TargetRegisterInfo.h revision 63f8659d6936077c5e8e34eecb55ff1de0db5686
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31template<class T> class SmallVectorImpl;
32class raw_ostream;
33
34/// TargetRegisterDesc - This record contains all of the information known about
35/// a particular register.  The Overlaps field contains a pointer to a zero
36/// terminated array of registers that this register aliases, starting with
37/// itself. This is needed for architectures like X86 which have AL alias AX
38/// alias EAX. The SubRegs field is a zero terminated array of registers that
39/// are sub-registers of the specific register, e.g. AL, AH are sub-registers of
40/// AX. The SuperRegs field is a zero terminated array of registers that are
41/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
42/// of AX.
43///
44struct TargetRegisterDesc {
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *Overlaps;     // Overlapping registers, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const EVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const sc_iterator SubRegClasses;
65  const sc_iterator SuperRegClasses;
66  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67  const int CopyCost;
68  const iterator RegsBegin, RegsEnd;
69  DenseSet<unsigned> RegSet;
70public:
71  TargetRegisterClass(unsigned id,
72                      const char *name,
73                      const EVT *vts,
74                      const TargetRegisterClass * const *subcs,
75                      const TargetRegisterClass * const *supcs,
76                      const TargetRegisterClass * const *subregcs,
77                      const TargetRegisterClass * const *superregcs,
78                      unsigned RS, unsigned Al, int CC,
79                      iterator RB, iterator RE)
80    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81    SubRegClasses(subregcs), SuperRegClasses(superregcs),
82    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84        RegSet.insert(*I);
85    }
86  virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88  /// getID() - Return the register class ID number.
89  ///
90  unsigned getID() const { return ID; }
91
92  /// getName() - Return the register class name for debugging.
93  ///
94  const char *getName() const { return Name; }
95
96  /// begin/end - Return all of the registers in this class.
97  ///
98  iterator       begin() const { return RegsBegin; }
99  iterator         end() const { return RegsEnd; }
100
101  /// getNumRegs - Return the number of registers in this class.
102  ///
103  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105  /// getRegister - Return the specified register in the class.
106  ///
107  unsigned getRegister(unsigned i) const {
108    assert(i < getNumRegs() && "Register number out of range!");
109    return RegsBegin[i];
110  }
111
112  /// contains - Return true if the specified register is included in this
113  /// register class.  This does not include virtual registers.
114  bool contains(unsigned Reg) const {
115    return RegSet.count(Reg);
116  }
117
118  /// contains - Return true if both registers are in this class.
119  bool contains(unsigned Reg1, unsigned Reg2) const {
120    return contains(Reg1) && contains(Reg2);
121  }
122
123  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
124  ///
125  bool hasType(EVT vt) const {
126    for(int i = 0; VTs[i] != MVT::Other; ++i)
127      if (VTs[i] == vt)
128        return true;
129    return false;
130  }
131
132  /// vt_begin / vt_end - Loop over all of the value types that can be
133  /// represented by values in this register class.
134  vt_iterator vt_begin() const {
135    return VTs;
136  }
137
138  vt_iterator vt_end() const {
139    vt_iterator I = VTs;
140    while (*I != MVT::Other) ++I;
141    return I;
142  }
143
144  /// subregclasses_begin / subregclasses_end - Loop over all of
145  /// the subreg register classes of this register class.
146  sc_iterator subregclasses_begin() const {
147    return SubRegClasses;
148  }
149
150  sc_iterator subregclasses_end() const {
151    sc_iterator I = SubRegClasses;
152    while (*I != NULL) ++I;
153    return I;
154  }
155
156  /// getSubRegisterRegClass - Return the register class of subregisters with
157  /// index SubIdx, or NULL if no such class exists.
158  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
159    assert(SubIdx>0 && "Invalid subregister index");
160    return SubRegClasses[SubIdx-1];
161  }
162
163  /// superregclasses_begin / superregclasses_end - Loop over all of
164  /// the superreg register classes of this register class.
165  sc_iterator superregclasses_begin() const {
166    return SuperRegClasses;
167  }
168
169  sc_iterator superregclasses_end() const {
170    sc_iterator I = SuperRegClasses;
171    while (*I != NULL) ++I;
172    return I;
173  }
174
175  /// hasSubClass - return true if the specified TargetRegisterClass
176  /// is a proper subset of this TargetRegisterClass.
177  bool hasSubClass(const TargetRegisterClass *cs) const {
178    for (int i = 0; SubClasses[i] != NULL; ++i)
179      if (SubClasses[i] == cs)
180        return true;
181    return false;
182  }
183
184  /// subclasses_begin / subclasses_end - Loop over all of the classes
185  /// that are proper subsets of this register class.
186  sc_iterator subclasses_begin() const {
187    return SubClasses;
188  }
189
190  sc_iterator subclasses_end() const {
191    sc_iterator I = SubClasses;
192    while (*I != NULL) ++I;
193    return I;
194  }
195
196  /// hasSuperClass - return true if the specified TargetRegisterClass is a
197  /// proper superset of this TargetRegisterClass.
198  bool hasSuperClass(const TargetRegisterClass *cs) const {
199    for (int i = 0; SuperClasses[i] != NULL; ++i)
200      if (SuperClasses[i] == cs)
201        return true;
202    return false;
203  }
204
205  /// superclasses_begin / superclasses_end - Loop over all of the classes
206  /// that are proper supersets of this register class.
207  sc_iterator superclasses_begin() const {
208    return SuperClasses;
209  }
210
211  sc_iterator superclasses_end() const {
212    sc_iterator I = SuperClasses;
213    while (*I != NULL) ++I;
214    return I;
215  }
216
217  /// isASubClass - return true if this TargetRegisterClass is a subset
218  /// class of at least one other TargetRegisterClass.
219  bool isASubClass() const {
220    return SuperClasses[0] != 0;
221  }
222
223  /// allocation_order_begin/end - These methods define a range of registers
224  /// which specify the registers in this class that are valid to register
225  /// allocate, and the preferred order to allocate them in.  For example,
226  /// callee saved registers should be at the end of the list, because it is
227  /// cheaper to allocate caller saved registers.
228  ///
229  /// These methods take a MachineFunction argument, which can be used to tune
230  /// the allocatable registers based on the characteristics of the function,
231  /// subtarget, or other criteria.
232  ///
233  /// Register allocators should account for the fact that an allocation
234  /// order iterator may return a reserved register and always check
235  /// if the register is allocatable (getAllocatableSet()) before using it.
236  ///
237  /// By default, these methods return all registers in the class.
238  ///
239  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
240    return begin();
241  }
242  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
243    return end();
244  }
245
246  /// getSize - Return the size of the register in bytes, which is also the size
247  /// of a stack slot allocated to hold a spilled copy of this register.
248  unsigned getSize() const { return RegSize; }
249
250  /// getAlignment - Return the minimum required alignment for a register of
251  /// this class.
252  unsigned getAlignment() const { return Alignment; }
253
254  /// getCopyCost - Return the cost of copying a value between two registers in
255  /// this class. A negative number means the register class is very expensive
256  /// to copy e.g. status flag register classes.
257  int getCopyCost() const { return CopyCost; }
258};
259
260
261/// TargetRegisterInfo base class - We assume that the target defines a static
262/// array of TargetRegisterDesc objects that represent all of the machine
263/// registers that the target has.  As such, we simply have to track a pointer
264/// to this array so that we can turn register number into a register
265/// descriptor.
266///
267class TargetRegisterInfo {
268protected:
269  const unsigned* SubregHash;
270  const unsigned SubregHashSize;
271  const unsigned* AliasesHash;
272  const unsigned AliasesHashSize;
273public:
274  typedef const TargetRegisterClass * const * regclass_iterator;
275private:
276  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
277  const char *const *SubRegIndexNames;        // Names of subreg indexes.
278  unsigned NumRegs;                           // Number of entries in the array
279
280  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
281
282  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
283
284protected:
285  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
286                     regclass_iterator RegClassBegin,
287                     regclass_iterator RegClassEnd,
288                     const char *const *subregindexnames,
289                     int CallFrameSetupOpcode = -1,
290                     int CallFrameDestroyOpcode = -1,
291                     const unsigned* subregs = 0,
292                     const unsigned subregsize = 0,
293                     const unsigned* aliases = 0,
294                     const unsigned aliasessize = 0);
295  virtual ~TargetRegisterInfo();
296public:
297
298  // Register numbers can represent physical registers, virtual registers, and
299  // sometimes stack slots. The unsigned values are divided into these ranges:
300  //
301  //   0           Not a register, can be used as a sentinel.
302  //   [1;2^30)    Physical registers assigned by TableGen.
303  //   [2^30;2^31) Stack slots. (Rarely used.)
304  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
305  //
306  // Further sentinels can be allocated from the small negative integers.
307  // DenseMapInfo<unsigned> uses -1u and -2u.
308
309  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
310  /// frame index in a variable that normally holds a register. isStackSlot()
311  /// returns true if Reg is in the range used for stack slots.
312  ///
313  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
314  /// slots, so if a variable may contains a stack slot, always check
315  /// isStackSlot() first.
316  ///
317  static bool isStackSlot(unsigned Reg) {
318    return int(Reg) >= (1 << 30);
319  }
320
321  /// stackSlot2Index - Compute the frame index from a register value
322  /// representing a stack slot.
323  static int stackSlot2Index(unsigned Reg) {
324    assert(isStackSlot(Reg) && "Not a stack slot");
325    return int(Reg - (1u << 30));
326  }
327
328  /// index2StackSlot - Convert a non-negative frame index to a stack slot
329  /// register value.
330  static unsigned index2StackSlot(int FI) {
331    assert(FI >= 0 && "Cannot hold a negative frame index.");
332    return FI + (1u << 30);
333  }
334
335  /// isPhysicalRegister - Return true if the specified register number is in
336  /// the physical register namespace.
337  static bool isPhysicalRegister(unsigned Reg) {
338    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
339    return int(Reg) > 0;
340  }
341
342  /// isVirtualRegister - Return true if the specified register number is in
343  /// the virtual register namespace.
344  static bool isVirtualRegister(unsigned Reg) {
345    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
346    return int(Reg) < 0;
347  }
348
349  /// virtReg2Index - Convert a virtual register number to a 0-based index.
350  /// The first virtual register in a function will get the index 0.
351  static unsigned virtReg2Index(unsigned Reg) {
352    assert(isVirtualRegister(Reg) && "Not a virtual register");
353    return Reg - (1u << 31);
354  }
355
356  /// index2VirtReg - Convert a 0-based index to a virtual register number.
357  /// This is the inverse operation of VirtReg2IndexFunctor below.
358  static unsigned index2VirtReg(unsigned Index) {
359    return Index + (1u << 31);
360  }
361
362  /// getMinimalPhysRegClass - Returns the Register Class of a physical
363  /// register of the given type, picking the most sub register class of
364  /// the right type that contains this physreg.
365  const TargetRegisterClass *
366    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
367
368  /// getAllocatableSet - Returns a bitset indexed by register number
369  /// indicating if a register is allocatable or not. If a register class is
370  /// specified, returns the subset for the class.
371  BitVector getAllocatableSet(const MachineFunction &MF,
372                              const TargetRegisterClass *RC = NULL) const;
373
374  const TargetRegisterDesc &operator[](unsigned RegNo) const {
375    assert(RegNo < NumRegs &&
376           "Attempting to access record for invalid register number!");
377    return Desc[RegNo];
378  }
379
380  /// Provide a get method, equivalent to [], but more useful if we have a
381  /// pointer to this object.
382  ///
383  const TargetRegisterDesc &get(unsigned RegNo) const {
384    return operator[](RegNo);
385  }
386
387  /// getAliasSet - Return the set of registers aliased by the specified
388  /// register, or a null list of there are none.  The list returned is zero
389  /// terminated.
390  ///
391  const unsigned *getAliasSet(unsigned RegNo) const {
392    // The Overlaps set always begins with Reg itself.
393    return get(RegNo).Overlaps + 1;
394  }
395
396  /// getOverlaps - Return a list of registers that overlap Reg, including
397  /// itself. This is the same as the alias set except Reg is included in the
398  /// list.
399  /// These are exactly the registers in { x | regsOverlap(x, Reg) }.
400  ///
401  const unsigned *getOverlaps(unsigned RegNo) const {
402    return get(RegNo).Overlaps;
403  }
404
405  /// getSubRegisters - Return the list of registers that are sub-registers of
406  /// the specified register, or a null list of there are none. The list
407  /// returned is zero terminated and sorted according to super-sub register
408  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
409  ///
410  const unsigned *getSubRegisters(unsigned RegNo) const {
411    return get(RegNo).SubRegs;
412  }
413
414  /// getSuperRegisters - Return the list of registers that are super-registers
415  /// of the specified register, or a null list of there are none. The list
416  /// returned is zero terminated and sorted according to super-sub register
417  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
418  ///
419  const unsigned *getSuperRegisters(unsigned RegNo) const {
420    return get(RegNo).SuperRegs;
421  }
422
423  /// getName - Return the human-readable symbolic target-specific name for the
424  /// specified physical register.
425  const char *getName(unsigned RegNo) const {
426    return get(RegNo).Name;
427  }
428
429  /// getNumRegs - Return the number of registers this target has (useful for
430  /// sizing arrays holding per register information)
431  unsigned getNumRegs() const {
432    return NumRegs;
433  }
434
435  /// getSubRegIndexName - Return the human-readable symbolic target-specific
436  /// name for the specified SubRegIndex.
437  const char *getSubRegIndexName(unsigned SubIdx) const {
438    assert(SubIdx && "This is not a subregister index");
439    return SubRegIndexNames[SubIdx-1];
440  }
441
442  /// regsOverlap - Returns true if the two registers are equal or alias each
443  /// other. The registers may be virtual register.
444  bool regsOverlap(unsigned regA, unsigned regB) const {
445    if (regA == regB)
446      return true;
447
448    if (isVirtualRegister(regA) || isVirtualRegister(regB))
449      return false;
450
451    // regA and regB are distinct physical registers. Do they alias?
452    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
453    unsigned ProbeAmt = 0;
454    while (AliasesHash[index*2] != 0 &&
455           AliasesHash[index*2+1] != 0) {
456      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
457        return true;
458
459      index = (index + ProbeAmt) & (AliasesHashSize-1);
460      ProbeAmt += 2;
461    }
462
463    return false;
464  }
465
466  /// isSubRegister - Returns true if regB is a sub-register of regA.
467  ///
468  bool isSubRegister(unsigned regA, unsigned regB) const {
469    // SubregHash is a simple quadratically probed hash table.
470    size_t index = (regA + regB * 37) & (SubregHashSize-1);
471    unsigned ProbeAmt = 2;
472    while (SubregHash[index*2] != 0 &&
473           SubregHash[index*2+1] != 0) {
474      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
475        return true;
476
477      index = (index + ProbeAmt) & (SubregHashSize-1);
478      ProbeAmt += 2;
479    }
480
481    return false;
482  }
483
484  /// isSuperRegister - Returns true if regB is a super-register of regA.
485  ///
486  bool isSuperRegister(unsigned regA, unsigned regB) const {
487    return isSubRegister(regB, regA);
488  }
489
490  /// getCalleeSavedRegs - Return a null-terminated list of all of the
491  /// callee saved registers on this target. The register should be in the
492  /// order of desired callee-save stack frame offset. The first register is
493  /// closed to the incoming stack pointer if stack grows down, and vice versa.
494  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
495                                                                      const = 0;
496
497
498  /// getReservedRegs - Returns a bitset indexed by physical register number
499  /// indicating if a register is a special register that has particular uses
500  /// and should be considered unavailable at all times, e.g. SP, RA. This is
501  /// used by register scavenger to determine what registers are free.
502  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
503
504  /// getSubReg - Returns the physical register number of sub-register "Index"
505  /// for physical register RegNo. Return zero if the sub-register does not
506  /// exist.
507  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
508
509  /// getSubRegIndex - For a given register pair, return the sub-register index
510  /// if the second register is a sub-register of the first. Return zero
511  /// otherwise.
512  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
513
514  /// getMatchingSuperReg - Return a super-register of the specified register
515  /// Reg so its sub-register of index SubIdx is Reg.
516  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
517                               const TargetRegisterClass *RC) const {
518    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
519      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
520        return SR;
521    return 0;
522  }
523
524  /// canCombineSubRegIndices - Given a register class and a list of
525  /// subregister indices, return true if it's possible to combine the
526  /// subregister indices into one that corresponds to a larger
527  /// subregister. Return the new subregister index by reference. Note the
528  /// new index may be zero if the given subregisters can be combined to
529  /// form the whole register.
530  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
531                                       SmallVectorImpl<unsigned> &SubIndices,
532                                       unsigned &NewSubIdx) const {
533    return 0;
534  }
535
536  /// getMatchingSuperRegClass - Return a subclass of the specified register
537  /// class A so that each register in it has a sub-register of the
538  /// specified sub-register index which is in the specified register class B.
539  virtual const TargetRegisterClass *
540  getMatchingSuperRegClass(const TargetRegisterClass *A,
541                           const TargetRegisterClass *B, unsigned Idx) const {
542    return 0;
543  }
544
545  /// composeSubRegIndices - Return the subregister index you get from composing
546  /// two subregister indices.
547  ///
548  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
549  /// returns c. Note that composeSubRegIndices does not tell you about illegal
550  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
551  /// b, composeSubRegIndices doesn't tell you.
552  ///
553  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
554  /// ssub_0:S0 - ssub_3:S3 subregs.
555  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
556  ///
557  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
558    // This default implementation is correct for most targets.
559    return b;
560  }
561
562  //===--------------------------------------------------------------------===//
563  // Register Class Information
564  //
565
566  /// Register class iterators
567  ///
568  regclass_iterator regclass_begin() const { return RegClassBegin; }
569  regclass_iterator regclass_end() const { return RegClassEnd; }
570
571  unsigned getNumRegClasses() const {
572    return (unsigned)(regclass_end()-regclass_begin());
573  }
574
575  /// getRegClass - Returns the register class associated with the enumeration
576  /// value.  See class TargetOperandInfo.
577  const TargetRegisterClass *getRegClass(unsigned i) const {
578    assert(i < getNumRegClasses() && "Register Class ID out of range");
579    return RegClassBegin[i];
580  }
581
582  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
583  /// values.  If a target supports multiple different pointer register classes,
584  /// kind specifies which one is indicated.
585  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
586    assert(0 && "Target didn't implement getPointerRegClass!");
587    return 0; // Must return a value in order to compile with VS 2005
588  }
589
590  /// getCrossCopyRegClass - Returns a legal register class to copy a register
591  /// in the specified class to or from. Returns NULL if it is possible to copy
592  /// between a two registers of the specified class.
593  virtual const TargetRegisterClass *
594  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
595    return NULL;
596  }
597
598  /// getAllocationOrder - Returns the register allocation order for a specified
599  /// register class in the form of a pair of TargetRegisterClass iterators.
600  virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
601  getAllocationOrder(const TargetRegisterClass *RC,
602                     unsigned HintType, unsigned HintReg,
603                     const MachineFunction &MF) const {
604    return std::make_pair(RC->allocation_order_begin(MF),
605                          RC->allocation_order_end(MF));
606  }
607
608  /// ResolveRegAllocHint - Resolves the specified register allocation hint
609  /// to a physical register. Returns the physical register if it is successful.
610  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
611                                       const MachineFunction &MF) const {
612    if (Type == 0 && Reg && isPhysicalRegister(Reg))
613      return Reg;
614    return 0;
615  }
616
617  /// UpdateRegAllocHint - A callback to allow target a chance to update
618  /// register allocation hints when a register is "changed" (e.g. coalesced)
619  /// to another register. e.g. On ARM, some virtual registers should target
620  /// register pairs, if one of pair is coalesced to another register, the
621  /// allocation hint of the other half of the pair should be changed to point
622  /// to the new register.
623  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
624                                  MachineFunction &MF) const {
625    // Do nothing.
626  }
627
628  /// requiresRegisterScavenging - returns true if the target requires (and can
629  /// make use of) the register scavenger.
630  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
631    return false;
632  }
633
634  /// requiresFrameIndexScavenging - returns true if the target requires post
635  /// PEI scavenging of registers for materializing frame index constants.
636  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
637    return false;
638  }
639
640  /// requiresVirtualBaseRegisters - Returns true if the target wants the
641  /// LocalStackAllocation pass to be run and virtual base registers
642  /// used for more efficient stack access.
643  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
644    return false;
645  }
646
647  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
648  /// the stack frame of the given function for the specified register. e.g. On
649  /// x86, if the frame register is required, the first fixed stack object is
650  /// reserved as its spill slot. This tells PEI not to create a new stack frame
651  /// object for the given register. It should be called only after
652  /// processFunctionBeforeCalleeSavedScan().
653  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
654                                    int &FrameIdx) const {
655    return false;
656  }
657
658  /// needsStackRealignment - true if storage within the function requires the
659  /// stack pointer to be aligned more than the normal calling convention calls
660  /// for.
661  virtual bool needsStackRealignment(const MachineFunction &MF) const {
662    return false;
663  }
664
665  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
666  /// index in the instruction, if there is one.
667  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
668                                           int Idx) const {
669    return 0;
670  }
671
672  /// needsFrameBaseReg - Returns true if the instruction's frame index
673  /// reference would be better served by a base register other than FP
674  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
675  /// references it should create new base registers for.
676  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
677    return false;
678  }
679
680  /// materializeFrameBaseRegister - Insert defining instruction(s) for
681  /// BaseReg to be a pointer to FrameIdx before insertion point I.
682  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
683                                            unsigned BaseReg, int FrameIdx,
684                                            int64_t Offset) const {
685    assert(0 && "materializeFrameBaseRegister does not exist on this target");
686  }
687
688  /// resolveFrameIndex - Resolve a frame index operand of an instruction
689  /// to reference the indicated base register plus offset instead.
690  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
691                                 unsigned BaseReg, int64_t Offset) const {
692    assert(0 && "resolveFrameIndex does not exist on this target");
693  }
694
695  /// isFrameOffsetLegal - Determine whether a given offset immediate is
696  /// encodable to resolve a frame index.
697  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
698                                  int64_t Offset) const {
699    assert(0 && "isFrameOffsetLegal does not exist on this target");
700    return false; // Must return a value in order to compile with VS 2005
701  }
702
703  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
704  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
705  /// targets use pseudo instructions in order to abstract away the difference
706  /// between operating with a frame pointer and operating without, through the
707  /// use of these two instructions.
708  ///
709  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
710  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
711
712  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
713  /// code insertion to eliminate call frame setup and destroy pseudo
714  /// instructions (but only if the Target is using them).  It is responsible
715  /// for eliminating these instructions, replacing them with concrete
716  /// instructions.  This method need only be implemented if using call frame
717  /// setup/destroy pseudo instructions.
718  ///
719  virtual void
720  eliminateCallFramePseudoInstr(MachineFunction &MF,
721                                MachineBasicBlock &MBB,
722                                MachineBasicBlock::iterator MI) const {
723    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
724           "eliminateCallFramePseudoInstr must be implemented if using"
725           " call frame setup/destroy pseudo instructions!");
726    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
727  }
728
729
730  /// saveScavengerRegister - Spill the register so it can be used by the
731  /// register scavenger. Return true if the register was spilled, false
732  /// otherwise. If this function does not spill the register, the scavenger
733  /// will instead spill it to the emergency spill slot.
734  ///
735  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
736                                     MachineBasicBlock::iterator I,
737                                     MachineBasicBlock::iterator &UseMI,
738                                     const TargetRegisterClass *RC,
739                                     unsigned Reg) const {
740    return false;
741  }
742
743  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
744  /// frame indices from instructions which may use them.  The instruction
745  /// referenced by the iterator contains an MO_FrameIndex operand which must be
746  /// eliminated by this method.  This method may modify or replace the
747  /// specified instruction, as long as it keeps the iterator pointing at the
748  /// finished product. SPAdj is the SP adjustment due to call frame setup
749  /// instruction.
750  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
751                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
752
753  //===--------------------------------------------------------------------===//
754  /// Debug information queries.
755
756  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
757  /// number.  Returns -1 if there is no equivalent value.  The second
758  /// parameter allows targets to use different numberings for EH info and
759  /// debugging info.
760  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
761
762  /// getFrameRegister - This method should return the register used as a base
763  /// for values allocated in the current stack frame.
764  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
765
766  /// getRARegister - This method should return the register where the return
767  /// address can be found.
768  virtual unsigned getRARegister() const = 0;
769};
770
771
772// This is useful when building IndexedMaps keyed on virtual registers
773struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
774  unsigned operator()(unsigned Reg) const {
775    return TargetRegisterInfo::virtReg2Index(Reg);
776  }
777};
778
779/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
780/// if there is no common subclass.
781const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
782                                             const TargetRegisterClass *B);
783
784/// PrintReg - Helper class for printing registers on a raw_ostream.
785/// Prints virtual and physical registers with or without a TRI instance.
786///
787/// The format is:
788///   %noreg          - NoRegister
789///   %vreg5          - a virtual register.
790///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
791///   %EAX            - a physical register
792///   %physreg17      - a physical register when no TRI instance given.
793///
794/// Usage: OS << PrintReg(Reg, TRI) << '\n';
795///
796class PrintReg {
797  const TargetRegisterInfo *TRI;
798  unsigned Reg;
799  unsigned SubIdx;
800public:
801  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
802    : TRI(tri), Reg(reg), SubIdx(subidx) {}
803  void print(raw_ostream&) const;
804};
805
806static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
807  PR.print(OS);
808  return OS;
809}
810
811} // End llvm namespace
812
813#endif
814