InstructionSimplify.cpp revision eff0581583ef10e2872e9baf537a04b67d992101
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  For example, this does
12// constant folding, and can handle identities like (X&0)->0.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Support/ValueHandle.h"
19#include "llvm/Instructions.h"
20#include "llvm/Support/PatternMatch.h"
21using namespace llvm;
22using namespace llvm::PatternMatch;
23
24#define MaxRecursionDepth 3
25
26static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
27                            unsigned);
28static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
29                              unsigned);
30
31/// ThreadBinOpOverSelect - In the case of a binary operation with a select
32/// instruction as an operand, try to simplify the binop by seeing whether
33/// evaluating it on both branches of the select results in the same value.
34/// Returns the common value if so, otherwise returns null.
35static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
36                                    const TargetData *TD, unsigned MaxRecurse) {
37  SelectInst *SI;
38  if (isa<SelectInst>(LHS)) {
39    SI = cast<SelectInst>(LHS);
40  } else {
41    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
42    SI = cast<SelectInst>(RHS);
43  }
44
45  // Evaluate the BinOp on the true and false branches of the select.
46  Value *TV;
47  Value *FV;
48  if (SI == LHS) {
49    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, MaxRecurse);
50    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, MaxRecurse);
51  } else {
52    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, MaxRecurse);
53    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, MaxRecurse);
54  }
55
56  // If they simplified to the same value, then return the common value.
57  // If they both failed to simplify then return null.
58  if (TV == FV)
59    return TV;
60
61  // If one branch simplified to undef, return the other one.
62  if (TV && isa<UndefValue>(TV))
63    return FV;
64  if (FV && isa<UndefValue>(FV))
65    return TV;
66
67  // If applying the operation did not change the true and false select values,
68  // then the result of the binop is the select itself.
69  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
70    return SI;
71
72  // If one branch simplified and the other did not, and the simplified
73  // value is equal to the unsimplified one, return the simplified value.
74  // For example, select (cond, X, X & Z) & Z -> X & Z.
75  if ((FV && !TV) || (TV && !FV)) {
76    // Check that the simplified value has the form "X op Y" where "op" is the
77    // same as the original operation.
78    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
79    if (Simplified && Simplified->getOpcode() == Opcode) {
80      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
81      // We already know that "op" is the same as for the simplified value.  See
82      // if the operands match too.  If so, return the simplified value.
83      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
84      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
85      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
86      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
87          Simplified->getOperand(1) == UnsimplifiedRHS)
88        return Simplified;
89      if (Simplified->isCommutative() &&
90          Simplified->getOperand(1) == UnsimplifiedLHS &&
91          Simplified->getOperand(0) == UnsimplifiedRHS)
92        return Simplified;
93    }
94  }
95
96  return 0;
97}
98
99/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
100/// try to simplify the comparison by seeing whether both branches of the select
101/// result in the same value.  Returns the common value if so, otherwise returns
102/// null.
103static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
104                                  Value *RHS, const TargetData *TD,
105                                  unsigned MaxRecurse) {
106  // Make sure the select is on the LHS.
107  if (!isa<SelectInst>(LHS)) {
108    std::swap(LHS, RHS);
109    Pred = CmpInst::getSwappedPredicate(Pred);
110  }
111  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
112  SelectInst *SI = cast<SelectInst>(LHS);
113
114  // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
115  // Does "cmp TV, RHS" simplify?
116  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD,
117                                    MaxRecurse))
118    // It does!  Does "cmp FV, RHS" simplify?
119    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD,
120                                      MaxRecurse))
121      // It does!  If they simplified to the same value, then use it as the
122      // result of the original comparison.
123      if (TCmp == FCmp)
124        return TCmp;
125  return 0;
126}
127
128/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
129/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
130/// it on the incoming phi values yields the same result for every value.  If so
131/// returns the common value, otherwise returns null.
132static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
133                                 const TargetData *TD, unsigned MaxRecurse) {
134  PHINode *PI;
135  if (isa<PHINode>(LHS)) {
136    PI = cast<PHINode>(LHS);
137  } else {
138    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
139    PI = cast<PHINode>(RHS);
140  }
141
142  // Evaluate the BinOp on the incoming phi values.
143  Value *CommonValue = 0;
144  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
145    Value *V = PI == LHS ?
146      SimplifyBinOp(Opcode, PI->getIncomingValue(i), RHS, TD, MaxRecurse) :
147      SimplifyBinOp(Opcode, LHS, PI->getIncomingValue(i), TD, MaxRecurse);
148    // If the operation failed to simplify, or simplified to a different value
149    // to previously, then give up.
150    if (!V || (CommonValue && V != CommonValue))
151      return 0;
152    CommonValue = V;
153  }
154
155  return CommonValue;
156}
157
158/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
159/// try to simplify the comparison by seeing whether comparing with all of the
160/// incoming phi values yields the same result every time.  If so returns the
161/// common result, otherwise returns null.
162static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
163                               const TargetData *TD, unsigned MaxRecurse) {
164  // Make sure the phi is on the LHS.
165  if (!isa<PHINode>(LHS)) {
166    std::swap(LHS, RHS);
167    Pred = CmpInst::getSwappedPredicate(Pred);
168  }
169  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
170  PHINode *PI = cast<PHINode>(LHS);
171
172  // Evaluate the BinOp on the incoming phi values.
173  Value *CommonValue = 0;
174  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
175    Value *V = SimplifyCmpInst(Pred, PI->getIncomingValue(i), RHS, TD,
176                               MaxRecurse);
177    // If the operation failed to simplify, or simplified to a different value
178    // to previously, then give up.
179    if (!V || (CommonValue && V != CommonValue))
180      return 0;
181    CommonValue = V;
182  }
183
184  return CommonValue;
185}
186
187/// SimplifyAddInst - Given operands for an Add, see if we can
188/// fold the result.  If not, this returns null.
189Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
190                             const TargetData *TD) {
191  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
192    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
193      Constant *Ops[] = { CLHS, CRHS };
194      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
195                                      Ops, 2, TD);
196    }
197
198    // Canonicalize the constant to the RHS.
199    std::swap(Op0, Op1);
200  }
201
202  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
203    // X + undef -> undef
204    if (isa<UndefValue>(Op1C))
205      return Op1C;
206
207    // X + 0 --> X
208    if (Op1C->isNullValue())
209      return Op0;
210  }
211
212  // FIXME: Could pull several more out of instcombine.
213  return 0;
214}
215
216/// SimplifyAndInst - Given operands for an And, see if we can
217/// fold the result.  If not, this returns null.
218static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
219                              unsigned MaxRecurse) {
220  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
221    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
222      Constant *Ops[] = { CLHS, CRHS };
223      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
224                                      Ops, 2, TD);
225    }
226
227    // Canonicalize the constant to the RHS.
228    std::swap(Op0, Op1);
229  }
230
231  // X & undef -> 0
232  if (isa<UndefValue>(Op1))
233    return Constant::getNullValue(Op0->getType());
234
235  // X & X = X
236  if (Op0 == Op1)
237    return Op0;
238
239  // X & <0,0> = <0,0>
240  if (isa<ConstantAggregateZero>(Op1))
241    return Op1;
242
243  // X & <-1,-1> = X
244  if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
245    if (CP->isAllOnesValue())
246      return Op0;
247
248  if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
249    // X & 0 = 0
250    if (Op1CI->isZero())
251      return Op1CI;
252    // X & -1 = X
253    if (Op1CI->isAllOnesValue())
254      return Op0;
255  }
256
257  // A & ~A  =  ~A & A  =  0
258  Value *A, *B;
259  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
260      (match(Op1, m_Not(m_Value(A))) && A == Op0))
261    return Constant::getNullValue(Op0->getType());
262
263  // (A | ?) & A = A
264  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
265      (A == Op1 || B == Op1))
266    return Op1;
267
268  // A & (A | ?) = A
269  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
270      (A == Op0 || B == Op0))
271    return Op0;
272
273  // (A & B) & A -> A & B
274  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
275      (A == Op1 || B == Op1))
276    return Op0;
277
278  // A & (A & B) -> A & B
279  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
280      (A == Op0 || B == Op0))
281    return Op1;
282
283  // If the operation is with the result of a select instruction, check whether
284  // operating on either branch of the select always yields the same value.
285  if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
286    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD,
287                                         MaxRecurse-1))
288      return V;
289
290  // If the operation is with the result of a phi instruction, check whether
291  // operating on all incoming values of the phi always yields the same value.
292  if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
293    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD,
294                                      MaxRecurse-1))
295      return V;
296
297  return 0;
298}
299
300Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD) {
301  return ::SimplifyAndInst(Op0, Op1, TD, MaxRecursionDepth);
302}
303
304/// SimplifyOrInst - Given operands for an Or, see if we can
305/// fold the result.  If not, this returns null.
306static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
307                             unsigned MaxRecurse) {
308  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
309    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
310      Constant *Ops[] = { CLHS, CRHS };
311      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
312                                      Ops, 2, TD);
313    }
314
315    // Canonicalize the constant to the RHS.
316    std::swap(Op0, Op1);
317  }
318
319  // X | undef -> -1
320  if (isa<UndefValue>(Op1))
321    return Constant::getAllOnesValue(Op0->getType());
322
323  // X | X = X
324  if (Op0 == Op1)
325    return Op0;
326
327  // X | <0,0> = X
328  if (isa<ConstantAggregateZero>(Op1))
329    return Op0;
330
331  // X | <-1,-1> = <-1,-1>
332  if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
333    if (CP->isAllOnesValue())
334      return Op1;
335
336  if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
337    // X | 0 = X
338    if (Op1CI->isZero())
339      return Op0;
340    // X | -1 = -1
341    if (Op1CI->isAllOnesValue())
342      return Op1CI;
343  }
344
345  // A | ~A  =  ~A | A  =  -1
346  Value *A, *B;
347  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
348      (match(Op1, m_Not(m_Value(A))) && A == Op0))
349    return Constant::getAllOnesValue(Op0->getType());
350
351  // (A & ?) | A = A
352  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
353      (A == Op1 || B == Op1))
354    return Op1;
355
356  // A | (A & ?) = A
357  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
358      (A == Op0 || B == Op0))
359    return Op0;
360
361  // (A | B) | A -> A | B
362  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
363      (A == Op1 || B == Op1))
364    return Op0;
365
366  // A | (A | B) -> A | B
367  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
368      (A == Op0 || B == Op0))
369    return Op1;
370
371  // If the operation is with the result of a select instruction, check whether
372  // operating on either branch of the select always yields the same value.
373  if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
374    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD,
375                                         MaxRecurse-1))
376      return V;
377
378  // If the operation is with the result of a phi instruction, check whether
379  // operating on all incoming values of the phi always yields the same value.
380  if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
381    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD,
382                                      MaxRecurse-1))
383      return V;
384
385  return 0;
386}
387
388Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD) {
389  return ::SimplifyOrInst(Op0, Op1, TD, MaxRecursionDepth);
390}
391
392static const Type *GetCompareTy(Value *Op) {
393  return CmpInst::makeCmpResultType(Op->getType());
394}
395
396/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
397/// fold the result.  If not, this returns null.
398static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
399                               const TargetData *TD, unsigned MaxRecurse) {
400  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
401  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
402
403  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
404    if (Constant *CRHS = dyn_cast<Constant>(RHS))
405      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
406
407    // If we have a constant, make sure it is on the RHS.
408    std::swap(LHS, RHS);
409    Pred = CmpInst::getSwappedPredicate(Pred);
410  }
411
412  // ITy - This is the return type of the compare we're considering.
413  const Type *ITy = GetCompareTy(LHS);
414
415  // icmp X, X -> true/false
416  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
417  // because X could be 0.
418  if (LHS == RHS || isa<UndefValue>(RHS))
419    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
420
421  // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
422  // addresses never equal each other!  We already know that Op0 != Op1.
423  if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) ||
424       isa<ConstantPointerNull>(LHS)) &&
425      (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
426       isa<ConstantPointerNull>(RHS)))
427    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
428
429  // See if we are doing a comparison with a constant.
430  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
431    // If we have an icmp le or icmp ge instruction, turn it into the
432    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
433    // them being folded in the code below.
434    switch (Pred) {
435    default: break;
436    case ICmpInst::ICMP_ULE:
437      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
438        return ConstantInt::getTrue(CI->getContext());
439      break;
440    case ICmpInst::ICMP_SLE:
441      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
442        return ConstantInt::getTrue(CI->getContext());
443      break;
444    case ICmpInst::ICMP_UGE:
445      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
446        return ConstantInt::getTrue(CI->getContext());
447      break;
448    case ICmpInst::ICMP_SGE:
449      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
450        return ConstantInt::getTrue(CI->getContext());
451      break;
452    }
453  }
454
455  // If the comparison is with the result of a select instruction, check whether
456  // comparing with either branch of the select always yields the same value.
457  if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
458    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, MaxRecurse-1))
459      return V;
460
461  // If the comparison is with the result of a phi instruction, check whether
462  // doing the compare with each incoming phi value yields a common result.
463  if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
464    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, MaxRecurse-1))
465      return V;
466
467  return 0;
468}
469
470Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
471                              const TargetData *TD) {
472  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, MaxRecursionDepth);
473}
474
475/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
476/// fold the result.  If not, this returns null.
477static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
478                               const TargetData *TD, unsigned MaxRecurse) {
479  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
480  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
481
482  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
483    if (Constant *CRHS = dyn_cast<Constant>(RHS))
484      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
485
486    // If we have a constant, make sure it is on the RHS.
487    std::swap(LHS, RHS);
488    Pred = CmpInst::getSwappedPredicate(Pred);
489  }
490
491  // Fold trivial predicates.
492  if (Pred == FCmpInst::FCMP_FALSE)
493    return ConstantInt::get(GetCompareTy(LHS), 0);
494  if (Pred == FCmpInst::FCMP_TRUE)
495    return ConstantInt::get(GetCompareTy(LHS), 1);
496
497  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
498    return UndefValue::get(GetCompareTy(LHS));
499
500  // fcmp x,x -> true/false.  Not all compares are foldable.
501  if (LHS == RHS) {
502    if (CmpInst::isTrueWhenEqual(Pred))
503      return ConstantInt::get(GetCompareTy(LHS), 1);
504    if (CmpInst::isFalseWhenEqual(Pred))
505      return ConstantInt::get(GetCompareTy(LHS), 0);
506  }
507
508  // Handle fcmp with constant RHS
509  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
510    // If the constant is a nan, see if we can fold the comparison based on it.
511    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
512      if (CFP->getValueAPF().isNaN()) {
513        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
514          return ConstantInt::getFalse(CFP->getContext());
515        assert(FCmpInst::isUnordered(Pred) &&
516               "Comparison must be either ordered or unordered!");
517        // True if unordered.
518        return ConstantInt::getTrue(CFP->getContext());
519      }
520      // Check whether the constant is an infinity.
521      if (CFP->getValueAPF().isInfinity()) {
522        if (CFP->getValueAPF().isNegative()) {
523          switch (Pred) {
524          case FCmpInst::FCMP_OLT:
525            // No value is ordered and less than negative infinity.
526            return ConstantInt::getFalse(CFP->getContext());
527          case FCmpInst::FCMP_UGE:
528            // All values are unordered with or at least negative infinity.
529            return ConstantInt::getTrue(CFP->getContext());
530          default:
531            break;
532          }
533        } else {
534          switch (Pred) {
535          case FCmpInst::FCMP_OGT:
536            // No value is ordered and greater than infinity.
537            return ConstantInt::getFalse(CFP->getContext());
538          case FCmpInst::FCMP_ULE:
539            // All values are unordered with and at most infinity.
540            return ConstantInt::getTrue(CFP->getContext());
541          default:
542            break;
543          }
544        }
545      }
546    }
547  }
548
549  // If the comparison is with the result of a select instruction, check whether
550  // comparing with either branch of the select always yields the same value.
551  if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
552    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, MaxRecurse-1))
553      return V;
554
555  // If the comparison is with the result of a phi instruction, check whether
556  // doing the compare with each incoming phi value yields a common result.
557  if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
558    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, MaxRecurse-1))
559      return V;
560
561  return 0;
562}
563
564Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
565                              const TargetData *TD) {
566  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, MaxRecursionDepth);
567}
568
569/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
570/// the result.  If not, this returns null.
571Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
572                                const TargetData *TD) {
573  // select true, X, Y  -> X
574  // select false, X, Y -> Y
575  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
576    return CB->getZExtValue() ? TrueVal : FalseVal;
577
578  // select C, X, X -> X
579  if (TrueVal == FalseVal)
580    return TrueVal;
581
582  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
583    return FalseVal;
584  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
585    return TrueVal;
586  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
587    if (isa<Constant>(TrueVal))
588      return TrueVal;
589    return FalseVal;
590  }
591
592  return 0;
593}
594
595
596/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
597/// fold the result.  If not, this returns null.
598Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
599                             const TargetData *TD) {
600  // getelementptr P -> P.
601  if (NumOps == 1)
602    return Ops[0];
603
604  // TODO.
605  //if (isa<UndefValue>(Ops[0]))
606  //  return UndefValue::get(GEP.getType());
607
608  // getelementptr P, 0 -> P.
609  if (NumOps == 2)
610    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
611      if (C->isZero())
612        return Ops[0];
613
614  // Check to see if this is constant foldable.
615  for (unsigned i = 0; i != NumOps; ++i)
616    if (!isa<Constant>(Ops[i]))
617      return 0;
618
619  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
620                                        (Constant *const*)Ops+1, NumOps-1);
621}
622
623
624//=== Helper functions for higher up the class hierarchy.
625
626/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
627/// fold the result.  If not, this returns null.
628static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
629                            const TargetData *TD, unsigned MaxRecurse) {
630  switch (Opcode) {
631  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, MaxRecurse);
632  case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD, MaxRecurse);
633  default:
634    if (Constant *CLHS = dyn_cast<Constant>(LHS))
635      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
636        Constant *COps[] = {CLHS, CRHS};
637        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
638      }
639
640    // If the operation is with the result of a select instruction, check whether
641    // operating on either branch of the select always yields the same value.
642    if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
643      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, MaxRecurse-1))
644        return V;
645
646    // If the operation is with the result of a phi instruction, check whether
647    // operating on all incoming values of the phi always yields the same value.
648    if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
649      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, MaxRecurse-1))
650        return V;
651
652    return 0;
653  }
654}
655
656Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
657                           const TargetData *TD) {
658  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, MaxRecursionDepth);
659}
660
661/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
662/// fold the result.
663static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
664                              const TargetData *TD, unsigned MaxRecurse) {
665  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
666    return SimplifyICmpInst(Predicate, LHS, RHS, TD, MaxRecurse);
667  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, MaxRecurse);
668}
669
670Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
671                             const TargetData *TD) {
672  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, MaxRecursionDepth);
673}
674
675/// SimplifyInstruction - See if we can compute a simplified version of this
676/// instruction.  If not, this returns null.
677Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
678                                 const DominatorTree *DT) {
679  switch (I->getOpcode()) {
680  default:
681    return ConstantFoldInstruction(I, TD);
682  case Instruction::Add:
683    return SimplifyAddInst(I->getOperand(0), I->getOperand(1),
684                           cast<BinaryOperator>(I)->hasNoSignedWrap(),
685                           cast<BinaryOperator>(I)->hasNoUnsignedWrap(), TD);
686  case Instruction::And:
687    return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD);
688  case Instruction::Or:
689    return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD);
690  case Instruction::ICmp:
691    return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
692                            I->getOperand(0), I->getOperand(1), TD);
693  case Instruction::FCmp:
694    return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
695                            I->getOperand(0), I->getOperand(1), TD);
696  case Instruction::Select:
697    return SimplifySelectInst(I->getOperand(0), I->getOperand(1),
698                              I->getOperand(2), TD);
699  case Instruction::GetElementPtr: {
700    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
701    return SimplifyGEPInst(&Ops[0], Ops.size(), TD);
702  }
703  case Instruction::PHI:
704    return cast<PHINode>(I)->hasConstantValue(DT);
705  }
706}
707
708/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
709/// delete the From instruction.  In addition to a basic RAUW, this does a
710/// recursive simplification of the newly formed instructions.  This catches
711/// things where one simplification exposes other opportunities.  This only
712/// simplifies and deletes scalar operations, it does not change the CFG.
713///
714void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
715                                     const TargetData *TD,
716                                     const DominatorTree *DT) {
717  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
718
719  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
720  // we can know if it gets deleted out from under us or replaced in a
721  // recursive simplification.
722  WeakVH FromHandle(From);
723  WeakVH ToHandle(To);
724
725  while (!From->use_empty()) {
726    // Update the instruction to use the new value.
727    Use &TheUse = From->use_begin().getUse();
728    Instruction *User = cast<Instruction>(TheUse.getUser());
729    TheUse = To;
730
731    // Check to see if the instruction can be folded due to the operand
732    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
733    // the 'or' with -1.
734    Value *SimplifiedVal;
735    {
736      // Sanity check to make sure 'User' doesn't dangle across
737      // SimplifyInstruction.
738      AssertingVH<> UserHandle(User);
739
740      SimplifiedVal = SimplifyInstruction(User, TD, DT);
741      if (SimplifiedVal == 0) continue;
742    }
743
744    // Recursively simplify this user to the new value.
745    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
746    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
747    To = ToHandle;
748
749    assert(ToHandle && "To value deleted by recursive simplification?");
750
751    // If the recursive simplification ended up revisiting and deleting
752    // 'From' then we're done.
753    if (From == 0)
754      return;
755  }
756
757  // If 'From' has value handles referring to it, do a real RAUW to update them.
758  From->replaceAllUsesWith(To);
759
760  From->eraseFromParent();
761}
762