TargetRegisterInfo.h revision f3ef5332fa3f4d5ec72c178a2b19dac363a19383
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineValueType.h"
22#include "llvm/IR/CallingConv.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Printable.h"
26#include <cassert>
27#include <functional>
28
29namespace llvm {
30
31class BitVector;
32class MachineFunction;
33class RegScavenger;
34template<class T> class SmallVectorImpl;
35class VirtRegMap;
36class raw_ostream;
37class LiveRegMatrix;
38
39/// A bitmask representing the covering of a register with sub-registers.
40///
41/// This is typically used to track liveness at sub-register granularity.
42/// Lane masks for sub-register indices are similar to register units for
43/// physical registers. The individual bits in a lane mask can't be assigned
44/// any specific meaning. They can be used to check if two sub-register
45/// indices overlap.
46///
47/// Iff the target has a register such that:
48///
49///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
50///
51/// then:
52///
53///   (getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0
54typedef unsigned LaneBitmask;
55
56class TargetRegisterClass {
57public:
58  typedef const MCPhysReg* iterator;
59  typedef const MCPhysReg* const_iterator;
60  typedef const MVT::SimpleValueType* vt_iterator;
61  typedef const TargetRegisterClass* const * sc_iterator;
62
63  // Instance variables filled by tablegen, do not use!
64  const MCRegisterClass *MC;
65  const vt_iterator VTs;
66  const uint32_t *SubClassMask;
67  const uint16_t *SuperRegIndices;
68  const LaneBitmask LaneMask;
69  /// Classes with a higher priority value are assigned first by register
70  /// allocators using a greedy heuristic. The value is in the range [0,63].
71  const uint8_t AllocationPriority;
72  /// Whether the class supports two (or more) disjunct subregister indices.
73  const bool HasDisjunctSubRegs;
74  const sc_iterator SuperClasses;
75  ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
76
77  /// Return the register class ID number.
78  unsigned getID() const { return MC->getID(); }
79
80  /// begin/end - Return all of the registers in this class.
81  ///
82  iterator       begin() const { return MC->begin(); }
83  iterator         end() const { return MC->end(); }
84
85  /// Return the number of registers in this class.
86  unsigned getNumRegs() const { return MC->getNumRegs(); }
87
88  /// Return the specified register in the class.
89  unsigned getRegister(unsigned i) const {
90    return MC->getRegister(i);
91  }
92
93  /// Return true if the specified register is included in this register class.
94  /// This does not include virtual registers.
95  bool contains(unsigned Reg) const {
96    return MC->contains(Reg);
97  }
98
99  /// Return true if both registers are in this class.
100  bool contains(unsigned Reg1, unsigned Reg2) const {
101    return MC->contains(Reg1, Reg2);
102  }
103
104  /// Return the size of the register in bytes, which is also the size
105  /// of a stack slot allocated to hold a spilled copy of this register.
106  unsigned getSize() const { return MC->getSize(); }
107
108  /// Return the minimum required alignment for a register of this class.
109  unsigned getAlignment() const { return MC->getAlignment(); }
110
111  /// Return the cost of copying a value between two registers in this class.
112  /// A negative number means the register class is very expensive
113  /// to copy e.g. status flag register classes.
114  int getCopyCost() const { return MC->getCopyCost(); }
115
116  /// Return true if this register class may be used to create virtual
117  /// registers.
118  bool isAllocatable() const { return MC->isAllocatable(); }
119
120  /// Return true if this TargetRegisterClass has the ValueType vt.
121  bool hasType(MVT vt) const {
122    for(int i = 0; VTs[i] != MVT::Other; ++i)
123      if (MVT(VTs[i]) == vt)
124        return true;
125    return false;
126  }
127
128  /// vt_begin / vt_end - Loop over all of the value types that can be
129  /// represented by values in this register class.
130  vt_iterator vt_begin() const {
131    return VTs;
132  }
133
134  vt_iterator vt_end() const {
135    vt_iterator I = VTs;
136    while (*I != MVT::Other) ++I;
137    return I;
138  }
139
140  /// Return true if the specified TargetRegisterClass
141  /// is a proper sub-class of this TargetRegisterClass.
142  bool hasSubClass(const TargetRegisterClass *RC) const {
143    return RC != this && hasSubClassEq(RC);
144  }
145
146  /// Returns true if RC is a sub-class of or equal to this class.
147  bool hasSubClassEq(const TargetRegisterClass *RC) const {
148    unsigned ID = RC->getID();
149    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
150  }
151
152  /// Return true if the specified TargetRegisterClass is a
153  /// proper super-class of this TargetRegisterClass.
154  bool hasSuperClass(const TargetRegisterClass *RC) const {
155    return RC->hasSubClass(this);
156  }
157
158  /// Returns true if RC is a super-class of or equal to this class.
159  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
160    return RC->hasSubClassEq(this);
161  }
162
163  /// Returns a bit vector of subclasses, including this one.
164  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
165  /// use it.
166  const uint32_t *getSubClassMask() const {
167    return SubClassMask;
168  }
169
170  /// Returns a 0-terminated list of sub-register indices that project some
171  /// super-register class into this register class. The list has an entry for
172  /// each Idx such that:
173  ///
174  ///   There exists SuperRC where:
175  ///     For all Reg in SuperRC:
176  ///       this->contains(Reg:Idx)
177  ///
178  const uint16_t *getSuperRegIndices() const {
179    return SuperRegIndices;
180  }
181
182  /// Returns a NULL-terminated list of super-classes.  The
183  /// classes are ordered by ID which is also a topological ordering from large
184  /// to small classes.  The list does NOT include the current class.
185  sc_iterator getSuperClasses() const {
186    return SuperClasses;
187  }
188
189  /// Return true if this TargetRegisterClass is a subset
190  /// class of at least one other TargetRegisterClass.
191  bool isASubClass() const {
192    return SuperClasses[0] != nullptr;
193  }
194
195  /// Returns the preferred order for allocating registers from this register
196  /// class in MF. The raw order comes directly from the .td file and may
197  /// include reserved registers that are not allocatable.
198  /// Register allocators should also make sure to allocate
199  /// callee-saved registers only after all the volatiles are used. The
200  /// RegisterClassInfo class provides filtered allocation orders with
201  /// callee-saved registers moved to the end.
202  ///
203  /// The MachineFunction argument can be used to tune the allocatable
204  /// registers based on the characteristics of the function, subtarget, or
205  /// other criteria.
206  ///
207  /// By default, this method returns all registers in the class.
208  ///
209  ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
210    return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
211  }
212
213  /// Returns the combination of all lane masks of register in this class.
214  /// The lane masks of the registers are the combination of all lane masks
215  /// of their subregisters.
216  LaneBitmask getLaneMask() const {
217    return LaneMask;
218  }
219};
220
221/// Extra information, not in MCRegisterDesc, about registers.
222/// These are used by codegen, not by MC.
223struct TargetRegisterInfoDesc {
224  unsigned CostPerUse;          // Extra cost of instructions using register.
225  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
226};
227
228/// Each TargetRegisterClass has a per register weight, and weight
229/// limit which must be less than the limits of its pressure sets.
230struct RegClassWeight {
231  unsigned RegWeight;
232  unsigned WeightLimit;
233};
234
235/// TargetRegisterInfo base class - We assume that the target defines a static
236/// array of TargetRegisterDesc objects that represent all of the machine
237/// registers that the target has.  As such, we simply have to track a pointer
238/// to this array so that we can turn register number into a register
239/// descriptor.
240///
241class TargetRegisterInfo : public MCRegisterInfo {
242public:
243  typedef const TargetRegisterClass * const * regclass_iterator;
244private:
245  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
246  const char *const *SubRegIndexNames;        // Names of subreg indexes.
247  // Pointer to array of lane masks, one per sub-reg index.
248  const LaneBitmask *SubRegIndexLaneMasks;
249
250  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
251  unsigned CoveringLanes;
252
253protected:
254  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
255                     regclass_iterator RegClassBegin,
256                     regclass_iterator RegClassEnd,
257                     const char *const *SRINames,
258                     const LaneBitmask *SRILaneMasks,
259                     unsigned CoveringLanes);
260  virtual ~TargetRegisterInfo();
261public:
262
263  // Register numbers can represent physical registers, virtual registers, and
264  // sometimes stack slots. The unsigned values are divided into these ranges:
265  //
266  //   0           Not a register, can be used as a sentinel.
267  //   [1;2^30)    Physical registers assigned by TableGen.
268  //   [2^30;2^31) Stack slots. (Rarely used.)
269  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
270  //
271  // Further sentinels can be allocated from the small negative integers.
272  // DenseMapInfo<unsigned> uses -1u and -2u.
273
274  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
275  /// frame index in a variable that normally holds a register. isStackSlot()
276  /// returns true if Reg is in the range used for stack slots.
277  ///
278  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
279  /// slots, so if a variable may contains a stack slot, always check
280  /// isStackSlot() first.
281  ///
282  static bool isStackSlot(unsigned Reg) {
283    return int(Reg) >= (1 << 30);
284  }
285
286  /// Compute the frame index from a register value representing a stack slot.
287  static int stackSlot2Index(unsigned Reg) {
288    assert(isStackSlot(Reg) && "Not a stack slot");
289    return int(Reg - (1u << 30));
290  }
291
292  /// Convert a non-negative frame index to a stack slot register value.
293  static unsigned index2StackSlot(int FI) {
294    assert(FI >= 0 && "Cannot hold a negative frame index.");
295    return FI + (1u << 30);
296  }
297
298  /// Return true if the specified register number is in
299  /// the physical register namespace.
300  static bool isPhysicalRegister(unsigned Reg) {
301    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
302    return int(Reg) > 0;
303  }
304
305  /// Return true if the specified register number is in
306  /// the virtual register namespace.
307  static bool isVirtualRegister(unsigned Reg) {
308    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
309    return int(Reg) < 0;
310  }
311
312  /// Convert a virtual register number to a 0-based index.
313  /// The first virtual register in a function will get the index 0.
314  static unsigned virtReg2Index(unsigned Reg) {
315    assert(isVirtualRegister(Reg) && "Not a virtual register");
316    return Reg & ~(1u << 31);
317  }
318
319  /// Convert a 0-based index to a virtual register number.
320  /// This is the inverse operation of VirtReg2IndexFunctor below.
321  static unsigned index2VirtReg(unsigned Index) {
322    return Index | (1u << 31);
323  }
324
325  /// Returns the Register Class of a physical register of the given type,
326  /// picking the most sub register class of the right type that contains this
327  /// physreg.
328  const TargetRegisterClass *
329    getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
330
331  /// Return the maximal subclass of the given register class that is
332  /// allocatable or NULL.
333  const TargetRegisterClass *
334    getAllocatableClass(const TargetRegisterClass *RC) const;
335
336  /// Returns a bitset indexed by register number indicating if a register is
337  /// allocatable or not. If a register class is specified, returns the subset
338  /// for the class.
339  BitVector getAllocatableSet(const MachineFunction &MF,
340                              const TargetRegisterClass *RC = nullptr) const;
341
342  /// Return the additional cost of using this register instead
343  /// of other registers in its class.
344  unsigned getCostPerUse(unsigned RegNo) const {
345    return InfoDesc[RegNo].CostPerUse;
346  }
347
348  /// Return true if the register is in the allocation of any register class.
349  bool isInAllocatableClass(unsigned RegNo) const {
350    return InfoDesc[RegNo].inAllocatableClass;
351  }
352
353  /// Return the human-readable symbolic target-specific
354  /// name for the specified SubRegIndex.
355  const char *getSubRegIndexName(unsigned SubIdx) const {
356    assert(SubIdx && SubIdx < getNumSubRegIndices() &&
357           "This is not a subregister index");
358    return SubRegIndexNames[SubIdx-1];
359  }
360
361  /// Return a bitmask representing the parts of a register that are covered by
362  /// SubIdx \see LaneBitmask.
363  ///
364  /// SubIdx == 0 is allowed, it has the lane mask ~0u.
365  LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
366    assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
367    return SubRegIndexLaneMasks[SubIdx];
368  }
369
370  /// The lane masks returned by getSubRegIndexLaneMask() above can only be
371  /// used to determine if sub-registers overlap - they can't be used to
372  /// determine if a set of sub-registers completely cover another
373  /// sub-register.
374  ///
375  /// The X86 general purpose registers have two lanes corresponding to the
376  /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
377  /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
378  /// sub_32bit sub-register.
379  ///
380  /// On the other hand, the ARM NEON lanes fully cover their registers: The
381  /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
382  /// This is related to the CoveredBySubRegs property on register definitions.
383  ///
384  /// This function returns a bit mask of lanes that completely cover their
385  /// sub-registers. More precisely, given:
386  ///
387  ///   Covering = getCoveringLanes();
388  ///   MaskA = getSubRegIndexLaneMask(SubA);
389  ///   MaskB = getSubRegIndexLaneMask(SubB);
390  ///
391  /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
392  /// SubB.
393  LaneBitmask getCoveringLanes() const { return CoveringLanes; }
394
395  /// Returns true if the two registers are equal or alias each other.
396  /// The registers may be virtual registers.
397  bool regsOverlap(unsigned regA, unsigned regB) const {
398    if (regA == regB) return true;
399    if (isVirtualRegister(regA) || isVirtualRegister(regB))
400      return false;
401
402    // Regunits are numerically ordered. Find a common unit.
403    MCRegUnitIterator RUA(regA, this);
404    MCRegUnitIterator RUB(regB, this);
405    do {
406      if (*RUA == *RUB) return true;
407      if (*RUA < *RUB) ++RUA;
408      else             ++RUB;
409    } while (RUA.isValid() && RUB.isValid());
410    return false;
411  }
412
413  /// Returns true if Reg contains RegUnit.
414  bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
415    for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
416      if (*Units == RegUnit)
417        return true;
418    return false;
419  }
420
421  /// Return a null-terminated list of all of the callee-saved registers on
422  /// this target. The register should be in the order of desired callee-save
423  /// stack frame offset. The first register is closest to the incoming stack
424  /// pointer if stack grows down, and vice versa.
425  ///
426  virtual const MCPhysReg*
427  getCalleeSavedRegs(const MachineFunction *MF) const = 0;
428
429  virtual const MCPhysReg*
430  getCalleeSavedRegsViaCopy(const MachineFunction *MF) const {
431    return nullptr;
432  }
433
434  /// Return a mask of call-preserved registers for the given calling convention
435  /// on the current function. The mask should include all call-preserved
436  /// aliases. This is used by the register allocator to determine which
437  /// registers can be live across a call.
438  ///
439  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
440  /// A set bit indicates that all bits of the corresponding register are
441  /// preserved across the function call.  The bit mask is expected to be
442  /// sub-register complete, i.e. if A is preserved, so are all its
443  /// sub-registers.
444  ///
445  /// Bits are numbered from the LSB, so the bit for physical register Reg can
446  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
447  ///
448  /// A NULL pointer means that no register mask will be used, and call
449  /// instructions should use implicit-def operands to indicate call clobbered
450  /// registers.
451  ///
452  virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
453                                               CallingConv::ID) const {
454    // The default mask clobbers everything.  All targets should override.
455    return nullptr;
456  }
457
458  /// Return a register mask that clobbers everything.
459  virtual const uint32_t *getNoPreservedMask() const {
460    llvm_unreachable("target does not provide no presered mask");
461  }
462
463  /// Return all the call-preserved register masks defined for this target.
464  virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
465  virtual ArrayRef<const char *> getRegMaskNames() const = 0;
466
467  /// Returns a bitset indexed by physical register number indicating if a
468  /// register is a special register that has particular uses and should be
469  /// considered unavailable at all times, e.g. SP, RA. This is
470  /// used by register scavenger to determine what registers are free.
471  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
472
473  /// Prior to adding the live-out mask to a stackmap or patchpoint
474  /// instruction, provide the target the opportunity to adjust it (mainly to
475  /// remove pseudo-registers that should be ignored).
476  virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { }
477
478  /// Return a super-register of the specified register
479  /// Reg so its sub-register of index SubIdx is Reg.
480  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
481                               const TargetRegisterClass *RC) const {
482    return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
483  }
484
485  /// Return a subclass of the specified register
486  /// class A so that each register in it has a sub-register of the
487  /// specified sub-register index which is in the specified register class B.
488  ///
489  /// TableGen will synthesize missing A sub-classes.
490  virtual const TargetRegisterClass *
491  getMatchingSuperRegClass(const TargetRegisterClass *A,
492                           const TargetRegisterClass *B, unsigned Idx) const;
493
494  // For a copy-like instruction that defines a register of class DefRC with
495  // subreg index DefSubReg, reading from another source with class SrcRC and
496  // subregister SrcSubReg return true if this is a preferrable copy
497  // instruction or an earlier use should be used.
498  virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
499                                    unsigned DefSubReg,
500                                    const TargetRegisterClass *SrcRC,
501                                    unsigned SrcSubReg) const;
502
503  /// Returns the largest legal sub-class of RC that
504  /// supports the sub-register index Idx.
505  /// If no such sub-class exists, return NULL.
506  /// If all registers in RC already have an Idx sub-register, return RC.
507  ///
508  /// TableGen generates a version of this function that is good enough in most
509  /// cases.  Targets can override if they have constraints that TableGen
510  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
511  /// supported by the full GR32 register class in 64-bit mode, but only by the
512  /// GR32_ABCD regiister class in 32-bit mode.
513  ///
514  /// TableGen will synthesize missing RC sub-classes.
515  virtual const TargetRegisterClass *
516  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
517    assert(Idx == 0 && "Target has no sub-registers");
518    return RC;
519  }
520
521  /// Return the subregister index you get from composing
522  /// two subregister indices.
523  ///
524  /// The special null sub-register index composes as the identity.
525  ///
526  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
527  /// returns c. Note that composeSubRegIndices does not tell you about illegal
528  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
529  /// b, composeSubRegIndices doesn't tell you.
530  ///
531  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
532  /// ssub_0:S0 - ssub_3:S3 subregs.
533  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
534  ///
535  unsigned composeSubRegIndices(unsigned a, unsigned b) const {
536    if (!a) return b;
537    if (!b) return a;
538    return composeSubRegIndicesImpl(a, b);
539  }
540
541  /// Transforms a LaneMask computed for one subregister to the lanemask that
542  /// would have been computed when composing the subsubregisters with IdxA
543  /// first. @sa composeSubRegIndices()
544  LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
545                                         LaneBitmask Mask) const {
546    if (!IdxA)
547      return Mask;
548    return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
549  }
550
551  /// Debugging helper: dump register in human readable form to dbgs() stream.
552  static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
553                      const TargetRegisterInfo* TRI = nullptr);
554
555protected:
556  /// Overridden by TableGen in targets that have sub-registers.
557  virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
558    llvm_unreachable("Target has no sub-registers");
559  }
560
561  /// Overridden by TableGen in targets that have sub-registers.
562  virtual LaneBitmask
563  composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
564    llvm_unreachable("Target has no sub-registers");
565  }
566
567public:
568  /// Find a common super-register class if it exists.
569  ///
570  /// Find a register class, SuperRC and two sub-register indices, PreA and
571  /// PreB, such that:
572  ///
573  ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
574  ///
575  ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
576  ///
577  ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
578  ///
579  /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
580  /// requirements, and there is no register class with a smaller spill size
581  /// that satisfies the requirements.
582  ///
583  /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
584  ///
585  /// Either of the PreA and PreB sub-register indices may be returned as 0. In
586  /// that case, the returned register class will be a sub-class of the
587  /// corresponding argument register class.
588  ///
589  /// The function returns NULL if no register class can be found.
590  ///
591  const TargetRegisterClass*
592  getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
593                         const TargetRegisterClass *RCB, unsigned SubB,
594                         unsigned &PreA, unsigned &PreB) const;
595
596  //===--------------------------------------------------------------------===//
597  // Register Class Information
598  //
599
600  /// Register class iterators
601  ///
602  regclass_iterator regclass_begin() const { return RegClassBegin; }
603  regclass_iterator regclass_end() const { return RegClassEnd; }
604
605  unsigned getNumRegClasses() const {
606    return (unsigned)(regclass_end()-regclass_begin());
607  }
608
609  /// Returns the register class associated with the enumeration value.
610  /// See class MCOperandInfo.
611  const TargetRegisterClass *getRegClass(unsigned i) const {
612    assert(i < getNumRegClasses() && "Register Class ID out of range");
613    return RegClassBegin[i];
614  }
615
616  /// Returns the name of the register class.
617  const char *getRegClassName(const TargetRegisterClass *Class) const {
618    return MCRegisterInfo::getRegClassName(Class->MC);
619  }
620
621  /// Find the largest common subclass of A and B.
622  /// Return NULL if there is no common subclass.
623  /// The common subclass should contain
624  /// simple value type SVT if it is not the Any type.
625  const TargetRegisterClass *
626  getCommonSubClass(const TargetRegisterClass *A,
627                    const TargetRegisterClass *B,
628                    const MVT::SimpleValueType SVT =
629                    MVT::SimpleValueType::Any) const;
630
631  /// Returns a TargetRegisterClass used for pointer values.
632  /// If a target supports multiple different pointer register classes,
633  /// kind specifies which one is indicated.
634  virtual const TargetRegisterClass *
635  getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
636    llvm_unreachable("Target didn't implement getPointerRegClass!");
637  }
638
639  /// Returns a legal register class to copy a register in the specified class
640  /// to or from. If it is possible to copy the register directly without using
641  /// a cross register class copy, return the specified RC. Returns NULL if it
642  /// is not possible to copy between two registers of the specified class.
643  virtual const TargetRegisterClass *
644  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
645    return RC;
646  }
647
648  /// Returns the largest super class of RC that is legal to use in the current
649  /// sub-target and has the same spill size.
650  /// The returned register class can be used to create virtual registers which
651  /// means that all its registers can be copied and spilled.
652  virtual const TargetRegisterClass *
653  getLargestLegalSuperClass(const TargetRegisterClass *RC,
654                            const MachineFunction &) const {
655    /// The default implementation is very conservative and doesn't allow the
656    /// register allocator to inflate register classes.
657    return RC;
658  }
659
660  /// Return the register pressure "high water mark" for the specific register
661  /// class. The scheduler is in high register pressure mode (for the specific
662  /// register class) if it goes over the limit.
663  ///
664  /// Note: this is the old register pressure model that relies on a manually
665  /// specified representative register class per value type.
666  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
667                                       MachineFunction &MF) const {
668    return 0;
669  }
670
671  /// Return a heuristic for the machine scheduler to compare the profitability
672  /// of increasing one register pressure set versus another.  The scheduler
673  /// will prefer increasing the register pressure of the set which returns
674  /// the largest value for this function.
675  virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
676                                          unsigned PSetID) const {
677    return PSetID;
678  }
679
680  /// Get the weight in units of pressure for this register class.
681  virtual const RegClassWeight &getRegClassWeight(
682    const TargetRegisterClass *RC) const = 0;
683
684  /// Get the weight in units of pressure for this register unit.
685  virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
686
687  /// Get the number of dimensions of register pressure.
688  virtual unsigned getNumRegPressureSets() const = 0;
689
690  /// Get the name of this register unit pressure set.
691  virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
692
693  /// Get the register unit pressure limit for this dimension.
694  /// This limit must be adjusted dynamically for reserved registers.
695  virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
696                                          unsigned Idx) const = 0;
697
698  /// Get the dimensions of register pressure impacted by this register class.
699  /// Returns a -1 terminated array of pressure set IDs.
700  virtual const int *getRegClassPressureSets(
701    const TargetRegisterClass *RC) const = 0;
702
703  /// Get the dimensions of register pressure impacted by this register unit.
704  /// Returns a -1 terminated array of pressure set IDs.
705  virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
706
707  /// Get a list of 'hint' registers that the register allocator should try
708  /// first when allocating a physical register for the virtual register
709  /// VirtReg. These registers are effectively moved to the front of the
710  /// allocation order.
711  ///
712  /// The Order argument is the allocation order for VirtReg's register class
713  /// as returned from RegisterClassInfo::getOrder(). The hint registers must
714  /// come from Order, and they must not be reserved.
715  ///
716  /// The default implementation of this function can resolve
717  /// target-independent hints provided to MRI::setRegAllocationHint with
718  /// HintType == 0. Targets that override this function should defer to the
719  /// default implementation if they have no reason to change the allocation
720  /// order for VirtReg. There may be target-independent hints.
721  virtual void getRegAllocationHints(unsigned VirtReg,
722                                     ArrayRef<MCPhysReg> Order,
723                                     SmallVectorImpl<MCPhysReg> &Hints,
724                                     const MachineFunction &MF,
725                                     const VirtRegMap *VRM = nullptr,
726                                     const LiveRegMatrix *Matrix = nullptr)
727    const;
728
729  /// A callback to allow target a chance to update register allocation hints
730  /// when a register is "changed" (e.g. coalesced) to another register.
731  /// e.g. On ARM, some virtual registers should target register pairs,
732  /// if one of pair is coalesced to another register, the allocation hint of
733  /// the other half of the pair should be changed to point to the new register.
734  virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
735                                  MachineFunction &MF) const {
736    // Do nothing.
737  }
738
739  /// Allow the target to reverse allocation order of local live ranges. This
740  /// will generally allocate shorter local live ranges first. For targets with
741  /// many registers, this could reduce regalloc compile time by a large
742  /// factor. It is disabled by default for three reasons:
743  /// (1) Top-down allocation is simpler and easier to debug for targets that
744  /// don't benefit from reversing the order.
745  /// (2) Bottom-up allocation could result in poor evicition decisions on some
746  /// targets affecting the performance of compiled code.
747  /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
748  virtual bool reverseLocalAssignment() const { return false; }
749
750  /// Allow the target to override the cost of using a callee-saved register for
751  /// the first time. Default value of 0 means we will use a callee-saved
752  /// register if it is available.
753  virtual unsigned getCSRFirstUseCost() const { return 0; }
754
755  /// Returns true if the target requires (and can make use of) the register
756  /// scavenger.
757  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
758    return false;
759  }
760
761  /// Returns true if the target wants to use frame pointer based accesses to
762  /// spill to the scavenger emergency spill slot.
763  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
764    return true;
765  }
766
767  /// Returns true if the target requires post PEI scavenging of registers for
768  /// materializing frame index constants.
769  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
770    return false;
771  }
772
773  /// Returns true if the target wants the LocalStackAllocation pass to be run
774  /// and virtual base registers used for more efficient stack access.
775  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
776    return false;
777  }
778
779  /// Return true if target has reserved a spill slot in the stack frame of
780  /// the given function for the specified register. e.g. On x86, if the frame
781  /// register is required, the first fixed stack object is reserved as its
782  /// spill slot. This tells PEI not to create a new stack frame
783  /// object for the given register. It should be called only after
784  /// determineCalleeSaves().
785  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
786                                    int &FrameIdx) const {
787    return false;
788  }
789
790  /// Returns true if the live-ins should be tracked after register allocation.
791  virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
792    return false;
793  }
794
795  /// True if the stack can be realigned for the target.
796  virtual bool canRealignStack(const MachineFunction &MF) const;
797
798  /// True if storage within the function requires the stack pointer to be
799  /// aligned more than the normal calling convention calls for.
800  /// This cannot be overriden by the target, but canRealignStack can be
801  /// overridden.
802  bool needsStackRealignment(const MachineFunction &MF) const;
803
804  /// Get the offset from the referenced frame index in the instruction,
805  /// if there is one.
806  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
807                                           int Idx) const {
808    return 0;
809  }
810
811  /// Returns true if the instruction's frame index reference would be better
812  /// served by a base register other than FP or SP.
813  /// Used by LocalStackFrameAllocation to determine which frame index
814  /// references it should create new base registers for.
815  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
816    return false;
817  }
818
819  /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
820  /// before insertion point I.
821  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
822                                            unsigned BaseReg, int FrameIdx,
823                                            int64_t Offset) const {
824    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
825                     "target");
826  }
827
828  /// Resolve a frame index operand of an instruction
829  /// to reference the indicated base register plus offset instead.
830  virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
831                                 int64_t Offset) const {
832    llvm_unreachable("resolveFrameIndex does not exist on this target");
833  }
834
835  /// Determine whether a given base register plus offset immediate is
836  /// encodable to resolve a frame index.
837  virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
838                                  int64_t Offset) const {
839    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
840  }
841
842  /// Spill the register so it can be used by the register scavenger.
843  /// Return true if the register was spilled, false otherwise.
844  /// If this function does not spill the register, the scavenger
845  /// will instead spill it to the emergency spill slot.
846  ///
847  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
848                                     MachineBasicBlock::iterator I,
849                                     MachineBasicBlock::iterator &UseMI,
850                                     const TargetRegisterClass *RC,
851                                     unsigned Reg) const {
852    return false;
853  }
854
855  /// This method must be overriden to eliminate abstract frame indices from
856  /// instructions which may use them. The instruction referenced by the
857  /// iterator contains an MO_FrameIndex operand which must be eliminated by
858  /// this method. This method may modify or replace the specified instruction,
859  /// as long as it keeps the iterator pointing at the finished product.
860  /// SPAdj is the SP adjustment due to call frame setup instruction.
861  /// FIOperandNum is the FI operand number.
862  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
863                                   int SPAdj, unsigned FIOperandNum,
864                                   RegScavenger *RS = nullptr) const = 0;
865
866  //===--------------------------------------------------------------------===//
867  /// Subtarget Hooks
868
869  /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true.
870  virtual bool shouldCoalesce(MachineInstr *MI,
871                              const TargetRegisterClass *SrcRC,
872                              unsigned SubReg,
873                              const TargetRegisterClass *DstRC,
874                              unsigned DstSubReg,
875                              const TargetRegisterClass *NewRC) const
876  { return true; }
877
878  //===--------------------------------------------------------------------===//
879  /// Debug information queries.
880
881  /// getFrameRegister - This method should return the register used as a base
882  /// for values allocated in the current stack frame.
883  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
884};
885
886
887//===----------------------------------------------------------------------===//
888//                           SuperRegClassIterator
889//===----------------------------------------------------------------------===//
890//
891// Iterate over the possible super-registers for a given register class. The
892// iterator will visit a list of pairs (Idx, Mask) corresponding to the
893// possible classes of super-registers.
894//
895// Each bit mask will have at least one set bit, and each set bit in Mask
896// corresponds to a SuperRC such that:
897//
898//   For all Reg in SuperRC: Reg:Idx is in RC.
899//
900// The iterator can include (O, RC->getSubClassMask()) as the first entry which
901// also satisfies the above requirement, assuming Reg:0 == Reg.
902//
903class SuperRegClassIterator {
904  const unsigned RCMaskWords;
905  unsigned SubReg;
906  const uint16_t *Idx;
907  const uint32_t *Mask;
908
909public:
910  /// Create a SuperRegClassIterator that visits all the super-register classes
911  /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
912  SuperRegClassIterator(const TargetRegisterClass *RC,
913                        const TargetRegisterInfo *TRI,
914                        bool IncludeSelf = false)
915    : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
916      SubReg(0),
917      Idx(RC->getSuperRegIndices()),
918      Mask(RC->getSubClassMask()) {
919    if (!IncludeSelf)
920      ++*this;
921  }
922
923  /// Returns true if this iterator is still pointing at a valid entry.
924  bool isValid() const { return Idx; }
925
926  /// Returns the current sub-register index.
927  unsigned getSubReg() const { return SubReg; }
928
929  /// Returns the bit mask if register classes that getSubReg() projects into
930  /// RC.
931  const uint32_t *getMask() const { return Mask; }
932
933  /// Advance iterator to the next entry.
934  void operator++() {
935    assert(isValid() && "Cannot move iterator past end.");
936    Mask += RCMaskWords;
937    SubReg = *Idx++;
938    if (!SubReg)
939      Idx = nullptr;
940  }
941};
942
943// This is useful when building IndexedMaps keyed on virtual registers
944struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
945  unsigned operator()(unsigned Reg) const {
946    return TargetRegisterInfo::virtReg2Index(Reg);
947  }
948};
949
950/// Prints virtual and physical registers with or without a TRI instance.
951///
952/// The format is:
953///   %noreg          - NoRegister
954///   %vreg5          - a virtual register.
955///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
956///   %EAX            - a physical register
957///   %physreg17      - a physical register when no TRI instance given.
958///
959/// Usage: OS << PrintReg(Reg, TRI) << '\n';
960Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
961                   unsigned SubRegIdx = 0);
962
963/// Create Printable object to print register units on a \ref raw_ostream.
964///
965/// Register units are named after their root registers:
966///
967///   AL      - Single root.
968///   FP0~ST7 - Dual roots.
969///
970/// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
971Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
972
973/// \brief Create Printable object to print virtual registers and physical
974/// registers on a \ref raw_ostream.
975Printable PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
976
977/// Create Printable object to print LaneBitmasks on a \ref raw_ostream.
978Printable PrintLaneMask(LaneBitmask LaneMask);
979
980} // End llvm namespace
981
982#endif
983