1//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLoweringBase class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineJumpTableInfo.h"
23#include "llvm/CodeGen/StackMaps.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Mangler.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/Support/BranchProbability.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetLoweringObjectFile.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39#include <cctype>
40using namespace llvm;
41
42static cl::opt<bool> JumpIsExpensiveOverride(
43    "jump-is-expensive", cl::init(false),
44    cl::desc("Do not create extra branches to split comparison logic."),
45    cl::Hidden);
46
47// Although this default value is arbitrary, it is not random. It is assumed
48// that a condition that evaluates the same way by a higher percentage than this
49// is best represented as control flow. Therefore, the default value N should be
50// set such that the win from N% correct executions is greater than the loss
51// from (100 - N)% mispredicted executions for the majority of intended targets.
52static cl::opt<int> MinPercentageForPredictableBranch(
53    "min-predictable-branch", cl::init(99),
54    cl::desc("Minimum percentage (0-100) that a condition must be either true "
55             "or false to assume that the condition is predictable"),
56    cl::Hidden);
57
58/// InitLibcallNames - Set default libcall names.
59///
60static void InitLibcallNames(const char **Names, const Triple &TT) {
61  Names[RTLIB::SHL_I16] = "__ashlhi3";
62  Names[RTLIB::SHL_I32] = "__ashlsi3";
63  Names[RTLIB::SHL_I64] = "__ashldi3";
64  Names[RTLIB::SHL_I128] = "__ashlti3";
65  Names[RTLIB::SRL_I16] = "__lshrhi3";
66  Names[RTLIB::SRL_I32] = "__lshrsi3";
67  Names[RTLIB::SRL_I64] = "__lshrdi3";
68  Names[RTLIB::SRL_I128] = "__lshrti3";
69  Names[RTLIB::SRA_I16] = "__ashrhi3";
70  Names[RTLIB::SRA_I32] = "__ashrsi3";
71  Names[RTLIB::SRA_I64] = "__ashrdi3";
72  Names[RTLIB::SRA_I128] = "__ashrti3";
73  Names[RTLIB::MUL_I8] = "__mulqi3";
74  Names[RTLIB::MUL_I16] = "__mulhi3";
75  Names[RTLIB::MUL_I32] = "__mulsi3";
76  Names[RTLIB::MUL_I64] = "__muldi3";
77  Names[RTLIB::MUL_I128] = "__multi3";
78  Names[RTLIB::MULO_I32] = "__mulosi4";
79  Names[RTLIB::MULO_I64] = "__mulodi4";
80  Names[RTLIB::MULO_I128] = "__muloti4";
81  Names[RTLIB::SDIV_I8] = "__divqi3";
82  Names[RTLIB::SDIV_I16] = "__divhi3";
83  Names[RTLIB::SDIV_I32] = "__divsi3";
84  Names[RTLIB::SDIV_I64] = "__divdi3";
85  Names[RTLIB::SDIV_I128] = "__divti3";
86  Names[RTLIB::UDIV_I8] = "__udivqi3";
87  Names[RTLIB::UDIV_I16] = "__udivhi3";
88  Names[RTLIB::UDIV_I32] = "__udivsi3";
89  Names[RTLIB::UDIV_I64] = "__udivdi3";
90  Names[RTLIB::UDIV_I128] = "__udivti3";
91  Names[RTLIB::SREM_I8] = "__modqi3";
92  Names[RTLIB::SREM_I16] = "__modhi3";
93  Names[RTLIB::SREM_I32] = "__modsi3";
94  Names[RTLIB::SREM_I64] = "__moddi3";
95  Names[RTLIB::SREM_I128] = "__modti3";
96  Names[RTLIB::UREM_I8] = "__umodqi3";
97  Names[RTLIB::UREM_I16] = "__umodhi3";
98  Names[RTLIB::UREM_I32] = "__umodsi3";
99  Names[RTLIB::UREM_I64] = "__umoddi3";
100  Names[RTLIB::UREM_I128] = "__umodti3";
101
102  Names[RTLIB::NEG_I32] = "__negsi2";
103  Names[RTLIB::NEG_I64] = "__negdi2";
104  Names[RTLIB::ADD_F32] = "__addsf3";
105  Names[RTLIB::ADD_F64] = "__adddf3";
106  Names[RTLIB::ADD_F80] = "__addxf3";
107  Names[RTLIB::ADD_F128] = "__addtf3";
108  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
109  Names[RTLIB::SUB_F32] = "__subsf3";
110  Names[RTLIB::SUB_F64] = "__subdf3";
111  Names[RTLIB::SUB_F80] = "__subxf3";
112  Names[RTLIB::SUB_F128] = "__subtf3";
113  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
114  Names[RTLIB::MUL_F32] = "__mulsf3";
115  Names[RTLIB::MUL_F64] = "__muldf3";
116  Names[RTLIB::MUL_F80] = "__mulxf3";
117  Names[RTLIB::MUL_F128] = "__multf3";
118  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
119  Names[RTLIB::DIV_F32] = "__divsf3";
120  Names[RTLIB::DIV_F64] = "__divdf3";
121  Names[RTLIB::DIV_F80] = "__divxf3";
122  Names[RTLIB::DIV_F128] = "__divtf3";
123  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
124  Names[RTLIB::REM_F32] = "fmodf";
125  Names[RTLIB::REM_F64] = "fmod";
126  Names[RTLIB::REM_F80] = "fmodl";
127  Names[RTLIB::REM_F128] = "fmodl";
128  Names[RTLIB::REM_PPCF128] = "fmodl";
129  Names[RTLIB::FMA_F32] = "fmaf";
130  Names[RTLIB::FMA_F64] = "fma";
131  Names[RTLIB::FMA_F80] = "fmal";
132  Names[RTLIB::FMA_F128] = "fmal";
133  Names[RTLIB::FMA_PPCF128] = "fmal";
134  Names[RTLIB::POWI_F32] = "__powisf2";
135  Names[RTLIB::POWI_F64] = "__powidf2";
136  Names[RTLIB::POWI_F80] = "__powixf2";
137  Names[RTLIB::POWI_F128] = "__powitf2";
138  Names[RTLIB::POWI_PPCF128] = "__powitf2";
139  Names[RTLIB::SQRT_F32] = "sqrtf";
140  Names[RTLIB::SQRT_F64] = "sqrt";
141  Names[RTLIB::SQRT_F80] = "sqrtl";
142  Names[RTLIB::SQRT_F128] = "sqrtl";
143  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
144  Names[RTLIB::LOG_F32] = "logf";
145  Names[RTLIB::LOG_F64] = "log";
146  Names[RTLIB::LOG_F80] = "logl";
147  Names[RTLIB::LOG_F128] = "logl";
148  Names[RTLIB::LOG_PPCF128] = "logl";
149  Names[RTLIB::LOG2_F32] = "log2f";
150  Names[RTLIB::LOG2_F64] = "log2";
151  Names[RTLIB::LOG2_F80] = "log2l";
152  Names[RTLIB::LOG2_F128] = "log2l";
153  Names[RTLIB::LOG2_PPCF128] = "log2l";
154  Names[RTLIB::LOG10_F32] = "log10f";
155  Names[RTLIB::LOG10_F64] = "log10";
156  Names[RTLIB::LOG10_F80] = "log10l";
157  Names[RTLIB::LOG10_F128] = "log10l";
158  Names[RTLIB::LOG10_PPCF128] = "log10l";
159  Names[RTLIB::EXP_F32] = "expf";
160  Names[RTLIB::EXP_F64] = "exp";
161  Names[RTLIB::EXP_F80] = "expl";
162  Names[RTLIB::EXP_F128] = "expl";
163  Names[RTLIB::EXP_PPCF128] = "expl";
164  Names[RTLIB::EXP2_F32] = "exp2f";
165  Names[RTLIB::EXP2_F64] = "exp2";
166  Names[RTLIB::EXP2_F80] = "exp2l";
167  Names[RTLIB::EXP2_F128] = "exp2l";
168  Names[RTLIB::EXP2_PPCF128] = "exp2l";
169  Names[RTLIB::SIN_F32] = "sinf";
170  Names[RTLIB::SIN_F64] = "sin";
171  Names[RTLIB::SIN_F80] = "sinl";
172  Names[RTLIB::SIN_F128] = "sinl";
173  Names[RTLIB::SIN_PPCF128] = "sinl";
174  Names[RTLIB::COS_F32] = "cosf";
175  Names[RTLIB::COS_F64] = "cos";
176  Names[RTLIB::COS_F80] = "cosl";
177  Names[RTLIB::COS_F128] = "cosl";
178  Names[RTLIB::COS_PPCF128] = "cosl";
179  Names[RTLIB::POW_F32] = "powf";
180  Names[RTLIB::POW_F64] = "pow";
181  Names[RTLIB::POW_F80] = "powl";
182  Names[RTLIB::POW_F128] = "powl";
183  Names[RTLIB::POW_PPCF128] = "powl";
184  Names[RTLIB::CEIL_F32] = "ceilf";
185  Names[RTLIB::CEIL_F64] = "ceil";
186  Names[RTLIB::CEIL_F80] = "ceill";
187  Names[RTLIB::CEIL_F128] = "ceill";
188  Names[RTLIB::CEIL_PPCF128] = "ceill";
189  Names[RTLIB::TRUNC_F32] = "truncf";
190  Names[RTLIB::TRUNC_F64] = "trunc";
191  Names[RTLIB::TRUNC_F80] = "truncl";
192  Names[RTLIB::TRUNC_F128] = "truncl";
193  Names[RTLIB::TRUNC_PPCF128] = "truncl";
194  Names[RTLIB::RINT_F32] = "rintf";
195  Names[RTLIB::RINT_F64] = "rint";
196  Names[RTLIB::RINT_F80] = "rintl";
197  Names[RTLIB::RINT_F128] = "rintl";
198  Names[RTLIB::RINT_PPCF128] = "rintl";
199  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
200  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
201  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
202  Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
203  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
204  Names[RTLIB::ROUND_F32] = "roundf";
205  Names[RTLIB::ROUND_F64] = "round";
206  Names[RTLIB::ROUND_F80] = "roundl";
207  Names[RTLIB::ROUND_F128] = "roundl";
208  Names[RTLIB::ROUND_PPCF128] = "roundl";
209  Names[RTLIB::FLOOR_F32] = "floorf";
210  Names[RTLIB::FLOOR_F64] = "floor";
211  Names[RTLIB::FLOOR_F80] = "floorl";
212  Names[RTLIB::FLOOR_F128] = "floorl";
213  Names[RTLIB::FLOOR_PPCF128] = "floorl";
214  Names[RTLIB::FMIN_F32] = "fminf";
215  Names[RTLIB::FMIN_F64] = "fmin";
216  Names[RTLIB::FMIN_F80] = "fminl";
217  Names[RTLIB::FMIN_F128] = "fminl";
218  Names[RTLIB::FMIN_PPCF128] = "fminl";
219  Names[RTLIB::FMAX_F32] = "fmaxf";
220  Names[RTLIB::FMAX_F64] = "fmax";
221  Names[RTLIB::FMAX_F80] = "fmaxl";
222  Names[RTLIB::FMAX_F128] = "fmaxl";
223  Names[RTLIB::FMAX_PPCF128] = "fmaxl";
224  Names[RTLIB::ROUND_F32] = "roundf";
225  Names[RTLIB::ROUND_F64] = "round";
226  Names[RTLIB::ROUND_F80] = "roundl";
227  Names[RTLIB::ROUND_F128] = "roundl";
228  Names[RTLIB::ROUND_PPCF128] = "roundl";
229  Names[RTLIB::COPYSIGN_F32] = "copysignf";
230  Names[RTLIB::COPYSIGN_F64] = "copysign";
231  Names[RTLIB::COPYSIGN_F80] = "copysignl";
232  Names[RTLIB::COPYSIGN_F128] = "copysignl";
233  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
234  Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq";
235  Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq";
236  Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
237  Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
238  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
239  if (TT.isOSDarwin()) {
240    // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
241    // of the gnueabi-style __gnu_*_ieee.
242    // FIXME: What about other targets?
243    Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
244    Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
245  } else {
246    Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
247    Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
248  }
249  Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
250  Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
251  Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
252  Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
253  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
254  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
255  Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
256  Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos";
257  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
258  Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
259  Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod";
260  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
261  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
262  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
263  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
264  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
265  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
266  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
267  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
268  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
269  Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
270  Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
271  Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
272  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou";
273  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
274  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
275  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
276  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
277  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
278  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
279  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
280  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
281  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
282  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
283  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
284  Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
285  Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
286  Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
287  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
288  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
289  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
290  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
291  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
292  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
293  Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
294  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq";
295  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
296  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
297  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
298  Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
299  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
300  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
301  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
302  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
303  Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
304  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
305  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
306  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
307  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
308  Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
309  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq";
310  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
311  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
312  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
313  Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
314  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
315  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
316  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
317  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
318  Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
319  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
320  Names[RTLIB::OEQ_F32] = "__eqsf2";
321  Names[RTLIB::OEQ_F64] = "__eqdf2";
322  Names[RTLIB::OEQ_F128] = "__eqtf2";
323  Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq";
324  Names[RTLIB::UNE_F32] = "__nesf2";
325  Names[RTLIB::UNE_F64] = "__nedf2";
326  Names[RTLIB::UNE_F128] = "__netf2";
327  Names[RTLIB::UNE_PPCF128] = "__gcc_qne";
328  Names[RTLIB::OGE_F32] = "__gesf2";
329  Names[RTLIB::OGE_F64] = "__gedf2";
330  Names[RTLIB::OGE_F128] = "__getf2";
331  Names[RTLIB::OGE_PPCF128] = "__gcc_qge";
332  Names[RTLIB::OLT_F32] = "__ltsf2";
333  Names[RTLIB::OLT_F64] = "__ltdf2";
334  Names[RTLIB::OLT_F128] = "__lttf2";
335  Names[RTLIB::OLT_PPCF128] = "__gcc_qlt";
336  Names[RTLIB::OLE_F32] = "__lesf2";
337  Names[RTLIB::OLE_F64] = "__ledf2";
338  Names[RTLIB::OLE_F128] = "__letf2";
339  Names[RTLIB::OLE_PPCF128] = "__gcc_qle";
340  Names[RTLIB::OGT_F32] = "__gtsf2";
341  Names[RTLIB::OGT_F64] = "__gtdf2";
342  Names[RTLIB::OGT_F128] = "__gttf2";
343  Names[RTLIB::OGT_PPCF128] = "__gcc_qgt";
344  Names[RTLIB::UO_F32] = "__unordsf2";
345  Names[RTLIB::UO_F64] = "__unorddf2";
346  Names[RTLIB::UO_F128] = "__unordtf2";
347  Names[RTLIB::UO_PPCF128] = "__gcc_qunord";
348  Names[RTLIB::O_F32] = "__unordsf2";
349  Names[RTLIB::O_F64] = "__unorddf2";
350  Names[RTLIB::O_F128] = "__unordtf2";
351  Names[RTLIB::O_PPCF128] = "__gcc_qunord";
352  Names[RTLIB::MEMCPY] = "memcpy";
353  Names[RTLIB::MEMMOVE] = "memmove";
354  Names[RTLIB::MEMSET] = "memset";
355  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
356  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
357  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
358  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
359  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
360  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
361  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
362  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
363  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
364  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
365  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
366  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
367  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
368  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
369  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
370  Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
371  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
372  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
373  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
374  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
375  Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
376  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
377  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
378  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
379  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
380  Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
381  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
382  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
383  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
384  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
385  Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
386  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
387  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
388  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
389  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
390  Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
391  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
392  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
393  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
394  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
395  Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
396  Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
397  Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
398  Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
399  Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
400  Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
401  Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
402  Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
403  Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
404  Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
405  Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
406  Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
407  Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
408  Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
409  Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
410  Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
411  Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
412  Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
413  Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
414  Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
415  Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
416
417  Names[RTLIB::ATOMIC_LOAD] = "__atomic_load";
418  Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1";
419  Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2";
420  Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4";
421  Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8";
422  Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16";
423
424  Names[RTLIB::ATOMIC_STORE] = "__atomic_store";
425  Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1";
426  Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2";
427  Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4";
428  Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8";
429  Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16";
430
431  Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange";
432  Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1";
433  Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2";
434  Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4";
435  Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8";
436  Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16";
437
438  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange";
439  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1";
440  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2";
441  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4";
442  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8";
443  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16";
444
445  Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1";
446  Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2";
447  Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4";
448  Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8";
449  Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16";
450  Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1";
451  Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2";
452  Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4";
453  Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8";
454  Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16";
455  Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1";
456  Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2";
457  Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4";
458  Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8";
459  Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16";
460  Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1";
461  Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2";
462  Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4";
463  Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8";
464  Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16";
465  Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1";
466  Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2";
467  Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4";
468  Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8";
469  Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16";
470  Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1";
471  Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2";
472  Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4";
473  Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8";
474  Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16";
475
476  if (TT.isGNUEnvironment()) {
477    Names[RTLIB::SINCOS_F32] = "sincosf";
478    Names[RTLIB::SINCOS_F64] = "sincos";
479    Names[RTLIB::SINCOS_F80] = "sincosl";
480    Names[RTLIB::SINCOS_F128] = "sincosl";
481    Names[RTLIB::SINCOS_PPCF128] = "sincosl";
482  }
483
484  if (!TT.isOSOpenBSD()) {
485    Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
486  }
487
488  Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize";
489}
490
491/// InitLibcallCallingConvs - Set default libcall CallingConvs.
492///
493static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
494  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
495    CCs[i] = CallingConv::C;
496  }
497}
498
499/// getFPEXT - Return the FPEXT_*_* value for the given types, or
500/// UNKNOWN_LIBCALL if there is none.
501RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
502  if (OpVT == MVT::f16) {
503    if (RetVT == MVT::f32)
504      return FPEXT_F16_F32;
505  } else if (OpVT == MVT::f32) {
506    if (RetVT == MVT::f64)
507      return FPEXT_F32_F64;
508    if (RetVT == MVT::f128)
509      return FPEXT_F32_F128;
510    if (RetVT == MVT::ppcf128)
511      return FPEXT_F32_PPCF128;
512  } else if (OpVT == MVT::f64) {
513    if (RetVT == MVT::f128)
514      return FPEXT_F64_F128;
515    else if (RetVT == MVT::ppcf128)
516      return FPEXT_F64_PPCF128;
517  }
518
519  return UNKNOWN_LIBCALL;
520}
521
522/// getFPROUND - Return the FPROUND_*_* value for the given types, or
523/// UNKNOWN_LIBCALL if there is none.
524RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
525  if (RetVT == MVT::f16) {
526    if (OpVT == MVT::f32)
527      return FPROUND_F32_F16;
528    if (OpVT == MVT::f64)
529      return FPROUND_F64_F16;
530    if (OpVT == MVT::f80)
531      return FPROUND_F80_F16;
532    if (OpVT == MVT::f128)
533      return FPROUND_F128_F16;
534    if (OpVT == MVT::ppcf128)
535      return FPROUND_PPCF128_F16;
536  } else if (RetVT == MVT::f32) {
537    if (OpVT == MVT::f64)
538      return FPROUND_F64_F32;
539    if (OpVT == MVT::f80)
540      return FPROUND_F80_F32;
541    if (OpVT == MVT::f128)
542      return FPROUND_F128_F32;
543    if (OpVT == MVT::ppcf128)
544      return FPROUND_PPCF128_F32;
545  } else if (RetVT == MVT::f64) {
546    if (OpVT == MVT::f80)
547      return FPROUND_F80_F64;
548    if (OpVT == MVT::f128)
549      return FPROUND_F128_F64;
550    if (OpVT == MVT::ppcf128)
551      return FPROUND_PPCF128_F64;
552  }
553
554  return UNKNOWN_LIBCALL;
555}
556
557/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
558/// UNKNOWN_LIBCALL if there is none.
559RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
560  if (OpVT == MVT::f32) {
561    if (RetVT == MVT::i32)
562      return FPTOSINT_F32_I32;
563    if (RetVT == MVT::i64)
564      return FPTOSINT_F32_I64;
565    if (RetVT == MVT::i128)
566      return FPTOSINT_F32_I128;
567  } else if (OpVT == MVT::f64) {
568    if (RetVT == MVT::i32)
569      return FPTOSINT_F64_I32;
570    if (RetVT == MVT::i64)
571      return FPTOSINT_F64_I64;
572    if (RetVT == MVT::i128)
573      return FPTOSINT_F64_I128;
574  } else if (OpVT == MVT::f80) {
575    if (RetVT == MVT::i32)
576      return FPTOSINT_F80_I32;
577    if (RetVT == MVT::i64)
578      return FPTOSINT_F80_I64;
579    if (RetVT == MVT::i128)
580      return FPTOSINT_F80_I128;
581  } else if (OpVT == MVT::f128) {
582    if (RetVT == MVT::i32)
583      return FPTOSINT_F128_I32;
584    if (RetVT == MVT::i64)
585      return FPTOSINT_F128_I64;
586    if (RetVT == MVT::i128)
587      return FPTOSINT_F128_I128;
588  } else if (OpVT == MVT::ppcf128) {
589    if (RetVT == MVT::i32)
590      return FPTOSINT_PPCF128_I32;
591    if (RetVT == MVT::i64)
592      return FPTOSINT_PPCF128_I64;
593    if (RetVT == MVT::i128)
594      return FPTOSINT_PPCF128_I128;
595  }
596  return UNKNOWN_LIBCALL;
597}
598
599/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
600/// UNKNOWN_LIBCALL if there is none.
601RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
602  if (OpVT == MVT::f32) {
603    if (RetVT == MVT::i32)
604      return FPTOUINT_F32_I32;
605    if (RetVT == MVT::i64)
606      return FPTOUINT_F32_I64;
607    if (RetVT == MVT::i128)
608      return FPTOUINT_F32_I128;
609  } else if (OpVT == MVT::f64) {
610    if (RetVT == MVT::i32)
611      return FPTOUINT_F64_I32;
612    if (RetVT == MVT::i64)
613      return FPTOUINT_F64_I64;
614    if (RetVT == MVT::i128)
615      return FPTOUINT_F64_I128;
616  } else if (OpVT == MVT::f80) {
617    if (RetVT == MVT::i32)
618      return FPTOUINT_F80_I32;
619    if (RetVT == MVT::i64)
620      return FPTOUINT_F80_I64;
621    if (RetVT == MVT::i128)
622      return FPTOUINT_F80_I128;
623  } else if (OpVT == MVT::f128) {
624    if (RetVT == MVT::i32)
625      return FPTOUINT_F128_I32;
626    if (RetVT == MVT::i64)
627      return FPTOUINT_F128_I64;
628    if (RetVT == MVT::i128)
629      return FPTOUINT_F128_I128;
630  } else if (OpVT == MVT::ppcf128) {
631    if (RetVT == MVT::i32)
632      return FPTOUINT_PPCF128_I32;
633    if (RetVT == MVT::i64)
634      return FPTOUINT_PPCF128_I64;
635    if (RetVT == MVT::i128)
636      return FPTOUINT_PPCF128_I128;
637  }
638  return UNKNOWN_LIBCALL;
639}
640
641/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
642/// UNKNOWN_LIBCALL if there is none.
643RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
644  if (OpVT == MVT::i32) {
645    if (RetVT == MVT::f32)
646      return SINTTOFP_I32_F32;
647    if (RetVT == MVT::f64)
648      return SINTTOFP_I32_F64;
649    if (RetVT == MVT::f80)
650      return SINTTOFP_I32_F80;
651    if (RetVT == MVT::f128)
652      return SINTTOFP_I32_F128;
653    if (RetVT == MVT::ppcf128)
654      return SINTTOFP_I32_PPCF128;
655  } else if (OpVT == MVT::i64) {
656    if (RetVT == MVT::f32)
657      return SINTTOFP_I64_F32;
658    if (RetVT == MVT::f64)
659      return SINTTOFP_I64_F64;
660    if (RetVT == MVT::f80)
661      return SINTTOFP_I64_F80;
662    if (RetVT == MVT::f128)
663      return SINTTOFP_I64_F128;
664    if (RetVT == MVT::ppcf128)
665      return SINTTOFP_I64_PPCF128;
666  } else if (OpVT == MVT::i128) {
667    if (RetVT == MVT::f32)
668      return SINTTOFP_I128_F32;
669    if (RetVT == MVT::f64)
670      return SINTTOFP_I128_F64;
671    if (RetVT == MVT::f80)
672      return SINTTOFP_I128_F80;
673    if (RetVT == MVT::f128)
674      return SINTTOFP_I128_F128;
675    if (RetVT == MVT::ppcf128)
676      return SINTTOFP_I128_PPCF128;
677  }
678  return UNKNOWN_LIBCALL;
679}
680
681/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
682/// UNKNOWN_LIBCALL if there is none.
683RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
684  if (OpVT == MVT::i32) {
685    if (RetVT == MVT::f32)
686      return UINTTOFP_I32_F32;
687    if (RetVT == MVT::f64)
688      return UINTTOFP_I32_F64;
689    if (RetVT == MVT::f80)
690      return UINTTOFP_I32_F80;
691    if (RetVT == MVT::f128)
692      return UINTTOFP_I32_F128;
693    if (RetVT == MVT::ppcf128)
694      return UINTTOFP_I32_PPCF128;
695  } else if (OpVT == MVT::i64) {
696    if (RetVT == MVT::f32)
697      return UINTTOFP_I64_F32;
698    if (RetVT == MVT::f64)
699      return UINTTOFP_I64_F64;
700    if (RetVT == MVT::f80)
701      return UINTTOFP_I64_F80;
702    if (RetVT == MVT::f128)
703      return UINTTOFP_I64_F128;
704    if (RetVT == MVT::ppcf128)
705      return UINTTOFP_I64_PPCF128;
706  } else if (OpVT == MVT::i128) {
707    if (RetVT == MVT::f32)
708      return UINTTOFP_I128_F32;
709    if (RetVT == MVT::f64)
710      return UINTTOFP_I128_F64;
711    if (RetVT == MVT::f80)
712      return UINTTOFP_I128_F80;
713    if (RetVT == MVT::f128)
714      return UINTTOFP_I128_F128;
715    if (RetVT == MVT::ppcf128)
716      return UINTTOFP_I128_PPCF128;
717  }
718  return UNKNOWN_LIBCALL;
719}
720
721RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
722#define OP_TO_LIBCALL(Name, Enum)                                              \
723  case Name:                                                                   \
724    switch (VT.SimpleTy) {                                                     \
725    default:                                                                   \
726      return UNKNOWN_LIBCALL;                                                  \
727    case MVT::i8:                                                              \
728      return Enum##_1;                                                         \
729    case MVT::i16:                                                             \
730      return Enum##_2;                                                         \
731    case MVT::i32:                                                             \
732      return Enum##_4;                                                         \
733    case MVT::i64:                                                             \
734      return Enum##_8;                                                         \
735    case MVT::i128:                                                            \
736      return Enum##_16;                                                        \
737    }
738
739  switch (Opc) {
740    OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
741    OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
742    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
743    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
744    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
745    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
746    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
747    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
748    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
749    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
750    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
751    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
752  }
753
754#undef OP_TO_LIBCALL
755
756  return UNKNOWN_LIBCALL;
757}
758
759/// InitCmpLibcallCCs - Set default comparison libcall CC.
760///
761static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
762  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
763  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
764  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
765  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
766  CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
767  CCs[RTLIB::UNE_F32] = ISD::SETNE;
768  CCs[RTLIB::UNE_F64] = ISD::SETNE;
769  CCs[RTLIB::UNE_F128] = ISD::SETNE;
770  CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
771  CCs[RTLIB::OGE_F32] = ISD::SETGE;
772  CCs[RTLIB::OGE_F64] = ISD::SETGE;
773  CCs[RTLIB::OGE_F128] = ISD::SETGE;
774  CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
775  CCs[RTLIB::OLT_F32] = ISD::SETLT;
776  CCs[RTLIB::OLT_F64] = ISD::SETLT;
777  CCs[RTLIB::OLT_F128] = ISD::SETLT;
778  CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
779  CCs[RTLIB::OLE_F32] = ISD::SETLE;
780  CCs[RTLIB::OLE_F64] = ISD::SETLE;
781  CCs[RTLIB::OLE_F128] = ISD::SETLE;
782  CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
783  CCs[RTLIB::OGT_F32] = ISD::SETGT;
784  CCs[RTLIB::OGT_F64] = ISD::SETGT;
785  CCs[RTLIB::OGT_F128] = ISD::SETGT;
786  CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
787  CCs[RTLIB::UO_F32] = ISD::SETNE;
788  CCs[RTLIB::UO_F64] = ISD::SETNE;
789  CCs[RTLIB::UO_F128] = ISD::SETNE;
790  CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
791  CCs[RTLIB::O_F32] = ISD::SETEQ;
792  CCs[RTLIB::O_F64] = ISD::SETEQ;
793  CCs[RTLIB::O_F128] = ISD::SETEQ;
794  CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
795}
796
797/// NOTE: The TargetMachine owns TLOF.
798TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
799  initActions();
800
801  // Perform these initializations only once.
802  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
803  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
804    = MaxStoresPerMemmoveOptSize = 4;
805  UseUnderscoreSetJmp = false;
806  UseUnderscoreLongJmp = false;
807  SelectIsExpensive = false;
808  HasMultipleConditionRegisters = false;
809  HasExtractBitsInsn = false;
810  FsqrtIsCheap = false;
811  JumpIsExpensive = JumpIsExpensiveOverride;
812  PredictableSelectIsExpensive = false;
813  MaskAndBranchFoldingIsLegal = false;
814  EnableExtLdPromotion = false;
815  HasFloatingPointExceptions = true;
816  StackPointerRegisterToSaveRestore = 0;
817  BooleanContents = UndefinedBooleanContent;
818  BooleanFloatContents = UndefinedBooleanContent;
819  BooleanVectorContents = UndefinedBooleanContent;
820  SchedPreferenceInfo = Sched::ILP;
821  JumpBufSize = 0;
822  JumpBufAlignment = 0;
823  MinFunctionAlignment = 0;
824  PrefFunctionAlignment = 0;
825  PrefLoopAlignment = 0;
826  GatherAllAliasesMaxDepth = 6;
827  MinStackArgumentAlignment = 1;
828  MinimumJumpTableEntries = 4;
829  // TODO: the default will be switched to 0 in the next commit, along
830  // with the Target-specific changes necessary.
831  MaxAtomicSizeInBitsSupported = 1024;
832
833  MinCmpXchgSizeInBits = 0;
834
835  std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
836
837  InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
838  InitCmpLibcallCCs(CmpLibcallCCs);
839  InitLibcallCallingConvs(LibcallCallingConvs);
840}
841
842void TargetLoweringBase::initActions() {
843  // All operations default to being supported.
844  memset(OpActions, 0, sizeof(OpActions));
845  memset(LoadExtActions, 0, sizeof(LoadExtActions));
846  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
847  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
848  memset(CondCodeActions, 0, sizeof(CondCodeActions));
849  std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
850  std::fill(std::begin(TargetDAGCombineArray),
851            std::end(TargetDAGCombineArray), 0);
852
853  // Set default actions for various operations.
854  for (MVT VT : MVT::all_valuetypes()) {
855    // Default all indexed load / store to expand.
856    for (unsigned IM = (unsigned)ISD::PRE_INC;
857         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
858      setIndexedLoadAction(IM, VT, Expand);
859      setIndexedStoreAction(IM, VT, Expand);
860    }
861
862    // Most backends expect to see the node which just returns the value loaded.
863    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
864
865    // These operations default to expand.
866    setOperationAction(ISD::FGETSIGN, VT, Expand);
867    setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
868    setOperationAction(ISD::FMINNUM, VT, Expand);
869    setOperationAction(ISD::FMAXNUM, VT, Expand);
870    setOperationAction(ISD::FMINNAN, VT, Expand);
871    setOperationAction(ISD::FMAXNAN, VT, Expand);
872    setOperationAction(ISD::FMAD, VT, Expand);
873    setOperationAction(ISD::SMIN, VT, Expand);
874    setOperationAction(ISD::SMAX, VT, Expand);
875    setOperationAction(ISD::UMIN, VT, Expand);
876    setOperationAction(ISD::UMAX, VT, Expand);
877
878    // Overflow operations default to expand
879    setOperationAction(ISD::SADDO, VT, Expand);
880    setOperationAction(ISD::SSUBO, VT, Expand);
881    setOperationAction(ISD::UADDO, VT, Expand);
882    setOperationAction(ISD::USUBO, VT, Expand);
883    setOperationAction(ISD::SMULO, VT, Expand);
884    setOperationAction(ISD::UMULO, VT, Expand);
885
886    // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
887    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
888    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
889
890    setOperationAction(ISD::BITREVERSE, VT, Expand);
891
892    // These library functions default to expand.
893    setOperationAction(ISD::FROUND, VT, Expand);
894
895    // These operations default to expand for vector types.
896    if (VT.isVector()) {
897      setOperationAction(ISD::FCOPYSIGN, VT, Expand);
898      setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
899      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
900      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
901    }
902
903    // For most targets @llvm.get.dynamic.area.offset just returns 0.
904    setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
905  }
906
907  // Most targets ignore the @llvm.prefetch intrinsic.
908  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
909
910  // Most targets also ignore the @llvm.readcyclecounter intrinsic.
911  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
912
913  // ConstantFP nodes default to expand.  Targets can either change this to
914  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
915  // to optimize expansions for certain constants.
916  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
917  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
918  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
919  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
920  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
921
922  // These library functions default to expand.
923  for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
924    setOperationAction(ISD::FLOG ,      VT, Expand);
925    setOperationAction(ISD::FLOG2,      VT, Expand);
926    setOperationAction(ISD::FLOG10,     VT, Expand);
927    setOperationAction(ISD::FEXP ,      VT, Expand);
928    setOperationAction(ISD::FEXP2,      VT, Expand);
929    setOperationAction(ISD::FFLOOR,     VT, Expand);
930    setOperationAction(ISD::FNEARBYINT, VT, Expand);
931    setOperationAction(ISD::FCEIL,      VT, Expand);
932    setOperationAction(ISD::FRINT,      VT, Expand);
933    setOperationAction(ISD::FTRUNC,     VT, Expand);
934    setOperationAction(ISD::FROUND,     VT, Expand);
935  }
936
937  // Default ISD::TRAP to expand (which turns it into abort).
938  setOperationAction(ISD::TRAP, MVT::Other, Expand);
939
940  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
941  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
942  //
943  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
944}
945
946MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
947                                               EVT) const {
948  return MVT::getIntegerVT(8 * DL.getPointerSize(0));
949}
950
951EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
952                                         const DataLayout &DL) const {
953  assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
954  if (LHSTy.isVector())
955    return LHSTy;
956  return getScalarShiftAmountTy(DL, LHSTy);
957}
958
959/// canOpTrap - Returns true if the operation can trap for the value type.
960/// VT must be a legal type.
961bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
962  assert(isTypeLegal(VT));
963  switch (Op) {
964  default:
965    return false;
966  case ISD::FDIV:
967  case ISD::FREM:
968  case ISD::SDIV:
969  case ISD::UDIV:
970  case ISD::SREM:
971  case ISD::UREM:
972    return true;
973  }
974}
975
976void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
977  // If the command-line option was specified, ignore this request.
978  if (!JumpIsExpensiveOverride.getNumOccurrences())
979    JumpIsExpensive = isExpensive;
980}
981
982TargetLoweringBase::LegalizeKind
983TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
984  // If this is a simple type, use the ComputeRegisterProp mechanism.
985  if (VT.isSimple()) {
986    MVT SVT = VT.getSimpleVT();
987    assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
988    MVT NVT = TransformToType[SVT.SimpleTy];
989    LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
990
991    assert((LA == TypeLegal || LA == TypeSoftenFloat ||
992            ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
993           "Promote may not follow Expand or Promote");
994
995    if (LA == TypeSplitVector)
996      return LegalizeKind(LA,
997                          EVT::getVectorVT(Context, SVT.getVectorElementType(),
998                                           SVT.getVectorNumElements() / 2));
999    if (LA == TypeScalarizeVector)
1000      return LegalizeKind(LA, SVT.getVectorElementType());
1001    return LegalizeKind(LA, NVT);
1002  }
1003
1004  // Handle Extended Scalar Types.
1005  if (!VT.isVector()) {
1006    assert(VT.isInteger() && "Float types must be simple");
1007    unsigned BitSize = VT.getSizeInBits();
1008    // First promote to a power-of-two size, then expand if necessary.
1009    if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1010      EVT NVT = VT.getRoundIntegerType(Context);
1011      assert(NVT != VT && "Unable to round integer VT");
1012      LegalizeKind NextStep = getTypeConversion(Context, NVT);
1013      // Avoid multi-step promotion.
1014      if (NextStep.first == TypePromoteInteger)
1015        return NextStep;
1016      // Return rounded integer type.
1017      return LegalizeKind(TypePromoteInteger, NVT);
1018    }
1019
1020    return LegalizeKind(TypeExpandInteger,
1021                        EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1022  }
1023
1024  // Handle vector types.
1025  unsigned NumElts = VT.getVectorNumElements();
1026  EVT EltVT = VT.getVectorElementType();
1027
1028  // Vectors with only one element are always scalarized.
1029  if (NumElts == 1)
1030    return LegalizeKind(TypeScalarizeVector, EltVT);
1031
1032  // Try to widen vector elements until the element type is a power of two and
1033  // promote it to a legal type later on, for example:
1034  // <3 x i8> -> <4 x i8> -> <4 x i32>
1035  if (EltVT.isInteger()) {
1036    // Vectors with a number of elements that is not a power of two are always
1037    // widened, for example <3 x i8> -> <4 x i8>.
1038    if (!VT.isPow2VectorType()) {
1039      NumElts = (unsigned)NextPowerOf2(NumElts);
1040      EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1041      return LegalizeKind(TypeWidenVector, NVT);
1042    }
1043
1044    // Examine the element type.
1045    LegalizeKind LK = getTypeConversion(Context, EltVT);
1046
1047    // If type is to be expanded, split the vector.
1048    //  <4 x i140> -> <2 x i140>
1049    if (LK.first == TypeExpandInteger)
1050      return LegalizeKind(TypeSplitVector,
1051                          EVT::getVectorVT(Context, EltVT, NumElts / 2));
1052
1053    // Promote the integer element types until a legal vector type is found
1054    // or until the element integer type is too big. If a legal type was not
1055    // found, fallback to the usual mechanism of widening/splitting the
1056    // vector.
1057    EVT OldEltVT = EltVT;
1058    while (1) {
1059      // Increase the bitwidth of the element to the next pow-of-two
1060      // (which is greater than 8 bits).
1061      EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1062                  .getRoundIntegerType(Context);
1063
1064      // Stop trying when getting a non-simple element type.
1065      // Note that vector elements may be greater than legal vector element
1066      // types. Example: X86 XMM registers hold 64bit element on 32bit
1067      // systems.
1068      if (!EltVT.isSimple())
1069        break;
1070
1071      // Build a new vector type and check if it is legal.
1072      MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1073      // Found a legal promoted vector type.
1074      if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1075        return LegalizeKind(TypePromoteInteger,
1076                            EVT::getVectorVT(Context, EltVT, NumElts));
1077    }
1078
1079    // Reset the type to the unexpanded type if we did not find a legal vector
1080    // type with a promoted vector element type.
1081    EltVT = OldEltVT;
1082  }
1083
1084  // Try to widen the vector until a legal type is found.
1085  // If there is no wider legal type, split the vector.
1086  while (1) {
1087    // Round up to the next power of 2.
1088    NumElts = (unsigned)NextPowerOf2(NumElts);
1089
1090    // If there is no simple vector type with this many elements then there
1091    // cannot be a larger legal vector type.  Note that this assumes that
1092    // there are no skipped intermediate vector types in the simple types.
1093    if (!EltVT.isSimple())
1094      break;
1095    MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1096    if (LargerVector == MVT())
1097      break;
1098
1099    // If this type is legal then widen the vector.
1100    if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1101      return LegalizeKind(TypeWidenVector, LargerVector);
1102  }
1103
1104  // Widen odd vectors to next power of two.
1105  if (!VT.isPow2VectorType()) {
1106    EVT NVT = VT.getPow2VectorType(Context);
1107    return LegalizeKind(TypeWidenVector, NVT);
1108  }
1109
1110  // Vectors with illegal element types are expanded.
1111  EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1112  return LegalizeKind(TypeSplitVector, NVT);
1113}
1114
1115static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1116                                          unsigned &NumIntermediates,
1117                                          MVT &RegisterVT,
1118                                          TargetLoweringBase *TLI) {
1119  // Figure out the right, legal destination reg to copy into.
1120  unsigned NumElts = VT.getVectorNumElements();
1121  MVT EltTy = VT.getVectorElementType();
1122
1123  unsigned NumVectorRegs = 1;
1124
1125  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1126  // could break down into LHS/RHS like LegalizeDAG does.
1127  if (!isPowerOf2_32(NumElts)) {
1128    NumVectorRegs = NumElts;
1129    NumElts = 1;
1130  }
1131
1132  // Divide the input until we get to a supported size.  This will always
1133  // end with a scalar if the target doesn't support vectors.
1134  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
1135    NumElts >>= 1;
1136    NumVectorRegs <<= 1;
1137  }
1138
1139  NumIntermediates = NumVectorRegs;
1140
1141  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
1142  if (!TLI->isTypeLegal(NewVT))
1143    NewVT = EltTy;
1144  IntermediateVT = NewVT;
1145
1146  unsigned NewVTSize = NewVT.getSizeInBits();
1147
1148  // Convert sizes such as i33 to i64.
1149  if (!isPowerOf2_32(NewVTSize))
1150    NewVTSize = NextPowerOf2(NewVTSize);
1151
1152  MVT DestVT = TLI->getRegisterType(NewVT);
1153  RegisterVT = DestVT;
1154  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1155    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1156
1157  // Otherwise, promotion or legal types use the same number of registers as
1158  // the vector decimated to the appropriate level.
1159  return NumVectorRegs;
1160}
1161
1162/// isLegalRC - Return true if the value types that can be represented by the
1163/// specified register class are all legal.
1164bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
1165  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1166       I != E; ++I) {
1167    if (isTypeLegal(*I))
1168      return true;
1169  }
1170  return false;
1171}
1172
1173/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1174/// sequence of memory operands that is recognized by PrologEpilogInserter.
1175MachineBasicBlock *
1176TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1177                                   MachineBasicBlock *MBB) const {
1178  MachineInstr *MI = &InitialMI;
1179  MachineFunction &MF = *MI->getParent()->getParent();
1180  MachineFrameInfo &MFI = *MF.getFrameInfo();
1181
1182  // We're handling multiple types of operands here:
1183  // PATCHPOINT MetaArgs - live-in, read only, direct
1184  // STATEPOINT Deopt Spill - live-through, read only, indirect
1185  // STATEPOINT Deopt Alloca - live-through, read only, direct
1186  // (We're currently conservative and mark the deopt slots read/write in
1187  // practice.)
1188  // STATEPOINT GC Spill - live-through, read/write, indirect
1189  // STATEPOINT GC Alloca - live-through, read/write, direct
1190  // The live-in vs live-through is handled already (the live through ones are
1191  // all stack slots), but we need to handle the different type of stackmap
1192  // operands and memory effects here.
1193
1194  // MI changes inside this loop as we grow operands.
1195  for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1196    MachineOperand &MO = MI->getOperand(OperIdx);
1197    if (!MO.isFI())
1198      continue;
1199
1200    // foldMemoryOperand builds a new MI after replacing a single FI operand
1201    // with the canonical set of five x86 addressing-mode operands.
1202    int FI = MO.getIndex();
1203    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1204
1205    // Copy operands before the frame-index.
1206    for (unsigned i = 0; i < OperIdx; ++i)
1207      MIB.addOperand(MI->getOperand(i));
1208    // Add frame index operands recognized by stackmaps.cpp
1209    if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1210      // indirect-mem-ref tag, size, #FI, offset.
1211      // Used for spills inserted by StatepointLowering.  This codepath is not
1212      // used for patchpoints/stackmaps at all, for these spilling is done via
1213      // foldMemoryOperand callback only.
1214      assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1215      MIB.addImm(StackMaps::IndirectMemRefOp);
1216      MIB.addImm(MFI.getObjectSize(FI));
1217      MIB.addOperand(MI->getOperand(OperIdx));
1218      MIB.addImm(0);
1219    } else {
1220      // direct-mem-ref tag, #FI, offset.
1221      // Used by patchpoint, and direct alloca arguments to statepoints
1222      MIB.addImm(StackMaps::DirectMemRefOp);
1223      MIB.addOperand(MI->getOperand(OperIdx));
1224      MIB.addImm(0);
1225    }
1226    // Copy the operands after the frame index.
1227    for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1228      MIB.addOperand(MI->getOperand(i));
1229
1230    // Inherit previous memory operands.
1231    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1232    assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1233
1234    // Add a new memory operand for this FI.
1235    assert(MFI.getObjectOffset(FI) != -1);
1236
1237    unsigned Flags = MachineMemOperand::MOLoad;
1238    if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
1239      Flags |= MachineMemOperand::MOStore;
1240      Flags |= MachineMemOperand::MOVolatile;
1241    }
1242    MachineMemOperand *MMO = MF.getMachineMemOperand(
1243        MachinePointerInfo::getFixedStack(MF, FI), Flags,
1244        MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1245    MIB->addMemOperand(MF, MMO);
1246
1247    // Replace the instruction and update the operand index.
1248    MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1249    OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1250    MI->eraseFromParent();
1251    MI = MIB;
1252  }
1253  return MBB;
1254}
1255
1256/// findRepresentativeClass - Return the largest legal super-reg register class
1257/// of the register class for the specified type and its associated "cost".
1258// This function is in TargetLowering because it uses RegClassForVT which would
1259// need to be moved to TargetRegisterInfo and would necessitate moving
1260// isTypeLegal over as well - a massive change that would just require
1261// TargetLowering having a TargetRegisterInfo class member that it would use.
1262std::pair<const TargetRegisterClass *, uint8_t>
1263TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1264                                            MVT VT) const {
1265  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1266  if (!RC)
1267    return std::make_pair(RC, 0);
1268
1269  // Compute the set of all super-register classes.
1270  BitVector SuperRegRC(TRI->getNumRegClasses());
1271  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1272    SuperRegRC.setBitsInMask(RCI.getMask());
1273
1274  // Find the first legal register class with the largest spill size.
1275  const TargetRegisterClass *BestRC = RC;
1276  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
1277    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1278    // We want the largest possible spill size.
1279    if (SuperRC->getSize() <= BestRC->getSize())
1280      continue;
1281    if (!isLegalRC(SuperRC))
1282      continue;
1283    BestRC = SuperRC;
1284  }
1285  return std::make_pair(BestRC, 1);
1286}
1287
1288/// computeRegisterProperties - Once all of the register classes are added,
1289/// this allows us to compute derived properties we expose.
1290void TargetLoweringBase::computeRegisterProperties(
1291    const TargetRegisterInfo *TRI) {
1292  static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1293                "Too many value types for ValueTypeActions to hold!");
1294
1295  // Everything defaults to needing one register.
1296  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1297    NumRegistersForVT[i] = 1;
1298    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1299  }
1300  // ...except isVoid, which doesn't need any registers.
1301  NumRegistersForVT[MVT::isVoid] = 0;
1302
1303  // Find the largest integer register class.
1304  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1305  for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1306    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1307
1308  // Every integer value type larger than this largest register takes twice as
1309  // many registers to represent as the previous ValueType.
1310  for (unsigned ExpandedReg = LargestIntReg + 1;
1311       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1312    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1313    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1314    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1315    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1316                                   TypeExpandInteger);
1317  }
1318
1319  // Inspect all of the ValueType's smaller than the largest integer
1320  // register to see which ones need promotion.
1321  unsigned LegalIntReg = LargestIntReg;
1322  for (unsigned IntReg = LargestIntReg - 1;
1323       IntReg >= (unsigned)MVT::i1; --IntReg) {
1324    MVT IVT = (MVT::SimpleValueType)IntReg;
1325    if (isTypeLegal(IVT)) {
1326      LegalIntReg = IntReg;
1327    } else {
1328      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1329        (const MVT::SimpleValueType)LegalIntReg;
1330      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1331    }
1332  }
1333
1334  // ppcf128 type is really two f64's.
1335  if (!isTypeLegal(MVT::ppcf128)) {
1336    if (isTypeLegal(MVT::f64)) {
1337      NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1338      RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1339      TransformToType[MVT::ppcf128] = MVT::f64;
1340      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1341    } else {
1342      NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1343      RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1344      TransformToType[MVT::ppcf128] = MVT::i128;
1345      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1346    }
1347  }
1348
1349  // Decide how to handle f128. If the target does not have native f128 support,
1350  // expand it to i128 and we will be generating soft float library calls.
1351  if (!isTypeLegal(MVT::f128)) {
1352    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1353    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1354    TransformToType[MVT::f128] = MVT::i128;
1355    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1356  }
1357
1358  // Decide how to handle f64. If the target does not have native f64 support,
1359  // expand it to i64 and we will be generating soft float library calls.
1360  if (!isTypeLegal(MVT::f64)) {
1361    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1362    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1363    TransformToType[MVT::f64] = MVT::i64;
1364    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1365  }
1366
1367  // Decide how to handle f32. If the target does not have native f32 support,
1368  // expand it to i32 and we will be generating soft float library calls.
1369  if (!isTypeLegal(MVT::f32)) {
1370    NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1371    RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1372    TransformToType[MVT::f32] = MVT::i32;
1373    ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1374  }
1375
1376  // Decide how to handle f16. If the target does not have native f16 support,
1377  // promote it to f32, because there are no f16 library calls (except for
1378  // conversions).
1379  if (!isTypeLegal(MVT::f16)) {
1380    NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1381    RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1382    TransformToType[MVT::f16] = MVT::f32;
1383    ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1384  }
1385
1386  // Loop over all of the vector value types to see which need transformations.
1387  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1388       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1389    MVT VT = (MVT::SimpleValueType) i;
1390    if (isTypeLegal(VT))
1391      continue;
1392
1393    MVT EltVT = VT.getVectorElementType();
1394    unsigned NElts = VT.getVectorNumElements();
1395    bool IsLegalWiderType = false;
1396    LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1397    switch (PreferredAction) {
1398    case TypePromoteInteger: {
1399      // Try to promote the elements of integer vectors. If no legal
1400      // promotion was found, fall through to the widen-vector method.
1401      for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1402        MVT SVT = (MVT::SimpleValueType) nVT;
1403        // Promote vectors of integers to vectors with the same number
1404        // of elements, with a wider element type.
1405        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() &&
1406            SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1407          TransformToType[i] = SVT;
1408          RegisterTypeForVT[i] = SVT;
1409          NumRegistersForVT[i] = 1;
1410          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1411          IsLegalWiderType = true;
1412          break;
1413        }
1414      }
1415      if (IsLegalWiderType)
1416        break;
1417    }
1418    case TypeWidenVector: {
1419      // Try to widen the vector.
1420      for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1421        MVT SVT = (MVT::SimpleValueType) nVT;
1422        if (SVT.getVectorElementType() == EltVT
1423            && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1424          TransformToType[i] = SVT;
1425          RegisterTypeForVT[i] = SVT;
1426          NumRegistersForVT[i] = 1;
1427          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1428          IsLegalWiderType = true;
1429          break;
1430        }
1431      }
1432      if (IsLegalWiderType)
1433        break;
1434    }
1435    case TypeSplitVector:
1436    case TypeScalarizeVector: {
1437      MVT IntermediateVT;
1438      MVT RegisterVT;
1439      unsigned NumIntermediates;
1440      NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1441          NumIntermediates, RegisterVT, this);
1442      RegisterTypeForVT[i] = RegisterVT;
1443
1444      MVT NVT = VT.getPow2VectorType();
1445      if (NVT == VT) {
1446        // Type is already a power of 2.  The default action is to split.
1447        TransformToType[i] = MVT::Other;
1448        if (PreferredAction == TypeScalarizeVector)
1449          ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1450        else if (PreferredAction == TypeSplitVector)
1451          ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1452        else
1453          // Set type action according to the number of elements.
1454          ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1455                                                        : TypeSplitVector);
1456      } else {
1457        TransformToType[i] = NVT;
1458        ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1459      }
1460      break;
1461    }
1462    default:
1463      llvm_unreachable("Unknown vector legalization action!");
1464    }
1465  }
1466
1467  // Determine the 'representative' register class for each value type.
1468  // An representative register class is the largest (meaning one which is
1469  // not a sub-register class / subreg register class) legal register class for
1470  // a group of value types. For example, on i386, i8, i16, and i32
1471  // representative would be GR32; while on x86_64 it's GR64.
1472  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1473    const TargetRegisterClass* RRC;
1474    uint8_t Cost;
1475    std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1476    RepRegClassForVT[i] = RRC;
1477    RepRegClassCostForVT[i] = Cost;
1478  }
1479}
1480
1481EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1482                                           EVT VT) const {
1483  assert(!VT.isVector() && "No default SetCC type for vectors!");
1484  return getPointerTy(DL).SimpleTy;
1485}
1486
1487MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1488  return MVT::i32; // return the default value
1489}
1490
1491/// getVectorTypeBreakdown - Vector types are broken down into some number of
1492/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1493/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1494/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1495///
1496/// This method returns the number of registers needed, and the VT for each
1497/// register.  It also returns the VT and quantity of the intermediate values
1498/// before they are promoted/expanded.
1499///
1500unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1501                                                EVT &IntermediateVT,
1502                                                unsigned &NumIntermediates,
1503                                                MVT &RegisterVT) const {
1504  unsigned NumElts = VT.getVectorNumElements();
1505
1506  // If there is a wider vector type with the same element type as this one,
1507  // or a promoted vector type that has the same number of elements which
1508  // are wider, then we should convert to that legal vector type.
1509  // This handles things like <2 x float> -> <4 x float> and
1510  // <4 x i1> -> <4 x i32>.
1511  LegalizeTypeAction TA = getTypeAction(Context, VT);
1512  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1513    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1514    if (isTypeLegal(RegisterEVT)) {
1515      IntermediateVT = RegisterEVT;
1516      RegisterVT = RegisterEVT.getSimpleVT();
1517      NumIntermediates = 1;
1518      return 1;
1519    }
1520  }
1521
1522  // Figure out the right, legal destination reg to copy into.
1523  EVT EltTy = VT.getVectorElementType();
1524
1525  unsigned NumVectorRegs = 1;
1526
1527  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1528  // could break down into LHS/RHS like LegalizeDAG does.
1529  if (!isPowerOf2_32(NumElts)) {
1530    NumVectorRegs = NumElts;
1531    NumElts = 1;
1532  }
1533
1534  // Divide the input until we get to a supported size.  This will always
1535  // end with a scalar if the target doesn't support vectors.
1536  while (NumElts > 1 && !isTypeLegal(
1537                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
1538    NumElts >>= 1;
1539    NumVectorRegs <<= 1;
1540  }
1541
1542  NumIntermediates = NumVectorRegs;
1543
1544  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1545  if (!isTypeLegal(NewVT))
1546    NewVT = EltTy;
1547  IntermediateVT = NewVT;
1548
1549  MVT DestVT = getRegisterType(Context, NewVT);
1550  RegisterVT = DestVT;
1551  unsigned NewVTSize = NewVT.getSizeInBits();
1552
1553  // Convert sizes such as i33 to i64.
1554  if (!isPowerOf2_32(NewVTSize))
1555    NewVTSize = NextPowerOf2(NewVTSize);
1556
1557  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1558    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1559
1560  // Otherwise, promotion or legal types use the same number of registers as
1561  // the vector decimated to the appropriate level.
1562  return NumVectorRegs;
1563}
1564
1565/// Get the EVTs and ArgFlags collections that represent the legalized return
1566/// type of the given function.  This does not require a DAG or a return value,
1567/// and is suitable for use before any DAGs for the function are constructed.
1568/// TODO: Move this out of TargetLowering.cpp.
1569void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
1570                         SmallVectorImpl<ISD::OutputArg> &Outs,
1571                         const TargetLowering &TLI, const DataLayout &DL) {
1572  SmallVector<EVT, 4> ValueVTs;
1573  ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1574  unsigned NumValues = ValueVTs.size();
1575  if (NumValues == 0) return;
1576
1577  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1578    EVT VT = ValueVTs[j];
1579    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1580
1581    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1582      ExtendKind = ISD::SIGN_EXTEND;
1583    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1584      ExtendKind = ISD::ZERO_EXTEND;
1585
1586    // FIXME: C calling convention requires the return type to be promoted to
1587    // at least 32-bit. But this is not necessary for non-C calling
1588    // conventions. The frontend should mark functions whose return values
1589    // require promoting with signext or zeroext attributes.
1590    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1591      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1592      if (VT.bitsLT(MinVT))
1593        VT = MinVT;
1594    }
1595
1596    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1597    MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1598
1599    // 'inreg' on function refers to return value
1600    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1601    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1602      Flags.setInReg();
1603
1604    // Propagate extension type if any
1605    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1606      Flags.setSExt();
1607    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1608      Flags.setZExt();
1609
1610    for (unsigned i = 0; i < NumParts; ++i)
1611      Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1612  }
1613}
1614
1615/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1616/// function arguments in the caller parameter area.  This is the actual
1617/// alignment, not its logarithm.
1618unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1619                                                   const DataLayout &DL) const {
1620  return DL.getABITypeAlignment(Ty);
1621}
1622
1623bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1624                                            const DataLayout &DL, EVT VT,
1625                                            unsigned AddrSpace,
1626                                            unsigned Alignment,
1627                                            bool *Fast) const {
1628  // Check if the specified alignment is sufficient based on the data layout.
1629  // TODO: While using the data layout works in practice, a better solution
1630  // would be to implement this check directly (make this a virtual function).
1631  // For example, the ABI alignment may change based on software platform while
1632  // this function should only be affected by hardware implementation.
1633  Type *Ty = VT.getTypeForEVT(Context);
1634  if (Alignment >= DL.getABITypeAlignment(Ty)) {
1635    // Assume that an access that meets the ABI-specified alignment is fast.
1636    if (Fast != nullptr)
1637      *Fast = true;
1638    return true;
1639  }
1640
1641  // This is a misaligned access.
1642  return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1643}
1644
1645BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1646  return BranchProbability(MinPercentageForPredictableBranch, 100);
1647}
1648
1649//===----------------------------------------------------------------------===//
1650//  TargetTransformInfo Helpers
1651//===----------------------------------------------------------------------===//
1652
1653int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1654  enum InstructionOpcodes {
1655#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1656#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1657#include "llvm/IR/Instruction.def"
1658  };
1659  switch (static_cast<InstructionOpcodes>(Opcode)) {
1660  case Ret:            return 0;
1661  case Br:             return 0;
1662  case Switch:         return 0;
1663  case IndirectBr:     return 0;
1664  case Invoke:         return 0;
1665  case Resume:         return 0;
1666  case Unreachable:    return 0;
1667  case CleanupRet:     return 0;
1668  case CatchRet:       return 0;
1669  case CatchPad:       return 0;
1670  case CatchSwitch:    return 0;
1671  case CleanupPad:     return 0;
1672  case Add:            return ISD::ADD;
1673  case FAdd:           return ISD::FADD;
1674  case Sub:            return ISD::SUB;
1675  case FSub:           return ISD::FSUB;
1676  case Mul:            return ISD::MUL;
1677  case FMul:           return ISD::FMUL;
1678  case UDiv:           return ISD::UDIV;
1679  case SDiv:           return ISD::SDIV;
1680  case FDiv:           return ISD::FDIV;
1681  case URem:           return ISD::UREM;
1682  case SRem:           return ISD::SREM;
1683  case FRem:           return ISD::FREM;
1684  case Shl:            return ISD::SHL;
1685  case LShr:           return ISD::SRL;
1686  case AShr:           return ISD::SRA;
1687  case And:            return ISD::AND;
1688  case Or:             return ISD::OR;
1689  case Xor:            return ISD::XOR;
1690  case Alloca:         return 0;
1691  case Load:           return ISD::LOAD;
1692  case Store:          return ISD::STORE;
1693  case GetElementPtr:  return 0;
1694  case Fence:          return 0;
1695  case AtomicCmpXchg:  return 0;
1696  case AtomicRMW:      return 0;
1697  case Trunc:          return ISD::TRUNCATE;
1698  case ZExt:           return ISD::ZERO_EXTEND;
1699  case SExt:           return ISD::SIGN_EXTEND;
1700  case FPToUI:         return ISD::FP_TO_UINT;
1701  case FPToSI:         return ISD::FP_TO_SINT;
1702  case UIToFP:         return ISD::UINT_TO_FP;
1703  case SIToFP:         return ISD::SINT_TO_FP;
1704  case FPTrunc:        return ISD::FP_ROUND;
1705  case FPExt:          return ISD::FP_EXTEND;
1706  case PtrToInt:       return ISD::BITCAST;
1707  case IntToPtr:       return ISD::BITCAST;
1708  case BitCast:        return ISD::BITCAST;
1709  case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1710  case ICmp:           return ISD::SETCC;
1711  case FCmp:           return ISD::SETCC;
1712  case PHI:            return 0;
1713  case Call:           return 0;
1714  case Select:         return ISD::SELECT;
1715  case UserOp1:        return 0;
1716  case UserOp2:        return 0;
1717  case VAArg:          return 0;
1718  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1719  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1720  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1721  case ExtractValue:   return ISD::MERGE_VALUES;
1722  case InsertValue:    return ISD::MERGE_VALUES;
1723  case LandingPad:     return 0;
1724  }
1725
1726  llvm_unreachable("Unknown instruction type encountered!");
1727}
1728
1729std::pair<int, MVT>
1730TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1731                                            Type *Ty) const {
1732  LLVMContext &C = Ty->getContext();
1733  EVT MTy = getValueType(DL, Ty);
1734
1735  int Cost = 1;
1736  // We keep legalizing the type until we find a legal kind. We assume that
1737  // the only operation that costs anything is the split. After splitting
1738  // we need to handle two types.
1739  while (true) {
1740    LegalizeKind LK = getTypeConversion(C, MTy);
1741
1742    if (LK.first == TypeLegal)
1743      return std::make_pair(Cost, MTy.getSimpleVT());
1744
1745    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1746      Cost *= 2;
1747
1748    // Do not loop with f128 type.
1749    if (MTy == LK.second)
1750      return std::make_pair(Cost, MTy.getSimpleVT());
1751
1752    // Keep legalizing the type.
1753    MTy = LK.second;
1754  }
1755}
1756
1757Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1758  if (!TM.getTargetTriple().isAndroid())
1759    return nullptr;
1760
1761  // Android provides a libc function to retrieve the address of the current
1762  // thread's unsafe stack pointer.
1763  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1764  Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1765  Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1766                                     StackPtrTy->getPointerTo(0), nullptr);
1767  return IRB.CreateCall(Fn);
1768}
1769
1770//===----------------------------------------------------------------------===//
1771//  Loop Strength Reduction hooks
1772//===----------------------------------------------------------------------===//
1773
1774/// isLegalAddressingMode - Return true if the addressing mode represented
1775/// by AM is legal for this target, for a load/store of the specified type.
1776bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1777                                               const AddrMode &AM, Type *Ty,
1778                                               unsigned AS) const {
1779  // The default implementation of this implements a conservative RISCy, r+r and
1780  // r+i addr mode.
1781
1782  // Allows a sign-extended 16-bit immediate field.
1783  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1784    return false;
1785
1786  // No global is ever allowed as a base.
1787  if (AM.BaseGV)
1788    return false;
1789
1790  // Only support r+r,
1791  switch (AM.Scale) {
1792  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1793    break;
1794  case 1:
1795    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1796      return false;
1797    // Otherwise we have r+r or r+i.
1798    break;
1799  case 2:
1800    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1801      return false;
1802    // Allow 2*r as r+r.
1803    break;
1804  default: // Don't allow n * r
1805    return false;
1806  }
1807
1808  return true;
1809}
1810
1811//===----------------------------------------------------------------------===//
1812//  Stack Protector
1813//===----------------------------------------------------------------------===//
1814
1815// For OpenBSD return its special guard variable. Otherwise return nullptr,
1816// so that SelectionDAG handle SSP.
1817Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1818  if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1819    Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1820    PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1821    auto Guard = cast<GlobalValue>(M.getOrInsertGlobal("__guard_local", PtrTy));
1822    Guard->setVisibility(GlobalValue::HiddenVisibility);
1823    return Guard;
1824  }
1825  return nullptr;
1826}
1827
1828// Currently only support "standard" __stack_chk_guard.
1829// TODO: add LOAD_STACK_GUARD support.
1830void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1831  M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext()));
1832}
1833
1834// Currently only support "standard" __stack_chk_guard.
1835// TODO: add LOAD_STACK_GUARD support.
1836Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1837  return M.getGlobalVariable("__stack_chk_guard", true);
1838}
1839
1840Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1841  return nullptr;
1842}
1843