TargetRegisterInfo.h revision 2c6ae095b8a944c8355377498b9ad11bb94af2d5
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/CallingConv.h"
24#include <cassert>
25#include <functional>
26
27namespace llvm {
28
29class BitVector;
30class MachineFunction;
31class RegScavenger;
32template<class T> class SmallVectorImpl;
33class raw_ostream;
34
35class TargetRegisterClass {
36public:
37  typedef const unsigned* iterator;
38  typedef const unsigned* const_iterator;
39  typedef const MVT::SimpleValueType* vt_iterator;
40  typedef const TargetRegisterClass* const * sc_iterator;
41private:
42  virtual void anchor();
43  const MCRegisterClass *MC;
44  const vt_iterator VTs;
45  const unsigned *SubClassMask;
46  const sc_iterator SuperClasses;
47  const sc_iterator SuperRegClasses;
48public:
49  TargetRegisterClass(const MCRegisterClass *MC,
50                      const MVT::SimpleValueType *vts,
51                      const unsigned *subcm,
52                      const TargetRegisterClass * const *supcs,
53                      const TargetRegisterClass * const *superregcs)
54    : MC(MC), VTs(vts), SubClassMask(subcm), SuperClasses(supcs),
55      SuperRegClasses(superregcs) {}
56
57  virtual ~TargetRegisterClass() {}     // Allow subclasses
58
59  /// getID() - Return the register class ID number.
60  ///
61  unsigned getID() const { return MC->getID(); }
62
63  /// getName() - Return the register class name for debugging.
64  ///
65  const char *getName() const { return MC->getName(); }
66
67  /// begin/end - Return all of the registers in this class.
68  ///
69  iterator       begin() const { return MC->begin(); }
70  iterator         end() const { return MC->end(); }
71
72  /// getNumRegs - Return the number of registers in this class.
73  ///
74  unsigned getNumRegs() const { return MC->getNumRegs(); }
75
76  /// getRegister - Return the specified register in the class.
77  ///
78  unsigned getRegister(unsigned i) const {
79    return MC->getRegister(i);
80  }
81
82  /// contains - Return true if the specified register is included in this
83  /// register class.  This does not include virtual registers.
84  bool contains(unsigned Reg) const {
85    return MC->contains(Reg);
86  }
87
88  /// contains - Return true if both registers are in this class.
89  bool contains(unsigned Reg1, unsigned Reg2) const {
90    return MC->contains(Reg1, Reg2);
91  }
92
93  /// getSize - Return the size of the register in bytes, which is also the size
94  /// of a stack slot allocated to hold a spilled copy of this register.
95  unsigned getSize() const { return MC->getSize(); }
96
97  /// getAlignment - Return the minimum required alignment for a register of
98  /// this class.
99  unsigned getAlignment() const { return MC->getAlignment(); }
100
101  /// getCopyCost - Return the cost of copying a value between two registers in
102  /// this class. A negative number means the register class is very expensive
103  /// to copy e.g. status flag register classes.
104  int getCopyCost() const { return MC->getCopyCost(); }
105
106  /// isAllocatable - Return true if this register class may be used to create
107  /// virtual registers.
108  bool isAllocatable() const { return MC->isAllocatable(); }
109
110  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
111  ///
112  bool hasType(EVT vt) const {
113    for(int i = 0; VTs[i] != MVT::Other; ++i)
114      if (EVT(VTs[i]) == vt)
115        return true;
116    return false;
117  }
118
119  /// vt_begin / vt_end - Loop over all of the value types that can be
120  /// represented by values in this register class.
121  vt_iterator vt_begin() const {
122    return VTs;
123  }
124
125  vt_iterator vt_end() const {
126    vt_iterator I = VTs;
127    while (*I != MVT::Other) ++I;
128    return I;
129  }
130
131  /// superregclasses_begin / superregclasses_end - Loop over all of
132  /// the superreg register classes of this register class.
133  sc_iterator superregclasses_begin() const {
134    return SuperRegClasses;
135  }
136
137  sc_iterator superregclasses_end() const {
138    sc_iterator I = SuperRegClasses;
139    while (*I != NULL) ++I;
140    return I;
141  }
142
143  /// hasSubClass - return true if the specified TargetRegisterClass
144  /// is a proper sub-class of this TargetRegisterClass.
145  bool hasSubClass(const TargetRegisterClass *RC) const {
146    return RC != this && hasSubClassEq(RC);
147  }
148
149  /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
150  /// class.
151  bool hasSubClassEq(const TargetRegisterClass *RC) const {
152    unsigned ID = RC->getID();
153    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
154  }
155
156  /// hasSuperClass - return true if the specified TargetRegisterClass is a
157  /// proper super-class of this TargetRegisterClass.
158  bool hasSuperClass(const TargetRegisterClass *RC) const {
159    return RC->hasSubClass(this);
160  }
161
162  /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
163  /// class.
164  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
165    return RC->hasSubClassEq(this);
166  }
167
168  /// getSubClassMask - Returns a bit vector of subclasses, including this one.
169  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
170  /// use it.
171  const unsigned *getSubClassMask() const {
172    return SubClassMask;
173  }
174
175  /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
176  /// classes are ordered by ID which is also a topological ordering from large
177  /// to small classes.  The list does NOT include the current class.
178  sc_iterator getSuperClasses() const {
179    return SuperClasses;
180  }
181
182  /// isASubClass - return true if this TargetRegisterClass is a subset
183  /// class of at least one other TargetRegisterClass.
184  bool isASubClass() const {
185    return SuperClasses[0] != 0;
186  }
187
188  /// getRawAllocationOrder - Returns the preferred order for allocating
189  /// registers from this register class in MF. The raw order comes directly
190  /// from the .td file and may include reserved registers that are not
191  /// allocatable. Register allocators should also make sure to allocate
192  /// callee-saved registers only after all the volatiles are used. The
193  /// RegisterClassInfo class provides filtered allocation orders with
194  /// callee-saved registers moved to the end.
195  ///
196  /// The MachineFunction argument can be used to tune the allocatable
197  /// registers based on the characteristics of the function, subtarget, or
198  /// other criteria.
199  ///
200  /// By default, this method returns all registers in the class.
201  ///
202  virtual
203  ArrayRef<unsigned> getRawAllocationOrder(const MachineFunction &MF) const {
204    return makeArrayRef(begin(), getNumRegs());
205  }
206};
207
208/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
209/// registers. These are used by codegen, not by MC.
210struct TargetRegisterInfoDesc {
211  unsigned CostPerUse;          // Extra cost of instructions using register.
212  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
213};
214
215/// TargetRegisterInfo base class - We assume that the target defines a static
216/// array of TargetRegisterDesc objects that represent all of the machine
217/// registers that the target has.  As such, we simply have to track a pointer
218/// to this array so that we can turn register number into a register
219/// descriptor.
220///
221class TargetRegisterInfo : public MCRegisterInfo {
222public:
223  typedef const TargetRegisterClass * const * regclass_iterator;
224private:
225  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
226  const char *const *SubRegIndexNames;        // Names of subreg indexes.
227  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
228
229protected:
230  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
231                     regclass_iterator RegClassBegin,
232                     regclass_iterator RegClassEnd,
233                     const char *const *subregindexnames);
234  virtual ~TargetRegisterInfo();
235public:
236
237  // Register numbers can represent physical registers, virtual registers, and
238  // sometimes stack slots. The unsigned values are divided into these ranges:
239  //
240  //   0           Not a register, can be used as a sentinel.
241  //   [1;2^30)    Physical registers assigned by TableGen.
242  //   [2^30;2^31) Stack slots. (Rarely used.)
243  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
244  //
245  // Further sentinels can be allocated from the small negative integers.
246  // DenseMapInfo<unsigned> uses -1u and -2u.
247
248  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
249  /// frame index in a variable that normally holds a register. isStackSlot()
250  /// returns true if Reg is in the range used for stack slots.
251  ///
252  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
253  /// slots, so if a variable may contains a stack slot, always check
254  /// isStackSlot() first.
255  ///
256  static bool isStackSlot(unsigned Reg) {
257    return int(Reg) >= (1 << 30);
258  }
259
260  /// stackSlot2Index - Compute the frame index from a register value
261  /// representing a stack slot.
262  static int stackSlot2Index(unsigned Reg) {
263    assert(isStackSlot(Reg) && "Not a stack slot");
264    return int(Reg - (1u << 30));
265  }
266
267  /// index2StackSlot - Convert a non-negative frame index to a stack slot
268  /// register value.
269  static unsigned index2StackSlot(int FI) {
270    assert(FI >= 0 && "Cannot hold a negative frame index.");
271    return FI + (1u << 30);
272  }
273
274  /// isPhysicalRegister - Return true if the specified register number is in
275  /// the physical register namespace.
276  static bool isPhysicalRegister(unsigned Reg) {
277    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
278    return int(Reg) > 0;
279  }
280
281  /// isVirtualRegister - Return true if the specified register number is in
282  /// the virtual register namespace.
283  static bool isVirtualRegister(unsigned Reg) {
284    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
285    return int(Reg) < 0;
286  }
287
288  /// virtReg2Index - Convert a virtual register number to a 0-based index.
289  /// The first virtual register in a function will get the index 0.
290  static unsigned virtReg2Index(unsigned Reg) {
291    assert(isVirtualRegister(Reg) && "Not a virtual register");
292    return Reg & ~(1u << 31);
293  }
294
295  /// index2VirtReg - Convert a 0-based index to a virtual register number.
296  /// This is the inverse operation of VirtReg2IndexFunctor below.
297  static unsigned index2VirtReg(unsigned Index) {
298    return Index | (1u << 31);
299  }
300
301  /// getMinimalPhysRegClass - Returns the Register Class of a physical
302  /// register of the given type, picking the most sub register class of
303  /// the right type that contains this physreg.
304  const TargetRegisterClass *
305    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
306
307  /// getAllocatableSet - Returns a bitset indexed by register number
308  /// indicating if a register is allocatable or not. If a register class is
309  /// specified, returns the subset for the class.
310  BitVector getAllocatableSet(const MachineFunction &MF,
311                              const TargetRegisterClass *RC = NULL) const;
312
313  /// getCostPerUse - Return the additional cost of using this register instead
314  /// of other registers in its class.
315  unsigned getCostPerUse(unsigned RegNo) const {
316    return InfoDesc[RegNo].CostPerUse;
317  }
318
319  /// isInAllocatableClass - Return true if the register is in the allocation
320  /// of any register class.
321  bool isInAllocatableClass(unsigned RegNo) const {
322    return InfoDesc[RegNo].inAllocatableClass;
323  }
324
325  /// getSubRegIndexName - Return the human-readable symbolic target-specific
326  /// name for the specified SubRegIndex.
327  const char *getSubRegIndexName(unsigned SubIdx) const {
328    assert(SubIdx && "This is not a subregister index");
329    return SubRegIndexNames[SubIdx-1];
330  }
331
332  /// regsOverlap - Returns true if the two registers are equal or alias each
333  /// other. The registers may be virtual register.
334  bool regsOverlap(unsigned regA, unsigned regB) const {
335    if (regA == regB) return true;
336    if (isVirtualRegister(regA) || isVirtualRegister(regB))
337      return false;
338    for (const unsigned *regList = getOverlaps(regA)+1; *regList; ++regList) {
339      if (*regList == regB) return true;
340    }
341    return false;
342  }
343
344  /// isSubRegister - Returns true if regB is a sub-register of regA.
345  ///
346  bool isSubRegister(unsigned regA, unsigned regB) const {
347    return isSuperRegister(regB, regA);
348  }
349
350  /// isSuperRegister - Returns true if regB is a super-register of regA.
351  ///
352  bool isSuperRegister(unsigned regA, unsigned regB) const {
353    for (const unsigned *regList = getSuperRegisters(regA); *regList;++regList){
354      if (*regList == regB) return true;
355    }
356    return false;
357  }
358
359  /// getCalleeSavedRegs - Return a null-terminated list of all of the
360  /// callee saved registers on this target. The register should be in the
361  /// order of desired callee-save stack frame offset. The first register is
362  /// closest to the incoming stack pointer if stack grows down, and vice versa.
363  ///
364  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
365                                                                      const = 0;
366
367  /// getCallPreservedMask - Return a mask of call-preserved registers for the
368  /// given calling convention on the current sub-target.  The mask should
369  /// include all call-preserved aliases.  This is used by the register
370  /// allocator to determine which registers can be live across a call.
371  ///
372  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
373  /// A set bit indicates that all bits of the corresponding register are
374  /// preserved across the function call.  The bit mask is expected to be
375  /// sub-register complete, i.e. if A is preserved, so are all its
376  /// sub-registers.
377  ///
378  /// Bits are numbered from the LSB, so the bit for physical register Reg can
379  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
380  ///
381  /// A NULL pointer means that no register mask will be used, and call
382  /// instructions should use implicit-def operands to indicate call clobbered
383  /// registers.
384  ///
385  virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
386    // The default mask clobbers everything.  All targets should override.
387    return 0;
388  }
389
390  /// getReservedRegs - Returns a bitset indexed by physical register number
391  /// indicating if a register is a special register that has particular uses
392  /// and should be considered unavailable at all times, e.g. SP, RA. This is
393  /// used by register scavenger to determine what registers are free.
394  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
395
396  /// getSubReg - Returns the physical register number of sub-register "Index"
397  /// for physical register RegNo. Return zero if the sub-register does not
398  /// exist.
399  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
400
401  /// getSubRegIndex - For a given register pair, return the sub-register index
402  /// if the second register is a sub-register of the first. Return zero
403  /// otherwise.
404  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
405
406  /// getMatchingSuperReg - Return a super-register of the specified register
407  /// Reg so its sub-register of index SubIdx is Reg.
408  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
409                               const TargetRegisterClass *RC) const {
410    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
411      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
412        return SR;
413    return 0;
414  }
415
416  /// canCombineSubRegIndices - Given a register class and a list of
417  /// subregister indices, return true if it's possible to combine the
418  /// subregister indices into one that corresponds to a larger
419  /// subregister. Return the new subregister index by reference. Note the
420  /// new index may be zero if the given subregisters can be combined to
421  /// form the whole register.
422  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
423                                       SmallVectorImpl<unsigned> &SubIndices,
424                                       unsigned &NewSubIdx) const {
425    return 0;
426  }
427
428  /// getMatchingSuperRegClass - Return a subclass of the specified register
429  /// class A so that each register in it has a sub-register of the
430  /// specified sub-register index which is in the specified register class B.
431  ///
432  /// TableGen will synthesize missing A sub-classes.
433  virtual const TargetRegisterClass *
434  getMatchingSuperRegClass(const TargetRegisterClass *A,
435                           const TargetRegisterClass *B, unsigned Idx) const =0;
436
437  /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
438  /// supports the sub-register index Idx.
439  /// If no such sub-class exists, return NULL.
440  /// If all registers in RC already have an Idx sub-register, return RC.
441  ///
442  /// TableGen generates a version of this function that is good enough in most
443  /// cases.  Targets can override if they have constraints that TableGen
444  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
445  /// supported by the full GR32 register class in 64-bit mode, but only by the
446  /// GR32_ABCD regiister class in 32-bit mode.
447  ///
448  /// TableGen will synthesize missing RC sub-classes.
449  virtual const TargetRegisterClass *
450  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const =0;
451
452  /// composeSubRegIndices - Return the subregister index you get from composing
453  /// two subregister indices.
454  ///
455  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
456  /// returns c. Note that composeSubRegIndices does not tell you about illegal
457  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
458  /// b, composeSubRegIndices doesn't tell you.
459  ///
460  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
461  /// ssub_0:S0 - ssub_3:S3 subregs.
462  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
463  ///
464  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
465    // This default implementation is correct for most targets.
466    return b;
467  }
468
469  //===--------------------------------------------------------------------===//
470  // Register Class Information
471  //
472
473  /// Register class iterators
474  ///
475  regclass_iterator regclass_begin() const { return RegClassBegin; }
476  regclass_iterator regclass_end() const { return RegClassEnd; }
477
478  unsigned getNumRegClasses() const {
479    return (unsigned)(regclass_end()-regclass_begin());
480  }
481
482  /// getRegClass - Returns the register class associated with the enumeration
483  /// value.  See class MCOperandInfo.
484  const TargetRegisterClass *getRegClass(unsigned i) const {
485    assert(i < getNumRegClasses() && "Register Class ID out of range");
486    return RegClassBegin[i];
487  }
488
489  /// getCommonSubClass - find the largest common subclass of A and B. Return
490  /// NULL if there is no common subclass.
491  const TargetRegisterClass *
492  getCommonSubClass(const TargetRegisterClass *A,
493                    const TargetRegisterClass *B) const;
494
495  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
496  /// values.  If a target supports multiple different pointer register classes,
497  /// kind specifies which one is indicated.
498  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
499    llvm_unreachable("Target didn't implement getPointerRegClass!");
500  }
501
502  /// getCrossCopyRegClass - Returns a legal register class to copy a register
503  /// in the specified class to or from. If it is possible to copy the register
504  /// directly without using a cross register class copy, return the specified
505  /// RC. Returns NULL if it is not possible to copy between a two registers of
506  /// the specified class.
507  virtual const TargetRegisterClass *
508  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
509    return RC;
510  }
511
512  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
513  /// legal to use in the current sub-target and has the same spill size.
514  /// The returned register class can be used to create virtual registers which
515  /// means that all its registers can be copied and spilled.
516  virtual const TargetRegisterClass*
517  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
518    /// The default implementation is very conservative and doesn't allow the
519    /// register allocator to inflate register classes.
520    return RC;
521  }
522
523  /// getRegPressureLimit - Return the register pressure "high water mark" for
524  /// the specific register class. The scheduler is in high register pressure
525  /// mode (for the specific register class) if it goes over the limit.
526  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
527                                       MachineFunction &MF) const {
528    return 0;
529  }
530
531  /// getRawAllocationOrder - Returns the register allocation order for a
532  /// specified register class with a target-dependent hint. The returned list
533  /// may contain reserved registers that cannot be allocated.
534  ///
535  /// Register allocators need only call this function to resolve
536  /// target-dependent hints, but it should work without hinting as well.
537  virtual ArrayRef<unsigned>
538  getRawAllocationOrder(const TargetRegisterClass *RC,
539                        unsigned HintType, unsigned HintReg,
540                        const MachineFunction &MF) const {
541    return RC->getRawAllocationOrder(MF);
542  }
543
544  /// ResolveRegAllocHint - Resolves the specified register allocation hint
545  /// to a physical register. Returns the physical register if it is successful.
546  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
547                                       const MachineFunction &MF) const {
548    if (Type == 0 && Reg && isPhysicalRegister(Reg))
549      return Reg;
550    return 0;
551  }
552
553  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
554  /// writing a register from RC in two consecutive instructions.
555  /// This can avoid pipeline stalls on certain architectures.
556  /// It does cause increased register pressure, though.
557  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
558    return false;
559  }
560
561  /// UpdateRegAllocHint - A callback to allow target a chance to update
562  /// register allocation hints when a register is "changed" (e.g. coalesced)
563  /// to another register. e.g. On ARM, some virtual registers should target
564  /// register pairs, if one of pair is coalesced to another register, the
565  /// allocation hint of the other half of the pair should be changed to point
566  /// to the new register.
567  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
568                                  MachineFunction &MF) const {
569    // Do nothing.
570  }
571
572  /// requiresRegisterScavenging - returns true if the target requires (and can
573  /// make use of) the register scavenger.
574  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
575    return false;
576  }
577
578  /// useFPForScavengingIndex - returns true if the target wants to use
579  /// frame pointer based accesses to spill to the scavenger emergency spill
580  /// slot.
581  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
582    return true;
583  }
584
585  /// requiresFrameIndexScavenging - returns true if the target requires post
586  /// PEI scavenging of registers for materializing frame index constants.
587  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
588    return false;
589  }
590
591  /// requiresVirtualBaseRegisters - Returns true if the target wants the
592  /// LocalStackAllocation pass to be run and virtual base registers
593  /// used for more efficient stack access.
594  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
595    return false;
596  }
597
598  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
599  /// the stack frame of the given function for the specified register. e.g. On
600  /// x86, if the frame register is required, the first fixed stack object is
601  /// reserved as its spill slot. This tells PEI not to create a new stack frame
602  /// object for the given register. It should be called only after
603  /// processFunctionBeforeCalleeSavedScan().
604  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
605                                    int &FrameIdx) const {
606    return false;
607  }
608
609  /// needsStackRealignment - true if storage within the function requires the
610  /// stack pointer to be aligned more than the normal calling convention calls
611  /// for.
612  virtual bool needsStackRealignment(const MachineFunction &MF) const {
613    return false;
614  }
615
616  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
617  /// index in the instruction, if there is one.
618  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
619                                           int Idx) const {
620    return 0;
621  }
622
623  /// needsFrameBaseReg - Returns true if the instruction's frame index
624  /// reference would be better served by a base register other than FP
625  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
626  /// references it should create new base registers for.
627  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
628    return false;
629  }
630
631  /// materializeFrameBaseRegister - Insert defining instruction(s) for
632  /// BaseReg to be a pointer to FrameIdx before insertion point I.
633  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
634                                            unsigned BaseReg, int FrameIdx,
635                                            int64_t Offset) const {
636    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
637                     "target");
638  }
639
640  /// resolveFrameIndex - Resolve a frame index operand of an instruction
641  /// to reference the indicated base register plus offset instead.
642  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
643                                 unsigned BaseReg, int64_t Offset) const {
644    llvm_unreachable("resolveFrameIndex does not exist on this target");
645  }
646
647  /// isFrameOffsetLegal - Determine whether a given offset immediate is
648  /// encodable to resolve a frame index.
649  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
650                                  int64_t Offset) const {
651    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
652  }
653
654  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
655  /// code insertion to eliminate call frame setup and destroy pseudo
656  /// instructions (but only if the Target is using them).  It is responsible
657  /// for eliminating these instructions, replacing them with concrete
658  /// instructions.  This method need only be implemented if using call frame
659  /// setup/destroy pseudo instructions.
660  ///
661  virtual void
662  eliminateCallFramePseudoInstr(MachineFunction &MF,
663                                MachineBasicBlock &MBB,
664                                MachineBasicBlock::iterator MI) const {
665    llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
666                     "target!");
667  }
668
669
670  /// saveScavengerRegister - Spill the register so it can be used by the
671  /// register scavenger. Return true if the register was spilled, false
672  /// otherwise. If this function does not spill the register, the scavenger
673  /// will instead spill it to the emergency spill slot.
674  ///
675  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
676                                     MachineBasicBlock::iterator I,
677                                     MachineBasicBlock::iterator &UseMI,
678                                     const TargetRegisterClass *RC,
679                                     unsigned Reg) const {
680    return false;
681  }
682
683  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
684  /// frame indices from instructions which may use them.  The instruction
685  /// referenced by the iterator contains an MO_FrameIndex operand which must be
686  /// eliminated by this method.  This method may modify or replace the
687  /// specified instruction, as long as it keeps the iterator pointing at the
688  /// finished product. SPAdj is the SP adjustment due to call frame setup
689  /// instruction.
690  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
691                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
692
693  //===--------------------------------------------------------------------===//
694  /// Debug information queries.
695
696  /// getFrameRegister - This method should return the register used as a base
697  /// for values allocated in the current stack frame.
698  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
699
700  /// getCompactUnwindRegNum - This function maps the register to the number for
701  /// compact unwind encoding. Return -1 if the register isn't valid.
702  virtual int getCompactUnwindRegNum(unsigned, bool) const {
703    return -1;
704  }
705};
706
707
708// This is useful when building IndexedMaps keyed on virtual registers
709struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
710  unsigned operator()(unsigned Reg) const {
711    return TargetRegisterInfo::virtReg2Index(Reg);
712  }
713};
714
715/// PrintReg - Helper class for printing registers on a raw_ostream.
716/// Prints virtual and physical registers with or without a TRI instance.
717///
718/// The format is:
719///   %noreg          - NoRegister
720///   %vreg5          - a virtual register.
721///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
722///   %EAX            - a physical register
723///   %physreg17      - a physical register when no TRI instance given.
724///
725/// Usage: OS << PrintReg(Reg, TRI) << '\n';
726///
727class PrintReg {
728  const TargetRegisterInfo *TRI;
729  unsigned Reg;
730  unsigned SubIdx;
731public:
732  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
733    : TRI(tri), Reg(reg), SubIdx(subidx) {}
734  void print(raw_ostream&) const;
735};
736
737static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
738  PR.print(OS);
739  return OS;
740}
741
742} // End llvm namespace
743
744#endif
745