InstructionSimplify.cpp revision 901261d558d0b41ba75d8aa2b38aac72aaa41bae
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/Support/ConstantRange.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/PatternMatch.h"
34#include "llvm/Support/ValueHandle.h"
35using namespace llvm;
36using namespace llvm::PatternMatch;
37
38enum { RecursionLimit = 3 };
39
40STATISTIC(NumExpand,  "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
44struct Query {
45  const DataLayout *TD;
46  const TargetLibraryInfo *TLI;
47  const DominatorTree *DT;
48
49  Query(const DataLayout *td, const TargetLibraryInfo *tli,
50        const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
51};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
55                            unsigned);
56static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
57                              unsigned);
58static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
60static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
61
62/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
65  assert(Ty->getScalarType()->isIntegerTy(1) &&
66         "Expected i1 type or a vector of i1!");
67  return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
73  assert(Ty->getScalarType()->isIntegerTy(1) &&
74         "Expected i1 type or a vector of i1!");
75  return Constant::getAllOnesValue(Ty);
76}
77
78/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80                          Value *RHS) {
81  CmpInst *Cmp = dyn_cast<CmpInst>(V);
82  if (!Cmp)
83    return false;
84  CmpInst::Predicate CPred = Cmp->getPredicate();
85  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86  if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87    return true;
88  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89    CRHS == LHS;
90}
91
92/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94  Instruction *I = dyn_cast<Instruction>(V);
95  if (!I)
96    // Arguments and constants dominate all instructions.
97    return true;
98
99  // If we are processing instructions (and/or basic blocks) that have not been
100  // fully added to a function, the parent nodes may still be null. Simply
101  // return the conservative answer in these cases.
102  if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103    return false;
104
105  // If we have a DominatorTree then do a precise test.
106  if (DT) {
107    if (!DT->isReachableFromEntry(P->getParent()))
108      return true;
109    if (!DT->isReachableFromEntry(I->getParent()))
110      return false;
111    return DT->dominates(I, P);
112  }
113
114  // Otherwise, if the instruction is in the entry block, and is not an invoke,
115  // then it obviously dominates all phi nodes.
116  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117      !isa<InvokeInst>(I))
118    return true;
119
120  return false;
121}
122
123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
129                          unsigned OpcToExpand, const Query &Q,
130                          unsigned MaxRecurse) {
131  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
132  // Recursion is always used, so bail out at once if we already hit the limit.
133  if (!MaxRecurse--)
134    return 0;
135
136  // Check whether the expression has the form "(A op' B) op C".
137  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138    if (Op0->getOpcode() == OpcodeToExpand) {
139      // It does!  Try turning it into "(A op C) op' (B op C)".
140      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141      // Do "A op C" and "B op C" both simplify?
142      if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143        if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
144          // They do! Return "L op' R" if it simplifies or is already available.
145          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
146          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147                                     && L == B && R == A)) {
148            ++NumExpand;
149            return LHS;
150          }
151          // Otherwise return "L op' R" if it simplifies.
152          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
153            ++NumExpand;
154            return V;
155          }
156        }
157    }
158
159  // Check whether the expression has the form "A op (B op' C)".
160  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161    if (Op1->getOpcode() == OpcodeToExpand) {
162      // It does!  Try turning it into "(A op B) op' (A op C)".
163      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164      // Do "A op B" and "A op C" both simplify?
165      if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166        if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
167          // They do! Return "L op' R" if it simplifies or is already available.
168          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
169          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170                                     && L == C && R == B)) {
171            ++NumExpand;
172            return RHS;
173          }
174          // Otherwise return "L op' R" if it simplifies.
175          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
176            ++NumExpand;
177            return V;
178          }
179        }
180    }
181
182  return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
190                             unsigned OpcToExtract, const Query &Q,
191                             unsigned MaxRecurse) {
192  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
193  // Recursion is always used, so bail out at once if we already hit the limit.
194  if (!MaxRecurse--)
195    return 0;
196
197  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201      !Op1 || Op1->getOpcode() != OpcodeToExtract)
202    return 0;
203
204  // The expression has the form "(A op' B) op (C op' D)".
205  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
207
208  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210  // commutative case, "(A op' B) op (C op' A)"?
211  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212    Value *DD = A == C ? D : C;
213    // Form "A op' (B op DD)" if it simplifies completely.
214    // Does "B op DD" simplify?
215    if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
216      // It does!  Return "A op' V" if it simplifies or is already available.
217      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
218      // "A op' V" is just the RHS.
219      if (V == B || V == DD) {
220        ++NumFactor;
221        return V == B ? LHS : RHS;
222      }
223      // Otherwise return "A op' V" if it simplifies.
224      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
225        ++NumFactor;
226        return W;
227      }
228    }
229  }
230
231  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233  // commutative case, "(A op' B) op (B op' D)"?
234  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235    Value *CC = B == D ? C : D;
236    // Form "(A op CC) op' B" if it simplifies completely..
237    // Does "A op CC" simplify?
238    if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
239      // It does!  Return "V op' B" if it simplifies or is already available.
240      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
241      // "V op' B" is just the RHS.
242      if (V == A || V == CC) {
243        ++NumFactor;
244        return V == A ? LHS : RHS;
245      }
246      // Otherwise return "V op' B" if it simplifies.
247      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
248        ++NumFactor;
249        return W;
250      }
251    }
252  }
253
254  return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations.  Returns the simpler value, or null if none was found.
259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
260                                       const Query &Q, unsigned MaxRecurse) {
261  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
262  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264  // Recursion is always used, so bail out at once if we already hit the limit.
265  if (!MaxRecurse--)
266    return 0;
267
268  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272  if (Op0 && Op0->getOpcode() == Opcode) {
273    Value *A = Op0->getOperand(0);
274    Value *B = Op0->getOperand(1);
275    Value *C = RHS;
276
277    // Does "B op C" simplify?
278    if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
279      // It does!  Return "A op V" if it simplifies or is already available.
280      // If V equals B then "A op V" is just the LHS.
281      if (V == B) return LHS;
282      // Otherwise return "A op V" if it simplifies.
283      if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
284        ++NumReassoc;
285        return W;
286      }
287    }
288  }
289
290  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291  if (Op1 && Op1->getOpcode() == Opcode) {
292    Value *A = LHS;
293    Value *B = Op1->getOperand(0);
294    Value *C = Op1->getOperand(1);
295
296    // Does "A op B" simplify?
297    if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
298      // It does!  Return "V op C" if it simplifies or is already available.
299      // If V equals B then "V op C" is just the RHS.
300      if (V == B) return RHS;
301      // Otherwise return "V op C" if it simplifies.
302      if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
303        ++NumReassoc;
304        return W;
305      }
306    }
307  }
308
309  // The remaining transforms require commutativity as well as associativity.
310  if (!Instruction::isCommutative(Opcode))
311    return 0;
312
313  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314  if (Op0 && Op0->getOpcode() == Opcode) {
315    Value *A = Op0->getOperand(0);
316    Value *B = Op0->getOperand(1);
317    Value *C = RHS;
318
319    // Does "C op A" simplify?
320    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
321      // It does!  Return "V op B" if it simplifies or is already available.
322      // If V equals A then "V op B" is just the LHS.
323      if (V == A) return LHS;
324      // Otherwise return "V op B" if it simplifies.
325      if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
326        ++NumReassoc;
327        return W;
328      }
329    }
330  }
331
332  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333  if (Op1 && Op1->getOpcode() == Opcode) {
334    Value *A = LHS;
335    Value *B = Op1->getOperand(0);
336    Value *C = Op1->getOperand(1);
337
338    // Does "C op A" simplify?
339    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
340      // It does!  Return "B op V" if it simplifies or is already available.
341      // If V equals C then "B op V" is just the RHS.
342      if (V == C) return RHS;
343      // Otherwise return "B op V" if it simplifies.
344      if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
345        ++NumReassoc;
346        return W;
347      }
348    }
349  }
350
351  return 0;
352}
353
354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
359                                    const Query &Q, unsigned MaxRecurse) {
360  // Recursion is always used, so bail out at once if we already hit the limit.
361  if (!MaxRecurse--)
362    return 0;
363
364  SelectInst *SI;
365  if (isa<SelectInst>(LHS)) {
366    SI = cast<SelectInst>(LHS);
367  } else {
368    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369    SI = cast<SelectInst>(RHS);
370  }
371
372  // Evaluate the BinOp on the true and false branches of the select.
373  Value *TV;
374  Value *FV;
375  if (SI == LHS) {
376    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
378  } else {
379    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
381  }
382
383  // If they simplified to the same value, then return the common value.
384  // If they both failed to simplify then return null.
385  if (TV == FV)
386    return TV;
387
388  // If one branch simplified to undef, return the other one.
389  if (TV && isa<UndefValue>(TV))
390    return FV;
391  if (FV && isa<UndefValue>(FV))
392    return TV;
393
394  // If applying the operation did not change the true and false select values,
395  // then the result of the binop is the select itself.
396  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
397    return SI;
398
399  // If one branch simplified and the other did not, and the simplified
400  // value is equal to the unsimplified one, return the simplified value.
401  // For example, select (cond, X, X & Z) & Z -> X & Z.
402  if ((FV && !TV) || (TV && !FV)) {
403    // Check that the simplified value has the form "X op Y" where "op" is the
404    // same as the original operation.
405    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406    if (Simplified && Simplified->getOpcode() == Opcode) {
407      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408      // We already know that "op" is the same as for the simplified value.  See
409      // if the operands match too.  If so, return the simplified value.
410      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
413      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414          Simplified->getOperand(1) == UnsimplifiedRHS)
415        return Simplified;
416      if (Simplified->isCommutative() &&
417          Simplified->getOperand(1) == UnsimplifiedLHS &&
418          Simplified->getOperand(0) == UnsimplifiedRHS)
419        return Simplified;
420    }
421  }
422
423  return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value.  Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
431                                  Value *RHS, const Query &Q,
432                                  unsigned MaxRecurse) {
433  // Recursion is always used, so bail out at once if we already hit the limit.
434  if (!MaxRecurse--)
435    return 0;
436
437  // Make sure the select is on the LHS.
438  if (!isa<SelectInst>(LHS)) {
439    std::swap(LHS, RHS);
440    Pred = CmpInst::getSwappedPredicate(Pred);
441  }
442  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443  SelectInst *SI = cast<SelectInst>(LHS);
444  Value *Cond = SI->getCondition();
445  Value *TV = SI->getTrueValue();
446  Value *FV = SI->getFalseValue();
447
448  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
449  // Does "cmp TV, RHS" simplify?
450  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
451  if (TCmp == Cond) {
452    // It not only simplified, it simplified to the select condition.  Replace
453    // it with 'true'.
454    TCmp = getTrue(Cond->getType());
455  } else if (!TCmp) {
456    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
457    // condition then we can replace it with 'true'.  Otherwise give up.
458    if (!isSameCompare(Cond, Pred, TV, RHS))
459      return 0;
460    TCmp = getTrue(Cond->getType());
461  }
462
463  // Does "cmp FV, RHS" simplify?
464  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
465  if (FCmp == Cond) {
466    // It not only simplified, it simplified to the select condition.  Replace
467    // it with 'false'.
468    FCmp = getFalse(Cond->getType());
469  } else if (!FCmp) {
470    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
471    // condition then we can replace it with 'false'.  Otherwise give up.
472    if (!isSameCompare(Cond, Pred, FV, RHS))
473      return 0;
474    FCmp = getFalse(Cond->getType());
475  }
476
477  // If both sides simplified to the same value, then use it as the result of
478  // the original comparison.
479  if (TCmp == FCmp)
480    return TCmp;
481
482  // The remaining cases only make sense if the select condition has the same
483  // type as the result of the comparison, so bail out if this is not so.
484  if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485    return 0;
486  // If the false value simplified to false, then the result of the compare
487  // is equal to "Cond && TCmp".  This also catches the case when the false
488  // value simplified to false and the true value to true, returning "Cond".
489  if (match(FCmp, m_Zero()))
490    if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
491      return V;
492  // If the true value simplified to true, then the result of the compare
493  // is equal to "Cond || FCmp".
494  if (match(TCmp, m_One()))
495    if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
496      return V;
497  // Finally, if the false value simplified to true and the true value to
498  // false, then the result of the compare is equal to "!Cond".
499  if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500    if (Value *V =
501        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
502                        Q, MaxRecurse))
503      return V;
504
505  return 0;
506}
507
508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value.  If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
513                                 const Query &Q, unsigned MaxRecurse) {
514  // Recursion is always used, so bail out at once if we already hit the limit.
515  if (!MaxRecurse--)
516    return 0;
517
518  PHINode *PI;
519  if (isa<PHINode>(LHS)) {
520    PI = cast<PHINode>(LHS);
521    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
522    if (!ValueDominatesPHI(RHS, PI, Q.DT))
523      return 0;
524  } else {
525    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526    PI = cast<PHINode>(RHS);
527    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
528    if (!ValueDominatesPHI(LHS, PI, Q.DT))
529      return 0;
530  }
531
532  // Evaluate the BinOp on the incoming phi values.
533  Value *CommonValue = 0;
534  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
535    Value *Incoming = PI->getIncomingValue(i);
536    // If the incoming value is the phi node itself, it can safely be skipped.
537    if (Incoming == PI) continue;
538    Value *V = PI == LHS ?
539      SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540      SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
541    // If the operation failed to simplify, or simplified to a different value
542    // to previously, then give up.
543    if (!V || (CommonValue && V != CommonValue))
544      return 0;
545    CommonValue = V;
546  }
547
548  return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time.  If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
556                               const Query &Q, unsigned MaxRecurse) {
557  // Recursion is always used, so bail out at once if we already hit the limit.
558  if (!MaxRecurse--)
559    return 0;
560
561  // Make sure the phi is on the LHS.
562  if (!isa<PHINode>(LHS)) {
563    std::swap(LHS, RHS);
564    Pred = CmpInst::getSwappedPredicate(Pred);
565  }
566  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567  PHINode *PI = cast<PHINode>(LHS);
568
569  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
570  if (!ValueDominatesPHI(RHS, PI, Q.DT))
571    return 0;
572
573  // Evaluate the BinOp on the incoming phi values.
574  Value *CommonValue = 0;
575  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
576    Value *Incoming = PI->getIncomingValue(i);
577    // If the incoming value is the phi node itself, it can safely be skipped.
578    if (Incoming == PI) continue;
579    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
580    // If the operation failed to simplify, or simplified to a different value
581    // to previously, then give up.
582    if (!V || (CommonValue && V != CommonValue))
583      return 0;
584    CommonValue = V;
585  }
586
587  return CommonValue;
588}
589
590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result.  If not, this returns null.
592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
593                              const Query &Q, unsigned MaxRecurse) {
594  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596      Constant *Ops[] = { CLHS, CRHS };
597      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598                                      Q.TD, Q.TLI);
599    }
600
601    // Canonicalize the constant to the RHS.
602    std::swap(Op0, Op1);
603  }
604
605  // X + undef -> undef
606  if (match(Op1, m_Undef()))
607    return Op1;
608
609  // X + 0 -> X
610  if (match(Op1, m_Zero()))
611    return Op0;
612
613  // X + (Y - X) -> Y
614  // (Y - X) + X -> Y
615  // Eg: X + -X -> 0
616  Value *Y = 0;
617  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
619    return Y;
620
621  // X + ~X -> -1   since   ~X = -X-1
622  if (match(Op0, m_Not(m_Specific(Op1))) ||
623      match(Op1, m_Not(m_Specific(Op0))))
624    return Constant::getAllOnesValue(Op0->getType());
625
626  /// i1 add -> xor.
627  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
628    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
629      return V;
630
631  // Try some generic simplifications for associative operations.
632  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
633                                          MaxRecurse))
634    return V;
635
636  // Mul distributes over Add.  Try some generic simplifications based on this.
637  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
638                                Q, MaxRecurse))
639    return V;
640
641  // Threading Add over selects and phi nodes is pointless, so don't bother.
642  // Threading over the select in "A + select(cond, B, C)" means evaluating
643  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644  // only if B and C are equal.  If B and C are equal then (since we assume
645  // that operands have already been simplified) "select(cond, B, C)" should
646  // have been simplified to the common value of B and C already.  Analysing
647  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
648  // for threading over phi nodes.
649
650  return 0;
651}
652
653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
654                             const DataLayout *TD, const TargetLibraryInfo *TLI,
655                             const DominatorTree *DT) {
656  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657                           RecursionLimit);
658}
659
660/// \brief Compute the base pointer and cumulative constant offsets for V.
661///
662/// This strips all constant offsets off of V, leaving it the base pointer, and
663/// accumulates the total constant offset applied in the returned constant. It
664/// returns 0 if V is not a pointer, and returns the constant '0' if there are
665/// no constant offsets applied.
666///
667/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
668/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
669/// folding.
670static ConstantInt *stripAndComputeConstantOffsets(const DataLayout *TD,
671                                                   Value *&V) {
672  assert(V->getType()->isPointerTy());
673
674  // Without DataLayout, just be conservative for now. Theoretically, more could
675  // be done in this case.
676  if (!TD)
677    return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
678
679  unsigned IntPtrWidth = TD->getPointerSizeInBits();
680  APInt Offset = APInt::getNullValue(IntPtrWidth);
681
682  // Even though we don't look through PHI nodes, we could be called on an
683  // instruction in an unreachable block, which may be on a cycle.
684  SmallPtrSet<Value *, 4> Visited;
685  Visited.insert(V);
686  do {
687    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
688      if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset))
689        break;
690      V = GEP->getPointerOperand();
691    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
692      V = cast<Operator>(V)->getOperand(0);
693    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
694      if (GA->mayBeOverridden())
695        break;
696      V = GA->getAliasee();
697    } else {
698      break;
699    }
700    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
701  } while (Visited.insert(V));
702
703  Type *IntPtrTy = TD->getIntPtrType(V->getContext());
704  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
705}
706
707/// \brief Compute the constant difference between two pointer values.
708/// If the difference is not a constant, returns zero.
709static Constant *computePointerDifference(const DataLayout *TD,
710                                          Value *LHS, Value *RHS) {
711  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
712  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
713
714  // If LHS and RHS are not related via constant offsets to the same base
715  // value, there is nothing we can do here.
716  if (LHS != RHS)
717    return 0;
718
719  // Otherwise, the difference of LHS - RHS can be computed as:
720  //    LHS - RHS
721  //  = (LHSOffset + Base) - (RHSOffset + Base)
722  //  = LHSOffset - RHSOffset
723  return ConstantExpr::getSub(LHSOffset, RHSOffset);
724}
725
726/// SimplifySubInst - Given operands for a Sub, see if we can
727/// fold the result.  If not, this returns null.
728static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
729                              const Query &Q, unsigned MaxRecurse) {
730  if (Constant *CLHS = dyn_cast<Constant>(Op0))
731    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
732      Constant *Ops[] = { CLHS, CRHS };
733      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
734                                      Ops, Q.TD, Q.TLI);
735    }
736
737  // X - undef -> undef
738  // undef - X -> undef
739  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
740    return UndefValue::get(Op0->getType());
741
742  // X - 0 -> X
743  if (match(Op1, m_Zero()))
744    return Op0;
745
746  // X - X -> 0
747  if (Op0 == Op1)
748    return Constant::getNullValue(Op0->getType());
749
750  // (X*2) - X -> X
751  // (X<<1) - X -> X
752  Value *X = 0;
753  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
754      match(Op0, m_Shl(m_Specific(Op1), m_One())))
755    return Op1;
756
757  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
758  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
759  Value *Y = 0, *Z = Op1;
760  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
761    // See if "V === Y - Z" simplifies.
762    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
763      // It does!  Now see if "X + V" simplifies.
764      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
765        // It does, we successfully reassociated!
766        ++NumReassoc;
767        return W;
768      }
769    // See if "V === X - Z" simplifies.
770    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
771      // It does!  Now see if "Y + V" simplifies.
772      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
773        // It does, we successfully reassociated!
774        ++NumReassoc;
775        return W;
776      }
777  }
778
779  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
780  // For example, X - (X + 1) -> -1
781  X = Op0;
782  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
783    // See if "V === X - Y" simplifies.
784    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
785      // It does!  Now see if "V - Z" simplifies.
786      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
787        // It does, we successfully reassociated!
788        ++NumReassoc;
789        return W;
790      }
791    // See if "V === X - Z" simplifies.
792    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
793      // It does!  Now see if "V - Y" simplifies.
794      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
795        // It does, we successfully reassociated!
796        ++NumReassoc;
797        return W;
798      }
799  }
800
801  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
802  // For example, X - (X - Y) -> Y.
803  Z = Op0;
804  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
805    // See if "V === Z - X" simplifies.
806    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
807      // It does!  Now see if "V + Y" simplifies.
808      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
809        // It does, we successfully reassociated!
810        ++NumReassoc;
811        return W;
812      }
813
814  // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
815  if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
816      match(Op1, m_Trunc(m_Value(Y))))
817    if (X->getType() == Y->getType())
818      // See if "V === X - Y" simplifies.
819      if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
820        // It does!  Now see if "trunc V" simplifies.
821        if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
822          // It does, return the simplified "trunc V".
823          return W;
824
825  // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
826  if (match(Op0, m_PtrToInt(m_Value(X))) &&
827      match(Op1, m_PtrToInt(m_Value(Y))))
828    if (Constant *Result = computePointerDifference(Q.TD, X, Y))
829      return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
830
831  // Mul distributes over Sub.  Try some generic simplifications based on this.
832  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
833                                Q, MaxRecurse))
834    return V;
835
836  // i1 sub -> xor.
837  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
838    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
839      return V;
840
841  // Threading Sub over selects and phi nodes is pointless, so don't bother.
842  // Threading over the select in "A - select(cond, B, C)" means evaluating
843  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
844  // only if B and C are equal.  If B and C are equal then (since we assume
845  // that operands have already been simplified) "select(cond, B, C)" should
846  // have been simplified to the common value of B and C already.  Analysing
847  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
848  // for threading over phi nodes.
849
850  return 0;
851}
852
853Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
854                             const DataLayout *TD, const TargetLibraryInfo *TLI,
855                             const DominatorTree *DT) {
856  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
857                           RecursionLimit);
858}
859
860/// Given operands for an FAdd, see if we can fold the result.  If not, this
861/// returns null.
862static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
863                              const Query &Q, unsigned MaxRecurse) {
864  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
865    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
866      Constant *Ops[] = { CLHS, CRHS };
867      return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
868                                      Ops, Q.TD, Q.TLI);
869    }
870
871    // Canonicalize the constant to the RHS.
872    std::swap(Op0, Op1);
873  }
874
875  // fadd X, -0 ==> X
876  if (match(Op1, m_NegZero()))
877    return Op0;
878
879  // fadd X, 0 ==> X, when we know X is not -0
880  if (match(Op1, m_Zero()) &&
881      (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
882    return Op0;
883
884  // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
885  //   where nnan and ninf have to occur at least once somewhere in this
886  //   expression
887  Value *SubOp = 0;
888  if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
889    SubOp = Op1;
890  else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
891    SubOp = Op0;
892  if (SubOp) {
893    Instruction *FSub = cast<Instruction>(SubOp);
894    if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
895        (FMF.noInfs() || FSub->hasNoInfs()))
896      return Constant::getNullValue(Op0->getType());
897  }
898
899  return 0;
900}
901
902/// Given operands for an FSub, see if we can fold the result.  If not, this
903/// returns null.
904static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
905                              const Query &Q, unsigned MaxRecurse) {
906  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
907    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
908      Constant *Ops[] = { CLHS, CRHS };
909      return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
910                                      Ops, Q.TD, Q.TLI);
911    }
912  }
913
914  // fsub X, 0 ==> X
915  if (match(Op1, m_Zero()))
916    return Op0;
917
918  // fsub X, -0 ==> X, when we know X is not -0
919  if (match(Op1, m_NegZero()) &&
920      (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
921    return Op0;
922
923  // fsub 0, (fsub -0.0, X) ==> X
924  Value *X;
925  if (match(Op0, m_AnyZero())) {
926    if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
927      return X;
928    if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
929      return X;
930  }
931
932  // fsub nnan ninf x, x ==> 0.0
933  if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
934    return Constant::getNullValue(Op0->getType());
935
936  return 0;
937}
938
939/// Given the operands for an FMul, see if we can fold the result
940static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
941                               FastMathFlags FMF,
942                               const Query &Q,
943                               unsigned MaxRecurse) {
944 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
945    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
946      Constant *Ops[] = { CLHS, CRHS };
947      return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
948                                      Ops, Q.TD, Q.TLI);
949    }
950
951    // Canonicalize the constant to the RHS.
952    std::swap(Op0, Op1);
953 }
954
955 // fmul X, 1.0 ==> X
956 if (match(Op1, m_FPOne()))
957   return Op0;
958
959 // fmul nnan nsz X, 0 ==> 0
960 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
961   return Op1;
962
963 return 0;
964}
965
966/// SimplifyMulInst - Given operands for a Mul, see if we can
967/// fold the result.  If not, this returns null.
968static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
969                              unsigned MaxRecurse) {
970  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
971    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
972      Constant *Ops[] = { CLHS, CRHS };
973      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
974                                      Ops, Q.TD, Q.TLI);
975    }
976
977    // Canonicalize the constant to the RHS.
978    std::swap(Op0, Op1);
979  }
980
981  // X * undef -> 0
982  if (match(Op1, m_Undef()))
983    return Constant::getNullValue(Op0->getType());
984
985  // X * 0 -> 0
986  if (match(Op1, m_Zero()))
987    return Op1;
988
989  // X * 1 -> X
990  if (match(Op1, m_One()))
991    return Op0;
992
993  // (X / Y) * Y -> X if the division is exact.
994  Value *X = 0;
995  if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
996      match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
997    return X;
998
999  // i1 mul -> and.
1000  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
1001    if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
1002      return V;
1003
1004  // Try some generic simplifications for associative operations.
1005  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
1006                                          MaxRecurse))
1007    return V;
1008
1009  // Mul distributes over Add.  Try some generic simplifications based on this.
1010  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
1011                             Q, MaxRecurse))
1012    return V;
1013
1014  // If the operation is with the result of a select instruction, check whether
1015  // operating on either branch of the select always yields the same value.
1016  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1017    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
1018                                         MaxRecurse))
1019      return V;
1020
1021  // If the operation is with the result of a phi instruction, check whether
1022  // operating on all incoming values of the phi always yields the same value.
1023  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1024    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
1025                                      MaxRecurse))
1026      return V;
1027
1028  return 0;
1029}
1030
1031Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1032                             const DataLayout *TD, const TargetLibraryInfo *TLI,
1033                             const DominatorTree *DT) {
1034  return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1035}
1036
1037Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1038                             const DataLayout *TD, const TargetLibraryInfo *TLI,
1039                             const DominatorTree *DT) {
1040  return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1041}
1042
1043Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
1044                              FastMathFlags FMF,
1045                              const DataLayout *TD,
1046                              const TargetLibraryInfo *TLI,
1047                              const DominatorTree *DT) {
1048  return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1049}
1050
1051Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
1052                             const TargetLibraryInfo *TLI,
1053                             const DominatorTree *DT) {
1054  return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1055}
1056
1057/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
1058/// fold the result.  If not, this returns null.
1059static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1060                          const Query &Q, unsigned MaxRecurse) {
1061  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1062    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1063      Constant *Ops[] = { C0, C1 };
1064      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1065    }
1066  }
1067
1068  bool isSigned = Opcode == Instruction::SDiv;
1069
1070  // X / undef -> undef
1071  if (match(Op1, m_Undef()))
1072    return Op1;
1073
1074  // undef / X -> 0
1075  if (match(Op0, m_Undef()))
1076    return Constant::getNullValue(Op0->getType());
1077
1078  // 0 / X -> 0, we don't need to preserve faults!
1079  if (match(Op0, m_Zero()))
1080    return Op0;
1081
1082  // X / 1 -> X
1083  if (match(Op1, m_One()))
1084    return Op0;
1085
1086  if (Op0->getType()->isIntegerTy(1))
1087    // It can't be division by zero, hence it must be division by one.
1088    return Op0;
1089
1090  // X / X -> 1
1091  if (Op0 == Op1)
1092    return ConstantInt::get(Op0->getType(), 1);
1093
1094  // (X * Y) / Y -> X if the multiplication does not overflow.
1095  Value *X = 0, *Y = 0;
1096  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1097    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1098    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1099    // If the Mul knows it does not overflow, then we are good to go.
1100    if ((isSigned && Mul->hasNoSignedWrap()) ||
1101        (!isSigned && Mul->hasNoUnsignedWrap()))
1102      return X;
1103    // If X has the form X = A / Y then X * Y cannot overflow.
1104    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1105      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1106        return X;
1107  }
1108
1109  // (X rem Y) / Y -> 0
1110  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1111      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1112    return Constant::getNullValue(Op0->getType());
1113
1114  // If the operation is with the result of a select instruction, check whether
1115  // operating on either branch of the select always yields the same value.
1116  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1117    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1118      return V;
1119
1120  // If the operation is with the result of a phi instruction, check whether
1121  // operating on all incoming values of the phi always yields the same value.
1122  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1123    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1124      return V;
1125
1126  return 0;
1127}
1128
1129/// SimplifySDivInst - Given operands for an SDiv, see if we can
1130/// fold the result.  If not, this returns null.
1131static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1132                               unsigned MaxRecurse) {
1133  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1134    return V;
1135
1136  return 0;
1137}
1138
1139Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1140                              const TargetLibraryInfo *TLI,
1141                              const DominatorTree *DT) {
1142  return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1143}
1144
1145/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1146/// fold the result.  If not, this returns null.
1147static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1148                               unsigned MaxRecurse) {
1149  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1150    return V;
1151
1152  return 0;
1153}
1154
1155Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1156                              const TargetLibraryInfo *TLI,
1157                              const DominatorTree *DT) {
1158  return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1159}
1160
1161static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1162                               unsigned) {
1163  // undef / X -> undef    (the undef could be a snan).
1164  if (match(Op0, m_Undef()))
1165    return Op0;
1166
1167  // X / undef -> undef
1168  if (match(Op1, m_Undef()))
1169    return Op1;
1170
1171  return 0;
1172}
1173
1174Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1175                              const TargetLibraryInfo *TLI,
1176                              const DominatorTree *DT) {
1177  return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1178}
1179
1180/// SimplifyRem - Given operands for an SRem or URem, see if we can
1181/// fold the result.  If not, this returns null.
1182static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1183                          const Query &Q, unsigned MaxRecurse) {
1184  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1185    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1186      Constant *Ops[] = { C0, C1 };
1187      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1188    }
1189  }
1190
1191  // X % undef -> undef
1192  if (match(Op1, m_Undef()))
1193    return Op1;
1194
1195  // undef % X -> 0
1196  if (match(Op0, m_Undef()))
1197    return Constant::getNullValue(Op0->getType());
1198
1199  // 0 % X -> 0, we don't need to preserve faults!
1200  if (match(Op0, m_Zero()))
1201    return Op0;
1202
1203  // X % 0 -> undef, we don't need to preserve faults!
1204  if (match(Op1, m_Zero()))
1205    return UndefValue::get(Op0->getType());
1206
1207  // X % 1 -> 0
1208  if (match(Op1, m_One()))
1209    return Constant::getNullValue(Op0->getType());
1210
1211  if (Op0->getType()->isIntegerTy(1))
1212    // It can't be remainder by zero, hence it must be remainder by one.
1213    return Constant::getNullValue(Op0->getType());
1214
1215  // X % X -> 0
1216  if (Op0 == Op1)
1217    return Constant::getNullValue(Op0->getType());
1218
1219  // If the operation is with the result of a select instruction, check whether
1220  // operating on either branch of the select always yields the same value.
1221  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1222    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1223      return V;
1224
1225  // If the operation is with the result of a phi instruction, check whether
1226  // operating on all incoming values of the phi always yields the same value.
1227  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1228    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1229      return V;
1230
1231  return 0;
1232}
1233
1234/// SimplifySRemInst - Given operands for an SRem, see if we can
1235/// fold the result.  If not, this returns null.
1236static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1237                               unsigned MaxRecurse) {
1238  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1239    return V;
1240
1241  return 0;
1242}
1243
1244Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1245                              const TargetLibraryInfo *TLI,
1246                              const DominatorTree *DT) {
1247  return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1248}
1249
1250/// SimplifyURemInst - Given operands for a URem, see if we can
1251/// fold the result.  If not, this returns null.
1252static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1253                               unsigned MaxRecurse) {
1254  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1255    return V;
1256
1257  return 0;
1258}
1259
1260Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1261                              const TargetLibraryInfo *TLI,
1262                              const DominatorTree *DT) {
1263  return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1264}
1265
1266static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
1267                               unsigned) {
1268  // undef % X -> undef    (the undef could be a snan).
1269  if (match(Op0, m_Undef()))
1270    return Op0;
1271
1272  // X % undef -> undef
1273  if (match(Op1, m_Undef()))
1274    return Op1;
1275
1276  return 0;
1277}
1278
1279Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1280                              const TargetLibraryInfo *TLI,
1281                              const DominatorTree *DT) {
1282  return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1283}
1284
1285/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1286/// fold the result.  If not, this returns null.
1287static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1288                            const Query &Q, unsigned MaxRecurse) {
1289  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1290    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1291      Constant *Ops[] = { C0, C1 };
1292      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1293    }
1294  }
1295
1296  // 0 shift by X -> 0
1297  if (match(Op0, m_Zero()))
1298    return Op0;
1299
1300  // X shift by 0 -> X
1301  if (match(Op1, m_Zero()))
1302    return Op0;
1303
1304  // X shift by undef -> undef because it may shift by the bitwidth.
1305  if (match(Op1, m_Undef()))
1306    return Op1;
1307
1308  // Shifting by the bitwidth or more is undefined.
1309  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1310    if (CI->getValue().getLimitedValue() >=
1311        Op0->getType()->getScalarSizeInBits())
1312      return UndefValue::get(Op0->getType());
1313
1314  // If the operation is with the result of a select instruction, check whether
1315  // operating on either branch of the select always yields the same value.
1316  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1317    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1318      return V;
1319
1320  // If the operation is with the result of a phi instruction, check whether
1321  // operating on all incoming values of the phi always yields the same value.
1322  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1323    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1324      return V;
1325
1326  return 0;
1327}
1328
1329/// SimplifyShlInst - Given operands for an Shl, see if we can
1330/// fold the result.  If not, this returns null.
1331static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1332                              const Query &Q, unsigned MaxRecurse) {
1333  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1334    return V;
1335
1336  // undef << X -> 0
1337  if (match(Op0, m_Undef()))
1338    return Constant::getNullValue(Op0->getType());
1339
1340  // (X >> A) << A -> X
1341  Value *X;
1342  if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1343    return X;
1344  return 0;
1345}
1346
1347Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1348                             const DataLayout *TD, const TargetLibraryInfo *TLI,
1349                             const DominatorTree *DT) {
1350  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1351                           RecursionLimit);
1352}
1353
1354/// SimplifyLShrInst - Given operands for an LShr, see if we can
1355/// fold the result.  If not, this returns null.
1356static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1357                               const Query &Q, unsigned MaxRecurse) {
1358  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
1359    return V;
1360
1361  // undef >>l X -> 0
1362  if (match(Op0, m_Undef()))
1363    return Constant::getNullValue(Op0->getType());
1364
1365  // (X << A) >> A -> X
1366  Value *X;
1367  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1368      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1369    return X;
1370
1371  return 0;
1372}
1373
1374Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1375                              const DataLayout *TD,
1376                              const TargetLibraryInfo *TLI,
1377                              const DominatorTree *DT) {
1378  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1379                            RecursionLimit);
1380}
1381
1382/// SimplifyAShrInst - Given operands for an AShr, see if we can
1383/// fold the result.  If not, this returns null.
1384static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1385                               const Query &Q, unsigned MaxRecurse) {
1386  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
1387    return V;
1388
1389  // all ones >>a X -> all ones
1390  if (match(Op0, m_AllOnes()))
1391    return Op0;
1392
1393  // undef >>a X -> all ones
1394  if (match(Op0, m_Undef()))
1395    return Constant::getAllOnesValue(Op0->getType());
1396
1397  // (X << A) >> A -> X
1398  Value *X;
1399  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1400      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1401    return X;
1402
1403  return 0;
1404}
1405
1406Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1407                              const DataLayout *TD,
1408                              const TargetLibraryInfo *TLI,
1409                              const DominatorTree *DT) {
1410  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1411                            RecursionLimit);
1412}
1413
1414/// SimplifyAndInst - Given operands for an And, see if we can
1415/// fold the result.  If not, this returns null.
1416static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1417                              unsigned MaxRecurse) {
1418  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1419    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1420      Constant *Ops[] = { CLHS, CRHS };
1421      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1422                                      Ops, Q.TD, Q.TLI);
1423    }
1424
1425    // Canonicalize the constant to the RHS.
1426    std::swap(Op0, Op1);
1427  }
1428
1429  // X & undef -> 0
1430  if (match(Op1, m_Undef()))
1431    return Constant::getNullValue(Op0->getType());
1432
1433  // X & X = X
1434  if (Op0 == Op1)
1435    return Op0;
1436
1437  // X & 0 = 0
1438  if (match(Op1, m_Zero()))
1439    return Op1;
1440
1441  // X & -1 = X
1442  if (match(Op1, m_AllOnes()))
1443    return Op0;
1444
1445  // A & ~A  =  ~A & A  =  0
1446  if (match(Op0, m_Not(m_Specific(Op1))) ||
1447      match(Op1, m_Not(m_Specific(Op0))))
1448    return Constant::getNullValue(Op0->getType());
1449
1450  // (A | ?) & A = A
1451  Value *A = 0, *B = 0;
1452  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1453      (A == Op1 || B == Op1))
1454    return Op1;
1455
1456  // A & (A | ?) = A
1457  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1458      (A == Op0 || B == Op0))
1459    return Op0;
1460
1461  // A & (-A) = A if A is a power of two or zero.
1462  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1463      match(Op1, m_Neg(m_Specific(Op0)))) {
1464    if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
1465      return Op0;
1466    if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
1467      return Op1;
1468  }
1469
1470  // Try some generic simplifications for associative operations.
1471  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1472                                          MaxRecurse))
1473    return V;
1474
1475  // And distributes over Or.  Try some generic simplifications based on this.
1476  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1477                             Q, MaxRecurse))
1478    return V;
1479
1480  // And distributes over Xor.  Try some generic simplifications based on this.
1481  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1482                             Q, MaxRecurse))
1483    return V;
1484
1485  // Or distributes over And.  Try some generic simplifications based on this.
1486  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1487                                Q, MaxRecurse))
1488    return V;
1489
1490  // If the operation is with the result of a select instruction, check whether
1491  // operating on either branch of the select always yields the same value.
1492  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1493    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1494                                         MaxRecurse))
1495      return V;
1496
1497  // If the operation is with the result of a phi instruction, check whether
1498  // operating on all incoming values of the phi always yields the same value.
1499  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1500    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1501                                      MaxRecurse))
1502      return V;
1503
1504  return 0;
1505}
1506
1507Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
1508                             const TargetLibraryInfo *TLI,
1509                             const DominatorTree *DT) {
1510  return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1511}
1512
1513/// SimplifyOrInst - Given operands for an Or, see if we can
1514/// fold the result.  If not, this returns null.
1515static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1516                             unsigned MaxRecurse) {
1517  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1518    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1519      Constant *Ops[] = { CLHS, CRHS };
1520      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1521                                      Ops, Q.TD, Q.TLI);
1522    }
1523
1524    // Canonicalize the constant to the RHS.
1525    std::swap(Op0, Op1);
1526  }
1527
1528  // X | undef -> -1
1529  if (match(Op1, m_Undef()))
1530    return Constant::getAllOnesValue(Op0->getType());
1531
1532  // X | X = X
1533  if (Op0 == Op1)
1534    return Op0;
1535
1536  // X | 0 = X
1537  if (match(Op1, m_Zero()))
1538    return Op0;
1539
1540  // X | -1 = -1
1541  if (match(Op1, m_AllOnes()))
1542    return Op1;
1543
1544  // A | ~A  =  ~A | A  =  -1
1545  if (match(Op0, m_Not(m_Specific(Op1))) ||
1546      match(Op1, m_Not(m_Specific(Op0))))
1547    return Constant::getAllOnesValue(Op0->getType());
1548
1549  // (A & ?) | A = A
1550  Value *A = 0, *B = 0;
1551  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1552      (A == Op1 || B == Op1))
1553    return Op1;
1554
1555  // A | (A & ?) = A
1556  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1557      (A == Op0 || B == Op0))
1558    return Op0;
1559
1560  // ~(A & ?) | A = -1
1561  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1562      (A == Op1 || B == Op1))
1563    return Constant::getAllOnesValue(Op1->getType());
1564
1565  // A | ~(A & ?) = -1
1566  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1567      (A == Op0 || B == Op0))
1568    return Constant::getAllOnesValue(Op0->getType());
1569
1570  // Try some generic simplifications for associative operations.
1571  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1572                                          MaxRecurse))
1573    return V;
1574
1575  // Or distributes over And.  Try some generic simplifications based on this.
1576  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1577                             MaxRecurse))
1578    return V;
1579
1580  // And distributes over Or.  Try some generic simplifications based on this.
1581  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1582                                Q, MaxRecurse))
1583    return V;
1584
1585  // If the operation is with the result of a select instruction, check whether
1586  // operating on either branch of the select always yields the same value.
1587  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1588    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1589                                         MaxRecurse))
1590      return V;
1591
1592  // If the operation is with the result of a phi instruction, check whether
1593  // operating on all incoming values of the phi always yields the same value.
1594  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1595    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1596      return V;
1597
1598  return 0;
1599}
1600
1601Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
1602                            const TargetLibraryInfo *TLI,
1603                            const DominatorTree *DT) {
1604  return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1605}
1606
1607/// SimplifyXorInst - Given operands for a Xor, see if we can
1608/// fold the result.  If not, this returns null.
1609static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1610                              unsigned MaxRecurse) {
1611  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1612    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1613      Constant *Ops[] = { CLHS, CRHS };
1614      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1615                                      Ops, Q.TD, Q.TLI);
1616    }
1617
1618    // Canonicalize the constant to the RHS.
1619    std::swap(Op0, Op1);
1620  }
1621
1622  // A ^ undef -> undef
1623  if (match(Op1, m_Undef()))
1624    return Op1;
1625
1626  // A ^ 0 = A
1627  if (match(Op1, m_Zero()))
1628    return Op0;
1629
1630  // A ^ A = 0
1631  if (Op0 == Op1)
1632    return Constant::getNullValue(Op0->getType());
1633
1634  // A ^ ~A  =  ~A ^ A  =  -1
1635  if (match(Op0, m_Not(m_Specific(Op1))) ||
1636      match(Op1, m_Not(m_Specific(Op0))))
1637    return Constant::getAllOnesValue(Op0->getType());
1638
1639  // Try some generic simplifications for associative operations.
1640  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1641                                          MaxRecurse))
1642    return V;
1643
1644  // And distributes over Xor.  Try some generic simplifications based on this.
1645  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1646                                Q, MaxRecurse))
1647    return V;
1648
1649  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1650  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1651  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1652  // only if B and C are equal.  If B and C are equal then (since we assume
1653  // that operands have already been simplified) "select(cond, B, C)" should
1654  // have been simplified to the common value of B and C already.  Analysing
1655  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1656  // for threading over phi nodes.
1657
1658  return 0;
1659}
1660
1661Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
1662                             const TargetLibraryInfo *TLI,
1663                             const DominatorTree *DT) {
1664  return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1665}
1666
1667static Type *GetCompareTy(Value *Op) {
1668  return CmpInst::makeCmpResultType(Op->getType());
1669}
1670
1671/// ExtractEquivalentCondition - Rummage around inside V looking for something
1672/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1673/// otherwise return null.  Helper function for analyzing max/min idioms.
1674static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1675                                         Value *LHS, Value *RHS) {
1676  SelectInst *SI = dyn_cast<SelectInst>(V);
1677  if (!SI)
1678    return 0;
1679  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1680  if (!Cmp)
1681    return 0;
1682  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1683  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1684    return Cmp;
1685  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1686      LHS == CmpRHS && RHS == CmpLHS)
1687    return Cmp;
1688  return 0;
1689}
1690
1691// A significant optimization not implemented here is assuming that alloca
1692// addresses are not equal to incoming argument values. They don't *alias*,
1693// as we say, but that doesn't mean they aren't equal, so we take a
1694// conservative approach.
1695//
1696// This is inspired in part by C++11 5.10p1:
1697//   "Two pointers of the same type compare equal if and only if they are both
1698//    null, both point to the same function, or both represent the same
1699//    address."
1700//
1701// This is pretty permissive.
1702//
1703// It's also partly due to C11 6.5.9p6:
1704//   "Two pointers compare equal if and only if both are null pointers, both are
1705//    pointers to the same object (including a pointer to an object and a
1706//    subobject at its beginning) or function, both are pointers to one past the
1707//    last element of the same array object, or one is a pointer to one past the
1708//    end of one array object and the other is a pointer to the start of a
1709//    different array object that happens to immediately follow the first array
1710//    object in the address space.)
1711//
1712// C11's version is more restrictive, however there's no reason why an argument
1713// couldn't be a one-past-the-end value for a stack object in the caller and be
1714// equal to the beginning of a stack object in the callee.
1715//
1716// If the C and C++ standards are ever made sufficiently restrictive in this
1717// area, it may be possible to update LLVM's semantics accordingly and reinstate
1718// this optimization.
1719static Constant *computePointerICmp(const DataLayout *TD,
1720                                    const TargetLibraryInfo *TLI,
1721                                    CmpInst::Predicate Pred,
1722                                    Value *LHS, Value *RHS) {
1723  // First, skip past any trivial no-ops.
1724  LHS = LHS->stripPointerCasts();
1725  RHS = RHS->stripPointerCasts();
1726
1727  // A non-null pointer is not equal to a null pointer.
1728  if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1729      (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1730    return ConstantInt::get(GetCompareTy(LHS),
1731                            !CmpInst::isTrueWhenEqual(Pred));
1732
1733  // We can only fold certain predicates on pointer comparisons.
1734  switch (Pred) {
1735  default:
1736    return 0;
1737
1738    // Equality comaprisons are easy to fold.
1739  case CmpInst::ICMP_EQ:
1740  case CmpInst::ICMP_NE:
1741    break;
1742
1743    // We can only handle unsigned relational comparisons because 'inbounds' on
1744    // a GEP only protects against unsigned wrapping.
1745  case CmpInst::ICMP_UGT:
1746  case CmpInst::ICMP_UGE:
1747  case CmpInst::ICMP_ULT:
1748  case CmpInst::ICMP_ULE:
1749    // However, we have to switch them to their signed variants to handle
1750    // negative indices from the base pointer.
1751    Pred = ICmpInst::getSignedPredicate(Pred);
1752    break;
1753  }
1754
1755  // Strip off any constant offsets so that we can reason about them.
1756  // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1757  // here and compare base addresses like AliasAnalysis does, however there are
1758  // numerous hazards. AliasAnalysis and its utilities rely on special rules
1759  // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1760  // doesn't need to guarantee pointer inequality when it says NoAlias.
1761  ConstantInt *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1762  ConstantInt *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
1763
1764  // If LHS and RHS are related via constant offsets to the same base
1765  // value, we can replace it with an icmp which just compares the offsets.
1766  if (LHS == RHS)
1767    return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1768
1769  // Various optimizations for (in)equality comparisons.
1770  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1771    // Different non-empty allocations that exist at the same time have
1772    // different addresses (if the program can tell). Global variables always
1773    // exist, so they always exist during the lifetime of each other and all
1774    // allocas. Two different allocas usually have different addresses...
1775    //
1776    // However, if there's an @llvm.stackrestore dynamically in between two
1777    // allocas, they may have the same address. It's tempting to reduce the
1778    // scope of the problem by only looking at *static* allocas here. That would
1779    // cover the majority of allocas while significantly reducing the likelihood
1780    // of having an @llvm.stackrestore pop up in the middle. However, it's not
1781    // actually impossible for an @llvm.stackrestore to pop up in the middle of
1782    // an entry block. Also, if we have a block that's not attached to a
1783    // function, we can't tell if it's "static" under the current definition.
1784    // Theoretically, this problem could be fixed by creating a new kind of
1785    // instruction kind specifically for static allocas. Such a new instruction
1786    // could be required to be at the top of the entry block, thus preventing it
1787    // from being subject to a @llvm.stackrestore. Instcombine could even
1788    // convert regular allocas into these special allocas. It'd be nifty.
1789    // However, until then, this problem remains open.
1790    //
1791    // So, we'll assume that two non-empty allocas have different addresses
1792    // for now.
1793    //
1794    // With all that, if the offsets are within the bounds of their allocations
1795    // (and not one-past-the-end! so we can't use inbounds!), and their
1796    // allocations aren't the same, the pointers are not equal.
1797    //
1798    // Note that it's not necessary to check for LHS being a global variable
1799    // address, due to canonicalization and constant folding.
1800    if (isa<AllocaInst>(LHS) &&
1801        (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
1802      uint64_t LHSSize, RHSSize;
1803      if (getObjectSize(LHS, LHSSize, TD, TLI) &&
1804          getObjectSize(RHS, RHSSize, TD, TLI)) {
1805        const APInt &LHSOffsetValue = LHSOffset->getValue();
1806        const APInt &RHSOffsetValue = RHSOffset->getValue();
1807        if (!LHSOffsetValue.isNegative() &&
1808            !RHSOffsetValue.isNegative() &&
1809            LHSOffsetValue.ult(LHSSize) &&
1810            RHSOffsetValue.ult(RHSSize)) {
1811          return ConstantInt::get(GetCompareTy(LHS),
1812                                  !CmpInst::isTrueWhenEqual(Pred));
1813        }
1814      }
1815
1816      // Repeat the above check but this time without depending on DataLayout
1817      // or being able to compute a precise size.
1818      if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
1819          !cast<PointerType>(RHS->getType())->isEmptyTy() &&
1820          LHSOffset->isNullValue() &&
1821          RHSOffset->isNullValue())
1822        return ConstantInt::get(GetCompareTy(LHS),
1823                                !CmpInst::isTrueWhenEqual(Pred));
1824    }
1825  }
1826
1827  // Otherwise, fail.
1828  return 0;
1829}
1830
1831/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1832/// fold the result.  If not, this returns null.
1833static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1834                               const Query &Q, unsigned MaxRecurse) {
1835  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1836  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1837
1838  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1839    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1840      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
1841
1842    // If we have a constant, make sure it is on the RHS.
1843    std::swap(LHS, RHS);
1844    Pred = CmpInst::getSwappedPredicate(Pred);
1845  }
1846
1847  Type *ITy = GetCompareTy(LHS); // The return type.
1848  Type *OpTy = LHS->getType();   // The operand type.
1849
1850  // icmp X, X -> true/false
1851  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1852  // because X could be 0.
1853  if (LHS == RHS || isa<UndefValue>(RHS))
1854    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1855
1856  // Special case logic when the operands have i1 type.
1857  if (OpTy->getScalarType()->isIntegerTy(1)) {
1858    switch (Pred) {
1859    default: break;
1860    case ICmpInst::ICMP_EQ:
1861      // X == 1 -> X
1862      if (match(RHS, m_One()))
1863        return LHS;
1864      break;
1865    case ICmpInst::ICMP_NE:
1866      // X != 0 -> X
1867      if (match(RHS, m_Zero()))
1868        return LHS;
1869      break;
1870    case ICmpInst::ICMP_UGT:
1871      // X >u 0 -> X
1872      if (match(RHS, m_Zero()))
1873        return LHS;
1874      break;
1875    case ICmpInst::ICMP_UGE:
1876      // X >=u 1 -> X
1877      if (match(RHS, m_One()))
1878        return LHS;
1879      break;
1880    case ICmpInst::ICMP_SLT:
1881      // X <s 0 -> X
1882      if (match(RHS, m_Zero()))
1883        return LHS;
1884      break;
1885    case ICmpInst::ICMP_SLE:
1886      // X <=s -1 -> X
1887      if (match(RHS, m_One()))
1888        return LHS;
1889      break;
1890    }
1891  }
1892
1893  // If we are comparing with zero then try hard since this is a common case.
1894  if (match(RHS, m_Zero())) {
1895    bool LHSKnownNonNegative, LHSKnownNegative;
1896    switch (Pred) {
1897    default: llvm_unreachable("Unknown ICmp predicate!");
1898    case ICmpInst::ICMP_ULT:
1899      return getFalse(ITy);
1900    case ICmpInst::ICMP_UGE:
1901      return getTrue(ITy);
1902    case ICmpInst::ICMP_EQ:
1903    case ICmpInst::ICMP_ULE:
1904      if (isKnownNonZero(LHS, Q.TD))
1905        return getFalse(ITy);
1906      break;
1907    case ICmpInst::ICMP_NE:
1908    case ICmpInst::ICMP_UGT:
1909      if (isKnownNonZero(LHS, Q.TD))
1910        return getTrue(ITy);
1911      break;
1912    case ICmpInst::ICMP_SLT:
1913      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1914      if (LHSKnownNegative)
1915        return getTrue(ITy);
1916      if (LHSKnownNonNegative)
1917        return getFalse(ITy);
1918      break;
1919    case ICmpInst::ICMP_SLE:
1920      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1921      if (LHSKnownNegative)
1922        return getTrue(ITy);
1923      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1924        return getFalse(ITy);
1925      break;
1926    case ICmpInst::ICMP_SGE:
1927      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1928      if (LHSKnownNegative)
1929        return getFalse(ITy);
1930      if (LHSKnownNonNegative)
1931        return getTrue(ITy);
1932      break;
1933    case ICmpInst::ICMP_SGT:
1934      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1935      if (LHSKnownNegative)
1936        return getFalse(ITy);
1937      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1938        return getTrue(ITy);
1939      break;
1940    }
1941  }
1942
1943  // See if we are doing a comparison with a constant integer.
1944  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1945    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1946    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1947    if (RHS_CR.isEmptySet())
1948      return ConstantInt::getFalse(CI->getContext());
1949    if (RHS_CR.isFullSet())
1950      return ConstantInt::getTrue(CI->getContext());
1951
1952    // Many binary operators with constant RHS have easy to compute constant
1953    // range.  Use them to check whether the comparison is a tautology.
1954    uint32_t Width = CI->getBitWidth();
1955    APInt Lower = APInt(Width, 0);
1956    APInt Upper = APInt(Width, 0);
1957    ConstantInt *CI2;
1958    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1959      // 'urem x, CI2' produces [0, CI2).
1960      Upper = CI2->getValue();
1961    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1962      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1963      Upper = CI2->getValue().abs();
1964      Lower = (-Upper) + 1;
1965    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1966      // 'udiv CI2, x' produces [0, CI2].
1967      Upper = CI2->getValue() + 1;
1968    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1969      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1970      APInt NegOne = APInt::getAllOnesValue(Width);
1971      if (!CI2->isZero())
1972        Upper = NegOne.udiv(CI2->getValue()) + 1;
1973    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1974      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1975      APInt IntMin = APInt::getSignedMinValue(Width);
1976      APInt IntMax = APInt::getSignedMaxValue(Width);
1977      APInt Val = CI2->getValue().abs();
1978      if (!Val.isMinValue()) {
1979        Lower = IntMin.sdiv(Val);
1980        Upper = IntMax.sdiv(Val) + 1;
1981      }
1982    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1983      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1984      APInt NegOne = APInt::getAllOnesValue(Width);
1985      if (CI2->getValue().ult(Width))
1986        Upper = NegOne.lshr(CI2->getValue()) + 1;
1987    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1988      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1989      APInt IntMin = APInt::getSignedMinValue(Width);
1990      APInt IntMax = APInt::getSignedMaxValue(Width);
1991      if (CI2->getValue().ult(Width)) {
1992        Lower = IntMin.ashr(CI2->getValue());
1993        Upper = IntMax.ashr(CI2->getValue()) + 1;
1994      }
1995    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1996      // 'or x, CI2' produces [CI2, UINT_MAX].
1997      Lower = CI2->getValue();
1998    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1999      // 'and x, CI2' produces [0, CI2].
2000      Upper = CI2->getValue() + 1;
2001    }
2002    if (Lower != Upper) {
2003      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
2004      if (RHS_CR.contains(LHS_CR))
2005        return ConstantInt::getTrue(RHS->getContext());
2006      if (RHS_CR.inverse().contains(LHS_CR))
2007        return ConstantInt::getFalse(RHS->getContext());
2008    }
2009  }
2010
2011  // Compare of cast, for example (zext X) != 0 -> X != 0
2012  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2013    Instruction *LI = cast<CastInst>(LHS);
2014    Value *SrcOp = LI->getOperand(0);
2015    Type *SrcTy = SrcOp->getType();
2016    Type *DstTy = LI->getType();
2017
2018    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2019    // if the integer type is the same size as the pointer type.
2020    if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
2021        Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
2022      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2023        // Transfer the cast to the constant.
2024        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2025                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
2026                                        Q, MaxRecurse-1))
2027          return V;
2028      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2029        if (RI->getOperand(0)->getType() == SrcTy)
2030          // Compare without the cast.
2031          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2032                                          Q, MaxRecurse-1))
2033            return V;
2034      }
2035    }
2036
2037    if (isa<ZExtInst>(LHS)) {
2038      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2039      // same type.
2040      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2041        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2042          // Compare X and Y.  Note that signed predicates become unsigned.
2043          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2044                                          SrcOp, RI->getOperand(0), Q,
2045                                          MaxRecurse-1))
2046            return V;
2047      }
2048      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2049      // too.  If not, then try to deduce the result of the comparison.
2050      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2051        // Compute the constant that would happen if we truncated to SrcTy then
2052        // reextended to DstTy.
2053        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2054        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2055
2056        // If the re-extended constant didn't change then this is effectively
2057        // also a case of comparing two zero-extended values.
2058        if (RExt == CI && MaxRecurse)
2059          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2060                                        SrcOp, Trunc, Q, MaxRecurse-1))
2061            return V;
2062
2063        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2064        // there.  Use this to work out the result of the comparison.
2065        if (RExt != CI) {
2066          switch (Pred) {
2067          default: llvm_unreachable("Unknown ICmp predicate!");
2068          // LHS <u RHS.
2069          case ICmpInst::ICMP_EQ:
2070          case ICmpInst::ICMP_UGT:
2071          case ICmpInst::ICMP_UGE:
2072            return ConstantInt::getFalse(CI->getContext());
2073
2074          case ICmpInst::ICMP_NE:
2075          case ICmpInst::ICMP_ULT:
2076          case ICmpInst::ICMP_ULE:
2077            return ConstantInt::getTrue(CI->getContext());
2078
2079          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
2080          // is non-negative then LHS <s RHS.
2081          case ICmpInst::ICMP_SGT:
2082          case ICmpInst::ICMP_SGE:
2083            return CI->getValue().isNegative() ?
2084              ConstantInt::getTrue(CI->getContext()) :
2085              ConstantInt::getFalse(CI->getContext());
2086
2087          case ICmpInst::ICMP_SLT:
2088          case ICmpInst::ICMP_SLE:
2089            return CI->getValue().isNegative() ?
2090              ConstantInt::getFalse(CI->getContext()) :
2091              ConstantInt::getTrue(CI->getContext());
2092          }
2093        }
2094      }
2095    }
2096
2097    if (isa<SExtInst>(LHS)) {
2098      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2099      // same type.
2100      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2101        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2102          // Compare X and Y.  Note that the predicate does not change.
2103          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2104                                          Q, MaxRecurse-1))
2105            return V;
2106      }
2107      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2108      // too.  If not, then try to deduce the result of the comparison.
2109      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2110        // Compute the constant that would happen if we truncated to SrcTy then
2111        // reextended to DstTy.
2112        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2113        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2114
2115        // If the re-extended constant didn't change then this is effectively
2116        // also a case of comparing two sign-extended values.
2117        if (RExt == CI && MaxRecurse)
2118          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2119            return V;
2120
2121        // Otherwise the upper bits of LHS are all equal, while RHS has varying
2122        // bits there.  Use this to work out the result of the comparison.
2123        if (RExt != CI) {
2124          switch (Pred) {
2125          default: llvm_unreachable("Unknown ICmp predicate!");
2126          case ICmpInst::ICMP_EQ:
2127            return ConstantInt::getFalse(CI->getContext());
2128          case ICmpInst::ICMP_NE:
2129            return ConstantInt::getTrue(CI->getContext());
2130
2131          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
2132          // LHS >s RHS.
2133          case ICmpInst::ICMP_SGT:
2134          case ICmpInst::ICMP_SGE:
2135            return CI->getValue().isNegative() ?
2136              ConstantInt::getTrue(CI->getContext()) :
2137              ConstantInt::getFalse(CI->getContext());
2138          case ICmpInst::ICMP_SLT:
2139          case ICmpInst::ICMP_SLE:
2140            return CI->getValue().isNegative() ?
2141              ConstantInt::getFalse(CI->getContext()) :
2142              ConstantInt::getTrue(CI->getContext());
2143
2144          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2145          // LHS >u RHS.
2146          case ICmpInst::ICMP_UGT:
2147          case ICmpInst::ICMP_UGE:
2148            // Comparison is true iff the LHS <s 0.
2149            if (MaxRecurse)
2150              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2151                                              Constant::getNullValue(SrcTy),
2152                                              Q, MaxRecurse-1))
2153                return V;
2154            break;
2155          case ICmpInst::ICMP_ULT:
2156          case ICmpInst::ICMP_ULE:
2157            // Comparison is true iff the LHS >=s 0.
2158            if (MaxRecurse)
2159              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2160                                              Constant::getNullValue(SrcTy),
2161                                              Q, MaxRecurse-1))
2162                return V;
2163            break;
2164          }
2165        }
2166      }
2167    }
2168  }
2169
2170  // Special logic for binary operators.
2171  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2172  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2173  if (MaxRecurse && (LBO || RBO)) {
2174    // Analyze the case when either LHS or RHS is an add instruction.
2175    Value *A = 0, *B = 0, *C = 0, *D = 0;
2176    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2177    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2178    if (LBO && LBO->getOpcode() == Instruction::Add) {
2179      A = LBO->getOperand(0); B = LBO->getOperand(1);
2180      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2181        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2182        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2183    }
2184    if (RBO && RBO->getOpcode() == Instruction::Add) {
2185      C = RBO->getOperand(0); D = RBO->getOperand(1);
2186      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2187        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2188        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2189    }
2190
2191    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2192    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2193      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2194                                      Constant::getNullValue(RHS->getType()),
2195                                      Q, MaxRecurse-1))
2196        return V;
2197
2198    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2199    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2200      if (Value *V = SimplifyICmpInst(Pred,
2201                                      Constant::getNullValue(LHS->getType()),
2202                                      C == LHS ? D : C, Q, MaxRecurse-1))
2203        return V;
2204
2205    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2206    if (A && C && (A == C || A == D || B == C || B == D) &&
2207        NoLHSWrapProblem && NoRHSWrapProblem) {
2208      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2209      Value *Y, *Z;
2210      if (A == C) {
2211        // C + B == C + D  ->  B == D
2212        Y = B;
2213        Z = D;
2214      } else if (A == D) {
2215        // D + B == C + D  ->  B == C
2216        Y = B;
2217        Z = C;
2218      } else if (B == C) {
2219        // A + C == C + D  ->  A == D
2220        Y = A;
2221        Z = D;
2222      } else {
2223        assert(B == D);
2224        // A + D == C + D  ->  A == C
2225        Y = A;
2226        Z = C;
2227      }
2228      if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2229        return V;
2230    }
2231  }
2232
2233  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2234    bool KnownNonNegative, KnownNegative;
2235    switch (Pred) {
2236    default:
2237      break;
2238    case ICmpInst::ICMP_SGT:
2239    case ICmpInst::ICMP_SGE:
2240      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2241      if (!KnownNonNegative)
2242        break;
2243      // fall-through
2244    case ICmpInst::ICMP_EQ:
2245    case ICmpInst::ICMP_UGT:
2246    case ICmpInst::ICMP_UGE:
2247      return getFalse(ITy);
2248    case ICmpInst::ICMP_SLT:
2249    case ICmpInst::ICMP_SLE:
2250      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2251      if (!KnownNonNegative)
2252        break;
2253      // fall-through
2254    case ICmpInst::ICMP_NE:
2255    case ICmpInst::ICMP_ULT:
2256    case ICmpInst::ICMP_ULE:
2257      return getTrue(ITy);
2258    }
2259  }
2260  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2261    bool KnownNonNegative, KnownNegative;
2262    switch (Pred) {
2263    default:
2264      break;
2265    case ICmpInst::ICMP_SGT:
2266    case ICmpInst::ICMP_SGE:
2267      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2268      if (!KnownNonNegative)
2269        break;
2270      // fall-through
2271    case ICmpInst::ICMP_NE:
2272    case ICmpInst::ICMP_UGT:
2273    case ICmpInst::ICMP_UGE:
2274      return getTrue(ITy);
2275    case ICmpInst::ICMP_SLT:
2276    case ICmpInst::ICMP_SLE:
2277      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2278      if (!KnownNonNegative)
2279        break;
2280      // fall-through
2281    case ICmpInst::ICMP_EQ:
2282    case ICmpInst::ICMP_ULT:
2283    case ICmpInst::ICMP_ULE:
2284      return getFalse(ITy);
2285    }
2286  }
2287
2288  // x udiv y <=u x.
2289  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2290    // icmp pred (X /u Y), X
2291    if (Pred == ICmpInst::ICMP_UGT)
2292      return getFalse(ITy);
2293    if (Pred == ICmpInst::ICMP_ULE)
2294      return getTrue(ITy);
2295  }
2296
2297  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2298      LBO->getOperand(1) == RBO->getOperand(1)) {
2299    switch (LBO->getOpcode()) {
2300    default: break;
2301    case Instruction::UDiv:
2302    case Instruction::LShr:
2303      if (ICmpInst::isSigned(Pred))
2304        break;
2305      // fall-through
2306    case Instruction::SDiv:
2307    case Instruction::AShr:
2308      if (!LBO->isExact() || !RBO->isExact())
2309        break;
2310      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2311                                      RBO->getOperand(0), Q, MaxRecurse-1))
2312        return V;
2313      break;
2314    case Instruction::Shl: {
2315      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2316      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2317      if (!NUW && !NSW)
2318        break;
2319      if (!NSW && ICmpInst::isSigned(Pred))
2320        break;
2321      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2322                                      RBO->getOperand(0), Q, MaxRecurse-1))
2323        return V;
2324      break;
2325    }
2326    }
2327  }
2328
2329  // Simplify comparisons involving max/min.
2330  Value *A, *B;
2331  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2332  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2333
2334  // Signed variants on "max(a,b)>=a -> true".
2335  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2336    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2337    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2338    // We analyze this as smax(A, B) pred A.
2339    P = Pred;
2340  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2341             (A == LHS || B == LHS)) {
2342    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2343    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2344    // We analyze this as smax(A, B) swapped-pred A.
2345    P = CmpInst::getSwappedPredicate(Pred);
2346  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2347             (A == RHS || B == RHS)) {
2348    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2349    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2350    // We analyze this as smax(-A, -B) swapped-pred -A.
2351    // Note that we do not need to actually form -A or -B thanks to EqP.
2352    P = CmpInst::getSwappedPredicate(Pred);
2353  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2354             (A == LHS || B == LHS)) {
2355    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2356    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2357    // We analyze this as smax(-A, -B) pred -A.
2358    // Note that we do not need to actually form -A or -B thanks to EqP.
2359    P = Pred;
2360  }
2361  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2362    // Cases correspond to "max(A, B) p A".
2363    switch (P) {
2364    default:
2365      break;
2366    case CmpInst::ICMP_EQ:
2367    case CmpInst::ICMP_SLE:
2368      // Equivalent to "A EqP B".  This may be the same as the condition tested
2369      // in the max/min; if so, we can just return that.
2370      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2371        return V;
2372      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2373        return V;
2374      // Otherwise, see if "A EqP B" simplifies.
2375      if (MaxRecurse)
2376        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2377          return V;
2378      break;
2379    case CmpInst::ICMP_NE:
2380    case CmpInst::ICMP_SGT: {
2381      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2382      // Equivalent to "A InvEqP B".  This may be the same as the condition
2383      // tested in the max/min; if so, we can just return that.
2384      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2385        return V;
2386      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2387        return V;
2388      // Otherwise, see if "A InvEqP B" simplifies.
2389      if (MaxRecurse)
2390        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2391          return V;
2392      break;
2393    }
2394    case CmpInst::ICMP_SGE:
2395      // Always true.
2396      return getTrue(ITy);
2397    case CmpInst::ICMP_SLT:
2398      // Always false.
2399      return getFalse(ITy);
2400    }
2401  }
2402
2403  // Unsigned variants on "max(a,b)>=a -> true".
2404  P = CmpInst::BAD_ICMP_PREDICATE;
2405  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2406    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2407    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2408    // We analyze this as umax(A, B) pred A.
2409    P = Pred;
2410  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2411             (A == LHS || B == LHS)) {
2412    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2413    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2414    // We analyze this as umax(A, B) swapped-pred A.
2415    P = CmpInst::getSwappedPredicate(Pred);
2416  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2417             (A == RHS || B == RHS)) {
2418    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2419    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2420    // We analyze this as umax(-A, -B) swapped-pred -A.
2421    // Note that we do not need to actually form -A or -B thanks to EqP.
2422    P = CmpInst::getSwappedPredicate(Pred);
2423  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2424             (A == LHS || B == LHS)) {
2425    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2426    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2427    // We analyze this as umax(-A, -B) pred -A.
2428    // Note that we do not need to actually form -A or -B thanks to EqP.
2429    P = Pred;
2430  }
2431  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2432    // Cases correspond to "max(A, B) p A".
2433    switch (P) {
2434    default:
2435      break;
2436    case CmpInst::ICMP_EQ:
2437    case CmpInst::ICMP_ULE:
2438      // Equivalent to "A EqP B".  This may be the same as the condition tested
2439      // in the max/min; if so, we can just return that.
2440      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2441        return V;
2442      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2443        return V;
2444      // Otherwise, see if "A EqP B" simplifies.
2445      if (MaxRecurse)
2446        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2447          return V;
2448      break;
2449    case CmpInst::ICMP_NE:
2450    case CmpInst::ICMP_UGT: {
2451      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2452      // Equivalent to "A InvEqP B".  This may be the same as the condition
2453      // tested in the max/min; if so, we can just return that.
2454      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2455        return V;
2456      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2457        return V;
2458      // Otherwise, see if "A InvEqP B" simplifies.
2459      if (MaxRecurse)
2460        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2461          return V;
2462      break;
2463    }
2464    case CmpInst::ICMP_UGE:
2465      // Always true.
2466      return getTrue(ITy);
2467    case CmpInst::ICMP_ULT:
2468      // Always false.
2469      return getFalse(ITy);
2470    }
2471  }
2472
2473  // Variants on "max(x,y) >= min(x,z)".
2474  Value *C, *D;
2475  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2476      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2477      (A == C || A == D || B == C || B == D)) {
2478    // max(x, ?) pred min(x, ?).
2479    if (Pred == CmpInst::ICMP_SGE)
2480      // Always true.
2481      return getTrue(ITy);
2482    if (Pred == CmpInst::ICMP_SLT)
2483      // Always false.
2484      return getFalse(ITy);
2485  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2486             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2487             (A == C || A == D || B == C || B == D)) {
2488    // min(x, ?) pred max(x, ?).
2489    if (Pred == CmpInst::ICMP_SLE)
2490      // Always true.
2491      return getTrue(ITy);
2492    if (Pred == CmpInst::ICMP_SGT)
2493      // Always false.
2494      return getFalse(ITy);
2495  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2496             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2497             (A == C || A == D || B == C || B == D)) {
2498    // max(x, ?) pred min(x, ?).
2499    if (Pred == CmpInst::ICMP_UGE)
2500      // Always true.
2501      return getTrue(ITy);
2502    if (Pred == CmpInst::ICMP_ULT)
2503      // Always false.
2504      return getFalse(ITy);
2505  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2506             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2507             (A == C || A == D || B == C || B == D)) {
2508    // min(x, ?) pred max(x, ?).
2509    if (Pred == CmpInst::ICMP_ULE)
2510      // Always true.
2511      return getTrue(ITy);
2512    if (Pred == CmpInst::ICMP_UGT)
2513      // Always false.
2514      return getFalse(ITy);
2515  }
2516
2517  // Simplify comparisons of related pointers using a powerful, recursive
2518  // GEP-walk when we have target data available..
2519  if (LHS->getType()->isPointerTy())
2520    if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
2521      return C;
2522
2523  if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2524    if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2525      if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2526          GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2527          (ICmpInst::isEquality(Pred) ||
2528           (GLHS->isInBounds() && GRHS->isInBounds() &&
2529            Pred == ICmpInst::getSignedPredicate(Pred)))) {
2530        // The bases are equal and the indices are constant.  Build a constant
2531        // expression GEP with the same indices and a null base pointer to see
2532        // what constant folding can make out of it.
2533        Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2534        SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2535        Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2536
2537        SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2538        Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2539        return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2540      }
2541    }
2542  }
2543
2544  // If the comparison is with the result of a select instruction, check whether
2545  // comparing with either branch of the select always yields the same value.
2546  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2547    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2548      return V;
2549
2550  // If the comparison is with the result of a phi instruction, check whether
2551  // doing the compare with each incoming phi value yields a common result.
2552  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2553    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2554      return V;
2555
2556  return 0;
2557}
2558
2559Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2560                              const DataLayout *TD,
2561                              const TargetLibraryInfo *TLI,
2562                              const DominatorTree *DT) {
2563  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2564                            RecursionLimit);
2565}
2566
2567/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2568/// fold the result.  If not, this returns null.
2569static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2570                               const Query &Q, unsigned MaxRecurse) {
2571  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2572  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2573
2574  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2575    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2576      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
2577
2578    // If we have a constant, make sure it is on the RHS.
2579    std::swap(LHS, RHS);
2580    Pred = CmpInst::getSwappedPredicate(Pred);
2581  }
2582
2583  // Fold trivial predicates.
2584  if (Pred == FCmpInst::FCMP_FALSE)
2585    return ConstantInt::get(GetCompareTy(LHS), 0);
2586  if (Pred == FCmpInst::FCMP_TRUE)
2587    return ConstantInt::get(GetCompareTy(LHS), 1);
2588
2589  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2590    return UndefValue::get(GetCompareTy(LHS));
2591
2592  // fcmp x,x -> true/false.  Not all compares are foldable.
2593  if (LHS == RHS) {
2594    if (CmpInst::isTrueWhenEqual(Pred))
2595      return ConstantInt::get(GetCompareTy(LHS), 1);
2596    if (CmpInst::isFalseWhenEqual(Pred))
2597      return ConstantInt::get(GetCompareTy(LHS), 0);
2598  }
2599
2600  // Handle fcmp with constant RHS
2601  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2602    // If the constant is a nan, see if we can fold the comparison based on it.
2603    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2604      if (CFP->getValueAPF().isNaN()) {
2605        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2606          return ConstantInt::getFalse(CFP->getContext());
2607        assert(FCmpInst::isUnordered(Pred) &&
2608               "Comparison must be either ordered or unordered!");
2609        // True if unordered.
2610        return ConstantInt::getTrue(CFP->getContext());
2611      }
2612      // Check whether the constant is an infinity.
2613      if (CFP->getValueAPF().isInfinity()) {
2614        if (CFP->getValueAPF().isNegative()) {
2615          switch (Pred) {
2616          case FCmpInst::FCMP_OLT:
2617            // No value is ordered and less than negative infinity.
2618            return ConstantInt::getFalse(CFP->getContext());
2619          case FCmpInst::FCMP_UGE:
2620            // All values are unordered with or at least negative infinity.
2621            return ConstantInt::getTrue(CFP->getContext());
2622          default:
2623            break;
2624          }
2625        } else {
2626          switch (Pred) {
2627          case FCmpInst::FCMP_OGT:
2628            // No value is ordered and greater than infinity.
2629            return ConstantInt::getFalse(CFP->getContext());
2630          case FCmpInst::FCMP_ULE:
2631            // All values are unordered with and at most infinity.
2632            return ConstantInt::getTrue(CFP->getContext());
2633          default:
2634            break;
2635          }
2636        }
2637      }
2638    }
2639  }
2640
2641  // If the comparison is with the result of a select instruction, check whether
2642  // comparing with either branch of the select always yields the same value.
2643  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2644    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2645      return V;
2646
2647  // If the comparison is with the result of a phi instruction, check whether
2648  // doing the compare with each incoming phi value yields a common result.
2649  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2650    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2651      return V;
2652
2653  return 0;
2654}
2655
2656Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2657                              const DataLayout *TD,
2658                              const TargetLibraryInfo *TLI,
2659                              const DominatorTree *DT) {
2660  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2661                            RecursionLimit);
2662}
2663
2664/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2665/// the result.  If not, this returns null.
2666static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2667                                 Value *FalseVal, const Query &Q,
2668                                 unsigned MaxRecurse) {
2669  // select true, X, Y  -> X
2670  // select false, X, Y -> Y
2671  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2672    return CB->getZExtValue() ? TrueVal : FalseVal;
2673
2674  // select C, X, X -> X
2675  if (TrueVal == FalseVal)
2676    return TrueVal;
2677
2678  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2679    if (isa<Constant>(TrueVal))
2680      return TrueVal;
2681    return FalseVal;
2682  }
2683  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2684    return FalseVal;
2685  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2686    return TrueVal;
2687
2688  return 0;
2689}
2690
2691Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2692                                const DataLayout *TD,
2693                                const TargetLibraryInfo *TLI,
2694                                const DominatorTree *DT) {
2695  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2696                              RecursionLimit);
2697}
2698
2699/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2700/// fold the result.  If not, this returns null.
2701static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
2702  // The type of the GEP pointer operand.
2703  PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2704  // The GEP pointer operand is not a pointer, it's a vector of pointers.
2705  if (!PtrTy)
2706    return 0;
2707
2708  // getelementptr P -> P.
2709  if (Ops.size() == 1)
2710    return Ops[0];
2711
2712  if (isa<UndefValue>(Ops[0])) {
2713    // Compute the (pointer) type returned by the GEP instruction.
2714    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2715    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2716    return UndefValue::get(GEPTy);
2717  }
2718
2719  if (Ops.size() == 2) {
2720    // getelementptr P, 0 -> P.
2721    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2722      if (C->isZero())
2723        return Ops[0];
2724    // getelementptr P, N -> P if P points to a type of zero size.
2725    if (Q.TD) {
2726      Type *Ty = PtrTy->getElementType();
2727      if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
2728        return Ops[0];
2729    }
2730  }
2731
2732  // Check to see if this is constant foldable.
2733  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2734    if (!isa<Constant>(Ops[i]))
2735      return 0;
2736
2737  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2738}
2739
2740Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
2741                             const TargetLibraryInfo *TLI,
2742                             const DominatorTree *DT) {
2743  return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2744}
2745
2746/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2747/// can fold the result.  If not, this returns null.
2748static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2749                                      ArrayRef<unsigned> Idxs, const Query &Q,
2750                                      unsigned) {
2751  if (Constant *CAgg = dyn_cast<Constant>(Agg))
2752    if (Constant *CVal = dyn_cast<Constant>(Val))
2753      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2754
2755  // insertvalue x, undef, n -> x
2756  if (match(Val, m_Undef()))
2757    return Agg;
2758
2759  // insertvalue x, (extractvalue y, n), n
2760  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2761    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2762        EV->getIndices() == Idxs) {
2763      // insertvalue undef, (extractvalue y, n), n -> y
2764      if (match(Agg, m_Undef()))
2765        return EV->getAggregateOperand();
2766
2767      // insertvalue y, (extractvalue y, n), n -> y
2768      if (Agg == EV->getAggregateOperand())
2769        return Agg;
2770    }
2771
2772  return 0;
2773}
2774
2775Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2776                                     ArrayRef<unsigned> Idxs,
2777                                     const DataLayout *TD,
2778                                     const TargetLibraryInfo *TLI,
2779                                     const DominatorTree *DT) {
2780  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2781                                   RecursionLimit);
2782}
2783
2784/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2785static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
2786  // If all of the PHI's incoming values are the same then replace the PHI node
2787  // with the common value.
2788  Value *CommonValue = 0;
2789  bool HasUndefInput = false;
2790  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2791    Value *Incoming = PN->getIncomingValue(i);
2792    // If the incoming value is the phi node itself, it can safely be skipped.
2793    if (Incoming == PN) continue;
2794    if (isa<UndefValue>(Incoming)) {
2795      // Remember that we saw an undef value, but otherwise ignore them.
2796      HasUndefInput = true;
2797      continue;
2798    }
2799    if (CommonValue && Incoming != CommonValue)
2800      return 0;  // Not the same, bail out.
2801    CommonValue = Incoming;
2802  }
2803
2804  // If CommonValue is null then all of the incoming values were either undef or
2805  // equal to the phi node itself.
2806  if (!CommonValue)
2807    return UndefValue::get(PN->getType());
2808
2809  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2810  // instruction, we cannot return X as the result of the PHI node unless it
2811  // dominates the PHI block.
2812  if (HasUndefInput)
2813    return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
2814
2815  return CommonValue;
2816}
2817
2818static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2819  if (Constant *C = dyn_cast<Constant>(Op))
2820    return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2821
2822  return 0;
2823}
2824
2825Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
2826                               const TargetLibraryInfo *TLI,
2827                               const DominatorTree *DT) {
2828  return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2829}
2830
2831//=== Helper functions for higher up the class hierarchy.
2832
2833/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2834/// fold the result.  If not, this returns null.
2835static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2836                            const Query &Q, unsigned MaxRecurse) {
2837  switch (Opcode) {
2838  case Instruction::Add:
2839    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2840                           Q, MaxRecurse);
2841  case Instruction::FAdd:
2842    return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2843
2844  case Instruction::Sub:
2845    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2846                           Q, MaxRecurse);
2847  case Instruction::FSub:
2848    return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2849
2850  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2851  case Instruction::FMul:
2852    return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2853  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2854  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2855  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2856  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2857  case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2858  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
2859  case Instruction::Shl:
2860    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2861                           Q, MaxRecurse);
2862  case Instruction::LShr:
2863    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2864  case Instruction::AShr:
2865    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2866  case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2867  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2868  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
2869  default:
2870    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2871      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2872        Constant *COps[] = {CLHS, CRHS};
2873        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2874                                        Q.TLI);
2875      }
2876
2877    // If the operation is associative, try some generic simplifications.
2878    if (Instruction::isAssociative(Opcode))
2879      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
2880        return V;
2881
2882    // If the operation is with the result of a select instruction check whether
2883    // operating on either branch of the select always yields the same value.
2884    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2885      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
2886        return V;
2887
2888    // If the operation is with the result of a phi instruction, check whether
2889    // operating on all incoming values of the phi always yields the same value.
2890    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2891      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
2892        return V;
2893
2894    return 0;
2895  }
2896}
2897
2898Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2899                           const DataLayout *TD, const TargetLibraryInfo *TLI,
2900                           const DominatorTree *DT) {
2901  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
2902}
2903
2904/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2905/// fold the result.
2906static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2907                              const Query &Q, unsigned MaxRecurse) {
2908  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2909    return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2910  return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2911}
2912
2913Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2914                             const DataLayout *TD, const TargetLibraryInfo *TLI,
2915                             const DominatorTree *DT) {
2916  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2917                           RecursionLimit);
2918}
2919
2920template <typename IterTy>
2921static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
2922                           const Query &Q, unsigned MaxRecurse) {
2923  Type *Ty = V->getType();
2924  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
2925    Ty = PTy->getElementType();
2926  FunctionType *FTy = cast<FunctionType>(Ty);
2927
2928  // call undef -> undef
2929  if (isa<UndefValue>(V))
2930    return UndefValue::get(FTy->getReturnType());
2931
2932  Function *F = dyn_cast<Function>(V);
2933  if (!F)
2934    return 0;
2935
2936  if (!canConstantFoldCallTo(F))
2937    return 0;
2938
2939  SmallVector<Constant *, 4> ConstantArgs;
2940  ConstantArgs.reserve(ArgEnd - ArgBegin);
2941  for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
2942    Constant *C = dyn_cast<Constant>(*I);
2943    if (!C)
2944      return 0;
2945    ConstantArgs.push_back(C);
2946  }
2947
2948  return ConstantFoldCall(F, ConstantArgs, Q.TLI);
2949}
2950
2951Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
2952                          User::op_iterator ArgEnd, const DataLayout *TD,
2953                          const TargetLibraryInfo *TLI,
2954                          const DominatorTree *DT) {
2955  return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
2956                        RecursionLimit);
2957}
2958
2959Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
2960                          const DataLayout *TD, const TargetLibraryInfo *TLI,
2961                          const DominatorTree *DT) {
2962  return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
2963                        RecursionLimit);
2964}
2965
2966/// SimplifyInstruction - See if we can compute a simplified version of this
2967/// instruction.  If not, this returns null.
2968Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
2969                                 const TargetLibraryInfo *TLI,
2970                                 const DominatorTree *DT) {
2971  Value *Result;
2972
2973  switch (I->getOpcode()) {
2974  default:
2975    Result = ConstantFoldInstruction(I, TD, TLI);
2976    break;
2977  case Instruction::FAdd:
2978    Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
2979                              I->getFastMathFlags(), TD, TLI, DT);
2980    break;
2981  case Instruction::Add:
2982    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2983                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2984                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2985                             TD, TLI, DT);
2986    break;
2987  case Instruction::FSub:
2988    Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
2989                              I->getFastMathFlags(), TD, TLI, DT);
2990    break;
2991  case Instruction::Sub:
2992    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2993                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2994                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2995                             TD, TLI, DT);
2996    break;
2997  case Instruction::FMul:
2998    Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
2999                              I->getFastMathFlags(), TD, TLI, DT);
3000    break;
3001  case Instruction::Mul:
3002    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3003    break;
3004  case Instruction::SDiv:
3005    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3006    break;
3007  case Instruction::UDiv:
3008    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3009    break;
3010  case Instruction::FDiv:
3011    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3012    break;
3013  case Instruction::SRem:
3014    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3015    break;
3016  case Instruction::URem:
3017    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3018    break;
3019  case Instruction::FRem:
3020    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3021    break;
3022  case Instruction::Shl:
3023    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3024                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
3025                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3026                             TD, TLI, DT);
3027    break;
3028  case Instruction::LShr:
3029    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3030                              cast<BinaryOperator>(I)->isExact(),
3031                              TD, TLI, DT);
3032    break;
3033  case Instruction::AShr:
3034    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3035                              cast<BinaryOperator>(I)->isExact(),
3036                              TD, TLI, DT);
3037    break;
3038  case Instruction::And:
3039    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3040    break;
3041  case Instruction::Or:
3042    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3043    break;
3044  case Instruction::Xor:
3045    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3046    break;
3047  case Instruction::ICmp:
3048    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
3049                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3050    break;
3051  case Instruction::FCmp:
3052    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
3053                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3054    break;
3055  case Instruction::Select:
3056    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
3057                                I->getOperand(2), TD, TLI, DT);
3058    break;
3059  case Instruction::GetElementPtr: {
3060    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
3061    Result = SimplifyGEPInst(Ops, TD, TLI, DT);
3062    break;
3063  }
3064  case Instruction::InsertValue: {
3065    InsertValueInst *IV = cast<InsertValueInst>(I);
3066    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
3067                                     IV->getInsertedValueOperand(),
3068                                     IV->getIndices(), TD, TLI, DT);
3069    break;
3070  }
3071  case Instruction::PHI:
3072    Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
3073    break;
3074  case Instruction::Call: {
3075    CallSite CS(cast<CallInst>(I));
3076    Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
3077                          TD, TLI, DT);
3078    break;
3079  }
3080  case Instruction::Trunc:
3081    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
3082    break;
3083  }
3084
3085  /// If called on unreachable code, the above logic may report that the
3086  /// instruction simplified to itself.  Make life easier for users by
3087  /// detecting that case here, returning a safe value instead.
3088  return Result == I ? UndefValue::get(I->getType()) : Result;
3089}
3090
3091/// \brief Implementation of recursive simplification through an instructions
3092/// uses.
3093///
3094/// This is the common implementation of the recursive simplification routines.
3095/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
3096/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
3097/// instructions to process and attempt to simplify it using
3098/// InstructionSimplify.
3099///
3100/// This routine returns 'true' only when *it* simplifies something. The passed
3101/// in simplified value does not count toward this.
3102static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
3103                                              const DataLayout *TD,
3104                                              const TargetLibraryInfo *TLI,
3105                                              const DominatorTree *DT) {
3106  bool Simplified = false;
3107  SmallSetVector<Instruction *, 8> Worklist;
3108
3109  // If we have an explicit value to collapse to, do that round of the
3110  // simplification loop by hand initially.
3111  if (SimpleV) {
3112    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3113         ++UI)
3114      if (*UI != I)
3115        Worklist.insert(cast<Instruction>(*UI));
3116
3117    // Replace the instruction with its simplified value.
3118    I->replaceAllUsesWith(SimpleV);
3119
3120    // Gracefully handle edge cases where the instruction is not wired into any
3121    // parent block.
3122    if (I->getParent())
3123      I->eraseFromParent();
3124  } else {
3125    Worklist.insert(I);
3126  }
3127
3128  // Note that we must test the size on each iteration, the worklist can grow.
3129  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
3130    I = Worklist[Idx];
3131
3132    // See if this instruction simplifies.
3133    SimpleV = SimplifyInstruction(I, TD, TLI, DT);
3134    if (!SimpleV)
3135      continue;
3136
3137    Simplified = true;
3138
3139    // Stash away all the uses of the old instruction so we can check them for
3140    // recursive simplifications after a RAUW. This is cheaper than checking all
3141    // uses of To on the recursive step in most cases.
3142    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3143         ++UI)
3144      Worklist.insert(cast<Instruction>(*UI));
3145
3146    // Replace the instruction with its simplified value.
3147    I->replaceAllUsesWith(SimpleV);
3148
3149    // Gracefully handle edge cases where the instruction is not wired into any
3150    // parent block.
3151    if (I->getParent())
3152      I->eraseFromParent();
3153  }
3154  return Simplified;
3155}
3156
3157bool llvm::recursivelySimplifyInstruction(Instruction *I,
3158                                          const DataLayout *TD,
3159                                          const TargetLibraryInfo *TLI,
3160                                          const DominatorTree *DT) {
3161  return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
3162}
3163
3164bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
3165                                         const DataLayout *TD,
3166                                         const TargetLibraryInfo *TLI,
3167                                         const DominatorTree *DT) {
3168  assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
3169  assert(SimpleV && "Must provide a simplified value.");
3170  return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
3171}
3172