InstructionSimplify.cpp revision b2f3c383ec62b959ee27d0a5fb890894c4e49e86
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Support/PatternMatch.h"
26#include "llvm/Support/ValueHandle.h"
27#include "llvm/Target/TargetData.h"
28using namespace llvm;
29using namespace llvm::PatternMatch;
30
31#define RecursionLimit 3
32
33STATISTIC(NumExpand,  "Number of expansions");
34STATISTIC(NumFactor , "Number of factorizations");
35STATISTIC(NumReassoc, "Number of reassociations");
36
37static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
38                              const DominatorTree *, unsigned);
39static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
40                            const DominatorTree *, unsigned);
41static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
42                              const DominatorTree *, unsigned);
43static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
44                             const DominatorTree *, unsigned);
45static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
46                              const DominatorTree *, unsigned);
47
48/// ValueDominatesPHI - Does the given value dominate the specified phi node?
49static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
50  Instruction *I = dyn_cast<Instruction>(V);
51  if (!I)
52    // Arguments and constants dominate all instructions.
53    return true;
54
55  // If we have a DominatorTree then do a precise test.
56  if (DT)
57    return DT->dominates(I, P);
58
59  // Otherwise, if the instruction is in the entry block, and is not an invoke,
60  // then it obviously dominates all phi nodes.
61  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
62      !isa<InvokeInst>(I))
63    return true;
64
65  return false;
66}
67
68/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
69/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
70/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
71/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
72/// Returns the simplified value, or null if no simplification was performed.
73static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
74                          unsigned OpcToExpand, const TargetData *TD,
75                          const DominatorTree *DT, unsigned MaxRecurse) {
76  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
77  // Recursion is always used, so bail out at once if we already hit the limit.
78  if (!MaxRecurse--)
79    return 0;
80
81  // Check whether the expression has the form "(A op' B) op C".
82  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
83    if (Op0->getOpcode() == OpcodeToExpand) {
84      // It does!  Try turning it into "(A op C) op' (B op C)".
85      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
86      // Do "A op C" and "B op C" both simplify?
87      if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
88        if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
89          // They do! Return "L op' R" if it simplifies or is already available.
90          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
91          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
92                                     && L == B && R == A)) {
93            ++NumExpand;
94            return LHS;
95          }
96          // Otherwise return "L op' R" if it simplifies.
97          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
98                                       MaxRecurse)) {
99            ++NumExpand;
100            return V;
101          }
102        }
103    }
104
105  // Check whether the expression has the form "A op (B op' C)".
106  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
107    if (Op1->getOpcode() == OpcodeToExpand) {
108      // It does!  Try turning it into "(A op B) op' (A op C)".
109      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
110      // Do "A op B" and "A op C" both simplify?
111      if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
112        if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
113          // They do! Return "L op' R" if it simplifies or is already available.
114          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
115          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
116                                     && L == C && R == B)) {
117            ++NumExpand;
118            return RHS;
119          }
120          // Otherwise return "L op' R" if it simplifies.
121          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
122                                       MaxRecurse)) {
123            ++NumExpand;
124            return V;
125          }
126        }
127    }
128
129  return 0;
130}
131
132/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
133/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
134/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
135/// Returns the simplified value, or null if no simplification was performed.
136static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
137                             unsigned OpcToExtract, const TargetData *TD,
138                             const DominatorTree *DT, unsigned MaxRecurse) {
139  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
140  // Recursion is always used, so bail out at once if we already hit the limit.
141  if (!MaxRecurse--)
142    return 0;
143
144  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
145  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
146
147  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
148      !Op1 || Op1->getOpcode() != OpcodeToExtract)
149    return 0;
150
151  // The expression has the form "(A op' B) op (C op' D)".
152  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
153  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
154
155  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
156  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
157  // commutative case, "(A op' B) op (C op' A)"?
158  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
159    Value *DD = A == C ? D : C;
160    // Form "A op' (B op DD)" if it simplifies completely.
161    // Does "B op DD" simplify?
162    if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
163      // It does!  Return "A op' V" if it simplifies or is already available.
164      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
165      // "A op' V" is just the RHS.
166      if (V == B || V == DD) {
167        ++NumFactor;
168        return V == B ? LHS : RHS;
169      }
170      // Otherwise return "A op' V" if it simplifies.
171      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
172        ++NumFactor;
173        return W;
174      }
175    }
176  }
177
178  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
179  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
180  // commutative case, "(A op' B) op (B op' D)"?
181  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
182    Value *CC = B == D ? C : D;
183    // Form "(A op CC) op' B" if it simplifies completely..
184    // Does "A op CC" simplify?
185    if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
186      // It does!  Return "V op' B" if it simplifies or is already available.
187      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
188      // "V op' B" is just the RHS.
189      if (V == A || V == CC) {
190        ++NumFactor;
191        return V == A ? LHS : RHS;
192      }
193      // Otherwise return "V op' B" if it simplifies.
194      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
195        ++NumFactor;
196        return W;
197      }
198    }
199  }
200
201  return 0;
202}
203
204/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
205/// operations.  Returns the simpler value, or null if none was found.
206static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
207                                       const TargetData *TD,
208                                       const DominatorTree *DT,
209                                       unsigned MaxRecurse) {
210  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
211  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
212
213  // Recursion is always used, so bail out at once if we already hit the limit.
214  if (!MaxRecurse--)
215    return 0;
216
217  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
218  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
219
220  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
221  if (Op0 && Op0->getOpcode() == Opcode) {
222    Value *A = Op0->getOperand(0);
223    Value *B = Op0->getOperand(1);
224    Value *C = RHS;
225
226    // Does "B op C" simplify?
227    if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
228      // It does!  Return "A op V" if it simplifies or is already available.
229      // If V equals B then "A op V" is just the LHS.
230      if (V == B) return LHS;
231      // Otherwise return "A op V" if it simplifies.
232      if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
233        ++NumReassoc;
234        return W;
235      }
236    }
237  }
238
239  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
240  if (Op1 && Op1->getOpcode() == Opcode) {
241    Value *A = LHS;
242    Value *B = Op1->getOperand(0);
243    Value *C = Op1->getOperand(1);
244
245    // Does "A op B" simplify?
246    if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
247      // It does!  Return "V op C" if it simplifies or is already available.
248      // If V equals B then "V op C" is just the RHS.
249      if (V == B) return RHS;
250      // Otherwise return "V op C" if it simplifies.
251      if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
252        ++NumReassoc;
253        return W;
254      }
255    }
256  }
257
258  // The remaining transforms require commutativity as well as associativity.
259  if (!Instruction::isCommutative(Opcode))
260    return 0;
261
262  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
263  if (Op0 && Op0->getOpcode() == Opcode) {
264    Value *A = Op0->getOperand(0);
265    Value *B = Op0->getOperand(1);
266    Value *C = RHS;
267
268    // Does "C op A" simplify?
269    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
270      // It does!  Return "V op B" if it simplifies or is already available.
271      // If V equals A then "V op B" is just the LHS.
272      if (V == A) return LHS;
273      // Otherwise return "V op B" if it simplifies.
274      if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
275        ++NumReassoc;
276        return W;
277      }
278    }
279  }
280
281  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
282  if (Op1 && Op1->getOpcode() == Opcode) {
283    Value *A = LHS;
284    Value *B = Op1->getOperand(0);
285    Value *C = Op1->getOperand(1);
286
287    // Does "C op A" simplify?
288    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
289      // It does!  Return "B op V" if it simplifies or is already available.
290      // If V equals C then "B op V" is just the RHS.
291      if (V == C) return RHS;
292      // Otherwise return "B op V" if it simplifies.
293      if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
294        ++NumReassoc;
295        return W;
296      }
297    }
298  }
299
300  return 0;
301}
302
303/// ThreadBinOpOverSelect - In the case of a binary operation with a select
304/// instruction as an operand, try to simplify the binop by seeing whether
305/// evaluating it on both branches of the select results in the same value.
306/// Returns the common value if so, otherwise returns null.
307static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
308                                    const TargetData *TD,
309                                    const DominatorTree *DT,
310                                    unsigned MaxRecurse) {
311  // Recursion is always used, so bail out at once if we already hit the limit.
312  if (!MaxRecurse--)
313    return 0;
314
315  SelectInst *SI;
316  if (isa<SelectInst>(LHS)) {
317    SI = cast<SelectInst>(LHS);
318  } else {
319    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
320    SI = cast<SelectInst>(RHS);
321  }
322
323  // Evaluate the BinOp on the true and false branches of the select.
324  Value *TV;
325  Value *FV;
326  if (SI == LHS) {
327    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
328    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
329  } else {
330    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
331    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
332  }
333
334  // If they simplified to the same value, then return the common value.
335  // If they both failed to simplify then return null.
336  if (TV == FV)
337    return TV;
338
339  // If one branch simplified to undef, return the other one.
340  if (TV && isa<UndefValue>(TV))
341    return FV;
342  if (FV && isa<UndefValue>(FV))
343    return TV;
344
345  // If applying the operation did not change the true and false select values,
346  // then the result of the binop is the select itself.
347  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
348    return SI;
349
350  // If one branch simplified and the other did not, and the simplified
351  // value is equal to the unsimplified one, return the simplified value.
352  // For example, select (cond, X, X & Z) & Z -> X & Z.
353  if ((FV && !TV) || (TV && !FV)) {
354    // Check that the simplified value has the form "X op Y" where "op" is the
355    // same as the original operation.
356    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
357    if (Simplified && Simplified->getOpcode() == Opcode) {
358      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
359      // We already know that "op" is the same as for the simplified value.  See
360      // if the operands match too.  If so, return the simplified value.
361      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
362      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
363      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
364      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
365          Simplified->getOperand(1) == UnsimplifiedRHS)
366        return Simplified;
367      if (Simplified->isCommutative() &&
368          Simplified->getOperand(1) == UnsimplifiedLHS &&
369          Simplified->getOperand(0) == UnsimplifiedRHS)
370        return Simplified;
371    }
372  }
373
374  return 0;
375}
376
377/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
378/// try to simplify the comparison by seeing whether both branches of the select
379/// result in the same value.  Returns the common value if so, otherwise returns
380/// null.
381static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
382                                  Value *RHS, const TargetData *TD,
383                                  const DominatorTree *DT,
384                                  unsigned MaxRecurse) {
385  // Recursion is always used, so bail out at once if we already hit the limit.
386  if (!MaxRecurse--)
387    return 0;
388
389  // Make sure the select is on the LHS.
390  if (!isa<SelectInst>(LHS)) {
391    std::swap(LHS, RHS);
392    Pred = CmpInst::getSwappedPredicate(Pred);
393  }
394  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
395  SelectInst *SI = cast<SelectInst>(LHS);
396
397  // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
398  // Does "cmp TV, RHS" simplify?
399  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
400                                    MaxRecurse))
401    // It does!  Does "cmp FV, RHS" simplify?
402    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
403                                      MaxRecurse))
404      // It does!  If they simplified to the same value, then use it as the
405      // result of the original comparison.
406      if (TCmp == FCmp)
407        return TCmp;
408  return 0;
409}
410
411/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
412/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
413/// it on the incoming phi values yields the same result for every value.  If so
414/// returns the common value, otherwise returns null.
415static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
416                                 const TargetData *TD, const DominatorTree *DT,
417                                 unsigned MaxRecurse) {
418  // Recursion is always used, so bail out at once if we already hit the limit.
419  if (!MaxRecurse--)
420    return 0;
421
422  PHINode *PI;
423  if (isa<PHINode>(LHS)) {
424    PI = cast<PHINode>(LHS);
425    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
426    if (!ValueDominatesPHI(RHS, PI, DT))
427      return 0;
428  } else {
429    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
430    PI = cast<PHINode>(RHS);
431    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
432    if (!ValueDominatesPHI(LHS, PI, DT))
433      return 0;
434  }
435
436  // Evaluate the BinOp on the incoming phi values.
437  Value *CommonValue = 0;
438  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
439    Value *Incoming = PI->getIncomingValue(i);
440    // If the incoming value is the phi node itself, it can safely be skipped.
441    if (Incoming == PI) continue;
442    Value *V = PI == LHS ?
443      SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
444      SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
445    // If the operation failed to simplify, or simplified to a different value
446    // to previously, then give up.
447    if (!V || (CommonValue && V != CommonValue))
448      return 0;
449    CommonValue = V;
450  }
451
452  return CommonValue;
453}
454
455/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
456/// try to simplify the comparison by seeing whether comparing with all of the
457/// incoming phi values yields the same result every time.  If so returns the
458/// common result, otherwise returns null.
459static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
460                               const TargetData *TD, const DominatorTree *DT,
461                               unsigned MaxRecurse) {
462  // Recursion is always used, so bail out at once if we already hit the limit.
463  if (!MaxRecurse--)
464    return 0;
465
466  // Make sure the phi is on the LHS.
467  if (!isa<PHINode>(LHS)) {
468    std::swap(LHS, RHS);
469    Pred = CmpInst::getSwappedPredicate(Pred);
470  }
471  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
472  PHINode *PI = cast<PHINode>(LHS);
473
474  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
475  if (!ValueDominatesPHI(RHS, PI, DT))
476    return 0;
477
478  // Evaluate the BinOp on the incoming phi values.
479  Value *CommonValue = 0;
480  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
481    Value *Incoming = PI->getIncomingValue(i);
482    // If the incoming value is the phi node itself, it can safely be skipped.
483    if (Incoming == PI) continue;
484    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
485    // If the operation failed to simplify, or simplified to a different value
486    // to previously, then give up.
487    if (!V || (CommonValue && V != CommonValue))
488      return 0;
489    CommonValue = V;
490  }
491
492  return CommonValue;
493}
494
495/// SimplifyAddInst - Given operands for an Add, see if we can
496/// fold the result.  If not, this returns null.
497static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
498                              const TargetData *TD, const DominatorTree *DT,
499                              unsigned MaxRecurse) {
500  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
501    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
502      Constant *Ops[] = { CLHS, CRHS };
503      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
504                                      Ops, 2, TD);
505    }
506
507    // Canonicalize the constant to the RHS.
508    std::swap(Op0, Op1);
509  }
510
511  // X + undef -> undef
512  if (isa<UndefValue>(Op1))
513    return Op1;
514
515  // X + 0 -> X
516  if (match(Op1, m_Zero()))
517    return Op0;
518
519  // X + (Y - X) -> Y
520  // (Y - X) + X -> Y
521  // Eg: X + -X -> 0
522  Value *Y = 0;
523  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
524      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
525    return Y;
526
527  // X + ~X -> -1   since   ~X = -X-1
528  if (match(Op0, m_Not(m_Specific(Op1))) ||
529      match(Op1, m_Not(m_Specific(Op0))))
530    return Constant::getAllOnesValue(Op0->getType());
531
532  /// i1 add -> xor.
533  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
534    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
535      return V;
536
537  // Try some generic simplifications for associative operations.
538  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
539                                          MaxRecurse))
540    return V;
541
542  // Mul distributes over Add.  Try some generic simplifications based on this.
543  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
544                                TD, DT, MaxRecurse))
545    return V;
546
547  // Threading Add over selects and phi nodes is pointless, so don't bother.
548  // Threading over the select in "A + select(cond, B, C)" means evaluating
549  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
550  // only if B and C are equal.  If B and C are equal then (since we assume
551  // that operands have already been simplified) "select(cond, B, C)" should
552  // have been simplified to the common value of B and C already.  Analysing
553  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
554  // for threading over phi nodes.
555
556  return 0;
557}
558
559Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
560                             const TargetData *TD, const DominatorTree *DT) {
561  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
562}
563
564/// SimplifySubInst - Given operands for a Sub, see if we can
565/// fold the result.  If not, this returns null.
566static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
567                              const TargetData *TD, const DominatorTree *DT,
568                              unsigned MaxRecurse) {
569  if (Constant *CLHS = dyn_cast<Constant>(Op0))
570    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
571      Constant *Ops[] = { CLHS, CRHS };
572      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
573                                      Ops, 2, TD);
574    }
575
576  // X - undef -> undef
577  // undef - X -> undef
578  if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
579    return UndefValue::get(Op0->getType());
580
581  // X - 0 -> X
582  if (match(Op1, m_Zero()))
583    return Op0;
584
585  // X - X -> 0
586  if (Op0 == Op1)
587    return Constant::getNullValue(Op0->getType());
588
589  // (X*2) - X -> X
590  // (X<<1) - X -> X
591  Value *X = 0;
592  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
593      match(Op0, m_Shl(m_Specific(Op1), m_One())))
594    return Op1;
595
596  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
597  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
598  Value *Y = 0, *Z = Op1;
599  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
600    // See if "V === Y - Z" simplifies.
601    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
602      // It does!  Now see if "X + V" simplifies.
603      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
604                                   MaxRecurse-1)) {
605        // It does, we successfully reassociated!
606        ++NumReassoc;
607        return W;
608      }
609    // See if "V === X - Z" simplifies.
610    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
611      // It does!  Now see if "Y + V" simplifies.
612      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
613                                   MaxRecurse-1)) {
614        // It does, we successfully reassociated!
615        ++NumReassoc;
616        return W;
617      }
618  }
619
620  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
621  // For example, X - (X + 1) -> -1
622  X = Op0;
623  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
624    // See if "V === X - Y" simplifies.
625    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
626      // It does!  Now see if "V - Z" simplifies.
627      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
628                                   MaxRecurse-1)) {
629        // It does, we successfully reassociated!
630        ++NumReassoc;
631        return W;
632      }
633    // See if "V === X - Z" simplifies.
634    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
635      // It does!  Now see if "V - Y" simplifies.
636      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
637                                   MaxRecurse-1)) {
638        // It does, we successfully reassociated!
639        ++NumReassoc;
640        return W;
641      }
642  }
643
644  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
645  // For example, X - (X - Y) -> Y.
646  Z = Op0;
647  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
648    // See if "V === Z - X" simplifies.
649    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
650      // It does!  Now see if "V + Y" simplifies.
651      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
652                                   MaxRecurse-1)) {
653        // It does, we successfully reassociated!
654        ++NumReassoc;
655        return W;
656      }
657
658  // Mul distributes over Sub.  Try some generic simplifications based on this.
659  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
660                                TD, DT, MaxRecurse))
661    return V;
662
663  // i1 sub -> xor.
664  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
665    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
666      return V;
667
668  // Threading Sub over selects and phi nodes is pointless, so don't bother.
669  // Threading over the select in "A - select(cond, B, C)" means evaluating
670  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
671  // only if B and C are equal.  If B and C are equal then (since we assume
672  // that operands have already been simplified) "select(cond, B, C)" should
673  // have been simplified to the common value of B and C already.  Analysing
674  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
675  // for threading over phi nodes.
676
677  return 0;
678}
679
680Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
681                             const TargetData *TD, const DominatorTree *DT) {
682  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
683}
684
685/// SimplifyMulInst - Given operands for a Mul, see if we can
686/// fold the result.  If not, this returns null.
687static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
688                              const DominatorTree *DT, unsigned MaxRecurse) {
689  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
690    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
691      Constant *Ops[] = { CLHS, CRHS };
692      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
693                                      Ops, 2, TD);
694    }
695
696    // Canonicalize the constant to the RHS.
697    std::swap(Op0, Op1);
698  }
699
700  // X * undef -> 0
701  if (isa<UndefValue>(Op1))
702    return Constant::getNullValue(Op0->getType());
703
704  // X * 0 -> 0
705  if (match(Op1, m_Zero()))
706    return Op1;
707
708  // X * 1 -> X
709  if (match(Op1, m_One()))
710    return Op0;
711
712  /// i1 mul -> and.
713  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
714    if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
715      return V;
716
717  // Try some generic simplifications for associative operations.
718  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
719                                          MaxRecurse))
720    return V;
721
722  // Mul distributes over Add.  Try some generic simplifications based on this.
723  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
724                             TD, DT, MaxRecurse))
725    return V;
726
727  // If the operation is with the result of a select instruction, check whether
728  // operating on either branch of the select always yields the same value.
729  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
730    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
731                                         MaxRecurse))
732      return V;
733
734  // If the operation is with the result of a phi instruction, check whether
735  // operating on all incoming values of the phi always yields the same value.
736  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
737    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
738                                      MaxRecurse))
739      return V;
740
741  return 0;
742}
743
744Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
745                             const DominatorTree *DT) {
746  return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
747}
748
749/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
750/// fold the result.  If not, this returns null.
751static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
752                            const TargetData *TD, const DominatorTree *DT,
753                            unsigned MaxRecurse) {
754  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
755    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
756      Constant *Ops[] = { C0, C1 };
757      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
758    }
759  }
760
761  // 0 shift by X -> 0
762  if (match(Op0, m_Zero()))
763    return Op0;
764
765  // X shift by 0 -> X
766  if (match(Op1, m_Zero()))
767    return Op0;
768
769  // X shift by undef -> undef because it may shift by the bitwidth.
770  if (isa<UndefValue>(Op1))
771    return Op1;
772
773  // Shifting by the bitwidth or more is undefined.
774  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
775    if (CI->getValue().getLimitedValue() >=
776        Op0->getType()->getScalarSizeInBits())
777      return UndefValue::get(Op0->getType());
778
779  // If the operation is with the result of a select instruction, check whether
780  // operating on either branch of the select always yields the same value.
781  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
782    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
783      return V;
784
785  // If the operation is with the result of a phi instruction, check whether
786  // operating on all incoming values of the phi always yields the same value.
787  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
788    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
789      return V;
790
791  return 0;
792}
793
794/// SimplifyShlInst - Given operands for an Shl, see if we can
795/// fold the result.  If not, this returns null.
796static Value *SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
797                              const DominatorTree *DT, unsigned MaxRecurse) {
798  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
799    return V;
800
801  // undef << X -> 0
802  if (isa<UndefValue>(Op0))
803    return Constant::getNullValue(Op0->getType());
804
805  return 0;
806}
807
808Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
809                             const DominatorTree *DT) {
810  return ::SimplifyShlInst(Op0, Op1, TD, DT, RecursionLimit);
811}
812
813/// SimplifyLShrInst - Given operands for an LShr, see if we can
814/// fold the result.  If not, this returns null.
815static Value *SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
816                               const DominatorTree *DT, unsigned MaxRecurse) {
817  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
818    return V;
819
820  // undef >>l X -> 0
821  if (isa<UndefValue>(Op0))
822    return Constant::getNullValue(Op0->getType());
823
824  return 0;
825}
826
827Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
828                              const DominatorTree *DT) {
829  return ::SimplifyLShrInst(Op0, Op1, TD, DT, RecursionLimit);
830}
831
832/// SimplifyAShrInst - Given operands for an AShr, see if we can
833/// fold the result.  If not, this returns null.
834static Value *SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
835                              const DominatorTree *DT, unsigned MaxRecurse) {
836  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
837    return V;
838
839  // all ones >>a X -> all ones
840  if (match(Op0, m_AllOnes()))
841    return Op0;
842
843  // undef >>a X -> all ones
844  if (isa<UndefValue>(Op0))
845    return Constant::getAllOnesValue(Op0->getType());
846
847  return 0;
848}
849
850Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
851                              const DominatorTree *DT) {
852  return ::SimplifyAShrInst(Op0, Op1, TD, DT, RecursionLimit);
853}
854
855/// SimplifyAndInst - Given operands for an And, see if we can
856/// fold the result.  If not, this returns null.
857static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
858                              const DominatorTree *DT, unsigned MaxRecurse) {
859  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
860    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
861      Constant *Ops[] = { CLHS, CRHS };
862      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
863                                      Ops, 2, TD);
864    }
865
866    // Canonicalize the constant to the RHS.
867    std::swap(Op0, Op1);
868  }
869
870  // X & undef -> 0
871  if (isa<UndefValue>(Op1))
872    return Constant::getNullValue(Op0->getType());
873
874  // X & X = X
875  if (Op0 == Op1)
876    return Op0;
877
878  // X & 0 = 0
879  if (match(Op1, m_Zero()))
880    return Op1;
881
882  // X & -1 = X
883  if (match(Op1, m_AllOnes()))
884    return Op0;
885
886  // A & ~A  =  ~A & A  =  0
887  Value *A = 0, *B = 0;
888  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
889      (match(Op1, m_Not(m_Value(A))) && A == Op0))
890    return Constant::getNullValue(Op0->getType());
891
892  // (A | ?) & A = A
893  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
894      (A == Op1 || B == Op1))
895    return Op1;
896
897  // A & (A | ?) = A
898  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
899      (A == Op0 || B == Op0))
900    return Op0;
901
902  // Try some generic simplifications for associative operations.
903  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
904                                          MaxRecurse))
905    return V;
906
907  // And distributes over Or.  Try some generic simplifications based on this.
908  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
909                             TD, DT, MaxRecurse))
910    return V;
911
912  // And distributes over Xor.  Try some generic simplifications based on this.
913  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
914                             TD, DT, MaxRecurse))
915    return V;
916
917  // Or distributes over And.  Try some generic simplifications based on this.
918  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
919                                TD, DT, MaxRecurse))
920    return V;
921
922  // If the operation is with the result of a select instruction, check whether
923  // operating on either branch of the select always yields the same value.
924  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
925    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
926                                         MaxRecurse))
927      return V;
928
929  // If the operation is with the result of a phi instruction, check whether
930  // operating on all incoming values of the phi always yields the same value.
931  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
932    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
933                                      MaxRecurse))
934      return V;
935
936  return 0;
937}
938
939Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
940                             const DominatorTree *DT) {
941  return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
942}
943
944/// SimplifyOrInst - Given operands for an Or, see if we can
945/// fold the result.  If not, this returns null.
946static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
947                             const DominatorTree *DT, unsigned MaxRecurse) {
948  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
949    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
950      Constant *Ops[] = { CLHS, CRHS };
951      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
952                                      Ops, 2, TD);
953    }
954
955    // Canonicalize the constant to the RHS.
956    std::swap(Op0, Op1);
957  }
958
959  // X | undef -> -1
960  if (isa<UndefValue>(Op1))
961    return Constant::getAllOnesValue(Op0->getType());
962
963  // X | X = X
964  if (Op0 == Op1)
965    return Op0;
966
967  // X | 0 = X
968  if (match(Op1, m_Zero()))
969    return Op0;
970
971  // X | -1 = -1
972  if (match(Op1, m_AllOnes()))
973    return Op1;
974
975  // A | ~A  =  ~A | A  =  -1
976  Value *A = 0, *B = 0;
977  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
978      (match(Op1, m_Not(m_Value(A))) && A == Op0))
979    return Constant::getAllOnesValue(Op0->getType());
980
981  // (A & ?) | A = A
982  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
983      (A == Op1 || B == Op1))
984    return Op1;
985
986  // A | (A & ?) = A
987  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
988      (A == Op0 || B == Op0))
989    return Op0;
990
991  // Try some generic simplifications for associative operations.
992  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
993                                          MaxRecurse))
994    return V;
995
996  // Or distributes over And.  Try some generic simplifications based on this.
997  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
998                             TD, DT, MaxRecurse))
999    return V;
1000
1001  // And distributes over Or.  Try some generic simplifications based on this.
1002  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1003                                TD, DT, MaxRecurse))
1004    return V;
1005
1006  // If the operation is with the result of a select instruction, check whether
1007  // operating on either branch of the select always yields the same value.
1008  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1009    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
1010                                         MaxRecurse))
1011      return V;
1012
1013  // If the operation is with the result of a phi instruction, check whether
1014  // operating on all incoming values of the phi always yields the same value.
1015  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1016    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
1017                                      MaxRecurse))
1018      return V;
1019
1020  return 0;
1021}
1022
1023Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1024                            const DominatorTree *DT) {
1025  return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
1026}
1027
1028/// SimplifyXorInst - Given operands for a Xor, see if we can
1029/// fold the result.  If not, this returns null.
1030static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1031                              const DominatorTree *DT, unsigned MaxRecurse) {
1032  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1033    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1034      Constant *Ops[] = { CLHS, CRHS };
1035      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1036                                      Ops, 2, TD);
1037    }
1038
1039    // Canonicalize the constant to the RHS.
1040    std::swap(Op0, Op1);
1041  }
1042
1043  // A ^ undef -> undef
1044  if (isa<UndefValue>(Op1))
1045    return Op1;
1046
1047  // A ^ 0 = A
1048  if (match(Op1, m_Zero()))
1049    return Op0;
1050
1051  // A ^ A = 0
1052  if (Op0 == Op1)
1053    return Constant::getNullValue(Op0->getType());
1054
1055  // A ^ ~A  =  ~A ^ A  =  -1
1056  Value *A = 0;
1057  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1058      (match(Op1, m_Not(m_Value(A))) && A == Op0))
1059    return Constant::getAllOnesValue(Op0->getType());
1060
1061  // Try some generic simplifications for associative operations.
1062  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1063                                          MaxRecurse))
1064    return V;
1065
1066  // And distributes over Xor.  Try some generic simplifications based on this.
1067  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1068                                TD, DT, MaxRecurse))
1069    return V;
1070
1071  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1072  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1073  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1074  // only if B and C are equal.  If B and C are equal then (since we assume
1075  // that operands have already been simplified) "select(cond, B, C)" should
1076  // have been simplified to the common value of B and C already.  Analysing
1077  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1078  // for threading over phi nodes.
1079
1080  return 0;
1081}
1082
1083Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1084                             const DominatorTree *DT) {
1085  return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1086}
1087
1088static const Type *GetCompareTy(Value *Op) {
1089  return CmpInst::makeCmpResultType(Op->getType());
1090}
1091
1092/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1093/// fold the result.  If not, this returns null.
1094static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1095                               const TargetData *TD, const DominatorTree *DT,
1096                               unsigned MaxRecurse) {
1097  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1098  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1099
1100  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1101    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1102      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1103
1104    // If we have a constant, make sure it is on the RHS.
1105    std::swap(LHS, RHS);
1106    Pred = CmpInst::getSwappedPredicate(Pred);
1107  }
1108
1109  const Type *ITy = GetCompareTy(LHS); // The return type.
1110  const Type *OpTy = LHS->getType();   // The operand type.
1111
1112  // icmp X, X -> true/false
1113  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1114  // because X could be 0.
1115  if (LHS == RHS || isa<UndefValue>(RHS))
1116    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1117
1118  // Special case logic when the operands have i1 type.
1119  if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1120       cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1121    switch (Pred) {
1122    default: break;
1123    case ICmpInst::ICMP_EQ:
1124      // X == 1 -> X
1125      if (match(RHS, m_One()))
1126        return LHS;
1127      break;
1128    case ICmpInst::ICMP_NE:
1129      // X != 0 -> X
1130      if (match(RHS, m_Zero()))
1131        return LHS;
1132      break;
1133    case ICmpInst::ICMP_UGT:
1134      // X >u 0 -> X
1135      if (match(RHS, m_Zero()))
1136        return LHS;
1137      break;
1138    case ICmpInst::ICMP_UGE:
1139      // X >=u 1 -> X
1140      if (match(RHS, m_One()))
1141        return LHS;
1142      break;
1143    case ICmpInst::ICMP_SLT:
1144      // X <s 0 -> X
1145      if (match(RHS, m_Zero()))
1146        return LHS;
1147      break;
1148    case ICmpInst::ICMP_SLE:
1149      // X <=s -1 -> X
1150      if (match(RHS, m_One()))
1151        return LHS;
1152      break;
1153    }
1154  }
1155
1156  // See if we are doing a comparison with a constant.
1157  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1158    switch (Pred) {
1159    default: break;
1160    case ICmpInst::ICMP_UGT:
1161      if (CI->isMaxValue(false))                 // A >u MAX -> FALSE
1162        return ConstantInt::getFalse(CI->getContext());
1163      break;
1164    case ICmpInst::ICMP_UGE:
1165      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
1166        return ConstantInt::getTrue(CI->getContext());
1167      break;
1168    case ICmpInst::ICMP_ULT:
1169      if (CI->isMinValue(false))                 // A <u MIN -> FALSE
1170        return ConstantInt::getFalse(CI->getContext());
1171      break;
1172    case ICmpInst::ICMP_ULE:
1173      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
1174        return ConstantInt::getTrue(CI->getContext());
1175      break;
1176    case ICmpInst::ICMP_SGT:
1177      if (CI->isMaxValue(true))                  // A >s MAX -> FALSE
1178        return ConstantInt::getFalse(CI->getContext());
1179      break;
1180    case ICmpInst::ICMP_SGE:
1181      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
1182        return ConstantInt::getTrue(CI->getContext());
1183      break;
1184    case ICmpInst::ICMP_SLT:
1185      if (CI->isMinValue(true))                  // A <s MIN -> FALSE
1186        return ConstantInt::getFalse(CI->getContext());
1187      break;
1188    case ICmpInst::ICMP_SLE:
1189      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
1190        return ConstantInt::getTrue(CI->getContext());
1191      break;
1192    }
1193  }
1194
1195  // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1196  // different addresses, and what's more the address of a stack variable is
1197  // never null or equal to the address of a global.  Note that generalizing
1198  // to the case where LHS is a global variable address or null is pointless,
1199  // since if both LHS and RHS are constants then we already constant folded
1200  // the compare, and if only one of them is then we moved it to RHS already.
1201  if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1202                               isa<ConstantPointerNull>(RHS)))
1203    // We already know that LHS != LHS.
1204    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1205
1206  // If the comparison is with the result of a select instruction, check whether
1207  // comparing with either branch of the select always yields the same value.
1208  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1209    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
1210      return V;
1211
1212  // If the comparison is with the result of a phi instruction, check whether
1213  // doing the compare with each incoming phi value yields a common result.
1214  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1215    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
1216      return V;
1217
1218  return 0;
1219}
1220
1221Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1222                              const TargetData *TD, const DominatorTree *DT) {
1223  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
1224}
1225
1226/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
1227/// fold the result.  If not, this returns null.
1228static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1229                               const TargetData *TD, const DominatorTree *DT,
1230                               unsigned MaxRecurse) {
1231  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1232  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
1233
1234  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1235    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1236      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1237
1238    // If we have a constant, make sure it is on the RHS.
1239    std::swap(LHS, RHS);
1240    Pred = CmpInst::getSwappedPredicate(Pred);
1241  }
1242
1243  // Fold trivial predicates.
1244  if (Pred == FCmpInst::FCMP_FALSE)
1245    return ConstantInt::get(GetCompareTy(LHS), 0);
1246  if (Pred == FCmpInst::FCMP_TRUE)
1247    return ConstantInt::get(GetCompareTy(LHS), 1);
1248
1249  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
1250    return UndefValue::get(GetCompareTy(LHS));
1251
1252  // fcmp x,x -> true/false.  Not all compares are foldable.
1253  if (LHS == RHS) {
1254    if (CmpInst::isTrueWhenEqual(Pred))
1255      return ConstantInt::get(GetCompareTy(LHS), 1);
1256    if (CmpInst::isFalseWhenEqual(Pred))
1257      return ConstantInt::get(GetCompareTy(LHS), 0);
1258  }
1259
1260  // Handle fcmp with constant RHS
1261  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1262    // If the constant is a nan, see if we can fold the comparison based on it.
1263    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1264      if (CFP->getValueAPF().isNaN()) {
1265        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
1266          return ConstantInt::getFalse(CFP->getContext());
1267        assert(FCmpInst::isUnordered(Pred) &&
1268               "Comparison must be either ordered or unordered!");
1269        // True if unordered.
1270        return ConstantInt::getTrue(CFP->getContext());
1271      }
1272      // Check whether the constant is an infinity.
1273      if (CFP->getValueAPF().isInfinity()) {
1274        if (CFP->getValueAPF().isNegative()) {
1275          switch (Pred) {
1276          case FCmpInst::FCMP_OLT:
1277            // No value is ordered and less than negative infinity.
1278            return ConstantInt::getFalse(CFP->getContext());
1279          case FCmpInst::FCMP_UGE:
1280            // All values are unordered with or at least negative infinity.
1281            return ConstantInt::getTrue(CFP->getContext());
1282          default:
1283            break;
1284          }
1285        } else {
1286          switch (Pred) {
1287          case FCmpInst::FCMP_OGT:
1288            // No value is ordered and greater than infinity.
1289            return ConstantInt::getFalse(CFP->getContext());
1290          case FCmpInst::FCMP_ULE:
1291            // All values are unordered with and at most infinity.
1292            return ConstantInt::getTrue(CFP->getContext());
1293          default:
1294            break;
1295          }
1296        }
1297      }
1298    }
1299  }
1300
1301  // If the comparison is with the result of a select instruction, check whether
1302  // comparing with either branch of the select always yields the same value.
1303  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1304    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
1305      return V;
1306
1307  // If the comparison is with the result of a phi instruction, check whether
1308  // doing the compare with each incoming phi value yields a common result.
1309  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1310    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
1311      return V;
1312
1313  return 0;
1314}
1315
1316Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1317                              const TargetData *TD, const DominatorTree *DT) {
1318  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
1319}
1320
1321/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
1322/// the result.  If not, this returns null.
1323Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
1324                                const TargetData *TD, const DominatorTree *) {
1325  // select true, X, Y  -> X
1326  // select false, X, Y -> Y
1327  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
1328    return CB->getZExtValue() ? TrueVal : FalseVal;
1329
1330  // select C, X, X -> X
1331  if (TrueVal == FalseVal)
1332    return TrueVal;
1333
1334  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
1335    return FalseVal;
1336  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
1337    return TrueVal;
1338  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
1339    if (isa<Constant>(TrueVal))
1340      return TrueVal;
1341    return FalseVal;
1342  }
1343
1344  return 0;
1345}
1346
1347/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
1348/// fold the result.  If not, this returns null.
1349Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
1350                             const TargetData *TD, const DominatorTree *) {
1351  // The type of the GEP pointer operand.
1352  const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
1353
1354  // getelementptr P -> P.
1355  if (NumOps == 1)
1356    return Ops[0];
1357
1358  if (isa<UndefValue>(Ops[0])) {
1359    // Compute the (pointer) type returned by the GEP instruction.
1360    const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
1361                                                             NumOps-1);
1362    const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
1363    return UndefValue::get(GEPTy);
1364  }
1365
1366  if (NumOps == 2) {
1367    // getelementptr P, 0 -> P.
1368    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
1369      if (C->isZero())
1370        return Ops[0];
1371    // getelementptr P, N -> P if P points to a type of zero size.
1372    if (TD) {
1373      const Type *Ty = PtrTy->getElementType();
1374      if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
1375        return Ops[0];
1376    }
1377  }
1378
1379  // Check to see if this is constant foldable.
1380  for (unsigned i = 0; i != NumOps; ++i)
1381    if (!isa<Constant>(Ops[i]))
1382      return 0;
1383
1384  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
1385                                        (Constant *const*)Ops+1, NumOps-1);
1386}
1387
1388/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
1389static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
1390  // If all of the PHI's incoming values are the same then replace the PHI node
1391  // with the common value.
1392  Value *CommonValue = 0;
1393  bool HasUndefInput = false;
1394  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1395    Value *Incoming = PN->getIncomingValue(i);
1396    // If the incoming value is the phi node itself, it can safely be skipped.
1397    if (Incoming == PN) continue;
1398    if (isa<UndefValue>(Incoming)) {
1399      // Remember that we saw an undef value, but otherwise ignore them.
1400      HasUndefInput = true;
1401      continue;
1402    }
1403    if (CommonValue && Incoming != CommonValue)
1404      return 0;  // Not the same, bail out.
1405    CommonValue = Incoming;
1406  }
1407
1408  // If CommonValue is null then all of the incoming values were either undef or
1409  // equal to the phi node itself.
1410  if (!CommonValue)
1411    return UndefValue::get(PN->getType());
1412
1413  // If we have a PHI node like phi(X, undef, X), where X is defined by some
1414  // instruction, we cannot return X as the result of the PHI node unless it
1415  // dominates the PHI block.
1416  if (HasUndefInput)
1417    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
1418
1419  return CommonValue;
1420}
1421
1422
1423//=== Helper functions for higher up the class hierarchy.
1424
1425/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
1426/// fold the result.  If not, this returns null.
1427static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
1428                            const TargetData *TD, const DominatorTree *DT,
1429                            unsigned MaxRecurse) {
1430  switch (Opcode) {
1431  case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false,
1432                                                /* isNUW */ false, TD, DT,
1433                                                MaxRecurse);
1434  case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false,
1435                                                /* isNUW */ false, TD, DT,
1436                                                MaxRecurse);
1437  case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
1438  case Instruction::Shl: return SimplifyShlInst(LHS, RHS, TD, DT, MaxRecurse);
1439  case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, TD, DT, MaxRecurse);
1440  case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, TD, DT, MaxRecurse);
1441  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
1442  case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
1443  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
1444  default:
1445    if (Constant *CLHS = dyn_cast<Constant>(LHS))
1446      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1447        Constant *COps[] = {CLHS, CRHS};
1448        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
1449      }
1450
1451    // If the operation is associative, try some generic simplifications.
1452    if (Instruction::isAssociative(Opcode))
1453      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
1454                                              MaxRecurse))
1455        return V;
1456
1457    // If the operation is with the result of a select instruction, check whether
1458    // operating on either branch of the select always yields the same value.
1459    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1460      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
1461                                           MaxRecurse))
1462        return V;
1463
1464    // If the operation is with the result of a phi instruction, check whether
1465    // operating on all incoming values of the phi always yields the same value.
1466    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1467      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
1468        return V;
1469
1470    return 0;
1471  }
1472}
1473
1474Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
1475                           const TargetData *TD, const DominatorTree *DT) {
1476  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
1477}
1478
1479/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
1480/// fold the result.
1481static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1482                              const TargetData *TD, const DominatorTree *DT,
1483                              unsigned MaxRecurse) {
1484  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
1485    return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1486  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1487}
1488
1489Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1490                             const TargetData *TD, const DominatorTree *DT) {
1491  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
1492}
1493
1494/// SimplifyInstruction - See if we can compute a simplified version of this
1495/// instruction.  If not, this returns null.
1496Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
1497                                 const DominatorTree *DT) {
1498  Value *Result;
1499
1500  switch (I->getOpcode()) {
1501  default:
1502    Result = ConstantFoldInstruction(I, TD);
1503    break;
1504  case Instruction::Add:
1505    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
1506                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
1507                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1508                             TD, DT);
1509    break;
1510  case Instruction::Sub:
1511    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
1512                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
1513                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1514                             TD, DT);
1515    break;
1516  case Instruction::Mul:
1517    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
1518    break;
1519  case Instruction::Shl:
1520    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), TD, DT);
1521    break;
1522  case Instruction::LShr:
1523    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1524    break;
1525  case Instruction::AShr:
1526    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1527    break;
1528  case Instruction::And:
1529    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
1530    break;
1531  case Instruction::Or:
1532    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1533    break;
1534  case Instruction::Xor:
1535    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
1536    break;
1537  case Instruction::ICmp:
1538    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
1539                              I->getOperand(0), I->getOperand(1), TD, DT);
1540    break;
1541  case Instruction::FCmp:
1542    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
1543                              I->getOperand(0), I->getOperand(1), TD, DT);
1544    break;
1545  case Instruction::Select:
1546    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
1547                                I->getOperand(2), TD, DT);
1548    break;
1549  case Instruction::GetElementPtr: {
1550    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1551    Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
1552    break;
1553  }
1554  case Instruction::PHI:
1555    Result = SimplifyPHINode(cast<PHINode>(I), DT);
1556    break;
1557  }
1558
1559  /// If called on unreachable code, the above logic may report that the
1560  /// instruction simplified to itself.  Make life easier for users by
1561  /// detecting that case here, returning a safe value instead.
1562  return Result == I ? UndefValue::get(I->getType()) : Result;
1563}
1564
1565/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
1566/// delete the From instruction.  In addition to a basic RAUW, this does a
1567/// recursive simplification of the newly formed instructions.  This catches
1568/// things where one simplification exposes other opportunities.  This only
1569/// simplifies and deletes scalar operations, it does not change the CFG.
1570///
1571void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
1572                                     const TargetData *TD,
1573                                     const DominatorTree *DT) {
1574  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
1575
1576  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
1577  // we can know if it gets deleted out from under us or replaced in a
1578  // recursive simplification.
1579  WeakVH FromHandle(From);
1580  WeakVH ToHandle(To);
1581
1582  while (!From->use_empty()) {
1583    // Update the instruction to use the new value.
1584    Use &TheUse = From->use_begin().getUse();
1585    Instruction *User = cast<Instruction>(TheUse.getUser());
1586    TheUse = To;
1587
1588    // Check to see if the instruction can be folded due to the operand
1589    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
1590    // the 'or' with -1.
1591    Value *SimplifiedVal;
1592    {
1593      // Sanity check to make sure 'User' doesn't dangle across
1594      // SimplifyInstruction.
1595      AssertingVH<> UserHandle(User);
1596
1597      SimplifiedVal = SimplifyInstruction(User, TD, DT);
1598      if (SimplifiedVal == 0) continue;
1599    }
1600
1601    // Recursively simplify this user to the new value.
1602    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
1603    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
1604    To = ToHandle;
1605
1606    assert(ToHandle && "To value deleted by recursive simplification?");
1607
1608    // If the recursive simplification ended up revisiting and deleting
1609    // 'From' then we're done.
1610    if (From == 0)
1611      return;
1612  }
1613
1614  // If 'From' has value handles referring to it, do a real RAUW to update them.
1615  From->replaceAllUsesWith(To);
1616
1617  From->eraseFromParent();
1618}
1619