TargetRegisterInfo.h revision d6d7abaf4ebbabb850aa9c20e1617f897608fe62
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31template<class T> class SmallVectorImpl;
32
33/// TargetRegisterDesc - This record contains all of the information known about
34/// a particular register.  The AliasSet field (if not null) contains a pointer
35/// to a Zero terminated array of registers that this register aliases.  This is
36/// needed for architectures like X86 which have AL alias AX alias EAX.
37/// Registers that this does not apply to simply should set this to null.
38/// The SubRegs field is a zero terminated array of registers that are
39/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
40/// The SuperRegs field is a zero terminated array of registers that are
41/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
42/// of AX.
43///
44struct TargetRegisterDesc {
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *AliasSet;     // Register Alias Set, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const EVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const sc_iterator SubRegClasses;
65  const sc_iterator SuperRegClasses;
66  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67  const int CopyCost;
68  const iterator RegsBegin, RegsEnd;
69  DenseSet<unsigned> RegSet;
70public:
71  TargetRegisterClass(unsigned id,
72                      const char *name,
73                      const EVT *vts,
74                      const TargetRegisterClass * const *subcs,
75                      const TargetRegisterClass * const *supcs,
76                      const TargetRegisterClass * const *subregcs,
77                      const TargetRegisterClass * const *superregcs,
78                      unsigned RS, unsigned Al, int CC,
79                      iterator RB, iterator RE)
80    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81    SubRegClasses(subregcs), SuperRegClasses(superregcs),
82    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84        RegSet.insert(*I);
85    }
86  virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88  /// getID() - Return the register class ID number.
89  ///
90  unsigned getID() const { return ID; }
91
92  /// getName() - Return the register class name for debugging.
93  ///
94  const char *getName() const { return Name; }
95
96  /// begin/end - Return all of the registers in this class.
97  ///
98  iterator       begin() const { return RegsBegin; }
99  iterator         end() const { return RegsEnd; }
100
101  /// getNumRegs - Return the number of registers in this class.
102  ///
103  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105  /// getRegister - Return the specified register in the class.
106  ///
107  unsigned getRegister(unsigned i) const {
108    assert(i < getNumRegs() && "Register number out of range!");
109    return RegsBegin[i];
110  }
111
112  /// contains - Return true if the specified register is included in this
113  /// register class.  This does not include virtual registers.
114  bool contains(unsigned Reg) const {
115    return RegSet.count(Reg);
116  }
117
118  /// contains - Return true if both registers are in this class.
119  bool contains(unsigned Reg1, unsigned Reg2) const {
120    return contains(Reg1) && contains(Reg2);
121  }
122
123  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
124  ///
125  bool hasType(EVT vt) const {
126    for(int i = 0; VTs[i].getSimpleVT().SimpleTy != MVT::Other; ++i)
127      if (VTs[i] == vt)
128        return true;
129    return false;
130  }
131
132  /// vt_begin / vt_end - Loop over all of the value types that can be
133  /// represented by values in this register class.
134  vt_iterator vt_begin() const {
135    return VTs;
136  }
137
138  vt_iterator vt_end() const {
139    vt_iterator I = VTs;
140    while (I->getSimpleVT().SimpleTy != MVT::Other) ++I;
141    return I;
142  }
143
144  /// subregclasses_begin / subregclasses_end - Loop over all of
145  /// the subreg register classes of this register class.
146  sc_iterator subregclasses_begin() const {
147    return SubRegClasses;
148  }
149
150  sc_iterator subregclasses_end() const {
151    sc_iterator I = SubRegClasses;
152    while (*I != NULL) ++I;
153    return I;
154  }
155
156  /// getSubRegisterRegClass - Return the register class of subregisters with
157  /// index SubIdx, or NULL if no such class exists.
158  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
159    assert(SubIdx>0 && "Invalid subregister index");
160    return SubRegClasses[SubIdx-1];
161  }
162
163  /// superregclasses_begin / superregclasses_end - Loop over all of
164  /// the superreg register classes of this register class.
165  sc_iterator superregclasses_begin() const {
166    return SuperRegClasses;
167  }
168
169  sc_iterator superregclasses_end() const {
170    sc_iterator I = SuperRegClasses;
171    while (*I != NULL) ++I;
172    return I;
173  }
174
175  /// hasSubClass - return true if the specified TargetRegisterClass
176  /// is a proper subset of this TargetRegisterClass.
177  bool hasSubClass(const TargetRegisterClass *cs) const {
178    for (int i = 0; SubClasses[i] != NULL; ++i)
179      if (SubClasses[i] == cs)
180        return true;
181    return false;
182  }
183
184  /// subclasses_begin / subclasses_end - Loop over all of the classes
185  /// that are proper subsets of this register class.
186  sc_iterator subclasses_begin() const {
187    return SubClasses;
188  }
189
190  sc_iterator subclasses_end() const {
191    sc_iterator I = SubClasses;
192    while (*I != NULL) ++I;
193    return I;
194  }
195
196  /// hasSuperClass - return true if the specified TargetRegisterClass is a
197  /// proper superset of this TargetRegisterClass.
198  bool hasSuperClass(const TargetRegisterClass *cs) const {
199    for (int i = 0; SuperClasses[i] != NULL; ++i)
200      if (SuperClasses[i] == cs)
201        return true;
202    return false;
203  }
204
205  /// superclasses_begin / superclasses_end - Loop over all of the classes
206  /// that are proper supersets of this register class.
207  sc_iterator superclasses_begin() const {
208    return SuperClasses;
209  }
210
211  sc_iterator superclasses_end() const {
212    sc_iterator I = SuperClasses;
213    while (*I != NULL) ++I;
214    return I;
215  }
216
217  /// isASubClass - return true if this TargetRegisterClass is a subset
218  /// class of at least one other TargetRegisterClass.
219  bool isASubClass() const {
220    return SuperClasses[0] != 0;
221  }
222
223  /// allocation_order_begin/end - These methods define a range of registers
224  /// which specify the registers in this class that are valid to register
225  /// allocate, and the preferred order to allocate them in.  For example,
226  /// callee saved registers should be at the end of the list, because it is
227  /// cheaper to allocate caller saved registers.
228  ///
229  /// These methods take a MachineFunction argument, which can be used to tune
230  /// the allocatable registers based on the characteristics of the function.
231  /// One simple example is that the frame pointer register can be used if
232  /// frame-pointer-elimination is performed.
233  ///
234  /// By default, these methods return all registers in the class.
235  ///
236  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
237    return begin();
238  }
239  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
240    return end();
241  }
242
243  /// getSize - Return the size of the register in bytes, which is also the size
244  /// of a stack slot allocated to hold a spilled copy of this register.
245  unsigned getSize() const { return RegSize; }
246
247  /// getAlignment - Return the minimum required alignment for a register of
248  /// this class.
249  unsigned getAlignment() const { return Alignment; }
250
251  /// getCopyCost - Return the cost of copying a value between two registers in
252  /// this class. A negative number means the register class is very expensive
253  /// to copy e.g. status flag register classes.
254  int getCopyCost() const { return CopyCost; }
255};
256
257
258/// TargetRegisterInfo base class - We assume that the target defines a static
259/// array of TargetRegisterDesc objects that represent all of the machine
260/// registers that the target has.  As such, we simply have to track a pointer
261/// to this array so that we can turn register number into a register
262/// descriptor.
263///
264class TargetRegisterInfo {
265protected:
266  const unsigned* SubregHash;
267  const unsigned SubregHashSize;
268  const unsigned* AliasesHash;
269  const unsigned AliasesHashSize;
270public:
271  typedef const TargetRegisterClass * const * regclass_iterator;
272private:
273  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
274  const char *const *SubRegIndexNames;        // Names of subreg indexes.
275  unsigned NumRegs;                           // Number of entries in the array
276
277  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
278
279  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
280
281protected:
282  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
283                     regclass_iterator RegClassBegin,
284                     regclass_iterator RegClassEnd,
285                     const char *const *subregindexnames,
286                     int CallFrameSetupOpcode = -1,
287                     int CallFrameDestroyOpcode = -1,
288                     const unsigned* subregs = 0,
289                     const unsigned subregsize = 0,
290                     const unsigned* aliases = 0,
291                     const unsigned aliasessize = 0);
292  virtual ~TargetRegisterInfo();
293public:
294
295  enum {                        // Define some target independent constants
296    /// NoRegister - This physical register is not a real target register.  It
297    /// is useful as a sentinal.
298    NoRegister = 0,
299
300    /// FirstVirtualRegister - This is the first register number that is
301    /// considered to be a 'virtual' register, which is part of the SSA
302    /// namespace.  This must be the same for all targets, which means that each
303    /// target is limited to this fixed number of registers.
304    FirstVirtualRegister = 1024
305  };
306
307  /// isPhysicalRegister - Return true if the specified register number is in
308  /// the physical register namespace.
309  static bool isPhysicalRegister(unsigned Reg) {
310    assert(Reg && "this is not a register!");
311    return Reg < FirstVirtualRegister;
312  }
313
314  /// isVirtualRegister - Return true if the specified register number is in
315  /// the virtual register namespace.
316  static bool isVirtualRegister(unsigned Reg) {
317    assert(Reg && "this is not a register!");
318    return Reg >= FirstVirtualRegister;
319  }
320
321  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
322  /// register of the given type. If type is EVT::Other, then just return any
323  /// register class the register belongs to.
324  const TargetRegisterClass *
325    getPhysicalRegisterRegClass(unsigned Reg, EVT VT = MVT::Other) const;
326
327  /// getMinimalPhysRegClass - Returns the Register Class of a physical
328  /// register of the given type, picking the most sub register class of
329  /// the right type that contains this physreg.
330  const TargetRegisterClass *
331    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
332
333  /// getAllocatableSet - Returns a bitset indexed by register number
334  /// indicating if a register is allocatable or not. If a register class is
335  /// specified, returns the subset for the class.
336  BitVector getAllocatableSet(const MachineFunction &MF,
337                              const TargetRegisterClass *RC = NULL) const;
338
339  const TargetRegisterDesc &operator[](unsigned RegNo) const {
340    assert(RegNo < NumRegs &&
341           "Attempting to access record for invalid register number!");
342    return Desc[RegNo];
343  }
344
345  /// Provide a get method, equivalent to [], but more useful if we have a
346  /// pointer to this object.
347  ///
348  const TargetRegisterDesc &get(unsigned RegNo) const {
349    return operator[](RegNo);
350  }
351
352  /// getAliasSet - Return the set of registers aliased by the specified
353  /// register, or a null list of there are none.  The list returned is zero
354  /// terminated.
355  ///
356  const unsigned *getAliasSet(unsigned RegNo) const {
357    return get(RegNo).AliasSet;
358  }
359
360  /// getSubRegisters - Return the list of registers that are sub-registers of
361  /// the specified register, or a null list of there are none. The list
362  /// returned is zero terminated and sorted according to super-sub register
363  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
364  ///
365  const unsigned *getSubRegisters(unsigned RegNo) const {
366    return get(RegNo).SubRegs;
367  }
368
369  /// getSuperRegisters - Return the list of registers that are super-registers
370  /// of the specified register, or a null list of there are none. The list
371  /// returned is zero terminated and sorted according to super-sub register
372  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
373  ///
374  const unsigned *getSuperRegisters(unsigned RegNo) const {
375    return get(RegNo).SuperRegs;
376  }
377
378  /// getName - Return the human-readable symbolic target-specific name for the
379  /// specified physical register.
380  const char *getName(unsigned RegNo) const {
381    return get(RegNo).Name;
382  }
383
384  /// getNumRegs - Return the number of registers this target has (useful for
385  /// sizing arrays holding per register information)
386  unsigned getNumRegs() const {
387    return NumRegs;
388  }
389
390  /// getSubRegIndexName - Return the human-readable symbolic target-specific
391  /// name for the specified SubRegIndex.
392  const char *getSubRegIndexName(unsigned SubIdx) const {
393    assert(SubIdx && "This is not a subregister index");
394    return SubRegIndexNames[SubIdx-1];
395  }
396
397  /// regsOverlap - Returns true if the two registers are equal or alias each
398  /// other. The registers may be virtual register.
399  bool regsOverlap(unsigned regA, unsigned regB) const {
400    if (regA == regB)
401      return true;
402
403    if (isVirtualRegister(regA) || isVirtualRegister(regB))
404      return false;
405
406    // regA and regB are distinct physical registers. Do they alias?
407    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
408    unsigned ProbeAmt = 0;
409    while (AliasesHash[index*2] != 0 &&
410           AliasesHash[index*2+1] != 0) {
411      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
412        return true;
413
414      index = (index + ProbeAmt) & (AliasesHashSize-1);
415      ProbeAmt += 2;
416    }
417
418    return false;
419  }
420
421  /// isSubRegister - Returns true if regB is a sub-register of regA.
422  ///
423  bool isSubRegister(unsigned regA, unsigned regB) const {
424    // SubregHash is a simple quadratically probed hash table.
425    size_t index = (regA + regB * 37) & (SubregHashSize-1);
426    unsigned ProbeAmt = 2;
427    while (SubregHash[index*2] != 0 &&
428           SubregHash[index*2+1] != 0) {
429      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
430        return true;
431
432      index = (index + ProbeAmt) & (SubregHashSize-1);
433      ProbeAmt += 2;
434    }
435
436    return false;
437  }
438
439  /// isSuperRegister - Returns true if regB is a super-register of regA.
440  ///
441  bool isSuperRegister(unsigned regA, unsigned regB) const {
442    return isSubRegister(regB, regA);
443  }
444
445  /// getCalleeSavedRegs - Return a null-terminated list of all of the
446  /// callee saved registers on this target. The register should be in the
447  /// order of desired callee-save stack frame offset. The first register is
448  /// closed to the incoming stack pointer if stack grows down, and vice versa.
449  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
450                                                                      const = 0;
451
452
453  /// getReservedRegs - Returns a bitset indexed by physical register number
454  /// indicating if a register is a special register that has particular uses
455  /// and should be considered unavailable at all times, e.g. SP, RA. This is
456  /// used by register scavenger to determine what registers are free.
457  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
458
459  /// getSubReg - Returns the physical register number of sub-register "Index"
460  /// for physical register RegNo. Return zero if the sub-register does not
461  /// exist.
462  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
463
464  /// getSubRegIndex - For a given register pair, return the sub-register index
465  /// if the second register is a sub-register of the first. Return zero
466  /// otherwise.
467  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
468
469  /// getMatchingSuperReg - Return a super-register of the specified register
470  /// Reg so its sub-register of index SubIdx is Reg.
471  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
472                               const TargetRegisterClass *RC) const {
473    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
474      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
475        return SR;
476    return 0;
477  }
478
479  /// canCombineSubRegIndices - Given a register class and a list of
480  /// subregister indices, return true if it's possible to combine the
481  /// subregister indices into one that corresponds to a larger
482  /// subregister. Return the new subregister index by reference. Note the
483  /// new index may be zero if the given subregisters can be combined to
484  /// form the whole register.
485  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
486                                       SmallVectorImpl<unsigned> &SubIndices,
487                                       unsigned &NewSubIdx) const {
488    return 0;
489  }
490
491  /// getMatchingSuperRegClass - Return a subclass of the specified register
492  /// class A so that each register in it has a sub-register of the
493  /// specified sub-register index which is in the specified register class B.
494  virtual const TargetRegisterClass *
495  getMatchingSuperRegClass(const TargetRegisterClass *A,
496                           const TargetRegisterClass *B, unsigned Idx) const {
497    return 0;
498  }
499
500  /// composeSubRegIndices - Return the subregister index you get from composing
501  /// two subregister indices.
502  ///
503  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
504  /// returns c. Note that composeSubRegIndices does not tell you about illegal
505  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
506  /// b, composeSubRegIndices doesn't tell you.
507  ///
508  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
509  /// ssub_0:S0 - ssub_3:S3 subregs.
510  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
511  ///
512  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
513    // This default implementation is correct for most targets.
514    return b;
515  }
516
517  //===--------------------------------------------------------------------===//
518  // Register Class Information
519  //
520
521  /// Register class iterators
522  ///
523  regclass_iterator regclass_begin() const { return RegClassBegin; }
524  regclass_iterator regclass_end() const { return RegClassEnd; }
525
526  unsigned getNumRegClasses() const {
527    return (unsigned)(regclass_end()-regclass_begin());
528  }
529
530  /// getRegClass - Returns the register class associated with the enumeration
531  /// value.  See class TargetOperandInfo.
532  const TargetRegisterClass *getRegClass(unsigned i) const {
533    assert(i < getNumRegClasses() && "Register Class ID out of range");
534    return RegClassBegin[i];
535  }
536
537  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
538  /// values.  If a target supports multiple different pointer register classes,
539  /// kind specifies which one is indicated.
540  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
541    assert(0 && "Target didn't implement getPointerRegClass!");
542    return 0; // Must return a value in order to compile with VS 2005
543  }
544
545  /// getCrossCopyRegClass - Returns a legal register class to copy a register
546  /// in the specified class to or from. Returns NULL if it is possible to copy
547  /// between a two registers of the specified class.
548  virtual const TargetRegisterClass *
549  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
550    return NULL;
551  }
552
553  /// getAllocationOrder - Returns the register allocation order for a specified
554  /// register class in the form of a pair of TargetRegisterClass iterators.
555  virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
556  getAllocationOrder(const TargetRegisterClass *RC,
557                     unsigned HintType, unsigned HintReg,
558                     const MachineFunction &MF) const {
559    return std::make_pair(RC->allocation_order_begin(MF),
560                          RC->allocation_order_end(MF));
561  }
562
563  /// ResolveRegAllocHint - Resolves the specified register allocation hint
564  /// to a physical register. Returns the physical register if it is successful.
565  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
566                                       const MachineFunction &MF) const {
567    if (Type == 0 && Reg && isPhysicalRegister(Reg))
568      return Reg;
569    return 0;
570  }
571
572  /// UpdateRegAllocHint - A callback to allow target a chance to update
573  /// register allocation hints when a register is "changed" (e.g. coalesced)
574  /// to another register. e.g. On ARM, some virtual registers should target
575  /// register pairs, if one of pair is coalesced to another register, the
576  /// allocation hint of the other half of the pair should be changed to point
577  /// to the new register.
578  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
579                                  MachineFunction &MF) const {
580    // Do nothing.
581  }
582
583  /// targetHandlesStackFrameRounding - Returns true if the target is
584  /// responsible for rounding up the stack frame (probably at emitPrologue
585  /// time).
586  virtual bool targetHandlesStackFrameRounding() const {
587    return false;
588  }
589
590  /// requiresRegisterScavenging - returns true if the target requires (and can
591  /// make use of) the register scavenger.
592  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
593    return false;
594  }
595
596  /// requiresFrameIndexScavenging - returns true if the target requires post
597  /// PEI scavenging of registers for materializing frame index constants.
598  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
599    return false;
600  }
601
602  /// hasFP - Return true if the specified function should have a dedicated
603  /// frame pointer register. For most targets this is true only if the function
604  /// has variable sized allocas or if frame pointer elimination is disabled.
605  virtual bool hasFP(const MachineFunction &MF) const = 0;
606
607  /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
608  /// not required, we reserve argument space for call sites in the function
609  /// immediately on entry to the current function. This eliminates the need for
610  /// add/sub sp brackets around call sites. Returns true if the call frame is
611  /// included as part of the stack frame.
612  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
613    return !hasFP(MF);
614  }
615
616  /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
617  /// call frame pseudo ops before doing frame index elimination. This is
618  /// possible only when frame index references between the pseudos won't
619  /// need adjusted for the call frame adjustments. Normally, that's true
620  /// if the function has a reserved call frame or a frame pointer. Some
621  /// targets (Thumb2, for example) may have more complicated criteria,
622  /// however, and can override this behavior.
623  virtual bool canSimplifyCallFramePseudos(MachineFunction &MF) const {
624    return hasReservedCallFrame(MF) || hasFP(MF);
625  }
626
627  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
628  /// the stack frame of the given function for the specified register. e.g. On
629  /// x86, if the frame register is required, the first fixed stack object is
630  /// reserved as its spill slot. This tells PEI not to create a new stack frame
631  /// object for the given register. It should be called only after
632  /// processFunctionBeforeCalleeSavedScan().
633  virtual bool hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
634                                    int &FrameIdx) const {
635    return false;
636  }
637
638  /// needsStackRealignment - true if storage within the function requires the
639  /// stack pointer to be aligned more than the normal calling convention calls
640  /// for.
641  virtual bool needsStackRealignment(const MachineFunction &MF) const {
642    return false;
643  }
644
645  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
646  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
647  /// targets use pseudo instructions in order to abstract away the difference
648  /// between operating with a frame pointer and operating without, through the
649  /// use of these two instructions.
650  ///
651  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
652  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
653
654  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
655  /// code insertion to eliminate call frame setup and destroy pseudo
656  /// instructions (but only if the Target is using them).  It is responsible
657  /// for eliminating these instructions, replacing them with concrete
658  /// instructions.  This method need only be implemented if using call frame
659  /// setup/destroy pseudo instructions.
660  ///
661  virtual void
662  eliminateCallFramePseudoInstr(MachineFunction &MF,
663                                MachineBasicBlock &MBB,
664                                MachineBasicBlock::iterator MI) const {
665    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
666           "eliminateCallFramePseudoInstr must be implemented if using"
667           " call frame setup/destroy pseudo instructions!");
668    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
669  }
670
671  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
672  /// before PrologEpilogInserter scans the physical registers used to determine
673  /// what callee saved registers should be spilled. This method is optional.
674  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
675                                                RegScavenger *RS = NULL) const {
676
677  }
678
679  /// processFunctionBeforeFrameFinalized - This method is called immediately
680  /// before the specified functions frame layout (MF.getFrameInfo()) is
681  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
682  /// replaced with direct constants.  This method is optional.
683  ///
684  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
685  }
686
687  /// saveScavengerRegister - Spill the register so it can be used by the
688  /// register scavenger. Return true if the register was spilled, false
689  /// otherwise. If this function does not spill the register, the scavenger
690  /// will instead spill it to the emergency spill slot.
691  ///
692  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
693                                     MachineBasicBlock::iterator I,
694                                     MachineBasicBlock::iterator &UseMI,
695                                     const TargetRegisterClass *RC,
696                                     unsigned Reg) const {
697    return false;
698  }
699
700  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
701  /// frame indices from instructions which may use them.  The instruction
702  /// referenced by the iterator contains an MO_FrameIndex operand which must be
703  /// eliminated by this method.  This method may modify or replace the
704  /// specified instruction, as long as it keeps the iterator pointing at the
705  /// finished product. SPAdj is the SP adjustment due to call frame setup
706  /// instruction.
707  ///
708  /// When -enable-frame-index-scavenging is enabled, the virtual register
709  /// allocated for this frame index is returned and its value is stored in
710  /// *Value.
711  typedef std::pair<unsigned, int> FrameIndexValue;
712  virtual unsigned eliminateFrameIndex(MachineBasicBlock::iterator MI,
713                                       int SPAdj, FrameIndexValue *Value = NULL,
714                                       RegScavenger *RS=NULL) const = 0;
715
716  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
717  /// the function.
718  virtual void emitPrologue(MachineFunction &MF) const = 0;
719  virtual void emitEpilogue(MachineFunction &MF,
720                            MachineBasicBlock &MBB) const = 0;
721
722  //===--------------------------------------------------------------------===//
723  /// Debug information queries.
724
725  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
726  /// number.  Returns -1 if there is no equivalent value.  The second
727  /// parameter allows targets to use different numberings for EH info and
728  /// debugging info.
729  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
730
731  /// getFrameRegister - This method should return the register used as a base
732  /// for values allocated in the current stack frame.
733  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
734
735  /// getFrameIndexOffset - Returns the displacement from the frame register to
736  /// the stack frame of the specified index.
737  virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
738
739  /// getFrameIndexReference - This method should return the base register
740  /// and offset used to reference a frame index location. The offset is
741  /// returned directly, and the base register is returned via FrameReg.
742  virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
743                                     unsigned &FrameReg) const {
744    // By default, assume all frame indices are referenced via whatever
745    // getFrameRegister() says. The target can override this if it's doing
746    // something different.
747    FrameReg = getFrameRegister(MF);
748    return getFrameIndexOffset(MF, FI);
749  }
750
751  /// getRARegister - This method should return the register where the return
752  /// address can be found.
753  virtual unsigned getRARegister() const = 0;
754
755  /// getInitialFrameState - Returns a list of machine moves that are assumed
756  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
757  /// the beginning of the function.)
758  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
759};
760
761
762// This is useful when building IndexedMaps keyed on virtual registers
763struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
764  unsigned operator()(unsigned Reg) const {
765    return Reg - TargetRegisterInfo::FirstVirtualRegister;
766  }
767};
768
769/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
770/// if there is no common subclass.
771const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
772                                             const TargetRegisterClass *B);
773
774} // End llvm namespace
775
776#endif
777