MCAssembler.h revision 251040bc18eedfa56d01fe92836e55cfd8c5d990
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallString.h"
16#include "llvm/ADT/ilist.h"
17#include "llvm/ADT/ilist_node.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/Support/Casting.h"
21#include "llvm/Support/DataTypes.h"
22#include <vector> // FIXME: Shouldn't be needed.
23
24namespace llvm {
25class raw_ostream;
26class MCAsmLayout;
27class MCAssembler;
28class MCContext;
29class MCCodeEmitter;
30class MCExpr;
31class MCFragment;
32class MCObjectWriter;
33class MCSection;
34class MCSectionData;
35class MCSymbol;
36class MCSymbolData;
37class MCValue;
38class MCAsmBackend;
39
40class MCFragment : public ilist_node<MCFragment> {
41  friend class MCAsmLayout;
42
43  MCFragment(const MCFragment&) LLVM_DELETED_FUNCTION;
44  void operator=(const MCFragment&) LLVM_DELETED_FUNCTION;
45
46public:
47  enum FragmentType {
48    FT_Align,
49    FT_Data,
50    FT_Fill,
51    FT_Relaxable,
52    FT_Org,
53    FT_Dwarf,
54    FT_DwarfFrame,
55    FT_LEB
56  };
57
58private:
59  FragmentType Kind;
60
61  /// Parent - The data for the section this fragment is in.
62  MCSectionData *Parent;
63
64  /// Atom - The atom this fragment is in, as represented by it's defining
65  /// symbol. Atom's are only used by backends which set
66  /// \see MCAsmBackend::hasReliableSymbolDifference().
67  MCSymbolData *Atom;
68
69  /// @name Assembler Backend Data
70  /// @{
71  //
72  // FIXME: This could all be kept private to the assembler implementation.
73
74  /// Offset - The offset of this fragment in its section. This is ~0 until
75  /// initialized.
76  uint64_t Offset;
77
78  /// LayoutOrder - The layout order of this fragment.
79  unsigned LayoutOrder;
80
81  /// @}
82
83protected:
84  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
85
86public:
87  // Only for sentinel.
88  MCFragment();
89  virtual ~MCFragment();
90
91  FragmentType getKind() const { return Kind; }
92
93  MCSectionData *getParent() const { return Parent; }
94  void setParent(MCSectionData *Value) { Parent = Value; }
95
96  MCSymbolData *getAtom() const { return Atom; }
97  void setAtom(MCSymbolData *Value) { Atom = Value; }
98
99  unsigned getLayoutOrder() const { return LayoutOrder; }
100  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
101
102  /// \brief Does this fragment have instructions emitted into it? By default
103  /// this is false, but specific fragment types may set it to true.
104  virtual bool hasInstructions() const { return false; }
105
106  /// \brief Should this fragment be placed at the end of an aligned bundle?
107  virtual bool alignToBundleEnd() const { return false; }
108
109  /// \brief Get the padding size that must be inserted before this fragment.
110  /// Used for bundling. By default, no padding is inserted.
111  /// Note that padding size is restricted to 8 bits. This is an optimization
112  /// to reduce the amount of space used for each fragment. In practice, larger
113  /// padding should never be required.
114  virtual uint8_t getBundlePadding() const {
115    return 0;
116  }
117
118  /// \brief Set the padding size for this fragment. By default it's a no-op,
119  /// and only some fragments have a meaningful implementation.
120  virtual void setBundlePadding(uint8_t N) {
121  }
122
123  void dump();
124};
125
126class MCEncodedFragment : public MCFragment {
127  virtual void anchor();
128
129  uint8_t BundlePadding;
130public:
131  MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = 0)
132    : MCFragment(FType, SD), BundlePadding(0)
133  {
134  }
135  virtual ~MCEncodedFragment();
136
137  typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
138  typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
139
140  virtual SmallVectorImpl<char> &getContents() = 0;
141  virtual const SmallVectorImpl<char> &getContents() const = 0;
142
143  virtual SmallVectorImpl<MCFixup> &getFixups() = 0;
144  virtual const SmallVectorImpl<MCFixup> &getFixups() const = 0;
145
146  virtual fixup_iterator fixup_begin() = 0;
147  virtual const_fixup_iterator fixup_begin() const  = 0;
148  virtual fixup_iterator fixup_end() = 0;
149  virtual const_fixup_iterator fixup_end() const = 0;
150
151  virtual uint8_t getBundlePadding() const {
152    return BundlePadding;
153  }
154
155  virtual void setBundlePadding(uint8_t N) {
156    BundlePadding = N;
157  }
158
159  static bool classof(const MCFragment *F) {
160    MCFragment::FragmentType Kind = F->getKind();
161    return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data;
162  }
163};
164
165/// Fragment for data and encoded instructions.
166///
167class MCDataFragment : public MCEncodedFragment {
168  virtual void anchor();
169
170  /// \brief Does this fragment contain encoded instructions anywhere in it?
171  bool HasInstructions;
172
173  /// \brief Should this fragment be aligned to the end of a bundle?
174  bool AlignToBundleEnd;
175
176  SmallVector<char, 32> Contents;
177
178  /// Fixups - The list of fixups in this fragment.
179  SmallVector<MCFixup, 4> Fixups;
180public:
181  MCDataFragment(MCSectionData *SD = 0)
182    : MCEncodedFragment(FT_Data, SD),
183      HasInstructions(false), AlignToBundleEnd(false)
184  {
185  }
186
187  virtual SmallVectorImpl<char> &getContents() { return Contents; }
188  virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
189
190  SmallVectorImpl<MCFixup> &getFixups() {
191    return Fixups;
192  }
193
194  const SmallVectorImpl<MCFixup> &getFixups() const {
195    return Fixups;
196  }
197
198  virtual bool hasInstructions() const { return HasInstructions; }
199  virtual void setHasInstructions(bool V) { HasInstructions = V; }
200
201  virtual bool alignToBundleEnd() const { return AlignToBundleEnd; }
202  virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
203
204  fixup_iterator fixup_begin() { return Fixups.begin(); }
205  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
206
207  fixup_iterator fixup_end() {return Fixups.end();}
208  const_fixup_iterator fixup_end() const {return Fixups.end();}
209
210  static bool classof(const MCFragment *F) {
211    return F->getKind() == MCFragment::FT_Data;
212  }
213};
214
215/// A relaxable fragment holds on to its MCInst, since it may need to be
216/// relaxed during the assembler layout and relaxation stage.
217///
218class MCRelaxableFragment : public MCEncodedFragment {
219  virtual void anchor();
220
221  /// Inst - The instruction this is a fragment for.
222  MCInst Inst;
223
224  /// Contents - Binary data for the currently encoded instruction.
225  SmallVector<char, 8> Contents;
226
227  /// Fixups - The list of fixups in this fragment.
228  SmallVector<MCFixup, 1> Fixups;
229
230public:
231  MCRelaxableFragment(const MCInst &_Inst, MCSectionData *SD = 0)
232    : MCEncodedFragment(FT_Relaxable, SD), Inst(_Inst) {
233  }
234
235  virtual SmallVectorImpl<char> &getContents() { return Contents; }
236  virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
237
238  unsigned getInstSize() const { return Contents.size(); }
239  const MCInst &getInst() const { return Inst; }
240  void setInst(const MCInst& Value) { Inst = Value; }
241
242  SmallVectorImpl<MCFixup> &getFixups() {
243    return Fixups;
244  }
245
246  const SmallVectorImpl<MCFixup> &getFixups() const {
247    return Fixups;
248  }
249
250  virtual bool hasInstructions() const { return true; }
251
252  fixup_iterator fixup_begin() { return Fixups.begin(); }
253  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
254
255  fixup_iterator fixup_end() {return Fixups.end();}
256  const_fixup_iterator fixup_end() const {return Fixups.end();}
257
258  static bool classof(const MCFragment *F) {
259    return F->getKind() == MCFragment::FT_Relaxable;
260  }
261};
262
263class MCAlignFragment : public MCFragment {
264  virtual void anchor();
265
266  /// Alignment - The alignment to ensure, in bytes.
267  unsigned Alignment;
268
269  /// Value - Value to use for filling padding bytes.
270  int64_t Value;
271
272  /// ValueSize - The size of the integer (in bytes) of \p Value.
273  unsigned ValueSize;
274
275  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
276  /// cannot be satisfied in this width then this fragment is ignored.
277  unsigned MaxBytesToEmit;
278
279  /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
280  /// of using the provided value. The exact interpretation of this flag is
281  /// target dependent.
282  bool EmitNops : 1;
283
284public:
285  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
286                  unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
287    : MCFragment(FT_Align, SD), Alignment(_Alignment),
288      Value(_Value),ValueSize(_ValueSize),
289      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
290
291  /// @name Accessors
292  /// @{
293
294  unsigned getAlignment() const { return Alignment; }
295
296  int64_t getValue() const { return Value; }
297
298  unsigned getValueSize() const { return ValueSize; }
299
300  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
301
302  bool hasEmitNops() const { return EmitNops; }
303  void setEmitNops(bool Value) { EmitNops = Value; }
304
305  /// @}
306
307  static bool classof(const MCFragment *F) {
308    return F->getKind() == MCFragment::FT_Align;
309  }
310};
311
312class MCFillFragment : public MCFragment {
313  virtual void anchor();
314
315  /// Value - Value to use for filling bytes.
316  int64_t Value;
317
318  /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
319  /// this is a virtual fill fragment.
320  unsigned ValueSize;
321
322  /// Size - The number of bytes to insert.
323  uint64_t Size;
324
325public:
326  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
327                 MCSectionData *SD = 0)
328    : MCFragment(FT_Fill, SD),
329      Value(_Value), ValueSize(_ValueSize), Size(_Size) {
330    assert((!ValueSize || (Size % ValueSize) == 0) &&
331           "Fill size must be a multiple of the value size!");
332  }
333
334  /// @name Accessors
335  /// @{
336
337  int64_t getValue() const { return Value; }
338
339  unsigned getValueSize() const { return ValueSize; }
340
341  uint64_t getSize() const { return Size; }
342
343  /// @}
344
345  static bool classof(const MCFragment *F) {
346    return F->getKind() == MCFragment::FT_Fill;
347  }
348};
349
350class MCOrgFragment : public MCFragment {
351  virtual void anchor();
352
353  /// Offset - The offset this fragment should start at.
354  const MCExpr *Offset;
355
356  /// Value - Value to use for filling bytes.
357  int8_t Value;
358
359public:
360  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
361    : MCFragment(FT_Org, SD),
362      Offset(&_Offset), Value(_Value) {}
363
364  /// @name Accessors
365  /// @{
366
367  const MCExpr &getOffset() const { return *Offset; }
368
369  uint8_t getValue() const { return Value; }
370
371  /// @}
372
373  static bool classof(const MCFragment *F) {
374    return F->getKind() == MCFragment::FT_Org;
375  }
376};
377
378class MCLEBFragment : public MCFragment {
379  virtual void anchor();
380
381  /// Value - The value this fragment should contain.
382  const MCExpr *Value;
383
384  /// IsSigned - True if this is a sleb128, false if uleb128.
385  bool IsSigned;
386
387  SmallString<8> Contents;
388public:
389  MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD)
390    : MCFragment(FT_LEB, SD),
391      Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
392
393  /// @name Accessors
394  /// @{
395
396  const MCExpr &getValue() const { return *Value; }
397
398  bool isSigned() const { return IsSigned; }
399
400  SmallString<8> &getContents() { return Contents; }
401  const SmallString<8> &getContents() const { return Contents; }
402
403  /// @}
404
405  static bool classof(const MCFragment *F) {
406    return F->getKind() == MCFragment::FT_LEB;
407  }
408};
409
410class MCDwarfLineAddrFragment : public MCFragment {
411  virtual void anchor();
412
413  /// LineDelta - the value of the difference between the two line numbers
414  /// between two .loc dwarf directives.
415  int64_t LineDelta;
416
417  /// AddrDelta - The expression for the difference of the two symbols that
418  /// make up the address delta between two .loc dwarf directives.
419  const MCExpr *AddrDelta;
420
421  SmallString<8> Contents;
422
423public:
424  MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
425                      MCSectionData *SD)
426    : MCFragment(FT_Dwarf, SD),
427      LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
428
429  /// @name Accessors
430  /// @{
431
432  int64_t getLineDelta() const { return LineDelta; }
433
434  const MCExpr &getAddrDelta() const { return *AddrDelta; }
435
436  SmallString<8> &getContents() { return Contents; }
437  const SmallString<8> &getContents() const { return Contents; }
438
439  /// @}
440
441  static bool classof(const MCFragment *F) {
442    return F->getKind() == MCFragment::FT_Dwarf;
443  }
444};
445
446class MCDwarfCallFrameFragment : public MCFragment {
447  virtual void anchor();
448
449  /// AddrDelta - The expression for the difference of the two symbols that
450  /// make up the address delta between two .cfi_* dwarf directives.
451  const MCExpr *AddrDelta;
452
453  SmallString<8> Contents;
454
455public:
456  MCDwarfCallFrameFragment(const MCExpr &_AddrDelta,  MCSectionData *SD)
457    : MCFragment(FT_DwarfFrame, SD),
458      AddrDelta(&_AddrDelta) { Contents.push_back(0); }
459
460  /// @name Accessors
461  /// @{
462
463  const MCExpr &getAddrDelta() const { return *AddrDelta; }
464
465  SmallString<8> &getContents() { return Contents; }
466  const SmallString<8> &getContents() const { return Contents; }
467
468  /// @}
469
470  static bool classof(const MCFragment *F) {
471    return F->getKind() == MCFragment::FT_DwarfFrame;
472  }
473};
474
475// FIXME: Should this be a separate class, or just merged into MCSection? Since
476// we anticipate the fast path being through an MCAssembler, the only reason to
477// keep it out is for API abstraction.
478class MCSectionData : public ilist_node<MCSectionData> {
479  friend class MCAsmLayout;
480
481  MCSectionData(const MCSectionData&) LLVM_DELETED_FUNCTION;
482  void operator=(const MCSectionData&) LLVM_DELETED_FUNCTION;
483
484public:
485  typedef iplist<MCFragment> FragmentListType;
486
487  typedef FragmentListType::const_iterator const_iterator;
488  typedef FragmentListType::iterator iterator;
489
490  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
491  typedef FragmentListType::reverse_iterator reverse_iterator;
492
493  /// \brief Express the state of bundle locked groups while emitting code.
494  enum BundleLockStateType {
495    NotBundleLocked,
496    BundleLocked,
497    BundleLockedAlignToEnd
498  };
499private:
500  FragmentListType Fragments;
501  const MCSection *Section;
502
503  /// Ordinal - The section index in the assemblers section list.
504  unsigned Ordinal;
505
506  /// LayoutOrder - The index of this section in the layout order.
507  unsigned LayoutOrder;
508
509  /// Alignment - The maximum alignment seen in this section.
510  unsigned Alignment;
511
512  /// \brief Keeping track of bundle-locked state.
513  BundleLockStateType BundleLockState;
514
515  /// \brief We've seen a bundle_lock directive but not its first instruction
516  /// yet.
517  bool BundleGroupBeforeFirstInst;
518
519  /// @name Assembler Backend Data
520  /// @{
521  //
522  // FIXME: This could all be kept private to the assembler implementation.
523
524  /// HasInstructions - Whether this section has had instructions emitted into
525  /// it.
526  unsigned HasInstructions : 1;
527
528  /// @}
529
530public:
531  // Only for use as sentinel.
532  MCSectionData();
533  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
534
535  const MCSection &getSection() const { return *Section; }
536
537  unsigned getAlignment() const { return Alignment; }
538  void setAlignment(unsigned Value) { Alignment = Value; }
539
540  bool hasInstructions() const { return HasInstructions; }
541  void setHasInstructions(bool Value) { HasInstructions = Value; }
542
543  unsigned getOrdinal() const { return Ordinal; }
544  void setOrdinal(unsigned Value) { Ordinal = Value; }
545
546  unsigned getLayoutOrder() const { return LayoutOrder; }
547  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
548
549  /// @name Fragment Access
550  /// @{
551
552  const FragmentListType &getFragmentList() const { return Fragments; }
553  FragmentListType &getFragmentList() { return Fragments; }
554
555  iterator begin() { return Fragments.begin(); }
556  const_iterator begin() const { return Fragments.begin(); }
557
558  iterator end() { return Fragments.end(); }
559  const_iterator end() const { return Fragments.end(); }
560
561  reverse_iterator rbegin() { return Fragments.rbegin(); }
562  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
563
564  reverse_iterator rend() { return Fragments.rend(); }
565  const_reverse_iterator rend() const { return Fragments.rend(); }
566
567  size_t size() const { return Fragments.size(); }
568
569  bool empty() const { return Fragments.empty(); }
570
571  bool isBundleLocked() const {
572    return BundleLockState != NotBundleLocked;
573  }
574
575  BundleLockStateType getBundleLockState() const {
576    return BundleLockState;
577  }
578
579  void setBundleLockState(BundleLockStateType NewState) {
580    BundleLockState = NewState;
581  }
582
583  bool isBundleGroupBeforeFirstInst() const {
584    return BundleGroupBeforeFirstInst;
585  }
586
587  void setBundleGroupBeforeFirstInst(bool IsFirst) {
588    BundleGroupBeforeFirstInst = IsFirst;
589  }
590
591  void dump();
592
593  /// @}
594};
595
596// FIXME: Same concerns as with SectionData.
597class MCSymbolData : public ilist_node<MCSymbolData> {
598public:
599  const MCSymbol *Symbol;
600
601  /// Fragment - The fragment this symbol's value is relative to, if any.
602  MCFragment *Fragment;
603
604  /// Offset - The offset to apply to the fragment address to form this symbol's
605  /// value.
606  uint64_t Offset;
607
608  /// IsExternal - True if this symbol is visible outside this translation
609  /// unit.
610  unsigned IsExternal : 1;
611
612  /// IsPrivateExtern - True if this symbol is private extern.
613  unsigned IsPrivateExtern : 1;
614
615  /// CommonSize - The size of the symbol, if it is 'common', or 0.
616  //
617  // FIXME: Pack this in with other fields? We could put it in offset, since a
618  // common symbol can never get a definition.
619  uint64_t CommonSize;
620
621  /// SymbolSize - An expression describing how to calculate the size of
622  /// a symbol. If a symbol has no size this field will be NULL.
623  const MCExpr *SymbolSize;
624
625  /// CommonAlign - The alignment of the symbol, if it is 'common'.
626  //
627  // FIXME: Pack this in with other fields?
628  unsigned CommonAlign;
629
630  /// Flags - The Flags field is used by object file implementations to store
631  /// additional per symbol information which is not easily classified.
632  uint32_t Flags;
633
634  /// Index - Index field, for use by the object file implementation.
635  uint64_t Index;
636
637public:
638  // Only for use as sentinel.
639  MCSymbolData();
640  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
641               MCAssembler *A = 0);
642
643  /// @name Accessors
644  /// @{
645
646  const MCSymbol &getSymbol() const { return *Symbol; }
647
648  MCFragment *getFragment() const { return Fragment; }
649  void setFragment(MCFragment *Value) { Fragment = Value; }
650
651  uint64_t getOffset() const { return Offset; }
652  void setOffset(uint64_t Value) { Offset = Value; }
653
654  /// @}
655  /// @name Symbol Attributes
656  /// @{
657
658  bool isExternal() const { return IsExternal; }
659  void setExternal(bool Value) { IsExternal = Value; }
660
661  bool isPrivateExtern() const { return IsPrivateExtern; }
662  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
663
664  /// isCommon - Is this a 'common' symbol.
665  bool isCommon() const { return CommonSize != 0; }
666
667  /// setCommon - Mark this symbol as being 'common'.
668  ///
669  /// \param Size - The size of the symbol.
670  /// \param Align - The alignment of the symbol.
671  void setCommon(uint64_t Size, unsigned Align) {
672    CommonSize = Size;
673    CommonAlign = Align;
674  }
675
676  /// getCommonSize - Return the size of a 'common' symbol.
677  uint64_t getCommonSize() const {
678    assert(isCommon() && "Not a 'common' symbol!");
679    return CommonSize;
680  }
681
682  void setSize(const MCExpr *SS) {
683    SymbolSize = SS;
684  }
685
686  const MCExpr *getSize() const {
687    return SymbolSize;
688  }
689
690
691  /// getCommonAlignment - Return the alignment of a 'common' symbol.
692  unsigned getCommonAlignment() const {
693    assert(isCommon() && "Not a 'common' symbol!");
694    return CommonAlign;
695  }
696
697  /// getFlags - Get the (implementation defined) symbol flags.
698  uint32_t getFlags() const { return Flags; }
699
700  /// setFlags - Set the (implementation defined) symbol flags.
701  void setFlags(uint32_t Value) { Flags = Value; }
702
703  /// modifyFlags - Modify the flags via a mask
704  void modifyFlags(uint32_t Value, uint32_t Mask) {
705    Flags = (Flags & ~Mask) | Value;
706  }
707
708  /// getIndex - Get the (implementation defined) index.
709  uint64_t getIndex() const { return Index; }
710
711  /// setIndex - Set the (implementation defined) index.
712  void setIndex(uint64_t Value) { Index = Value; }
713
714  /// @}
715
716  void dump();
717};
718
719// FIXME: This really doesn't belong here. See comments below.
720struct IndirectSymbolData {
721  MCSymbol *Symbol;
722  MCSectionData *SectionData;
723};
724
725// FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
726// to one another.
727struct DataRegionData {
728  // This enum should be kept in sync w/ the mach-o definition in
729  // llvm/Object/MachOFormat.h.
730  enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
731  MCSymbol *Start;
732  MCSymbol *End;
733};
734
735class MCAssembler {
736  friend class MCAsmLayout;
737
738public:
739  typedef iplist<MCSectionData> SectionDataListType;
740  typedef iplist<MCSymbolData> SymbolDataListType;
741
742  typedef SectionDataListType::const_iterator const_iterator;
743  typedef SectionDataListType::iterator iterator;
744
745  typedef SymbolDataListType::const_iterator const_symbol_iterator;
746  typedef SymbolDataListType::iterator symbol_iterator;
747
748  typedef std::vector<IndirectSymbolData>::const_iterator
749    const_indirect_symbol_iterator;
750  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
751
752  typedef std::vector<DataRegionData>::const_iterator
753    const_data_region_iterator;
754  typedef std::vector<DataRegionData>::iterator data_region_iterator;
755
756private:
757  MCAssembler(const MCAssembler&) LLVM_DELETED_FUNCTION;
758  void operator=(const MCAssembler&) LLVM_DELETED_FUNCTION;
759
760  MCContext &Context;
761
762  MCAsmBackend &Backend;
763
764  MCCodeEmitter &Emitter;
765
766  MCObjectWriter &Writer;
767
768  raw_ostream &OS;
769
770  iplist<MCSectionData> Sections;
771
772  iplist<MCSymbolData> Symbols;
773
774  /// The map of sections to their associated assembler backend data.
775  //
776  // FIXME: Avoid this indirection?
777  DenseMap<const MCSection*, MCSectionData*> SectionMap;
778
779  /// The map of symbols to their associated assembler backend data.
780  //
781  // FIXME: Avoid this indirection?
782  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
783
784  std::vector<IndirectSymbolData> IndirectSymbols;
785
786  std::vector<DataRegionData> DataRegions;
787  /// The set of function symbols for which a .thumb_func directive has
788  /// been seen.
789  //
790  // FIXME: We really would like this in target specific code rather than
791  // here. Maybe when the relocation stuff moves to target specific,
792  // this can go with it? The streamer would need some target specific
793  // refactoring too.
794  SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
795
796  /// \brief The bundle alignment size currently set in the assembler.
797  ///
798  /// By default it's 0, which means bundling is disabled.
799  unsigned BundleAlignSize;
800
801  unsigned RelaxAll : 1;
802  unsigned NoExecStack : 1;
803  unsigned SubsectionsViaSymbols : 1;
804
805private:
806  /// Evaluate a fixup to a relocatable expression and the value which should be
807  /// placed into the fixup.
808  ///
809  /// \param Layout The layout to use for evaluation.
810  /// \param Fixup The fixup to evaluate.
811  /// \param DF The fragment the fixup is inside.
812  /// \param Target [out] On return, the relocatable expression the fixup
813  /// evaluates to.
814  /// \param Value [out] On return, the value of the fixup as currently laid
815  /// out.
816  /// \return Whether the fixup value was fully resolved. This is true if the
817  /// \p Value result is fixed, otherwise the value may change due to
818  /// relocation.
819  bool evaluateFixup(const MCAsmLayout &Layout,
820                     const MCFixup &Fixup, const MCFragment *DF,
821                     MCValue &Target, uint64_t &Value) const;
822
823  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
824  /// (increased in size, in order to hold its value correctly).
825  bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF,
826                            const MCAsmLayout &Layout) const;
827
828  /// Check whether the given fragment needs relaxation.
829  bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF,
830                               const MCAsmLayout &Layout) const;
831
832  /// \brief Perform one layout iteration and return true if any offsets
833  /// were adjusted.
834  bool layoutOnce(MCAsmLayout &Layout);
835
836  /// \brief Perform one layout iteration of the given section and return true
837  /// if any offsets were adjusted.
838  bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
839
840  bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
841
842  bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
843
844  bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
845  bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
846                                   MCDwarfCallFrameFragment &DF);
847
848  /// finishLayout - Finalize a layout, including fragment lowering.
849  void finishLayout(MCAsmLayout &Layout);
850
851  uint64_t handleFixup(const MCAsmLayout &Layout,
852                       MCFragment &F, const MCFixup &Fixup);
853
854public:
855  /// Compute the effective fragment size assuming it is laid out at the given
856  /// \p SectionAddress and \p FragmentOffset.
857  uint64_t computeFragmentSize(const MCAsmLayout &Layout,
858                               const MCFragment &F) const;
859
860  /// Find the symbol which defines the atom containing the given symbol, or
861  /// null if there is no such symbol.
862  const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
863
864  /// Check whether a particular symbol is visible to the linker and is required
865  /// in the symbol table, or whether it can be discarded by the assembler. This
866  /// also effects whether the assembler treats the label as potentially
867  /// defining a separate atom.
868  bool isSymbolLinkerVisible(const MCSymbol &SD) const;
869
870  /// Emit the section contents using the given object writer.
871  void writeSectionData(const MCSectionData *Section,
872                        const MCAsmLayout &Layout) const;
873
874  /// Check whether a given symbol has been flagged with .thumb_func.
875  bool isThumbFunc(const MCSymbol *Func) const {
876    return ThumbFuncs.count(Func);
877  }
878
879  /// Flag a function symbol as the target of a .thumb_func directive.
880  void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
881
882public:
883  /// Construct a new assembler instance.
884  ///
885  /// \param OS The stream to output to.
886  //
887  // FIXME: How are we going to parameterize this? Two obvious options are stay
888  // concrete and require clients to pass in a target like object. The other
889  // option is to make this abstract, and have targets provide concrete
890  // implementations as we do with AsmParser.
891  MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
892              MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
893              raw_ostream &OS);
894  ~MCAssembler();
895
896  /// Reuse an assembler instance
897  ///
898  void reset();
899
900  MCContext &getContext() const { return Context; }
901
902  MCAsmBackend &getBackend() const { return Backend; }
903
904  MCCodeEmitter &getEmitter() const { return Emitter; }
905
906  MCObjectWriter &getWriter() const { return Writer; }
907
908  /// Finish - Do final processing and write the object to the output stream.
909  /// \p Writer is used for custom object writer (as the MCJIT does),
910  /// if not specified it is automatically created from backend.
911  void Finish();
912
913  // FIXME: This does not belong here.
914  bool getSubsectionsViaSymbols() const {
915    return SubsectionsViaSymbols;
916  }
917  void setSubsectionsViaSymbols(bool Value) {
918    SubsectionsViaSymbols = Value;
919  }
920
921  bool getRelaxAll() const { return RelaxAll; }
922  void setRelaxAll(bool Value) { RelaxAll = Value; }
923
924  bool getNoExecStack() const { return NoExecStack; }
925  void setNoExecStack(bool Value) { NoExecStack = Value; }
926
927  bool isBundlingEnabled() const {
928    return BundleAlignSize != 0;
929  }
930
931  unsigned getBundleAlignSize() const {
932    return BundleAlignSize;
933  }
934
935  void setBundleAlignSize(unsigned Size) {
936    assert((Size == 0 || !(Size & (Size - 1))) &&
937           "Expect a power-of-two bundle align size");
938    BundleAlignSize = Size;
939  }
940
941  /// @name Section List Access
942  /// @{
943
944  const SectionDataListType &getSectionList() const { return Sections; }
945  SectionDataListType &getSectionList() { return Sections; }
946
947  iterator begin() { return Sections.begin(); }
948  const_iterator begin() const { return Sections.begin(); }
949
950  iterator end() { return Sections.end(); }
951  const_iterator end() const { return Sections.end(); }
952
953  size_t size() const { return Sections.size(); }
954
955  /// @}
956  /// @name Symbol List Access
957  /// @{
958
959  const SymbolDataListType &getSymbolList() const { return Symbols; }
960  SymbolDataListType &getSymbolList() { return Symbols; }
961
962  symbol_iterator symbol_begin() { return Symbols.begin(); }
963  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
964
965  symbol_iterator symbol_end() { return Symbols.end(); }
966  const_symbol_iterator symbol_end() const { return Symbols.end(); }
967
968  size_t symbol_size() const { return Symbols.size(); }
969
970  /// @}
971  /// @name Indirect Symbol List Access
972  /// @{
973
974  // FIXME: This is a total hack, this should not be here. Once things are
975  // factored so that the streamer has direct access to the .o writer, it can
976  // disappear.
977  std::vector<IndirectSymbolData> &getIndirectSymbols() {
978    return IndirectSymbols;
979  }
980
981  indirect_symbol_iterator indirect_symbol_begin() {
982    return IndirectSymbols.begin();
983  }
984  const_indirect_symbol_iterator indirect_symbol_begin() const {
985    return IndirectSymbols.begin();
986  }
987
988  indirect_symbol_iterator indirect_symbol_end() {
989    return IndirectSymbols.end();
990  }
991  const_indirect_symbol_iterator indirect_symbol_end() const {
992    return IndirectSymbols.end();
993  }
994
995  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
996
997  /// @}
998  /// @name Data Region List Access
999  /// @{
1000
1001  // FIXME: This is a total hack, this should not be here. Once things are
1002  // factored so that the streamer has direct access to the .o writer, it can
1003  // disappear.
1004  std::vector<DataRegionData> &getDataRegions() {
1005    return DataRegions;
1006  }
1007
1008  data_region_iterator data_region_begin() {
1009    return DataRegions.begin();
1010  }
1011  const_data_region_iterator data_region_begin() const {
1012    return DataRegions.begin();
1013  }
1014
1015  data_region_iterator data_region_end() {
1016    return DataRegions.end();
1017  }
1018  const_data_region_iterator data_region_end() const {
1019    return DataRegions.end();
1020  }
1021
1022  size_t data_region_size() const { return DataRegions.size(); }
1023
1024  /// @}
1025  /// @name Backend Data Access
1026  /// @{
1027
1028  MCSectionData &getSectionData(const MCSection &Section) const {
1029    MCSectionData *Entry = SectionMap.lookup(&Section);
1030    assert(Entry && "Missing section data!");
1031    return *Entry;
1032  }
1033
1034  MCSectionData &getOrCreateSectionData(const MCSection &Section,
1035                                        bool *Created = 0) {
1036    MCSectionData *&Entry = SectionMap[&Section];
1037
1038    if (Created) *Created = !Entry;
1039    if (!Entry)
1040      Entry = new MCSectionData(Section, this);
1041
1042    return *Entry;
1043  }
1044
1045  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
1046    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
1047    assert(Entry && "Missing symbol data!");
1048    return *Entry;
1049  }
1050
1051  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
1052                                      bool *Created = 0) {
1053    MCSymbolData *&Entry = SymbolMap[&Symbol];
1054
1055    if (Created) *Created = !Entry;
1056    if (!Entry)
1057      Entry = new MCSymbolData(Symbol, 0, 0, this);
1058
1059    return *Entry;
1060  }
1061
1062  /// @}
1063
1064  void dump();
1065};
1066
1067} // end namespace llvm
1068
1069#endif
1070