TargetRegisterInfo.h revision c9e5015dece0a1a73bec358e11bc87594831279d
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31template<class T> class SmallVectorImpl;
32class raw_ostream;
33
34/// TargetRegisterDesc - This record contains all of the information known about
35/// a particular register.  The Overlaps field contains a pointer to a zero
36/// terminated array of registers that this register aliases, starting with
37/// itself. This is needed for architectures like X86 which have AL alias AX
38/// alias EAX. The SubRegs field is a zero terminated array of registers that
39/// are sub-registers of the specific register, e.g. AL, AH are sub-registers of
40/// AX. The SuperRegs field is a zero terminated array of registers that are
41/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
42/// of AX.
43///
44struct TargetRegisterDesc {
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *Overlaps;     // Overlapping registers, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49  unsigned CostPerUse;          // Extra cost of instructions using register.
50};
51
52class TargetRegisterClass {
53public:
54  typedef const unsigned* iterator;
55  typedef const unsigned* const_iterator;
56
57  typedef const EVT* vt_iterator;
58  typedef const TargetRegisterClass* const * sc_iterator;
59private:
60  unsigned ID;
61  const char *Name;
62  const vt_iterator VTs;
63  const sc_iterator SubClasses;
64  const sc_iterator SuperClasses;
65  const sc_iterator SubRegClasses;
66  const sc_iterator SuperRegClasses;
67  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
68  const int CopyCost;
69  const iterator RegsBegin, RegsEnd;
70  DenseSet<unsigned> RegSet;
71public:
72  TargetRegisterClass(unsigned id,
73                      const char *name,
74                      const EVT *vts,
75                      const TargetRegisterClass * const *subcs,
76                      const TargetRegisterClass * const *supcs,
77                      const TargetRegisterClass * const *subregcs,
78                      const TargetRegisterClass * const *superregcs,
79                      unsigned RS, unsigned Al, int CC,
80                      iterator RB, iterator RE)
81    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
82    SubRegClasses(subregcs), SuperRegClasses(superregcs),
83    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
84      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
85        RegSet.insert(*I);
86    }
87  virtual ~TargetRegisterClass() {}     // Allow subclasses
88
89  /// getID() - Return the register class ID number.
90  ///
91  unsigned getID() const { return ID; }
92
93  /// getName() - Return the register class name for debugging.
94  ///
95  const char *getName() const { return Name; }
96
97  /// begin/end - Return all of the registers in this class.
98  ///
99  iterator       begin() const { return RegsBegin; }
100  iterator         end() const { return RegsEnd; }
101
102  /// getNumRegs - Return the number of registers in this class.
103  ///
104  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
105
106  /// getRegister - Return the specified register in the class.
107  ///
108  unsigned getRegister(unsigned i) const {
109    assert(i < getNumRegs() && "Register number out of range!");
110    return RegsBegin[i];
111  }
112
113  /// contains - Return true if the specified register is included in this
114  /// register class.  This does not include virtual registers.
115  bool contains(unsigned Reg) const {
116    return RegSet.count(Reg);
117  }
118
119  /// contains - Return true if both registers are in this class.
120  bool contains(unsigned Reg1, unsigned Reg2) const {
121    return contains(Reg1) && contains(Reg2);
122  }
123
124  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
125  ///
126  bool hasType(EVT vt) const {
127    for(int i = 0; VTs[i] != MVT::Other; ++i)
128      if (VTs[i] == vt)
129        return true;
130    return false;
131  }
132
133  /// vt_begin / vt_end - Loop over all of the value types that can be
134  /// represented by values in this register class.
135  vt_iterator vt_begin() const {
136    return VTs;
137  }
138
139  vt_iterator vt_end() const {
140    vt_iterator I = VTs;
141    while (*I != MVT::Other) ++I;
142    return I;
143  }
144
145  /// subregclasses_begin / subregclasses_end - Loop over all of
146  /// the subreg register classes of this register class.
147  sc_iterator subregclasses_begin() const {
148    return SubRegClasses;
149  }
150
151  sc_iterator subregclasses_end() const {
152    sc_iterator I = SubRegClasses;
153    while (*I != NULL) ++I;
154    return I;
155  }
156
157  /// getSubRegisterRegClass - Return the register class of subregisters with
158  /// index SubIdx, or NULL if no such class exists.
159  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
160    assert(SubIdx>0 && "Invalid subregister index");
161    return SubRegClasses[SubIdx-1];
162  }
163
164  /// superregclasses_begin / superregclasses_end - Loop over all of
165  /// the superreg register classes of this register class.
166  sc_iterator superregclasses_begin() const {
167    return SuperRegClasses;
168  }
169
170  sc_iterator superregclasses_end() const {
171    sc_iterator I = SuperRegClasses;
172    while (*I != NULL) ++I;
173    return I;
174  }
175
176  /// hasSubClass - return true if the specified TargetRegisterClass
177  /// is a proper subset of this TargetRegisterClass.
178  bool hasSubClass(const TargetRegisterClass *cs) const {
179    for (int i = 0; SubClasses[i] != NULL; ++i)
180      if (SubClasses[i] == cs)
181        return true;
182    return false;
183  }
184
185  /// subclasses_begin / subclasses_end - Loop over all of the classes
186  /// that are proper subsets of this register class.
187  sc_iterator subclasses_begin() const {
188    return SubClasses;
189  }
190
191  sc_iterator subclasses_end() const {
192    sc_iterator I = SubClasses;
193    while (*I != NULL) ++I;
194    return I;
195  }
196
197  /// hasSuperClass - return true if the specified TargetRegisterClass is a
198  /// proper superset of this TargetRegisterClass.
199  bool hasSuperClass(const TargetRegisterClass *cs) const {
200    for (int i = 0; SuperClasses[i] != NULL; ++i)
201      if (SuperClasses[i] == cs)
202        return true;
203    return false;
204  }
205
206  /// superclasses_begin / superclasses_end - Loop over all of the classes
207  /// that are proper supersets of this register class.
208  sc_iterator superclasses_begin() const {
209    return SuperClasses;
210  }
211
212  sc_iterator superclasses_end() const {
213    sc_iterator I = SuperClasses;
214    while (*I != NULL) ++I;
215    return I;
216  }
217
218  /// isASubClass - return true if this TargetRegisterClass is a subset
219  /// class of at least one other TargetRegisterClass.
220  bool isASubClass() const {
221    return SuperClasses[0] != 0;
222  }
223
224  /// allocation_order_begin/end - These methods define a range of registers
225  /// which specify the registers in this class that are valid to register
226  /// allocate, and the preferred order to allocate them in.  For example,
227  /// callee saved registers should be at the end of the list, because it is
228  /// cheaper to allocate caller saved registers.
229  ///
230  /// These methods take a MachineFunction argument, which can be used to tune
231  /// the allocatable registers based on the characteristics of the function,
232  /// subtarget, or other criteria.
233  ///
234  /// Register allocators should account for the fact that an allocation
235  /// order iterator may return a reserved register and always check
236  /// if the register is allocatable (getAllocatableSet()) before using it.
237  ///
238  /// By default, these methods return all registers in the class.
239  ///
240  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
241    return begin();
242  }
243  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
244    return end();
245  }
246
247  /// getSize - Return the size of the register in bytes, which is also the size
248  /// of a stack slot allocated to hold a spilled copy of this register.
249  unsigned getSize() const { return RegSize; }
250
251  /// getAlignment - Return the minimum required alignment for a register of
252  /// this class.
253  unsigned getAlignment() const { return Alignment; }
254
255  /// getCopyCost - Return the cost of copying a value between two registers in
256  /// this class. A negative number means the register class is very expensive
257  /// to copy e.g. status flag register classes.
258  int getCopyCost() const { return CopyCost; }
259};
260
261
262/// TargetRegisterInfo base class - We assume that the target defines a static
263/// array of TargetRegisterDesc objects that represent all of the machine
264/// registers that the target has.  As such, we simply have to track a pointer
265/// to this array so that we can turn register number into a register
266/// descriptor.
267///
268class TargetRegisterInfo {
269protected:
270  const unsigned* SubregHash;
271  const unsigned SubregHashSize;
272  const unsigned* AliasesHash;
273  const unsigned AliasesHashSize;
274public:
275  typedef const TargetRegisterClass * const * regclass_iterator;
276private:
277  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
278  const char *const *SubRegIndexNames;        // Names of subreg indexes.
279  unsigned NumRegs;                           // Number of entries in the array
280
281  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
282
283  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
284
285protected:
286  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
287                     regclass_iterator RegClassBegin,
288                     regclass_iterator RegClassEnd,
289                     const char *const *subregindexnames,
290                     int CallFrameSetupOpcode = -1,
291                     int CallFrameDestroyOpcode = -1,
292                     const unsigned* subregs = 0,
293                     const unsigned subregsize = 0,
294                     const unsigned* aliases = 0,
295                     const unsigned aliasessize = 0);
296  virtual ~TargetRegisterInfo();
297public:
298
299  // Register numbers can represent physical registers, virtual registers, and
300  // sometimes stack slots. The unsigned values are divided into these ranges:
301  //
302  //   0           Not a register, can be used as a sentinel.
303  //   [1;2^30)    Physical registers assigned by TableGen.
304  //   [2^30;2^31) Stack slots. (Rarely used.)
305  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
306  //
307  // Further sentinels can be allocated from the small negative integers.
308  // DenseMapInfo<unsigned> uses -1u and -2u.
309
310  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
311  /// frame index in a variable that normally holds a register. isStackSlot()
312  /// returns true if Reg is in the range used for stack slots.
313  ///
314  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
315  /// slots, so if a variable may contains a stack slot, always check
316  /// isStackSlot() first.
317  ///
318  static bool isStackSlot(unsigned Reg) {
319    return int(Reg) >= (1 << 30);
320  }
321
322  /// stackSlot2Index - Compute the frame index from a register value
323  /// representing a stack slot.
324  static int stackSlot2Index(unsigned Reg) {
325    assert(isStackSlot(Reg) && "Not a stack slot");
326    return int(Reg - (1u << 30));
327  }
328
329  /// index2StackSlot - Convert a non-negative frame index to a stack slot
330  /// register value.
331  static unsigned index2StackSlot(int FI) {
332    assert(FI >= 0 && "Cannot hold a negative frame index.");
333    return FI + (1u << 30);
334  }
335
336  /// isPhysicalRegister - Return true if the specified register number is in
337  /// the physical register namespace.
338  static bool isPhysicalRegister(unsigned Reg) {
339    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
340    return int(Reg) > 0;
341  }
342
343  /// isVirtualRegister - Return true if the specified register number is in
344  /// the virtual register namespace.
345  static bool isVirtualRegister(unsigned Reg) {
346    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
347    return int(Reg) < 0;
348  }
349
350  /// virtReg2Index - Convert a virtual register number to a 0-based index.
351  /// The first virtual register in a function will get the index 0.
352  static unsigned virtReg2Index(unsigned Reg) {
353    assert(isVirtualRegister(Reg) && "Not a virtual register");
354    return Reg - (1u << 31);
355  }
356
357  /// index2VirtReg - Convert a 0-based index to a virtual register number.
358  /// This is the inverse operation of VirtReg2IndexFunctor below.
359  static unsigned index2VirtReg(unsigned Index) {
360    return Index + (1u << 31);
361  }
362
363  /// getMinimalPhysRegClass - Returns the Register Class of a physical
364  /// register of the given type, picking the most sub register class of
365  /// the right type that contains this physreg.
366  const TargetRegisterClass *
367    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
368
369  /// getAllocatableSet - Returns a bitset indexed by register number
370  /// indicating if a register is allocatable or not. If a register class is
371  /// specified, returns the subset for the class.
372  BitVector getAllocatableSet(const MachineFunction &MF,
373                              const TargetRegisterClass *RC = NULL) const;
374
375  const TargetRegisterDesc &operator[](unsigned RegNo) const {
376    assert(RegNo < NumRegs &&
377           "Attempting to access record for invalid register number!");
378    return Desc[RegNo];
379  }
380
381  /// Provide a get method, equivalent to [], but more useful if we have a
382  /// pointer to this object.
383  ///
384  const TargetRegisterDesc &get(unsigned RegNo) const {
385    return operator[](RegNo);
386  }
387
388  /// getAliasSet - Return the set of registers aliased by the specified
389  /// register, or a null list of there are none.  The list returned is zero
390  /// terminated.
391  ///
392  const unsigned *getAliasSet(unsigned RegNo) const {
393    // The Overlaps set always begins with Reg itself.
394    return get(RegNo).Overlaps + 1;
395  }
396
397  /// getOverlaps - Return a list of registers that overlap Reg, including
398  /// itself. This is the same as the alias set except Reg is included in the
399  /// list.
400  /// These are exactly the registers in { x | regsOverlap(x, Reg) }.
401  ///
402  const unsigned *getOverlaps(unsigned RegNo) const {
403    return get(RegNo).Overlaps;
404  }
405
406  /// getSubRegisters - Return the list of registers that are sub-registers of
407  /// the specified register, or a null list of there are none. The list
408  /// returned is zero terminated and sorted according to super-sub register
409  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
410  ///
411  const unsigned *getSubRegisters(unsigned RegNo) const {
412    return get(RegNo).SubRegs;
413  }
414
415  /// getSuperRegisters - Return the list of registers that are super-registers
416  /// of the specified register, or a null list of there are none. The list
417  /// returned is zero terminated and sorted according to super-sub register
418  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
419  ///
420  const unsigned *getSuperRegisters(unsigned RegNo) const {
421    return get(RegNo).SuperRegs;
422  }
423
424  /// getName - Return the human-readable symbolic target-specific name for the
425  /// specified physical register.
426  const char *getName(unsigned RegNo) const {
427    return get(RegNo).Name;
428  }
429
430  /// getCostPerUse - Return the additional cost of using this register instead
431  /// of other registers in its class.
432  unsigned getCostPerUse(unsigned RegNo) const {
433    return get(RegNo).CostPerUse;
434  }
435
436  /// getNumRegs - Return the number of registers this target has (useful for
437  /// sizing arrays holding per register information)
438  unsigned getNumRegs() const {
439    return NumRegs;
440  }
441
442  /// getSubRegIndexName - Return the human-readable symbolic target-specific
443  /// name for the specified SubRegIndex.
444  const char *getSubRegIndexName(unsigned SubIdx) const {
445    assert(SubIdx && "This is not a subregister index");
446    return SubRegIndexNames[SubIdx-1];
447  }
448
449  /// regsOverlap - Returns true if the two registers are equal or alias each
450  /// other. The registers may be virtual register.
451  bool regsOverlap(unsigned regA, unsigned regB) const {
452    if (regA == regB)
453      return true;
454
455    if (isVirtualRegister(regA) || isVirtualRegister(regB))
456      return false;
457
458    // regA and regB are distinct physical registers. Do they alias?
459    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
460    unsigned ProbeAmt = 0;
461    while (AliasesHash[index*2] != 0 &&
462           AliasesHash[index*2+1] != 0) {
463      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
464        return true;
465
466      index = (index + ProbeAmt) & (AliasesHashSize-1);
467      ProbeAmt += 2;
468    }
469
470    return false;
471  }
472
473  /// isSubRegister - Returns true if regB is a sub-register of regA.
474  ///
475  bool isSubRegister(unsigned regA, unsigned regB) const {
476    // SubregHash is a simple quadratically probed hash table.
477    size_t index = (regA + regB * 37) & (SubregHashSize-1);
478    unsigned ProbeAmt = 2;
479    while (SubregHash[index*2] != 0 &&
480           SubregHash[index*2+1] != 0) {
481      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
482        return true;
483
484      index = (index + ProbeAmt) & (SubregHashSize-1);
485      ProbeAmt += 2;
486    }
487
488    return false;
489  }
490
491  /// isSuperRegister - Returns true if regB is a super-register of regA.
492  ///
493  bool isSuperRegister(unsigned regA, unsigned regB) const {
494    return isSubRegister(regB, regA);
495  }
496
497  /// getCalleeSavedRegs - Return a null-terminated list of all of the
498  /// callee saved registers on this target. The register should be in the
499  /// order of desired callee-save stack frame offset. The first register is
500  /// closed to the incoming stack pointer if stack grows down, and vice versa.
501  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
502                                                                      const = 0;
503
504
505  /// getReservedRegs - Returns a bitset indexed by physical register number
506  /// indicating if a register is a special register that has particular uses
507  /// and should be considered unavailable at all times, e.g. SP, RA. This is
508  /// used by register scavenger to determine what registers are free.
509  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
510
511  /// getSubReg - Returns the physical register number of sub-register "Index"
512  /// for physical register RegNo. Return zero if the sub-register does not
513  /// exist.
514  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
515
516  /// getSubRegIndex - For a given register pair, return the sub-register index
517  /// if the second register is a sub-register of the first. Return zero
518  /// otherwise.
519  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
520
521  /// getMatchingSuperReg - Return a super-register of the specified register
522  /// Reg so its sub-register of index SubIdx is Reg.
523  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
524                               const TargetRegisterClass *RC) const {
525    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
526      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
527        return SR;
528    return 0;
529  }
530
531  /// canCombineSubRegIndices - Given a register class and a list of
532  /// subregister indices, return true if it's possible to combine the
533  /// subregister indices into one that corresponds to a larger
534  /// subregister. Return the new subregister index by reference. Note the
535  /// new index may be zero if the given subregisters can be combined to
536  /// form the whole register.
537  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
538                                       SmallVectorImpl<unsigned> &SubIndices,
539                                       unsigned &NewSubIdx) const {
540    return 0;
541  }
542
543  /// getMatchingSuperRegClass - Return a subclass of the specified register
544  /// class A so that each register in it has a sub-register of the
545  /// specified sub-register index which is in the specified register class B.
546  virtual const TargetRegisterClass *
547  getMatchingSuperRegClass(const TargetRegisterClass *A,
548                           const TargetRegisterClass *B, unsigned Idx) const {
549    return 0;
550  }
551
552  /// composeSubRegIndices - Return the subregister index you get from composing
553  /// two subregister indices.
554  ///
555  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
556  /// returns c. Note that composeSubRegIndices does not tell you about illegal
557  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
558  /// b, composeSubRegIndices doesn't tell you.
559  ///
560  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
561  /// ssub_0:S0 - ssub_3:S3 subregs.
562  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
563  ///
564  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
565    // This default implementation is correct for most targets.
566    return b;
567  }
568
569  //===--------------------------------------------------------------------===//
570  // Register Class Information
571  //
572
573  /// Register class iterators
574  ///
575  regclass_iterator regclass_begin() const { return RegClassBegin; }
576  regclass_iterator regclass_end() const { return RegClassEnd; }
577
578  unsigned getNumRegClasses() const {
579    return (unsigned)(regclass_end()-regclass_begin());
580  }
581
582  /// getRegClass - Returns the register class associated with the enumeration
583  /// value.  See class TargetOperandInfo.
584  const TargetRegisterClass *getRegClass(unsigned i) const {
585    assert(i < getNumRegClasses() && "Register Class ID out of range");
586    return RegClassBegin[i];
587  }
588
589  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
590  /// values.  If a target supports multiple different pointer register classes,
591  /// kind specifies which one is indicated.
592  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
593    assert(0 && "Target didn't implement getPointerRegClass!");
594    return 0; // Must return a value in order to compile with VS 2005
595  }
596
597  /// getCrossCopyRegClass - Returns a legal register class to copy a register
598  /// in the specified class to or from. If it is possible to copy the register
599  /// directly without using a cross register class copy, return the specified
600  /// RC. Returns NULL if it is not possible to copy between a two registers of
601  /// the specified class.
602  virtual const TargetRegisterClass *
603  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
604    return RC;
605  }
606
607  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
608  /// legal to use in the current sub-target and has the same spill size.
609  /// The returned register class can be used to create virtual registers which
610  /// means that all its registers can be copied and spilled.
611  virtual const TargetRegisterClass*
612  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
613    /// The default implementation is very conservative and doesn't allow the
614    /// register allocator to inflate register classes.
615    return RC;
616  }
617
618  /// getRegPressureLimit - Return the register pressure "high water mark" for
619  /// the specific register class. The scheduler is in high register pressure
620  /// mode (for the specific register class) if it goes over the limit.
621  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
622                                       MachineFunction &MF) const {
623    return 0;
624  }
625
626  /// getAllocationOrder - Returns the register allocation order for a specified
627  /// register class in the form of a pair of TargetRegisterClass iterators.
628  virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
629  getAllocationOrder(const TargetRegisterClass *RC,
630                     unsigned HintType, unsigned HintReg,
631                     const MachineFunction &MF) const {
632    return std::make_pair(RC->allocation_order_begin(MF),
633                          RC->allocation_order_end(MF));
634  }
635
636  /// ResolveRegAllocHint - Resolves the specified register allocation hint
637  /// to a physical register. Returns the physical register if it is successful.
638  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
639                                       const MachineFunction &MF) const {
640    if (Type == 0 && Reg && isPhysicalRegister(Reg))
641      return Reg;
642    return 0;
643  }
644
645  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
646  /// writing a register from RC in two consecutive instructions.
647  /// This can avoid pipeline stalls on certain architectures.
648  /// It does cause increased register pressure, though.
649  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
650    return false;
651  }
652
653  /// UpdateRegAllocHint - A callback to allow target a chance to update
654  /// register allocation hints when a register is "changed" (e.g. coalesced)
655  /// to another register. e.g. On ARM, some virtual registers should target
656  /// register pairs, if one of pair is coalesced to another register, the
657  /// allocation hint of the other half of the pair should be changed to point
658  /// to the new register.
659  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
660                                  MachineFunction &MF) const {
661    // Do nothing.
662  }
663
664  /// requiresRegisterScavenging - returns true if the target requires (and can
665  /// make use of) the register scavenger.
666  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
667    return false;
668  }
669
670  /// useFPForScavengingIndex - returns true if the target wants to use
671  /// frame pointer based accesses to spill to the scavenger emergency spill
672  /// slot.
673  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
674    return true;
675  }
676
677  /// requiresFrameIndexScavenging - returns true if the target requires post
678  /// PEI scavenging of registers for materializing frame index constants.
679  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
680    return false;
681  }
682
683  /// requiresVirtualBaseRegisters - Returns true if the target wants the
684  /// LocalStackAllocation pass to be run and virtual base registers
685  /// used for more efficient stack access.
686  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
687    return false;
688  }
689
690  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
691  /// the stack frame of the given function for the specified register. e.g. On
692  /// x86, if the frame register is required, the first fixed stack object is
693  /// reserved as its spill slot. This tells PEI not to create a new stack frame
694  /// object for the given register. It should be called only after
695  /// processFunctionBeforeCalleeSavedScan().
696  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
697                                    int &FrameIdx) const {
698    return false;
699  }
700
701  /// needsStackRealignment - true if storage within the function requires the
702  /// stack pointer to be aligned more than the normal calling convention calls
703  /// for.
704  virtual bool needsStackRealignment(const MachineFunction &MF) const {
705    return false;
706  }
707
708  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
709  /// index in the instruction, if there is one.
710  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
711                                           int Idx) const {
712    return 0;
713  }
714
715  /// needsFrameBaseReg - Returns true if the instruction's frame index
716  /// reference would be better served by a base register other than FP
717  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
718  /// references it should create new base registers for.
719  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
720    return false;
721  }
722
723  /// materializeFrameBaseRegister - Insert defining instruction(s) for
724  /// BaseReg to be a pointer to FrameIdx before insertion point I.
725  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
726                                            unsigned BaseReg, int FrameIdx,
727                                            int64_t Offset) const {
728    assert(0 && "materializeFrameBaseRegister does not exist on this target");
729  }
730
731  /// resolveFrameIndex - Resolve a frame index operand of an instruction
732  /// to reference the indicated base register plus offset instead.
733  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
734                                 unsigned BaseReg, int64_t Offset) const {
735    assert(0 && "resolveFrameIndex does not exist on this target");
736  }
737
738  /// isFrameOffsetLegal - Determine whether a given offset immediate is
739  /// encodable to resolve a frame index.
740  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
741                                  int64_t Offset) const {
742    assert(0 && "isFrameOffsetLegal does not exist on this target");
743    return false; // Must return a value in order to compile with VS 2005
744  }
745
746  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
747  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
748  /// targets use pseudo instructions in order to abstract away the difference
749  /// between operating with a frame pointer and operating without, through the
750  /// use of these two instructions.
751  ///
752  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
753  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
754
755  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
756  /// code insertion to eliminate call frame setup and destroy pseudo
757  /// instructions (but only if the Target is using them).  It is responsible
758  /// for eliminating these instructions, replacing them with concrete
759  /// instructions.  This method need only be implemented if using call frame
760  /// setup/destroy pseudo instructions.
761  ///
762  virtual void
763  eliminateCallFramePseudoInstr(MachineFunction &MF,
764                                MachineBasicBlock &MBB,
765                                MachineBasicBlock::iterator MI) const {
766    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
767           "eliminateCallFramePseudoInstr must be implemented if using"
768           " call frame setup/destroy pseudo instructions!");
769    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
770  }
771
772
773  /// saveScavengerRegister - Spill the register so it can be used by the
774  /// register scavenger. Return true if the register was spilled, false
775  /// otherwise. If this function does not spill the register, the scavenger
776  /// will instead spill it to the emergency spill slot.
777  ///
778  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
779                                     MachineBasicBlock::iterator I,
780                                     MachineBasicBlock::iterator &UseMI,
781                                     const TargetRegisterClass *RC,
782                                     unsigned Reg) const {
783    return false;
784  }
785
786  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
787  /// frame indices from instructions which may use them.  The instruction
788  /// referenced by the iterator contains an MO_FrameIndex operand which must be
789  /// eliminated by this method.  This method may modify or replace the
790  /// specified instruction, as long as it keeps the iterator pointing at the
791  /// finished product. SPAdj is the SP adjustment due to call frame setup
792  /// instruction.
793  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
794                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
795
796  //===--------------------------------------------------------------------===//
797  /// Debug information queries.
798
799  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
800  /// number.  Returns -1 if there is no equivalent value.  The second
801  /// parameter allows targets to use different numberings for EH info and
802  /// debugging info.
803  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
804
805  /// getFrameRegister - This method should return the register used as a base
806  /// for values allocated in the current stack frame.
807  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
808
809  /// getRARegister - This method should return the register where the return
810  /// address can be found.
811  virtual unsigned getRARegister() const = 0;
812};
813
814
815// This is useful when building IndexedMaps keyed on virtual registers
816struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
817  unsigned operator()(unsigned Reg) const {
818    return TargetRegisterInfo::virtReg2Index(Reg);
819  }
820};
821
822/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
823/// if there is no common subclass.
824const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
825                                             const TargetRegisterClass *B);
826
827/// PrintReg - Helper class for printing registers on a raw_ostream.
828/// Prints virtual and physical registers with or without a TRI instance.
829///
830/// The format is:
831///   %noreg          - NoRegister
832///   %vreg5          - a virtual register.
833///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
834///   %EAX            - a physical register
835///   %physreg17      - a physical register when no TRI instance given.
836///
837/// Usage: OS << PrintReg(Reg, TRI) << '\n';
838///
839class PrintReg {
840  const TargetRegisterInfo *TRI;
841  unsigned Reg;
842  unsigned SubIdx;
843public:
844  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
845    : TRI(tri), Reg(reg), SubIdx(subidx) {}
846  void print(raw_ostream&) const;
847};
848
849static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
850  PR.print(OS);
851  return OS;
852}
853
854} // End llvm namespace
855
856#endif
857