.
389  ///
390  class SchedulingPriorityQueue {
391  public:
392    virtual ~SchedulingPriorityQueue() {}
393
394    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
395    virtual void addNode(const SUnit *SU) = 0;
396    virtual void updateNode(const SUnit *SU) = 0;
397    virtual void releaseState() = 0;
398
399    virtual unsigned size() const = 0;
400    virtual bool empty() const = 0;
401    virtual void push(SUnit *U) = 0;
402
403    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
404    virtual SUnit *pop() = 0;
405
406    virtual void remove(SUnit *SU) = 0;
407
408    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
409    /// allows the priority function to adjust the priority of related
410    /// unscheduled nodes, for example.
411    ///
412    virtual void ScheduledNode(SUnit *) {}
413
414    virtual void UnscheduledNode(SUnit *) {}
415  };
416
417  class ScheduleDAG {
418  public:
419    SelectionDAG *DAG;                    // DAG of the current basic block
420    MachineBasicBlock *BB;                // Current basic block
421    MachineBasicBlock::iterator Begin;    // The beginning of the range to be scheduled.
422    MachineBasicBlock::iterator End;      // The end of the range to be scheduled.
423    const TargetMachine &TM;              // Target processor
424    const TargetInstrInfo *TII;           // Target instruction information
425    const TargetRegisterInfo *TRI;        // Target processor register info
426    TargetLowering *TLI;                  // Target lowering info
427    MachineFunction &MF;                  // Machine function
428    MachineRegisterInfo &MRI;             // Virtual/real register map
429    MachineConstantPool *ConstPool;       // Target constant pool
430    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
431                                          // represent noop instructions.
432    std::vector<SUnit> SUnits;            // The scheduling units.
433
434    explicit ScheduleDAG(MachineFunction &mf);
435
436    virtual ~ScheduleDAG();
437
438    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
439    /// using 'dot'.
440    ///
441    void viewGraph();
442
443    /// Run - perform scheduling.
444    ///
445    void Run(SelectionDAG *DAG, MachineBasicBlock *MBB,
446             MachineBasicBlock::iterator Begin,
447             MachineBasicBlock::iterator End);
448
449    /// BuildSchedGraph - Build SUnits and set up their Preds and Succs
450    /// to form the scheduling dependency graph.
451    ///
452    virtual void BuildSchedGraph() = 0;
453
454    /// ComputeLatency - Compute node latency.
455    ///
456    virtual void ComputeLatency(SUnit *SU) = 0;
457
458  protected:
459    /// EmitNoop - Emit a noop instruction.
460    ///
461    void EmitNoop();
462
463  public:
464    virtual MachineBasicBlock *EmitSchedule() = 0;
465
466    void dumpSchedule() const;
467
468    /// Schedule - Order nodes according to selected style, filling
469    /// in the Sequence member.
470    ///
471    virtual void Schedule() = 0;
472
473    virtual void dumpNode(const SUnit *SU) const = 0;
474
475    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
476    /// of the ScheduleDAG.
477    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
478
479    /// addCustomGraphFeatures - Add custom features for a visualization of
480    /// the ScheduleDAG.
481    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
482
483#ifndef NDEBUG
484    /// VerifySchedule - Verify that all SUnits were scheduled and that
485    /// their state is consistent.
486    void VerifySchedule(bool isBottomUp);
487#endif
488
489  protected:
490    void AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO);
491
492    void EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
493
494    /// ForceUnitLatencies - Return true if all scheduling edges should be given a
495    /// latency value of one.  The default is to return false; schedulers may
496    /// override this as needed.
497    virtual bool ForceUnitLatencies() const { return false; }
498
499  private:
500    /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
501    /// physical register has only a single copy use, then coalesced the copy
502    /// if possible.
503    void EmitLiveInCopy(MachineBasicBlock *MBB,
504                        MachineBasicBlock::iterator &InsertPos,
505                        unsigned VirtReg, unsigned PhysReg,
506                        const TargetRegisterClass *RC,
507                        DenseMap<MachineInstr*, unsigned> &CopyRegMap);
508
509    /// EmitLiveInCopies - If this is the first basic block in the function,
510    /// and if it has live ins that need to be copied into vregs, emit the
511    /// copies into the top of the block.
512    void EmitLiveInCopies(MachineBasicBlock *MBB);
513  };
514
515  class SUnitIterator : public forward_iterator<SUnit, ptrdiff_t> {
516    SUnit *Node;
517    unsigned Operand;
518
519    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
520  public:
521    bool operator==(const SUnitIterator& x) const {
522      return Operand == x.Operand;
523    }
524    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
525
526    const SUnitIterator &operator=(const SUnitIterator &I) {
527      assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
528      Operand = I.Operand;
529      return *this;
530    }
531
532    pointer operator*() const {
533      return Node->Preds[Operand].getSUnit();
534    }
535    pointer operator->() const { return operator*(); }
536
537    SUnitIterator& operator++() {                // Preincrement
538      ++Operand;
539      return *this;
540    }
541    SUnitIterator operator++(int) { // Postincrement
542      SUnitIterator tmp = *this; ++*this; return tmp;
543    }
544
545    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
546    static SUnitIterator end  (SUnit *N) {
547      return SUnitIterator(N, (unsigned)N->Preds.size());
548    }
549
550    unsigned getOperand() const { return Operand; }
551    const SUnit *getNode() const { return Node; }
552    /// isCtrlDep - Test if this is not an SDep::Data dependence.
553    bool isCtrlDep() const {
554      return getSDep().isCtrl();
555    }
556    bool isArtificialDep() const {
557      return getSDep().isArtificial();
558    }
559    const SDep &getSDep() const {
560      return Node->Preds[Operand];
561    }
562  };
563
564  template <> struct GraphTraits<SUnit*> {
565    typedef SUnit NodeType;
566    typedef SUnitIterator ChildIteratorType;
567    static inline NodeType *getEntryNode(SUnit *N) { return N; }
568    static inline ChildIteratorType child_begin(NodeType *N) {
569      return SUnitIterator::begin(N);
570    }
571    static inline ChildIteratorType child_end(NodeType *N) {
572      return SUnitIterator::end(N);
573    }
574  };
575
576  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
577    typedef std::vector<SUnit>::iterator nodes_iterator;
578    static nodes_iterator nodes_begin(ScheduleDAG *G) {
579      return G->SUnits.begin();
580    }
581    static nodes_iterator nodes_end(ScheduleDAG *G) {
582      return G->SUnits.end();
583    }
584  };
585
586  /// ScheduleDAGTopologicalSort is a class that computes a topological
587  /// ordering for SUnits and provides methods for dynamically updating
588  /// the ordering as new edges are added.
589  ///
590  /// This allows a very fast implementation of IsReachable, for example.
591  ///
592  class ScheduleDAGTopologicalSort {
593    /// SUnits - A reference to the ScheduleDAG's SUnits.
594    std::vector<SUnit> &SUnits;
595
596    /// Index2Node - Maps topological index to the node number.
597    std::vector<int> Index2Node;
598    /// Node2Index - Maps the node number to its topological index.
599    std::vector<int> Node2Index;
600    /// Visited - a set of nodes visited during a DFS traversal.
601    BitVector Visited;
602
603    /// DFS - make a DFS traversal and mark all nodes affected by the
604    /// edge insertion. These nodes will later get new topological indexes
605    /// by means of the Shift method.
606    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
607
608    /// Shift - reassign topological indexes for the nodes in the DAG
609    /// to preserve the topological ordering.
610    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
611
612    /// Allocate - assign the topological index to the node n.
613    void Allocate(int n, int index);
614
615  public:
616    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
617
618    /// InitDAGTopologicalSorting - create the initial topological
619    /// ordering from the DAG to be scheduled.
620    void InitDAGTopologicalSorting();
621
622    /// IsReachable - Checks if SU is reachable from TargetSU.
623    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
624
625    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
626    /// will create a cycle.
627    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
628
629    /// AddPred - Updates the topological ordering to accomodate an edge
630    /// to be added from SUnit X to SUnit Y.
631    void AddPred(SUnit *Y, SUnit *X);
632
633    /// RemovePred - Updates the topological ordering to accomodate an
634    /// an edge to be removed from the specified node N from the predecessors
635    /// of the current node M.
636    void RemovePred(SUnit *M, SUnit *N);
637
638    typedef std::vector<int>::iterator iterator;
639    typedef std::vector<int>::const_iterator const_iterator;
640    iterator begin() { return Index2Node.begin(); }
641    const_iterator begin() const { return Index2Node.begin(); }
642    iterator end() { return Index2Node.end(); }
643    const_iterator end() const { return Index2Node.end(); }
644
645    typedef std::vector<int>::reverse_iterator reverse_iterator;
646    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
647    reverse_iterator rbegin() { return Index2Node.rbegin(); }
648    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
649    reverse_iterator rend() { return Index2Node.rend(); }
650    const_reverse_iterator rend() const { return Index2Node.rend(); }
651  };
652}
653
654#endif
655