AArch64AsmBackend.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "AArch64.h"
11#include "AArch64RegisterInfo.h"
12#include "MCTargetDesc/AArch64FixupKinds.h"
13#include "llvm/ADT/Triple.h"
14#include "llvm/MC/MCAsmBackend.h"
15#include "llvm/MC/MCDirectives.h"
16#include "llvm/MC/MCFixupKindInfo.h"
17#include "llvm/MC/MCObjectWriter.h"
18#include "llvm/MC/MCSectionMachO.h"
19#include "llvm/MC/MCSectionELF.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/Support/MachO.h"
22using namespace llvm;
23
24namespace {
25
26class AArch64AsmBackend : public MCAsmBackend {
27  static const unsigned PCRelFlagVal =
28      MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
29
30public:
31  AArch64AsmBackend(const Target &T) : MCAsmBackend() {}
32
33  unsigned getNumFixupKinds() const override {
34    return AArch64::NumTargetFixupKinds;
35  }
36
37  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
38    const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
39      // This table *must* be in the order that the fixup_* kinds are defined in
40      // AArch64FixupKinds.h.
41      //
42      // Name                           Offset (bits) Size (bits)     Flags
43      { "fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal },
44      { "fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal },
45      { "fixup_aarch64_add_imm12", 10, 12, 0 },
46      { "fixup_aarch64_ldst_imm12_scale1", 10, 12, 0 },
47      { "fixup_aarch64_ldst_imm12_scale2", 10, 12, 0 },
48      { "fixup_aarch64_ldst_imm12_scale4", 10, 12, 0 },
49      { "fixup_aarch64_ldst_imm12_scale8", 10, 12, 0 },
50      { "fixup_aarch64_ldst_imm12_scale16", 10, 12, 0 },
51      { "fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal },
52      { "fixup_aarch64_movw", 5, 16, 0 },
53      { "fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal },
54      { "fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal },
55      { "fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal },
56      { "fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal },
57      { "fixup_aarch64_tlsdesc_call", 0, 0, 0 }
58    };
59
60    if (Kind < FirstTargetFixupKind)
61      return MCAsmBackend::getFixupKindInfo(Kind);
62
63    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
64           "Invalid kind!");
65    return Infos[Kind - FirstTargetFixupKind];
66  }
67
68  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
69                  uint64_t Value, bool IsPCRel) const override;
70
71  bool mayNeedRelaxation(const MCInst &Inst) const override;
72  bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
73                            const MCRelaxableFragment *DF,
74                            const MCAsmLayout &Layout) const override;
75  void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
76  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
77
78  void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
79
80  unsigned getPointerSize() const { return 8; }
81};
82
83} // end anonymous namespace
84
85/// \brief The number of bytes the fixup may change.
86static unsigned getFixupKindNumBytes(unsigned Kind) {
87  switch (Kind) {
88  default:
89    assert(0 && "Unknown fixup kind!");
90
91  case AArch64::fixup_aarch64_tlsdesc_call:
92    return 0;
93
94  case FK_Data_1:
95    return 1;
96
97  case FK_Data_2:
98  case AArch64::fixup_aarch64_movw:
99    return 2;
100
101  case AArch64::fixup_aarch64_pcrel_branch14:
102  case AArch64::fixup_aarch64_add_imm12:
103  case AArch64::fixup_aarch64_ldst_imm12_scale1:
104  case AArch64::fixup_aarch64_ldst_imm12_scale2:
105  case AArch64::fixup_aarch64_ldst_imm12_scale4:
106  case AArch64::fixup_aarch64_ldst_imm12_scale8:
107  case AArch64::fixup_aarch64_ldst_imm12_scale16:
108  case AArch64::fixup_aarch64_ldr_pcrel_imm19:
109  case AArch64::fixup_aarch64_pcrel_branch19:
110    return 3;
111
112  case AArch64::fixup_aarch64_pcrel_adr_imm21:
113  case AArch64::fixup_aarch64_pcrel_adrp_imm21:
114  case AArch64::fixup_aarch64_pcrel_branch26:
115  case AArch64::fixup_aarch64_pcrel_call26:
116  case FK_Data_4:
117    return 4;
118
119  case FK_Data_8:
120    return 8;
121  }
122}
123
124static unsigned AdrImmBits(unsigned Value) {
125  unsigned lo2 = Value & 0x3;
126  unsigned hi19 = (Value & 0x1ffffc) >> 2;
127  return (hi19 << 5) | (lo2 << 29);
128}
129
130static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
131  int64_t SignedValue = static_cast<int64_t>(Value);
132  switch (Kind) {
133  default:
134    assert(false && "Unknown fixup kind!");
135  case AArch64::fixup_aarch64_pcrel_adr_imm21:
136    if (SignedValue > 2097151 || SignedValue < -2097152)
137      report_fatal_error("fixup value out of range");
138    return AdrImmBits(Value & 0x1fffffULL);
139  case AArch64::fixup_aarch64_pcrel_adrp_imm21:
140    return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
141  case AArch64::fixup_aarch64_ldr_pcrel_imm19:
142  case AArch64::fixup_aarch64_pcrel_branch19:
143    // Signed 21-bit immediate
144    if (SignedValue > 2097151 || SignedValue < -2097152)
145      report_fatal_error("fixup value out of range");
146    // Low two bits are not encoded.
147    return (Value >> 2) & 0x7ffff;
148  case AArch64::fixup_aarch64_add_imm12:
149  case AArch64::fixup_aarch64_ldst_imm12_scale1:
150    // Unsigned 12-bit immediate
151    if (Value >= 0x1000)
152      report_fatal_error("invalid imm12 fixup value");
153    return Value;
154  case AArch64::fixup_aarch64_ldst_imm12_scale2:
155    // Unsigned 12-bit immediate which gets multiplied by 2
156    if (Value & 1 || Value >= 0x2000)
157      report_fatal_error("invalid imm12 fixup value");
158    return Value >> 1;
159  case AArch64::fixup_aarch64_ldst_imm12_scale4:
160    // Unsigned 12-bit immediate which gets multiplied by 4
161    if (Value & 3 || Value >= 0x4000)
162      report_fatal_error("invalid imm12 fixup value");
163    return Value >> 2;
164  case AArch64::fixup_aarch64_ldst_imm12_scale8:
165    // Unsigned 12-bit immediate which gets multiplied by 8
166    if (Value & 7 || Value >= 0x8000)
167      report_fatal_error("invalid imm12 fixup value");
168    return Value >> 3;
169  case AArch64::fixup_aarch64_ldst_imm12_scale16:
170    // Unsigned 12-bit immediate which gets multiplied by 16
171    if (Value & 15 || Value >= 0x10000)
172      report_fatal_error("invalid imm12 fixup value");
173    return Value >> 4;
174  case AArch64::fixup_aarch64_movw:
175    report_fatal_error("no resolvable MOVZ/MOVK fixups supported yet");
176    return Value;
177  case AArch64::fixup_aarch64_pcrel_branch14:
178    // Signed 16-bit immediate
179    if (SignedValue > 32767 || SignedValue < -32768)
180      report_fatal_error("fixup value out of range");
181    // Low two bits are not encoded (4-byte alignment assumed).
182    if (Value & 0x3)
183      report_fatal_error("fixup not sufficiently aligned");
184    return (Value >> 2) & 0x3fff;
185  case AArch64::fixup_aarch64_pcrel_branch26:
186  case AArch64::fixup_aarch64_pcrel_call26:
187    // Signed 28-bit immediate
188    if (SignedValue > 134217727 || SignedValue < -134217728)
189      report_fatal_error("fixup value out of range");
190    // Low two bits are not encoded (4-byte alignment assumed).
191    if (Value & 0x3)
192      report_fatal_error("fixup not sufficiently aligned");
193    return (Value >> 2) & 0x3ffffff;
194  case FK_Data_1:
195  case FK_Data_2:
196  case FK_Data_4:
197  case FK_Data_8:
198    return Value;
199  }
200}
201
202void AArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
203                                   unsigned DataSize, uint64_t Value,
204                                   bool IsPCRel) const {
205  unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
206  if (!Value)
207    return; // Doesn't change encoding.
208  MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
209  // Apply any target-specific value adjustments.
210  Value = adjustFixupValue(Fixup.getKind(), Value);
211
212  // Shift the value into position.
213  Value <<= Info.TargetOffset;
214
215  unsigned Offset = Fixup.getOffset();
216  assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
217
218  // For each byte of the fragment that the fixup touches, mask in the
219  // bits from the fixup value.
220  for (unsigned i = 0; i != NumBytes; ++i)
221    Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
222}
223
224bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
225  return false;
226}
227
228bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
229                                             uint64_t Value,
230                                             const MCRelaxableFragment *DF,
231                                             const MCAsmLayout &Layout) const {
232  // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
233  // into the targets for now.
234  //
235  // Relax if the value is too big for a (signed) i8.
236  return int64_t(Value) != int64_t(int8_t(Value));
237}
238
239void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
240                                         MCInst &Res) const {
241  assert(false && "AArch64AsmBackend::relaxInstruction() unimplemented");
242}
243
244bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
245  // If the count is not 4-byte aligned, we must be writing data into the text
246  // section (otherwise we have unaligned instructions, and thus have far
247  // bigger problems), so just write zeros instead.
248  if ((Count & 3) != 0) {
249    for (uint64_t i = 0, e = (Count & 3); i != e; ++i)
250      OW->Write8(0);
251  }
252
253  // We are properly aligned, so write NOPs as requested.
254  Count /= 4;
255  for (uint64_t i = 0; i != Count; ++i)
256    OW->Write32(0xd503201f);
257  return true;
258}
259
260namespace {
261
262namespace CU {
263
264/// \brief Compact unwind encoding values.
265enum CompactUnwindEncodings {
266  /// \brief A "frameless" leaf function, where no non-volatile registers are
267  /// saved. The return remains in LR throughout the function.
268  UNWIND_AArch64_MODE_FRAMELESS = 0x02000000,
269
270  /// \brief No compact unwind encoding available. Instead the low 23-bits of
271  /// the compact unwind encoding is the offset of the DWARF FDE in the
272  /// __eh_frame section. This mode is never used in object files. It is only
273  /// generated by the linker in final linked images, which have only DWARF info
274  /// for a function.
275  UNWIND_AArch64_MODE_DWARF = 0x03000000,
276
277  /// \brief This is a standard arm64 prologue where FP/LR are immediately
278  /// pushed on the stack, then SP is copied to FP. If there are any
279  /// non-volatile register saved, they are copied into the stack fame in pairs
280  /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
281  /// five X pairs and four D pairs can be saved, but the memory layout must be
282  /// in register number order.
283  UNWIND_AArch64_MODE_FRAME = 0x04000000,
284
285  /// \brief Frame register pair encodings.
286  UNWIND_AArch64_FRAME_X19_X20_PAIR = 0x00000001,
287  UNWIND_AArch64_FRAME_X21_X22_PAIR = 0x00000002,
288  UNWIND_AArch64_FRAME_X23_X24_PAIR = 0x00000004,
289  UNWIND_AArch64_FRAME_X25_X26_PAIR = 0x00000008,
290  UNWIND_AArch64_FRAME_X27_X28_PAIR = 0x00000010,
291  UNWIND_AArch64_FRAME_D8_D9_PAIR = 0x00000100,
292  UNWIND_AArch64_FRAME_D10_D11_PAIR = 0x00000200,
293  UNWIND_AArch64_FRAME_D12_D13_PAIR = 0x00000400,
294  UNWIND_AArch64_FRAME_D14_D15_PAIR = 0x00000800
295};
296
297} // end CU namespace
298
299// FIXME: This should be in a separate file.
300class DarwinAArch64AsmBackend : public AArch64AsmBackend {
301  const MCRegisterInfo &MRI;
302
303  /// \brief Encode compact unwind stack adjustment for frameless functions.
304  /// See UNWIND_AArch64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
305  /// The stack size always needs to be 16 byte aligned.
306  uint32_t encodeStackAdjustment(uint32_t StackSize) const {
307    return (StackSize / 16) << 12;
308  }
309
310public:
311  DarwinAArch64AsmBackend(const Target &T, const MCRegisterInfo &MRI)
312      : AArch64AsmBackend(T), MRI(MRI) {}
313
314  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
315    return createAArch64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
316                                         MachO::CPU_SUBTYPE_ARM64_ALL);
317  }
318
319  bool doesSectionRequireSymbols(const MCSection &Section) const override {
320    // Any section for which the linker breaks things into atoms needs to
321    // preserve symbols, including assembler local symbols, to identify
322    // those atoms. These sections are:
323    // Sections of type:
324    //
325    //    S_CSTRING_LITERALS  (e.g. __cstring)
326    //    S_LITERAL_POINTERS  (e.g.  objc selector pointers)
327    //    S_16BYTE_LITERALS, S_8BYTE_LITERALS, S_4BYTE_LITERALS
328    //
329    // Sections named:
330    //
331    //    __TEXT,__eh_frame
332    //    __TEXT,__ustring
333    //    __DATA,__cfstring
334    //    __DATA,__objc_classrefs
335    //    __DATA,__objc_catlist
336    //
337    // FIXME: It would be better if the compiler used actual linker local
338    // symbols for each of these sections rather than preserving what
339    // are ostensibly assembler local symbols.
340    const MCSectionMachO &SMO = static_cast<const MCSectionMachO &>(Section);
341    return (SMO.getType() == MachO::S_CSTRING_LITERALS ||
342            SMO.getType() == MachO::S_4BYTE_LITERALS ||
343            SMO.getType() == MachO::S_8BYTE_LITERALS ||
344            SMO.getType() == MachO::S_16BYTE_LITERALS ||
345            SMO.getType() == MachO::S_LITERAL_POINTERS ||
346            (SMO.getSegmentName() == "__TEXT" &&
347             (SMO.getSectionName() == "__eh_frame" ||
348              SMO.getSectionName() == "__ustring")) ||
349            (SMO.getSegmentName() == "__DATA" &&
350             (SMO.getSectionName() == "__cfstring" ||
351              SMO.getSectionName() == "__objc_classrefs" ||
352              SMO.getSectionName() == "__objc_catlist")));
353  }
354
355  /// \brief Generate the compact unwind encoding from the CFI directives.
356  uint32_t generateCompactUnwindEncoding(
357                             ArrayRef<MCCFIInstruction> Instrs) const override {
358    if (Instrs.empty())
359      return CU::UNWIND_AArch64_MODE_FRAMELESS;
360
361    bool HasFP = false;
362    unsigned StackSize = 0;
363
364    uint32_t CompactUnwindEncoding = 0;
365    for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
366      const MCCFIInstruction &Inst = Instrs[i];
367
368      switch (Inst.getOperation()) {
369      default:
370        // Cannot handle this directive:  bail out.
371        return CU::UNWIND_AArch64_MODE_DWARF;
372      case MCCFIInstruction::OpDefCfa: {
373        // Defines a frame pointer.
374        assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
375                   AArch64::FP &&
376               "Invalid frame pointer!");
377        assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
378
379        const MCCFIInstruction &LRPush = Instrs[++i];
380        assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
381               "Link register not pushed!");
382        const MCCFIInstruction &FPPush = Instrs[++i];
383        assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
384               "Frame pointer not pushed!");
385
386        unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
387        unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
388
389        LRReg = getXRegFromWReg(LRReg);
390        FPReg = getXRegFromWReg(FPReg);
391
392        assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
393               "Pushing invalid registers for frame!");
394
395        // Indicate that the function has a frame.
396        CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAME;
397        HasFP = true;
398        break;
399      }
400      case MCCFIInstruction::OpDefCfaOffset: {
401        assert(StackSize == 0 && "We already have the CFA offset!");
402        StackSize = std::abs(Inst.getOffset());
403        break;
404      }
405      case MCCFIInstruction::OpOffset: {
406        // Registers are saved in pairs. We expect there to be two consecutive
407        // `.cfi_offset' instructions with the appropriate registers specified.
408        unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
409        if (i + 1 == e)
410          return CU::UNWIND_AArch64_MODE_DWARF;
411
412        const MCCFIInstruction &Inst2 = Instrs[++i];
413        if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
414          return CU::UNWIND_AArch64_MODE_DWARF;
415        unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
416
417        // N.B. The encodings must be in register number order, and the X
418        // registers before the D registers.
419
420        // X19/X20 pair = 0x00000001,
421        // X21/X22 pair = 0x00000002,
422        // X23/X24 pair = 0x00000004,
423        // X25/X26 pair = 0x00000008,
424        // X27/X28 pair = 0x00000010
425        Reg1 = getXRegFromWReg(Reg1);
426        Reg2 = getXRegFromWReg(Reg2);
427
428        if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
429            (CompactUnwindEncoding & 0xF1E) == 0)
430          CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X19_X20_PAIR;
431        else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
432                 (CompactUnwindEncoding & 0xF1C) == 0)
433          CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X21_X22_PAIR;
434        else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
435                 (CompactUnwindEncoding & 0xF18) == 0)
436          CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X23_X24_PAIR;
437        else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
438                 (CompactUnwindEncoding & 0xF10) == 0)
439          CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X25_X26_PAIR;
440        else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
441                 (CompactUnwindEncoding & 0xF00) == 0)
442          CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X27_X28_PAIR;
443        else {
444          Reg1 = getDRegFromBReg(Reg1);
445          Reg2 = getDRegFromBReg(Reg2);
446
447          // D8/D9 pair   = 0x00000100,
448          // D10/D11 pair = 0x00000200,
449          // D12/D13 pair = 0x00000400,
450          // D14/D15 pair = 0x00000800
451          if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
452              (CompactUnwindEncoding & 0xE00) == 0)
453            CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D8_D9_PAIR;
454          else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
455                   (CompactUnwindEncoding & 0xC00) == 0)
456            CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D10_D11_PAIR;
457          else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
458                   (CompactUnwindEncoding & 0x800) == 0)
459            CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D12_D13_PAIR;
460          else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
461            CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D14_D15_PAIR;
462          else
463            // A pair was pushed which we cannot handle.
464            return CU::UNWIND_AArch64_MODE_DWARF;
465        }
466
467        break;
468      }
469      }
470    }
471
472    if (!HasFP) {
473      // With compact unwind info we can only represent stack adjustments of up
474      // to 65520 bytes.
475      if (StackSize > 65520)
476        return CU::UNWIND_AArch64_MODE_DWARF;
477
478      CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAMELESS;
479      CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
480    }
481
482    return CompactUnwindEncoding;
483  }
484};
485
486} // end anonymous namespace
487
488namespace {
489
490class ELFAArch64AsmBackend : public AArch64AsmBackend {
491public:
492  uint8_t OSABI;
493  bool IsLittleEndian;
494
495  ELFAArch64AsmBackend(const Target &T, uint8_t OSABI, bool IsLittleEndian)
496    : AArch64AsmBackend(T), OSABI(OSABI), IsLittleEndian(IsLittleEndian) {}
497
498  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
499    return createAArch64ELFObjectWriter(OS, OSABI, IsLittleEndian);
500  }
501
502  void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
503                         const MCFixup &Fixup, const MCFragment *DF,
504                         const MCValue &Target, uint64_t &Value,
505                         bool &IsResolved) override;
506
507  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
508                  uint64_t Value, bool IsPCRel) const override;
509};
510
511void ELFAArch64AsmBackend::processFixupValue(
512    const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup,
513    const MCFragment *DF, const MCValue &Target, uint64_t &Value,
514    bool &IsResolved) {
515  // The ADRP instruction adds some multiple of 0x1000 to the current PC &
516  // ~0xfff. This means that the required offset to reach a symbol can vary by
517  // up to one step depending on where the ADRP is in memory. For example:
518  //
519  //     ADRP x0, there
520  //  there:
521  //
522  // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
523  // we'll need that as an offset. At any other address "there" will be in the
524  // same page as the ADRP and the instruction should encode 0x0. Assuming the
525  // section isn't 0x1000-aligned, we therefore need to delegate this decision
526  // to the linker -- a relocation!
527  if ((uint32_t)Fixup.getKind() == AArch64::fixup_aarch64_pcrel_adrp_imm21)
528    IsResolved = false;
529}
530
531void ELFAArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
532                                      unsigned DataSize, uint64_t Value,
533                                      bool IsPCRel) const {
534  // store fixups in .eh_frame section in big endian order
535  if (!IsLittleEndian && Fixup.getKind() == FK_Data_4) {
536    const MCSection *Sec = Fixup.getValue()->FindAssociatedSection();
537    const MCSectionELF *SecELF = static_cast<const MCSectionELF *>(Sec);
538    if (SecELF->getSectionName() == ".eh_frame")
539      Value = ByteSwap_32(unsigned(Value));
540  }
541  AArch64AsmBackend::applyFixup (Fixup, Data, DataSize, Value, IsPCRel);
542}
543}
544
545MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
546                                            const MCRegisterInfo &MRI,
547                                            StringRef TT, StringRef CPU) {
548  Triple TheTriple(TT);
549
550  if (TheTriple.isOSDarwin())
551    return new DarwinAArch64AsmBackend(T, MRI);
552
553  assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
554  return new ELFAArch64AsmBackend(T, TheTriple.getOS(), /*IsLittleEndian=*/true);
555}
556
557MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
558                                            const MCRegisterInfo &MRI,
559                                            StringRef TT, StringRef CPU) {
560  Triple TheTriple(TT);
561
562  assert(TheTriple.isOSBinFormatELF() &&
563         "Big endian is only supported for ELF targets!");
564  return new ELFAArch64AsmBackend(T, TheTriple.getOS(),
565                                  /*IsLittleEndian=*/false);
566}
567