Lint.cpp revision f3b8c7659979ff481e7a15fa3406b280e425cf0d
1//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass statically checks for common and easily-identified constructs
11// which produce undefined or likely unintended behavior in LLVM IR.
12//
13// It is not a guarantee of correctness, in two ways. First, it isn't
14// comprehensive. There are checks which could be done statically which are
15// not yet implemented. Some of these are indicated by TODO comments, but
16// those aren't comprehensive either. Second, many conditions cannot be
17// checked statically. This pass does no dynamic instrumentation, so it
18// can't check for all possible problems.
19//
20// Another limitation is that it assumes all code will be executed. A store
21// through a null pointer in a basic block which is never reached is harmless,
22// but this pass will warn about it anyway. This is the main reason why most
23// of these checks live here instead of in the Verifier pass.
24//
25// Optimization passes may make conditions that this pass checks for more or
26// less obvious. If an optimization pass appears to be introducing a warning,
27// it may be that the optimization pass is merely exposing an existing
28// condition in the code.
29//
30// This code may be run before instcombine. In many cases, instcombine checks
31// for the same kinds of things and turns instructions with undefined behavior
32// into unreachable (or equivalent). Because of this, this pass makes some
33// effort to look through bitcasts and so on.
34//
35//===----------------------------------------------------------------------===//
36
37#include "llvm/Analysis/Passes.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/InstructionSimplify.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/Dominators.h"
42#include "llvm/Analysis/Lint.h"
43#include "llvm/Analysis/Loads.h"
44#include "llvm/Analysis/ValueTracking.h"
45#include "llvm/Assembly/Writer.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Pass.h"
48#include "llvm/PassManager.h"
49#include "llvm/IntrinsicInst.h"
50#include "llvm/Function.h"
51#include "llvm/Support/CallSite.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/InstVisitor.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/ADT/STLExtras.h"
56using namespace llvm;
57
58namespace {
59  namespace MemRef {
60    static unsigned Read     = 1;
61    static unsigned Write    = 2;
62    static unsigned Callee   = 4;
63    static unsigned Branchee = 8;
64  }
65
66  class Lint : public FunctionPass, public InstVisitor<Lint> {
67    friend class InstVisitor<Lint>;
68
69    void visitFunction(Function &F);
70
71    void visitCallSite(CallSite CS);
72    void visitMemoryReference(Instruction &I, Value *Ptr,
73                              uint64_t Size, unsigned Align,
74                              const Type *Ty, unsigned Flags);
75
76    void visitCallInst(CallInst &I);
77    void visitInvokeInst(InvokeInst &I);
78    void visitReturnInst(ReturnInst &I);
79    void visitLoadInst(LoadInst &I);
80    void visitStoreInst(StoreInst &I);
81    void visitXor(BinaryOperator &I);
82    void visitSub(BinaryOperator &I);
83    void visitLShr(BinaryOperator &I);
84    void visitAShr(BinaryOperator &I);
85    void visitShl(BinaryOperator &I);
86    void visitSDiv(BinaryOperator &I);
87    void visitUDiv(BinaryOperator &I);
88    void visitSRem(BinaryOperator &I);
89    void visitURem(BinaryOperator &I);
90    void visitAllocaInst(AllocaInst &I);
91    void visitVAArgInst(VAArgInst &I);
92    void visitIndirectBrInst(IndirectBrInst &I);
93    void visitExtractElementInst(ExtractElementInst &I);
94    void visitInsertElementInst(InsertElementInst &I);
95    void visitUnreachableInst(UnreachableInst &I);
96
97    Value *findValue(Value *V, bool OffsetOk) const;
98    Value *findValueImpl(Value *V, bool OffsetOk,
99                         SmallPtrSet<Value *, 4> &Visited) const;
100
101  public:
102    Module *Mod;
103    AliasAnalysis *AA;
104    DominatorTree *DT;
105    TargetData *TD;
106
107    std::string Messages;
108    raw_string_ostream MessagesStr;
109
110    static char ID; // Pass identification, replacement for typeid
111    Lint() : FunctionPass(ID), MessagesStr(Messages) {
112      initializeLintPass(*PassRegistry::getPassRegistry());
113    }
114
115    virtual bool runOnFunction(Function &F);
116
117    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
118      AU.setPreservesAll();
119      AU.addRequired<AliasAnalysis>();
120      AU.addRequired<DominatorTree>();
121    }
122    virtual void print(raw_ostream &O, const Module *M) const {}
123
124    void WriteValue(const Value *V) {
125      if (!V) return;
126      if (isa<Instruction>(V)) {
127        MessagesStr << *V << '\n';
128      } else {
129        WriteAsOperand(MessagesStr, V, true, Mod);
130        MessagesStr << '\n';
131      }
132    }
133
134    // CheckFailed - A check failed, so print out the condition and the message
135    // that failed.  This provides a nice place to put a breakpoint if you want
136    // to see why something is not correct.
137    void CheckFailed(const Twine &Message,
138                     const Value *V1 = 0, const Value *V2 = 0,
139                     const Value *V3 = 0, const Value *V4 = 0) {
140      MessagesStr << Message.str() << "\n";
141      WriteValue(V1);
142      WriteValue(V2);
143      WriteValue(V3);
144      WriteValue(V4);
145    }
146  };
147}
148
149char Lint::ID = 0;
150INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
151                      false, true)
152INITIALIZE_PASS_DEPENDENCY(DominatorTree)
153INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
154INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
155                    false, true)
156
157// Assert - We know that cond should be true, if not print an error message.
158#define Assert(C, M) \
159    do { if (!(C)) { CheckFailed(M); return; } } while (0)
160#define Assert1(C, M, V1) \
161    do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
162#define Assert2(C, M, V1, V2) \
163    do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
164#define Assert3(C, M, V1, V2, V3) \
165    do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
166#define Assert4(C, M, V1, V2, V3, V4) \
167    do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
168
169// Lint::run - This is the main Analysis entry point for a
170// function.
171//
172bool Lint::runOnFunction(Function &F) {
173  Mod = F.getParent();
174  AA = &getAnalysis<AliasAnalysis>();
175  DT = &getAnalysis<DominatorTree>();
176  TD = getAnalysisIfAvailable<TargetData>();
177  visit(F);
178  dbgs() << MessagesStr.str();
179  Messages.clear();
180  return false;
181}
182
183void Lint::visitFunction(Function &F) {
184  // This isn't undefined behavior, it's just a little unusual, and it's a
185  // fairly common mistake to neglect to name a function.
186  Assert1(F.hasName() || F.hasLocalLinkage(),
187          "Unusual: Unnamed function with non-local linkage", &F);
188
189  // TODO: Check for irreducible control flow.
190}
191
192void Lint::visitCallSite(CallSite CS) {
193  Instruction &I = *CS.getInstruction();
194  Value *Callee = CS.getCalledValue();
195
196  visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
197                       0, 0, MemRef::Callee);
198
199  if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
200    Assert1(CS.getCallingConv() == F->getCallingConv(),
201            "Undefined behavior: Caller and callee calling convention differ",
202            &I);
203
204    const FunctionType *FT = F->getFunctionType();
205    unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
206
207    Assert1(FT->isVarArg() ?
208              FT->getNumParams() <= NumActualArgs :
209              FT->getNumParams() == NumActualArgs,
210            "Undefined behavior: Call argument count mismatches callee "
211            "argument count", &I);
212
213    Assert1(FT->getReturnType() == I.getType(),
214            "Undefined behavior: Call return type mismatches "
215            "callee return type", &I);
216
217    // Check argument types (in case the callee was casted) and attributes.
218    // TODO: Verify that caller and callee attributes are compatible.
219    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
220    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
221    for (; AI != AE; ++AI) {
222      Value *Actual = *AI;
223      if (PI != PE) {
224        Argument *Formal = PI++;
225        Assert1(Formal->getType() == Actual->getType(),
226                "Undefined behavior: Call argument type mismatches "
227                "callee parameter type", &I);
228
229        // Check that noalias arguments don't alias other arguments. The
230        // AliasAnalysis API isn't expressive enough for what we really want
231        // to do. Known partial overlap is not distinguished from the case
232        // where nothing is known.
233        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
234          for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
235            Assert1(AI == BI ||
236                    !(*BI)->getType()->isPointerTy() ||
237                    AA->alias(*AI, *BI) != AliasAnalysis::MustAlias,
238                    "Unusual: noalias argument aliases another argument", &I);
239
240        // Check that an sret argument points to valid memory.
241        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
242          const Type *Ty =
243            cast<PointerType>(Formal->getType())->getElementType();
244          visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
245                               TD ? TD->getABITypeAlignment(Ty) : 0,
246                               Ty, MemRef::Read | MemRef::Write);
247        }
248      }
249    }
250  }
251
252  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
253    for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
254         AI != AE; ++AI) {
255      Value *Obj = findValue(*AI, /*OffsetOk=*/true);
256      Assert1(!isa<AllocaInst>(Obj),
257              "Undefined behavior: Call with \"tail\" keyword references "
258              "alloca", &I);
259    }
260
261
262  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
263    switch (II->getIntrinsicID()) {
264    default: break;
265
266    // TODO: Check more intrinsics
267
268    case Intrinsic::memcpy: {
269      MemCpyInst *MCI = cast<MemCpyInst>(&I);
270      // TODO: If the size is known, use it.
271      visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
272                           MCI->getAlignment(), 0,
273                           MemRef::Write);
274      visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
275                           MCI->getAlignment(), 0,
276                           MemRef::Read);
277
278      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
279      // isn't expressive enough for what we really want to do. Known partial
280      // overlap is not distinguished from the case where nothing is known.
281      uint64_t Size = 0;
282      if (const ConstantInt *Len =
283            dyn_cast<ConstantInt>(findValue(MCI->getLength(),
284                                            /*OffsetOk=*/false)))
285        if (Len->getValue().isIntN(32))
286          Size = Len->getValue().getZExtValue();
287      Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
288              AliasAnalysis::MustAlias,
289              "Undefined behavior: memcpy source and destination overlap", &I);
290      break;
291    }
292    case Intrinsic::memmove: {
293      MemMoveInst *MMI = cast<MemMoveInst>(&I);
294      // TODO: If the size is known, use it.
295      visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
296                           MMI->getAlignment(), 0,
297                           MemRef::Write);
298      visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
299                           MMI->getAlignment(), 0,
300                           MemRef::Read);
301      break;
302    }
303    case Intrinsic::memset: {
304      MemSetInst *MSI = cast<MemSetInst>(&I);
305      // TODO: If the size is known, use it.
306      visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
307                           MSI->getAlignment(), 0,
308                           MemRef::Write);
309      break;
310    }
311
312    case Intrinsic::vastart:
313      Assert1(I.getParent()->getParent()->isVarArg(),
314              "Undefined behavior: va_start called in a non-varargs function",
315              &I);
316
317      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
318                           0, 0, MemRef::Read | MemRef::Write);
319      break;
320    case Intrinsic::vacopy:
321      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
322                           0, 0, MemRef::Write);
323      visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
324                           0, 0, MemRef::Read);
325      break;
326    case Intrinsic::vaend:
327      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
328                           0, 0, MemRef::Read | MemRef::Write);
329      break;
330
331    case Intrinsic::stackrestore:
332      // Stackrestore doesn't read or write memory, but it sets the
333      // stack pointer, which the compiler may read from or write to
334      // at any time, so check it for both readability and writeability.
335      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
336                           0, 0, MemRef::Read | MemRef::Write);
337      break;
338    }
339}
340
341void Lint::visitCallInst(CallInst &I) {
342  return visitCallSite(&I);
343}
344
345void Lint::visitInvokeInst(InvokeInst &I) {
346  return visitCallSite(&I);
347}
348
349void Lint::visitReturnInst(ReturnInst &I) {
350  Function *F = I.getParent()->getParent();
351  Assert1(!F->doesNotReturn(),
352          "Unusual: Return statement in function with noreturn attribute",
353          &I);
354
355  if (Value *V = I.getReturnValue()) {
356    Value *Obj = findValue(V, /*OffsetOk=*/true);
357    Assert1(!isa<AllocaInst>(Obj),
358            "Unusual: Returning alloca value", &I);
359  }
360}
361
362// TODO: Check that the reference is in bounds.
363// TODO: Check readnone/readonly function attributes.
364void Lint::visitMemoryReference(Instruction &I,
365                                Value *Ptr, uint64_t Size, unsigned Align,
366                                const Type *Ty, unsigned Flags) {
367  // If no memory is being referenced, it doesn't matter if the pointer
368  // is valid.
369  if (Size == 0)
370    return;
371
372  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
373  Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
374          "Undefined behavior: Null pointer dereference", &I);
375  Assert1(!isa<UndefValue>(UnderlyingObject),
376          "Undefined behavior: Undef pointer dereference", &I);
377  Assert1(!isa<ConstantInt>(UnderlyingObject) ||
378          !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
379          "Unusual: All-ones pointer dereference", &I);
380  Assert1(!isa<ConstantInt>(UnderlyingObject) ||
381          !cast<ConstantInt>(UnderlyingObject)->isOne(),
382          "Unusual: Address one pointer dereference", &I);
383
384  if (Flags & MemRef::Write) {
385    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
386      Assert1(!GV->isConstant(),
387              "Undefined behavior: Write to read-only memory", &I);
388    Assert1(!isa<Function>(UnderlyingObject) &&
389            !isa<BlockAddress>(UnderlyingObject),
390            "Undefined behavior: Write to text section", &I);
391  }
392  if (Flags & MemRef::Read) {
393    Assert1(!isa<Function>(UnderlyingObject),
394            "Unusual: Load from function body", &I);
395    Assert1(!isa<BlockAddress>(UnderlyingObject),
396            "Undefined behavior: Load from block address", &I);
397  }
398  if (Flags & MemRef::Callee) {
399    Assert1(!isa<BlockAddress>(UnderlyingObject),
400            "Undefined behavior: Call to block address", &I);
401  }
402  if (Flags & MemRef::Branchee) {
403    Assert1(!isa<Constant>(UnderlyingObject) ||
404            isa<BlockAddress>(UnderlyingObject),
405            "Undefined behavior: Branch to non-blockaddress", &I);
406  }
407
408  if (TD) {
409    if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty);
410
411    if (Align != 0) {
412      unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType());
413      APInt Mask = APInt::getAllOnesValue(BitWidth),
414                   KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
415      ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD);
416      Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))),
417              "Undefined behavior: Memory reference address is misaligned", &I);
418    }
419  }
420}
421
422void Lint::visitLoadInst(LoadInst &I) {
423  visitMemoryReference(I, I.getPointerOperand(),
424                       AA->getTypeStoreSize(I.getType()), I.getAlignment(),
425                       I.getType(), MemRef::Read);
426}
427
428void Lint::visitStoreInst(StoreInst &I) {
429  visitMemoryReference(I, I.getPointerOperand(),
430                       AA->getTypeStoreSize(I.getOperand(0)->getType()),
431                       I.getAlignment(),
432                       I.getOperand(0)->getType(), MemRef::Write);
433}
434
435void Lint::visitXor(BinaryOperator &I) {
436  Assert1(!isa<UndefValue>(I.getOperand(0)) ||
437          !isa<UndefValue>(I.getOperand(1)),
438          "Undefined result: xor(undef, undef)", &I);
439}
440
441void Lint::visitSub(BinaryOperator &I) {
442  Assert1(!isa<UndefValue>(I.getOperand(0)) ||
443          !isa<UndefValue>(I.getOperand(1)),
444          "Undefined result: sub(undef, undef)", &I);
445}
446
447void Lint::visitLShr(BinaryOperator &I) {
448  if (ConstantInt *CI =
449        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
450    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
451            "Undefined result: Shift count out of range", &I);
452}
453
454void Lint::visitAShr(BinaryOperator &I) {
455  if (ConstantInt *CI =
456        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
457    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
458            "Undefined result: Shift count out of range", &I);
459}
460
461void Lint::visitShl(BinaryOperator &I) {
462  if (ConstantInt *CI =
463        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
464    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
465            "Undefined result: Shift count out of range", &I);
466}
467
468static bool isZero(Value *V, TargetData *TD) {
469  // Assume undef could be zero.
470  if (isa<UndefValue>(V)) return true;
471
472  unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
473  APInt Mask = APInt::getAllOnesValue(BitWidth),
474               KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
475  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
476  return KnownZero.isAllOnesValue();
477}
478
479void Lint::visitSDiv(BinaryOperator &I) {
480  Assert1(!isZero(I.getOperand(1), TD),
481          "Undefined behavior: Division by zero", &I);
482}
483
484void Lint::visitUDiv(BinaryOperator &I) {
485  Assert1(!isZero(I.getOperand(1), TD),
486          "Undefined behavior: Division by zero", &I);
487}
488
489void Lint::visitSRem(BinaryOperator &I) {
490  Assert1(!isZero(I.getOperand(1), TD),
491          "Undefined behavior: Division by zero", &I);
492}
493
494void Lint::visitURem(BinaryOperator &I) {
495  Assert1(!isZero(I.getOperand(1), TD),
496          "Undefined behavior: Division by zero", &I);
497}
498
499void Lint::visitAllocaInst(AllocaInst &I) {
500  if (isa<ConstantInt>(I.getArraySize()))
501    // This isn't undefined behavior, it's just an obvious pessimization.
502    Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
503            "Pessimization: Static alloca outside of entry block", &I);
504
505  // TODO: Check for an unusual size (MSB set?)
506}
507
508void Lint::visitVAArgInst(VAArgInst &I) {
509  visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
510                       MemRef::Read | MemRef::Write);
511}
512
513void Lint::visitIndirectBrInst(IndirectBrInst &I) {
514  visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
515                       MemRef::Branchee);
516
517  Assert1(I.getNumDestinations() != 0,
518          "Undefined behavior: indirectbr with no destinations", &I);
519}
520
521void Lint::visitExtractElementInst(ExtractElementInst &I) {
522  if (ConstantInt *CI =
523        dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
524                                        /*OffsetOk=*/false)))
525    Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
526            "Undefined result: extractelement index out of range", &I);
527}
528
529void Lint::visitInsertElementInst(InsertElementInst &I) {
530  if (ConstantInt *CI =
531        dyn_cast<ConstantInt>(findValue(I.getOperand(2),
532                                        /*OffsetOk=*/false)))
533    Assert1(CI->getValue().ult(I.getType()->getNumElements()),
534            "Undefined result: insertelement index out of range", &I);
535}
536
537void Lint::visitUnreachableInst(UnreachableInst &I) {
538  // This isn't undefined behavior, it's merely suspicious.
539  Assert1(&I == I.getParent()->begin() ||
540          prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
541          "Unusual: unreachable immediately preceded by instruction without "
542          "side effects", &I);
543}
544
545/// findValue - Look through bitcasts and simple memory reference patterns
546/// to identify an equivalent, but more informative, value.  If OffsetOk
547/// is true, look through getelementptrs with non-zero offsets too.
548///
549/// Most analysis passes don't require this logic, because instcombine
550/// will simplify most of these kinds of things away. But it's a goal of
551/// this Lint pass to be useful even on non-optimized IR.
552Value *Lint::findValue(Value *V, bool OffsetOk) const {
553  SmallPtrSet<Value *, 4> Visited;
554  return findValueImpl(V, OffsetOk, Visited);
555}
556
557/// findValueImpl - Implementation helper for findValue.
558Value *Lint::findValueImpl(Value *V, bool OffsetOk,
559                           SmallPtrSet<Value *, 4> &Visited) const {
560  // Detect self-referential values.
561  if (!Visited.insert(V))
562    return UndefValue::get(V->getType());
563
564  // TODO: Look through sext or zext cast, when the result is known to
565  // be interpreted as signed or unsigned, respectively.
566  // TODO: Look through eliminable cast pairs.
567  // TODO: Look through calls with unique return values.
568  // TODO: Look through vector insert/extract/shuffle.
569  V = OffsetOk ? V->getUnderlyingObject() : V->stripPointerCasts();
570  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
571    BasicBlock::iterator BBI = L;
572    BasicBlock *BB = L->getParent();
573    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
574    for (;;) {
575      if (!VisitedBlocks.insert(BB)) break;
576      if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
577                                              BB, BBI, 6, AA))
578        return findValueImpl(U, OffsetOk, Visited);
579      if (BBI != BB->begin()) break;
580      BB = BB->getUniquePredecessor();
581      if (!BB) break;
582      BBI = BB->end();
583    }
584  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
585    if (Value *W = PN->hasConstantValue(DT))
586      return findValueImpl(W, OffsetOk, Visited);
587  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
588    if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
589                            Type::getInt64Ty(V->getContext())))
590      return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
591  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
592    if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
593                                     Ex->idx_begin(),
594                                     Ex->idx_end()))
595      if (W != V)
596        return findValueImpl(W, OffsetOk, Visited);
597  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
598    // Same as above, but for ConstantExpr instead of Instruction.
599    if (Instruction::isCast(CE->getOpcode())) {
600      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
601                               CE->getOperand(0)->getType(),
602                               CE->getType(),
603                               TD ? TD->getIntPtrType(V->getContext()) :
604                                    Type::getInt64Ty(V->getContext())))
605        return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
606    } else if (CE->getOpcode() == Instruction::ExtractValue) {
607      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
608      if (Value *W = FindInsertedValue(CE->getOperand(0),
609                                       Indices.begin(),
610                                       Indices.end()))
611        if (W != V)
612          return findValueImpl(W, OffsetOk, Visited);
613    }
614  }
615
616  // As a last resort, try SimplifyInstruction or constant folding.
617  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
618    if (Value *W = SimplifyInstruction(Inst, TD))
619      if (W != Inst)
620        return findValueImpl(W, OffsetOk, Visited);
621  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
622    if (Value *W = ConstantFoldConstantExpression(CE, TD))
623      if (W != V)
624        return findValueImpl(W, OffsetOk, Visited);
625  }
626
627  return V;
628}
629
630//===----------------------------------------------------------------------===//
631//  Implement the public interfaces to this file...
632//===----------------------------------------------------------------------===//
633
634FunctionPass *llvm::createLintPass() {
635  return new Lint();
636}
637
638/// lintFunction - Check a function for errors, printing messages on stderr.
639///
640void llvm::lintFunction(const Function &f) {
641  Function &F = const_cast<Function&>(f);
642  assert(!F.isDeclaration() && "Cannot lint external functions");
643
644  FunctionPassManager FPM(F.getParent());
645  Lint *V = new Lint();
646  FPM.add(V);
647  FPM.run(F);
648}
649
650/// lintModule - Check a module for errors, printing messages on stderr.
651///
652void llvm::lintModule(const Module &M) {
653  PassManager PM;
654  Lint *V = new Lint();
655  PM.add(V);
656  PM.run(const_cast<Module&>(M));
657}
658