InstructionSimplify.cpp revision 207634263c6a5271d6a10f802c4970ffcd34d271
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/Operator.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Support/ConstantRange.h"
28#include "llvm/Support/PatternMatch.h"
29#include "llvm/Support/ValueHandle.h"
30#include "llvm/Target/TargetData.h"
31using namespace llvm;
32using namespace llvm::PatternMatch;
33
34enum { RecursionLimit = 3 };
35
36STATISTIC(NumExpand,  "Number of expansions");
37STATISTIC(NumFactor , "Number of factorizations");
38STATISTIC(NumReassoc, "Number of reassociations");
39
40static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
41                              const DominatorTree *, unsigned);
42static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
43                            const DominatorTree *, unsigned);
44static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
45                              const DominatorTree *, unsigned);
46static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
47                             const DominatorTree *, unsigned);
48static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
49                              const DominatorTree *, unsigned);
50
51/// getFalse - For a boolean type, or a vector of boolean type, return false, or
52/// a vector with every element false, as appropriate for the type.
53static Constant *getFalse(Type *Ty) {
54  assert((Ty->isIntegerTy(1) ||
55          (Ty->isVectorTy() &&
56           cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
57         "Expected i1 type or a vector of i1!");
58  return Constant::getNullValue(Ty);
59}
60
61/// getTrue - For a boolean type, or a vector of boolean type, return true, or
62/// a vector with every element true, as appropriate for the type.
63static Constant *getTrue(Type *Ty) {
64  assert((Ty->isIntegerTy(1) ||
65          (Ty->isVectorTy() &&
66           cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
67         "Expected i1 type or a vector of i1!");
68  return Constant::getAllOnesValue(Ty);
69}
70
71/// ValueDominatesPHI - Does the given value dominate the specified phi node?
72static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
73  Instruction *I = dyn_cast<Instruction>(V);
74  if (!I)
75    // Arguments and constants dominate all instructions.
76    return true;
77
78  // If we have a DominatorTree then do a precise test.
79  if (DT)
80    return DT->dominates(I, P);
81
82  // Otherwise, if the instruction is in the entry block, and is not an invoke,
83  // then it obviously dominates all phi nodes.
84  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
85      !isa<InvokeInst>(I))
86    return true;
87
88  return false;
89}
90
91/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
92/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
93/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
94/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
95/// Returns the simplified value, or null if no simplification was performed.
96static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
97                          unsigned OpcToExpand, const TargetData *TD,
98                          const DominatorTree *DT, unsigned MaxRecurse) {
99  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
100  // Recursion is always used, so bail out at once if we already hit the limit.
101  if (!MaxRecurse--)
102    return 0;
103
104  // Check whether the expression has the form "(A op' B) op C".
105  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
106    if (Op0->getOpcode() == OpcodeToExpand) {
107      // It does!  Try turning it into "(A op C) op' (B op C)".
108      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
109      // Do "A op C" and "B op C" both simplify?
110      if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
111        if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
112          // They do! Return "L op' R" if it simplifies or is already available.
113          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
114          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
115                                     && L == B && R == A)) {
116            ++NumExpand;
117            return LHS;
118          }
119          // Otherwise return "L op' R" if it simplifies.
120          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
121                                       MaxRecurse)) {
122            ++NumExpand;
123            return V;
124          }
125        }
126    }
127
128  // Check whether the expression has the form "A op (B op' C)".
129  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
130    if (Op1->getOpcode() == OpcodeToExpand) {
131      // It does!  Try turning it into "(A op B) op' (A op C)".
132      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
133      // Do "A op B" and "A op C" both simplify?
134      if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
135        if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
136          // They do! Return "L op' R" if it simplifies or is already available.
137          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
138          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
139                                     && L == C && R == B)) {
140            ++NumExpand;
141            return RHS;
142          }
143          // Otherwise return "L op' R" if it simplifies.
144          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
145                                       MaxRecurse)) {
146            ++NumExpand;
147            return V;
148          }
149        }
150    }
151
152  return 0;
153}
154
155/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
156/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
157/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
158/// Returns the simplified value, or null if no simplification was performed.
159static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
160                             unsigned OpcToExtract, const TargetData *TD,
161                             const DominatorTree *DT, unsigned MaxRecurse) {
162  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
163  // Recursion is always used, so bail out at once if we already hit the limit.
164  if (!MaxRecurse--)
165    return 0;
166
167  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
168  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
169
170  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
171      !Op1 || Op1->getOpcode() != OpcodeToExtract)
172    return 0;
173
174  // The expression has the form "(A op' B) op (C op' D)".
175  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
176  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
177
178  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
179  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
180  // commutative case, "(A op' B) op (C op' A)"?
181  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
182    Value *DD = A == C ? D : C;
183    // Form "A op' (B op DD)" if it simplifies completely.
184    // Does "B op DD" simplify?
185    if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
186      // It does!  Return "A op' V" if it simplifies or is already available.
187      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
188      // "A op' V" is just the RHS.
189      if (V == B || V == DD) {
190        ++NumFactor;
191        return V == B ? LHS : RHS;
192      }
193      // Otherwise return "A op' V" if it simplifies.
194      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
195        ++NumFactor;
196        return W;
197      }
198    }
199  }
200
201  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
202  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
203  // commutative case, "(A op' B) op (B op' D)"?
204  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
205    Value *CC = B == D ? C : D;
206    // Form "(A op CC) op' B" if it simplifies completely..
207    // Does "A op CC" simplify?
208    if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
209      // It does!  Return "V op' B" if it simplifies or is already available.
210      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
211      // "V op' B" is just the RHS.
212      if (V == A || V == CC) {
213        ++NumFactor;
214        return V == A ? LHS : RHS;
215      }
216      // Otherwise return "V op' B" if it simplifies.
217      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
218        ++NumFactor;
219        return W;
220      }
221    }
222  }
223
224  return 0;
225}
226
227/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
228/// operations.  Returns the simpler value, or null if none was found.
229static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
230                                       const TargetData *TD,
231                                       const DominatorTree *DT,
232                                       unsigned MaxRecurse) {
233  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
234  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
235
236  // Recursion is always used, so bail out at once if we already hit the limit.
237  if (!MaxRecurse--)
238    return 0;
239
240  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
241  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
242
243  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
244  if (Op0 && Op0->getOpcode() == Opcode) {
245    Value *A = Op0->getOperand(0);
246    Value *B = Op0->getOperand(1);
247    Value *C = RHS;
248
249    // Does "B op C" simplify?
250    if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
251      // It does!  Return "A op V" if it simplifies or is already available.
252      // If V equals B then "A op V" is just the LHS.
253      if (V == B) return LHS;
254      // Otherwise return "A op V" if it simplifies.
255      if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
256        ++NumReassoc;
257        return W;
258      }
259    }
260  }
261
262  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
263  if (Op1 && Op1->getOpcode() == Opcode) {
264    Value *A = LHS;
265    Value *B = Op1->getOperand(0);
266    Value *C = Op1->getOperand(1);
267
268    // Does "A op B" simplify?
269    if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
270      // It does!  Return "V op C" if it simplifies or is already available.
271      // If V equals B then "V op C" is just the RHS.
272      if (V == B) return RHS;
273      // Otherwise return "V op C" if it simplifies.
274      if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
275        ++NumReassoc;
276        return W;
277      }
278    }
279  }
280
281  // The remaining transforms require commutativity as well as associativity.
282  if (!Instruction::isCommutative(Opcode))
283    return 0;
284
285  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
286  if (Op0 && Op0->getOpcode() == Opcode) {
287    Value *A = Op0->getOperand(0);
288    Value *B = Op0->getOperand(1);
289    Value *C = RHS;
290
291    // Does "C op A" simplify?
292    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
293      // It does!  Return "V op B" if it simplifies or is already available.
294      // If V equals A then "V op B" is just the LHS.
295      if (V == A) return LHS;
296      // Otherwise return "V op B" if it simplifies.
297      if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
298        ++NumReassoc;
299        return W;
300      }
301    }
302  }
303
304  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
305  if (Op1 && Op1->getOpcode() == Opcode) {
306    Value *A = LHS;
307    Value *B = Op1->getOperand(0);
308    Value *C = Op1->getOperand(1);
309
310    // Does "C op A" simplify?
311    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
312      // It does!  Return "B op V" if it simplifies or is already available.
313      // If V equals C then "B op V" is just the RHS.
314      if (V == C) return RHS;
315      // Otherwise return "B op V" if it simplifies.
316      if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
317        ++NumReassoc;
318        return W;
319      }
320    }
321  }
322
323  return 0;
324}
325
326/// ThreadBinOpOverSelect - In the case of a binary operation with a select
327/// instruction as an operand, try to simplify the binop by seeing whether
328/// evaluating it on both branches of the select results in the same value.
329/// Returns the common value if so, otherwise returns null.
330static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
331                                    const TargetData *TD,
332                                    const DominatorTree *DT,
333                                    unsigned MaxRecurse) {
334  // Recursion is always used, so bail out at once if we already hit the limit.
335  if (!MaxRecurse--)
336    return 0;
337
338  SelectInst *SI;
339  if (isa<SelectInst>(LHS)) {
340    SI = cast<SelectInst>(LHS);
341  } else {
342    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
343    SI = cast<SelectInst>(RHS);
344  }
345
346  // Evaluate the BinOp on the true and false branches of the select.
347  Value *TV;
348  Value *FV;
349  if (SI == LHS) {
350    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
351    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
352  } else {
353    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
354    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
355  }
356
357  // If they simplified to the same value, then return the common value.
358  // If they both failed to simplify then return null.
359  if (TV == FV)
360    return TV;
361
362  // If one branch simplified to undef, return the other one.
363  if (TV && isa<UndefValue>(TV))
364    return FV;
365  if (FV && isa<UndefValue>(FV))
366    return TV;
367
368  // If applying the operation did not change the true and false select values,
369  // then the result of the binop is the select itself.
370  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
371    return SI;
372
373  // If one branch simplified and the other did not, and the simplified
374  // value is equal to the unsimplified one, return the simplified value.
375  // For example, select (cond, X, X & Z) & Z -> X & Z.
376  if ((FV && !TV) || (TV && !FV)) {
377    // Check that the simplified value has the form "X op Y" where "op" is the
378    // same as the original operation.
379    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
380    if (Simplified && Simplified->getOpcode() == Opcode) {
381      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
382      // We already know that "op" is the same as for the simplified value.  See
383      // if the operands match too.  If so, return the simplified value.
384      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
385      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
386      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
387      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
388          Simplified->getOperand(1) == UnsimplifiedRHS)
389        return Simplified;
390      if (Simplified->isCommutative() &&
391          Simplified->getOperand(1) == UnsimplifiedLHS &&
392          Simplified->getOperand(0) == UnsimplifiedRHS)
393        return Simplified;
394    }
395  }
396
397  return 0;
398}
399
400/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
401/// try to simplify the comparison by seeing whether both branches of the select
402/// result in the same value.  Returns the common value if so, otherwise returns
403/// null.
404static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
405                                  Value *RHS, const TargetData *TD,
406                                  const DominatorTree *DT,
407                                  unsigned MaxRecurse) {
408  // Recursion is always used, so bail out at once if we already hit the limit.
409  if (!MaxRecurse--)
410    return 0;
411
412  // Make sure the select is on the LHS.
413  if (!isa<SelectInst>(LHS)) {
414    std::swap(LHS, RHS);
415    Pred = CmpInst::getSwappedPredicate(Pred);
416  }
417  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
418  SelectInst *SI = cast<SelectInst>(LHS);
419
420  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
421  // Does "cmp TV, RHS" simplify?
422  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
423                                    MaxRecurse)) {
424    // It does!  Does "cmp FV, RHS" simplify?
425    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
426                                      MaxRecurse)) {
427      // It does!  If they simplified to the same value, then use it as the
428      // result of the original comparison.
429      if (TCmp == FCmp)
430        return TCmp;
431      Value *Cond = SI->getCondition();
432      // If the false value simplified to false, then the result of the compare
433      // is equal to "Cond && TCmp".  This also catches the case when the false
434      // value simplified to false and the true value to true, returning "Cond".
435      if (match(FCmp, m_Zero()))
436        if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
437          return V;
438      // If the true value simplified to true, then the result of the compare
439      // is equal to "Cond || FCmp".
440      if (match(TCmp, m_One()))
441        if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
442          return V;
443      // Finally, if the false value simplified to true and the true value to
444      // false, then the result of the compare is equal to "!Cond".
445      if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
446        if (Value *V =
447            SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
448                            TD, DT, MaxRecurse))
449          return V;
450    }
451  }
452
453  return 0;
454}
455
456/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
457/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
458/// it on the incoming phi values yields the same result for every value.  If so
459/// returns the common value, otherwise returns null.
460static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
461                                 const TargetData *TD, const DominatorTree *DT,
462                                 unsigned MaxRecurse) {
463  // Recursion is always used, so bail out at once if we already hit the limit.
464  if (!MaxRecurse--)
465    return 0;
466
467  PHINode *PI;
468  if (isa<PHINode>(LHS)) {
469    PI = cast<PHINode>(LHS);
470    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
471    if (!ValueDominatesPHI(RHS, PI, DT))
472      return 0;
473  } else {
474    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
475    PI = cast<PHINode>(RHS);
476    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
477    if (!ValueDominatesPHI(LHS, PI, DT))
478      return 0;
479  }
480
481  // Evaluate the BinOp on the incoming phi values.
482  Value *CommonValue = 0;
483  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
484    Value *Incoming = PI->getIncomingValue(i);
485    // If the incoming value is the phi node itself, it can safely be skipped.
486    if (Incoming == PI) continue;
487    Value *V = PI == LHS ?
488      SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
489      SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
490    // If the operation failed to simplify, or simplified to a different value
491    // to previously, then give up.
492    if (!V || (CommonValue && V != CommonValue))
493      return 0;
494    CommonValue = V;
495  }
496
497  return CommonValue;
498}
499
500/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
501/// try to simplify the comparison by seeing whether comparing with all of the
502/// incoming phi values yields the same result every time.  If so returns the
503/// common result, otherwise returns null.
504static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
505                               const TargetData *TD, const DominatorTree *DT,
506                               unsigned MaxRecurse) {
507  // Recursion is always used, so bail out at once if we already hit the limit.
508  if (!MaxRecurse--)
509    return 0;
510
511  // Make sure the phi is on the LHS.
512  if (!isa<PHINode>(LHS)) {
513    std::swap(LHS, RHS);
514    Pred = CmpInst::getSwappedPredicate(Pred);
515  }
516  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
517  PHINode *PI = cast<PHINode>(LHS);
518
519  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
520  if (!ValueDominatesPHI(RHS, PI, DT))
521    return 0;
522
523  // Evaluate the BinOp on the incoming phi values.
524  Value *CommonValue = 0;
525  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
526    Value *Incoming = PI->getIncomingValue(i);
527    // If the incoming value is the phi node itself, it can safely be skipped.
528    if (Incoming == PI) continue;
529    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
530    // If the operation failed to simplify, or simplified to a different value
531    // to previously, then give up.
532    if (!V || (CommonValue && V != CommonValue))
533      return 0;
534    CommonValue = V;
535  }
536
537  return CommonValue;
538}
539
540/// SimplifyAddInst - Given operands for an Add, see if we can
541/// fold the result.  If not, this returns null.
542static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
543                              const TargetData *TD, const DominatorTree *DT,
544                              unsigned MaxRecurse) {
545  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
546    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
547      Constant *Ops[] = { CLHS, CRHS };
548      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
549                                      Ops, TD);
550    }
551
552    // Canonicalize the constant to the RHS.
553    std::swap(Op0, Op1);
554  }
555
556  // X + undef -> undef
557  if (match(Op1, m_Undef()))
558    return Op1;
559
560  // X + 0 -> X
561  if (match(Op1, m_Zero()))
562    return Op0;
563
564  // X + (Y - X) -> Y
565  // (Y - X) + X -> Y
566  // Eg: X + -X -> 0
567  Value *Y = 0;
568  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
569      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
570    return Y;
571
572  // X + ~X -> -1   since   ~X = -X-1
573  if (match(Op0, m_Not(m_Specific(Op1))) ||
574      match(Op1, m_Not(m_Specific(Op0))))
575    return Constant::getAllOnesValue(Op0->getType());
576
577  /// i1 add -> xor.
578  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
579    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
580      return V;
581
582  // Try some generic simplifications for associative operations.
583  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
584                                          MaxRecurse))
585    return V;
586
587  // Mul distributes over Add.  Try some generic simplifications based on this.
588  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
589                                TD, DT, MaxRecurse))
590    return V;
591
592  // Threading Add over selects and phi nodes is pointless, so don't bother.
593  // Threading over the select in "A + select(cond, B, C)" means evaluating
594  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
595  // only if B and C are equal.  If B and C are equal then (since we assume
596  // that operands have already been simplified) "select(cond, B, C)" should
597  // have been simplified to the common value of B and C already.  Analysing
598  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
599  // for threading over phi nodes.
600
601  return 0;
602}
603
604Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
605                             const TargetData *TD, const DominatorTree *DT) {
606  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
607}
608
609/// SimplifySubInst - Given operands for a Sub, see if we can
610/// fold the result.  If not, this returns null.
611static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
612                              const TargetData *TD, const DominatorTree *DT,
613                              unsigned MaxRecurse) {
614  if (Constant *CLHS = dyn_cast<Constant>(Op0))
615    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
616      Constant *Ops[] = { CLHS, CRHS };
617      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
618                                      Ops, TD);
619    }
620
621  // X - undef -> undef
622  // undef - X -> undef
623  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
624    return UndefValue::get(Op0->getType());
625
626  // X - 0 -> X
627  if (match(Op1, m_Zero()))
628    return Op0;
629
630  // X - X -> 0
631  if (Op0 == Op1)
632    return Constant::getNullValue(Op0->getType());
633
634  // (X*2) - X -> X
635  // (X<<1) - X -> X
636  Value *X = 0;
637  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
638      match(Op0, m_Shl(m_Specific(Op1), m_One())))
639    return Op1;
640
641  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
642  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
643  Value *Y = 0, *Z = Op1;
644  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
645    // See if "V === Y - Z" simplifies.
646    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
647      // It does!  Now see if "X + V" simplifies.
648      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
649                                   MaxRecurse-1)) {
650        // It does, we successfully reassociated!
651        ++NumReassoc;
652        return W;
653      }
654    // See if "V === X - Z" simplifies.
655    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
656      // It does!  Now see if "Y + V" simplifies.
657      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
658                                   MaxRecurse-1)) {
659        // It does, we successfully reassociated!
660        ++NumReassoc;
661        return W;
662      }
663  }
664
665  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
666  // For example, X - (X + 1) -> -1
667  X = Op0;
668  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
669    // See if "V === X - Y" simplifies.
670    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
671      // It does!  Now see if "V - Z" simplifies.
672      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
673                                   MaxRecurse-1)) {
674        // It does, we successfully reassociated!
675        ++NumReassoc;
676        return W;
677      }
678    // See if "V === X - Z" simplifies.
679    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
680      // It does!  Now see if "V - Y" simplifies.
681      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
682                                   MaxRecurse-1)) {
683        // It does, we successfully reassociated!
684        ++NumReassoc;
685        return W;
686      }
687  }
688
689  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
690  // For example, X - (X - Y) -> Y.
691  Z = Op0;
692  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
693    // See if "V === Z - X" simplifies.
694    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
695      // It does!  Now see if "V + Y" simplifies.
696      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
697                                   MaxRecurse-1)) {
698        // It does, we successfully reassociated!
699        ++NumReassoc;
700        return W;
701      }
702
703  // Mul distributes over Sub.  Try some generic simplifications based on this.
704  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
705                                TD, DT, MaxRecurse))
706    return V;
707
708  // i1 sub -> xor.
709  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
710    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
711      return V;
712
713  // Threading Sub over selects and phi nodes is pointless, so don't bother.
714  // Threading over the select in "A - select(cond, B, C)" means evaluating
715  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
716  // only if B and C are equal.  If B and C are equal then (since we assume
717  // that operands have already been simplified) "select(cond, B, C)" should
718  // have been simplified to the common value of B and C already.  Analysing
719  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
720  // for threading over phi nodes.
721
722  return 0;
723}
724
725Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
726                             const TargetData *TD, const DominatorTree *DT) {
727  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
728}
729
730/// SimplifyMulInst - Given operands for a Mul, see if we can
731/// fold the result.  If not, this returns null.
732static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
733                              const DominatorTree *DT, unsigned MaxRecurse) {
734  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
735    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
736      Constant *Ops[] = { CLHS, CRHS };
737      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
738                                      Ops, TD);
739    }
740
741    // Canonicalize the constant to the RHS.
742    std::swap(Op0, Op1);
743  }
744
745  // X * undef -> 0
746  if (match(Op1, m_Undef()))
747    return Constant::getNullValue(Op0->getType());
748
749  // X * 0 -> 0
750  if (match(Op1, m_Zero()))
751    return Op1;
752
753  // X * 1 -> X
754  if (match(Op1, m_One()))
755    return Op0;
756
757  // (X / Y) * Y -> X if the division is exact.
758  Value *X = 0, *Y = 0;
759  if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
760      (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
761    BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
762    if (Div->isExact())
763      return X;
764  }
765
766  // i1 mul -> and.
767  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
768    if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
769      return V;
770
771  // Try some generic simplifications for associative operations.
772  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
773                                          MaxRecurse))
774    return V;
775
776  // Mul distributes over Add.  Try some generic simplifications based on this.
777  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
778                             TD, DT, MaxRecurse))
779    return V;
780
781  // If the operation is with the result of a select instruction, check whether
782  // operating on either branch of the select always yields the same value.
783  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
784    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
785                                         MaxRecurse))
786      return V;
787
788  // If the operation is with the result of a phi instruction, check whether
789  // operating on all incoming values of the phi always yields the same value.
790  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
791    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
792                                      MaxRecurse))
793      return V;
794
795  return 0;
796}
797
798Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
799                             const DominatorTree *DT) {
800  return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
801}
802
803/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
804/// fold the result.  If not, this returns null.
805static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
806                          const TargetData *TD, const DominatorTree *DT,
807                          unsigned MaxRecurse) {
808  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
809    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
810      Constant *Ops[] = { C0, C1 };
811      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
812    }
813  }
814
815  bool isSigned = Opcode == Instruction::SDiv;
816
817  // X / undef -> undef
818  if (match(Op1, m_Undef()))
819    return Op1;
820
821  // undef / X -> 0
822  if (match(Op0, m_Undef()))
823    return Constant::getNullValue(Op0->getType());
824
825  // 0 / X -> 0, we don't need to preserve faults!
826  if (match(Op0, m_Zero()))
827    return Op0;
828
829  // X / 1 -> X
830  if (match(Op1, m_One()))
831    return Op0;
832
833  if (Op0->getType()->isIntegerTy(1))
834    // It can't be division by zero, hence it must be division by one.
835    return Op0;
836
837  // X / X -> 1
838  if (Op0 == Op1)
839    return ConstantInt::get(Op0->getType(), 1);
840
841  // (X * Y) / Y -> X if the multiplication does not overflow.
842  Value *X = 0, *Y = 0;
843  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
844    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
845    BinaryOperator *Mul = cast<BinaryOperator>(Op0);
846    // If the Mul knows it does not overflow, then we are good to go.
847    if ((isSigned && Mul->hasNoSignedWrap()) ||
848        (!isSigned && Mul->hasNoUnsignedWrap()))
849      return X;
850    // If X has the form X = A / Y then X * Y cannot overflow.
851    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
852      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
853        return X;
854  }
855
856  // (X rem Y) / Y -> 0
857  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
858      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
859    return Constant::getNullValue(Op0->getType());
860
861  // If the operation is with the result of a select instruction, check whether
862  // operating on either branch of the select always yields the same value.
863  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
864    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
865      return V;
866
867  // If the operation is with the result of a phi instruction, check whether
868  // operating on all incoming values of the phi always yields the same value.
869  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
870    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
871      return V;
872
873  return 0;
874}
875
876/// SimplifySDivInst - Given operands for an SDiv, see if we can
877/// fold the result.  If not, this returns null.
878static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
879                               const DominatorTree *DT, unsigned MaxRecurse) {
880  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
881    return V;
882
883  return 0;
884}
885
886Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
887                              const DominatorTree *DT) {
888  return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
889}
890
891/// SimplifyUDivInst - Given operands for a UDiv, see if we can
892/// fold the result.  If not, this returns null.
893static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
894                               const DominatorTree *DT, unsigned MaxRecurse) {
895  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
896    return V;
897
898  return 0;
899}
900
901Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
902                              const DominatorTree *DT) {
903  return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
904}
905
906static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
907                               const DominatorTree *, unsigned) {
908  // undef / X -> undef    (the undef could be a snan).
909  if (match(Op0, m_Undef()))
910    return Op0;
911
912  // X / undef -> undef
913  if (match(Op1, m_Undef()))
914    return Op1;
915
916  return 0;
917}
918
919Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
920                              const DominatorTree *DT) {
921  return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
922}
923
924/// SimplifyRem - Given operands for an SRem or URem, see if we can
925/// fold the result.  If not, this returns null.
926static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
927                          const TargetData *TD, const DominatorTree *DT,
928                          unsigned MaxRecurse) {
929  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
930    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
931      Constant *Ops[] = { C0, C1 };
932      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
933    }
934  }
935
936  // X % undef -> undef
937  if (match(Op1, m_Undef()))
938    return Op1;
939
940  // undef % X -> 0
941  if (match(Op0, m_Undef()))
942    return Constant::getNullValue(Op0->getType());
943
944  // 0 % X -> 0, we don't need to preserve faults!
945  if (match(Op0, m_Zero()))
946    return Op0;
947
948  // X % 0 -> undef, we don't need to preserve faults!
949  if (match(Op1, m_Zero()))
950    return UndefValue::get(Op0->getType());
951
952  // X % 1 -> 0
953  if (match(Op1, m_One()))
954    return Constant::getNullValue(Op0->getType());
955
956  if (Op0->getType()->isIntegerTy(1))
957    // It can't be remainder by zero, hence it must be remainder by one.
958    return Constant::getNullValue(Op0->getType());
959
960  // X % X -> 0
961  if (Op0 == Op1)
962    return Constant::getNullValue(Op0->getType());
963
964  // If the operation is with the result of a select instruction, check whether
965  // operating on either branch of the select always yields the same value.
966  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
967    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
968      return V;
969
970  // If the operation is with the result of a phi instruction, check whether
971  // operating on all incoming values of the phi always yields the same value.
972  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
973    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
974      return V;
975
976  return 0;
977}
978
979/// SimplifySRemInst - Given operands for an SRem, see if we can
980/// fold the result.  If not, this returns null.
981static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
982                               const DominatorTree *DT, unsigned MaxRecurse) {
983  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, DT, MaxRecurse))
984    return V;
985
986  return 0;
987}
988
989Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
990                              const DominatorTree *DT) {
991  return ::SimplifySRemInst(Op0, Op1, TD, DT, RecursionLimit);
992}
993
994/// SimplifyURemInst - Given operands for a URem, see if we can
995/// fold the result.  If not, this returns null.
996static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
997                               const DominatorTree *DT, unsigned MaxRecurse) {
998  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, DT, MaxRecurse))
999    return V;
1000
1001  return 0;
1002}
1003
1004Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1005                              const DominatorTree *DT) {
1006  return ::SimplifyURemInst(Op0, Op1, TD, DT, RecursionLimit);
1007}
1008
1009static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
1010                               const DominatorTree *, unsigned) {
1011  // undef % X -> undef    (the undef could be a snan).
1012  if (match(Op0, m_Undef()))
1013    return Op0;
1014
1015  // X % undef -> undef
1016  if (match(Op1, m_Undef()))
1017    return Op1;
1018
1019  return 0;
1020}
1021
1022Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1023                              const DominatorTree *DT) {
1024  return ::SimplifyFRemInst(Op0, Op1, TD, DT, RecursionLimit);
1025}
1026
1027/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1028/// fold the result.  If not, this returns null.
1029static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1030                            const TargetData *TD, const DominatorTree *DT,
1031                            unsigned MaxRecurse) {
1032  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1033    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1034      Constant *Ops[] = { C0, C1 };
1035      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
1036    }
1037  }
1038
1039  // 0 shift by X -> 0
1040  if (match(Op0, m_Zero()))
1041    return Op0;
1042
1043  // X shift by 0 -> X
1044  if (match(Op1, m_Zero()))
1045    return Op0;
1046
1047  // X shift by undef -> undef because it may shift by the bitwidth.
1048  if (match(Op1, m_Undef()))
1049    return Op1;
1050
1051  // Shifting by the bitwidth or more is undefined.
1052  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1053    if (CI->getValue().getLimitedValue() >=
1054        Op0->getType()->getScalarSizeInBits())
1055      return UndefValue::get(Op0->getType());
1056
1057  // If the operation is with the result of a select instruction, check whether
1058  // operating on either branch of the select always yields the same value.
1059  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1060    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1061      return V;
1062
1063  // If the operation is with the result of a phi instruction, check whether
1064  // operating on all incoming values of the phi always yields the same value.
1065  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1066    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1067      return V;
1068
1069  return 0;
1070}
1071
1072/// SimplifyShlInst - Given operands for an Shl, see if we can
1073/// fold the result.  If not, this returns null.
1074static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1075                              const TargetData *TD, const DominatorTree *DT,
1076                              unsigned MaxRecurse) {
1077  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
1078    return V;
1079
1080  // undef << X -> 0
1081  if (match(Op0, m_Undef()))
1082    return Constant::getNullValue(Op0->getType());
1083
1084  // (X >> A) << A -> X
1085  Value *X;
1086  if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
1087      cast<PossiblyExactOperator>(Op0)->isExact())
1088    return X;
1089  return 0;
1090}
1091
1092Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1093                             const TargetData *TD, const DominatorTree *DT) {
1094  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
1095}
1096
1097/// SimplifyLShrInst - Given operands for an LShr, see if we can
1098/// fold the result.  If not, this returns null.
1099static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1100                               const TargetData *TD, const DominatorTree *DT,
1101                               unsigned MaxRecurse) {
1102  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
1103    return V;
1104
1105  // undef >>l X -> 0
1106  if (match(Op0, m_Undef()))
1107    return Constant::getNullValue(Op0->getType());
1108
1109  // (X << A) >> A -> X
1110  Value *X;
1111  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1112      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1113    return X;
1114
1115  return 0;
1116}
1117
1118Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1119                              const TargetData *TD, const DominatorTree *DT) {
1120  return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1121}
1122
1123/// SimplifyAShrInst - Given operands for an AShr, see if we can
1124/// fold the result.  If not, this returns null.
1125static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1126                               const TargetData *TD, const DominatorTree *DT,
1127                               unsigned MaxRecurse) {
1128  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
1129    return V;
1130
1131  // all ones >>a X -> all ones
1132  if (match(Op0, m_AllOnes()))
1133    return Op0;
1134
1135  // undef >>a X -> all ones
1136  if (match(Op0, m_Undef()))
1137    return Constant::getAllOnesValue(Op0->getType());
1138
1139  // (X << A) >> A -> X
1140  Value *X;
1141  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1142      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1143    return X;
1144
1145  return 0;
1146}
1147
1148Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1149                              const TargetData *TD, const DominatorTree *DT) {
1150  return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1151}
1152
1153/// SimplifyAndInst - Given operands for an And, see if we can
1154/// fold the result.  If not, this returns null.
1155static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1156                              const DominatorTree *DT, unsigned MaxRecurse) {
1157  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1158    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1159      Constant *Ops[] = { CLHS, CRHS };
1160      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1161                                      Ops, TD);
1162    }
1163
1164    // Canonicalize the constant to the RHS.
1165    std::swap(Op0, Op1);
1166  }
1167
1168  // X & undef -> 0
1169  if (match(Op1, m_Undef()))
1170    return Constant::getNullValue(Op0->getType());
1171
1172  // X & X = X
1173  if (Op0 == Op1)
1174    return Op0;
1175
1176  // X & 0 = 0
1177  if (match(Op1, m_Zero()))
1178    return Op1;
1179
1180  // X & -1 = X
1181  if (match(Op1, m_AllOnes()))
1182    return Op0;
1183
1184  // A & ~A  =  ~A & A  =  0
1185  if (match(Op0, m_Not(m_Specific(Op1))) ||
1186      match(Op1, m_Not(m_Specific(Op0))))
1187    return Constant::getNullValue(Op0->getType());
1188
1189  // (A | ?) & A = A
1190  Value *A = 0, *B = 0;
1191  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1192      (A == Op1 || B == Op1))
1193    return Op1;
1194
1195  // A & (A | ?) = A
1196  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1197      (A == Op0 || B == Op0))
1198    return Op0;
1199
1200  // Try some generic simplifications for associative operations.
1201  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1202                                          MaxRecurse))
1203    return V;
1204
1205  // And distributes over Or.  Try some generic simplifications based on this.
1206  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1207                             TD, DT, MaxRecurse))
1208    return V;
1209
1210  // And distributes over Xor.  Try some generic simplifications based on this.
1211  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1212                             TD, DT, MaxRecurse))
1213    return V;
1214
1215  // Or distributes over And.  Try some generic simplifications based on this.
1216  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1217                                TD, DT, MaxRecurse))
1218    return V;
1219
1220  // If the operation is with the result of a select instruction, check whether
1221  // operating on either branch of the select always yields the same value.
1222  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1223    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
1224                                         MaxRecurse))
1225      return V;
1226
1227  // If the operation is with the result of a phi instruction, check whether
1228  // operating on all incoming values of the phi always yields the same value.
1229  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1230    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
1231                                      MaxRecurse))
1232      return V;
1233
1234  return 0;
1235}
1236
1237Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1238                             const DominatorTree *DT) {
1239  return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
1240}
1241
1242/// SimplifyOrInst - Given operands for an Or, see if we can
1243/// fold the result.  If not, this returns null.
1244static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1245                             const DominatorTree *DT, unsigned MaxRecurse) {
1246  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1247    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1248      Constant *Ops[] = { CLHS, CRHS };
1249      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1250                                      Ops, TD);
1251    }
1252
1253    // Canonicalize the constant to the RHS.
1254    std::swap(Op0, Op1);
1255  }
1256
1257  // X | undef -> -1
1258  if (match(Op1, m_Undef()))
1259    return Constant::getAllOnesValue(Op0->getType());
1260
1261  // X | X = X
1262  if (Op0 == Op1)
1263    return Op0;
1264
1265  // X | 0 = X
1266  if (match(Op1, m_Zero()))
1267    return Op0;
1268
1269  // X | -1 = -1
1270  if (match(Op1, m_AllOnes()))
1271    return Op1;
1272
1273  // A | ~A  =  ~A | A  =  -1
1274  if (match(Op0, m_Not(m_Specific(Op1))) ||
1275      match(Op1, m_Not(m_Specific(Op0))))
1276    return Constant::getAllOnesValue(Op0->getType());
1277
1278  // (A & ?) | A = A
1279  Value *A = 0, *B = 0;
1280  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1281      (A == Op1 || B == Op1))
1282    return Op1;
1283
1284  // A | (A & ?) = A
1285  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1286      (A == Op0 || B == Op0))
1287    return Op0;
1288
1289  // ~(A & ?) | A = -1
1290  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1291      (A == Op1 || B == Op1))
1292    return Constant::getAllOnesValue(Op1->getType());
1293
1294  // A | ~(A & ?) = -1
1295  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1296      (A == Op0 || B == Op0))
1297    return Constant::getAllOnesValue(Op0->getType());
1298
1299  // Try some generic simplifications for associative operations.
1300  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1301                                          MaxRecurse))
1302    return V;
1303
1304  // Or distributes over And.  Try some generic simplifications based on this.
1305  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1306                             TD, DT, MaxRecurse))
1307    return V;
1308
1309  // And distributes over Or.  Try some generic simplifications based on this.
1310  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1311                                TD, DT, MaxRecurse))
1312    return V;
1313
1314  // If the operation is with the result of a select instruction, check whether
1315  // operating on either branch of the select always yields the same value.
1316  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1317    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
1318                                         MaxRecurse))
1319      return V;
1320
1321  // If the operation is with the result of a phi instruction, check whether
1322  // operating on all incoming values of the phi always yields the same value.
1323  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1324    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
1325                                      MaxRecurse))
1326      return V;
1327
1328  return 0;
1329}
1330
1331Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1332                            const DominatorTree *DT) {
1333  return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
1334}
1335
1336/// SimplifyXorInst - Given operands for a Xor, see if we can
1337/// fold the result.  If not, this returns null.
1338static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1339                              const DominatorTree *DT, unsigned MaxRecurse) {
1340  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1341    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1342      Constant *Ops[] = { CLHS, CRHS };
1343      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1344                                      Ops, TD);
1345    }
1346
1347    // Canonicalize the constant to the RHS.
1348    std::swap(Op0, Op1);
1349  }
1350
1351  // A ^ A = 0
1352  // Do this first so that we catch the undef ^ undef "idiom".
1353  if (Op0 == Op1)
1354    return Constant::getNullValue(Op0->getType());
1355
1356  // A ^ undef -> undef
1357  if (match(Op1, m_Undef()))
1358    return Op1;
1359
1360  // A ^ 0 = A
1361  if (match(Op1, m_Zero()))
1362    return Op0;
1363
1364  // A ^ ~A  =  ~A ^ A  =  -1
1365  if (match(Op0, m_Not(m_Specific(Op1))) ||
1366      match(Op1, m_Not(m_Specific(Op0))))
1367    return Constant::getAllOnesValue(Op0->getType());
1368
1369  // Try some generic simplifications for associative operations.
1370  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1371                                          MaxRecurse))
1372    return V;
1373
1374  // And distributes over Xor.  Try some generic simplifications based on this.
1375  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1376                                TD, DT, MaxRecurse))
1377    return V;
1378
1379  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1380  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1381  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1382  // only if B and C are equal.  If B and C are equal then (since we assume
1383  // that operands have already been simplified) "select(cond, B, C)" should
1384  // have been simplified to the common value of B and C already.  Analysing
1385  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1386  // for threading over phi nodes.
1387
1388  return 0;
1389}
1390
1391Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1392                             const DominatorTree *DT) {
1393  return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1394}
1395
1396static Type *GetCompareTy(Value *Op) {
1397  return CmpInst::makeCmpResultType(Op->getType());
1398}
1399
1400/// ExtractEquivalentCondition - Rummage around inside V looking for something
1401/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1402/// otherwise return null.  Helper function for analyzing max/min idioms.
1403static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1404                                         Value *LHS, Value *RHS) {
1405  SelectInst *SI = dyn_cast<SelectInst>(V);
1406  if (!SI)
1407    return 0;
1408  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1409  if (!Cmp)
1410    return 0;
1411  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1412  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1413    return Cmp;
1414  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1415      LHS == CmpRHS && RHS == CmpLHS)
1416    return Cmp;
1417  return 0;
1418}
1419
1420/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1421/// fold the result.  If not, this returns null.
1422static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1423                               const TargetData *TD, const DominatorTree *DT,
1424                               unsigned MaxRecurse) {
1425  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1426  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1427
1428  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1429    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1430      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1431
1432    // If we have a constant, make sure it is on the RHS.
1433    std::swap(LHS, RHS);
1434    Pred = CmpInst::getSwappedPredicate(Pred);
1435  }
1436
1437  Type *ITy = GetCompareTy(LHS); // The return type.
1438  Type *OpTy = LHS->getType();   // The operand type.
1439
1440  // icmp X, X -> true/false
1441  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1442  // because X could be 0.
1443  if (LHS == RHS || isa<UndefValue>(RHS))
1444    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1445
1446  // Special case logic when the operands have i1 type.
1447  if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1448       cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1449    switch (Pred) {
1450    default: break;
1451    case ICmpInst::ICMP_EQ:
1452      // X == 1 -> X
1453      if (match(RHS, m_One()))
1454        return LHS;
1455      break;
1456    case ICmpInst::ICMP_NE:
1457      // X != 0 -> X
1458      if (match(RHS, m_Zero()))
1459        return LHS;
1460      break;
1461    case ICmpInst::ICMP_UGT:
1462      // X >u 0 -> X
1463      if (match(RHS, m_Zero()))
1464        return LHS;
1465      break;
1466    case ICmpInst::ICMP_UGE:
1467      // X >=u 1 -> X
1468      if (match(RHS, m_One()))
1469        return LHS;
1470      break;
1471    case ICmpInst::ICMP_SLT:
1472      // X <s 0 -> X
1473      if (match(RHS, m_Zero()))
1474        return LHS;
1475      break;
1476    case ICmpInst::ICMP_SLE:
1477      // X <=s -1 -> X
1478      if (match(RHS, m_One()))
1479        return LHS;
1480      break;
1481    }
1482  }
1483
1484  // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1485  // different addresses, and what's more the address of a stack variable is
1486  // never null or equal to the address of a global.  Note that generalizing
1487  // to the case where LHS is a global variable address or null is pointless,
1488  // since if both LHS and RHS are constants then we already constant folded
1489  // the compare, and if only one of them is then we moved it to RHS already.
1490  if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1491                               isa<ConstantPointerNull>(RHS)))
1492    // We already know that LHS != RHS.
1493    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1494
1495  // If we are comparing with zero then try hard since this is a common case.
1496  if (match(RHS, m_Zero())) {
1497    bool LHSKnownNonNegative, LHSKnownNegative;
1498    switch (Pred) {
1499    default:
1500      assert(false && "Unknown ICmp predicate!");
1501    case ICmpInst::ICMP_ULT:
1502      return getFalse(ITy);
1503    case ICmpInst::ICMP_UGE:
1504      return getTrue(ITy);
1505    case ICmpInst::ICMP_EQ:
1506    case ICmpInst::ICMP_ULE:
1507      if (isKnownNonZero(LHS, TD))
1508        return getFalse(ITy);
1509      break;
1510    case ICmpInst::ICMP_NE:
1511    case ICmpInst::ICMP_UGT:
1512      if (isKnownNonZero(LHS, TD))
1513        return getTrue(ITy);
1514      break;
1515    case ICmpInst::ICMP_SLT:
1516      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1517      if (LHSKnownNegative)
1518        return getTrue(ITy);
1519      if (LHSKnownNonNegative)
1520        return getFalse(ITy);
1521      break;
1522    case ICmpInst::ICMP_SLE:
1523      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1524      if (LHSKnownNegative)
1525        return getTrue(ITy);
1526      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1527        return getFalse(ITy);
1528      break;
1529    case ICmpInst::ICMP_SGE:
1530      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1531      if (LHSKnownNegative)
1532        return getFalse(ITy);
1533      if (LHSKnownNonNegative)
1534        return getTrue(ITy);
1535      break;
1536    case ICmpInst::ICMP_SGT:
1537      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1538      if (LHSKnownNegative)
1539        return getFalse(ITy);
1540      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1541        return getTrue(ITy);
1542      break;
1543    }
1544  }
1545
1546  // See if we are doing a comparison with a constant integer.
1547  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1548    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1549    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1550    if (RHS_CR.isEmptySet())
1551      return ConstantInt::getFalse(CI->getContext());
1552    if (RHS_CR.isFullSet())
1553      return ConstantInt::getTrue(CI->getContext());
1554
1555    // Many binary operators with constant RHS have easy to compute constant
1556    // range.  Use them to check whether the comparison is a tautology.
1557    uint32_t Width = CI->getBitWidth();
1558    APInt Lower = APInt(Width, 0);
1559    APInt Upper = APInt(Width, 0);
1560    ConstantInt *CI2;
1561    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1562      // 'urem x, CI2' produces [0, CI2).
1563      Upper = CI2->getValue();
1564    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1565      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1566      Upper = CI2->getValue().abs();
1567      Lower = (-Upper) + 1;
1568    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1569      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1570      APInt NegOne = APInt::getAllOnesValue(Width);
1571      if (!CI2->isZero())
1572        Upper = NegOne.udiv(CI2->getValue()) + 1;
1573    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1574      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1575      APInt IntMin = APInt::getSignedMinValue(Width);
1576      APInt IntMax = APInt::getSignedMaxValue(Width);
1577      APInt Val = CI2->getValue().abs();
1578      if (!Val.isMinValue()) {
1579        Lower = IntMin.sdiv(Val);
1580        Upper = IntMax.sdiv(Val) + 1;
1581      }
1582    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1583      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1584      APInt NegOne = APInt::getAllOnesValue(Width);
1585      if (CI2->getValue().ult(Width))
1586        Upper = NegOne.lshr(CI2->getValue()) + 1;
1587    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1588      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1589      APInt IntMin = APInt::getSignedMinValue(Width);
1590      APInt IntMax = APInt::getSignedMaxValue(Width);
1591      if (CI2->getValue().ult(Width)) {
1592        Lower = IntMin.ashr(CI2->getValue());
1593        Upper = IntMax.ashr(CI2->getValue()) + 1;
1594      }
1595    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1596      // 'or x, CI2' produces [CI2, UINT_MAX].
1597      Lower = CI2->getValue();
1598    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1599      // 'and x, CI2' produces [0, CI2].
1600      Upper = CI2->getValue() + 1;
1601    }
1602    if (Lower != Upper) {
1603      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1604      if (RHS_CR.contains(LHS_CR))
1605        return ConstantInt::getTrue(RHS->getContext());
1606      if (RHS_CR.inverse().contains(LHS_CR))
1607        return ConstantInt::getFalse(RHS->getContext());
1608    }
1609  }
1610
1611  // Compare of cast, for example (zext X) != 0 -> X != 0
1612  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1613    Instruction *LI = cast<CastInst>(LHS);
1614    Value *SrcOp = LI->getOperand(0);
1615    Type *SrcTy = SrcOp->getType();
1616    Type *DstTy = LI->getType();
1617
1618    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1619    // if the integer type is the same size as the pointer type.
1620    if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1621        TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1622      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1623        // Transfer the cast to the constant.
1624        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1625                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
1626                                        TD, DT, MaxRecurse-1))
1627          return V;
1628      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1629        if (RI->getOperand(0)->getType() == SrcTy)
1630          // Compare without the cast.
1631          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1632                                          TD, DT, MaxRecurse-1))
1633            return V;
1634      }
1635    }
1636
1637    if (isa<ZExtInst>(LHS)) {
1638      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1639      // same type.
1640      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1641        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1642          // Compare X and Y.  Note that signed predicates become unsigned.
1643          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1644                                          SrcOp, RI->getOperand(0), TD, DT,
1645                                          MaxRecurse-1))
1646            return V;
1647      }
1648      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1649      // too.  If not, then try to deduce the result of the comparison.
1650      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1651        // Compute the constant that would happen if we truncated to SrcTy then
1652        // reextended to DstTy.
1653        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1654        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1655
1656        // If the re-extended constant didn't change then this is effectively
1657        // also a case of comparing two zero-extended values.
1658        if (RExt == CI && MaxRecurse)
1659          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1660                                          SrcOp, Trunc, TD, DT, MaxRecurse-1))
1661            return V;
1662
1663        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1664        // there.  Use this to work out the result of the comparison.
1665        if (RExt != CI) {
1666          switch (Pred) {
1667          default:
1668            assert(false && "Unknown ICmp predicate!");
1669          // LHS <u RHS.
1670          case ICmpInst::ICMP_EQ:
1671          case ICmpInst::ICMP_UGT:
1672          case ICmpInst::ICMP_UGE:
1673            return ConstantInt::getFalse(CI->getContext());
1674
1675          case ICmpInst::ICMP_NE:
1676          case ICmpInst::ICMP_ULT:
1677          case ICmpInst::ICMP_ULE:
1678            return ConstantInt::getTrue(CI->getContext());
1679
1680          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1681          // is non-negative then LHS <s RHS.
1682          case ICmpInst::ICMP_SGT:
1683          case ICmpInst::ICMP_SGE:
1684            return CI->getValue().isNegative() ?
1685              ConstantInt::getTrue(CI->getContext()) :
1686              ConstantInt::getFalse(CI->getContext());
1687
1688          case ICmpInst::ICMP_SLT:
1689          case ICmpInst::ICMP_SLE:
1690            return CI->getValue().isNegative() ?
1691              ConstantInt::getFalse(CI->getContext()) :
1692              ConstantInt::getTrue(CI->getContext());
1693          }
1694        }
1695      }
1696    }
1697
1698    if (isa<SExtInst>(LHS)) {
1699      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1700      // same type.
1701      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1702        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1703          // Compare X and Y.  Note that the predicate does not change.
1704          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1705                                          TD, DT, MaxRecurse-1))
1706            return V;
1707      }
1708      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1709      // too.  If not, then try to deduce the result of the comparison.
1710      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1711        // Compute the constant that would happen if we truncated to SrcTy then
1712        // reextended to DstTy.
1713        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1714        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1715
1716        // If the re-extended constant didn't change then this is effectively
1717        // also a case of comparing two sign-extended values.
1718        if (RExt == CI && MaxRecurse)
1719          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1720                                          MaxRecurse-1))
1721            return V;
1722
1723        // Otherwise the upper bits of LHS are all equal, while RHS has varying
1724        // bits there.  Use this to work out the result of the comparison.
1725        if (RExt != CI) {
1726          switch (Pred) {
1727          default:
1728            assert(false && "Unknown ICmp predicate!");
1729          case ICmpInst::ICMP_EQ:
1730            return ConstantInt::getFalse(CI->getContext());
1731          case ICmpInst::ICMP_NE:
1732            return ConstantInt::getTrue(CI->getContext());
1733
1734          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1735          // LHS >s RHS.
1736          case ICmpInst::ICMP_SGT:
1737          case ICmpInst::ICMP_SGE:
1738            return CI->getValue().isNegative() ?
1739              ConstantInt::getTrue(CI->getContext()) :
1740              ConstantInt::getFalse(CI->getContext());
1741          case ICmpInst::ICMP_SLT:
1742          case ICmpInst::ICMP_SLE:
1743            return CI->getValue().isNegative() ?
1744              ConstantInt::getFalse(CI->getContext()) :
1745              ConstantInt::getTrue(CI->getContext());
1746
1747          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1748          // LHS >u RHS.
1749          case ICmpInst::ICMP_UGT:
1750          case ICmpInst::ICMP_UGE:
1751            // Comparison is true iff the LHS <s 0.
1752            if (MaxRecurse)
1753              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1754                                              Constant::getNullValue(SrcTy),
1755                                              TD, DT, MaxRecurse-1))
1756                return V;
1757            break;
1758          case ICmpInst::ICMP_ULT:
1759          case ICmpInst::ICMP_ULE:
1760            // Comparison is true iff the LHS >=s 0.
1761            if (MaxRecurse)
1762              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1763                                              Constant::getNullValue(SrcTy),
1764                                              TD, DT, MaxRecurse-1))
1765                return V;
1766            break;
1767          }
1768        }
1769      }
1770    }
1771  }
1772
1773  // Special logic for binary operators.
1774  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1775  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1776  if (MaxRecurse && (LBO || RBO)) {
1777    // Analyze the case when either LHS or RHS is an add instruction.
1778    Value *A = 0, *B = 0, *C = 0, *D = 0;
1779    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1780    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1781    if (LBO && LBO->getOpcode() == Instruction::Add) {
1782      A = LBO->getOperand(0); B = LBO->getOperand(1);
1783      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1784        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1785        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1786    }
1787    if (RBO && RBO->getOpcode() == Instruction::Add) {
1788      C = RBO->getOperand(0); D = RBO->getOperand(1);
1789      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1790        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1791        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1792    }
1793
1794    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1795    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
1796      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
1797                                      Constant::getNullValue(RHS->getType()),
1798                                      TD, DT, MaxRecurse-1))
1799        return V;
1800
1801    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1802    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
1803      if (Value *V = SimplifyICmpInst(Pred,
1804                                      Constant::getNullValue(LHS->getType()),
1805                                      C == LHS ? D : C, TD, DT, MaxRecurse-1))
1806        return V;
1807
1808    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1809    if (A && C && (A == C || A == D || B == C || B == D) &&
1810        NoLHSWrapProblem && NoRHSWrapProblem) {
1811      // Determine Y and Z in the form icmp (X+Y), (X+Z).
1812      Value *Y = (A == C || A == D) ? B : A;
1813      Value *Z = (C == A || C == B) ? D : C;
1814      if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
1815        return V;
1816    }
1817  }
1818
1819  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
1820    bool KnownNonNegative, KnownNegative;
1821    switch (Pred) {
1822    default:
1823      break;
1824    case ICmpInst::ICMP_SGT:
1825    case ICmpInst::ICMP_SGE:
1826      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1827      if (!KnownNonNegative)
1828        break;
1829      // fall-through
1830    case ICmpInst::ICMP_EQ:
1831    case ICmpInst::ICMP_UGT:
1832    case ICmpInst::ICMP_UGE:
1833      return getFalse(ITy);
1834    case ICmpInst::ICMP_SLT:
1835    case ICmpInst::ICMP_SLE:
1836      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1837      if (!KnownNonNegative)
1838        break;
1839      // fall-through
1840    case ICmpInst::ICMP_NE:
1841    case ICmpInst::ICMP_ULT:
1842    case ICmpInst::ICMP_ULE:
1843      return getTrue(ITy);
1844    }
1845  }
1846  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
1847    bool KnownNonNegative, KnownNegative;
1848    switch (Pred) {
1849    default:
1850      break;
1851    case ICmpInst::ICMP_SGT:
1852    case ICmpInst::ICMP_SGE:
1853      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1854      if (!KnownNonNegative)
1855        break;
1856      // fall-through
1857    case ICmpInst::ICMP_NE:
1858    case ICmpInst::ICMP_UGT:
1859    case ICmpInst::ICMP_UGE:
1860      return getTrue(ITy);
1861    case ICmpInst::ICMP_SLT:
1862    case ICmpInst::ICMP_SLE:
1863      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1864      if (!KnownNonNegative)
1865        break;
1866      // fall-through
1867    case ICmpInst::ICMP_EQ:
1868    case ICmpInst::ICMP_ULT:
1869    case ICmpInst::ICMP_ULE:
1870      return getFalse(ITy);
1871    }
1872  }
1873
1874  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
1875      LBO->getOperand(1) == RBO->getOperand(1)) {
1876    switch (LBO->getOpcode()) {
1877    default: break;
1878    case Instruction::UDiv:
1879    case Instruction::LShr:
1880      if (ICmpInst::isSigned(Pred))
1881        break;
1882      // fall-through
1883    case Instruction::SDiv:
1884    case Instruction::AShr:
1885      if (!LBO->isExact() || !RBO->isExact())
1886        break;
1887      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1888                                      RBO->getOperand(0), TD, DT, MaxRecurse-1))
1889        return V;
1890      break;
1891    case Instruction::Shl: {
1892      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
1893      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
1894      if (!NUW && !NSW)
1895        break;
1896      if (!NSW && ICmpInst::isSigned(Pred))
1897        break;
1898      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1899                                      RBO->getOperand(0), TD, DT, MaxRecurse-1))
1900        return V;
1901      break;
1902    }
1903    }
1904  }
1905
1906  // Simplify comparisons involving max/min.
1907  Value *A, *B;
1908  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
1909  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
1910
1911  // Signed variants on "max(a,b)>=a -> true".
1912  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1913    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
1914    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1915    // We analyze this as smax(A, B) pred A.
1916    P = Pred;
1917  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
1918             (A == LHS || B == LHS)) {
1919    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
1920    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1921    // We analyze this as smax(A, B) swapped-pred A.
1922    P = CmpInst::getSwappedPredicate(Pred);
1923  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
1924             (A == RHS || B == RHS)) {
1925    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
1926    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1927    // We analyze this as smax(-A, -B) swapped-pred -A.
1928    // Note that we do not need to actually form -A or -B thanks to EqP.
1929    P = CmpInst::getSwappedPredicate(Pred);
1930  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
1931             (A == LHS || B == LHS)) {
1932    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
1933    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1934    // We analyze this as smax(-A, -B) pred -A.
1935    // Note that we do not need to actually form -A or -B thanks to EqP.
1936    P = Pred;
1937  }
1938  if (P != CmpInst::BAD_ICMP_PREDICATE) {
1939    // Cases correspond to "max(A, B) p A".
1940    switch (P) {
1941    default:
1942      break;
1943    case CmpInst::ICMP_EQ:
1944    case CmpInst::ICMP_SLE:
1945      // Equivalent to "A EqP B".  This may be the same as the condition tested
1946      // in the max/min; if so, we can just return that.
1947      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
1948        return V;
1949      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
1950        return V;
1951      // Otherwise, see if "A EqP B" simplifies.
1952      if (MaxRecurse)
1953        if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
1954          return V;
1955      break;
1956    case CmpInst::ICMP_NE:
1957    case CmpInst::ICMP_SGT: {
1958      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
1959      // Equivalent to "A InvEqP B".  This may be the same as the condition
1960      // tested in the max/min; if so, we can just return that.
1961      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
1962        return V;
1963      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
1964        return V;
1965      // Otherwise, see if "A InvEqP B" simplifies.
1966      if (MaxRecurse)
1967        if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
1968          return V;
1969      break;
1970    }
1971    case CmpInst::ICMP_SGE:
1972      // Always true.
1973      return getTrue(ITy);
1974    case CmpInst::ICMP_SLT:
1975      // Always false.
1976      return getFalse(ITy);
1977    }
1978  }
1979
1980  // Unsigned variants on "max(a,b)>=a -> true".
1981  P = CmpInst::BAD_ICMP_PREDICATE;
1982  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1983    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
1984    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
1985    // We analyze this as umax(A, B) pred A.
1986    P = Pred;
1987  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
1988             (A == LHS || B == LHS)) {
1989    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
1990    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
1991    // We analyze this as umax(A, B) swapped-pred A.
1992    P = CmpInst::getSwappedPredicate(Pred);
1993  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
1994             (A == RHS || B == RHS)) {
1995    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
1996    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
1997    // We analyze this as umax(-A, -B) swapped-pred -A.
1998    // Note that we do not need to actually form -A or -B thanks to EqP.
1999    P = CmpInst::getSwappedPredicate(Pred);
2000  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2001             (A == LHS || B == LHS)) {
2002    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2003    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2004    // We analyze this as umax(-A, -B) pred -A.
2005    // Note that we do not need to actually form -A or -B thanks to EqP.
2006    P = Pred;
2007  }
2008  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2009    // Cases correspond to "max(A, B) p A".
2010    switch (P) {
2011    default:
2012      break;
2013    case CmpInst::ICMP_EQ:
2014    case CmpInst::ICMP_ULE:
2015      // Equivalent to "A EqP B".  This may be the same as the condition tested
2016      // in the max/min; if so, we can just return that.
2017      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2018        return V;
2019      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2020        return V;
2021      // Otherwise, see if "A EqP B" simplifies.
2022      if (MaxRecurse)
2023        if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
2024          return V;
2025      break;
2026    case CmpInst::ICMP_NE:
2027    case CmpInst::ICMP_UGT: {
2028      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2029      // Equivalent to "A InvEqP B".  This may be the same as the condition
2030      // tested in the max/min; if so, we can just return that.
2031      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2032        return V;
2033      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2034        return V;
2035      // Otherwise, see if "A InvEqP B" simplifies.
2036      if (MaxRecurse)
2037        if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
2038          return V;
2039      break;
2040    }
2041    case CmpInst::ICMP_UGE:
2042      // Always true.
2043      return getTrue(ITy);
2044    case CmpInst::ICMP_ULT:
2045      // Always false.
2046      return getFalse(ITy);
2047    }
2048  }
2049
2050  // Variants on "max(x,y) >= min(x,z)".
2051  Value *C, *D;
2052  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2053      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2054      (A == C || A == D || B == C || B == D)) {
2055    // max(x, ?) pred min(x, ?).
2056    if (Pred == CmpInst::ICMP_SGE)
2057      // Always true.
2058      return getTrue(ITy);
2059    if (Pred == CmpInst::ICMP_SLT)
2060      // Always false.
2061      return getFalse(ITy);
2062  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2063             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2064             (A == C || A == D || B == C || B == D)) {
2065    // min(x, ?) pred max(x, ?).
2066    if (Pred == CmpInst::ICMP_SLE)
2067      // Always true.
2068      return getTrue(ITy);
2069    if (Pred == CmpInst::ICMP_SGT)
2070      // Always false.
2071      return getFalse(ITy);
2072  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2073             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2074             (A == C || A == D || B == C || B == D)) {
2075    // max(x, ?) pred min(x, ?).
2076    if (Pred == CmpInst::ICMP_UGE)
2077      // Always true.
2078      return getTrue(ITy);
2079    if (Pred == CmpInst::ICMP_ULT)
2080      // Always false.
2081      return getFalse(ITy);
2082  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2083             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2084             (A == C || A == D || B == C || B == D)) {
2085    // min(x, ?) pred max(x, ?).
2086    if (Pred == CmpInst::ICMP_ULE)
2087      // Always true.
2088      return getTrue(ITy);
2089    if (Pred == CmpInst::ICMP_UGT)
2090      // Always false.
2091      return getFalse(ITy);
2092  }
2093
2094  // If the comparison is with the result of a select instruction, check whether
2095  // comparing with either branch of the select always yields the same value.
2096  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2097    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2098      return V;
2099
2100  // If the comparison is with the result of a phi instruction, check whether
2101  // doing the compare with each incoming phi value yields a common result.
2102  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2103    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2104      return V;
2105
2106  return 0;
2107}
2108
2109Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2110                              const TargetData *TD, const DominatorTree *DT) {
2111  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2112}
2113
2114/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2115/// fold the result.  If not, this returns null.
2116static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2117                               const TargetData *TD, const DominatorTree *DT,
2118                               unsigned MaxRecurse) {
2119  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2120  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2121
2122  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2123    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2124      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
2125
2126    // If we have a constant, make sure it is on the RHS.
2127    std::swap(LHS, RHS);
2128    Pred = CmpInst::getSwappedPredicate(Pred);
2129  }
2130
2131  // Fold trivial predicates.
2132  if (Pred == FCmpInst::FCMP_FALSE)
2133    return ConstantInt::get(GetCompareTy(LHS), 0);
2134  if (Pred == FCmpInst::FCMP_TRUE)
2135    return ConstantInt::get(GetCompareTy(LHS), 1);
2136
2137  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2138    return UndefValue::get(GetCompareTy(LHS));
2139
2140  // fcmp x,x -> true/false.  Not all compares are foldable.
2141  if (LHS == RHS) {
2142    if (CmpInst::isTrueWhenEqual(Pred))
2143      return ConstantInt::get(GetCompareTy(LHS), 1);
2144    if (CmpInst::isFalseWhenEqual(Pred))
2145      return ConstantInt::get(GetCompareTy(LHS), 0);
2146  }
2147
2148  // Handle fcmp with constant RHS
2149  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2150    // If the constant is a nan, see if we can fold the comparison based on it.
2151    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2152      if (CFP->getValueAPF().isNaN()) {
2153        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2154          return ConstantInt::getFalse(CFP->getContext());
2155        assert(FCmpInst::isUnordered(Pred) &&
2156               "Comparison must be either ordered or unordered!");
2157        // True if unordered.
2158        return ConstantInt::getTrue(CFP->getContext());
2159      }
2160      // Check whether the constant is an infinity.
2161      if (CFP->getValueAPF().isInfinity()) {
2162        if (CFP->getValueAPF().isNegative()) {
2163          switch (Pred) {
2164          case FCmpInst::FCMP_OLT:
2165            // No value is ordered and less than negative infinity.
2166            return ConstantInt::getFalse(CFP->getContext());
2167          case FCmpInst::FCMP_UGE:
2168            // All values are unordered with or at least negative infinity.
2169            return ConstantInt::getTrue(CFP->getContext());
2170          default:
2171            break;
2172          }
2173        } else {
2174          switch (Pred) {
2175          case FCmpInst::FCMP_OGT:
2176            // No value is ordered and greater than infinity.
2177            return ConstantInt::getFalse(CFP->getContext());
2178          case FCmpInst::FCMP_ULE:
2179            // All values are unordered with and at most infinity.
2180            return ConstantInt::getTrue(CFP->getContext());
2181          default:
2182            break;
2183          }
2184        }
2185      }
2186    }
2187  }
2188
2189  // If the comparison is with the result of a select instruction, check whether
2190  // comparing with either branch of the select always yields the same value.
2191  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2192    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2193      return V;
2194
2195  // If the comparison is with the result of a phi instruction, check whether
2196  // doing the compare with each incoming phi value yields a common result.
2197  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2198    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2199      return V;
2200
2201  return 0;
2202}
2203
2204Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2205                              const TargetData *TD, const DominatorTree *DT) {
2206  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2207}
2208
2209/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2210/// the result.  If not, this returns null.
2211Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
2212                                const TargetData *TD, const DominatorTree *) {
2213  // select true, X, Y  -> X
2214  // select false, X, Y -> Y
2215  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2216    return CB->getZExtValue() ? TrueVal : FalseVal;
2217
2218  // select C, X, X -> X
2219  if (TrueVal == FalseVal)
2220    return TrueVal;
2221
2222  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2223    if (isa<Constant>(TrueVal))
2224      return TrueVal;
2225    return FalseVal;
2226  }
2227  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2228    return FalseVal;
2229  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2230    return TrueVal;
2231
2232  return 0;
2233}
2234
2235/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2236/// fold the result.  If not, this returns null.
2237Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops,
2238                             const TargetData *TD, const DominatorTree *) {
2239  // The type of the GEP pointer operand.
2240  PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
2241
2242  // getelementptr P -> P.
2243  if (Ops.size() == 1)
2244    return Ops[0];
2245
2246  if (isa<UndefValue>(Ops[0])) {
2247    // Compute the (pointer) type returned by the GEP instruction.
2248    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2249    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2250    return UndefValue::get(GEPTy);
2251  }
2252
2253  if (Ops.size() == 2) {
2254    // getelementptr P, 0 -> P.
2255    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2256      if (C->isZero())
2257        return Ops[0];
2258    // getelementptr P, N -> P if P points to a type of zero size.
2259    if (TD) {
2260      Type *Ty = PtrTy->getElementType();
2261      if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
2262        return Ops[0];
2263    }
2264  }
2265
2266  // Check to see if this is constant foldable.
2267  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2268    if (!isa<Constant>(Ops[i]))
2269      return 0;
2270
2271  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2272}
2273
2274/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2275static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
2276  // If all of the PHI's incoming values are the same then replace the PHI node
2277  // with the common value.
2278  Value *CommonValue = 0;
2279  bool HasUndefInput = false;
2280  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2281    Value *Incoming = PN->getIncomingValue(i);
2282    // If the incoming value is the phi node itself, it can safely be skipped.
2283    if (Incoming == PN) continue;
2284    if (isa<UndefValue>(Incoming)) {
2285      // Remember that we saw an undef value, but otherwise ignore them.
2286      HasUndefInput = true;
2287      continue;
2288    }
2289    if (CommonValue && Incoming != CommonValue)
2290      return 0;  // Not the same, bail out.
2291    CommonValue = Incoming;
2292  }
2293
2294  // If CommonValue is null then all of the incoming values were either undef or
2295  // equal to the phi node itself.
2296  if (!CommonValue)
2297    return UndefValue::get(PN->getType());
2298
2299  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2300  // instruction, we cannot return X as the result of the PHI node unless it
2301  // dominates the PHI block.
2302  if (HasUndefInput)
2303    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
2304
2305  return CommonValue;
2306}
2307
2308
2309//=== Helper functions for higher up the class hierarchy.
2310
2311/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2312/// fold the result.  If not, this returns null.
2313static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2314                            const TargetData *TD, const DominatorTree *DT,
2315                            unsigned MaxRecurse) {
2316  switch (Opcode) {
2317  case Instruction::Add:
2318    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2319                           TD, DT, MaxRecurse);
2320  case Instruction::Sub:
2321    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2322                           TD, DT, MaxRecurse);
2323  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
2324  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
2325  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
2326  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
2327  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, DT, MaxRecurse);
2328  case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, DT, MaxRecurse);
2329  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, DT, MaxRecurse);
2330  case Instruction::Shl:
2331    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2332                           TD, DT, MaxRecurse);
2333  case Instruction::LShr:
2334    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2335  case Instruction::AShr:
2336    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2337  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
2338  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
2339  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
2340  default:
2341    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2342      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2343        Constant *COps[] = {CLHS, CRHS};
2344        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, TD);
2345      }
2346
2347    // If the operation is associative, try some generic simplifications.
2348    if (Instruction::isAssociative(Opcode))
2349      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
2350                                              MaxRecurse))
2351        return V;
2352
2353    // If the operation is with the result of a select instruction, check whether
2354    // operating on either branch of the select always yields the same value.
2355    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2356      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
2357                                           MaxRecurse))
2358        return V;
2359
2360    // If the operation is with the result of a phi instruction, check whether
2361    // operating on all incoming values of the phi always yields the same value.
2362    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2363      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
2364        return V;
2365
2366    return 0;
2367  }
2368}
2369
2370Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2371                           const TargetData *TD, const DominatorTree *DT) {
2372  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
2373}
2374
2375/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2376/// fold the result.
2377static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2378                              const TargetData *TD, const DominatorTree *DT,
2379                              unsigned MaxRecurse) {
2380  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2381    return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2382  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2383}
2384
2385Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2386                             const TargetData *TD, const DominatorTree *DT) {
2387  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2388}
2389
2390/// SimplifyInstruction - See if we can compute a simplified version of this
2391/// instruction.  If not, this returns null.
2392Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2393                                 const DominatorTree *DT) {
2394  Value *Result;
2395
2396  switch (I->getOpcode()) {
2397  default:
2398    Result = ConstantFoldInstruction(I, TD);
2399    break;
2400  case Instruction::Add:
2401    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2402                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2403                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2404                             TD, DT);
2405    break;
2406  case Instruction::Sub:
2407    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2408                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2409                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2410                             TD, DT);
2411    break;
2412  case Instruction::Mul:
2413    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
2414    break;
2415  case Instruction::SDiv:
2416    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2417    break;
2418  case Instruction::UDiv:
2419    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2420    break;
2421  case Instruction::FDiv:
2422    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2423    break;
2424  case Instruction::SRem:
2425    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2426    break;
2427  case Instruction::URem:
2428    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2429    break;
2430  case Instruction::FRem:
2431    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2432    break;
2433  case Instruction::Shl:
2434    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2435                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2436                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2437                             TD, DT);
2438    break;
2439  case Instruction::LShr:
2440    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2441                              cast<BinaryOperator>(I)->isExact(),
2442                              TD, DT);
2443    break;
2444  case Instruction::AShr:
2445    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2446                              cast<BinaryOperator>(I)->isExact(),
2447                              TD, DT);
2448    break;
2449  case Instruction::And:
2450    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
2451    break;
2452  case Instruction::Or:
2453    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
2454    break;
2455  case Instruction::Xor:
2456    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
2457    break;
2458  case Instruction::ICmp:
2459    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2460                              I->getOperand(0), I->getOperand(1), TD, DT);
2461    break;
2462  case Instruction::FCmp:
2463    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2464                              I->getOperand(0), I->getOperand(1), TD, DT);
2465    break;
2466  case Instruction::Select:
2467    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2468                                I->getOperand(2), TD, DT);
2469    break;
2470  case Instruction::GetElementPtr: {
2471    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2472    Result = SimplifyGEPInst(Ops, TD, DT);
2473    break;
2474  }
2475  case Instruction::PHI:
2476    Result = SimplifyPHINode(cast<PHINode>(I), DT);
2477    break;
2478  }
2479
2480  /// If called on unreachable code, the above logic may report that the
2481  /// instruction simplified to itself.  Make life easier for users by
2482  /// detecting that case here, returning a safe value instead.
2483  return Result == I ? UndefValue::get(I->getType()) : Result;
2484}
2485
2486/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2487/// delete the From instruction.  In addition to a basic RAUW, this does a
2488/// recursive simplification of the newly formed instructions.  This catches
2489/// things where one simplification exposes other opportunities.  This only
2490/// simplifies and deletes scalar operations, it does not change the CFG.
2491///
2492void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
2493                                     const TargetData *TD,
2494                                     const DominatorTree *DT) {
2495  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2496
2497  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2498  // we can know if it gets deleted out from under us or replaced in a
2499  // recursive simplification.
2500  WeakVH FromHandle(From);
2501  WeakVH ToHandle(To);
2502
2503  while (!From->use_empty()) {
2504    // Update the instruction to use the new value.
2505    Use &TheUse = From->use_begin().getUse();
2506    Instruction *User = cast<Instruction>(TheUse.getUser());
2507    TheUse = To;
2508
2509    // Check to see if the instruction can be folded due to the operand
2510    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
2511    // the 'or' with -1.
2512    Value *SimplifiedVal;
2513    {
2514      // Sanity check to make sure 'User' doesn't dangle across
2515      // SimplifyInstruction.
2516      AssertingVH<> UserHandle(User);
2517
2518      SimplifiedVal = SimplifyInstruction(User, TD, DT);
2519      if (SimplifiedVal == 0) continue;
2520    }
2521
2522    // Recursively simplify this user to the new value.
2523    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
2524    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2525    To = ToHandle;
2526
2527    assert(ToHandle && "To value deleted by recursive simplification?");
2528
2529    // If the recursive simplification ended up revisiting and deleting
2530    // 'From' then we're done.
2531    if (From == 0)
2532      return;
2533  }
2534
2535  // If 'From' has value handles referring to it, do a real RAUW to update them.
2536  From->replaceAllUsesWith(To);
2537
2538  From->eraseFromParent();
2539}
2540