InstructionSimplify.cpp revision 55c6d57734cd2f141dc2d6912fc22746d5eeae54
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/Operator.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Support/ConstantRange.h"
28#include "llvm/Support/PatternMatch.h"
29#include "llvm/Support/ValueHandle.h"
30#include "llvm/Target/TargetData.h"
31using namespace llvm;
32using namespace llvm::PatternMatch;
33
34enum { RecursionLimit = 3 };
35
36STATISTIC(NumExpand,  "Number of expansions");
37STATISTIC(NumFactor , "Number of factorizations");
38STATISTIC(NumReassoc, "Number of reassociations");
39
40static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
41                              const TargetLibraryInfo *, const DominatorTree *,
42                              unsigned);
43static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
44                            const TargetLibraryInfo *, const DominatorTree *,
45                            unsigned);
46static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
47                              const TargetLibraryInfo *, const DominatorTree *,
48                              unsigned);
49static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
50                             const TargetLibraryInfo *, const DominatorTree *,
51                             unsigned);
52static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
53                              const TargetLibraryInfo *, const DominatorTree *,
54                              unsigned);
55
56/// getFalse - For a boolean type, or a vector of boolean type, return false, or
57/// a vector with every element false, as appropriate for the type.
58static Constant *getFalse(Type *Ty) {
59  assert(Ty->getScalarType()->isIntegerTy(1) &&
60         "Expected i1 type or a vector of i1!");
61  return Constant::getNullValue(Ty);
62}
63
64/// getTrue - For a boolean type, or a vector of boolean type, return true, or
65/// a vector with every element true, as appropriate for the type.
66static Constant *getTrue(Type *Ty) {
67  assert(Ty->getScalarType()->isIntegerTy(1) &&
68         "Expected i1 type or a vector of i1!");
69  return Constant::getAllOnesValue(Ty);
70}
71
72/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
73static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
74                          Value *RHS) {
75  CmpInst *Cmp = dyn_cast<CmpInst>(V);
76  if (!Cmp)
77    return false;
78  CmpInst::Predicate CPred = Cmp->getPredicate();
79  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
80  if (CPred == Pred && CLHS == LHS && CRHS == RHS)
81    return true;
82  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
83    CRHS == LHS;
84}
85
86/// ValueDominatesPHI - Does the given value dominate the specified phi node?
87static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
88  Instruction *I = dyn_cast<Instruction>(V);
89  if (!I)
90    // Arguments and constants dominate all instructions.
91    return true;
92
93  // If we have a DominatorTree then do a precise test.
94  if (DT)
95    return DT->dominates(I, P);
96
97  // Otherwise, if the instruction is in the entry block, and is not an invoke,
98  // then it obviously dominates all phi nodes.
99  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
100      !isa<InvokeInst>(I))
101    return true;
102
103  return false;
104}
105
106/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
107/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
108/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
109/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
110/// Returns the simplified value, or null if no simplification was performed.
111static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
112                          unsigned OpcToExpand, const TargetData *TD,
113                          const TargetLibraryInfo *TLI, const DominatorTree *DT,
114                          unsigned MaxRecurse) {
115  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
116  // Recursion is always used, so bail out at once if we already hit the limit.
117  if (!MaxRecurse--)
118    return 0;
119
120  // Check whether the expression has the form "(A op' B) op C".
121  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
122    if (Op0->getOpcode() == OpcodeToExpand) {
123      // It does!  Try turning it into "(A op C) op' (B op C)".
124      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
125      // Do "A op C" and "B op C" both simplify?
126      if (Value *L = SimplifyBinOp(Opcode, A, C, TD, TLI, DT, MaxRecurse))
127        if (Value *R = SimplifyBinOp(Opcode, B, C, TD, TLI, DT, MaxRecurse)) {
128          // They do! Return "L op' R" if it simplifies or is already available.
129          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
130          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
131                                     && L == B && R == A)) {
132            ++NumExpand;
133            return LHS;
134          }
135          // Otherwise return "L op' R" if it simplifies.
136          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, TLI, DT,
137                                       MaxRecurse)) {
138            ++NumExpand;
139            return V;
140          }
141        }
142    }
143
144  // Check whether the expression has the form "A op (B op' C)".
145  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
146    if (Op1->getOpcode() == OpcodeToExpand) {
147      // It does!  Try turning it into "(A op B) op' (A op C)".
148      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
149      // Do "A op B" and "A op C" both simplify?
150      if (Value *L = SimplifyBinOp(Opcode, A, B, TD, TLI, DT, MaxRecurse))
151        if (Value *R = SimplifyBinOp(Opcode, A, C, TD, TLI, DT, MaxRecurse)) {
152          // They do! Return "L op' R" if it simplifies or is already available.
153          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
154          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
155                                     && L == C && R == B)) {
156            ++NumExpand;
157            return RHS;
158          }
159          // Otherwise return "L op' R" if it simplifies.
160          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, TLI, DT,
161                                       MaxRecurse)) {
162            ++NumExpand;
163            return V;
164          }
165        }
166    }
167
168  return 0;
169}
170
171/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
172/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
173/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
174/// Returns the simplified value, or null if no simplification was performed.
175static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
176                             unsigned OpcToExtract, const TargetData *TD,
177                             const TargetLibraryInfo *TLI,
178                             const DominatorTree *DT,
179                             unsigned MaxRecurse) {
180  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
181  // Recursion is always used, so bail out at once if we already hit the limit.
182  if (!MaxRecurse--)
183    return 0;
184
185  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
186  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
187
188  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
189      !Op1 || Op1->getOpcode() != OpcodeToExtract)
190    return 0;
191
192  // The expression has the form "(A op' B) op (C op' D)".
193  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
194  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
195
196  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
197  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
198  // commutative case, "(A op' B) op (C op' A)"?
199  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
200    Value *DD = A == C ? D : C;
201    // Form "A op' (B op DD)" if it simplifies completely.
202    // Does "B op DD" simplify?
203    if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, TLI, DT, MaxRecurse)) {
204      // It does!  Return "A op' V" if it simplifies or is already available.
205      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
206      // "A op' V" is just the RHS.
207      if (V == B || V == DD) {
208        ++NumFactor;
209        return V == B ? LHS : RHS;
210      }
211      // Otherwise return "A op' V" if it simplifies.
212      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, TLI, DT,
213                                   MaxRecurse)) {
214        ++NumFactor;
215        return W;
216      }
217    }
218  }
219
220  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
221  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
222  // commutative case, "(A op' B) op (B op' D)"?
223  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
224    Value *CC = B == D ? C : D;
225    // Form "(A op CC) op' B" if it simplifies completely..
226    // Does "A op CC" simplify?
227    if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, TLI, DT, MaxRecurse)) {
228      // It does!  Return "V op' B" if it simplifies or is already available.
229      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
230      // "V op' B" is just the RHS.
231      if (V == A || V == CC) {
232        ++NumFactor;
233        return V == A ? LHS : RHS;
234      }
235      // Otherwise return "V op' B" if it simplifies.
236      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, TLI, DT,
237                                   MaxRecurse)) {
238        ++NumFactor;
239        return W;
240      }
241    }
242  }
243
244  return 0;
245}
246
247/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
248/// operations.  Returns the simpler value, or null if none was found.
249static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
250                                       const TargetData *TD,
251                                       const TargetLibraryInfo *TLI,
252                                       const DominatorTree *DT,
253                                       unsigned MaxRecurse) {
254  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
255  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
256
257  // Recursion is always used, so bail out at once if we already hit the limit.
258  if (!MaxRecurse--)
259    return 0;
260
261  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
262  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
263
264  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
265  if (Op0 && Op0->getOpcode() == Opcode) {
266    Value *A = Op0->getOperand(0);
267    Value *B = Op0->getOperand(1);
268    Value *C = RHS;
269
270    // Does "B op C" simplify?
271    if (Value *V = SimplifyBinOp(Opcode, B, C, TD, TLI, DT, MaxRecurse)) {
272      // It does!  Return "A op V" if it simplifies or is already available.
273      // If V equals B then "A op V" is just the LHS.
274      if (V == B) return LHS;
275      // Otherwise return "A op V" if it simplifies.
276      if (Value *W = SimplifyBinOp(Opcode, A, V, TD, TLI, DT, MaxRecurse)) {
277        ++NumReassoc;
278        return W;
279      }
280    }
281  }
282
283  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
284  if (Op1 && Op1->getOpcode() == Opcode) {
285    Value *A = LHS;
286    Value *B = Op1->getOperand(0);
287    Value *C = Op1->getOperand(1);
288
289    // Does "A op B" simplify?
290    if (Value *V = SimplifyBinOp(Opcode, A, B, TD, TLI, DT, MaxRecurse)) {
291      // It does!  Return "V op C" if it simplifies or is already available.
292      // If V equals B then "V op C" is just the RHS.
293      if (V == B) return RHS;
294      // Otherwise return "V op C" if it simplifies.
295      if (Value *W = SimplifyBinOp(Opcode, V, C, TD, TLI, DT, MaxRecurse)) {
296        ++NumReassoc;
297        return W;
298      }
299    }
300  }
301
302  // The remaining transforms require commutativity as well as associativity.
303  if (!Instruction::isCommutative(Opcode))
304    return 0;
305
306  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
307  if (Op0 && Op0->getOpcode() == Opcode) {
308    Value *A = Op0->getOperand(0);
309    Value *B = Op0->getOperand(1);
310    Value *C = RHS;
311
312    // Does "C op A" simplify?
313    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, TLI, DT, MaxRecurse)) {
314      // It does!  Return "V op B" if it simplifies or is already available.
315      // If V equals A then "V op B" is just the LHS.
316      if (V == A) return LHS;
317      // Otherwise return "V op B" if it simplifies.
318      if (Value *W = SimplifyBinOp(Opcode, V, B, TD, TLI, DT, MaxRecurse)) {
319        ++NumReassoc;
320        return W;
321      }
322    }
323  }
324
325  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
326  if (Op1 && Op1->getOpcode() == Opcode) {
327    Value *A = LHS;
328    Value *B = Op1->getOperand(0);
329    Value *C = Op1->getOperand(1);
330
331    // Does "C op A" simplify?
332    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, TLI, DT, MaxRecurse)) {
333      // It does!  Return "B op V" if it simplifies or is already available.
334      // If V equals C then "B op V" is just the RHS.
335      if (V == C) return RHS;
336      // Otherwise return "B op V" if it simplifies.
337      if (Value *W = SimplifyBinOp(Opcode, B, V, TD, TLI, DT, MaxRecurse)) {
338        ++NumReassoc;
339        return W;
340      }
341    }
342  }
343
344  return 0;
345}
346
347/// ThreadBinOpOverSelect - In the case of a binary operation with a select
348/// instruction as an operand, try to simplify the binop by seeing whether
349/// evaluating it on both branches of the select results in the same value.
350/// Returns the common value if so, otherwise returns null.
351static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
352                                    const TargetData *TD,
353                                    const TargetLibraryInfo *TLI,
354                                    const DominatorTree *DT,
355                                    unsigned MaxRecurse) {
356  // Recursion is always used, so bail out at once if we already hit the limit.
357  if (!MaxRecurse--)
358    return 0;
359
360  SelectInst *SI;
361  if (isa<SelectInst>(LHS)) {
362    SI = cast<SelectInst>(LHS);
363  } else {
364    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
365    SI = cast<SelectInst>(RHS);
366  }
367
368  // Evaluate the BinOp on the true and false branches of the select.
369  Value *TV;
370  Value *FV;
371  if (SI == LHS) {
372    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, TLI, DT, MaxRecurse);
373    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, TLI, DT, MaxRecurse);
374  } else {
375    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, TLI, DT, MaxRecurse);
376    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, TLI, DT, MaxRecurse);
377  }
378
379  // If they simplified to the same value, then return the common value.
380  // If they both failed to simplify then return null.
381  if (TV == FV)
382    return TV;
383
384  // If one branch simplified to undef, return the other one.
385  if (TV && isa<UndefValue>(TV))
386    return FV;
387  if (FV && isa<UndefValue>(FV))
388    return TV;
389
390  // If applying the operation did not change the true and false select values,
391  // then the result of the binop is the select itself.
392  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
393    return SI;
394
395  // If one branch simplified and the other did not, and the simplified
396  // value is equal to the unsimplified one, return the simplified value.
397  // For example, select (cond, X, X & Z) & Z -> X & Z.
398  if ((FV && !TV) || (TV && !FV)) {
399    // Check that the simplified value has the form "X op Y" where "op" is the
400    // same as the original operation.
401    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
402    if (Simplified && Simplified->getOpcode() == Opcode) {
403      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
404      // We already know that "op" is the same as for the simplified value.  See
405      // if the operands match too.  If so, return the simplified value.
406      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
407      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
408      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
409      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
410          Simplified->getOperand(1) == UnsimplifiedRHS)
411        return Simplified;
412      if (Simplified->isCommutative() &&
413          Simplified->getOperand(1) == UnsimplifiedLHS &&
414          Simplified->getOperand(0) == UnsimplifiedRHS)
415        return Simplified;
416    }
417  }
418
419  return 0;
420}
421
422/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
423/// try to simplify the comparison by seeing whether both branches of the select
424/// result in the same value.  Returns the common value if so, otherwise returns
425/// null.
426static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
427                                  Value *RHS, const TargetData *TD,
428                                  const TargetLibraryInfo *TLI,
429                                  const DominatorTree *DT,
430                                  unsigned MaxRecurse) {
431  // Recursion is always used, so bail out at once if we already hit the limit.
432  if (!MaxRecurse--)
433    return 0;
434
435  // Make sure the select is on the LHS.
436  if (!isa<SelectInst>(LHS)) {
437    std::swap(LHS, RHS);
438    Pred = CmpInst::getSwappedPredicate(Pred);
439  }
440  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
441  SelectInst *SI = cast<SelectInst>(LHS);
442  Value *Cond = SI->getCondition();
443  Value *TV = SI->getTrueValue();
444  Value *FV = SI->getFalseValue();
445
446  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
447  // Does "cmp TV, RHS" simplify?
448  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, TD, TLI, DT, MaxRecurse);
449  if (TCmp == Cond) {
450    // It not only simplified, it simplified to the select condition.  Replace
451    // it with 'true'.
452    TCmp = getTrue(Cond->getType());
453  } else if (!TCmp) {
454    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
455    // condition then we can replace it with 'true'.  Otherwise give up.
456    if (!isSameCompare(Cond, Pred, TV, RHS))
457      return 0;
458    TCmp = getTrue(Cond->getType());
459  }
460
461  // Does "cmp FV, RHS" simplify?
462  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, TD, TLI, DT, MaxRecurse);
463  if (FCmp == Cond) {
464    // It not only simplified, it simplified to the select condition.  Replace
465    // it with 'false'.
466    FCmp = getFalse(Cond->getType());
467  } else if (!FCmp) {
468    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
469    // condition then we can replace it with 'false'.  Otherwise give up.
470    if (!isSameCompare(Cond, Pred, FV, RHS))
471      return 0;
472    FCmp = getFalse(Cond->getType());
473  }
474
475  // If both sides simplified to the same value, then use it as the result of
476  // the original comparison.
477  if (TCmp == FCmp)
478    return TCmp;
479  // If the false value simplified to false, then the result of the compare
480  // is equal to "Cond && TCmp".  This also catches the case when the false
481  // value simplified to false and the true value to true, returning "Cond".
482  if (match(FCmp, m_Zero()))
483    if (Value *V = SimplifyAndInst(Cond, TCmp, TD, TLI, DT, MaxRecurse))
484      return V;
485  // If the true value simplified to true, then the result of the compare
486  // is equal to "Cond || FCmp".
487  if (match(TCmp, m_One()))
488    if (Value *V = SimplifyOrInst(Cond, FCmp, TD, TLI, DT, MaxRecurse))
489      return V;
490  // Finally, if the false value simplified to true and the true value to
491  // false, then the result of the compare is equal to "!Cond".
492  if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
493    if (Value *V =
494        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
495                        TD, TLI, DT, MaxRecurse))
496      return V;
497
498  return 0;
499}
500
501/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
502/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
503/// it on the incoming phi values yields the same result for every value.  If so
504/// returns the common value, otherwise returns null.
505static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
506                                 const TargetData *TD,
507                                 const TargetLibraryInfo *TLI,
508                                 const DominatorTree *DT,
509                                 unsigned MaxRecurse) {
510  // Recursion is always used, so bail out at once if we already hit the limit.
511  if (!MaxRecurse--)
512    return 0;
513
514  PHINode *PI;
515  if (isa<PHINode>(LHS)) {
516    PI = cast<PHINode>(LHS);
517    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
518    if (!ValueDominatesPHI(RHS, PI, DT))
519      return 0;
520  } else {
521    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
522    PI = cast<PHINode>(RHS);
523    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
524    if (!ValueDominatesPHI(LHS, PI, DT))
525      return 0;
526  }
527
528  // Evaluate the BinOp on the incoming phi values.
529  Value *CommonValue = 0;
530  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
531    Value *Incoming = PI->getIncomingValue(i);
532    // If the incoming value is the phi node itself, it can safely be skipped.
533    if (Incoming == PI) continue;
534    Value *V = PI == LHS ?
535      SimplifyBinOp(Opcode, Incoming, RHS, TD, TLI, DT, MaxRecurse) :
536      SimplifyBinOp(Opcode, LHS, Incoming, TD, TLI, DT, MaxRecurse);
537    // If the operation failed to simplify, or simplified to a different value
538    // to previously, then give up.
539    if (!V || (CommonValue && V != CommonValue))
540      return 0;
541    CommonValue = V;
542  }
543
544  return CommonValue;
545}
546
547/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
548/// try to simplify the comparison by seeing whether comparing with all of the
549/// incoming phi values yields the same result every time.  If so returns the
550/// common result, otherwise returns null.
551static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
552                               const TargetData *TD,
553                               const TargetLibraryInfo *TLI,
554                               const DominatorTree *DT,
555                               unsigned MaxRecurse) {
556  // Recursion is always used, so bail out at once if we already hit the limit.
557  if (!MaxRecurse--)
558    return 0;
559
560  // Make sure the phi is on the LHS.
561  if (!isa<PHINode>(LHS)) {
562    std::swap(LHS, RHS);
563    Pred = CmpInst::getSwappedPredicate(Pred);
564  }
565  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
566  PHINode *PI = cast<PHINode>(LHS);
567
568  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
569  if (!ValueDominatesPHI(RHS, PI, DT))
570    return 0;
571
572  // Evaluate the BinOp on the incoming phi values.
573  Value *CommonValue = 0;
574  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
575    Value *Incoming = PI->getIncomingValue(i);
576    // If the incoming value is the phi node itself, it can safely be skipped.
577    if (Incoming == PI) continue;
578    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, TLI, DT, MaxRecurse);
579    // If the operation failed to simplify, or simplified to a different value
580    // to previously, then give up.
581    if (!V || (CommonValue && V != CommonValue))
582      return 0;
583    CommonValue = V;
584  }
585
586  return CommonValue;
587}
588
589/// SimplifyAddInst - Given operands for an Add, see if we can
590/// fold the result.  If not, this returns null.
591static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
592                              const TargetData *TD,
593                              const TargetLibraryInfo *TLI,
594                              const DominatorTree *DT,
595                              unsigned MaxRecurse) {
596  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
597    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
598      Constant *Ops[] = { CLHS, CRHS };
599      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
600                                      Ops, TD, TLI);
601    }
602
603    // Canonicalize the constant to the RHS.
604    std::swap(Op0, Op1);
605  }
606
607  // X + undef -> undef
608  if (match(Op1, m_Undef()))
609    return Op1;
610
611  // X + 0 -> X
612  if (match(Op1, m_Zero()))
613    return Op0;
614
615  // X + (Y - X) -> Y
616  // (Y - X) + X -> Y
617  // Eg: X + -X -> 0
618  Value *Y = 0;
619  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
620      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
621    return Y;
622
623  // X + ~X -> -1   since   ~X = -X-1
624  if (match(Op0, m_Not(m_Specific(Op1))) ||
625      match(Op1, m_Not(m_Specific(Op0))))
626    return Constant::getAllOnesValue(Op0->getType());
627
628  /// i1 add -> xor.
629  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
630    if (Value *V = SimplifyXorInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1))
631      return V;
632
633  // Try some generic simplifications for associative operations.
634  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, TLI, DT,
635                                          MaxRecurse))
636    return V;
637
638  // Mul distributes over Add.  Try some generic simplifications based on this.
639  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
640                                TD, TLI, DT, MaxRecurse))
641    return V;
642
643  // Threading Add over selects and phi nodes is pointless, so don't bother.
644  // Threading over the select in "A + select(cond, B, C)" means evaluating
645  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
646  // only if B and C are equal.  If B and C are equal then (since we assume
647  // that operands have already been simplified) "select(cond, B, C)" should
648  // have been simplified to the common value of B and C already.  Analysing
649  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
650  // for threading over phi nodes.
651
652  return 0;
653}
654
655Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
656                             const TargetData *TD, const TargetLibraryInfo *TLI,
657                             const DominatorTree *DT) {
658  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit);
659}
660
661/// SimplifySubInst - Given operands for a Sub, see if we can
662/// fold the result.  If not, this returns null.
663static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
664                              const TargetData *TD,
665                              const TargetLibraryInfo *TLI,
666                              const DominatorTree *DT,
667                              unsigned MaxRecurse) {
668  if (Constant *CLHS = dyn_cast<Constant>(Op0))
669    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
670      Constant *Ops[] = { CLHS, CRHS };
671      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
672                                      Ops, TD, TLI);
673    }
674
675  // X - undef -> undef
676  // undef - X -> undef
677  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
678    return UndefValue::get(Op0->getType());
679
680  // X - 0 -> X
681  if (match(Op1, m_Zero()))
682    return Op0;
683
684  // X - X -> 0
685  if (Op0 == Op1)
686    return Constant::getNullValue(Op0->getType());
687
688  // (X*2) - X -> X
689  // (X<<1) - X -> X
690  Value *X = 0;
691  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
692      match(Op0, m_Shl(m_Specific(Op1), m_One())))
693    return Op1;
694
695  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
696  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
697  Value *Y = 0, *Z = Op1;
698  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
699    // See if "V === Y - Z" simplifies.
700    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, TLI, DT, MaxRecurse-1))
701      // It does!  Now see if "X + V" simplifies.
702      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, TLI, DT,
703                                   MaxRecurse-1)) {
704        // It does, we successfully reassociated!
705        ++NumReassoc;
706        return W;
707      }
708    // See if "V === X - Z" simplifies.
709    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, TLI, DT, MaxRecurse-1))
710      // It does!  Now see if "Y + V" simplifies.
711      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, TLI, DT,
712                                   MaxRecurse-1)) {
713        // It does, we successfully reassociated!
714        ++NumReassoc;
715        return W;
716      }
717  }
718
719  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
720  // For example, X - (X + 1) -> -1
721  X = Op0;
722  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
723    // See if "V === X - Y" simplifies.
724    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, TLI, DT, MaxRecurse-1))
725      // It does!  Now see if "V - Z" simplifies.
726      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, TLI, DT,
727                                   MaxRecurse-1)) {
728        // It does, we successfully reassociated!
729        ++NumReassoc;
730        return W;
731      }
732    // See if "V === X - Z" simplifies.
733    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, TLI, DT, MaxRecurse-1))
734      // It does!  Now see if "V - Y" simplifies.
735      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, TLI, DT,
736                                   MaxRecurse-1)) {
737        // It does, we successfully reassociated!
738        ++NumReassoc;
739        return W;
740      }
741  }
742
743  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
744  // For example, X - (X - Y) -> Y.
745  Z = Op0;
746  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
747    // See if "V === Z - X" simplifies.
748    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, TLI, DT, MaxRecurse-1))
749      // It does!  Now see if "V + Y" simplifies.
750      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, TLI, DT,
751                                   MaxRecurse-1)) {
752        // It does, we successfully reassociated!
753        ++NumReassoc;
754        return W;
755      }
756
757  // Mul distributes over Sub.  Try some generic simplifications based on this.
758  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
759                                TD, TLI, DT, MaxRecurse))
760    return V;
761
762  // i1 sub -> xor.
763  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
764    if (Value *V = SimplifyXorInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1))
765      return V;
766
767  // Threading Sub over selects and phi nodes is pointless, so don't bother.
768  // Threading over the select in "A - select(cond, B, C)" means evaluating
769  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
770  // only if B and C are equal.  If B and C are equal then (since we assume
771  // that operands have already been simplified) "select(cond, B, C)" should
772  // have been simplified to the common value of B and C already.  Analysing
773  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
774  // for threading over phi nodes.
775
776  return 0;
777}
778
779Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
780                             const TargetData *TD,
781                             const TargetLibraryInfo *TLI,
782                             const DominatorTree *DT) {
783  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit);
784}
785
786/// SimplifyMulInst - Given operands for a Mul, see if we can
787/// fold the result.  If not, this returns null.
788static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
789                              const TargetLibraryInfo *TLI,
790                              const DominatorTree *DT, unsigned MaxRecurse) {
791  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
792    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
793      Constant *Ops[] = { CLHS, CRHS };
794      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
795                                      Ops, TD, TLI);
796    }
797
798    // Canonicalize the constant to the RHS.
799    std::swap(Op0, Op1);
800  }
801
802  // X * undef -> 0
803  if (match(Op1, m_Undef()))
804    return Constant::getNullValue(Op0->getType());
805
806  // X * 0 -> 0
807  if (match(Op1, m_Zero()))
808    return Op1;
809
810  // X * 1 -> X
811  if (match(Op1, m_One()))
812    return Op0;
813
814  // (X / Y) * Y -> X if the division is exact.
815  Value *X = 0;
816  if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
817      match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
818    return X;
819
820  // i1 mul -> and.
821  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
822    if (Value *V = SimplifyAndInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1))
823      return V;
824
825  // Try some generic simplifications for associative operations.
826  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, TLI, DT,
827                                          MaxRecurse))
828    return V;
829
830  // Mul distributes over Add.  Try some generic simplifications based on this.
831  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
832                             TD, TLI, DT, MaxRecurse))
833    return V;
834
835  // If the operation is with the result of a select instruction, check whether
836  // operating on either branch of the select always yields the same value.
837  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
838    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, TLI, DT,
839                                         MaxRecurse))
840      return V;
841
842  // If the operation is with the result of a phi instruction, check whether
843  // operating on all incoming values of the phi always yields the same value.
844  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
845    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, TLI, DT,
846                                      MaxRecurse))
847      return V;
848
849  return 0;
850}
851
852Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
853                             const TargetLibraryInfo *TLI,
854                             const DominatorTree *DT) {
855  return ::SimplifyMulInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
856}
857
858/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
859/// fold the result.  If not, this returns null.
860static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
861                          const TargetData *TD, const TargetLibraryInfo *TLI,
862                          const DominatorTree *DT, unsigned MaxRecurse) {
863  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
864    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
865      Constant *Ops[] = { C0, C1 };
866      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI);
867    }
868  }
869
870  bool isSigned = Opcode == Instruction::SDiv;
871
872  // X / undef -> undef
873  if (match(Op1, m_Undef()))
874    return Op1;
875
876  // undef / X -> 0
877  if (match(Op0, m_Undef()))
878    return Constant::getNullValue(Op0->getType());
879
880  // 0 / X -> 0, we don't need to preserve faults!
881  if (match(Op0, m_Zero()))
882    return Op0;
883
884  // X / 1 -> X
885  if (match(Op1, m_One()))
886    return Op0;
887
888  if (Op0->getType()->isIntegerTy(1))
889    // It can't be division by zero, hence it must be division by one.
890    return Op0;
891
892  // X / X -> 1
893  if (Op0 == Op1)
894    return ConstantInt::get(Op0->getType(), 1);
895
896  // (X * Y) / Y -> X if the multiplication does not overflow.
897  Value *X = 0, *Y = 0;
898  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
899    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
900    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
901    // If the Mul knows it does not overflow, then we are good to go.
902    if ((isSigned && Mul->hasNoSignedWrap()) ||
903        (!isSigned && Mul->hasNoUnsignedWrap()))
904      return X;
905    // If X has the form X = A / Y then X * Y cannot overflow.
906    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
907      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
908        return X;
909  }
910
911  // (X rem Y) / Y -> 0
912  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
913      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
914    return Constant::getNullValue(Op0->getType());
915
916  // If the operation is with the result of a select instruction, check whether
917  // operating on either branch of the select always yields the same value.
918  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
919    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT,
920                                         MaxRecurse))
921      return V;
922
923  // If the operation is with the result of a phi instruction, check whether
924  // operating on all incoming values of the phi always yields the same value.
925  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
926    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT,
927                                      MaxRecurse))
928      return V;
929
930  return 0;
931}
932
933/// SimplifySDivInst - Given operands for an SDiv, see if we can
934/// fold the result.  If not, this returns null.
935static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
936                               const TargetLibraryInfo *TLI,
937                               const DominatorTree *DT, unsigned MaxRecurse) {
938  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, TLI, DT,
939                             MaxRecurse))
940    return V;
941
942  return 0;
943}
944
945Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
946                              const TargetLibraryInfo *TLI,
947                              const DominatorTree *DT) {
948  return ::SimplifySDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
949}
950
951/// SimplifyUDivInst - Given operands for a UDiv, see if we can
952/// fold the result.  If not, this returns null.
953static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
954                               const TargetLibraryInfo *TLI,
955                               const DominatorTree *DT, unsigned MaxRecurse) {
956  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, TLI, DT,
957                             MaxRecurse))
958    return V;
959
960  return 0;
961}
962
963Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
964                              const TargetLibraryInfo *TLI,
965                              const DominatorTree *DT) {
966  return ::SimplifyUDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
967}
968
969static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
970                               const TargetLibraryInfo *,
971                               const DominatorTree *, unsigned) {
972  // undef / X -> undef    (the undef could be a snan).
973  if (match(Op0, m_Undef()))
974    return Op0;
975
976  // X / undef -> undef
977  if (match(Op1, m_Undef()))
978    return Op1;
979
980  return 0;
981}
982
983Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
984                              const TargetLibraryInfo *TLI,
985                              const DominatorTree *DT) {
986  return ::SimplifyFDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
987}
988
989/// SimplifyRem - Given operands for an SRem or URem, see if we can
990/// fold the result.  If not, this returns null.
991static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
992                          const TargetData *TD, const TargetLibraryInfo *TLI,
993                          const DominatorTree *DT, unsigned MaxRecurse) {
994  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
995    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
996      Constant *Ops[] = { C0, C1 };
997      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI);
998    }
999  }
1000
1001  // X % undef -> undef
1002  if (match(Op1, m_Undef()))
1003    return Op1;
1004
1005  // undef % X -> 0
1006  if (match(Op0, m_Undef()))
1007    return Constant::getNullValue(Op0->getType());
1008
1009  // 0 % X -> 0, we don't need to preserve faults!
1010  if (match(Op0, m_Zero()))
1011    return Op0;
1012
1013  // X % 0 -> undef, we don't need to preserve faults!
1014  if (match(Op1, m_Zero()))
1015    return UndefValue::get(Op0->getType());
1016
1017  // X % 1 -> 0
1018  if (match(Op1, m_One()))
1019    return Constant::getNullValue(Op0->getType());
1020
1021  if (Op0->getType()->isIntegerTy(1))
1022    // It can't be remainder by zero, hence it must be remainder by one.
1023    return Constant::getNullValue(Op0->getType());
1024
1025  // X % X -> 0
1026  if (Op0 == Op1)
1027    return Constant::getNullValue(Op0->getType());
1028
1029  // If the operation is with the result of a select instruction, check whether
1030  // operating on either branch of the select always yields the same value.
1031  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1032    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse))
1033      return V;
1034
1035  // If the operation is with the result of a phi instruction, check whether
1036  // operating on all incoming values of the phi always yields the same value.
1037  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1038    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse))
1039      return V;
1040
1041  return 0;
1042}
1043
1044/// SimplifySRemInst - Given operands for an SRem, see if we can
1045/// fold the result.  If not, this returns null.
1046static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1047                               const TargetLibraryInfo *TLI,
1048                               const DominatorTree *DT,
1049                               unsigned MaxRecurse) {
1050  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, TLI, DT, MaxRecurse))
1051    return V;
1052
1053  return 0;
1054}
1055
1056Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1057                              const TargetLibraryInfo *TLI,
1058                              const DominatorTree *DT) {
1059  return ::SimplifySRemInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1060}
1061
1062/// SimplifyURemInst - Given operands for a URem, see if we can
1063/// fold the result.  If not, this returns null.
1064static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1065                               const TargetLibraryInfo *TLI,
1066                               const DominatorTree *DT,
1067                               unsigned MaxRecurse) {
1068  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, TLI, DT, MaxRecurse))
1069    return V;
1070
1071  return 0;
1072}
1073
1074Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1075                              const TargetLibraryInfo *TLI,
1076                              const DominatorTree *DT) {
1077  return ::SimplifyURemInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1078}
1079
1080static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
1081                               const TargetLibraryInfo *,
1082                               const DominatorTree *,
1083                               unsigned) {
1084  // undef % X -> undef    (the undef could be a snan).
1085  if (match(Op0, m_Undef()))
1086    return Op0;
1087
1088  // X % undef -> undef
1089  if (match(Op1, m_Undef()))
1090    return Op1;
1091
1092  return 0;
1093}
1094
1095Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1096                              const TargetLibraryInfo *TLI,
1097                              const DominatorTree *DT) {
1098  return ::SimplifyFRemInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1099}
1100
1101/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1102/// fold the result.  If not, this returns null.
1103static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1104                            const TargetData *TD, const TargetLibraryInfo *TLI,
1105                            const DominatorTree *DT, unsigned MaxRecurse) {
1106  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1107    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1108      Constant *Ops[] = { C0, C1 };
1109      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI);
1110    }
1111  }
1112
1113  // 0 shift by X -> 0
1114  if (match(Op0, m_Zero()))
1115    return Op0;
1116
1117  // X shift by 0 -> X
1118  if (match(Op1, m_Zero()))
1119    return Op0;
1120
1121  // X shift by undef -> undef because it may shift by the bitwidth.
1122  if (match(Op1, m_Undef()))
1123    return Op1;
1124
1125  // Shifting by the bitwidth or more is undefined.
1126  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1127    if (CI->getValue().getLimitedValue() >=
1128        Op0->getType()->getScalarSizeInBits())
1129      return UndefValue::get(Op0->getType());
1130
1131  // If the operation is with the result of a select instruction, check whether
1132  // operating on either branch of the select always yields the same value.
1133  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1134    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse))
1135      return V;
1136
1137  // If the operation is with the result of a phi instruction, check whether
1138  // operating on all incoming values of the phi always yields the same value.
1139  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1140    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse))
1141      return V;
1142
1143  return 0;
1144}
1145
1146/// SimplifyShlInst - Given operands for an Shl, see if we can
1147/// fold the result.  If not, this returns null.
1148static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1149                              const TargetData *TD,
1150                              const TargetLibraryInfo *TLI,
1151                              const DominatorTree *DT, unsigned MaxRecurse) {
1152  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, TLI, DT, MaxRecurse))
1153    return V;
1154
1155  // undef << X -> 0
1156  if (match(Op0, m_Undef()))
1157    return Constant::getNullValue(Op0->getType());
1158
1159  // (X >> A) << A -> X
1160  Value *X;
1161  if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1162    return X;
1163  return 0;
1164}
1165
1166Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1167                             const TargetData *TD, const TargetLibraryInfo *TLI,
1168                             const DominatorTree *DT) {
1169  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit);
1170}
1171
1172/// SimplifyLShrInst - Given operands for an LShr, see if we can
1173/// fold the result.  If not, this returns null.
1174static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1175                               const TargetData *TD,
1176                               const TargetLibraryInfo *TLI,
1177                               const DominatorTree *DT,
1178                               unsigned MaxRecurse) {
1179  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, TLI, DT, MaxRecurse))
1180    return V;
1181
1182  // undef >>l X -> 0
1183  if (match(Op0, m_Undef()))
1184    return Constant::getNullValue(Op0->getType());
1185
1186  // (X << A) >> A -> X
1187  Value *X;
1188  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1189      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1190    return X;
1191
1192  return 0;
1193}
1194
1195Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1196                              const TargetData *TD,
1197                              const TargetLibraryInfo *TLI,
1198                              const DominatorTree *DT) {
1199  return ::SimplifyLShrInst(Op0, Op1, isExact, TD, TLI, DT, RecursionLimit);
1200}
1201
1202/// SimplifyAShrInst - Given operands for an AShr, see if we can
1203/// fold the result.  If not, this returns null.
1204static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1205                               const TargetData *TD,
1206                               const TargetLibraryInfo *TLI,
1207                               const DominatorTree *DT,
1208                               unsigned MaxRecurse) {
1209  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, TLI, DT, MaxRecurse))
1210    return V;
1211
1212  // all ones >>a X -> all ones
1213  if (match(Op0, m_AllOnes()))
1214    return Op0;
1215
1216  // undef >>a X -> all ones
1217  if (match(Op0, m_Undef()))
1218    return Constant::getAllOnesValue(Op0->getType());
1219
1220  // (X << A) >> A -> X
1221  Value *X;
1222  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1223      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1224    return X;
1225
1226  return 0;
1227}
1228
1229Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1230                              const TargetData *TD,
1231                              const TargetLibraryInfo *TLI,
1232                              const DominatorTree *DT) {
1233  return ::SimplifyAShrInst(Op0, Op1, isExact, TD, TLI, DT, RecursionLimit);
1234}
1235
1236/// SimplifyAndInst - Given operands for an And, see if we can
1237/// fold the result.  If not, this returns null.
1238static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1239                              const TargetLibraryInfo *TLI,
1240                              const DominatorTree *DT,
1241                              unsigned MaxRecurse) {
1242  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1243    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1244      Constant *Ops[] = { CLHS, CRHS };
1245      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1246                                      Ops, TD, TLI);
1247    }
1248
1249    // Canonicalize the constant to the RHS.
1250    std::swap(Op0, Op1);
1251  }
1252
1253  // X & undef -> 0
1254  if (match(Op1, m_Undef()))
1255    return Constant::getNullValue(Op0->getType());
1256
1257  // X & X = X
1258  if (Op0 == Op1)
1259    return Op0;
1260
1261  // X & 0 = 0
1262  if (match(Op1, m_Zero()))
1263    return Op1;
1264
1265  // X & -1 = X
1266  if (match(Op1, m_AllOnes()))
1267    return Op0;
1268
1269  // A & ~A  =  ~A & A  =  0
1270  if (match(Op0, m_Not(m_Specific(Op1))) ||
1271      match(Op1, m_Not(m_Specific(Op0))))
1272    return Constant::getNullValue(Op0->getType());
1273
1274  // (A | ?) & A = A
1275  Value *A = 0, *B = 0;
1276  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1277      (A == Op1 || B == Op1))
1278    return Op1;
1279
1280  // A & (A | ?) = A
1281  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1282      (A == Op0 || B == Op0))
1283    return Op0;
1284
1285  // A & (-A) = A if A is a power of two or zero.
1286  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1287      match(Op1, m_Neg(m_Specific(Op0)))) {
1288    if (isPowerOfTwo(Op0, TD, /*OrZero*/true))
1289      return Op0;
1290    if (isPowerOfTwo(Op1, TD, /*OrZero*/true))
1291      return Op1;
1292  }
1293
1294  // Try some generic simplifications for associative operations.
1295  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, TLI,
1296                                          DT, MaxRecurse))
1297    return V;
1298
1299  // And distributes over Or.  Try some generic simplifications based on this.
1300  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1301                             TD, TLI, DT, MaxRecurse))
1302    return V;
1303
1304  // And distributes over Xor.  Try some generic simplifications based on this.
1305  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1306                             TD, TLI, DT, MaxRecurse))
1307    return V;
1308
1309  // Or distributes over And.  Try some generic simplifications based on this.
1310  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1311                                TD, TLI, DT, MaxRecurse))
1312    return V;
1313
1314  // If the operation is with the result of a select instruction, check whether
1315  // operating on either branch of the select always yields the same value.
1316  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1317    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, TLI,
1318                                         DT, MaxRecurse))
1319      return V;
1320
1321  // If the operation is with the result of a phi instruction, check whether
1322  // operating on all incoming values of the phi always yields the same value.
1323  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1324    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, TLI, DT,
1325                                      MaxRecurse))
1326      return V;
1327
1328  return 0;
1329}
1330
1331Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1332                             const TargetLibraryInfo *TLI,
1333                             const DominatorTree *DT) {
1334  return ::SimplifyAndInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1335}
1336
1337/// SimplifyOrInst - Given operands for an Or, see if we can
1338/// fold the result.  If not, this returns null.
1339static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1340                             const TargetLibraryInfo *TLI,
1341                             const DominatorTree *DT, unsigned MaxRecurse) {
1342  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1343    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1344      Constant *Ops[] = { CLHS, CRHS };
1345      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1346                                      Ops, TD, TLI);
1347    }
1348
1349    // Canonicalize the constant to the RHS.
1350    std::swap(Op0, Op1);
1351  }
1352
1353  // X | undef -> -1
1354  if (match(Op1, m_Undef()))
1355    return Constant::getAllOnesValue(Op0->getType());
1356
1357  // X | X = X
1358  if (Op0 == Op1)
1359    return Op0;
1360
1361  // X | 0 = X
1362  if (match(Op1, m_Zero()))
1363    return Op0;
1364
1365  // X | -1 = -1
1366  if (match(Op1, m_AllOnes()))
1367    return Op1;
1368
1369  // A | ~A  =  ~A | A  =  -1
1370  if (match(Op0, m_Not(m_Specific(Op1))) ||
1371      match(Op1, m_Not(m_Specific(Op0))))
1372    return Constant::getAllOnesValue(Op0->getType());
1373
1374  // (A & ?) | A = A
1375  Value *A = 0, *B = 0;
1376  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1377      (A == Op1 || B == Op1))
1378    return Op1;
1379
1380  // A | (A & ?) = A
1381  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1382      (A == Op0 || B == Op0))
1383    return Op0;
1384
1385  // ~(A & ?) | A = -1
1386  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1387      (A == Op1 || B == Op1))
1388    return Constant::getAllOnesValue(Op1->getType());
1389
1390  // A | ~(A & ?) = -1
1391  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1392      (A == Op0 || B == Op0))
1393    return Constant::getAllOnesValue(Op0->getType());
1394
1395  // Try some generic simplifications for associative operations.
1396  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, TLI,
1397                                          DT, MaxRecurse))
1398    return V;
1399
1400  // Or distributes over And.  Try some generic simplifications based on this.
1401  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, TD,
1402                             TLI, DT, MaxRecurse))
1403    return V;
1404
1405  // And distributes over Or.  Try some generic simplifications based on this.
1406  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1407                                TD, TLI, DT, MaxRecurse))
1408    return V;
1409
1410  // If the operation is with the result of a select instruction, check whether
1411  // operating on either branch of the select always yields the same value.
1412  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1413    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, TLI, DT,
1414                                         MaxRecurse))
1415      return V;
1416
1417  // If the operation is with the result of a phi instruction, check whether
1418  // operating on all incoming values of the phi always yields the same value.
1419  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1420    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, TLI, DT,
1421                                      MaxRecurse))
1422      return V;
1423
1424  return 0;
1425}
1426
1427Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1428                            const TargetLibraryInfo *TLI,
1429                            const DominatorTree *DT) {
1430  return ::SimplifyOrInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1431}
1432
1433/// SimplifyXorInst - Given operands for a Xor, see if we can
1434/// fold the result.  If not, this returns null.
1435static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1436                              const TargetLibraryInfo *TLI,
1437                              const DominatorTree *DT, unsigned MaxRecurse) {
1438  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1439    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1440      Constant *Ops[] = { CLHS, CRHS };
1441      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1442                                      Ops, TD, TLI);
1443    }
1444
1445    // Canonicalize the constant to the RHS.
1446    std::swap(Op0, Op1);
1447  }
1448
1449  // A ^ undef -> undef
1450  if (match(Op1, m_Undef()))
1451    return Op1;
1452
1453  // A ^ 0 = A
1454  if (match(Op1, m_Zero()))
1455    return Op0;
1456
1457  // A ^ A = 0
1458  if (Op0 == Op1)
1459    return Constant::getNullValue(Op0->getType());
1460
1461  // A ^ ~A  =  ~A ^ A  =  -1
1462  if (match(Op0, m_Not(m_Specific(Op1))) ||
1463      match(Op1, m_Not(m_Specific(Op0))))
1464    return Constant::getAllOnesValue(Op0->getType());
1465
1466  // Try some generic simplifications for associative operations.
1467  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, TLI,
1468                                          DT, MaxRecurse))
1469    return V;
1470
1471  // And distributes over Xor.  Try some generic simplifications based on this.
1472  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1473                                TD, TLI, DT, MaxRecurse))
1474    return V;
1475
1476  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1477  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1478  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1479  // only if B and C are equal.  If B and C are equal then (since we assume
1480  // that operands have already been simplified) "select(cond, B, C)" should
1481  // have been simplified to the common value of B and C already.  Analysing
1482  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1483  // for threading over phi nodes.
1484
1485  return 0;
1486}
1487
1488Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1489                             const TargetLibraryInfo *TLI,
1490                             const DominatorTree *DT) {
1491  return ::SimplifyXorInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1492}
1493
1494static Type *GetCompareTy(Value *Op) {
1495  return CmpInst::makeCmpResultType(Op->getType());
1496}
1497
1498/// ExtractEquivalentCondition - Rummage around inside V looking for something
1499/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1500/// otherwise return null.  Helper function for analyzing max/min idioms.
1501static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1502                                         Value *LHS, Value *RHS) {
1503  SelectInst *SI = dyn_cast<SelectInst>(V);
1504  if (!SI)
1505    return 0;
1506  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1507  if (!Cmp)
1508    return 0;
1509  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1510  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1511    return Cmp;
1512  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1513      LHS == CmpRHS && RHS == CmpLHS)
1514    return Cmp;
1515  return 0;
1516}
1517
1518/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1519/// fold the result.  If not, this returns null.
1520static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1521                               const TargetData *TD,
1522                               const TargetLibraryInfo *TLI,
1523                               const DominatorTree *DT,
1524                               unsigned MaxRecurse) {
1525  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1526  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1527
1528  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1529    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1530      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD, TLI);
1531
1532    // If we have a constant, make sure it is on the RHS.
1533    std::swap(LHS, RHS);
1534    Pred = CmpInst::getSwappedPredicate(Pred);
1535  }
1536
1537  Type *ITy = GetCompareTy(LHS); // The return type.
1538  Type *OpTy = LHS->getType();   // The operand type.
1539
1540  // icmp X, X -> true/false
1541  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1542  // because X could be 0.
1543  if (LHS == RHS || isa<UndefValue>(RHS))
1544    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1545
1546  // Special case logic when the operands have i1 type.
1547  if (OpTy->getScalarType()->isIntegerTy(1)) {
1548    switch (Pred) {
1549    default: break;
1550    case ICmpInst::ICMP_EQ:
1551      // X == 1 -> X
1552      if (match(RHS, m_One()))
1553        return LHS;
1554      break;
1555    case ICmpInst::ICMP_NE:
1556      // X != 0 -> X
1557      if (match(RHS, m_Zero()))
1558        return LHS;
1559      break;
1560    case ICmpInst::ICMP_UGT:
1561      // X >u 0 -> X
1562      if (match(RHS, m_Zero()))
1563        return LHS;
1564      break;
1565    case ICmpInst::ICMP_UGE:
1566      // X >=u 1 -> X
1567      if (match(RHS, m_One()))
1568        return LHS;
1569      break;
1570    case ICmpInst::ICMP_SLT:
1571      // X <s 0 -> X
1572      if (match(RHS, m_Zero()))
1573        return LHS;
1574      break;
1575    case ICmpInst::ICMP_SLE:
1576      // X <=s -1 -> X
1577      if (match(RHS, m_One()))
1578        return LHS;
1579      break;
1580    }
1581  }
1582
1583  // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1584  // different addresses, and what's more the address of a stack variable is
1585  // never null or equal to the address of a global.  Note that generalizing
1586  // to the case where LHS is a global variable address or null is pointless,
1587  // since if both LHS and RHS are constants then we already constant folded
1588  // the compare, and if only one of them is then we moved it to RHS already.
1589  if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1590                               isa<ConstantPointerNull>(RHS)))
1591    // We already know that LHS != RHS.
1592    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1593
1594  // If we are comparing with zero then try hard since this is a common case.
1595  if (match(RHS, m_Zero())) {
1596    bool LHSKnownNonNegative, LHSKnownNegative;
1597    switch (Pred) {
1598    default:
1599      assert(false && "Unknown ICmp predicate!");
1600    case ICmpInst::ICMP_ULT:
1601      return getFalse(ITy);
1602    case ICmpInst::ICMP_UGE:
1603      return getTrue(ITy);
1604    case ICmpInst::ICMP_EQ:
1605    case ICmpInst::ICMP_ULE:
1606      if (isKnownNonZero(LHS, TD))
1607        return getFalse(ITy);
1608      break;
1609    case ICmpInst::ICMP_NE:
1610    case ICmpInst::ICMP_UGT:
1611      if (isKnownNonZero(LHS, TD))
1612        return getTrue(ITy);
1613      break;
1614    case ICmpInst::ICMP_SLT:
1615      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1616      if (LHSKnownNegative)
1617        return getTrue(ITy);
1618      if (LHSKnownNonNegative)
1619        return getFalse(ITy);
1620      break;
1621    case ICmpInst::ICMP_SLE:
1622      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1623      if (LHSKnownNegative)
1624        return getTrue(ITy);
1625      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1626        return getFalse(ITy);
1627      break;
1628    case ICmpInst::ICMP_SGE:
1629      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1630      if (LHSKnownNegative)
1631        return getFalse(ITy);
1632      if (LHSKnownNonNegative)
1633        return getTrue(ITy);
1634      break;
1635    case ICmpInst::ICMP_SGT:
1636      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1637      if (LHSKnownNegative)
1638        return getFalse(ITy);
1639      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1640        return getTrue(ITy);
1641      break;
1642    }
1643  }
1644
1645  // See if we are doing a comparison with a constant integer.
1646  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1647    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1648    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1649    if (RHS_CR.isEmptySet())
1650      return ConstantInt::getFalse(CI->getContext());
1651    if (RHS_CR.isFullSet())
1652      return ConstantInt::getTrue(CI->getContext());
1653
1654    // Many binary operators with constant RHS have easy to compute constant
1655    // range.  Use them to check whether the comparison is a tautology.
1656    uint32_t Width = CI->getBitWidth();
1657    APInt Lower = APInt(Width, 0);
1658    APInt Upper = APInt(Width, 0);
1659    ConstantInt *CI2;
1660    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1661      // 'urem x, CI2' produces [0, CI2).
1662      Upper = CI2->getValue();
1663    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1664      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1665      Upper = CI2->getValue().abs();
1666      Lower = (-Upper) + 1;
1667    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1668      // 'udiv CI2, x' produces [0, CI2].
1669      Upper = CI2->getValue() + 1;
1670    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1671      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1672      APInt NegOne = APInt::getAllOnesValue(Width);
1673      if (!CI2->isZero())
1674        Upper = NegOne.udiv(CI2->getValue()) + 1;
1675    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1676      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1677      APInt IntMin = APInt::getSignedMinValue(Width);
1678      APInt IntMax = APInt::getSignedMaxValue(Width);
1679      APInt Val = CI2->getValue().abs();
1680      if (!Val.isMinValue()) {
1681        Lower = IntMin.sdiv(Val);
1682        Upper = IntMax.sdiv(Val) + 1;
1683      }
1684    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1685      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1686      APInt NegOne = APInt::getAllOnesValue(Width);
1687      if (CI2->getValue().ult(Width))
1688        Upper = NegOne.lshr(CI2->getValue()) + 1;
1689    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1690      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1691      APInt IntMin = APInt::getSignedMinValue(Width);
1692      APInt IntMax = APInt::getSignedMaxValue(Width);
1693      if (CI2->getValue().ult(Width)) {
1694        Lower = IntMin.ashr(CI2->getValue());
1695        Upper = IntMax.ashr(CI2->getValue()) + 1;
1696      }
1697    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1698      // 'or x, CI2' produces [CI2, UINT_MAX].
1699      Lower = CI2->getValue();
1700    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1701      // 'and x, CI2' produces [0, CI2].
1702      Upper = CI2->getValue() + 1;
1703    }
1704    if (Lower != Upper) {
1705      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1706      if (RHS_CR.contains(LHS_CR))
1707        return ConstantInt::getTrue(RHS->getContext());
1708      if (RHS_CR.inverse().contains(LHS_CR))
1709        return ConstantInt::getFalse(RHS->getContext());
1710    }
1711  }
1712
1713  // Compare of cast, for example (zext X) != 0 -> X != 0
1714  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1715    Instruction *LI = cast<CastInst>(LHS);
1716    Value *SrcOp = LI->getOperand(0);
1717    Type *SrcTy = SrcOp->getType();
1718    Type *DstTy = LI->getType();
1719
1720    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1721    // if the integer type is the same size as the pointer type.
1722    if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1723        TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1724      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1725        // Transfer the cast to the constant.
1726        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1727                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
1728                                        TD, TLI, DT, MaxRecurse-1))
1729          return V;
1730      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1731        if (RI->getOperand(0)->getType() == SrcTy)
1732          // Compare without the cast.
1733          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1734                                          TD, TLI, DT, MaxRecurse-1))
1735            return V;
1736      }
1737    }
1738
1739    if (isa<ZExtInst>(LHS)) {
1740      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1741      // same type.
1742      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1743        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1744          // Compare X and Y.  Note that signed predicates become unsigned.
1745          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1746                                          SrcOp, RI->getOperand(0), TD, TLI, DT,
1747                                          MaxRecurse-1))
1748            return V;
1749      }
1750      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1751      // too.  If not, then try to deduce the result of the comparison.
1752      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1753        // Compute the constant that would happen if we truncated to SrcTy then
1754        // reextended to DstTy.
1755        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1756        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1757
1758        // If the re-extended constant didn't change then this is effectively
1759        // also a case of comparing two zero-extended values.
1760        if (RExt == CI && MaxRecurse)
1761          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1762                                        SrcOp, Trunc, TD, TLI, DT, MaxRecurse-1))
1763            return V;
1764
1765        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1766        // there.  Use this to work out the result of the comparison.
1767        if (RExt != CI) {
1768          switch (Pred) {
1769          default:
1770            assert(false && "Unknown ICmp predicate!");
1771          // LHS <u RHS.
1772          case ICmpInst::ICMP_EQ:
1773          case ICmpInst::ICMP_UGT:
1774          case ICmpInst::ICMP_UGE:
1775            return ConstantInt::getFalse(CI->getContext());
1776
1777          case ICmpInst::ICMP_NE:
1778          case ICmpInst::ICMP_ULT:
1779          case ICmpInst::ICMP_ULE:
1780            return ConstantInt::getTrue(CI->getContext());
1781
1782          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1783          // is non-negative then LHS <s RHS.
1784          case ICmpInst::ICMP_SGT:
1785          case ICmpInst::ICMP_SGE:
1786            return CI->getValue().isNegative() ?
1787              ConstantInt::getTrue(CI->getContext()) :
1788              ConstantInt::getFalse(CI->getContext());
1789
1790          case ICmpInst::ICMP_SLT:
1791          case ICmpInst::ICMP_SLE:
1792            return CI->getValue().isNegative() ?
1793              ConstantInt::getFalse(CI->getContext()) :
1794              ConstantInt::getTrue(CI->getContext());
1795          }
1796        }
1797      }
1798    }
1799
1800    if (isa<SExtInst>(LHS)) {
1801      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1802      // same type.
1803      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1804        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1805          // Compare X and Y.  Note that the predicate does not change.
1806          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1807                                          TD, TLI, DT, MaxRecurse-1))
1808            return V;
1809      }
1810      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1811      // too.  If not, then try to deduce the result of the comparison.
1812      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1813        // Compute the constant that would happen if we truncated to SrcTy then
1814        // reextended to DstTy.
1815        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1816        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1817
1818        // If the re-extended constant didn't change then this is effectively
1819        // also a case of comparing two sign-extended values.
1820        if (RExt == CI && MaxRecurse)
1821          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, TLI, DT,
1822                                          MaxRecurse-1))
1823            return V;
1824
1825        // Otherwise the upper bits of LHS are all equal, while RHS has varying
1826        // bits there.  Use this to work out the result of the comparison.
1827        if (RExt != CI) {
1828          switch (Pred) {
1829          default:
1830            assert(false && "Unknown ICmp predicate!");
1831          case ICmpInst::ICMP_EQ:
1832            return ConstantInt::getFalse(CI->getContext());
1833          case ICmpInst::ICMP_NE:
1834            return ConstantInt::getTrue(CI->getContext());
1835
1836          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1837          // LHS >s RHS.
1838          case ICmpInst::ICMP_SGT:
1839          case ICmpInst::ICMP_SGE:
1840            return CI->getValue().isNegative() ?
1841              ConstantInt::getTrue(CI->getContext()) :
1842              ConstantInt::getFalse(CI->getContext());
1843          case ICmpInst::ICMP_SLT:
1844          case ICmpInst::ICMP_SLE:
1845            return CI->getValue().isNegative() ?
1846              ConstantInt::getFalse(CI->getContext()) :
1847              ConstantInt::getTrue(CI->getContext());
1848
1849          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1850          // LHS >u RHS.
1851          case ICmpInst::ICMP_UGT:
1852          case ICmpInst::ICMP_UGE:
1853            // Comparison is true iff the LHS <s 0.
1854            if (MaxRecurse)
1855              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1856                                              Constant::getNullValue(SrcTy),
1857                                              TD, TLI, DT, MaxRecurse-1))
1858                return V;
1859            break;
1860          case ICmpInst::ICMP_ULT:
1861          case ICmpInst::ICMP_ULE:
1862            // Comparison is true iff the LHS >=s 0.
1863            if (MaxRecurse)
1864              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1865                                              Constant::getNullValue(SrcTy),
1866                                              TD, TLI, DT, MaxRecurse-1))
1867                return V;
1868            break;
1869          }
1870        }
1871      }
1872    }
1873  }
1874
1875  // Special logic for binary operators.
1876  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1877  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1878  if (MaxRecurse && (LBO || RBO)) {
1879    // Analyze the case when either LHS or RHS is an add instruction.
1880    Value *A = 0, *B = 0, *C = 0, *D = 0;
1881    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1882    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1883    if (LBO && LBO->getOpcode() == Instruction::Add) {
1884      A = LBO->getOperand(0); B = LBO->getOperand(1);
1885      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1886        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1887        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1888    }
1889    if (RBO && RBO->getOpcode() == Instruction::Add) {
1890      C = RBO->getOperand(0); D = RBO->getOperand(1);
1891      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1892        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1893        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1894    }
1895
1896    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1897    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
1898      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
1899                                      Constant::getNullValue(RHS->getType()),
1900                                      TD, TLI, DT, MaxRecurse-1))
1901        return V;
1902
1903    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1904    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
1905      if (Value *V = SimplifyICmpInst(Pred,
1906                                      Constant::getNullValue(LHS->getType()),
1907                                      C == LHS ? D : C, TD, TLI, DT, MaxRecurse-1))
1908        return V;
1909
1910    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1911    if (A && C && (A == C || A == D || B == C || B == D) &&
1912        NoLHSWrapProblem && NoRHSWrapProblem) {
1913      // Determine Y and Z in the form icmp (X+Y), (X+Z).
1914      Value *Y = (A == C || A == D) ? B : A;
1915      Value *Z = (C == A || C == B) ? D : C;
1916      if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, TLI, DT, MaxRecurse-1))
1917        return V;
1918    }
1919  }
1920
1921  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
1922    bool KnownNonNegative, KnownNegative;
1923    switch (Pred) {
1924    default:
1925      break;
1926    case ICmpInst::ICMP_SGT:
1927    case ICmpInst::ICMP_SGE:
1928      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1929      if (!KnownNonNegative)
1930        break;
1931      // fall-through
1932    case ICmpInst::ICMP_EQ:
1933    case ICmpInst::ICMP_UGT:
1934    case ICmpInst::ICMP_UGE:
1935      return getFalse(ITy);
1936    case ICmpInst::ICMP_SLT:
1937    case ICmpInst::ICMP_SLE:
1938      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1939      if (!KnownNonNegative)
1940        break;
1941      // fall-through
1942    case ICmpInst::ICMP_NE:
1943    case ICmpInst::ICMP_ULT:
1944    case ICmpInst::ICMP_ULE:
1945      return getTrue(ITy);
1946    }
1947  }
1948  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
1949    bool KnownNonNegative, KnownNegative;
1950    switch (Pred) {
1951    default:
1952      break;
1953    case ICmpInst::ICMP_SGT:
1954    case ICmpInst::ICMP_SGE:
1955      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1956      if (!KnownNonNegative)
1957        break;
1958      // fall-through
1959    case ICmpInst::ICMP_NE:
1960    case ICmpInst::ICMP_UGT:
1961    case ICmpInst::ICMP_UGE:
1962      return getTrue(ITy);
1963    case ICmpInst::ICMP_SLT:
1964    case ICmpInst::ICMP_SLE:
1965      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1966      if (!KnownNonNegative)
1967        break;
1968      // fall-through
1969    case ICmpInst::ICMP_EQ:
1970    case ICmpInst::ICMP_ULT:
1971    case ICmpInst::ICMP_ULE:
1972      return getFalse(ITy);
1973    }
1974  }
1975
1976  // x udiv y <=u x.
1977  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
1978    // icmp pred (X /u Y), X
1979    if (Pred == ICmpInst::ICMP_UGT)
1980      return getFalse(ITy);
1981    if (Pred == ICmpInst::ICMP_ULE)
1982      return getTrue(ITy);
1983  }
1984
1985  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
1986      LBO->getOperand(1) == RBO->getOperand(1)) {
1987    switch (LBO->getOpcode()) {
1988    default: break;
1989    case Instruction::UDiv:
1990    case Instruction::LShr:
1991      if (ICmpInst::isSigned(Pred))
1992        break;
1993      // fall-through
1994    case Instruction::SDiv:
1995    case Instruction::AShr:
1996      if (!LBO->isExact() || !RBO->isExact())
1997        break;
1998      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1999                                      RBO->getOperand(0), TD, TLI, DT, MaxRecurse-1))
2000        return V;
2001      break;
2002    case Instruction::Shl: {
2003      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2004      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2005      if (!NUW && !NSW)
2006        break;
2007      if (!NSW && ICmpInst::isSigned(Pred))
2008        break;
2009      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2010                                      RBO->getOperand(0), TD, TLI, DT, MaxRecurse-1))
2011        return V;
2012      break;
2013    }
2014    }
2015  }
2016
2017  // Simplify comparisons involving max/min.
2018  Value *A, *B;
2019  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2020  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2021
2022  // Signed variants on "max(a,b)>=a -> true".
2023  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2024    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2025    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2026    // We analyze this as smax(A, B) pred A.
2027    P = Pred;
2028  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2029             (A == LHS || B == LHS)) {
2030    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2031    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2032    // We analyze this as smax(A, B) swapped-pred A.
2033    P = CmpInst::getSwappedPredicate(Pred);
2034  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2035             (A == RHS || B == RHS)) {
2036    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2037    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2038    // We analyze this as smax(-A, -B) swapped-pred -A.
2039    // Note that we do not need to actually form -A or -B thanks to EqP.
2040    P = CmpInst::getSwappedPredicate(Pred);
2041  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2042             (A == LHS || B == LHS)) {
2043    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2044    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2045    // We analyze this as smax(-A, -B) pred -A.
2046    // Note that we do not need to actually form -A or -B thanks to EqP.
2047    P = Pred;
2048  }
2049  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2050    // Cases correspond to "max(A, B) p A".
2051    switch (P) {
2052    default:
2053      break;
2054    case CmpInst::ICMP_EQ:
2055    case CmpInst::ICMP_SLE:
2056      // Equivalent to "A EqP B".  This may be the same as the condition tested
2057      // in the max/min; if so, we can just return that.
2058      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2059        return V;
2060      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2061        return V;
2062      // Otherwise, see if "A EqP B" simplifies.
2063      if (MaxRecurse)
2064        if (Value *V = SimplifyICmpInst(EqP, A, B, TD, TLI, DT, MaxRecurse-1))
2065          return V;
2066      break;
2067    case CmpInst::ICMP_NE:
2068    case CmpInst::ICMP_SGT: {
2069      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2070      // Equivalent to "A InvEqP B".  This may be the same as the condition
2071      // tested in the max/min; if so, we can just return that.
2072      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2073        return V;
2074      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2075        return V;
2076      // Otherwise, see if "A InvEqP B" simplifies.
2077      if (MaxRecurse)
2078        if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, TLI, DT, MaxRecurse-1))
2079          return V;
2080      break;
2081    }
2082    case CmpInst::ICMP_SGE:
2083      // Always true.
2084      return getTrue(ITy);
2085    case CmpInst::ICMP_SLT:
2086      // Always false.
2087      return getFalse(ITy);
2088    }
2089  }
2090
2091  // Unsigned variants on "max(a,b)>=a -> true".
2092  P = CmpInst::BAD_ICMP_PREDICATE;
2093  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2094    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2095    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2096    // We analyze this as umax(A, B) pred A.
2097    P = Pred;
2098  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2099             (A == LHS || B == LHS)) {
2100    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2101    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2102    // We analyze this as umax(A, B) swapped-pred A.
2103    P = CmpInst::getSwappedPredicate(Pred);
2104  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2105             (A == RHS || B == RHS)) {
2106    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2107    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2108    // We analyze this as umax(-A, -B) swapped-pred -A.
2109    // Note that we do not need to actually form -A or -B thanks to EqP.
2110    P = CmpInst::getSwappedPredicate(Pred);
2111  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2112             (A == LHS || B == LHS)) {
2113    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2114    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2115    // We analyze this as umax(-A, -B) pred -A.
2116    // Note that we do not need to actually form -A or -B thanks to EqP.
2117    P = Pred;
2118  }
2119  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2120    // Cases correspond to "max(A, B) p A".
2121    switch (P) {
2122    default:
2123      break;
2124    case CmpInst::ICMP_EQ:
2125    case CmpInst::ICMP_ULE:
2126      // Equivalent to "A EqP B".  This may be the same as the condition tested
2127      // in the max/min; if so, we can just return that.
2128      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2129        return V;
2130      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2131        return V;
2132      // Otherwise, see if "A EqP B" simplifies.
2133      if (MaxRecurse)
2134        if (Value *V = SimplifyICmpInst(EqP, A, B, TD, TLI, DT, MaxRecurse-1))
2135          return V;
2136      break;
2137    case CmpInst::ICMP_NE:
2138    case CmpInst::ICMP_UGT: {
2139      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2140      // Equivalent to "A InvEqP B".  This may be the same as the condition
2141      // tested in the max/min; if so, we can just return that.
2142      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2143        return V;
2144      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2145        return V;
2146      // Otherwise, see if "A InvEqP B" simplifies.
2147      if (MaxRecurse)
2148        if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, TLI, DT, MaxRecurse-1))
2149          return V;
2150      break;
2151    }
2152    case CmpInst::ICMP_UGE:
2153      // Always true.
2154      return getTrue(ITy);
2155    case CmpInst::ICMP_ULT:
2156      // Always false.
2157      return getFalse(ITy);
2158    }
2159  }
2160
2161  // Variants on "max(x,y) >= min(x,z)".
2162  Value *C, *D;
2163  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2164      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2165      (A == C || A == D || B == C || B == D)) {
2166    // max(x, ?) pred min(x, ?).
2167    if (Pred == CmpInst::ICMP_SGE)
2168      // Always true.
2169      return getTrue(ITy);
2170    if (Pred == CmpInst::ICMP_SLT)
2171      // Always false.
2172      return getFalse(ITy);
2173  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2174             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2175             (A == C || A == D || B == C || B == D)) {
2176    // min(x, ?) pred max(x, ?).
2177    if (Pred == CmpInst::ICMP_SLE)
2178      // Always true.
2179      return getTrue(ITy);
2180    if (Pred == CmpInst::ICMP_SGT)
2181      // Always false.
2182      return getFalse(ITy);
2183  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2184             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2185             (A == C || A == D || B == C || B == D)) {
2186    // max(x, ?) pred min(x, ?).
2187    if (Pred == CmpInst::ICMP_UGE)
2188      // Always true.
2189      return getTrue(ITy);
2190    if (Pred == CmpInst::ICMP_ULT)
2191      // Always false.
2192      return getFalse(ITy);
2193  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2194             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2195             (A == C || A == D || B == C || B == D)) {
2196    // min(x, ?) pred max(x, ?).
2197    if (Pred == CmpInst::ICMP_ULE)
2198      // Always true.
2199      return getTrue(ITy);
2200    if (Pred == CmpInst::ICMP_UGT)
2201      // Always false.
2202      return getFalse(ITy);
2203  }
2204
2205  // If the comparison is with the result of a select instruction, check whether
2206  // comparing with either branch of the select always yields the same value.
2207  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2208    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse))
2209      return V;
2210
2211  // If the comparison is with the result of a phi instruction, check whether
2212  // doing the compare with each incoming phi value yields a common result.
2213  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2214    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse))
2215      return V;
2216
2217  return 0;
2218}
2219
2220Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2221                              const TargetData *TD,
2222                              const TargetLibraryInfo *TLI,
2223                              const DominatorTree *DT) {
2224  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit);
2225}
2226
2227/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2228/// fold the result.  If not, this returns null.
2229static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2230                               const TargetData *TD,
2231                               const TargetLibraryInfo *TLI,
2232                               const DominatorTree *DT,
2233                               unsigned MaxRecurse) {
2234  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2235  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2236
2237  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2238    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2239      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD, TLI);
2240
2241    // If we have a constant, make sure it is on the RHS.
2242    std::swap(LHS, RHS);
2243    Pred = CmpInst::getSwappedPredicate(Pred);
2244  }
2245
2246  // Fold trivial predicates.
2247  if (Pred == FCmpInst::FCMP_FALSE)
2248    return ConstantInt::get(GetCompareTy(LHS), 0);
2249  if (Pred == FCmpInst::FCMP_TRUE)
2250    return ConstantInt::get(GetCompareTy(LHS), 1);
2251
2252  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2253    return UndefValue::get(GetCompareTy(LHS));
2254
2255  // fcmp x,x -> true/false.  Not all compares are foldable.
2256  if (LHS == RHS) {
2257    if (CmpInst::isTrueWhenEqual(Pred))
2258      return ConstantInt::get(GetCompareTy(LHS), 1);
2259    if (CmpInst::isFalseWhenEqual(Pred))
2260      return ConstantInt::get(GetCompareTy(LHS), 0);
2261  }
2262
2263  // Handle fcmp with constant RHS
2264  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2265    // If the constant is a nan, see if we can fold the comparison based on it.
2266    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2267      if (CFP->getValueAPF().isNaN()) {
2268        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2269          return ConstantInt::getFalse(CFP->getContext());
2270        assert(FCmpInst::isUnordered(Pred) &&
2271               "Comparison must be either ordered or unordered!");
2272        // True if unordered.
2273        return ConstantInt::getTrue(CFP->getContext());
2274      }
2275      // Check whether the constant is an infinity.
2276      if (CFP->getValueAPF().isInfinity()) {
2277        if (CFP->getValueAPF().isNegative()) {
2278          switch (Pred) {
2279          case FCmpInst::FCMP_OLT:
2280            // No value is ordered and less than negative infinity.
2281            return ConstantInt::getFalse(CFP->getContext());
2282          case FCmpInst::FCMP_UGE:
2283            // All values are unordered with or at least negative infinity.
2284            return ConstantInt::getTrue(CFP->getContext());
2285          default:
2286            break;
2287          }
2288        } else {
2289          switch (Pred) {
2290          case FCmpInst::FCMP_OGT:
2291            // No value is ordered and greater than infinity.
2292            return ConstantInt::getFalse(CFP->getContext());
2293          case FCmpInst::FCMP_ULE:
2294            // All values are unordered with and at most infinity.
2295            return ConstantInt::getTrue(CFP->getContext());
2296          default:
2297            break;
2298          }
2299        }
2300      }
2301    }
2302  }
2303
2304  // If the comparison is with the result of a select instruction, check whether
2305  // comparing with either branch of the select always yields the same value.
2306  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2307    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse))
2308      return V;
2309
2310  // If the comparison is with the result of a phi instruction, check whether
2311  // doing the compare with each incoming phi value yields a common result.
2312  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2313    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse))
2314      return V;
2315
2316  return 0;
2317}
2318
2319Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2320                              const TargetData *TD,
2321                              const TargetLibraryInfo *TLI,
2322                              const DominatorTree *DT) {
2323  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit);
2324}
2325
2326/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2327/// the result.  If not, this returns null.
2328Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
2329                                const TargetData *TD, const DominatorTree *) {
2330  // select true, X, Y  -> X
2331  // select false, X, Y -> Y
2332  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2333    return CB->getZExtValue() ? TrueVal : FalseVal;
2334
2335  // select C, X, X -> X
2336  if (TrueVal == FalseVal)
2337    return TrueVal;
2338
2339  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2340    if (isa<Constant>(TrueVal))
2341      return TrueVal;
2342    return FalseVal;
2343  }
2344  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2345    return FalseVal;
2346  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2347    return TrueVal;
2348
2349  return 0;
2350}
2351
2352/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2353/// fold the result.  If not, this returns null.
2354Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
2355                             const DominatorTree *) {
2356  // The type of the GEP pointer operand.
2357  PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2358  // The GEP pointer operand is not a pointer, it's a vector of pointers.
2359  if (!PtrTy)
2360    return 0;
2361
2362  // getelementptr P -> P.
2363  if (Ops.size() == 1)
2364    return Ops[0];
2365
2366  if (isa<UndefValue>(Ops[0])) {
2367    // Compute the (pointer) type returned by the GEP instruction.
2368    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2369    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2370    return UndefValue::get(GEPTy);
2371  }
2372
2373  if (Ops.size() == 2) {
2374    // getelementptr P, 0 -> P.
2375    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2376      if (C->isZero())
2377        return Ops[0];
2378    // getelementptr P, N -> P if P points to a type of zero size.
2379    if (TD) {
2380      Type *Ty = PtrTy->getElementType();
2381      if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
2382        return Ops[0];
2383    }
2384  }
2385
2386  // Check to see if this is constant foldable.
2387  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2388    if (!isa<Constant>(Ops[i]))
2389      return 0;
2390
2391  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2392}
2393
2394/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2395/// can fold the result.  If not, this returns null.
2396Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2397                                     ArrayRef<unsigned> Idxs,
2398                                     const TargetData *,
2399                                     const DominatorTree *) {
2400  if (Constant *CAgg = dyn_cast<Constant>(Agg))
2401    if (Constant *CVal = dyn_cast<Constant>(Val))
2402      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2403
2404  // insertvalue x, undef, n -> x
2405  if (match(Val, m_Undef()))
2406    return Agg;
2407
2408  // insertvalue x, (extractvalue y, n), n
2409  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2410    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2411        EV->getIndices() == Idxs) {
2412      // insertvalue undef, (extractvalue y, n), n -> y
2413      if (match(Agg, m_Undef()))
2414        return EV->getAggregateOperand();
2415
2416      // insertvalue y, (extractvalue y, n), n -> y
2417      if (Agg == EV->getAggregateOperand())
2418        return Agg;
2419    }
2420
2421  return 0;
2422}
2423
2424/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2425static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
2426  // If all of the PHI's incoming values are the same then replace the PHI node
2427  // with the common value.
2428  Value *CommonValue = 0;
2429  bool HasUndefInput = false;
2430  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2431    Value *Incoming = PN->getIncomingValue(i);
2432    // If the incoming value is the phi node itself, it can safely be skipped.
2433    if (Incoming == PN) continue;
2434    if (isa<UndefValue>(Incoming)) {
2435      // Remember that we saw an undef value, but otherwise ignore them.
2436      HasUndefInput = true;
2437      continue;
2438    }
2439    if (CommonValue && Incoming != CommonValue)
2440      return 0;  // Not the same, bail out.
2441    CommonValue = Incoming;
2442  }
2443
2444  // If CommonValue is null then all of the incoming values were either undef or
2445  // equal to the phi node itself.
2446  if (!CommonValue)
2447    return UndefValue::get(PN->getType());
2448
2449  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2450  // instruction, we cannot return X as the result of the PHI node unless it
2451  // dominates the PHI block.
2452  if (HasUndefInput)
2453    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
2454
2455  return CommonValue;
2456}
2457
2458//=== Helper functions for higher up the class hierarchy.
2459
2460/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2461/// fold the result.  If not, this returns null.
2462static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2463                            const TargetData *TD,
2464                            const TargetLibraryInfo *TLI,
2465                            const DominatorTree *DT,
2466                            unsigned MaxRecurse) {
2467  switch (Opcode) {
2468  case Instruction::Add:
2469    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2470                           TD, TLI, DT, MaxRecurse);
2471  case Instruction::Sub:
2472    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2473                           TD, TLI, DT, MaxRecurse);
2474  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, TLI, DT,
2475                                                  MaxRecurse);
2476  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, TLI, DT,
2477                                                  MaxRecurse);
2478  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, TLI, DT,
2479                                                  MaxRecurse);
2480  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, TLI, DT,
2481                                                  MaxRecurse);
2482  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, TLI, DT,
2483                                                  MaxRecurse);
2484  case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, TLI, DT,
2485                                                  MaxRecurse);
2486  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, TLI, DT,
2487                                                  MaxRecurse);
2488  case Instruction::Shl:
2489    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2490                           TD, TLI, DT, MaxRecurse);
2491  case Instruction::LShr:
2492    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, TLI, DT,
2493                            MaxRecurse);
2494  case Instruction::AShr:
2495    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, TLI, DT,
2496                            MaxRecurse);
2497  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, TLI, DT,
2498                                                MaxRecurse);
2499  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, TLI, DT,
2500                                                MaxRecurse);
2501  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, TLI, DT,
2502                                                MaxRecurse);
2503  default:
2504    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2505      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2506        Constant *COps[] = {CLHS, CRHS};
2507        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, TD, TLI);
2508      }
2509
2510    // If the operation is associative, try some generic simplifications.
2511    if (Instruction::isAssociative(Opcode))
2512      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, TLI, DT,
2513                                              MaxRecurse))
2514        return V;
2515
2516    // If the operation is with the result of a select instruction, check whether
2517    // operating on either branch of the select always yields the same value.
2518    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2519      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, TLI, DT,
2520                                           MaxRecurse))
2521        return V;
2522
2523    // If the operation is with the result of a phi instruction, check whether
2524    // operating on all incoming values of the phi always yields the same value.
2525    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2526      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, TLI, DT,
2527                                        MaxRecurse))
2528        return V;
2529
2530    return 0;
2531  }
2532}
2533
2534Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2535                           const TargetData *TD, const TargetLibraryInfo *TLI,
2536                           const DominatorTree *DT) {
2537  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, TLI, DT, RecursionLimit);
2538}
2539
2540/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2541/// fold the result.
2542static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2543                              const TargetData *TD,
2544                              const TargetLibraryInfo *TLI,
2545                              const DominatorTree *DT,
2546                              unsigned MaxRecurse) {
2547  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2548    return SimplifyICmpInst(Predicate, LHS, RHS, TD, TLI, DT, MaxRecurse);
2549  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, TLI, DT, MaxRecurse);
2550}
2551
2552Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2553                             const TargetData *TD, const TargetLibraryInfo *TLI,
2554                             const DominatorTree *DT) {
2555  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit);
2556}
2557
2558static Value *SimplifyCallInst(CallInst *CI) {
2559  // call undef -> undef
2560  if (isa<UndefValue>(CI->getCalledValue()))
2561    return UndefValue::get(CI->getType());
2562
2563  return 0;
2564}
2565
2566/// SimplifyInstruction - See if we can compute a simplified version of this
2567/// instruction.  If not, this returns null.
2568Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2569                                 const TargetLibraryInfo *TLI,
2570                                 const DominatorTree *DT) {
2571  Value *Result;
2572
2573  switch (I->getOpcode()) {
2574  default:
2575    Result = ConstantFoldInstruction(I, TD, TLI);
2576    break;
2577  case Instruction::Add:
2578    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2579                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2580                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2581                             TD, TLI, DT);
2582    break;
2583  case Instruction::Sub:
2584    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2585                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2586                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2587                             TD, TLI, DT);
2588    break;
2589  case Instruction::Mul:
2590    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2591    break;
2592  case Instruction::SDiv:
2593    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2594    break;
2595  case Instruction::UDiv:
2596    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2597    break;
2598  case Instruction::FDiv:
2599    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2600    break;
2601  case Instruction::SRem:
2602    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2603    break;
2604  case Instruction::URem:
2605    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2606    break;
2607  case Instruction::FRem:
2608    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2609    break;
2610  case Instruction::Shl:
2611    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2612                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2613                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2614                             TD, TLI, DT);
2615    break;
2616  case Instruction::LShr:
2617    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2618                              cast<BinaryOperator>(I)->isExact(),
2619                              TD, TLI, DT);
2620    break;
2621  case Instruction::AShr:
2622    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2623                              cast<BinaryOperator>(I)->isExact(),
2624                              TD, TLI, DT);
2625    break;
2626  case Instruction::And:
2627    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2628    break;
2629  case Instruction::Or:
2630    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2631    break;
2632  case Instruction::Xor:
2633    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2634    break;
2635  case Instruction::ICmp:
2636    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2637                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2638    break;
2639  case Instruction::FCmp:
2640    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2641                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2642    break;
2643  case Instruction::Select:
2644    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2645                                I->getOperand(2), TD, DT);
2646    break;
2647  case Instruction::GetElementPtr: {
2648    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2649    Result = SimplifyGEPInst(Ops, TD, DT);
2650    break;
2651  }
2652  case Instruction::InsertValue: {
2653    InsertValueInst *IV = cast<InsertValueInst>(I);
2654    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2655                                     IV->getInsertedValueOperand(),
2656                                     IV->getIndices(), TD, DT);
2657    break;
2658  }
2659  case Instruction::PHI:
2660    Result = SimplifyPHINode(cast<PHINode>(I), DT);
2661    break;
2662  case Instruction::Call:
2663    Result = SimplifyCallInst(cast<CallInst>(I));
2664    break;
2665  }
2666
2667  /// If called on unreachable code, the above logic may report that the
2668  /// instruction simplified to itself.  Make life easier for users by
2669  /// detecting that case here, returning a safe value instead.
2670  return Result == I ? UndefValue::get(I->getType()) : Result;
2671}
2672
2673/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2674/// delete the From instruction.  In addition to a basic RAUW, this does a
2675/// recursive simplification of the newly formed instructions.  This catches
2676/// things where one simplification exposes other opportunities.  This only
2677/// simplifies and deletes scalar operations, it does not change the CFG.
2678///
2679void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
2680                                     const TargetData *TD,
2681                                     const TargetLibraryInfo *TLI,
2682                                     const DominatorTree *DT) {
2683  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2684
2685  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2686  // we can know if it gets deleted out from under us or replaced in a
2687  // recursive simplification.
2688  WeakVH FromHandle(From);
2689  WeakVH ToHandle(To);
2690
2691  while (!From->use_empty()) {
2692    // Update the instruction to use the new value.
2693    Use &TheUse = From->use_begin().getUse();
2694    Instruction *User = cast<Instruction>(TheUse.getUser());
2695    TheUse = To;
2696
2697    // Check to see if the instruction can be folded due to the operand
2698    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
2699    // the 'or' with -1.
2700    Value *SimplifiedVal;
2701    {
2702      // Sanity check to make sure 'User' doesn't dangle across
2703      // SimplifyInstruction.
2704      AssertingVH<> UserHandle(User);
2705
2706      SimplifiedVal = SimplifyInstruction(User, TD, TLI, DT);
2707      if (SimplifiedVal == 0) continue;
2708    }
2709
2710    // Recursively simplify this user to the new value.
2711    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, TLI, DT);
2712    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2713    To = ToHandle;
2714
2715    assert(ToHandle && "To value deleted by recursive simplification?");
2716
2717    // If the recursive simplification ended up revisiting and deleting
2718    // 'From' then we're done.
2719    if (From == 0)
2720      return;
2721  }
2722
2723  // If 'From' has value handles referring to it, do a real RAUW to update them.
2724  From->replaceAllUsesWith(To);
2725
2726  From->eraseFromParent();
2727}
2728