BitcodeWriter.cpp revision 01b27458a170fdad6ab2a8f214e160f64477c978
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/TypeSymbolTable.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/Support/MathExtras.h"
25using namespace llvm;
26
27static const unsigned CurVersion = 0;
28
29static unsigned GetEncodedCastOpcode(unsigned Opcode) {
30  switch (Opcode) {
31  default: assert(0 && "Unknown cast instruction!");
32  case Instruction::Trunc   : return bitc::CAST_TRUNC;
33  case Instruction::ZExt    : return bitc::CAST_ZEXT;
34  case Instruction::SExt    : return bitc::CAST_SEXT;
35  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
36  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
37  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
38  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
39  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
40  case Instruction::FPExt   : return bitc::CAST_FPEXT;
41  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
42  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
43  case Instruction::BitCast : return bitc::CAST_BITCAST;
44  }
45}
46
47static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
48  switch (Opcode) {
49  default: assert(0 && "Unknown binary instruction!");
50  case Instruction::Add:  return bitc::BINOP_ADD;
51  case Instruction::Sub:  return bitc::BINOP_SUB;
52  case Instruction::Mul:  return bitc::BINOP_MUL;
53  case Instruction::UDiv: return bitc::BINOP_UDIV;
54  case Instruction::FDiv:
55  case Instruction::SDiv: return bitc::BINOP_SDIV;
56  case Instruction::URem: return bitc::BINOP_UREM;
57  case Instruction::FRem:
58  case Instruction::SRem: return bitc::BINOP_SREM;
59  case Instruction::Shl:  return bitc::BINOP_SHL;
60  case Instruction::LShr: return bitc::BINOP_LSHR;
61  case Instruction::AShr: return bitc::BINOP_ASHR;
62  case Instruction::And:  return bitc::BINOP_AND;
63  case Instruction::Or:   return bitc::BINOP_OR;
64  case Instruction::Xor:  return bitc::BINOP_XOR;
65  }
66}
67
68
69
70static void WriteStringRecord(unsigned Code, const std::string &Str,
71                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
72  SmallVector<unsigned, 64> Vals;
73
74  // Code: [strlen, strchar x N]
75  Vals.push_back(Str.size());
76  for (unsigned i = 0, e = Str.size(); i != e; ++i)
77    Vals.push_back(Str[i]);
78
79  // Emit the finished record.
80  Stream.EmitRecord(Code, Vals, AbbrevToUse);
81}
82
83
84/// WriteTypeTable - Write out the type table for a module.
85static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
86  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
87
88  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
89  SmallVector<uint64_t, 64> TypeVals;
90
91  // FIXME: Set up abbrevs now that we know the width of the type fields, etc.
92
93  // Emit an entry count so the reader can reserve space.
94  TypeVals.push_back(TypeList.size());
95  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
96  TypeVals.clear();
97
98  // Loop over all of the types, emitting each in turn.
99  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
100    const Type *T = TypeList[i].first;
101    int AbbrevToUse = 0;
102    unsigned Code = 0;
103
104    switch (T->getTypeID()) {
105    case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
106    default: assert(0 && "Unknown type!");
107    case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
108    case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
109    case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
110    case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
111    case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
112    case Type::IntegerTyID:
113      // INTEGER: [width]
114      Code = bitc::TYPE_CODE_INTEGER;
115      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
116      break;
117    case Type::PointerTyID:
118      // POINTER: [pointee type]
119      Code = bitc::TYPE_CODE_POINTER;
120      TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
121      break;
122
123    case Type::FunctionTyID: {
124      const FunctionType *FT = cast<FunctionType>(T);
125      // FUNCTION: [isvararg, #pararms, paramty x N]
126      Code = bitc::TYPE_CODE_FUNCTION;
127      TypeVals.push_back(FT->isVarArg());
128      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
129      // FIXME: PARAM ATTR ID!
130      TypeVals.push_back(FT->getNumParams());
131      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
132        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
133      break;
134    }
135    case Type::StructTyID: {
136      const StructType *ST = cast<StructType>(T);
137      // STRUCT: [ispacked, #elts, eltty x N]
138      Code = bitc::TYPE_CODE_STRUCT;
139      TypeVals.push_back(ST->isPacked());
140      TypeVals.push_back(ST->getNumElements());
141      // Output all of the element types...
142      for (StructType::element_iterator I = ST->element_begin(),
143           E = ST->element_end(); I != E; ++I)
144        TypeVals.push_back(VE.getTypeID(*I));
145      break;
146    }
147    case Type::ArrayTyID: {
148      const ArrayType *AT = cast<ArrayType>(T);
149      // ARRAY: [numelts, eltty]
150      Code = bitc::TYPE_CODE_ARRAY;
151      TypeVals.push_back(AT->getNumElements());
152      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
153      break;
154    }
155    case Type::VectorTyID: {
156      const VectorType *VT = cast<VectorType>(T);
157      // VECTOR [numelts, eltty]
158      Code = bitc::TYPE_CODE_VECTOR;
159      TypeVals.push_back(VT->getNumElements());
160      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
161      break;
162    }
163    }
164
165    // Emit the finished record.
166    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
167    TypeVals.clear();
168  }
169
170  Stream.ExitBlock();
171}
172
173static unsigned getEncodedLinkage(const GlobalValue *GV) {
174  switch (GV->getLinkage()) {
175  default: assert(0 && "Invalid linkage!");
176  case GlobalValue::ExternalLinkage:     return 0;
177  case GlobalValue::WeakLinkage:         return 1;
178  case GlobalValue::AppendingLinkage:    return 2;
179  case GlobalValue::InternalLinkage:     return 3;
180  case GlobalValue::LinkOnceLinkage:     return 4;
181  case GlobalValue::DLLImportLinkage:    return 5;
182  case GlobalValue::DLLExportLinkage:    return 6;
183  case GlobalValue::ExternalWeakLinkage: return 7;
184  }
185}
186
187static unsigned getEncodedVisibility(const GlobalValue *GV) {
188  switch (GV->getVisibility()) {
189  default: assert(0 && "Invalid visibility!");
190  case GlobalValue::DefaultVisibility: return 0;
191  case GlobalValue::HiddenVisibility:  return 1;
192  }
193}
194
195// Emit top-level description of module, including target triple, inline asm,
196// descriptors for global variables, and function prototype info.
197static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
198                            BitstreamWriter &Stream) {
199  // Emit the list of dependent libraries for the Module.
200  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
201    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
202
203  // Emit various pieces of data attached to a module.
204  if (!M->getTargetTriple().empty())
205    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
206                      0/*TODO*/, Stream);
207  if (!M->getDataLayout().empty())
208    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
209                      0/*TODO*/, Stream);
210  if (!M->getModuleInlineAsm().empty())
211    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
212                      0/*TODO*/, Stream);
213
214  // Emit information about sections, computing how many there are.  Also
215  // compute the maximum alignment value.
216  std::map<std::string, unsigned> SectionMap;
217  unsigned MaxAlignment = 0;
218  unsigned MaxGlobalType = 0;
219  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
220       GV != E; ++GV) {
221    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
222    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
223
224    if (!GV->hasSection()) continue;
225    // Give section names unique ID's.
226    unsigned &Entry = SectionMap[GV->getSection()];
227    if (Entry != 0) continue;
228    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
229                      0/*TODO*/, Stream);
230    Entry = SectionMap.size();
231  }
232  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
233    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
234    if (!F->hasSection()) continue;
235    // Give section names unique ID's.
236    unsigned &Entry = SectionMap[F->getSection()];
237    if (Entry != 0) continue;
238    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
239                      0/*TODO*/, Stream);
240    Entry = SectionMap.size();
241  }
242
243  // Emit abbrev for globals, now that we know # sections and max alignment.
244  unsigned SimpleGVarAbbrev = 0;
245  if (!M->global_empty()) {
246    // Add an abbrev for common globals with no visibility or thread localness.
247    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
248    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
249    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth,
250                              Log2_32_Ceil(MaxGlobalType+1)));
251    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 1)); // Constant.
252    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
253    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 3)); // Linkage.
254    if (MaxAlignment == 0)                                     // Alignment.
255      Abbv->Add(BitCodeAbbrevOp(0));
256    else {
257      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
258      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth,
259                               Log2_32_Ceil(MaxEncAlignment+1)));
260    }
261    if (SectionMap.empty())                                    // Section.
262      Abbv->Add(BitCodeAbbrevOp(0));
263    else
264      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth,
265                               Log2_32_Ceil(SectionMap.size()+1)));
266    // Don't bother emitting vis + thread local.
267    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
268  }
269
270  // Emit the global variable information.
271  SmallVector<unsigned, 64> Vals;
272  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
273       GV != E; ++GV) {
274    unsigned AbbrevToUse = 0;
275
276    // GLOBALVAR: [type, isconst, initid,
277    //             linkage, alignment, section, visibility, threadlocal]
278    Vals.push_back(VE.getTypeID(GV->getType()));
279    Vals.push_back(GV->isConstant());
280    Vals.push_back(GV->isDeclaration() ? 0 :
281                   (VE.getValueID(GV->getInitializer()) + 1));
282    Vals.push_back(getEncodedLinkage(GV));
283    Vals.push_back(Log2_32(GV->getAlignment())+1);
284    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
285    if (GV->isThreadLocal() ||
286        GV->getVisibility() != GlobalValue::DefaultVisibility) {
287      Vals.push_back(getEncodedVisibility(GV));
288      Vals.push_back(GV->isThreadLocal());
289    } else {
290      AbbrevToUse = SimpleGVarAbbrev;
291    }
292
293    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
294    Vals.clear();
295  }
296
297  // Emit the function proto information.
298  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
299    // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
300    //             visibility]
301    Vals.push_back(VE.getTypeID(F->getType()));
302    Vals.push_back(F->getCallingConv());
303    Vals.push_back(F->isDeclaration());
304    Vals.push_back(getEncodedLinkage(F));
305    Vals.push_back(Log2_32(F->getAlignment())+1);
306    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
307    Vals.push_back(getEncodedVisibility(F));
308
309    unsigned AbbrevToUse = 0;
310    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
311    Vals.clear();
312  }
313
314
315  // Emit the alias information.
316  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
317       AI != E; ++AI) {
318    Vals.push_back(VE.getTypeID(AI->getType()));
319    Vals.push_back(VE.getValueID(AI->getAliasee()));
320    Vals.push_back(getEncodedLinkage(AI));
321    unsigned AbbrevToUse = 0;
322    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
323    Vals.clear();
324  }
325}
326
327
328static void WriteConstants(unsigned FirstVal, unsigned LastVal,
329                           const ValueEnumerator &VE,
330                           BitstreamWriter &Stream) {
331  if (FirstVal == LastVal) return;
332
333  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 2);
334
335  // FIXME: Install and use abbrevs to reduce size.  Install them globally so
336  // they don't need to be reemitted for each function body.
337
338  SmallVector<uint64_t, 64> Record;
339
340  const ValueEnumerator::ValueList &Vals = VE.getValues();
341  const Type *LastTy = 0;
342  for (unsigned i = FirstVal; i != LastVal; ++i) {
343    const Value *V = Vals[i].first;
344    // If we need to switch types, do so now.
345    if (V->getType() != LastTy) {
346      LastTy = V->getType();
347      Record.push_back(VE.getTypeID(LastTy));
348      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record);
349      Record.clear();
350    }
351
352    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
353      assert(0 && IA && "FIXME: Inline asm writing unimp!");
354      continue;
355    }
356    const Constant *C = cast<Constant>(V);
357    unsigned Code = -1U;
358    unsigned AbbrevToUse = 0;
359    if (C->isNullValue()) {
360      Code = bitc::CST_CODE_NULL;
361    } else if (isa<UndefValue>(C)) {
362      Code = bitc::CST_CODE_UNDEF;
363    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
364      if (IV->getBitWidth() <= 64) {
365        int64_t V = IV->getSExtValue();
366        if (V >= 0)
367          Record.push_back(V << 1);
368        else
369          Record.push_back((-V << 1) | 1);
370        Code = bitc::CST_CODE_INTEGER;
371      } else {                             // Wide integers, > 64 bits in size.
372        // We have an arbitrary precision integer value to write whose
373        // bit width is > 64. However, in canonical unsigned integer
374        // format it is likely that the high bits are going to be zero.
375        // So, we only write the number of active words.
376        unsigned NWords = IV->getValue().getActiveWords();
377        const uint64_t *RawWords = IV->getValue().getRawData();
378        Record.push_back(NWords);
379        for (unsigned i = 0; i != NWords; ++i) {
380          int64_t V = RawWords[i];
381          if (V >= 0)
382            Record.push_back(V << 1);
383          else
384            Record.push_back((-V << 1) | 1);
385        }
386        Code = bitc::CST_CODE_WIDE_INTEGER;
387      }
388    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
389      Code = bitc::CST_CODE_FLOAT;
390      if (CFP->getType() == Type::FloatTy) {
391        Record.push_back(FloatToBits((float)CFP->getValue()));
392      } else {
393        assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
394        Record.push_back(DoubleToBits((double)CFP->getValue()));
395      }
396    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
397               isa<ConstantVector>(V)) {
398      Code = bitc::CST_CODE_AGGREGATE;
399      Record.push_back(C->getNumOperands());
400      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
401        Record.push_back(VE.getValueID(C->getOperand(i)));
402    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
403      switch (CE->getOpcode()) {
404      default:
405        if (Instruction::isCast(CE->getOpcode())) {
406          Code = bitc::CST_CODE_CE_CAST;
407          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
408          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
409          Record.push_back(VE.getValueID(C->getOperand(0)));
410        } else {
411          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
412          Code = bitc::CST_CODE_CE_BINOP;
413          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
414          Record.push_back(VE.getValueID(C->getOperand(0)));
415          Record.push_back(VE.getValueID(C->getOperand(1)));
416        }
417        break;
418      case Instruction::GetElementPtr:
419        Code = bitc::CST_CODE_CE_GEP;
420        Record.push_back(CE->getNumOperands());
421        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
422          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
423          Record.push_back(VE.getValueID(C->getOperand(i)));
424        }
425        break;
426      case Instruction::Select:
427        Code = bitc::CST_CODE_CE_SELECT;
428        Record.push_back(VE.getValueID(C->getOperand(0)));
429        Record.push_back(VE.getValueID(C->getOperand(1)));
430        Record.push_back(VE.getValueID(C->getOperand(2)));
431        break;
432      case Instruction::ExtractElement:
433        Code = bitc::CST_CODE_CE_EXTRACTELT;
434        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
435        Record.push_back(VE.getValueID(C->getOperand(0)));
436        Record.push_back(VE.getValueID(C->getOperand(1)));
437        break;
438      case Instruction::InsertElement:
439        Code = bitc::CST_CODE_CE_INSERTELT;
440        Record.push_back(VE.getValueID(C->getOperand(0)));
441        Record.push_back(VE.getValueID(C->getOperand(1)));
442        Record.push_back(VE.getValueID(C->getOperand(2)));
443        break;
444      case Instruction::ShuffleVector:
445        Code = bitc::CST_CODE_CE_SHUFFLEVEC;
446        Record.push_back(VE.getValueID(C->getOperand(0)));
447        Record.push_back(VE.getValueID(C->getOperand(1)));
448        Record.push_back(VE.getValueID(C->getOperand(2)));
449        break;
450      case Instruction::ICmp:
451      case Instruction::FCmp:
452        Code = bitc::CST_CODE_CE_CMP;
453        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
454        Record.push_back(VE.getValueID(C->getOperand(0)));
455        Record.push_back(VE.getValueID(C->getOperand(1)));
456        Record.push_back(CE->getPredicate());
457        break;
458      }
459    } else {
460      assert(0 && "Unknown constant!");
461    }
462    Stream.EmitRecord(Code, Record, AbbrevToUse);
463    Record.clear();
464  }
465
466  Stream.ExitBlock();
467}
468
469static void WriteModuleConstants(const ValueEnumerator &VE,
470                                 BitstreamWriter &Stream) {
471  const ValueEnumerator::ValueList &Vals = VE.getValues();
472
473  // Find the first constant to emit, which is the first non-globalvalue value.
474  // We know globalvalues have been emitted by WriteModuleInfo.
475  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
476    if (!isa<GlobalValue>(Vals[i].first)) {
477      WriteConstants(i, Vals.size(), VE, Stream);
478      return;
479    }
480  }
481}
482
483/// WriteInstruction - Emit an instruction to the specified stream.
484static void WriteInstruction(const Instruction &I, ValueEnumerator &VE,
485                             BitstreamWriter &Stream,
486                             SmallVector<unsigned, 64> &Vals) {
487  return; // FIXME: REMOVE
488  unsigned Code = 0;
489  unsigned AbbrevToUse = 0;
490  switch (I.getOpcode()) {
491  default:
492    if (Instruction::isCast(I.getOpcode())) {
493      Code = bitc::FUNC_CODE_INST_BINOP;
494      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
495      Vals.push_back(VE.getTypeID(I.getType()));
496      Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
497      Vals.push_back(VE.getValueID(I.getOperand(0)));
498    } else {
499      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
500      Code = bitc::CST_CODE_CE_BINOP;
501      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
502      Vals.push_back(VE.getTypeID(I.getType()));
503      Vals.push_back(VE.getValueID(I.getOperand(0)));
504      Vals.push_back(VE.getValueID(I.getOperand(1)));
505    }
506    break;
507
508
509  case Instruction::Unwind:
510    Code = bitc::FUNC_CODE_INST_UNWIND;
511    break;
512  case Instruction::Unreachable:
513    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
514    break;
515
516  }
517
518  Stream.EmitRecord(Code, Vals, AbbrevToUse);
519  Vals.clear();
520}
521
522/// WriteFunction - Emit a function body to the module stream.
523static void WriteFunction(const Function &F, ValueEnumerator &VE,
524                          BitstreamWriter &Stream) {
525  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3);
526  VE.incorporateFunction(F);
527
528  SmallVector<unsigned, 64> Vals;
529
530  // Emit the number of basic blocks, so the reader can create them ahead of
531  // time.
532  Vals.push_back(VE.getBasicBlocks().size());
533  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
534  Vals.clear();
535
536  // FIXME: Function attributes?
537
538  // If there are function-local constants, emit them now.
539  unsigned CstStart, CstEnd;
540  VE.getFunctionConstantRange(CstStart, CstEnd);
541  WriteConstants(CstStart, CstEnd, VE, Stream);
542
543  // Finally, emit all the instructions, in order.
544  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
545    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
546      WriteInstruction(*I, VE, Stream, Vals);
547
548  VE.purgeFunction();
549  Stream.ExitBlock();
550}
551
552/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
553static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
554                                 const ValueEnumerator &VE,
555                                 BitstreamWriter &Stream) {
556  if (TST.empty()) return;
557
558  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
559
560  // FIXME: Set up the abbrev, we know how many types there are!
561  // FIXME: We know if the type names can use 7-bit ascii.
562
563  SmallVector<unsigned, 64> NameVals;
564
565  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
566       TI != TE; ++TI) {
567    unsigned AbbrevToUse = 0;
568
569    // TST_ENTRY: [typeid, namelen, namechar x N]
570    NameVals.push_back(VE.getTypeID(TI->second));
571
572    const std::string &Str = TI->first;
573    NameVals.push_back(Str.size());
574    for (unsigned i = 0, e = Str.size(); i != e; ++i)
575      NameVals.push_back(Str[i]);
576
577    // Emit the finished record.
578    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse);
579    NameVals.clear();
580  }
581
582  Stream.ExitBlock();
583}
584
585// Emit names for globals/functions etc.
586static void WriteValueSymbolTable(const ValueSymbolTable &VST,
587                                  const ValueEnumerator &VE,
588                                  BitstreamWriter &Stream) {
589  if (VST.empty()) return;
590  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 3);
591
592  // FIXME: Set up the abbrev, we know how many values there are!
593  // FIXME: We know if the type names can use 7-bit ascii.
594  SmallVector<unsigned, 64> NameVals;
595
596  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
597       SI != SE; ++SI) {
598    unsigned AbbrevToUse = 0;
599
600    // VST_ENTRY: [valueid, namelen, namechar x N]
601    NameVals.push_back(VE.getValueID(SI->getValue()));
602
603    NameVals.push_back(SI->getKeyLength());
604    for (const char *P = SI->getKeyData(),
605         *E = SI->getKeyData()+SI->getKeyLength(); P != E; ++P)
606      NameVals.push_back((unsigned char)*P);
607
608    // Emit the finished record.
609    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse);
610    NameVals.clear();
611  }
612  Stream.ExitBlock();
613}
614
615
616/// WriteModule - Emit the specified module to the bitstream.
617static void WriteModule(const Module *M, BitstreamWriter &Stream) {
618  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
619
620  // Emit the version number if it is non-zero.
621  if (CurVersion) {
622    SmallVector<unsigned, 1> Vals;
623    Vals.push_back(CurVersion);
624    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
625  }
626
627  // Analyze the module, enumerating globals, functions, etc.
628  ValueEnumerator VE(M);
629
630  // Emit information describing all of the types in the module.
631  WriteTypeTable(VE, Stream);
632
633  // Emit top-level description of module, including target triple, inline asm,
634  // descriptors for global variables, and function prototype info.
635  WriteModuleInfo(M, VE, Stream);
636
637  // Emit constants.
638  WriteModuleConstants(VE, Stream);
639
640  // If we have any aggregate values in the value table, purge them - these can
641  // only be used to initialize global variables.  Doing so makes the value
642  // namespace smaller for code in functions.
643  int NumNonAggregates = VE.PurgeAggregateValues();
644  if (NumNonAggregates != -1) {
645    SmallVector<unsigned, 1> Vals;
646    Vals.push_back(NumNonAggregates);
647    Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
648  }
649
650  // Emit function bodies.
651  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
652    if (!I->isDeclaration())
653      WriteFunction(*I, VE, Stream);
654
655  // Emit the type symbol table information.
656  WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
657
658  // Emit names for globals/functions etc.
659  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
660
661  Stream.ExitBlock();
662}
663
664/// WriteBitcodeToFile - Write the specified module to the specified output
665/// stream.
666void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
667  std::vector<unsigned char> Buffer;
668  BitstreamWriter Stream(Buffer);
669
670  Buffer.reserve(256*1024);
671
672  // Emit the file header.
673  Stream.Emit((unsigned)'B', 8);
674  Stream.Emit((unsigned)'C', 8);
675  Stream.Emit(0x0, 4);
676  Stream.Emit(0xC, 4);
677  Stream.Emit(0xE, 4);
678  Stream.Emit(0xD, 4);
679
680  // Emit the module.
681  WriteModule(M, Stream);
682
683  // Write the generated bitstream to "Out".
684  Out.write((char*)&Buffer.front(), Buffer.size());
685}
686