TargetRegisterInfo.h revision 91a74da036d3a9442953ae1de3e797a50da4ccf0
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31template<class T> class SmallVectorImpl;
32
33/// TargetRegisterDesc - This record contains all of the information known about
34/// a particular register.  The AliasSet field (if not null) contains a pointer
35/// to a Zero terminated array of registers that this register aliases.  This is
36/// needed for architectures like X86 which have AL alias AX alias EAX.
37/// Registers that this does not apply to simply should set this to null.
38/// The SubRegs field is a zero terminated array of registers that are
39/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
40/// The SuperRegs field is a zero terminated array of registers that are
41/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
42/// of AX.
43///
44struct TargetRegisterDesc {
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *AliasSet;     // Register Alias Set, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const EVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const sc_iterator SubRegClasses;
65  const sc_iterator SuperRegClasses;
66  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67  const int CopyCost;
68  const iterator RegsBegin, RegsEnd;
69  DenseSet<unsigned> RegSet;
70public:
71  TargetRegisterClass(unsigned id,
72                      const char *name,
73                      const EVT *vts,
74                      const TargetRegisterClass * const *subcs,
75                      const TargetRegisterClass * const *supcs,
76                      const TargetRegisterClass * const *subregcs,
77                      const TargetRegisterClass * const *superregcs,
78                      unsigned RS, unsigned Al, int CC,
79                      iterator RB, iterator RE)
80    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81    SubRegClasses(subregcs), SuperRegClasses(superregcs),
82    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84        RegSet.insert(*I);
85    }
86  virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88  /// getID() - Return the register class ID number.
89  ///
90  unsigned getID() const { return ID; }
91
92  /// getName() - Return the register class name for debugging.
93  ///
94  const char *getName() const { return Name; }
95
96  /// begin/end - Return all of the registers in this class.
97  ///
98  iterator       begin() const { return RegsBegin; }
99  iterator         end() const { return RegsEnd; }
100
101  /// getNumRegs - Return the number of registers in this class.
102  ///
103  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105  /// getRegister - Return the specified register in the class.
106  ///
107  unsigned getRegister(unsigned i) const {
108    assert(i < getNumRegs() && "Register number out of range!");
109    return RegsBegin[i];
110  }
111
112  /// contains - Return true if the specified register is included in this
113  /// register class.  This does not include virtual registers.
114  bool contains(unsigned Reg) const {
115    return RegSet.count(Reg);
116  }
117
118  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
119  ///
120  bool hasType(EVT vt) const {
121    for(int i = 0; VTs[i].getSimpleVT().SimpleTy != MVT::Other; ++i)
122      if (VTs[i] == vt)
123        return true;
124    return false;
125  }
126
127  /// vt_begin / vt_end - Loop over all of the value types that can be
128  /// represented by values in this register class.
129  vt_iterator vt_begin() const {
130    return VTs;
131  }
132
133  vt_iterator vt_end() const {
134    vt_iterator I = VTs;
135    while (I->getSimpleVT().SimpleTy != MVT::Other) ++I;
136    return I;
137  }
138
139  /// subregclasses_begin / subregclasses_end - Loop over all of
140  /// the subreg register classes of this register class.
141  sc_iterator subregclasses_begin() const {
142    return SubRegClasses;
143  }
144
145  sc_iterator subregclasses_end() const {
146    sc_iterator I = SubRegClasses;
147    while (*I != NULL) ++I;
148    return I;
149  }
150
151  /// getSubRegisterRegClass - Return the register class of subregisters with
152  /// index SubIdx, or NULL if no such class exists.
153  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
154    assert(SubIdx>0 && "Invalid subregister index");
155    return SubRegClasses[SubIdx-1];
156  }
157
158  /// superregclasses_begin / superregclasses_end - Loop over all of
159  /// the superreg register classes of this register class.
160  sc_iterator superregclasses_begin() const {
161    return SuperRegClasses;
162  }
163
164  sc_iterator superregclasses_end() const {
165    sc_iterator I = SuperRegClasses;
166    while (*I != NULL) ++I;
167    return I;
168  }
169
170  /// hasSubClass - return true if the specified TargetRegisterClass
171  /// is a proper subset of this TargetRegisterClass.
172  bool hasSubClass(const TargetRegisterClass *cs) const {
173    for (int i = 0; SubClasses[i] != NULL; ++i)
174      if (SubClasses[i] == cs)
175        return true;
176    return false;
177  }
178
179  /// subclasses_begin / subclasses_end - Loop over all of the classes
180  /// that are proper subsets of this register class.
181  sc_iterator subclasses_begin() const {
182    return SubClasses;
183  }
184
185  sc_iterator subclasses_end() const {
186    sc_iterator I = SubClasses;
187    while (*I != NULL) ++I;
188    return I;
189  }
190
191  /// hasSuperClass - return true if the specified TargetRegisterClass is a
192  /// proper superset of this TargetRegisterClass.
193  bool hasSuperClass(const TargetRegisterClass *cs) const {
194    for (int i = 0; SuperClasses[i] != NULL; ++i)
195      if (SuperClasses[i] == cs)
196        return true;
197    return false;
198  }
199
200  /// superclasses_begin / superclasses_end - Loop over all of the classes
201  /// that are proper supersets of this register class.
202  sc_iterator superclasses_begin() const {
203    return SuperClasses;
204  }
205
206  sc_iterator superclasses_end() const {
207    sc_iterator I = SuperClasses;
208    while (*I != NULL) ++I;
209    return I;
210  }
211
212  /// isASubClass - return true if this TargetRegisterClass is a subset
213  /// class of at least one other TargetRegisterClass.
214  bool isASubClass() const {
215    return SuperClasses[0] != 0;
216  }
217
218  /// allocation_order_begin/end - These methods define a range of registers
219  /// which specify the registers in this class that are valid to register
220  /// allocate, and the preferred order to allocate them in.  For example,
221  /// callee saved registers should be at the end of the list, because it is
222  /// cheaper to allocate caller saved registers.
223  ///
224  /// These methods take a MachineFunction argument, which can be used to tune
225  /// the allocatable registers based on the characteristics of the function.
226  /// One simple example is that the frame pointer register can be used if
227  /// frame-pointer-elimination is performed.
228  ///
229  /// By default, these methods return all registers in the class.
230  ///
231  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
232    return begin();
233  }
234  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
235    return end();
236  }
237
238  /// getSize - Return the size of the register in bytes, which is also the size
239  /// of a stack slot allocated to hold a spilled copy of this register.
240  unsigned getSize() const { return RegSize; }
241
242  /// getAlignment - Return the minimum required alignment for a register of
243  /// this class.
244  unsigned getAlignment() const { return Alignment; }
245
246  /// getCopyCost - Return the cost of copying a value between two registers in
247  /// this class. A negative number means the register class is very expensive
248  /// to copy e.g. status flag register classes.
249  int getCopyCost() const { return CopyCost; }
250};
251
252
253/// TargetRegisterInfo base class - We assume that the target defines a static
254/// array of TargetRegisterDesc objects that represent all of the machine
255/// registers that the target has.  As such, we simply have to track a pointer
256/// to this array so that we can turn register number into a register
257/// descriptor.
258///
259class TargetRegisterInfo {
260protected:
261  const unsigned* SubregHash;
262  const unsigned SubregHashSize;
263  const unsigned* AliasesHash;
264  const unsigned AliasesHashSize;
265public:
266  typedef const TargetRegisterClass * const * regclass_iterator;
267private:
268  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
269  const char *const *SubRegIndexNames;        // Names of subreg indexes.
270  unsigned NumRegs;                           // Number of entries in the array
271
272  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
273
274  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
275
276protected:
277  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
278                     regclass_iterator RegClassBegin,
279                     regclass_iterator RegClassEnd,
280                     const char *const *subregindexnames,
281                     int CallFrameSetupOpcode = -1,
282                     int CallFrameDestroyOpcode = -1,
283                     const unsigned* subregs = 0,
284                     const unsigned subregsize = 0,
285                     const unsigned* aliases = 0,
286                     const unsigned aliasessize = 0);
287  virtual ~TargetRegisterInfo();
288public:
289
290  enum {                        // Define some target independent constants
291    /// NoRegister - This physical register is not a real target register.  It
292    /// is useful as a sentinal.
293    NoRegister = 0,
294
295    /// FirstVirtualRegister - This is the first register number that is
296    /// considered to be a 'virtual' register, which is part of the SSA
297    /// namespace.  This must be the same for all targets, which means that each
298    /// target is limited to this fixed number of registers.
299    FirstVirtualRegister = 1024
300  };
301
302  /// isPhysicalRegister - Return true if the specified register number is in
303  /// the physical register namespace.
304  static bool isPhysicalRegister(unsigned Reg) {
305    assert(Reg && "this is not a register!");
306    return Reg < FirstVirtualRegister;
307  }
308
309  /// isVirtualRegister - Return true if the specified register number is in
310  /// the virtual register namespace.
311  static bool isVirtualRegister(unsigned Reg) {
312    assert(Reg && "this is not a register!");
313    return Reg >= FirstVirtualRegister;
314  }
315
316  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
317  /// register of the given type. If type is EVT::Other, then just return any
318  /// register class the register belongs to.
319  virtual const TargetRegisterClass *
320    getPhysicalRegisterRegClass(unsigned Reg, EVT VT = MVT::Other) const;
321
322  /// getMinimalPhysRegClass - Returns the Register Class of a physical
323  /// register of the given type.
324  const TargetRegisterClass * getMinimalPhysRegClass(unsigned Reg) const;
325
326  /// getAllocatableSet - Returns a bitset indexed by register number
327  /// indicating if a register is allocatable or not. If a register class is
328  /// specified, returns the subset for the class.
329  BitVector getAllocatableSet(const MachineFunction &MF,
330                              const TargetRegisterClass *RC = NULL) const;
331
332  const TargetRegisterDesc &operator[](unsigned RegNo) const {
333    assert(RegNo < NumRegs &&
334           "Attempting to access record for invalid register number!");
335    return Desc[RegNo];
336  }
337
338  /// Provide a get method, equivalent to [], but more useful if we have a
339  /// pointer to this object.
340  ///
341  const TargetRegisterDesc &get(unsigned RegNo) const {
342    return operator[](RegNo);
343  }
344
345  /// getAliasSet - Return the set of registers aliased by the specified
346  /// register, or a null list of there are none.  The list returned is zero
347  /// terminated.
348  ///
349  const unsigned *getAliasSet(unsigned RegNo) const {
350    return get(RegNo).AliasSet;
351  }
352
353  /// getSubRegisters - Return the list of registers that are sub-registers of
354  /// the specified register, or a null list of there are none. The list
355  /// returned is zero terminated and sorted according to super-sub register
356  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
357  ///
358  const unsigned *getSubRegisters(unsigned RegNo) const {
359    return get(RegNo).SubRegs;
360  }
361
362  /// getSuperRegisters - Return the list of registers that are super-registers
363  /// of the specified register, or a null list of there are none. The list
364  /// returned is zero terminated and sorted according to super-sub register
365  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
366  ///
367  const unsigned *getSuperRegisters(unsigned RegNo) const {
368    return get(RegNo).SuperRegs;
369  }
370
371  /// getName - Return the human-readable symbolic target-specific name for the
372  /// specified physical register.
373  const char *getName(unsigned RegNo) const {
374    return get(RegNo).Name;
375  }
376
377  /// getNumRegs - Return the number of registers this target has (useful for
378  /// sizing arrays holding per register information)
379  unsigned getNumRegs() const {
380    return NumRegs;
381  }
382
383  /// getSubRegIndexName - Return the human-readable symbolic target-specific
384  /// name for the specified SubRegIndex.
385  const char *getSubRegIndexName(unsigned SubIdx) const {
386    assert(SubIdx && "This is not a subregister index");
387    return SubRegIndexNames[SubIdx-1];
388  }
389
390  /// regsOverlap - Returns true if the two registers are equal or alias each
391  /// other. The registers may be virtual register.
392  bool regsOverlap(unsigned regA, unsigned regB) const {
393    if (regA == regB)
394      return true;
395
396    if (isVirtualRegister(regA) || isVirtualRegister(regB))
397      return false;
398
399    // regA and regB are distinct physical registers. Do they alias?
400    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
401    unsigned ProbeAmt = 0;
402    while (AliasesHash[index*2] != 0 &&
403           AliasesHash[index*2+1] != 0) {
404      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
405        return true;
406
407      index = (index + ProbeAmt) & (AliasesHashSize-1);
408      ProbeAmt += 2;
409    }
410
411    return false;
412  }
413
414  /// isSubRegister - Returns true if regB is a sub-register of regA.
415  ///
416  bool isSubRegister(unsigned regA, unsigned regB) const {
417    // SubregHash is a simple quadratically probed hash table.
418    size_t index = (regA + regB * 37) & (SubregHashSize-1);
419    unsigned ProbeAmt = 2;
420    while (SubregHash[index*2] != 0 &&
421           SubregHash[index*2+1] != 0) {
422      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
423        return true;
424
425      index = (index + ProbeAmt) & (SubregHashSize-1);
426      ProbeAmt += 2;
427    }
428
429    return false;
430  }
431
432  /// isSuperRegister - Returns true if regB is a super-register of regA.
433  ///
434  bool isSuperRegister(unsigned regA, unsigned regB) const {
435    return isSubRegister(regB, regA);
436  }
437
438  /// getCalleeSavedRegs - Return a null-terminated list of all of the
439  /// callee saved registers on this target. The register should be in the
440  /// order of desired callee-save stack frame offset. The first register is
441  /// closed to the incoming stack pointer if stack grows down, and vice versa.
442  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
443                                                                      const = 0;
444
445
446  /// getReservedRegs - Returns a bitset indexed by physical register number
447  /// indicating if a register is a special register that has particular uses
448  /// and should be considered unavailable at all times, e.g. SP, RA. This is
449  /// used by register scavenger to determine what registers are free.
450  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
451
452  /// getSubReg - Returns the physical register number of sub-register "Index"
453  /// for physical register RegNo. Return zero if the sub-register does not
454  /// exist.
455  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
456
457  /// getSubRegIndex - For a given register pair, return the sub-register index
458  /// if the are second register is a sub-register of the first. Return zero
459  /// otherwise.
460  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
461
462  /// getMatchingSuperReg - Return a super-register of the specified register
463  /// Reg so its sub-register of index SubIdx is Reg.
464  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
465                               const TargetRegisterClass *RC) const {
466    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
467      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
468        return SR;
469    return 0;
470  }
471
472  /// canCombineSubRegIndices - Given a register class and a list of
473  /// subregister indices, return true if it's possible to combine the
474  /// subregister indices into one that corresponds to a larger
475  /// subregister. Return the new subregister index by reference. Note the
476  /// new index may be zero if the given subregisters can be combined to
477  /// form the whole register.
478  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
479                                       SmallVectorImpl<unsigned> &SubIndices,
480                                       unsigned &NewSubIdx) const {
481    return 0;
482  }
483
484  /// getMatchingSuperRegClass - Return a subclass of the specified register
485  /// class A so that each register in it has a sub-register of the
486  /// specified sub-register index which is in the specified register class B.
487  virtual const TargetRegisterClass *
488  getMatchingSuperRegClass(const TargetRegisterClass *A,
489                           const TargetRegisterClass *B, unsigned Idx) const {
490    return 0;
491  }
492
493  /// composeSubRegIndices - Return the subregister index you get from composing
494  /// two subregister indices.
495  ///
496  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
497  /// returns c. Note that composeSubRegIndices does not tell you about illegal
498  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
499  /// b, composeSubRegIndices doesn't tell you.
500  ///
501  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
502  /// ssub_0:S0 - ssub_3:S3 subregs.
503  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
504  ///
505  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
506    // This default implementation is correct for most targets.
507    return b;
508  }
509
510  //===--------------------------------------------------------------------===//
511  // Register Class Information
512  //
513
514  /// Register class iterators
515  ///
516  regclass_iterator regclass_begin() const { return RegClassBegin; }
517  regclass_iterator regclass_end() const { return RegClassEnd; }
518
519  unsigned getNumRegClasses() const {
520    return (unsigned)(regclass_end()-regclass_begin());
521  }
522
523  /// getRegClass - Returns the register class associated with the enumeration
524  /// value.  See class TargetOperandInfo.
525  const TargetRegisterClass *getRegClass(unsigned i) const {
526    assert(i <= getNumRegClasses() && "Register Class ID out of range");
527    return i ? RegClassBegin[i - 1] : NULL;
528  }
529
530  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
531  /// values.  If a target supports multiple different pointer register classes,
532  /// kind specifies which one is indicated.
533  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
534    assert(0 && "Target didn't implement getPointerRegClass!");
535    return 0; // Must return a value in order to compile with VS 2005
536  }
537
538  /// getCrossCopyRegClass - Returns a legal register class to copy a register
539  /// in the specified class to or from. Returns NULL if it is possible to copy
540  /// between a two registers of the specified class.
541  virtual const TargetRegisterClass *
542  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
543    return NULL;
544  }
545
546  /// getAllocationOrder - Returns the register allocation order for a specified
547  /// register class in the form of a pair of TargetRegisterClass iterators.
548  virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
549  getAllocationOrder(const TargetRegisterClass *RC,
550                     unsigned HintType, unsigned HintReg,
551                     const MachineFunction &MF) const {
552    return std::make_pair(RC->allocation_order_begin(MF),
553                          RC->allocation_order_end(MF));
554  }
555
556  /// ResolveRegAllocHint - Resolves the specified register allocation hint
557  /// to a physical register. Returns the physical register if it is successful.
558  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
559                                       const MachineFunction &MF) const {
560    if (Type == 0 && Reg && isPhysicalRegister(Reg))
561      return Reg;
562    return 0;
563  }
564
565  /// UpdateRegAllocHint - A callback to allow target a chance to update
566  /// register allocation hints when a register is "changed" (e.g. coalesced)
567  /// to another register. e.g. On ARM, some virtual registers should target
568  /// register pairs, if one of pair is coalesced to another register, the
569  /// allocation hint of the other half of the pair should be changed to point
570  /// to the new register.
571  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
572                                  MachineFunction &MF) const {
573    // Do nothing.
574  }
575
576  /// targetHandlesStackFrameRounding - Returns true if the target is
577  /// responsible for rounding up the stack frame (probably at emitPrologue
578  /// time).
579  virtual bool targetHandlesStackFrameRounding() const {
580    return false;
581  }
582
583  /// requiresRegisterScavenging - returns true if the target requires (and can
584  /// make use of) the register scavenger.
585  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
586    return false;
587  }
588
589  /// requiresFrameIndexScavenging - returns true if the target requires post
590  /// PEI scavenging of registers for materializing frame index constants.
591  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
592    return false;
593  }
594
595  /// hasFP - Return true if the specified function should have a dedicated
596  /// frame pointer register. For most targets this is true only if the function
597  /// has variable sized allocas or if frame pointer elimination is disabled.
598  virtual bool hasFP(const MachineFunction &MF) const = 0;
599
600  /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
601  /// not required, we reserve argument space for call sites in the function
602  /// immediately on entry to the current function. This eliminates the need for
603  /// add/sub sp brackets around call sites. Returns true if the call frame is
604  /// included as part of the stack frame.
605  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
606    return !hasFP(MF);
607  }
608
609  /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
610  /// call frame pseudo ops before doing frame index elimination. This is
611  /// possible only when frame index references between the pseudos won't
612  /// need adjusted for the call frame adjustments. Normally, that's true
613  /// if the function has a reserved call frame or a frame pointer. Some
614  /// targets (Thumb2, for example) may have more complicated criteria,
615  /// however, and can override this behavior.
616  virtual bool canSimplifyCallFramePseudos(MachineFunction &MF) const {
617    return hasReservedCallFrame(MF) || hasFP(MF);
618  }
619
620  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
621  /// the stack frame of the given function for the specified register. e.g. On
622  /// x86, if the frame register is required, the first fixed stack object is
623  /// reserved as its spill slot. This tells PEI not to create a new stack frame
624  /// object for the given register. It should be called only after
625  /// processFunctionBeforeCalleeSavedScan().
626  virtual bool hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
627                                    int &FrameIdx) const {
628    return false;
629  }
630
631  /// needsStackRealignment - true if storage within the function requires the
632  /// stack pointer to be aligned more than the normal calling convention calls
633  /// for.
634  virtual bool needsStackRealignment(const MachineFunction &MF) const {
635    return false;
636  }
637
638  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
639  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
640  /// targets use pseudo instructions in order to abstract away the difference
641  /// between operating with a frame pointer and operating without, through the
642  /// use of these two instructions.
643  ///
644  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
645  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
646
647  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
648  /// code insertion to eliminate call frame setup and destroy pseudo
649  /// instructions (but only if the Target is using them).  It is responsible
650  /// for eliminating these instructions, replacing them with concrete
651  /// instructions.  This method need only be implemented if using call frame
652  /// setup/destroy pseudo instructions.
653  ///
654  virtual void
655  eliminateCallFramePseudoInstr(MachineFunction &MF,
656                                MachineBasicBlock &MBB,
657                                MachineBasicBlock::iterator MI) const {
658    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
659           "eliminateCallFramePseudoInstr must be implemented if using"
660           " call frame setup/destroy pseudo instructions!");
661    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
662  }
663
664  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
665  /// before PrologEpilogInserter scans the physical registers used to determine
666  /// what callee saved registers should be spilled. This method is optional.
667  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
668                                                RegScavenger *RS = NULL) const {
669
670  }
671
672  /// processFunctionBeforeFrameFinalized - This method is called immediately
673  /// before the specified functions frame layout (MF.getFrameInfo()) is
674  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
675  /// replaced with direct constants.  This method is optional.
676  ///
677  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
678  }
679
680  /// saveScavengerRegister - Spill the register so it can be used by the
681  /// register scavenger. Return true if the register was spilled, false
682  /// otherwise. If this function does not spill the register, the scavenger
683  /// will instead spill it to the emergency spill slot.
684  ///
685  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
686                                     MachineBasicBlock::iterator I,
687                                     MachineBasicBlock::iterator &UseMI,
688                                     const TargetRegisterClass *RC,
689                                     unsigned Reg) const {
690    return false;
691  }
692
693  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
694  /// frame indices from instructions which may use them.  The instruction
695  /// referenced by the iterator contains an MO_FrameIndex operand which must be
696  /// eliminated by this method.  This method may modify or replace the
697  /// specified instruction, as long as it keeps the iterator pointing at the
698  /// finished product. SPAdj is the SP adjustment due to call frame setup
699  /// instruction.
700  ///
701  /// When -enable-frame-index-scavenging is enabled, the virtual register
702  /// allocated for this frame index is returned and its value is stored in
703  /// *Value.
704  typedef std::pair<unsigned, int> FrameIndexValue;
705  virtual unsigned eliminateFrameIndex(MachineBasicBlock::iterator MI,
706                                       int SPAdj, FrameIndexValue *Value = NULL,
707                                       RegScavenger *RS=NULL) const = 0;
708
709  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
710  /// the function.
711  virtual void emitPrologue(MachineFunction &MF) const = 0;
712  virtual void emitEpilogue(MachineFunction &MF,
713                            MachineBasicBlock &MBB) const = 0;
714
715  //===--------------------------------------------------------------------===//
716  /// Debug information queries.
717
718  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
719  /// number.  Returns -1 if there is no equivalent value.  The second
720  /// parameter allows targets to use different numberings for EH info and
721  /// debugging info.
722  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
723
724  /// getFrameRegister - This method should return the register used as a base
725  /// for values allocated in the current stack frame.
726  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
727
728  /// getFrameIndexOffset - Returns the displacement from the frame register to
729  /// the stack frame of the specified index.
730  virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
731
732  /// getFrameIndexReference - This method should return the base register
733  /// and offset used to reference a frame index location. The offset is
734  /// returned directly, and the base register is returned via FrameReg.
735  virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
736                                     unsigned &FrameReg) const {
737    // By default, assume all frame indices are referenced via whatever
738    // getFrameRegister() says. The target can override this if it's doing
739    // something different.
740    FrameReg = getFrameRegister(MF);
741    return getFrameIndexOffset(MF, FI);
742  }
743
744  /// getRARegister - This method should return the register where the return
745  /// address can be found.
746  virtual unsigned getRARegister() const = 0;
747
748  /// getInitialFrameState - Returns a list of machine moves that are assumed
749  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
750  /// the beginning of the function.)
751  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
752};
753
754
755// This is useful when building IndexedMaps keyed on virtual registers
756struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
757  unsigned operator()(unsigned Reg) const {
758    return Reg - TargetRegisterInfo::FirstVirtualRegister;
759  }
760};
761
762/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
763/// if there is no common subclass.
764const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
765                                             const TargetRegisterClass *B);
766
767} // End llvm namespace
768
769#endif
770