BitcodeWriter.cpp revision a2de37c897556fbd1f94a3ed84ad27accd8f8deb
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "ValueEnumerator.h"
16#include "llvm/ADT/Triple.h"
17#include "llvm/Bitcode/BitstreamWriter.h"
18#include "llvm/Bitcode/LLVMBitCodes.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DerivedTypes.h"
21#include "llvm/IR/InlineAsm.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/IR/ValueSymbolTable.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/Program.h"
30#include "llvm/Support/raw_ostream.h"
31#include <cctype>
32#include <map>
33using namespace llvm;
34
35static cl::opt<bool>
36EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
37                              cl::desc("Turn on experimental support for "
38                                       "use-list order preservation."),
39                              cl::init(false), cl::Hidden);
40
41/// These are manifest constants used by the bitcode writer. They do not need to
42/// be kept in sync with the reader, but need to be consistent within this file.
43enum {
44  // VALUE_SYMTAB_BLOCK abbrev id's.
45  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46  VST_ENTRY_7_ABBREV,
47  VST_ENTRY_6_ABBREV,
48  VST_BBENTRY_6_ABBREV,
49
50  // CONSTANTS_BLOCK abbrev id's.
51  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52  CONSTANTS_INTEGER_ABBREV,
53  CONSTANTS_CE_CAST_Abbrev,
54  CONSTANTS_NULL_Abbrev,
55
56  // FUNCTION_BLOCK abbrev id's.
57  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58  FUNCTION_INST_BINOP_ABBREV,
59  FUNCTION_INST_BINOP_FLAGS_ABBREV,
60  FUNCTION_INST_CAST_ABBREV,
61  FUNCTION_INST_RET_VOID_ABBREV,
62  FUNCTION_INST_RET_VAL_ABBREV,
63  FUNCTION_INST_UNREACHABLE_ABBREV,
64
65  // SwitchInst Magic
66  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
67};
68
69static unsigned GetEncodedCastOpcode(unsigned Opcode) {
70  switch (Opcode) {
71  default: llvm_unreachable("Unknown cast instruction!");
72  case Instruction::Trunc   : return bitc::CAST_TRUNC;
73  case Instruction::ZExt    : return bitc::CAST_ZEXT;
74  case Instruction::SExt    : return bitc::CAST_SEXT;
75  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
76  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
77  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
78  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
79  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
80  case Instruction::FPExt   : return bitc::CAST_FPEXT;
81  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
82  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
83  case Instruction::BitCast : return bitc::CAST_BITCAST;
84  }
85}
86
87static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
88  switch (Opcode) {
89  default: llvm_unreachable("Unknown binary instruction!");
90  case Instruction::Add:
91  case Instruction::FAdd: return bitc::BINOP_ADD;
92  case Instruction::Sub:
93  case Instruction::FSub: return bitc::BINOP_SUB;
94  case Instruction::Mul:
95  case Instruction::FMul: return bitc::BINOP_MUL;
96  case Instruction::UDiv: return bitc::BINOP_UDIV;
97  case Instruction::FDiv:
98  case Instruction::SDiv: return bitc::BINOP_SDIV;
99  case Instruction::URem: return bitc::BINOP_UREM;
100  case Instruction::FRem:
101  case Instruction::SRem: return bitc::BINOP_SREM;
102  case Instruction::Shl:  return bitc::BINOP_SHL;
103  case Instruction::LShr: return bitc::BINOP_LSHR;
104  case Instruction::AShr: return bitc::BINOP_ASHR;
105  case Instruction::And:  return bitc::BINOP_AND;
106  case Instruction::Or:   return bitc::BINOP_OR;
107  case Instruction::Xor:  return bitc::BINOP_XOR;
108  }
109}
110
111static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
112  switch (Op) {
113  default: llvm_unreachable("Unknown RMW operation!");
114  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
115  case AtomicRMWInst::Add: return bitc::RMW_ADD;
116  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
117  case AtomicRMWInst::And: return bitc::RMW_AND;
118  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
119  case AtomicRMWInst::Or: return bitc::RMW_OR;
120  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
121  case AtomicRMWInst::Max: return bitc::RMW_MAX;
122  case AtomicRMWInst::Min: return bitc::RMW_MIN;
123  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
124  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
125  }
126}
127
128static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
129  switch (Ordering) {
130  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
131  case Unordered: return bitc::ORDERING_UNORDERED;
132  case Monotonic: return bitc::ORDERING_MONOTONIC;
133  case Acquire: return bitc::ORDERING_ACQUIRE;
134  case Release: return bitc::ORDERING_RELEASE;
135  case AcquireRelease: return bitc::ORDERING_ACQREL;
136  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
137  }
138  llvm_unreachable("Invalid ordering");
139}
140
141static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
142  switch (SynchScope) {
143  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
144  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
145  }
146  llvm_unreachable("Invalid synch scope");
147}
148
149static void WriteStringRecord(unsigned Code, StringRef Str,
150                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
151  SmallVector<unsigned, 64> Vals;
152
153  // Code: [strchar x N]
154  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
155    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
156      AbbrevToUse = 0;
157    Vals.push_back(Str[i]);
158  }
159
160  // Emit the finished record.
161  Stream.EmitRecord(Code, Vals, AbbrevToUse);
162}
163
164/// \brief This returns an integer containing an encoding of all the LLVM
165/// attributes found in the given attribute bitset.  Any change to this encoding
166/// is a breaking change to bitcode compatibility.
167/// N.B. This should be used only by the bitcode writer!
168static uint64_t encodeLLVMAttributesForBitcode(AttributeSet Attrs,
169                                               unsigned Index) {
170  // FIXME: Remove in 4.0!
171
172  // FIXME: It doesn't make sense to store the alignment information as an
173  // expanded out value, we should store it as a log2 value.  However, we can't
174  // just change that here without breaking bitcode compatibility.  If this ever
175  // becomes a problem in practice, we should introduce new tag numbers in the
176  // bitcode file and have those tags use a more efficiently encoded alignment
177  // field.
178
179  // Store the alignment in the bitcode as a 16-bit raw value instead of a 5-bit
180  // log2 encoded value. Shift the bits above the alignment up by 11 bits.
181  uint64_t EncodedAttrs = Attrs.Raw(Index) & 0xffff;
182  if (Attrs.hasAttribute(Index, Attribute::Alignment))
183    EncodedAttrs |= Attrs.getParamAlignment(Index) << 16;
184  EncodedAttrs |= (Attrs.Raw(Index) & (0xffffULL << 21)) << 11;
185  return EncodedAttrs;
186}
187
188static void WriteAttributeTable(const ValueEnumerator &VE,
189                                BitstreamWriter &Stream) {
190  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
191  if (Attrs.empty()) return;
192
193  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
194
195  SmallVector<uint64_t, 64> Record;
196  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
197    const AttributeSet &A = Attrs[i];
198    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
199      unsigned Index = A.getSlotIndex(i);
200      Record.push_back(Index);
201      Record.push_back(encodeLLVMAttributesForBitcode(A.getSlotAttributes(i),
202                                                      Index));
203    }
204
205    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
206    Record.clear();
207  }
208
209  Stream.ExitBlock();
210}
211
212/// WriteTypeTable - Write out the type table for a module.
213static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
214  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
215
216  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
217  SmallVector<uint64_t, 64> TypeVals;
218
219  uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
220
221  // Abbrev for TYPE_CODE_POINTER.
222  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
223  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
224  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
225  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
226  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
227
228  // Abbrev for TYPE_CODE_FUNCTION.
229  Abbv = new BitCodeAbbrev();
230  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
231  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
232  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
233  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
234
235  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
236
237  // Abbrev for TYPE_CODE_STRUCT_ANON.
238  Abbv = new BitCodeAbbrev();
239  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
240  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
241  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
242  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
243
244  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
245
246  // Abbrev for TYPE_CODE_STRUCT_NAME.
247  Abbv = new BitCodeAbbrev();
248  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
249  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
250  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
251  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
252
253  // Abbrev for TYPE_CODE_STRUCT_NAMED.
254  Abbv = new BitCodeAbbrev();
255  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
256  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
257  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
258  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
259
260  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
261
262  // Abbrev for TYPE_CODE_ARRAY.
263  Abbv = new BitCodeAbbrev();
264  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
265  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
266  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
267
268  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
269
270  // Emit an entry count so the reader can reserve space.
271  TypeVals.push_back(TypeList.size());
272  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
273  TypeVals.clear();
274
275  // Loop over all of the types, emitting each in turn.
276  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
277    Type *T = TypeList[i];
278    int AbbrevToUse = 0;
279    unsigned Code = 0;
280
281    switch (T->getTypeID()) {
282    default: llvm_unreachable("Unknown type!");
283    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
284    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
285    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
286    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
287    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
288    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
289    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
290    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
291    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
292    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
293    case Type::IntegerTyID:
294      // INTEGER: [width]
295      Code = bitc::TYPE_CODE_INTEGER;
296      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
297      break;
298    case Type::PointerTyID: {
299      PointerType *PTy = cast<PointerType>(T);
300      // POINTER: [pointee type, address space]
301      Code = bitc::TYPE_CODE_POINTER;
302      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
303      unsigned AddressSpace = PTy->getAddressSpace();
304      TypeVals.push_back(AddressSpace);
305      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
306      break;
307    }
308    case Type::FunctionTyID: {
309      FunctionType *FT = cast<FunctionType>(T);
310      // FUNCTION: [isvararg, retty, paramty x N]
311      Code = bitc::TYPE_CODE_FUNCTION;
312      TypeVals.push_back(FT->isVarArg());
313      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
314      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
315        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
316      AbbrevToUse = FunctionAbbrev;
317      break;
318    }
319    case Type::StructTyID: {
320      StructType *ST = cast<StructType>(T);
321      // STRUCT: [ispacked, eltty x N]
322      TypeVals.push_back(ST->isPacked());
323      // Output all of the element types.
324      for (StructType::element_iterator I = ST->element_begin(),
325           E = ST->element_end(); I != E; ++I)
326        TypeVals.push_back(VE.getTypeID(*I));
327
328      if (ST->isLiteral()) {
329        Code = bitc::TYPE_CODE_STRUCT_ANON;
330        AbbrevToUse = StructAnonAbbrev;
331      } else {
332        if (ST->isOpaque()) {
333          Code = bitc::TYPE_CODE_OPAQUE;
334        } else {
335          Code = bitc::TYPE_CODE_STRUCT_NAMED;
336          AbbrevToUse = StructNamedAbbrev;
337        }
338
339        // Emit the name if it is present.
340        if (!ST->getName().empty())
341          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
342                            StructNameAbbrev, Stream);
343      }
344      break;
345    }
346    case Type::ArrayTyID: {
347      ArrayType *AT = cast<ArrayType>(T);
348      // ARRAY: [numelts, eltty]
349      Code = bitc::TYPE_CODE_ARRAY;
350      TypeVals.push_back(AT->getNumElements());
351      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
352      AbbrevToUse = ArrayAbbrev;
353      break;
354    }
355    case Type::VectorTyID: {
356      VectorType *VT = cast<VectorType>(T);
357      // VECTOR [numelts, eltty]
358      Code = bitc::TYPE_CODE_VECTOR;
359      TypeVals.push_back(VT->getNumElements());
360      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
361      break;
362    }
363    }
364
365    // Emit the finished record.
366    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
367    TypeVals.clear();
368  }
369
370  Stream.ExitBlock();
371}
372
373static unsigned getEncodedLinkage(const GlobalValue *GV) {
374  switch (GV->getLinkage()) {
375  case GlobalValue::ExternalLinkage:                 return 0;
376  case GlobalValue::WeakAnyLinkage:                  return 1;
377  case GlobalValue::AppendingLinkage:                return 2;
378  case GlobalValue::InternalLinkage:                 return 3;
379  case GlobalValue::LinkOnceAnyLinkage:              return 4;
380  case GlobalValue::DLLImportLinkage:                return 5;
381  case GlobalValue::DLLExportLinkage:                return 6;
382  case GlobalValue::ExternalWeakLinkage:             return 7;
383  case GlobalValue::CommonLinkage:                   return 8;
384  case GlobalValue::PrivateLinkage:                  return 9;
385  case GlobalValue::WeakODRLinkage:                  return 10;
386  case GlobalValue::LinkOnceODRLinkage:              return 11;
387  case GlobalValue::AvailableExternallyLinkage:      return 12;
388  case GlobalValue::LinkerPrivateLinkage:            return 13;
389  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
390  case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
391  }
392  llvm_unreachable("Invalid linkage");
393}
394
395static unsigned getEncodedVisibility(const GlobalValue *GV) {
396  switch (GV->getVisibility()) {
397  case GlobalValue::DefaultVisibility:   return 0;
398  case GlobalValue::HiddenVisibility:    return 1;
399  case GlobalValue::ProtectedVisibility: return 2;
400  }
401  llvm_unreachable("Invalid visibility");
402}
403
404static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
405  switch (GV->getThreadLocalMode()) {
406    case GlobalVariable::NotThreadLocal:         return 0;
407    case GlobalVariable::GeneralDynamicTLSModel: return 1;
408    case GlobalVariable::LocalDynamicTLSModel:   return 2;
409    case GlobalVariable::InitialExecTLSModel:    return 3;
410    case GlobalVariable::LocalExecTLSModel:      return 4;
411  }
412  llvm_unreachable("Invalid TLS model");
413}
414
415// Emit top-level description of module, including target triple, inline asm,
416// descriptors for global variables, and function prototype info.
417static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
418                            BitstreamWriter &Stream) {
419  // Emit various pieces of data attached to a module.
420  if (!M->getTargetTriple().empty())
421    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
422                      0/*TODO*/, Stream);
423  if (!M->getDataLayout().empty())
424    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
425                      0/*TODO*/, Stream);
426  if (!M->getModuleInlineAsm().empty())
427    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
428                      0/*TODO*/, Stream);
429
430  // Emit information about sections and GC, computing how many there are. Also
431  // compute the maximum alignment value.
432  std::map<std::string, unsigned> SectionMap;
433  std::map<std::string, unsigned> GCMap;
434  unsigned MaxAlignment = 0;
435  unsigned MaxGlobalType = 0;
436  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
437       GV != E; ++GV) {
438    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
439    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
440    if (GV->hasSection()) {
441      // Give section names unique ID's.
442      unsigned &Entry = SectionMap[GV->getSection()];
443      if (!Entry) {
444        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
445                          0/*TODO*/, Stream);
446        Entry = SectionMap.size();
447      }
448    }
449  }
450  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
451    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
452    if (F->hasSection()) {
453      // Give section names unique ID's.
454      unsigned &Entry = SectionMap[F->getSection()];
455      if (!Entry) {
456        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
457                          0/*TODO*/, Stream);
458        Entry = SectionMap.size();
459      }
460    }
461    if (F->hasGC()) {
462      // Same for GC names.
463      unsigned &Entry = GCMap[F->getGC()];
464      if (!Entry) {
465        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
466                          0/*TODO*/, Stream);
467        Entry = GCMap.size();
468      }
469    }
470  }
471
472  // Emit abbrev for globals, now that we know # sections and max alignment.
473  unsigned SimpleGVarAbbrev = 0;
474  if (!M->global_empty()) {
475    // Add an abbrev for common globals with no visibility or thread localness.
476    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
477    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
478    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
479                              Log2_32_Ceil(MaxGlobalType+1)));
480    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
481    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
482    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
483    if (MaxAlignment == 0)                                      // Alignment.
484      Abbv->Add(BitCodeAbbrevOp(0));
485    else {
486      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
487      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
488                               Log2_32_Ceil(MaxEncAlignment+1)));
489    }
490    if (SectionMap.empty())                                    // Section.
491      Abbv->Add(BitCodeAbbrevOp(0));
492    else
493      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
494                               Log2_32_Ceil(SectionMap.size()+1)));
495    // Don't bother emitting vis + thread local.
496    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
497  }
498
499  // Emit the global variable information.
500  SmallVector<unsigned, 64> Vals;
501  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
502       GV != E; ++GV) {
503    unsigned AbbrevToUse = 0;
504
505    // GLOBALVAR: [type, isconst, initid,
506    //             linkage, alignment, section, visibility, threadlocal,
507    //             unnamed_addr]
508    Vals.push_back(VE.getTypeID(GV->getType()));
509    Vals.push_back(GV->isConstant());
510    Vals.push_back(GV->isDeclaration() ? 0 :
511                   (VE.getValueID(GV->getInitializer()) + 1));
512    Vals.push_back(getEncodedLinkage(GV));
513    Vals.push_back(Log2_32(GV->getAlignment())+1);
514    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
515    if (GV->isThreadLocal() ||
516        GV->getVisibility() != GlobalValue::DefaultVisibility ||
517        GV->hasUnnamedAddr() || GV->isExternallyInitialized()) {
518      Vals.push_back(getEncodedVisibility(GV));
519      Vals.push_back(getEncodedThreadLocalMode(GV));
520      Vals.push_back(GV->hasUnnamedAddr());
521      Vals.push_back(GV->isExternallyInitialized());
522    } else {
523      AbbrevToUse = SimpleGVarAbbrev;
524    }
525
526    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
527    Vals.clear();
528  }
529
530  // Emit the function proto information.
531  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
532    // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
533    //             section, visibility, gc, unnamed_addr]
534    Vals.push_back(VE.getTypeID(F->getType()));
535    Vals.push_back(F->getCallingConv());
536    Vals.push_back(F->isDeclaration());
537    Vals.push_back(getEncodedLinkage(F));
538    Vals.push_back(VE.getAttributeID(F->getAttributes()));
539    Vals.push_back(Log2_32(F->getAlignment())+1);
540    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
541    Vals.push_back(getEncodedVisibility(F));
542    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
543    Vals.push_back(F->hasUnnamedAddr());
544
545    unsigned AbbrevToUse = 0;
546    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
547    Vals.clear();
548  }
549
550  // Emit the alias information.
551  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
552       AI != E; ++AI) {
553    // ALIAS: [alias type, aliasee val#, linkage, visibility]
554    Vals.push_back(VE.getTypeID(AI->getType()));
555    Vals.push_back(VE.getValueID(AI->getAliasee()));
556    Vals.push_back(getEncodedLinkage(AI));
557    Vals.push_back(getEncodedVisibility(AI));
558    unsigned AbbrevToUse = 0;
559    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
560    Vals.clear();
561  }
562}
563
564static uint64_t GetOptimizationFlags(const Value *V) {
565  uint64_t Flags = 0;
566
567  if (const OverflowingBinaryOperator *OBO =
568        dyn_cast<OverflowingBinaryOperator>(V)) {
569    if (OBO->hasNoSignedWrap())
570      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
571    if (OBO->hasNoUnsignedWrap())
572      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
573  } else if (const PossiblyExactOperator *PEO =
574               dyn_cast<PossiblyExactOperator>(V)) {
575    if (PEO->isExact())
576      Flags |= 1 << bitc::PEO_EXACT;
577  } else if (const FPMathOperator *FPMO =
578             dyn_cast<const FPMathOperator>(V)) {
579    if (FPMO->hasUnsafeAlgebra())
580      Flags |= FastMathFlags::UnsafeAlgebra;
581    if (FPMO->hasNoNaNs())
582      Flags |= FastMathFlags::NoNaNs;
583    if (FPMO->hasNoInfs())
584      Flags |= FastMathFlags::NoInfs;
585    if (FPMO->hasNoSignedZeros())
586      Flags |= FastMathFlags::NoSignedZeros;
587    if (FPMO->hasAllowReciprocal())
588      Flags |= FastMathFlags::AllowReciprocal;
589  }
590
591  return Flags;
592}
593
594static void WriteMDNode(const MDNode *N,
595                        const ValueEnumerator &VE,
596                        BitstreamWriter &Stream,
597                        SmallVector<uint64_t, 64> &Record) {
598  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
599    if (N->getOperand(i)) {
600      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
601      Record.push_back(VE.getValueID(N->getOperand(i)));
602    } else {
603      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
604      Record.push_back(0);
605    }
606  }
607  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
608                                           bitc::METADATA_NODE;
609  Stream.EmitRecord(MDCode, Record, 0);
610  Record.clear();
611}
612
613static void WriteModuleMetadata(const Module *M,
614                                const ValueEnumerator &VE,
615                                BitstreamWriter &Stream) {
616  const ValueEnumerator::ValueList &Vals = VE.getMDValues();
617  bool StartedMetadataBlock = false;
618  unsigned MDSAbbrev = 0;
619  SmallVector<uint64_t, 64> Record;
620  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
621
622    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
623      if (!N->isFunctionLocal() || !N->getFunction()) {
624        if (!StartedMetadataBlock) {
625          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
626          StartedMetadataBlock = true;
627        }
628        WriteMDNode(N, VE, Stream, Record);
629      }
630    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
631      if (!StartedMetadataBlock)  {
632        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
633
634        // Abbrev for METADATA_STRING.
635        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
636        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
637        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
638        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
639        MDSAbbrev = Stream.EmitAbbrev(Abbv);
640        StartedMetadataBlock = true;
641      }
642
643      // Code: [strchar x N]
644      Record.append(MDS->begin(), MDS->end());
645
646      // Emit the finished record.
647      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
648      Record.clear();
649    }
650  }
651
652  // Write named metadata.
653  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
654       E = M->named_metadata_end(); I != E; ++I) {
655    const NamedMDNode *NMD = I;
656    if (!StartedMetadataBlock)  {
657      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
658      StartedMetadataBlock = true;
659    }
660
661    // Write name.
662    StringRef Str = NMD->getName();
663    for (unsigned i = 0, e = Str.size(); i != e; ++i)
664      Record.push_back(Str[i]);
665    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
666    Record.clear();
667
668    // Write named metadata operands.
669    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
670      Record.push_back(VE.getValueID(NMD->getOperand(i)));
671    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
672    Record.clear();
673  }
674
675  if (StartedMetadataBlock)
676    Stream.ExitBlock();
677}
678
679static void WriteFunctionLocalMetadata(const Function &F,
680                                       const ValueEnumerator &VE,
681                                       BitstreamWriter &Stream) {
682  bool StartedMetadataBlock = false;
683  SmallVector<uint64_t, 64> Record;
684  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
685  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
686    if (const MDNode *N = Vals[i])
687      if (N->isFunctionLocal() && N->getFunction() == &F) {
688        if (!StartedMetadataBlock) {
689          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
690          StartedMetadataBlock = true;
691        }
692        WriteMDNode(N, VE, Stream, Record);
693      }
694
695  if (StartedMetadataBlock)
696    Stream.ExitBlock();
697}
698
699static void WriteMetadataAttachment(const Function &F,
700                                    const ValueEnumerator &VE,
701                                    BitstreamWriter &Stream) {
702  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
703
704  SmallVector<uint64_t, 64> Record;
705
706  // Write metadata attachments
707  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
708  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
709
710  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
711    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
712         I != E; ++I) {
713      MDs.clear();
714      I->getAllMetadataOtherThanDebugLoc(MDs);
715
716      // If no metadata, ignore instruction.
717      if (MDs.empty()) continue;
718
719      Record.push_back(VE.getInstructionID(I));
720
721      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
722        Record.push_back(MDs[i].first);
723        Record.push_back(VE.getValueID(MDs[i].second));
724      }
725      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
726      Record.clear();
727    }
728
729  Stream.ExitBlock();
730}
731
732static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
733  SmallVector<uint64_t, 64> Record;
734
735  // Write metadata kinds
736  // METADATA_KIND - [n x [id, name]]
737  SmallVector<StringRef, 8> Names;
738  M->getMDKindNames(Names);
739
740  if (Names.empty()) return;
741
742  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
743
744  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
745    Record.push_back(MDKindID);
746    StringRef KName = Names[MDKindID];
747    Record.append(KName.begin(), KName.end());
748
749    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
750    Record.clear();
751  }
752
753  Stream.ExitBlock();
754}
755
756static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
757  if ((int64_t)V >= 0)
758    Vals.push_back(V << 1);
759  else
760    Vals.push_back((-V << 1) | 1);
761}
762
763static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
764                      unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
765                      bool EmitSizeForWideNumbers = false
766                      ) {
767  if (Val.getBitWidth() <= 64) {
768    uint64_t V = Val.getSExtValue();
769    emitSignedInt64(Vals, V);
770    Code = bitc::CST_CODE_INTEGER;
771    AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
772  } else {
773    // Wide integers, > 64 bits in size.
774    // We have an arbitrary precision integer value to write whose
775    // bit width is > 64. However, in canonical unsigned integer
776    // format it is likely that the high bits are going to be zero.
777    // So, we only write the number of active words.
778    unsigned NWords = Val.getActiveWords();
779
780    if (EmitSizeForWideNumbers)
781      Vals.push_back(NWords);
782
783    const uint64_t *RawWords = Val.getRawData();
784    for (unsigned i = 0; i != NWords; ++i) {
785      emitSignedInt64(Vals, RawWords[i]);
786    }
787    Code = bitc::CST_CODE_WIDE_INTEGER;
788  }
789}
790
791static void WriteConstants(unsigned FirstVal, unsigned LastVal,
792                           const ValueEnumerator &VE,
793                           BitstreamWriter &Stream, bool isGlobal) {
794  if (FirstVal == LastVal) return;
795
796  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
797
798  unsigned AggregateAbbrev = 0;
799  unsigned String8Abbrev = 0;
800  unsigned CString7Abbrev = 0;
801  unsigned CString6Abbrev = 0;
802  // If this is a constant pool for the module, emit module-specific abbrevs.
803  if (isGlobal) {
804    // Abbrev for CST_CODE_AGGREGATE.
805    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
806    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
807    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
808    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
809    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
810
811    // Abbrev for CST_CODE_STRING.
812    Abbv = new BitCodeAbbrev();
813    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
814    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
815    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
816    String8Abbrev = Stream.EmitAbbrev(Abbv);
817    // Abbrev for CST_CODE_CSTRING.
818    Abbv = new BitCodeAbbrev();
819    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
820    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
821    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
822    CString7Abbrev = Stream.EmitAbbrev(Abbv);
823    // Abbrev for CST_CODE_CSTRING.
824    Abbv = new BitCodeAbbrev();
825    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
826    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
827    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
828    CString6Abbrev = Stream.EmitAbbrev(Abbv);
829  }
830
831  SmallVector<uint64_t, 64> Record;
832
833  const ValueEnumerator::ValueList &Vals = VE.getValues();
834  Type *LastTy = 0;
835  for (unsigned i = FirstVal; i != LastVal; ++i) {
836    const Value *V = Vals[i].first;
837    // If we need to switch types, do so now.
838    if (V->getType() != LastTy) {
839      LastTy = V->getType();
840      Record.push_back(VE.getTypeID(LastTy));
841      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
842                        CONSTANTS_SETTYPE_ABBREV);
843      Record.clear();
844    }
845
846    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
847      Record.push_back(unsigned(IA->hasSideEffects()) |
848                       unsigned(IA->isAlignStack()) << 1 |
849                       unsigned(IA->getDialect()&1) << 2);
850
851      // Add the asm string.
852      const std::string &AsmStr = IA->getAsmString();
853      Record.push_back(AsmStr.size());
854      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
855        Record.push_back(AsmStr[i]);
856
857      // Add the constraint string.
858      const std::string &ConstraintStr = IA->getConstraintString();
859      Record.push_back(ConstraintStr.size());
860      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
861        Record.push_back(ConstraintStr[i]);
862      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
863      Record.clear();
864      continue;
865    }
866    const Constant *C = cast<Constant>(V);
867    unsigned Code = -1U;
868    unsigned AbbrevToUse = 0;
869    if (C->isNullValue()) {
870      Code = bitc::CST_CODE_NULL;
871    } else if (isa<UndefValue>(C)) {
872      Code = bitc::CST_CODE_UNDEF;
873    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
874      EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
875    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
876      Code = bitc::CST_CODE_FLOAT;
877      Type *Ty = CFP->getType();
878      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
879        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
880      } else if (Ty->isX86_FP80Ty()) {
881        // api needed to prevent premature destruction
882        // bits are not in the same order as a normal i80 APInt, compensate.
883        APInt api = CFP->getValueAPF().bitcastToAPInt();
884        const uint64_t *p = api.getRawData();
885        Record.push_back((p[1] << 48) | (p[0] >> 16));
886        Record.push_back(p[0] & 0xffffLL);
887      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
888        APInt api = CFP->getValueAPF().bitcastToAPInt();
889        const uint64_t *p = api.getRawData();
890        Record.push_back(p[0]);
891        Record.push_back(p[1]);
892      } else {
893        assert (0 && "Unknown FP type!");
894      }
895    } else if (isa<ConstantDataSequential>(C) &&
896               cast<ConstantDataSequential>(C)->isString()) {
897      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
898      // Emit constant strings specially.
899      unsigned NumElts = Str->getNumElements();
900      // If this is a null-terminated string, use the denser CSTRING encoding.
901      if (Str->isCString()) {
902        Code = bitc::CST_CODE_CSTRING;
903        --NumElts;  // Don't encode the null, which isn't allowed by char6.
904      } else {
905        Code = bitc::CST_CODE_STRING;
906        AbbrevToUse = String8Abbrev;
907      }
908      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
909      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
910      for (unsigned i = 0; i != NumElts; ++i) {
911        unsigned char V = Str->getElementAsInteger(i);
912        Record.push_back(V);
913        isCStr7 &= (V & 128) == 0;
914        if (isCStrChar6)
915          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
916      }
917
918      if (isCStrChar6)
919        AbbrevToUse = CString6Abbrev;
920      else if (isCStr7)
921        AbbrevToUse = CString7Abbrev;
922    } else if (const ConstantDataSequential *CDS =
923                  dyn_cast<ConstantDataSequential>(C)) {
924      Code = bitc::CST_CODE_DATA;
925      Type *EltTy = CDS->getType()->getElementType();
926      if (isa<IntegerType>(EltTy)) {
927        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
928          Record.push_back(CDS->getElementAsInteger(i));
929      } else if (EltTy->isFloatTy()) {
930        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
931          union { float F; uint32_t I; };
932          F = CDS->getElementAsFloat(i);
933          Record.push_back(I);
934        }
935      } else {
936        assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
937        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
938          union { double F; uint64_t I; };
939          F = CDS->getElementAsDouble(i);
940          Record.push_back(I);
941        }
942      }
943    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
944               isa<ConstantVector>(C)) {
945      Code = bitc::CST_CODE_AGGREGATE;
946      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
947        Record.push_back(VE.getValueID(C->getOperand(i)));
948      AbbrevToUse = AggregateAbbrev;
949    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
950      switch (CE->getOpcode()) {
951      default:
952        if (Instruction::isCast(CE->getOpcode())) {
953          Code = bitc::CST_CODE_CE_CAST;
954          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
955          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
956          Record.push_back(VE.getValueID(C->getOperand(0)));
957          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
958        } else {
959          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
960          Code = bitc::CST_CODE_CE_BINOP;
961          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
962          Record.push_back(VE.getValueID(C->getOperand(0)));
963          Record.push_back(VE.getValueID(C->getOperand(1)));
964          uint64_t Flags = GetOptimizationFlags(CE);
965          if (Flags != 0)
966            Record.push_back(Flags);
967        }
968        break;
969      case Instruction::GetElementPtr:
970        Code = bitc::CST_CODE_CE_GEP;
971        if (cast<GEPOperator>(C)->isInBounds())
972          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
973        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
974          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
975          Record.push_back(VE.getValueID(C->getOperand(i)));
976        }
977        break;
978      case Instruction::Select:
979        Code = bitc::CST_CODE_CE_SELECT;
980        Record.push_back(VE.getValueID(C->getOperand(0)));
981        Record.push_back(VE.getValueID(C->getOperand(1)));
982        Record.push_back(VE.getValueID(C->getOperand(2)));
983        break;
984      case Instruction::ExtractElement:
985        Code = bitc::CST_CODE_CE_EXTRACTELT;
986        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
987        Record.push_back(VE.getValueID(C->getOperand(0)));
988        Record.push_back(VE.getValueID(C->getOperand(1)));
989        break;
990      case Instruction::InsertElement:
991        Code = bitc::CST_CODE_CE_INSERTELT;
992        Record.push_back(VE.getValueID(C->getOperand(0)));
993        Record.push_back(VE.getValueID(C->getOperand(1)));
994        Record.push_back(VE.getValueID(C->getOperand(2)));
995        break;
996      case Instruction::ShuffleVector:
997        // If the return type and argument types are the same, this is a
998        // standard shufflevector instruction.  If the types are different,
999        // then the shuffle is widening or truncating the input vectors, and
1000        // the argument type must also be encoded.
1001        if (C->getType() == C->getOperand(0)->getType()) {
1002          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1003        } else {
1004          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1005          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1006        }
1007        Record.push_back(VE.getValueID(C->getOperand(0)));
1008        Record.push_back(VE.getValueID(C->getOperand(1)));
1009        Record.push_back(VE.getValueID(C->getOperand(2)));
1010        break;
1011      case Instruction::ICmp:
1012      case Instruction::FCmp:
1013        Code = bitc::CST_CODE_CE_CMP;
1014        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1015        Record.push_back(VE.getValueID(C->getOperand(0)));
1016        Record.push_back(VE.getValueID(C->getOperand(1)));
1017        Record.push_back(CE->getPredicate());
1018        break;
1019      }
1020    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1021      Code = bitc::CST_CODE_BLOCKADDRESS;
1022      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1023      Record.push_back(VE.getValueID(BA->getFunction()));
1024      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1025    } else {
1026#ifndef NDEBUG
1027      C->dump();
1028#endif
1029      llvm_unreachable("Unknown constant!");
1030    }
1031    Stream.EmitRecord(Code, Record, AbbrevToUse);
1032    Record.clear();
1033  }
1034
1035  Stream.ExitBlock();
1036}
1037
1038static void WriteModuleConstants(const ValueEnumerator &VE,
1039                                 BitstreamWriter &Stream) {
1040  const ValueEnumerator::ValueList &Vals = VE.getValues();
1041
1042  // Find the first constant to emit, which is the first non-globalvalue value.
1043  // We know globalvalues have been emitted by WriteModuleInfo.
1044  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1045    if (!isa<GlobalValue>(Vals[i].first)) {
1046      WriteConstants(i, Vals.size(), VE, Stream, true);
1047      return;
1048    }
1049  }
1050}
1051
1052/// PushValueAndType - The file has to encode both the value and type id for
1053/// many values, because we need to know what type to create for forward
1054/// references.  However, most operands are not forward references, so this type
1055/// field is not needed.
1056///
1057/// This function adds V's value ID to Vals.  If the value ID is higher than the
1058/// instruction ID, then it is a forward reference, and it also includes the
1059/// type ID.  The value ID that is written is encoded relative to the InstID.
1060static bool PushValueAndType(const Value *V, unsigned InstID,
1061                             SmallVector<unsigned, 64> &Vals,
1062                             ValueEnumerator &VE) {
1063  unsigned ValID = VE.getValueID(V);
1064  // Make encoding relative to the InstID.
1065  Vals.push_back(InstID - ValID);
1066  if (ValID >= InstID) {
1067    Vals.push_back(VE.getTypeID(V->getType()));
1068    return true;
1069  }
1070  return false;
1071}
1072
1073/// pushValue - Like PushValueAndType, but where the type of the value is
1074/// omitted (perhaps it was already encoded in an earlier operand).
1075static void pushValue(const Value *V, unsigned InstID,
1076                      SmallVector<unsigned, 64> &Vals,
1077                      ValueEnumerator &VE) {
1078  unsigned ValID = VE.getValueID(V);
1079  Vals.push_back(InstID - ValID);
1080}
1081
1082static void pushValue64(const Value *V, unsigned InstID,
1083                        SmallVector<uint64_t, 128> &Vals,
1084                        ValueEnumerator &VE) {
1085  uint64_t ValID = VE.getValueID(V);
1086  Vals.push_back(InstID - ValID);
1087}
1088
1089static void pushValueSigned(const Value *V, unsigned InstID,
1090                            SmallVector<uint64_t, 128> &Vals,
1091                            ValueEnumerator &VE) {
1092  unsigned ValID = VE.getValueID(V);
1093  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1094  emitSignedInt64(Vals, diff);
1095}
1096
1097/// WriteInstruction - Emit an instruction to the specified stream.
1098static void WriteInstruction(const Instruction &I, unsigned InstID,
1099                             ValueEnumerator &VE, BitstreamWriter &Stream,
1100                             SmallVector<unsigned, 64> &Vals) {
1101  unsigned Code = 0;
1102  unsigned AbbrevToUse = 0;
1103  VE.setInstructionID(&I);
1104  switch (I.getOpcode()) {
1105  default:
1106    if (Instruction::isCast(I.getOpcode())) {
1107      Code = bitc::FUNC_CODE_INST_CAST;
1108      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1109        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1110      Vals.push_back(VE.getTypeID(I.getType()));
1111      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1112    } else {
1113      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1114      Code = bitc::FUNC_CODE_INST_BINOP;
1115      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1116        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1117      pushValue(I.getOperand(1), InstID, Vals, VE);
1118      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1119      uint64_t Flags = GetOptimizationFlags(&I);
1120      if (Flags != 0) {
1121        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1122          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1123        Vals.push_back(Flags);
1124      }
1125    }
1126    break;
1127
1128  case Instruction::GetElementPtr:
1129    Code = bitc::FUNC_CODE_INST_GEP;
1130    if (cast<GEPOperator>(&I)->isInBounds())
1131      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1132    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1133      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1134    break;
1135  case Instruction::ExtractValue: {
1136    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1137    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1138    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1139    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1140      Vals.push_back(*i);
1141    break;
1142  }
1143  case Instruction::InsertValue: {
1144    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1145    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1146    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1147    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1148    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1149      Vals.push_back(*i);
1150    break;
1151  }
1152  case Instruction::Select:
1153    Code = bitc::FUNC_CODE_INST_VSELECT;
1154    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1155    pushValue(I.getOperand(2), InstID, Vals, VE);
1156    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1157    break;
1158  case Instruction::ExtractElement:
1159    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1160    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1161    pushValue(I.getOperand(1), InstID, Vals, VE);
1162    break;
1163  case Instruction::InsertElement:
1164    Code = bitc::FUNC_CODE_INST_INSERTELT;
1165    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1166    pushValue(I.getOperand(1), InstID, Vals, VE);
1167    pushValue(I.getOperand(2), InstID, Vals, VE);
1168    break;
1169  case Instruction::ShuffleVector:
1170    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1171    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1172    pushValue(I.getOperand(1), InstID, Vals, VE);
1173    pushValue(I.getOperand(2), InstID, Vals, VE);
1174    break;
1175  case Instruction::ICmp:
1176  case Instruction::FCmp:
1177    // compare returning Int1Ty or vector of Int1Ty
1178    Code = bitc::FUNC_CODE_INST_CMP2;
1179    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1180    pushValue(I.getOperand(1), InstID, Vals, VE);
1181    Vals.push_back(cast<CmpInst>(I).getPredicate());
1182    break;
1183
1184  case Instruction::Ret:
1185    {
1186      Code = bitc::FUNC_CODE_INST_RET;
1187      unsigned NumOperands = I.getNumOperands();
1188      if (NumOperands == 0)
1189        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1190      else if (NumOperands == 1) {
1191        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1192          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1193      } else {
1194        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1195          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1196      }
1197    }
1198    break;
1199  case Instruction::Br:
1200    {
1201      Code = bitc::FUNC_CODE_INST_BR;
1202      BranchInst &II = cast<BranchInst>(I);
1203      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1204      if (II.isConditional()) {
1205        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1206        pushValue(II.getCondition(), InstID, Vals, VE);
1207      }
1208    }
1209    break;
1210  case Instruction::Switch:
1211    {
1212      // Redefine Vals, since here we need to use 64 bit values
1213      // explicitly to store large APInt numbers.
1214      SmallVector<uint64_t, 128> Vals64;
1215
1216      Code = bitc::FUNC_CODE_INST_SWITCH;
1217      SwitchInst &SI = cast<SwitchInst>(I);
1218
1219      uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16);
1220      Vals64.push_back(SwitchRecordHeader);
1221
1222      Vals64.push_back(VE.getTypeID(SI.getCondition()->getType()));
1223      pushValue64(SI.getCondition(), InstID, Vals64, VE);
1224      Vals64.push_back(VE.getValueID(SI.getDefaultDest()));
1225      Vals64.push_back(SI.getNumCases());
1226      for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1227           i != e; ++i) {
1228        IntegersSubset& CaseRanges = i.getCaseValueEx();
1229        unsigned Code, Abbrev; // will unused.
1230
1231        if (CaseRanges.isSingleNumber()) {
1232          Vals64.push_back(1/*NumItems = 1*/);
1233          Vals64.push_back(true/*IsSingleNumber = true*/);
1234          EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true);
1235        } else {
1236
1237          Vals64.push_back(CaseRanges.getNumItems());
1238
1239          if (CaseRanges.isSingleNumbersOnly()) {
1240            for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1241                 ri != rn; ++ri) {
1242
1243              Vals64.push_back(true/*IsSingleNumber = true*/);
1244
1245              EmitAPInt(Vals64, Code, Abbrev,
1246                        CaseRanges.getSingleNumber(ri), true);
1247            }
1248          } else
1249            for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1250                 ri != rn; ++ri) {
1251              IntegersSubset::Range r = CaseRanges.getItem(ri);
1252              bool IsSingleNumber = CaseRanges.isSingleNumber(ri);
1253
1254              Vals64.push_back(IsSingleNumber);
1255
1256              EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true);
1257              if (!IsSingleNumber)
1258                EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true);
1259            }
1260        }
1261        Vals64.push_back(VE.getValueID(i.getCaseSuccessor()));
1262      }
1263
1264      Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1265
1266      // Also do expected action - clear external Vals collection:
1267      Vals.clear();
1268      return;
1269    }
1270    break;
1271  case Instruction::IndirectBr:
1272    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1273    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1274    // Encode the address operand as relative, but not the basic blocks.
1275    pushValue(I.getOperand(0), InstID, Vals, VE);
1276    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1277      Vals.push_back(VE.getValueID(I.getOperand(i)));
1278    break;
1279
1280  case Instruction::Invoke: {
1281    const InvokeInst *II = cast<InvokeInst>(&I);
1282    const Value *Callee(II->getCalledValue());
1283    PointerType *PTy = cast<PointerType>(Callee->getType());
1284    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1285    Code = bitc::FUNC_CODE_INST_INVOKE;
1286
1287    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1288    Vals.push_back(II->getCallingConv());
1289    Vals.push_back(VE.getValueID(II->getNormalDest()));
1290    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1291    PushValueAndType(Callee, InstID, Vals, VE);
1292
1293    // Emit value #'s for the fixed parameters.
1294    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1295      pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1296
1297    // Emit type/value pairs for varargs params.
1298    if (FTy->isVarArg()) {
1299      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1300           i != e; ++i)
1301        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1302    }
1303    break;
1304  }
1305  case Instruction::Resume:
1306    Code = bitc::FUNC_CODE_INST_RESUME;
1307    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1308    break;
1309  case Instruction::Unreachable:
1310    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1311    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1312    break;
1313
1314  case Instruction::PHI: {
1315    const PHINode &PN = cast<PHINode>(I);
1316    Code = bitc::FUNC_CODE_INST_PHI;
1317    // With the newer instruction encoding, forward references could give
1318    // negative valued IDs.  This is most common for PHIs, so we use
1319    // signed VBRs.
1320    SmallVector<uint64_t, 128> Vals64;
1321    Vals64.push_back(VE.getTypeID(PN.getType()));
1322    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1323      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1324      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1325    }
1326    // Emit a Vals64 vector and exit.
1327    Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1328    Vals64.clear();
1329    return;
1330  }
1331
1332  case Instruction::LandingPad: {
1333    const LandingPadInst &LP = cast<LandingPadInst>(I);
1334    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1335    Vals.push_back(VE.getTypeID(LP.getType()));
1336    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1337    Vals.push_back(LP.isCleanup());
1338    Vals.push_back(LP.getNumClauses());
1339    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1340      if (LP.isCatch(I))
1341        Vals.push_back(LandingPadInst::Catch);
1342      else
1343        Vals.push_back(LandingPadInst::Filter);
1344      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1345    }
1346    break;
1347  }
1348
1349  case Instruction::Alloca:
1350    Code = bitc::FUNC_CODE_INST_ALLOCA;
1351    Vals.push_back(VE.getTypeID(I.getType()));
1352    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1353    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1354    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1355    break;
1356
1357  case Instruction::Load:
1358    if (cast<LoadInst>(I).isAtomic()) {
1359      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1360      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1361    } else {
1362      Code = bitc::FUNC_CODE_INST_LOAD;
1363      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1364        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1365    }
1366    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1367    Vals.push_back(cast<LoadInst>(I).isVolatile());
1368    if (cast<LoadInst>(I).isAtomic()) {
1369      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1370      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1371    }
1372    break;
1373  case Instruction::Store:
1374    if (cast<StoreInst>(I).isAtomic())
1375      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1376    else
1377      Code = bitc::FUNC_CODE_INST_STORE;
1378    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1379    pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1380    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1381    Vals.push_back(cast<StoreInst>(I).isVolatile());
1382    if (cast<StoreInst>(I).isAtomic()) {
1383      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1384      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1385    }
1386    break;
1387  case Instruction::AtomicCmpXchg:
1388    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1389    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1390    pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1391    pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1392    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1393    Vals.push_back(GetEncodedOrdering(
1394                     cast<AtomicCmpXchgInst>(I).getOrdering()));
1395    Vals.push_back(GetEncodedSynchScope(
1396                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1397    break;
1398  case Instruction::AtomicRMW:
1399    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1400    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1401    pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1402    Vals.push_back(GetEncodedRMWOperation(
1403                     cast<AtomicRMWInst>(I).getOperation()));
1404    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1405    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1406    Vals.push_back(GetEncodedSynchScope(
1407                     cast<AtomicRMWInst>(I).getSynchScope()));
1408    break;
1409  case Instruction::Fence:
1410    Code = bitc::FUNC_CODE_INST_FENCE;
1411    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1412    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1413    break;
1414  case Instruction::Call: {
1415    const CallInst &CI = cast<CallInst>(I);
1416    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1417    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1418
1419    Code = bitc::FUNC_CODE_INST_CALL;
1420
1421    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1422    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1423    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1424
1425    // Emit value #'s for the fixed parameters.
1426    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1427      // Check for labels (can happen with asm labels).
1428      if (FTy->getParamType(i)->isLabelTy())
1429        Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1430      else
1431        pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1432    }
1433
1434    // Emit type/value pairs for varargs params.
1435    if (FTy->isVarArg()) {
1436      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1437           i != e; ++i)
1438        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1439    }
1440    break;
1441  }
1442  case Instruction::VAArg:
1443    Code = bitc::FUNC_CODE_INST_VAARG;
1444    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1445    pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1446    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1447    break;
1448  }
1449
1450  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1451  Vals.clear();
1452}
1453
1454// Emit names for globals/functions etc.
1455static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1456                                  const ValueEnumerator &VE,
1457                                  BitstreamWriter &Stream) {
1458  if (VST.empty()) return;
1459  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1460
1461  // FIXME: Set up the abbrev, we know how many values there are!
1462  // FIXME: We know if the type names can use 7-bit ascii.
1463  SmallVector<unsigned, 64> NameVals;
1464
1465  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1466       SI != SE; ++SI) {
1467
1468    const ValueName &Name = *SI;
1469
1470    // Figure out the encoding to use for the name.
1471    bool is7Bit = true;
1472    bool isChar6 = true;
1473    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1474         C != E; ++C) {
1475      if (isChar6)
1476        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1477      if ((unsigned char)*C & 128) {
1478        is7Bit = false;
1479        break;  // don't bother scanning the rest.
1480      }
1481    }
1482
1483    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1484
1485    // VST_ENTRY:   [valueid, namechar x N]
1486    // VST_BBENTRY: [bbid, namechar x N]
1487    unsigned Code;
1488    if (isa<BasicBlock>(SI->getValue())) {
1489      Code = bitc::VST_CODE_BBENTRY;
1490      if (isChar6)
1491        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1492    } else {
1493      Code = bitc::VST_CODE_ENTRY;
1494      if (isChar6)
1495        AbbrevToUse = VST_ENTRY_6_ABBREV;
1496      else if (is7Bit)
1497        AbbrevToUse = VST_ENTRY_7_ABBREV;
1498    }
1499
1500    NameVals.push_back(VE.getValueID(SI->getValue()));
1501    for (const char *P = Name.getKeyData(),
1502         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1503      NameVals.push_back((unsigned char)*P);
1504
1505    // Emit the finished record.
1506    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1507    NameVals.clear();
1508  }
1509  Stream.ExitBlock();
1510}
1511
1512/// WriteFunction - Emit a function body to the module stream.
1513static void WriteFunction(const Function &F, ValueEnumerator &VE,
1514                          BitstreamWriter &Stream) {
1515  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1516  VE.incorporateFunction(F);
1517
1518  SmallVector<unsigned, 64> Vals;
1519
1520  // Emit the number of basic blocks, so the reader can create them ahead of
1521  // time.
1522  Vals.push_back(VE.getBasicBlocks().size());
1523  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1524  Vals.clear();
1525
1526  // If there are function-local constants, emit them now.
1527  unsigned CstStart, CstEnd;
1528  VE.getFunctionConstantRange(CstStart, CstEnd);
1529  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1530
1531  // If there is function-local metadata, emit it now.
1532  WriteFunctionLocalMetadata(F, VE, Stream);
1533
1534  // Keep a running idea of what the instruction ID is.
1535  unsigned InstID = CstEnd;
1536
1537  bool NeedsMetadataAttachment = false;
1538
1539  DebugLoc LastDL;
1540
1541  // Finally, emit all the instructions, in order.
1542  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1543    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1544         I != E; ++I) {
1545      WriteInstruction(*I, InstID, VE, Stream, Vals);
1546
1547      if (!I->getType()->isVoidTy())
1548        ++InstID;
1549
1550      // If the instruction has metadata, write a metadata attachment later.
1551      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1552
1553      // If the instruction has a debug location, emit it.
1554      DebugLoc DL = I->getDebugLoc();
1555      if (DL.isUnknown()) {
1556        // nothing todo.
1557      } else if (DL == LastDL) {
1558        // Just repeat the same debug loc as last time.
1559        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1560      } else {
1561        MDNode *Scope, *IA;
1562        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1563
1564        Vals.push_back(DL.getLine());
1565        Vals.push_back(DL.getCol());
1566        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1567        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1568        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1569        Vals.clear();
1570
1571        LastDL = DL;
1572      }
1573    }
1574
1575  // Emit names for all the instructions etc.
1576  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1577
1578  if (NeedsMetadataAttachment)
1579    WriteMetadataAttachment(F, VE, Stream);
1580  VE.purgeFunction();
1581  Stream.ExitBlock();
1582}
1583
1584// Emit blockinfo, which defines the standard abbreviations etc.
1585static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1586  // We only want to emit block info records for blocks that have multiple
1587  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1588  // Other blocks can define their abbrevs inline.
1589  Stream.EnterBlockInfoBlock(2);
1590
1591  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1592    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1593    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1594    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1595    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1596    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1597    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1598                                   Abbv) != VST_ENTRY_8_ABBREV)
1599      llvm_unreachable("Unexpected abbrev ordering!");
1600  }
1601
1602  { // 7-bit fixed width VST_ENTRY strings.
1603    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1604    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1605    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1606    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1607    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1608    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1609                                   Abbv) != VST_ENTRY_7_ABBREV)
1610      llvm_unreachable("Unexpected abbrev ordering!");
1611  }
1612  { // 6-bit char6 VST_ENTRY strings.
1613    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1614    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1615    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1616    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1617    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1618    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1619                                   Abbv) != VST_ENTRY_6_ABBREV)
1620      llvm_unreachable("Unexpected abbrev ordering!");
1621  }
1622  { // 6-bit char6 VST_BBENTRY strings.
1623    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1624    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1625    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1626    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1627    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1628    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1629                                   Abbv) != VST_BBENTRY_6_ABBREV)
1630      llvm_unreachable("Unexpected abbrev ordering!");
1631  }
1632
1633
1634
1635  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1636    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1637    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1638    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1639                              Log2_32_Ceil(VE.getTypes().size()+1)));
1640    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1641                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1642      llvm_unreachable("Unexpected abbrev ordering!");
1643  }
1644
1645  { // INTEGER abbrev for CONSTANTS_BLOCK.
1646    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1647    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1648    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1649    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1650                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1651      llvm_unreachable("Unexpected abbrev ordering!");
1652  }
1653
1654  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1655    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1656    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1657    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1658    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1659                              Log2_32_Ceil(VE.getTypes().size()+1)));
1660    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1661
1662    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1663                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1664      llvm_unreachable("Unexpected abbrev ordering!");
1665  }
1666  { // NULL abbrev for CONSTANTS_BLOCK.
1667    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1668    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1669    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1670                                   Abbv) != CONSTANTS_NULL_Abbrev)
1671      llvm_unreachable("Unexpected abbrev ordering!");
1672  }
1673
1674  // FIXME: This should only use space for first class types!
1675
1676  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1677    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1678    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1679    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1680    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1681    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1682    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1683                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1684      llvm_unreachable("Unexpected abbrev ordering!");
1685  }
1686  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1687    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1688    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1689    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1690    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1691    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1692    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1693                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1694      llvm_unreachable("Unexpected abbrev ordering!");
1695  }
1696  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1697    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1698    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1699    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1700    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1701    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1702    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1703    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1704                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1705      llvm_unreachable("Unexpected abbrev ordering!");
1706  }
1707  { // INST_CAST abbrev for FUNCTION_BLOCK.
1708    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1709    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1710    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1711    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1712                              Log2_32_Ceil(VE.getTypes().size()+1)));
1713    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1714    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1715                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1716      llvm_unreachable("Unexpected abbrev ordering!");
1717  }
1718
1719  { // INST_RET abbrev for FUNCTION_BLOCK.
1720    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1721    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1722    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1723                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1724      llvm_unreachable("Unexpected abbrev ordering!");
1725  }
1726  { // INST_RET abbrev for FUNCTION_BLOCK.
1727    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1728    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1729    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1730    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1731                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1732      llvm_unreachable("Unexpected abbrev ordering!");
1733  }
1734  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1735    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1736    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1737    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1738                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1739      llvm_unreachable("Unexpected abbrev ordering!");
1740  }
1741
1742  Stream.ExitBlock();
1743}
1744
1745// Sort the Users based on the order in which the reader parses the bitcode
1746// file.
1747static bool bitcodereader_order(const User *lhs, const User *rhs) {
1748  // TODO: Implement.
1749  return true;
1750}
1751
1752static void WriteUseList(const Value *V, const ValueEnumerator &VE,
1753                         BitstreamWriter &Stream) {
1754
1755  // One or zero uses can't get out of order.
1756  if (V->use_empty() || V->hasNUses(1))
1757    return;
1758
1759  // Make a copy of the in-memory use-list for sorting.
1760  unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
1761  SmallVector<const User*, 8> UseList;
1762  UseList.reserve(UseListSize);
1763  for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
1764       I != E; ++I) {
1765    const User *U = *I;
1766    UseList.push_back(U);
1767  }
1768
1769  // Sort the copy based on the order read by the BitcodeReader.
1770  std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
1771
1772  // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1773  // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1774
1775  // TODO: Emit the USELIST_CODE_ENTRYs.
1776}
1777
1778static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
1779                                 BitstreamWriter &Stream) {
1780  VE.incorporateFunction(*F);
1781
1782  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1783       AI != AE; ++AI)
1784    WriteUseList(AI, VE, Stream);
1785  for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1786       ++BB) {
1787    WriteUseList(BB, VE, Stream);
1788    for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1789         ++II) {
1790      WriteUseList(II, VE, Stream);
1791      for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1792           OI != E; ++OI) {
1793        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1794            isa<InlineAsm>(*OI))
1795          WriteUseList(*OI, VE, Stream);
1796      }
1797    }
1798  }
1799  VE.purgeFunction();
1800}
1801
1802// Emit use-lists.
1803static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
1804                                BitstreamWriter &Stream) {
1805  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1806
1807  // XXX: this modifies the module, but in a way that should never change the
1808  // behavior of any pass or codegen in LLVM. The problem is that GVs may
1809  // contain entries in the use_list that do not exist in the Module and are
1810  // not stored in the .bc file.
1811  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1812       I != E; ++I)
1813    I->removeDeadConstantUsers();
1814
1815  // Write the global variables.
1816  for (Module::const_global_iterator GI = M->global_begin(),
1817         GE = M->global_end(); GI != GE; ++GI) {
1818    WriteUseList(GI, VE, Stream);
1819
1820    // Write the global variable initializers.
1821    if (GI->hasInitializer())
1822      WriteUseList(GI->getInitializer(), VE, Stream);
1823  }
1824
1825  // Write the functions.
1826  for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1827    WriteUseList(FI, VE, Stream);
1828    if (!FI->isDeclaration())
1829      WriteFunctionUseList(FI, VE, Stream);
1830  }
1831
1832  // Write the aliases.
1833  for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1834       AI != AE; ++AI) {
1835    WriteUseList(AI, VE, Stream);
1836    WriteUseList(AI->getAliasee(), VE, Stream);
1837  }
1838
1839  Stream.ExitBlock();
1840}
1841
1842/// WriteModule - Emit the specified module to the bitstream.
1843static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1844  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1845
1846  SmallVector<unsigned, 1> Vals;
1847  unsigned CurVersion = 1;
1848  Vals.push_back(CurVersion);
1849  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1850
1851  // Analyze the module, enumerating globals, functions, etc.
1852  ValueEnumerator VE(M);
1853
1854  // Emit blockinfo, which defines the standard abbreviations etc.
1855  WriteBlockInfo(VE, Stream);
1856
1857  // Emit information about parameter attributes.
1858  WriteAttributeTable(VE, Stream);
1859
1860  // Emit information describing all of the types in the module.
1861  WriteTypeTable(VE, Stream);
1862
1863  // Emit top-level description of module, including target triple, inline asm,
1864  // descriptors for global variables, and function prototype info.
1865  WriteModuleInfo(M, VE, Stream);
1866
1867  // Emit constants.
1868  WriteModuleConstants(VE, Stream);
1869
1870  // Emit metadata.
1871  WriteModuleMetadata(M, VE, Stream);
1872
1873  // Emit metadata.
1874  WriteModuleMetadataStore(M, Stream);
1875
1876  // Emit names for globals/functions etc.
1877  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1878
1879  // Emit use-lists.
1880  if (EnablePreserveUseListOrdering)
1881    WriteModuleUseLists(M, VE, Stream);
1882
1883  // Emit function bodies.
1884  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1885    if (!F->isDeclaration())
1886      WriteFunction(*F, VE, Stream);
1887
1888  Stream.ExitBlock();
1889}
1890
1891/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1892/// header and trailer to make it compatible with the system archiver.  To do
1893/// this we emit the following header, and then emit a trailer that pads the
1894/// file out to be a multiple of 16 bytes.
1895///
1896/// struct bc_header {
1897///   uint32_t Magic;         // 0x0B17C0DE
1898///   uint32_t Version;       // Version, currently always 0.
1899///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1900///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1901///   uint32_t CPUType;       // CPU specifier.
1902///   ... potentially more later ...
1903/// };
1904enum {
1905  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1906  DarwinBCHeaderSize = 5*4
1907};
1908
1909static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1910                               uint32_t &Position) {
1911  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1912  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1913  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1914  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1915  Position += 4;
1916}
1917
1918static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1919                                         const Triple &TT) {
1920  unsigned CPUType = ~0U;
1921
1922  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1923  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1924  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1925  // specific constants here because they are implicitly part of the Darwin ABI.
1926  enum {
1927    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1928    DARWIN_CPU_TYPE_X86        = 7,
1929    DARWIN_CPU_TYPE_ARM        = 12,
1930    DARWIN_CPU_TYPE_POWERPC    = 18
1931  };
1932
1933  Triple::ArchType Arch = TT.getArch();
1934  if (Arch == Triple::x86_64)
1935    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1936  else if (Arch == Triple::x86)
1937    CPUType = DARWIN_CPU_TYPE_X86;
1938  else if (Arch == Triple::ppc)
1939    CPUType = DARWIN_CPU_TYPE_POWERPC;
1940  else if (Arch == Triple::ppc64)
1941    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1942  else if (Arch == Triple::arm || Arch == Triple::thumb)
1943    CPUType = DARWIN_CPU_TYPE_ARM;
1944
1945  // Traditional Bitcode starts after header.
1946  assert(Buffer.size() >= DarwinBCHeaderSize &&
1947         "Expected header size to be reserved");
1948  unsigned BCOffset = DarwinBCHeaderSize;
1949  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1950
1951  // Write the magic and version.
1952  unsigned Position = 0;
1953  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1954  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1955  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1956  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1957  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1958
1959  // If the file is not a multiple of 16 bytes, insert dummy padding.
1960  while (Buffer.size() & 15)
1961    Buffer.push_back(0);
1962}
1963
1964/// WriteBitcodeToFile - Write the specified module to the specified output
1965/// stream.
1966void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1967  SmallVector<char, 0> Buffer;
1968  Buffer.reserve(256*1024);
1969
1970  // If this is darwin or another generic macho target, reserve space for the
1971  // header.
1972  Triple TT(M->getTargetTriple());
1973  if (TT.isOSDarwin())
1974    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1975
1976  // Emit the module into the buffer.
1977  {
1978    BitstreamWriter Stream(Buffer);
1979
1980    // Emit the file header.
1981    Stream.Emit((unsigned)'B', 8);
1982    Stream.Emit((unsigned)'C', 8);
1983    Stream.Emit(0x0, 4);
1984    Stream.Emit(0xC, 4);
1985    Stream.Emit(0xE, 4);
1986    Stream.Emit(0xD, 4);
1987
1988    // Emit the module.
1989    WriteModule(M, Stream);
1990  }
1991
1992  if (TT.isOSDarwin())
1993    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1994
1995  // Write the generated bitstream to "Out".
1996  Out.write((char*)&Buffer.front(), Buffer.size());
1997}
1998