TargetRegisterInfo.h revision 770bcc7b15adbc978800db70dbb1c3c22913b52c
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include <cassert>
22#include <functional>
23
24namespace llvm {
25
26class BitVector;
27class MachineFunction;
28class MachineMove;
29class RegScavenger;
30
31/// TargetRegisterDesc - This record contains all of the information known about
32/// a particular register.  The AliasSet field (if not null) contains a pointer
33/// to a Zero terminated array of registers that this register aliases.  This is
34/// needed for architectures like X86 which have AL alias AX alias EAX.
35/// Registers that this does not apply to simply should set this to null.
36/// The SubRegs field is a zero terminated array of registers that are
37/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
38/// The SuperRegs field is a zero terminated array of registers that are
39/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
40/// of AX.
41///
42struct TargetRegisterDesc {
43  const char     *AsmName;      // Assembly language name for the register
44  const char     *Name;         // Printable name for the reg (for debugging)
45  const unsigned *AliasSet;     // Register Alias Set, described above
46  const unsigned *SubRegs;      // Sub-register set, described above
47  const unsigned *SuperRegs;    // Super-register set, described above
48};
49
50class TargetRegisterClass {
51public:
52  typedef const unsigned* iterator;
53  typedef const unsigned* const_iterator;
54
55  typedef const MVT* vt_iterator;
56  typedef const TargetRegisterClass* const * sc_iterator;
57private:
58  unsigned ID;
59  bool  isSubClass;
60  const vt_iterator VTs;
61  const sc_iterator SubClasses;
62  const sc_iterator SuperClasses;
63  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
64  const int CopyCost;
65  const iterator RegsBegin, RegsEnd;
66public:
67  TargetRegisterClass(unsigned id,
68                      const MVT *vts,
69                      const TargetRegisterClass * const *subcs,
70                      const TargetRegisterClass * const *supcs,
71                      unsigned RS, unsigned Al, int CC,
72                      iterator RB, iterator RE)
73    : ID(id), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
74    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {}
75  virtual ~TargetRegisterClass() {}     // Allow subclasses
76
77  /// getID() - Return the register class ID number.
78  ///
79  unsigned getID() const { return ID; }
80
81  /// begin/end - Return all of the registers in this class.
82  ///
83  iterator       begin() const { return RegsBegin; }
84  iterator         end() const { return RegsEnd; }
85
86  /// getNumRegs - Return the number of registers in this class.
87  ///
88  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
89
90  /// getRegister - Return the specified register in the class.
91  ///
92  unsigned getRegister(unsigned i) const {
93    assert(i < getNumRegs() && "Register number out of range!");
94    return RegsBegin[i];
95  }
96
97  /// contains - Return true if the specified register is included in this
98  /// register class.
99  bool contains(unsigned Reg) const {
100    for (iterator I = begin(), E = end(); I != E; ++I)
101      if (*I == Reg) return true;
102    return false;
103  }
104
105  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
106  ///
107  bool hasType(MVT vt) const {
108    for(int i = 0; VTs[i] != MVT::Other; ++i)
109      if (VTs[i] == vt)
110        return true;
111    return false;
112  }
113
114  /// vt_begin / vt_end - Loop over all of the value types that can be
115  /// represented by values in this register class.
116  vt_iterator vt_begin() const {
117    return VTs;
118  }
119
120  vt_iterator vt_end() const {
121    vt_iterator I = VTs;
122    while (*I != MVT::Other) ++I;
123    return I;
124  }
125
126  /// hasSubClass - return true if the specified TargetRegisterClass is a
127  /// sub-register class of this TargetRegisterClass.
128  bool hasSubClass(const TargetRegisterClass *cs) const {
129    for (int i = 0; SubClasses[i] != NULL; ++i)
130      if (SubClasses[i] == cs)
131        return true;
132    return false;
133  }
134
135  /// subclasses_begin / subclasses_end - Loop over all of the sub-classes of
136  /// this register class.
137  sc_iterator subclasses_begin() const {
138    return SubClasses;
139  }
140
141  sc_iterator subclasses_end() const {
142    sc_iterator I = SubClasses;
143    while (*I != NULL) ++I;
144    return I;
145  }
146
147  /// hasSuperClass - return true if the specified TargetRegisterClass is a
148  /// super-register class of this TargetRegisterClass.
149  bool hasSuperClass(const TargetRegisterClass *cs) const {
150    for (int i = 0; SuperClasses[i] != NULL; ++i)
151      if (SuperClasses[i] == cs)
152        return true;
153    return false;
154  }
155
156  /// superclasses_begin / superclasses_end - Loop over all of the super-classes
157  /// of this register class.
158  sc_iterator superclasses_begin() const {
159    return SuperClasses;
160  }
161
162  sc_iterator superclasses_end() const {
163    sc_iterator I = SuperClasses;
164    while (*I != NULL) ++I;
165    return I;
166  }
167
168  /// isASubClass - return true if this TargetRegisterClass is a sub-class of at
169  /// least one other TargetRegisterClass.
170  bool isASubClass() const {
171    return SuperClasses[0] != 0;
172  }
173
174  /// allocation_order_begin/end - These methods define a range of registers
175  /// which specify the registers in this class that are valid to register
176  /// allocate, and the preferred order to allocate them in.  For example,
177  /// callee saved registers should be at the end of the list, because it is
178  /// cheaper to allocate caller saved registers.
179  ///
180  /// These methods take a MachineFunction argument, which can be used to tune
181  /// the allocatable registers based on the characteristics of the function.
182  /// One simple example is that the frame pointer register can be used if
183  /// frame-pointer-elimination is performed.
184  ///
185  /// By default, these methods return all registers in the class.
186  ///
187  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
188    return begin();
189  }
190  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
191    return end();
192  }
193
194
195
196  /// getSize - Return the size of the register in bytes, which is also the size
197  /// of a stack slot allocated to hold a spilled copy of this register.
198  unsigned getSize() const { return RegSize; }
199
200  /// getAlignment - Return the minimum required alignment for a register of
201  /// this class.
202  unsigned getAlignment() const { return Alignment; }
203
204  /// getCopyCost - Return the cost of copying a value between two registers in
205  /// this class. A negative number means the register class is very expensive
206  /// to copy e.g. status flag register classes.
207  int getCopyCost() const { return CopyCost; }
208};
209
210
211/// TargetRegisterInfo base class - We assume that the target defines a static
212/// array of TargetRegisterDesc objects that represent all of the machine
213/// registers that the target has.  As such, we simply have to track a pointer
214/// to this array so that we can turn register number into a register
215/// descriptor.
216///
217class TargetRegisterInfo {
218protected:
219  const unsigned* SubregHash;
220  const unsigned SubregHashSize;
221public:
222  typedef const TargetRegisterClass * const * regclass_iterator;
223private:
224  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
225  unsigned NumRegs;                           // Number of entries in the array
226
227  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
228
229  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
230protected:
231  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
232                     regclass_iterator RegClassBegin,
233                     regclass_iterator RegClassEnd,
234                     int CallFrameSetupOpcode = -1,
235                     int CallFrameDestroyOpcode = -1,
236                     const unsigned* subregs = 0,
237                     const unsigned subregsize = 0);
238  virtual ~TargetRegisterInfo();
239public:
240
241  enum {                        // Define some target independent constants
242    /// NoRegister - This physical register is not a real target register.  It
243    /// is useful as a sentinal.
244    NoRegister = 0,
245
246    /// FirstVirtualRegister - This is the first register number that is
247    /// considered to be a 'virtual' register, which is part of the SSA
248    /// namespace.  This must be the same for all targets, which means that each
249    /// target is limited to 1024 registers.
250    FirstVirtualRegister = 1024
251  };
252
253  /// isPhysicalRegister - Return true if the specified register number is in
254  /// the physical register namespace.
255  static bool isPhysicalRegister(unsigned Reg) {
256    assert(Reg && "this is not a register!");
257    return Reg < FirstVirtualRegister;
258  }
259
260  /// isVirtualRegister - Return true if the specified register number is in
261  /// the virtual register namespace.
262  static bool isVirtualRegister(unsigned Reg) {
263    assert(Reg && "this is not a register!");
264    return Reg >= FirstVirtualRegister;
265  }
266
267  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
268  /// register of the given type. If type is MVT::Other, then just return any
269  /// register class the register belongs to.
270  const TargetRegisterClass *getPhysicalRegisterRegClass(unsigned Reg,
271                                          MVT VT = MVT::Other) const;
272
273  /// getAllocatableSet - Returns a bitset indexed by register number
274  /// indicating if a register is allocatable or not. If a register class is
275  /// specified, returns the subset for the class.
276  BitVector getAllocatableSet(MachineFunction &MF,
277                              const TargetRegisterClass *RC = NULL) const;
278
279  const TargetRegisterDesc &operator[](unsigned RegNo) const {
280    assert(RegNo < NumRegs &&
281           "Attempting to access record for invalid register number!");
282    return Desc[RegNo];
283  }
284
285  /// Provide a get method, equivalent to [], but more useful if we have a
286  /// pointer to this object.
287  ///
288  const TargetRegisterDesc &get(unsigned RegNo) const {
289    return operator[](RegNo);
290  }
291
292  /// getAliasSet - Return the set of registers aliased by the specified
293  /// register, or a null list of there are none.  The list returned is zero
294  /// terminated.
295  ///
296  const unsigned *getAliasSet(unsigned RegNo) const {
297    return get(RegNo).AliasSet;
298  }
299
300  /// getSubRegisters - Return the list of registers that are sub-registers of
301  /// the specified register, or a null list of there are none. The list
302  /// returned is zero terminated and sorted according to super-sub register
303  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
304  ///
305  const unsigned *getSubRegisters(unsigned RegNo) const {
306    return get(RegNo).SubRegs;
307  }
308
309  /// getSuperRegisters - Return the list of registers that are super-registers
310  /// of the specified register, or a null list of there are none. The list
311  /// returned is zero terminated and sorted according to super-sub register
312  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
313  ///
314  const unsigned *getSuperRegisters(unsigned RegNo) const {
315    return get(RegNo).SuperRegs;
316  }
317
318  /// getAsmName - Return the symbolic target-specific name for the
319  /// specified physical register.
320  const char *getAsmName(unsigned RegNo) const {
321    return get(RegNo).AsmName;
322  }
323
324  /// getName - Return the human-readable symbolic target-specific name for the
325  /// specified physical register.
326  const char *getName(unsigned RegNo) const {
327    return get(RegNo).Name;
328  }
329
330  /// getNumRegs - Return the number of registers this target has (useful for
331  /// sizing arrays holding per register information)
332  unsigned getNumRegs() const {
333    return NumRegs;
334  }
335
336  /// areAliases - Returns true if the two registers alias each other, false
337  /// otherwise
338  bool areAliases(unsigned regA, unsigned regB) const {
339    for (const unsigned *Alias = getAliasSet(regA); *Alias; ++Alias)
340      if (*Alias == regB) return true;
341    return false;
342  }
343
344  /// regsOverlap - Returns true if the two registers are equal or alias each
345  /// other. The registers may be virtual register.
346  bool regsOverlap(unsigned regA, unsigned regB) const {
347    if (regA == regB)
348      return true;
349
350    if (isVirtualRegister(regA) || isVirtualRegister(regB))
351      return false;
352    return areAliases(regA, regB);
353  }
354
355  /// isSubRegister - Returns true if regB is a sub-register of regA.
356  ///
357  bool isSubRegister(unsigned regA, unsigned regB) const {
358    // SubregHash is a simple quadratically probed hash table.
359    size_t index = (regA + regB * 37) & (SubregHashSize-1);
360    unsigned ProbeAmt = 2;
361    while (SubregHash[index*2] != 0 &&
362           SubregHash[index*2+1] != 0) {
363      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
364        return true;
365
366      index = (index + ProbeAmt) & (SubregHashSize-1);
367      ProbeAmt += 2;
368    }
369
370    return false;
371  }
372
373  /// isSuperRegister - Returns true if regB is a super-register of regA.
374  ///
375  bool isSuperRegister(unsigned regA, unsigned regB) const {
376    for (const unsigned *SR = getSuperRegisters(regA); *SR; ++SR)
377      if (*SR == regB) return true;
378    return false;
379  }
380
381  /// getCalleeSavedRegs - Return a null-terminated list of all of the
382  /// callee saved registers on this target. The register should be in the
383  /// order of desired callee-save stack frame offset. The first register is
384  /// closed to the incoming stack pointer if stack grows down, and vice versa.
385  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
386                                                                      const = 0;
387
388  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
389  /// register classes to spill each callee saved register with.  The order and
390  /// length of this list match the getCalleeSaveRegs() list.
391  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
392                                            const MachineFunction *MF) const =0;
393
394  /// getReservedRegs - Returns a bitset indexed by physical register number
395  /// indicating if a register is a special register that has particular uses
396  /// and should be considered unavailable at all times, e.g. SP, RA. This is
397  /// used by register scavenger to determine what registers are free.
398  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
399
400  /// getSubReg - Returns the physical register number of sub-register "Index"
401  /// for physical register RegNo. Return zero if the sub-register does not
402  /// exist.
403  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
404
405  //===--------------------------------------------------------------------===//
406  // Register Class Information
407  //
408
409  /// Register class iterators
410  ///
411  regclass_iterator regclass_begin() const { return RegClassBegin; }
412  regclass_iterator regclass_end() const { return RegClassEnd; }
413
414  unsigned getNumRegClasses() const {
415    return (unsigned)(regclass_end()-regclass_begin());
416  }
417
418  /// getRegClass - Returns the register class associated with the enumeration
419  /// value.  See class TargetOperandInfo.
420  const TargetRegisterClass *getRegClass(unsigned i) const {
421    assert(i <= getNumRegClasses() && "Register Class ID out of range");
422    return i ? RegClassBegin[i - 1] : NULL;
423  }
424
425  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
426  /// values.
427  virtual const TargetRegisterClass *getPointerRegClass() const {
428    assert(0 && "Target didn't implement getPointerRegClass!");
429    abort();
430    return 0; // Must return a value in order to compile with VS 2005
431  }
432
433  /// getCrossCopyRegClass - Returns a legal register class to copy a register
434  /// in the specified class to or from. Returns NULL if it is possible to copy
435  /// between a two registers of the specified class.
436  virtual const TargetRegisterClass *
437  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
438    return NULL;
439  }
440
441  /// targetHandlesStackFrameRounding - Returns true if the target is
442  /// responsible for rounding up the stack frame (probably at emitPrologue
443  /// time).
444  virtual bool targetHandlesStackFrameRounding() const {
445    return false;
446  }
447
448  /// requiresRegisterScavenging - returns true if the target requires (and can
449  /// make use of) the register scavenger.
450  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
451    return false;
452  }
453
454  /// hasFP - Return true if the specified function should have a dedicated
455  /// frame pointer register. For most targets this is true only if the function
456  /// has variable sized allocas or if frame pointer elimination is disabled.
457  virtual bool hasFP(const MachineFunction &MF) const = 0;
458
459  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
460  // not required, we reserve argument space for call sites in the function
461  // immediately on entry to the current function. This eliminates the need for
462  // add/sub sp brackets around call sites. Returns true if the call frame is
463  // included as part of the stack frame.
464  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
465    return !hasFP(MF);
466  }
467
468  // needsStackRealignment - true if storage within the function requires the
469  // stack pointer to be aligned more than the normal calling convention calls
470  // for.
471  virtual bool needsStackRealignment(const MachineFunction &MF) const {
472    return false;
473  }
474
475  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
476  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
477  /// targets use pseudo instructions in order to abstract away the difference
478  /// between operating with a frame pointer and operating without, through the
479  /// use of these two instructions.
480  ///
481  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
482  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
483
484  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
485  /// code insertion to eliminate call frame setup and destroy pseudo
486  /// instructions (but only if the Target is using them).  It is responsible
487  /// for eliminating these instructions, replacing them with concrete
488  /// instructions.  This method need only be implemented if using call frame
489  /// setup/destroy pseudo instructions.
490  ///
491  virtual void
492  eliminateCallFramePseudoInstr(MachineFunction &MF,
493                                MachineBasicBlock &MBB,
494                                MachineBasicBlock::iterator MI) const {
495    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
496           "eliminateCallFramePseudoInstr must be implemented if using"
497           " call frame setup/destroy pseudo instructions!");
498    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
499  }
500
501  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
502  /// before PrologEpilogInserter scans the physical registers used to determine
503  /// what callee saved registers should be spilled. This method is optional.
504  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
505                                                RegScavenger *RS = NULL) const {
506
507  }
508
509  /// processFunctionBeforeFrameFinalized - This method is called immediately
510  /// before the specified functions frame layout (MF.getFrameInfo()) is
511  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
512  /// replaced with direct constants.  This method is optional.
513  ///
514  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
515  }
516
517  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
518  /// frame indices from instructions which may use them.  The instruction
519  /// referenced by the iterator contains an MO_FrameIndex operand which must be
520  /// eliminated by this method.  This method may modify or replace the
521  /// specified instruction, as long as it keeps the iterator pointing the the
522  /// finished product. SPAdj is the SP adjustment due to call frame setup
523  /// instruction.
524  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
525                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
526
527  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
528  /// the function.
529  virtual void emitPrologue(MachineFunction &MF) const = 0;
530  virtual void emitEpilogue(MachineFunction &MF,
531                            MachineBasicBlock &MBB) const = 0;
532
533  //===--------------------------------------------------------------------===//
534  /// Debug information queries.
535
536  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
537  /// number.  Returns -1 if there is no equivalent value.  The second
538  /// parameter allows targets to use different numberings for EH info and
539  /// debugging info.
540  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
541
542  /// getFrameRegister - This method should return the register used as a base
543  /// for values allocated in the current stack frame.
544  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
545
546  /// getFrameIndexOffset - Returns the displacement from the frame register to
547  /// the stack frame of the specified index.
548  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
549
550  /// getRARegister - This method should return the register where the return
551  /// address can be found.
552  virtual unsigned getRARegister() const = 0;
553
554  /// getInitialFrameState - Returns a list of machine moves that are assumed
555  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
556  /// the beginning of the function.)
557  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
558};
559
560// This is useful when building IndexedMaps keyed on virtual registers
561struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
562  unsigned operator()(unsigned Reg) const {
563    return Reg - TargetRegisterInfo::FirstVirtualRegister;
564  }
565};
566
567} // End llvm namespace
568
569#endif
570