TargetRegisterInfo.h revision 255f89faee13dc491cb64fbeae3c763e7e2ea4e6
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include <cassert>
25#include <functional>
26
27namespace llvm {
28
29class BitVector;
30class MachineFunction;
31class RegScavenger;
32template<class T> class SmallVectorImpl;
33class raw_ostream;
34
35class TargetRegisterClass {
36public:
37  typedef const MCPhysReg* iterator;
38  typedef const MCPhysReg* const_iterator;
39  typedef const MVT::SimpleValueType* vt_iterator;
40  typedef const TargetRegisterClass* const * sc_iterator;
41
42  // Instance variables filled by tablegen, do not use!
43  const MCRegisterClass *MC;
44  const vt_iterator VTs;
45  const uint32_t *SubClassMask;
46  const uint16_t *SuperRegIndices;
47  const sc_iterator SuperClasses;
48  ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
49
50  /// getID() - Return the register class ID number.
51  ///
52  unsigned getID() const { return MC->getID(); }
53
54  /// getName() - Return the register class name for debugging.
55  ///
56  const char *getName() const { return MC->getName(); }
57
58  /// begin/end - Return all of the registers in this class.
59  ///
60  iterator       begin() const { return MC->begin(); }
61  iterator         end() const { return MC->end(); }
62
63  /// getNumRegs - Return the number of registers in this class.
64  ///
65  unsigned getNumRegs() const { return MC->getNumRegs(); }
66
67  /// getRegister - Return the specified register in the class.
68  ///
69  unsigned getRegister(unsigned i) const {
70    return MC->getRegister(i);
71  }
72
73  /// contains - Return true if the specified register is included in this
74  /// register class.  This does not include virtual registers.
75  bool contains(unsigned Reg) const {
76    return MC->contains(Reg);
77  }
78
79  /// contains - Return true if both registers are in this class.
80  bool contains(unsigned Reg1, unsigned Reg2) const {
81    return MC->contains(Reg1, Reg2);
82  }
83
84  /// getSize - Return the size of the register in bytes, which is also the size
85  /// of a stack slot allocated to hold a spilled copy of this register.
86  unsigned getSize() const { return MC->getSize(); }
87
88  /// getAlignment - Return the minimum required alignment for a register of
89  /// this class.
90  unsigned getAlignment() const { return MC->getAlignment(); }
91
92  /// getCopyCost - Return the cost of copying a value between two registers in
93  /// this class. A negative number means the register class is very expensive
94  /// to copy e.g. status flag register classes.
95  int getCopyCost() const { return MC->getCopyCost(); }
96
97  /// isAllocatable - Return true if this register class may be used to create
98  /// virtual registers.
99  bool isAllocatable() const { return MC->isAllocatable(); }
100
101  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
102  ///
103  bool hasType(EVT vt) const {
104    for(int i = 0; VTs[i] != MVT::Other; ++i)
105      if (EVT(VTs[i]) == vt)
106        return true;
107    return false;
108  }
109
110  /// vt_begin / vt_end - Loop over all of the value types that can be
111  /// represented by values in this register class.
112  vt_iterator vt_begin() const {
113    return VTs;
114  }
115
116  vt_iterator vt_end() const {
117    vt_iterator I = VTs;
118    while (*I != MVT::Other) ++I;
119    return I;
120  }
121
122  /// hasSubClass - return true if the specified TargetRegisterClass
123  /// is a proper sub-class of this TargetRegisterClass.
124  bool hasSubClass(const TargetRegisterClass *RC) const {
125    return RC != this && hasSubClassEq(RC);
126  }
127
128  /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
129  /// class.
130  bool hasSubClassEq(const TargetRegisterClass *RC) const {
131    unsigned ID = RC->getID();
132    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
133  }
134
135  /// hasSuperClass - return true if the specified TargetRegisterClass is a
136  /// proper super-class of this TargetRegisterClass.
137  bool hasSuperClass(const TargetRegisterClass *RC) const {
138    return RC->hasSubClass(this);
139  }
140
141  /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
142  /// class.
143  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
144    return RC->hasSubClassEq(this);
145  }
146
147  /// getSubClassMask - Returns a bit vector of subclasses, including this one.
148  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
149  /// use it.
150  const uint32_t *getSubClassMask() const {
151    return SubClassMask;
152  }
153
154  /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
155  /// that project some super-register class into this register class. The list
156  /// has an entry for each Idx such that:
157  ///
158  ///   There exists SuperRC where:
159  ///     For all Reg in SuperRC:
160  ///       this->contains(Reg:Idx)
161  ///
162  const uint16_t *getSuperRegIndices() const {
163    return SuperRegIndices;
164  }
165
166  /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
167  /// classes are ordered by ID which is also a topological ordering from large
168  /// to small classes.  The list does NOT include the current class.
169  sc_iterator getSuperClasses() const {
170    return SuperClasses;
171  }
172
173  /// isASubClass - return true if this TargetRegisterClass is a subset
174  /// class of at least one other TargetRegisterClass.
175  bool isASubClass() const {
176    return SuperClasses[0] != 0;
177  }
178
179  /// getRawAllocationOrder - Returns the preferred order for allocating
180  /// registers from this register class in MF. The raw order comes directly
181  /// from the .td file and may include reserved registers that are not
182  /// allocatable. Register allocators should also make sure to allocate
183  /// callee-saved registers only after all the volatiles are used. The
184  /// RegisterClassInfo class provides filtered allocation orders with
185  /// callee-saved registers moved to the end.
186  ///
187  /// The MachineFunction argument can be used to tune the allocatable
188  /// registers based on the characteristics of the function, subtarget, or
189  /// other criteria.
190  ///
191  /// By default, this method returns all registers in the class.
192  ///
193  ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
194    return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
195  }
196};
197
198/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
199/// registers. These are used by codegen, not by MC.
200struct TargetRegisterInfoDesc {
201  unsigned CostPerUse;          // Extra cost of instructions using register.
202  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
203};
204
205/// Each TargetRegisterClass has a per register weight, and weight
206/// limit which must be less than the limits of its pressure sets.
207struct RegClassWeight {
208  unsigned RegWeight;
209  unsigned WeightLimit;
210};
211
212/// TargetRegisterInfo base class - We assume that the target defines a static
213/// array of TargetRegisterDesc objects that represent all of the machine
214/// registers that the target has.  As such, we simply have to track a pointer
215/// to this array so that we can turn register number into a register
216/// descriptor.
217///
218class TargetRegisterInfo : public MCRegisterInfo {
219public:
220  typedef const TargetRegisterClass * const * regclass_iterator;
221private:
222  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
223  const char *const *SubRegIndexNames;        // Names of subreg indexes.
224  // Pointer to array of lane masks, one per sub-reg index.
225  const unsigned *SubRegIndexLaneMasks;
226
227  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
228
229protected:
230  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
231                     regclass_iterator RegClassBegin,
232                     regclass_iterator RegClassEnd,
233                     const char *const *SRINames,
234                     const unsigned *SRILaneMasks);
235  virtual ~TargetRegisterInfo();
236public:
237
238  // Register numbers can represent physical registers, virtual registers, and
239  // sometimes stack slots. The unsigned values are divided into these ranges:
240  //
241  //   0           Not a register, can be used as a sentinel.
242  //   [1;2^30)    Physical registers assigned by TableGen.
243  //   [2^30;2^31) Stack slots. (Rarely used.)
244  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
245  //
246  // Further sentinels can be allocated from the small negative integers.
247  // DenseMapInfo<unsigned> uses -1u and -2u.
248
249  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
250  /// frame index in a variable that normally holds a register. isStackSlot()
251  /// returns true if Reg is in the range used for stack slots.
252  ///
253  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
254  /// slots, so if a variable may contains a stack slot, always check
255  /// isStackSlot() first.
256  ///
257  static bool isStackSlot(unsigned Reg) {
258    return int(Reg) >= (1 << 30);
259  }
260
261  /// stackSlot2Index - Compute the frame index from a register value
262  /// representing a stack slot.
263  static int stackSlot2Index(unsigned Reg) {
264    assert(isStackSlot(Reg) && "Not a stack slot");
265    return int(Reg - (1u << 30));
266  }
267
268  /// index2StackSlot - Convert a non-negative frame index to a stack slot
269  /// register value.
270  static unsigned index2StackSlot(int FI) {
271    assert(FI >= 0 && "Cannot hold a negative frame index.");
272    return FI + (1u << 30);
273  }
274
275  /// isPhysicalRegister - Return true if the specified register number is in
276  /// the physical register namespace.
277  static bool isPhysicalRegister(unsigned Reg) {
278    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
279    return int(Reg) > 0;
280  }
281
282  /// isVirtualRegister - Return true if the specified register number is in
283  /// the virtual register namespace.
284  static bool isVirtualRegister(unsigned Reg) {
285    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
286    return int(Reg) < 0;
287  }
288
289  /// virtReg2Index - Convert a virtual register number to a 0-based index.
290  /// The first virtual register in a function will get the index 0.
291  static unsigned virtReg2Index(unsigned Reg) {
292    assert(isVirtualRegister(Reg) && "Not a virtual register");
293    return Reg & ~(1u << 31);
294  }
295
296  /// index2VirtReg - Convert a 0-based index to a virtual register number.
297  /// This is the inverse operation of VirtReg2IndexFunctor below.
298  static unsigned index2VirtReg(unsigned Index) {
299    return Index | (1u << 31);
300  }
301
302  /// getMinimalPhysRegClass - Returns the Register Class of a physical
303  /// register of the given type, picking the most sub register class of
304  /// the right type that contains this physreg.
305  const TargetRegisterClass *
306    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
307
308  /// getAllocatableClass - Return the maximal subclass of the given register
309  /// class that is alloctable, or NULL.
310  const TargetRegisterClass *
311    getAllocatableClass(const TargetRegisterClass *RC) const;
312
313  /// getAllocatableSet - Returns a bitset indexed by register number
314  /// indicating if a register is allocatable or not. If a register class is
315  /// specified, returns the subset for the class.
316  BitVector getAllocatableSet(const MachineFunction &MF,
317                              const TargetRegisterClass *RC = NULL) const;
318
319  /// getCostPerUse - Return the additional cost of using this register instead
320  /// of other registers in its class.
321  unsigned getCostPerUse(unsigned RegNo) const {
322    return InfoDesc[RegNo].CostPerUse;
323  }
324
325  /// isInAllocatableClass - Return true if the register is in the allocation
326  /// of any register class.
327  bool isInAllocatableClass(unsigned RegNo) const {
328    return InfoDesc[RegNo].inAllocatableClass;
329  }
330
331  /// getSubRegIndexName - Return the human-readable symbolic target-specific
332  /// name for the specified SubRegIndex.
333  const char *getSubRegIndexName(unsigned SubIdx) const {
334    assert(SubIdx && SubIdx < getNumSubRegIndices() &&
335           "This is not a subregister index");
336    return SubRegIndexNames[SubIdx-1];
337  }
338
339  /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
340  /// register that are covered by SubIdx.
341  ///
342  /// Lane masks for sub-register indices are similar to register units for
343  /// physical registers. The individual bits in a lane mask can't be assigned
344  /// any specific meaning. They can be used to check if two sub-register
345  /// indices overlap.
346  ///
347  /// If the target has a register such that:
348  ///
349  ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
350  ///
351  /// then:
352  ///
353  ///   getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
354  ///
355  /// The converse is not necessarily true. If two lane masks have a common
356  /// bit, the corresponding sub-registers may not overlap, but it can be
357  /// assumed that they usually will.
358  unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
359    // SubIdx == 0 is allowed, it has the lane mask ~0u.
360    assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
361    return SubRegIndexLaneMasks[SubIdx];
362  }
363
364  /// regsOverlap - Returns true if the two registers are equal or alias each
365  /// other. The registers may be virtual register.
366  bool regsOverlap(unsigned regA, unsigned regB) const {
367    if (regA == regB) return true;
368    if (isVirtualRegister(regA) || isVirtualRegister(regB))
369      return false;
370
371    // Regunits are numerically ordered. Find a common unit.
372    MCRegUnitIterator RUA(regA, this);
373    MCRegUnitIterator RUB(regB, this);
374    do {
375      if (*RUA == *RUB) return true;
376      if (*RUA < *RUB) ++RUA;
377      else             ++RUB;
378    } while (RUA.isValid() && RUB.isValid());
379    return false;
380  }
381
382  /// hasRegUnit - Returns true if Reg contains RegUnit.
383  bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
384    for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
385      if (*Units == RegUnit)
386        return true;
387    return false;
388  }
389
390  /// isSubRegister - Returns true if regB is a sub-register of regA.
391  ///
392  bool isSubRegister(unsigned regA, unsigned regB) const {
393    return isSuperRegister(regB, regA);
394  }
395
396  /// isSuperRegister - Returns true if regB is a super-register of regA.
397  ///
398  bool isSuperRegister(unsigned RegA, unsigned RegB) const {
399    for (MCSuperRegIterator I(RegA, this); I.isValid(); ++I)
400      if (*I == RegB)
401        return true;
402    return false;
403  }
404
405  /// getCalleeSavedRegs - Return a null-terminated list of all of the
406  /// callee saved registers on this target. The register should be in the
407  /// order of desired callee-save stack frame offset. The first register is
408  /// closest to the incoming stack pointer if stack grows down, and vice versa.
409  ///
410  virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0)
411                                                                      const = 0;
412
413  /// getCallPreservedMask - Return a mask of call-preserved registers for the
414  /// given calling convention on the current sub-target.  The mask should
415  /// include all call-preserved aliases.  This is used by the register
416  /// allocator to determine which registers can be live across a call.
417  ///
418  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
419  /// A set bit indicates that all bits of the corresponding register are
420  /// preserved across the function call.  The bit mask is expected to be
421  /// sub-register complete, i.e. if A is preserved, so are all its
422  /// sub-registers.
423  ///
424  /// Bits are numbered from the LSB, so the bit for physical register Reg can
425  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
426  ///
427  /// A NULL pointer means that no register mask will be used, and call
428  /// instructions should use implicit-def operands to indicate call clobbered
429  /// registers.
430  ///
431  virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
432    // The default mask clobbers everything.  All targets should override.
433    return 0;
434  }
435
436  /// getReservedRegs - Returns a bitset indexed by physical register number
437  /// indicating if a register is a special register that has particular uses
438  /// and should be considered unavailable at all times, e.g. SP, RA. This is
439  /// used by register scavenger to determine what registers are free.
440  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
441
442  /// getMatchingSuperReg - Return a super-register of the specified register
443  /// Reg so its sub-register of index SubIdx is Reg.
444  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
445                               const TargetRegisterClass *RC) const {
446    return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
447  }
448
449  /// getMatchingSuperRegClass - Return a subclass of the specified register
450  /// class A so that each register in it has a sub-register of the
451  /// specified sub-register index which is in the specified register class B.
452  ///
453  /// TableGen will synthesize missing A sub-classes.
454  virtual const TargetRegisterClass *
455  getMatchingSuperRegClass(const TargetRegisterClass *A,
456                           const TargetRegisterClass *B, unsigned Idx) const;
457
458  /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
459  /// supports the sub-register index Idx.
460  /// If no such sub-class exists, return NULL.
461  /// If all registers in RC already have an Idx sub-register, return RC.
462  ///
463  /// TableGen generates a version of this function that is good enough in most
464  /// cases.  Targets can override if they have constraints that TableGen
465  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
466  /// supported by the full GR32 register class in 64-bit mode, but only by the
467  /// GR32_ABCD regiister class in 32-bit mode.
468  ///
469  /// TableGen will synthesize missing RC sub-classes.
470  virtual const TargetRegisterClass *
471  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
472    assert(Idx == 0 && "Target has no sub-registers");
473    return RC;
474  }
475
476  /// composeSubRegIndices - Return the subregister index you get from composing
477  /// two subregister indices.
478  ///
479  /// The special null sub-register index composes as the identity.
480  ///
481  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
482  /// returns c. Note that composeSubRegIndices does not tell you about illegal
483  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
484  /// b, composeSubRegIndices doesn't tell you.
485  ///
486  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
487  /// ssub_0:S0 - ssub_3:S3 subregs.
488  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
489  ///
490  unsigned composeSubRegIndices(unsigned a, unsigned b) const {
491    if (!a) return b;
492    if (!b) return a;
493    return composeSubRegIndicesImpl(a, b);
494  }
495
496protected:
497  /// Overridden by TableGen in targets that have sub-registers.
498  virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
499    llvm_unreachable("Target has no sub-registers");
500  }
501
502public:
503  /// getCommonSuperRegClass - Find a common super-register class if it exists.
504  ///
505  /// Find a register class, SuperRC and two sub-register indices, PreA and
506  /// PreB, such that:
507  ///
508  ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
509  ///
510  ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
511  ///
512  ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
513  ///
514  /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
515  /// requirements, and there is no register class with a smaller spill size
516  /// that satisfies the requirements.
517  ///
518  /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
519  ///
520  /// Either of the PreA and PreB sub-register indices may be returned as 0. In
521  /// that case, the returned register class will be a sub-class of the
522  /// corresponding argument register class.
523  ///
524  /// The function returns NULL if no register class can be found.
525  ///
526  const TargetRegisterClass*
527  getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
528                         const TargetRegisterClass *RCB, unsigned SubB,
529                         unsigned &PreA, unsigned &PreB) const;
530
531  //===--------------------------------------------------------------------===//
532  // Register Class Information
533  //
534
535  /// Register class iterators
536  ///
537  regclass_iterator regclass_begin() const { return RegClassBegin; }
538  regclass_iterator regclass_end() const { return RegClassEnd; }
539
540  unsigned getNumRegClasses() const {
541    return (unsigned)(regclass_end()-regclass_begin());
542  }
543
544  /// getRegClass - Returns the register class associated with the enumeration
545  /// value.  See class MCOperandInfo.
546  const TargetRegisterClass *getRegClass(unsigned i) const {
547    assert(i < getNumRegClasses() && "Register Class ID out of range");
548    return RegClassBegin[i];
549  }
550
551  /// getCommonSubClass - find the largest common subclass of A and B. Return
552  /// NULL if there is no common subclass.
553  const TargetRegisterClass *
554  getCommonSubClass(const TargetRegisterClass *A,
555                    const TargetRegisterClass *B) const;
556
557  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
558  /// values.  If a target supports multiple different pointer register classes,
559  /// kind specifies which one is indicated.
560  virtual const TargetRegisterClass *
561  getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
562    llvm_unreachable("Target didn't implement getPointerRegClass!");
563  }
564
565  /// getCrossCopyRegClass - Returns a legal register class to copy a register
566  /// in the specified class to or from. If it is possible to copy the register
567  /// directly without using a cross register class copy, return the specified
568  /// RC. Returns NULL if it is not possible to copy between a two registers of
569  /// the specified class.
570  virtual const TargetRegisterClass *
571  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
572    return RC;
573  }
574
575  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
576  /// legal to use in the current sub-target and has the same spill size.
577  /// The returned register class can be used to create virtual registers which
578  /// means that all its registers can be copied and spilled.
579  virtual const TargetRegisterClass*
580  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
581    /// The default implementation is very conservative and doesn't allow the
582    /// register allocator to inflate register classes.
583    return RC;
584  }
585
586  /// getRegPressureLimit - Return the register pressure "high water mark" for
587  /// the specific register class. The scheduler is in high register pressure
588  /// mode (for the specific register class) if it goes over the limit.
589  ///
590  /// Note: this is the old register pressure model that relies on a manually
591  /// specified representative register class per value type.
592  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
593                                       MachineFunction &MF) const {
594    return 0;
595  }
596
597// Get the weight in units of pressure for this register class.
598  virtual const RegClassWeight &getRegClassWeight(
599    const TargetRegisterClass *RC) const = 0;
600
601  /// Get the number of dimensions of register pressure.
602  virtual unsigned getNumRegPressureSets() const = 0;
603
604  /// Get the name of this register unit pressure set.
605  virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
606
607  /// Get the register unit pressure limit for this dimension.
608  /// This limit must be adjusted dynamically for reserved registers.
609  virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
610
611  /// Get the dimensions of register pressure impacted by this register class.
612  /// Returns a -1 terminated array of pressure set IDs.
613  virtual const int *getRegClassPressureSets(
614    const TargetRegisterClass *RC) const = 0;
615
616  /// getRawAllocationOrder - Returns the register allocation order for a
617  /// specified register class with a target-dependent hint. The returned list
618  /// may contain reserved registers that cannot be allocated.
619  ///
620  /// Register allocators need only call this function to resolve
621  /// target-dependent hints, but it should work without hinting as well.
622  virtual ArrayRef<MCPhysReg>
623  getRawAllocationOrder(const TargetRegisterClass *RC,
624                        unsigned HintType, unsigned HintReg,
625                        const MachineFunction &MF) const {
626    return RC->getRawAllocationOrder(MF);
627  }
628
629  /// ResolveRegAllocHint - Resolves the specified register allocation hint
630  /// to a physical register. Returns the physical register if it is successful.
631  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
632                                       const MachineFunction &MF) const {
633    if (Type == 0 && Reg && isPhysicalRegister(Reg))
634      return Reg;
635    return 0;
636  }
637
638  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
639  /// writing a register from RC in two consecutive instructions.
640  /// This can avoid pipeline stalls on certain architectures.
641  /// It does cause increased register pressure, though.
642  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
643    return false;
644  }
645
646  /// UpdateRegAllocHint - A callback to allow target a chance to update
647  /// register allocation hints when a register is "changed" (e.g. coalesced)
648  /// to another register. e.g. On ARM, some virtual registers should target
649  /// register pairs, if one of pair is coalesced to another register, the
650  /// allocation hint of the other half of the pair should be changed to point
651  /// to the new register.
652  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
653                                  MachineFunction &MF) const {
654    // Do nothing.
655  }
656
657  /// requiresRegisterScavenging - returns true if the target requires (and can
658  /// make use of) the register scavenger.
659  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
660    return false;
661  }
662
663  /// useFPForScavengingIndex - returns true if the target wants to use
664  /// frame pointer based accesses to spill to the scavenger emergency spill
665  /// slot.
666  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
667    return true;
668  }
669
670  /// requiresFrameIndexScavenging - returns true if the target requires post
671  /// PEI scavenging of registers for materializing frame index constants.
672  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
673    return false;
674  }
675
676  /// requiresVirtualBaseRegisters - Returns true if the target wants the
677  /// LocalStackAllocation pass to be run and virtual base registers
678  /// used for more efficient stack access.
679  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
680    return false;
681  }
682
683  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
684  /// the stack frame of the given function for the specified register. e.g. On
685  /// x86, if the frame register is required, the first fixed stack object is
686  /// reserved as its spill slot. This tells PEI not to create a new stack frame
687  /// object for the given register. It should be called only after
688  /// processFunctionBeforeCalleeSavedScan().
689  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
690                                    int &FrameIdx) const {
691    return false;
692  }
693
694  /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
695  /// after register allocation.
696  virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
697    return false;
698  }
699
700  /// needsStackRealignment - true if storage within the function requires the
701  /// stack pointer to be aligned more than the normal calling convention calls
702  /// for.
703  virtual bool needsStackRealignment(const MachineFunction &MF) const {
704    return false;
705  }
706
707  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
708  /// index in the instruction, if there is one.
709  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
710                                           int Idx) const {
711    return 0;
712  }
713
714  /// needsFrameBaseReg - Returns true if the instruction's frame index
715  /// reference would be better served by a base register other than FP
716  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
717  /// references it should create new base registers for.
718  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
719    return false;
720  }
721
722  /// materializeFrameBaseRegister - Insert defining instruction(s) for
723  /// BaseReg to be a pointer to FrameIdx before insertion point I.
724  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
725                                            unsigned BaseReg, int FrameIdx,
726                                            int64_t Offset) const {
727    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
728                     "target");
729  }
730
731  /// resolveFrameIndex - Resolve a frame index operand of an instruction
732  /// to reference the indicated base register plus offset instead.
733  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
734                                 unsigned BaseReg, int64_t Offset) const {
735    llvm_unreachable("resolveFrameIndex does not exist on this target");
736  }
737
738  /// isFrameOffsetLegal - Determine whether a given offset immediate is
739  /// encodable to resolve a frame index.
740  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
741                                  int64_t Offset) const {
742    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
743  }
744
745  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
746  /// code insertion to eliminate call frame setup and destroy pseudo
747  /// instructions (but only if the Target is using them).  It is responsible
748  /// for eliminating these instructions, replacing them with concrete
749  /// instructions.  This method need only be implemented if using call frame
750  /// setup/destroy pseudo instructions.
751  ///
752  virtual void
753  eliminateCallFramePseudoInstr(MachineFunction &MF,
754                                MachineBasicBlock &MBB,
755                                MachineBasicBlock::iterator MI) const {
756    llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
757                     "target!");
758  }
759
760
761  /// saveScavengerRegister - Spill the register so it can be used by the
762  /// register scavenger. Return true if the register was spilled, false
763  /// otherwise. If this function does not spill the register, the scavenger
764  /// will instead spill it to the emergency spill slot.
765  ///
766  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
767                                     MachineBasicBlock::iterator I,
768                                     MachineBasicBlock::iterator &UseMI,
769                                     const TargetRegisterClass *RC,
770                                     unsigned Reg) const {
771    return false;
772  }
773
774  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
775  /// frame indices from instructions which may use them.  The instruction
776  /// referenced by the iterator contains an MO_FrameIndex operand which must be
777  /// eliminated by this method.  This method may modify or replace the
778  /// specified instruction, as long as it keeps the iterator pointing at the
779  /// finished product. SPAdj is the SP adjustment due to call frame setup
780  /// instruction.
781  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
782                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
783
784  //===--------------------------------------------------------------------===//
785  /// Debug information queries.
786
787  /// getFrameRegister - This method should return the register used as a base
788  /// for values allocated in the current stack frame.
789  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
790
791  /// getCompactUnwindRegNum - This function maps the register to the number for
792  /// compact unwind encoding. Return -1 if the register isn't valid.
793  virtual int getCompactUnwindRegNum(unsigned, bool) const {
794    return -1;
795  }
796};
797
798
799//===----------------------------------------------------------------------===//
800//                           SuperRegClassIterator
801//===----------------------------------------------------------------------===//
802//
803// Iterate over the possible super-registers for a given register class. The
804// iterator will visit a list of pairs (Idx, Mask) corresponding to the
805// possible classes of super-registers.
806//
807// Each bit mask will have at least one set bit, and each set bit in Mask
808// corresponds to a SuperRC such that:
809//
810//   For all Reg in SuperRC: Reg:Idx is in RC.
811//
812// The iterator can include (O, RC->getSubClassMask()) as the first entry which
813// also satisfies the above requirement, assuming Reg:0 == Reg.
814//
815class SuperRegClassIterator {
816  const unsigned RCMaskWords;
817  unsigned SubReg;
818  const uint16_t *Idx;
819  const uint32_t *Mask;
820
821public:
822  /// Create a SuperRegClassIterator that visits all the super-register classes
823  /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
824  SuperRegClassIterator(const TargetRegisterClass *RC,
825                        const TargetRegisterInfo *TRI,
826                        bool IncludeSelf = false)
827    : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
828      SubReg(0),
829      Idx(RC->getSuperRegIndices()),
830      Mask(RC->getSubClassMask()) {
831    if (!IncludeSelf)
832      ++*this;
833  }
834
835  /// Returns true if this iterator is still pointing at a valid entry.
836  bool isValid() const { return Idx; }
837
838  /// Returns the current sub-register index.
839  unsigned getSubReg() const { return SubReg; }
840
841  /// Returns the bit mask if register classes that getSubReg() projects into
842  /// RC.
843  const uint32_t *getMask() const { return Mask; }
844
845  /// Advance iterator to the next entry.
846  void operator++() {
847    assert(isValid() && "Cannot move iterator past end.");
848    Mask += RCMaskWords;
849    SubReg = *Idx++;
850    if (!SubReg)
851      Idx = 0;
852  }
853};
854
855// This is useful when building IndexedMaps keyed on virtual registers
856struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
857  unsigned operator()(unsigned Reg) const {
858    return TargetRegisterInfo::virtReg2Index(Reg);
859  }
860};
861
862/// PrintReg - Helper class for printing registers on a raw_ostream.
863/// Prints virtual and physical registers with or without a TRI instance.
864///
865/// The format is:
866///   %noreg          - NoRegister
867///   %vreg5          - a virtual register.
868///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
869///   %EAX            - a physical register
870///   %physreg17      - a physical register when no TRI instance given.
871///
872/// Usage: OS << PrintReg(Reg, TRI) << '\n';
873///
874class PrintReg {
875  const TargetRegisterInfo *TRI;
876  unsigned Reg;
877  unsigned SubIdx;
878public:
879  explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0,
880                    unsigned subidx = 0)
881    : TRI(tri), Reg(reg), SubIdx(subidx) {}
882  void print(raw_ostream&) const;
883};
884
885static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
886  PR.print(OS);
887  return OS;
888}
889
890/// PrintRegUnit - Helper class for printing register units on a raw_ostream.
891///
892/// Register units are named after their root registers:
893///
894///   AL      - Single root.
895///   FP0~ST7 - Dual roots.
896///
897/// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
898///
899class PrintRegUnit {
900  const TargetRegisterInfo *TRI;
901  unsigned Unit;
902public:
903  PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
904    : TRI(tri), Unit(unit) {}
905  void print(raw_ostream&) const;
906};
907
908static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
909  PR.print(OS);
910  return OS;
911}
912
913} // End llvm namespace
914
915#endif
916