InstructionSimplify.cpp revision d261dc650a01ac5c51ab10f97f1e35aa6a770721
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  For example, this does
12// constant folding, and can handle identities like (X&0)->0.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Analysis/Dominators.h"
19#include "llvm/Support/PatternMatch.h"
20#include "llvm/Support/ValueHandle.h"
21using namespace llvm;
22using namespace llvm::PatternMatch;
23
24#define RecursionLimit 3
25
26static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
27                            const DominatorTree *, unsigned);
28static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
29                              const DominatorTree *, unsigned);
30
31/// ValueDominatesPHI - Does the given value dominate the specified phi node?
32static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
33  Instruction *I = dyn_cast<Instruction>(V);
34  if (!I)
35    // Arguments and constants dominate all instructions.
36    return true;
37
38  // If we have a DominatorTree then do a precise test.
39  if (DT)
40    return DT->dominates(I, P);
41
42  // Otherwise, if the instruction is in the entry block, and is not an invoke,
43  // then it obviously dominates all phi nodes.
44  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
45      !isa<InvokeInst>(I))
46    return true;
47
48  return false;
49}
50
51/// ThreadBinOpOverSelect - In the case of a binary operation with a select
52/// instruction as an operand, try to simplify the binop by seeing whether
53/// evaluating it on both branches of the select results in the same value.
54/// Returns the common value if so, otherwise returns null.
55static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
56                                    const TargetData *TD,
57                                    const DominatorTree *DT,
58                                    unsigned MaxRecurse) {
59  SelectInst *SI;
60  if (isa<SelectInst>(LHS)) {
61    SI = cast<SelectInst>(LHS);
62  } else {
63    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
64    SI = cast<SelectInst>(RHS);
65  }
66
67  // Evaluate the BinOp on the true and false branches of the select.
68  Value *TV;
69  Value *FV;
70  if (SI == LHS) {
71    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
72    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
73  } else {
74    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
75    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
76  }
77
78  // If they simplified to the same value, then return the common value.
79  // If they both failed to simplify then return null.
80  if (TV == FV)
81    return TV;
82
83  // If one branch simplified to undef, return the other one.
84  if (TV && isa<UndefValue>(TV))
85    return FV;
86  if (FV && isa<UndefValue>(FV))
87    return TV;
88
89  // If applying the operation did not change the true and false select values,
90  // then the result of the binop is the select itself.
91  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
92    return SI;
93
94  // If one branch simplified and the other did not, and the simplified
95  // value is equal to the unsimplified one, return the simplified value.
96  // For example, select (cond, X, X & Z) & Z -> X & Z.
97  if ((FV && !TV) || (TV && !FV)) {
98    // Check that the simplified value has the form "X op Y" where "op" is the
99    // same as the original operation.
100    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
101    if (Simplified && Simplified->getOpcode() == Opcode) {
102      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
103      // We already know that "op" is the same as for the simplified value.  See
104      // if the operands match too.  If so, return the simplified value.
105      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
106      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
107      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
108      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
109          Simplified->getOperand(1) == UnsimplifiedRHS)
110        return Simplified;
111      if (Simplified->isCommutative() &&
112          Simplified->getOperand(1) == UnsimplifiedLHS &&
113          Simplified->getOperand(0) == UnsimplifiedRHS)
114        return Simplified;
115    }
116  }
117
118  return 0;
119}
120
121/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
122/// try to simplify the comparison by seeing whether both branches of the select
123/// result in the same value.  Returns the common value if so, otherwise returns
124/// null.
125static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
126                                  Value *RHS, const TargetData *TD,
127                                  const DominatorTree *DT,
128                                  unsigned MaxRecurse) {
129  // Make sure the select is on the LHS.
130  if (!isa<SelectInst>(LHS)) {
131    std::swap(LHS, RHS);
132    Pred = CmpInst::getSwappedPredicate(Pred);
133  }
134  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
135  SelectInst *SI = cast<SelectInst>(LHS);
136
137  // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
138  // Does "cmp TV, RHS" simplify?
139  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
140                                    MaxRecurse))
141    // It does!  Does "cmp FV, RHS" simplify?
142    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
143                                      MaxRecurse))
144      // It does!  If they simplified to the same value, then use it as the
145      // result of the original comparison.
146      if (TCmp == FCmp)
147        return TCmp;
148  return 0;
149}
150
151/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
152/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
153/// it on the incoming phi values yields the same result for every value.  If so
154/// returns the common value, otherwise returns null.
155static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
156                                 const TargetData *TD, const DominatorTree *DT,
157                                 unsigned MaxRecurse) {
158  PHINode *PI;
159  if (isa<PHINode>(LHS)) {
160    PI = cast<PHINode>(LHS);
161    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
162    if (!ValueDominatesPHI(RHS, PI, DT))
163      return 0;
164  } else {
165    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
166    PI = cast<PHINode>(RHS);
167    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
168    if (!ValueDominatesPHI(LHS, PI, DT))
169      return 0;
170  }
171
172  // Evaluate the BinOp on the incoming phi values.
173  Value *CommonValue = 0;
174  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
175    Value *Incoming = PI->getIncomingValue(i);
176    // If the incoming value is the phi node itself, it can safely be skipped.
177    if (Incoming == PI) continue;
178    Value *V = PI == LHS ?
179      SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
180      SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
181    // If the operation failed to simplify, or simplified to a different value
182    // to previously, then give up.
183    if (!V || (CommonValue && V != CommonValue))
184      return 0;
185    CommonValue = V;
186  }
187
188  return CommonValue;
189}
190
191/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
192/// try to simplify the comparison by seeing whether comparing with all of the
193/// incoming phi values yields the same result every time.  If so returns the
194/// common result, otherwise returns null.
195static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
196                               const TargetData *TD, const DominatorTree *DT,
197                               unsigned MaxRecurse) {
198  // Make sure the phi is on the LHS.
199  if (!isa<PHINode>(LHS)) {
200    std::swap(LHS, RHS);
201    Pred = CmpInst::getSwappedPredicate(Pred);
202  }
203  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
204  PHINode *PI = cast<PHINode>(LHS);
205
206  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
207  if (!ValueDominatesPHI(RHS, PI, DT))
208    return 0;
209
210  // Evaluate the BinOp on the incoming phi values.
211  Value *CommonValue = 0;
212  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
213    Value *Incoming = PI->getIncomingValue(i);
214    // If the incoming value is the phi node itself, it can safely be skipped.
215    if (Incoming == PI) continue;
216    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
217    // If the operation failed to simplify, or simplified to a different value
218    // to previously, then give up.
219    if (!V || (CommonValue && V != CommonValue))
220      return 0;
221    CommonValue = V;
222  }
223
224  return CommonValue;
225}
226
227/// SimplifyAddInst - Given operands for an Add, see if we can
228/// fold the result.  If not, this returns null.
229Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
230                             const TargetData *TD, const DominatorTree *) {
231  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
232    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
233      Constant *Ops[] = { CLHS, CRHS };
234      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
235                                      Ops, 2, TD);
236    }
237
238    // Canonicalize the constant to the RHS.
239    std::swap(Op0, Op1);
240  }
241
242  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
243    // X + undef -> undef
244    if (isa<UndefValue>(Op1C))
245      return Op1C;
246
247    // X + 0 --> X
248    if (Op1C->isNullValue())
249      return Op0;
250  }
251
252  // FIXME: Could pull several more out of instcombine.
253  return 0;
254}
255
256/// SimplifyAndInst - Given operands for an And, see if we can
257/// fold the result.  If not, this returns null.
258static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
259                              const DominatorTree *DT, unsigned MaxRecurse) {
260  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
261    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
262      Constant *Ops[] = { CLHS, CRHS };
263      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
264                                      Ops, 2, TD);
265    }
266
267    // Canonicalize the constant to the RHS.
268    std::swap(Op0, Op1);
269  }
270
271  // X & undef -> 0
272  if (isa<UndefValue>(Op1))
273    return Constant::getNullValue(Op0->getType());
274
275  // X & X = X
276  if (Op0 == Op1)
277    return Op0;
278
279  // X & <0,0> = <0,0>
280  if (isa<ConstantAggregateZero>(Op1))
281    return Op1;
282
283  // X & <-1,-1> = X
284  if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
285    if (CP->isAllOnesValue())
286      return Op0;
287
288  if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
289    // X & 0 = 0
290    if (Op1CI->isZero())
291      return Op1CI;
292    // X & -1 = X
293    if (Op1CI->isAllOnesValue())
294      return Op0;
295  }
296
297  // A & ~A  =  ~A & A  =  0
298  Value *A, *B;
299  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
300      (match(Op1, m_Not(m_Value(A))) && A == Op0))
301    return Constant::getNullValue(Op0->getType());
302
303  // (A | ?) & A = A
304  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
305      (A == Op1 || B == Op1))
306    return Op1;
307
308  // A & (A | ?) = A
309  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
310      (A == Op0 || B == Op0))
311    return Op0;
312
313  // (A & B) & A -> A & B
314  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
315      (A == Op1 || B == Op1))
316    return Op0;
317
318  // A & (A & B) -> A & B
319  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
320      (A == Op0 || B == Op0))
321    return Op1;
322
323  // If the operation is with the result of a select instruction, check whether
324  // operating on either branch of the select always yields the same value.
325  if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
326    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
327                                         MaxRecurse-1))
328      return V;
329
330  // If the operation is with the result of a phi instruction, check whether
331  // operating on all incoming values of the phi always yields the same value.
332  if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
333    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
334                                      MaxRecurse-1))
335      return V;
336
337  return 0;
338}
339
340Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
341                             const DominatorTree *DT) {
342  return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
343}
344
345/// SimplifyOrInst - Given operands for an Or, see if we can
346/// fold the result.  If not, this returns null.
347static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
348                             const DominatorTree *DT, unsigned MaxRecurse) {
349  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
350    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
351      Constant *Ops[] = { CLHS, CRHS };
352      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
353                                      Ops, 2, TD);
354    }
355
356    // Canonicalize the constant to the RHS.
357    std::swap(Op0, Op1);
358  }
359
360  // X | undef -> -1
361  if (isa<UndefValue>(Op1))
362    return Constant::getAllOnesValue(Op0->getType());
363
364  // X | X = X
365  if (Op0 == Op1)
366    return Op0;
367
368  // X | <0,0> = X
369  if (isa<ConstantAggregateZero>(Op1))
370    return Op0;
371
372  // X | <-1,-1> = <-1,-1>
373  if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
374    if (CP->isAllOnesValue())
375      return Op1;
376
377  if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
378    // X | 0 = X
379    if (Op1CI->isZero())
380      return Op0;
381    // X | -1 = -1
382    if (Op1CI->isAllOnesValue())
383      return Op1CI;
384  }
385
386  // A | ~A  =  ~A | A  =  -1
387  Value *A, *B;
388  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
389      (match(Op1, m_Not(m_Value(A))) && A == Op0))
390    return Constant::getAllOnesValue(Op0->getType());
391
392  // (A & ?) | A = A
393  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
394      (A == Op1 || B == Op1))
395    return Op1;
396
397  // A | (A & ?) = A
398  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
399      (A == Op0 || B == Op0))
400    return Op0;
401
402  // (A | B) | A -> A | B
403  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
404      (A == Op1 || B == Op1))
405    return Op0;
406
407  // A | (A | B) -> A | B
408  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
409      (A == Op0 || B == Op0))
410    return Op1;
411
412  // If the operation is with the result of a select instruction, check whether
413  // operating on either branch of the select always yields the same value.
414  if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
415    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
416                                         MaxRecurse-1))
417      return V;
418
419  // If the operation is with the result of a phi instruction, check whether
420  // operating on all incoming values of the phi always yields the same value.
421  if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
422    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
423                                      MaxRecurse-1))
424      return V;
425
426  return 0;
427}
428
429Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
430                            const DominatorTree *DT) {
431  return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
432}
433
434static const Type *GetCompareTy(Value *Op) {
435  return CmpInst::makeCmpResultType(Op->getType());
436}
437
438/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
439/// fold the result.  If not, this returns null.
440static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
441                               const TargetData *TD, const DominatorTree *DT,
442                               unsigned MaxRecurse) {
443  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
444  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
445
446  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
447    if (Constant *CRHS = dyn_cast<Constant>(RHS))
448      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
449
450    // If we have a constant, make sure it is on the RHS.
451    std::swap(LHS, RHS);
452    Pred = CmpInst::getSwappedPredicate(Pred);
453  }
454
455  // ITy - This is the return type of the compare we're considering.
456  const Type *ITy = GetCompareTy(LHS);
457
458  // icmp X, X -> true/false
459  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
460  // because X could be 0.
461  if (LHS == RHS || isa<UndefValue>(RHS))
462    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
463
464  // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
465  // addresses never equal each other!  We already know that Op0 != Op1.
466  if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) ||
467       isa<ConstantPointerNull>(LHS)) &&
468      (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
469       isa<ConstantPointerNull>(RHS)))
470    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
471
472  // See if we are doing a comparison with a constant.
473  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
474    // If we have an icmp le or icmp ge instruction, turn it into the
475    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
476    // them being folded in the code below.
477    switch (Pred) {
478    default: break;
479    case ICmpInst::ICMP_ULE:
480      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
481        return ConstantInt::getTrue(CI->getContext());
482      break;
483    case ICmpInst::ICMP_SLE:
484      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
485        return ConstantInt::getTrue(CI->getContext());
486      break;
487    case ICmpInst::ICMP_UGE:
488      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
489        return ConstantInt::getTrue(CI->getContext());
490      break;
491    case ICmpInst::ICMP_SGE:
492      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
493        return ConstantInt::getTrue(CI->getContext());
494      break;
495    }
496  }
497
498  // If the comparison is with the result of a select instruction, check whether
499  // comparing with either branch of the select always yields the same value.
500  if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
501    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
502      return V;
503
504  // If the comparison is with the result of a phi instruction, check whether
505  // doing the compare with each incoming phi value yields a common result.
506  if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
507    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
508      return V;
509
510  return 0;
511}
512
513Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
514                              const TargetData *TD, const DominatorTree *DT) {
515  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
516}
517
518/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
519/// fold the result.  If not, this returns null.
520static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
521                               const TargetData *TD, const DominatorTree *DT,
522                               unsigned MaxRecurse) {
523  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
524  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
525
526  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
527    if (Constant *CRHS = dyn_cast<Constant>(RHS))
528      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
529
530    // If we have a constant, make sure it is on the RHS.
531    std::swap(LHS, RHS);
532    Pred = CmpInst::getSwappedPredicate(Pred);
533  }
534
535  // Fold trivial predicates.
536  if (Pred == FCmpInst::FCMP_FALSE)
537    return ConstantInt::get(GetCompareTy(LHS), 0);
538  if (Pred == FCmpInst::FCMP_TRUE)
539    return ConstantInt::get(GetCompareTy(LHS), 1);
540
541  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
542    return UndefValue::get(GetCompareTy(LHS));
543
544  // fcmp x,x -> true/false.  Not all compares are foldable.
545  if (LHS == RHS) {
546    if (CmpInst::isTrueWhenEqual(Pred))
547      return ConstantInt::get(GetCompareTy(LHS), 1);
548    if (CmpInst::isFalseWhenEqual(Pred))
549      return ConstantInt::get(GetCompareTy(LHS), 0);
550  }
551
552  // Handle fcmp with constant RHS
553  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
554    // If the constant is a nan, see if we can fold the comparison based on it.
555    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
556      if (CFP->getValueAPF().isNaN()) {
557        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
558          return ConstantInt::getFalse(CFP->getContext());
559        assert(FCmpInst::isUnordered(Pred) &&
560               "Comparison must be either ordered or unordered!");
561        // True if unordered.
562        return ConstantInt::getTrue(CFP->getContext());
563      }
564      // Check whether the constant is an infinity.
565      if (CFP->getValueAPF().isInfinity()) {
566        if (CFP->getValueAPF().isNegative()) {
567          switch (Pred) {
568          case FCmpInst::FCMP_OLT:
569            // No value is ordered and less than negative infinity.
570            return ConstantInt::getFalse(CFP->getContext());
571          case FCmpInst::FCMP_UGE:
572            // All values are unordered with or at least negative infinity.
573            return ConstantInt::getTrue(CFP->getContext());
574          default:
575            break;
576          }
577        } else {
578          switch (Pred) {
579          case FCmpInst::FCMP_OGT:
580            // No value is ordered and greater than infinity.
581            return ConstantInt::getFalse(CFP->getContext());
582          case FCmpInst::FCMP_ULE:
583            // All values are unordered with and at most infinity.
584            return ConstantInt::getTrue(CFP->getContext());
585          default:
586            break;
587          }
588        }
589      }
590    }
591  }
592
593  // If the comparison is with the result of a select instruction, check whether
594  // comparing with either branch of the select always yields the same value.
595  if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
596    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
597      return V;
598
599  // If the comparison is with the result of a phi instruction, check whether
600  // doing the compare with each incoming phi value yields a common result.
601  if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
602    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
603      return V;
604
605  return 0;
606}
607
608Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
609                              const TargetData *TD, const DominatorTree *DT) {
610  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
611}
612
613/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
614/// the result.  If not, this returns null.
615Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
616                                const TargetData *TD, const DominatorTree *) {
617  // select true, X, Y  -> X
618  // select false, X, Y -> Y
619  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
620    return CB->getZExtValue() ? TrueVal : FalseVal;
621
622  // select C, X, X -> X
623  if (TrueVal == FalseVal)
624    return TrueVal;
625
626  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
627    return FalseVal;
628  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
629    return TrueVal;
630  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
631    if (isa<Constant>(TrueVal))
632      return TrueVal;
633    return FalseVal;
634  }
635
636  return 0;
637}
638
639/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
640/// fold the result.  If not, this returns null.
641Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
642                             const TargetData *TD, const DominatorTree *) {
643  // getelementptr P -> P.
644  if (NumOps == 1)
645    return Ops[0];
646
647  // TODO.
648  //if (isa<UndefValue>(Ops[0]))
649  //  return UndefValue::get(GEP.getType());
650
651  // getelementptr P, 0 -> P.
652  if (NumOps == 2)
653    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
654      if (C->isZero())
655        return Ops[0];
656
657  // Check to see if this is constant foldable.
658  for (unsigned i = 0; i != NumOps; ++i)
659    if (!isa<Constant>(Ops[i]))
660      return 0;
661
662  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
663                                        (Constant *const*)Ops+1, NumOps-1);
664}
665
666/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
667static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
668  // If all of the PHI's incoming values are the same then replace the PHI node
669  // with the common value.
670  Value *CommonValue = 0;
671  bool HasUndefInput = false;
672  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
673    Value *Incoming = PN->getIncomingValue(i);
674    // If the incoming value is the phi node itself, it can safely be skipped.
675    if (Incoming == PN) continue;
676    if (isa<UndefValue>(Incoming)) {
677      // Remember that we saw an undef value, but otherwise ignore them.
678      HasUndefInput = true;
679      continue;
680    }
681    if (CommonValue && Incoming != CommonValue)
682      return 0;  // Not the same, bail out.
683    CommonValue = Incoming;
684  }
685
686  // If CommonValue is null then all of the incoming values were either undef or
687  // equal to the phi node itself.
688  if (!CommonValue)
689    return UndefValue::get(PN->getType());
690
691  // If we have a PHI node like phi(X, undef, X), where X is defined by some
692  // instruction, we cannot return X as the result of the PHI node unless it
693  // dominates the PHI block.
694  if (HasUndefInput)
695    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
696
697  return CommonValue;
698}
699
700
701//=== Helper functions for higher up the class hierarchy.
702
703/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
704/// fold the result.  If not, this returns null.
705static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
706                            const TargetData *TD, const DominatorTree *DT,
707                            unsigned MaxRecurse) {
708  switch (Opcode) {
709  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
710  case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
711  default:
712    if (Constant *CLHS = dyn_cast<Constant>(LHS))
713      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
714        Constant *COps[] = {CLHS, CRHS};
715        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
716      }
717
718    // If the operation is with the result of a select instruction, check whether
719    // operating on either branch of the select always yields the same value.
720    if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
721      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
722                                           MaxRecurse-1))
723        return V;
724
725    // If the operation is with the result of a phi instruction, check whether
726    // operating on all incoming values of the phi always yields the same value.
727    if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
728      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse-1))
729        return V;
730
731    return 0;
732  }
733}
734
735Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
736                           const TargetData *TD, const DominatorTree *DT) {
737  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
738}
739
740/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
741/// fold the result.
742static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
743                              const TargetData *TD, const DominatorTree *DT,
744                              unsigned MaxRecurse) {
745  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
746    return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
747  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
748}
749
750Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
751                             const TargetData *TD, const DominatorTree *DT) {
752  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
753}
754
755/// SimplifyInstruction - See if we can compute a simplified version of this
756/// instruction.  If not, this returns null.
757Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
758                                 const DominatorTree *DT) {
759  Value *Result;
760
761  switch (I->getOpcode()) {
762  default:
763    Result = ConstantFoldInstruction(I, TD);
764    break;
765  case Instruction::Add:
766    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
767                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
768                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
769                             TD, DT);
770    break;
771  case Instruction::And:
772    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
773    break;
774  case Instruction::Or:
775    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
776    break;
777  case Instruction::ICmp:
778    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
779                              I->getOperand(0), I->getOperand(1), TD, DT);
780    break;
781  case Instruction::FCmp:
782    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
783                              I->getOperand(0), I->getOperand(1), TD, DT);
784    break;
785  case Instruction::Select:
786    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
787                                I->getOperand(2), TD, DT);
788    break;
789  case Instruction::GetElementPtr: {
790    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
791    Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
792    break;
793  }
794  case Instruction::PHI:
795    Result = SimplifyPHINode(cast<PHINode>(I), DT);
796    break;
797  }
798
799  /// If called on unreachable code, the above logic may report that the
800  /// instruction simplified to itself.  Make life easier for users by
801  /// detecting that case here, returning null if it occurs.
802  return Result == I ? 0 : Result;
803}
804
805/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
806/// delete the From instruction.  In addition to a basic RAUW, this does a
807/// recursive simplification of the newly formed instructions.  This catches
808/// things where one simplification exposes other opportunities.  This only
809/// simplifies and deletes scalar operations, it does not change the CFG.
810///
811void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
812                                     const TargetData *TD,
813                                     const DominatorTree *DT) {
814  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
815
816  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
817  // we can know if it gets deleted out from under us or replaced in a
818  // recursive simplification.
819  WeakVH FromHandle(From);
820  WeakVH ToHandle(To);
821
822  while (!From->use_empty()) {
823    // Update the instruction to use the new value.
824    Use &TheUse = From->use_begin().getUse();
825    Instruction *User = cast<Instruction>(TheUse.getUser());
826    TheUse = To;
827
828    // Check to see if the instruction can be folded due to the operand
829    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
830    // the 'or' with -1.
831    Value *SimplifiedVal;
832    {
833      // Sanity check to make sure 'User' doesn't dangle across
834      // SimplifyInstruction.
835      AssertingVH<> UserHandle(User);
836
837      SimplifiedVal = SimplifyInstruction(User, TD, DT);
838      if (SimplifiedVal == 0) continue;
839    }
840
841    // Recursively simplify this user to the new value.
842    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
843    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
844    To = ToHandle;
845
846    assert(ToHandle && "To value deleted by recursive simplification?");
847
848    // If the recursive simplification ended up revisiting and deleting
849    // 'From' then we're done.
850    if (From == 0)
851      return;
852  }
853
854  // If 'From' has value handles referring to it, do a real RAUW to update them.
855  From->replaceAllUsesWith(To);
856
857  From->eraseFromParent();
858}
859