HexagonBitSimplify.cpp revision de2d8694e25a814696358e95141f4b1aa4d8847e
1//===--- HexagonBitSimplify.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexbit"
11
12#include "HexagonBitTracker.h"
13#include "HexagonTargetMachine.h"
14#include "llvm/CodeGen/MachineDominators.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/CodeGen/Passes.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetMachine.h"
23
24using namespace llvm;
25
26namespace llvm {
27  void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
28  FunctionPass *createHexagonBitSimplify();
29}
30
31namespace {
32  // Set of virtual registers, based on BitVector.
33  struct RegisterSet : private BitVector {
34    RegisterSet() : BitVector() {}
35    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
36    RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
37
38    using BitVector::clear;
39    using BitVector::count;
40
41    unsigned find_first() const {
42      int First = BitVector::find_first();
43      if (First < 0)
44        return 0;
45      return x2v(First);
46    }
47
48    unsigned find_next(unsigned Prev) const {
49      int Next = BitVector::find_next(v2x(Prev));
50      if (Next < 0)
51        return 0;
52      return x2v(Next);
53    }
54
55    RegisterSet &insert(unsigned R) {
56      unsigned Idx = v2x(R);
57      ensure(Idx);
58      return static_cast<RegisterSet&>(BitVector::set(Idx));
59    }
60    RegisterSet &remove(unsigned R) {
61      unsigned Idx = v2x(R);
62      if (Idx >= size())
63        return *this;
64      return static_cast<RegisterSet&>(BitVector::reset(Idx));
65    }
66
67    RegisterSet &insert(const RegisterSet &Rs) {
68      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
69    }
70    RegisterSet &remove(const RegisterSet &Rs) {
71      return static_cast<RegisterSet&>(BitVector::reset(Rs));
72    }
73
74    reference operator[](unsigned R) {
75      unsigned Idx = v2x(R);
76      ensure(Idx);
77      return BitVector::operator[](Idx);
78    }
79    bool operator[](unsigned R) const {
80      unsigned Idx = v2x(R);
81      assert(Idx < size());
82      return BitVector::operator[](Idx);
83    }
84    bool has(unsigned R) const {
85      unsigned Idx = v2x(R);
86      if (Idx >= size())
87        return false;
88      return BitVector::test(Idx);
89    }
90
91    bool empty() const {
92      return !BitVector::any();
93    }
94    bool includes(const RegisterSet &Rs) const {
95      // A.BitVector::test(B)  <=>  A-B != {}
96      return !Rs.BitVector::test(*this);
97    }
98    bool intersects(const RegisterSet &Rs) const {
99      return BitVector::anyCommon(Rs);
100    }
101
102  private:
103    void ensure(unsigned Idx) {
104      if (size() <= Idx)
105        resize(std::max(Idx+1, 32U));
106    }
107    static inline unsigned v2x(unsigned v) {
108      return TargetRegisterInfo::virtReg2Index(v);
109    }
110    static inline unsigned x2v(unsigned x) {
111      return TargetRegisterInfo::index2VirtReg(x);
112    }
113  };
114
115
116  struct PrintRegSet {
117    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
118      : RS(S), TRI(RI) {}
119    friend raw_ostream &operator<< (raw_ostream &OS,
120          const PrintRegSet &P);
121  private:
122    const RegisterSet &RS;
123    const TargetRegisterInfo *TRI;
124  };
125
126  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
127    LLVM_ATTRIBUTE_UNUSED;
128  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
129    OS << '{';
130    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
131      OS << ' ' << PrintReg(R, P.TRI);
132    OS << " }";
133    return OS;
134  }
135}
136
137
138namespace {
139  class Transformation;
140
141  class HexagonBitSimplify : public MachineFunctionPass {
142  public:
143    static char ID;
144    HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
145      initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
146    }
147    virtual const char *getPassName() const {
148      return "Hexagon bit simplification";
149    }
150    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
151      AU.addRequired<MachineDominatorTree>();
152      AU.addPreserved<MachineDominatorTree>();
153      MachineFunctionPass::getAnalysisUsage(AU);
154    }
155    virtual bool runOnMachineFunction(MachineFunction &MF);
156
157    static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
158    static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
159    static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
160        const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
161    static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
162        uint16_t W);
163    static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
164        uint16_t W, uint64_t &U);
165    static bool replaceReg(unsigned OldR, unsigned NewR,
166        MachineRegisterInfo &MRI);
167    static bool getSubregMask(const BitTracker::RegisterRef &RR,
168        unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
169    static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
170        unsigned NewSR, MachineRegisterInfo &MRI);
171    static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
172        unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
173    static bool parseRegSequence(const MachineInstr &I,
174        BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
175
176    static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
177        uint16_t Begin);
178    static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
179        uint16_t Begin, const HexagonInstrInfo &HII);
180
181    static const TargetRegisterClass *getFinalVRegClass(
182        const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
183    static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
184        const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
185
186  private:
187    MachineDominatorTree *MDT;
188
189    bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
190  };
191
192  char HexagonBitSimplify::ID = 0;
193  typedef HexagonBitSimplify HBS;
194
195
196  // The purpose of this class is to provide a common facility to traverse
197  // the function top-down or bottom-up via the dominator tree, and keep
198  // track of the available registers.
199  class Transformation {
200  public:
201    bool TopDown;
202    Transformation(bool TD) : TopDown(TD) {}
203    virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
204    virtual ~Transformation() {}
205  };
206}
207
208INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
209      "Hexagon bit simplification", false, false)
210INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
211INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
212      "Hexagon bit simplification", false, false)
213
214
215bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
216      RegisterSet &AVs) {
217  MachineDomTreeNode *N = MDT->getNode(&B);
218  typedef GraphTraits<MachineDomTreeNode*> GTN;
219  bool Changed = false;
220
221  if (T.TopDown)
222    Changed = T.processBlock(B, AVs);
223
224  RegisterSet Defs;
225  for (auto &I : B)
226    getInstrDefs(I, Defs);
227  RegisterSet NewAVs = AVs;
228  NewAVs.insert(Defs);
229
230  for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
231    MachineBasicBlock *SB = (*I)->getBlock();
232    Changed |= visitBlock(*SB, T, NewAVs);
233  }
234  if (!T.TopDown)
235    Changed |= T.processBlock(B, AVs);
236
237  return Changed;
238}
239
240//
241// Utility functions:
242//
243void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
244      RegisterSet &Defs) {
245  for (auto &Op : MI.operands()) {
246    if (!Op.isReg() || !Op.isDef())
247      continue;
248    unsigned R = Op.getReg();
249    if (!TargetRegisterInfo::isVirtualRegister(R))
250      continue;
251    Defs.insert(R);
252  }
253}
254
255void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
256      RegisterSet &Uses) {
257  for (auto &Op : MI.operands()) {
258    if (!Op.isReg() || !Op.isUse())
259      continue;
260    unsigned R = Op.getReg();
261    if (!TargetRegisterInfo::isVirtualRegister(R))
262      continue;
263    Uses.insert(R);
264  }
265}
266
267// Check if all the bits in range [B, E) in both cells are equal.
268bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
269      uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
270      uint16_t W) {
271  for (uint16_t i = 0; i < W; ++i) {
272    // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
273    if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
274      return false;
275    // Same for RC2[i].
276    if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
277      return false;
278    if (RC1[B1+i] != RC2[B2+i])
279      return false;
280  }
281  return true;
282}
283
284bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
285      uint16_t B, uint16_t W) {
286  assert(B < RC.width() && B+W <= RC.width());
287  for (uint16_t i = B; i < B+W; ++i)
288    if (!RC[i].is(0))
289      return false;
290  return true;
291}
292
293
294bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
295        uint16_t B, uint16_t W, uint64_t &U) {
296  assert(B < RC.width() && B+W <= RC.width());
297  int64_t T = 0;
298  for (uint16_t i = B+W; i > B; --i) {
299    const BitTracker::BitValue &BV = RC[i-1];
300    T <<= 1;
301    if (BV.is(1))
302      T |= 1;
303    else if (!BV.is(0))
304      return false;
305  }
306  U = T;
307  return true;
308}
309
310
311bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
312      MachineRegisterInfo &MRI) {
313  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
314      !TargetRegisterInfo::isVirtualRegister(NewR))
315    return false;
316  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
317  decltype(End) NextI;
318  for (auto I = Begin; I != End; I = NextI) {
319    NextI = std::next(I);
320    I->setReg(NewR);
321  }
322  return Begin != End;
323}
324
325
326bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
327      unsigned NewSR, MachineRegisterInfo &MRI) {
328  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
329      !TargetRegisterInfo::isVirtualRegister(NewR))
330    return false;
331  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
332  decltype(End) NextI;
333  for (auto I = Begin; I != End; I = NextI) {
334    NextI = std::next(I);
335    I->setReg(NewR);
336    I->setSubReg(NewSR);
337  }
338  return Begin != End;
339}
340
341
342bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
343      unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
344  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
345      !TargetRegisterInfo::isVirtualRegister(NewR))
346    return false;
347  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
348  decltype(End) NextI;
349  for (auto I = Begin; I != End; I = NextI) {
350    NextI = std::next(I);
351    if (I->getSubReg() != OldSR)
352      continue;
353    I->setReg(NewR);
354    I->setSubReg(NewSR);
355  }
356  return Begin != End;
357}
358
359
360// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
361// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
362// if this succeeded, otherwise return false.
363bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
364      unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
365  const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
366  if (RC == &Hexagon::IntRegsRegClass) {
367    assert(RR.Sub == 0);
368    Begin = 0;
369    Width = 32;
370    return true;
371  }
372  if (RC == &Hexagon::DoubleRegsRegClass) {
373    if (RR.Sub == 0) {
374      Begin = 0;
375      Width = 64;
376      return true;
377    }
378    assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
379    Width = 32;
380    Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
381    return true;
382  }
383  return false;
384}
385
386
387// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
388// subregister.
389bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
390      BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
391  assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
392  unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
393  assert(Sub1 != Sub2);
394  if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
395    SL = I.getOperand(1);
396    SH = I.getOperand(3);
397    return true;
398  }
399  if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
400    SH = I.getOperand(1);
401    SL = I.getOperand(3);
402    return true;
403  }
404  return false;
405}
406
407
408// All stores (except 64-bit stores) take a 32-bit register as the source
409// of the value to be stored. If the instruction stores into a location
410// that is shorter than 32 bits, some bits of the source register are not
411// used. For each store instruction, calculate the set of used bits in
412// the source register, and set appropriate bits in Bits. Return true if
413// the bits are calculated, false otherwise.
414bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
415      uint16_t Begin) {
416  using namespace Hexagon;
417
418  switch (Opc) {
419    // Store byte
420    case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
421    case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
422    case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
423    case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
424    case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
425    case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
426    case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
427    case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
428    case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
429    case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
430    case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
431    case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
432    case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
433    case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
434    case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
435    case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
436    case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
437    case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
438    case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
439    case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
440    case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
441    case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
442    case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
443    case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
444    case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
445    case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
446    case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
447    case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
448    case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
449    case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
450    case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
451    case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
452    case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
453    case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
454    case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
455    case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
456    case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
457    case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
458    case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
459    case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
460    case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
461    case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
462    case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
463    case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
464    case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
465    case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
466    case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
467    case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
468    case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
469    case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
470    case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
471    case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
472      Bits.set(Begin, Begin+8);
473      return true;
474
475    // Store low half
476    case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
477    case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
478    case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
479    case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
480    case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
481    case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
482    case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
483    case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
484    case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
485    case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
486    case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
487    case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
488    case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
489    case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
490    case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
491    case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
492    case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
493    case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
494    case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
495    case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
496    case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
497    case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
498    case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
499    case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
500    case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
501    case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
502    case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
503    case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
504    case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
505    case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
506    case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
507    case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
508    case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
509    case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
510    case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
511    case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
512    case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
513    case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
514    case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
515    case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
516    case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
517    case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
518    case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
519    case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
520    case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
521    case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
522    case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
523    case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
524    case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
525    case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
526    case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
527    case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
528      Bits.set(Begin, Begin+16);
529      return true;
530
531    // Store high half
532    case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
533    case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
534    case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
535    case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
536    case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
537    case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
538    case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
539    case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
540    case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
541    case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
542    case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
543    case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
544    case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
545    case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
546    case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
547    case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
548    case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
549    case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
550    case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
551    case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
552    case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
553    case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
554    case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
555    case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
556    case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
557    case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
558      Bits.set(Begin+16, Begin+32);
559      return true;
560  }
561
562  return false;
563}
564
565
566// For an instruction with opcode Opc, calculate the set of bits that it
567// uses in a register in operand OpN. This only calculates the set of used
568// bits for cases where it does not depend on any operands (as is the case
569// in shifts, for example). For concrete instructions from a program, the
570// operand may be a subregister of a larger register, while Bits would
571// correspond to the larger register in its entirety. Because of that,
572// the parameter Begin can be used to indicate which bit of Bits should be
573// considered the LSB of of the operand.
574bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
575      BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
576  using namespace Hexagon;
577
578  const MCInstrDesc &D = HII.get(Opc);
579  if (D.mayStore()) {
580    if (OpN == D.getNumOperands()-1)
581      return getUsedBitsInStore(Opc, Bits, Begin);
582    return false;
583  }
584
585  switch (Opc) {
586    // One register source. Used bits: R1[0-7].
587    case A2_sxtb:
588    case A2_zxtb:
589    case A4_cmpbeqi:
590    case A4_cmpbgti:
591    case A4_cmpbgtui:
592      if (OpN == 1) {
593        Bits.set(Begin, Begin+8);
594        return true;
595      }
596      break;
597
598    // One register source. Used bits: R1[0-15].
599    case A2_aslh:
600    case A2_sxth:
601    case A2_zxth:
602    case A4_cmpheqi:
603    case A4_cmphgti:
604    case A4_cmphgtui:
605      if (OpN == 1) {
606        Bits.set(Begin, Begin+16);
607        return true;
608      }
609      break;
610
611    // One register source. Used bits: R1[16-31].
612    case A2_asrh:
613      if (OpN == 1) {
614        Bits.set(Begin+16, Begin+32);
615        return true;
616      }
617      break;
618
619    // Two register sources. Used bits: R1[0-7], R2[0-7].
620    case A4_cmpbeq:
621    case A4_cmpbgt:
622    case A4_cmpbgtu:
623      if (OpN == 1) {
624        Bits.set(Begin, Begin+8);
625        return true;
626      }
627      break;
628
629    // Two register sources. Used bits: R1[0-15], R2[0-15].
630    case A4_cmpheq:
631    case A4_cmphgt:
632    case A4_cmphgtu:
633    case A2_addh_h16_ll:
634    case A2_addh_h16_sat_ll:
635    case A2_addh_l16_ll:
636    case A2_addh_l16_sat_ll:
637    case A2_combine_ll:
638    case A2_subh_h16_ll:
639    case A2_subh_h16_sat_ll:
640    case A2_subh_l16_ll:
641    case A2_subh_l16_sat_ll:
642    case M2_mpy_acc_ll_s0:
643    case M2_mpy_acc_ll_s1:
644    case M2_mpy_acc_sat_ll_s0:
645    case M2_mpy_acc_sat_ll_s1:
646    case M2_mpy_ll_s0:
647    case M2_mpy_ll_s1:
648    case M2_mpy_nac_ll_s0:
649    case M2_mpy_nac_ll_s1:
650    case M2_mpy_nac_sat_ll_s0:
651    case M2_mpy_nac_sat_ll_s1:
652    case M2_mpy_rnd_ll_s0:
653    case M2_mpy_rnd_ll_s1:
654    case M2_mpy_sat_ll_s0:
655    case M2_mpy_sat_ll_s1:
656    case M2_mpy_sat_rnd_ll_s0:
657    case M2_mpy_sat_rnd_ll_s1:
658    case M2_mpyd_acc_ll_s0:
659    case M2_mpyd_acc_ll_s1:
660    case M2_mpyd_ll_s0:
661    case M2_mpyd_ll_s1:
662    case M2_mpyd_nac_ll_s0:
663    case M2_mpyd_nac_ll_s1:
664    case M2_mpyd_rnd_ll_s0:
665    case M2_mpyd_rnd_ll_s1:
666    case M2_mpyu_acc_ll_s0:
667    case M2_mpyu_acc_ll_s1:
668    case M2_mpyu_ll_s0:
669    case M2_mpyu_ll_s1:
670    case M2_mpyu_nac_ll_s0:
671    case M2_mpyu_nac_ll_s1:
672    case M2_mpyud_acc_ll_s0:
673    case M2_mpyud_acc_ll_s1:
674    case M2_mpyud_ll_s0:
675    case M2_mpyud_ll_s1:
676    case M2_mpyud_nac_ll_s0:
677    case M2_mpyud_nac_ll_s1:
678      if (OpN == 1 || OpN == 2) {
679        Bits.set(Begin, Begin+16);
680        return true;
681      }
682      break;
683
684    // Two register sources. Used bits: R1[0-15], R2[16-31].
685    case A2_addh_h16_lh:
686    case A2_addh_h16_sat_lh:
687    case A2_combine_lh:
688    case A2_subh_h16_lh:
689    case A2_subh_h16_sat_lh:
690    case M2_mpy_acc_lh_s0:
691    case M2_mpy_acc_lh_s1:
692    case M2_mpy_acc_sat_lh_s0:
693    case M2_mpy_acc_sat_lh_s1:
694    case M2_mpy_lh_s0:
695    case M2_mpy_lh_s1:
696    case M2_mpy_nac_lh_s0:
697    case M2_mpy_nac_lh_s1:
698    case M2_mpy_nac_sat_lh_s0:
699    case M2_mpy_nac_sat_lh_s1:
700    case M2_mpy_rnd_lh_s0:
701    case M2_mpy_rnd_lh_s1:
702    case M2_mpy_sat_lh_s0:
703    case M2_mpy_sat_lh_s1:
704    case M2_mpy_sat_rnd_lh_s0:
705    case M2_mpy_sat_rnd_lh_s1:
706    case M2_mpyd_acc_lh_s0:
707    case M2_mpyd_acc_lh_s1:
708    case M2_mpyd_lh_s0:
709    case M2_mpyd_lh_s1:
710    case M2_mpyd_nac_lh_s0:
711    case M2_mpyd_nac_lh_s1:
712    case M2_mpyd_rnd_lh_s0:
713    case M2_mpyd_rnd_lh_s1:
714    case M2_mpyu_acc_lh_s0:
715    case M2_mpyu_acc_lh_s1:
716    case M2_mpyu_lh_s0:
717    case M2_mpyu_lh_s1:
718    case M2_mpyu_nac_lh_s0:
719    case M2_mpyu_nac_lh_s1:
720    case M2_mpyud_acc_lh_s0:
721    case M2_mpyud_acc_lh_s1:
722    case M2_mpyud_lh_s0:
723    case M2_mpyud_lh_s1:
724    case M2_mpyud_nac_lh_s0:
725    case M2_mpyud_nac_lh_s1:
726    // These four are actually LH.
727    case A2_addh_l16_hl:
728    case A2_addh_l16_sat_hl:
729    case A2_subh_l16_hl:
730    case A2_subh_l16_sat_hl:
731      if (OpN == 1) {
732        Bits.set(Begin, Begin+16);
733        return true;
734      }
735      if (OpN == 2) {
736        Bits.set(Begin+16, Begin+32);
737        return true;
738      }
739      break;
740
741    // Two register sources, used bits: R1[16-31], R2[0-15].
742    case A2_addh_h16_hl:
743    case A2_addh_h16_sat_hl:
744    case A2_combine_hl:
745    case A2_subh_h16_hl:
746    case A2_subh_h16_sat_hl:
747    case M2_mpy_acc_hl_s0:
748    case M2_mpy_acc_hl_s1:
749    case M2_mpy_acc_sat_hl_s0:
750    case M2_mpy_acc_sat_hl_s1:
751    case M2_mpy_hl_s0:
752    case M2_mpy_hl_s1:
753    case M2_mpy_nac_hl_s0:
754    case M2_mpy_nac_hl_s1:
755    case M2_mpy_nac_sat_hl_s0:
756    case M2_mpy_nac_sat_hl_s1:
757    case M2_mpy_rnd_hl_s0:
758    case M2_mpy_rnd_hl_s1:
759    case M2_mpy_sat_hl_s0:
760    case M2_mpy_sat_hl_s1:
761    case M2_mpy_sat_rnd_hl_s0:
762    case M2_mpy_sat_rnd_hl_s1:
763    case M2_mpyd_acc_hl_s0:
764    case M2_mpyd_acc_hl_s1:
765    case M2_mpyd_hl_s0:
766    case M2_mpyd_hl_s1:
767    case M2_mpyd_nac_hl_s0:
768    case M2_mpyd_nac_hl_s1:
769    case M2_mpyd_rnd_hl_s0:
770    case M2_mpyd_rnd_hl_s1:
771    case M2_mpyu_acc_hl_s0:
772    case M2_mpyu_acc_hl_s1:
773    case M2_mpyu_hl_s0:
774    case M2_mpyu_hl_s1:
775    case M2_mpyu_nac_hl_s0:
776    case M2_mpyu_nac_hl_s1:
777    case M2_mpyud_acc_hl_s0:
778    case M2_mpyud_acc_hl_s1:
779    case M2_mpyud_hl_s0:
780    case M2_mpyud_hl_s1:
781    case M2_mpyud_nac_hl_s0:
782    case M2_mpyud_nac_hl_s1:
783      if (OpN == 1) {
784        Bits.set(Begin+16, Begin+32);
785        return true;
786      }
787      if (OpN == 2) {
788        Bits.set(Begin, Begin+16);
789        return true;
790      }
791      break;
792
793    // Two register sources, used bits: R1[16-31], R2[16-31].
794    case A2_addh_h16_hh:
795    case A2_addh_h16_sat_hh:
796    case A2_combine_hh:
797    case A2_subh_h16_hh:
798    case A2_subh_h16_sat_hh:
799    case M2_mpy_acc_hh_s0:
800    case M2_mpy_acc_hh_s1:
801    case M2_mpy_acc_sat_hh_s0:
802    case M2_mpy_acc_sat_hh_s1:
803    case M2_mpy_hh_s0:
804    case M2_mpy_hh_s1:
805    case M2_mpy_nac_hh_s0:
806    case M2_mpy_nac_hh_s1:
807    case M2_mpy_nac_sat_hh_s0:
808    case M2_mpy_nac_sat_hh_s1:
809    case M2_mpy_rnd_hh_s0:
810    case M2_mpy_rnd_hh_s1:
811    case M2_mpy_sat_hh_s0:
812    case M2_mpy_sat_hh_s1:
813    case M2_mpy_sat_rnd_hh_s0:
814    case M2_mpy_sat_rnd_hh_s1:
815    case M2_mpyd_acc_hh_s0:
816    case M2_mpyd_acc_hh_s1:
817    case M2_mpyd_hh_s0:
818    case M2_mpyd_hh_s1:
819    case M2_mpyd_nac_hh_s0:
820    case M2_mpyd_nac_hh_s1:
821    case M2_mpyd_rnd_hh_s0:
822    case M2_mpyd_rnd_hh_s1:
823    case M2_mpyu_acc_hh_s0:
824    case M2_mpyu_acc_hh_s1:
825    case M2_mpyu_hh_s0:
826    case M2_mpyu_hh_s1:
827    case M2_mpyu_nac_hh_s0:
828    case M2_mpyu_nac_hh_s1:
829    case M2_mpyud_acc_hh_s0:
830    case M2_mpyud_acc_hh_s1:
831    case M2_mpyud_hh_s0:
832    case M2_mpyud_hh_s1:
833    case M2_mpyud_nac_hh_s0:
834    case M2_mpyud_nac_hh_s1:
835      if (OpN == 1 || OpN == 2) {
836        Bits.set(Begin+16, Begin+32);
837        return true;
838      }
839      break;
840  }
841
842  return false;
843}
844
845
846// Calculate the register class that matches Reg:Sub. For example, if
847// vreg1 is a double register, then vreg1:subreg_hireg would match "int"
848// register class.
849const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
850      const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
851  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
852    return nullptr;
853  auto *RC = MRI.getRegClass(RR.Reg);
854  if (RR.Sub == 0)
855    return RC;
856
857  auto VerifySR = [] (unsigned Sub) -> void {
858    assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
859  };
860
861  switch (RC->getID()) {
862    case Hexagon::DoubleRegsRegClassID:
863      VerifySR(RR.Sub);
864      return &Hexagon::IntRegsRegClass;
865    case Hexagon::VecDblRegsRegClassID:
866      VerifySR(RR.Sub);
867      return &Hexagon::VectorRegsRegClass;
868    case Hexagon::VecDblRegs128BRegClassID:
869      VerifySR(RR.Sub);
870      return &Hexagon::VectorRegs128BRegClass;
871  }
872  return nullptr;
873}
874
875
876// Check if RD could be replaced with RS at any possible use of RD.
877// For example a predicate register cannot be replaced with a integer
878// register, but a 64-bit register with a subregister can be replaced
879// with a 32-bit register.
880bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
881      const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
882  if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
883      !TargetRegisterInfo::isVirtualRegister(RS.Reg))
884    return false;
885  // Return false if one (or both) classes are nullptr.
886  auto *DRC = getFinalVRegClass(RD, MRI);
887  if (!DRC)
888    return false;
889
890  return DRC == getFinalVRegClass(RS, MRI);
891}
892
893
894//
895// Dead code elimination
896//
897namespace {
898  class DeadCodeElimination {
899  public:
900    DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
901      : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
902        MDT(mdt), MRI(mf.getRegInfo()) {}
903
904    bool run() {
905      return runOnNode(MDT.getRootNode());
906    }
907
908  private:
909    bool isDead(unsigned R) const;
910    bool runOnNode(MachineDomTreeNode *N);
911
912    MachineFunction &MF;
913    const HexagonInstrInfo &HII;
914    MachineDominatorTree &MDT;
915    MachineRegisterInfo &MRI;
916  };
917}
918
919
920bool DeadCodeElimination::isDead(unsigned R) const {
921  for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
922    MachineInstr *UseI = I->getParent();
923    if (UseI->isDebugValue())
924      continue;
925    if (UseI->isPHI()) {
926      assert(!UseI->getOperand(0).getSubReg());
927      unsigned DR = UseI->getOperand(0).getReg();
928      if (DR == R)
929        continue;
930    }
931    return false;
932  }
933  return true;
934}
935
936
937bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
938  bool Changed = false;
939  typedef GraphTraits<MachineDomTreeNode*> GTN;
940  for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
941    Changed |= runOnNode(*I);
942
943  MachineBasicBlock *B = N->getBlock();
944  std::vector<MachineInstr*> Instrs;
945  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
946    Instrs.push_back(&*I);
947
948  for (auto MI : Instrs) {
949    unsigned Opc = MI->getOpcode();
950    // Do not touch lifetime markers. This is why the target-independent DCE
951    // cannot be used.
952    if (Opc == TargetOpcode::LIFETIME_START ||
953        Opc == TargetOpcode::LIFETIME_END)
954      continue;
955    bool Store = false;
956    if (MI->isInlineAsm())
957      continue;
958    // Delete PHIs if possible.
959    if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
960      continue;
961
962    bool AllDead = true;
963    SmallVector<unsigned,2> Regs;
964    for (auto &Op : MI->operands()) {
965      if (!Op.isReg() || !Op.isDef())
966        continue;
967      unsigned R = Op.getReg();
968      if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
969        AllDead = false;
970        break;
971      }
972      Regs.push_back(R);
973    }
974    if (!AllDead)
975      continue;
976
977    B->erase(MI);
978    for (unsigned i = 0, n = Regs.size(); i != n; ++i)
979      MRI.markUsesInDebugValueAsUndef(Regs[i]);
980    Changed = true;
981  }
982
983  return Changed;
984}
985
986
987//
988// Eliminate redundant instructions
989//
990// This transformation will identify instructions where the output register
991// is the same as one of its input registers. This only works on instructions
992// that define a single register (unlike post-increment loads, for example).
993// The equality check is actually more detailed: the code calculates which
994// bits of the output are used, and only compares these bits with the input
995// registers.
996// If the output matches an input, the instruction is replaced with COPY.
997// The copies will be removed by another transformation.
998namespace {
999  class RedundantInstrElimination : public Transformation {
1000  public:
1001    RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1002          MachineRegisterInfo &mri)
1003        : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1004    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1005  private:
1006    bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1007          unsigned &LostB, unsigned &LostE);
1008    bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1009          unsigned &LostB, unsigned &LostE);
1010    bool computeUsedBits(unsigned Reg, BitVector &Bits);
1011    bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1012          uint16_t Begin);
1013    bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1014
1015    const HexagonInstrInfo &HII;
1016    MachineRegisterInfo &MRI;
1017    BitTracker &BT;
1018  };
1019}
1020
1021
1022// Check if the instruction is a lossy shift left, where the input being
1023// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1024// of bit indices that are lost.
1025bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1026      unsigned OpN, unsigned &LostB, unsigned &LostE) {
1027  using namespace Hexagon;
1028  unsigned Opc = MI.getOpcode();
1029  unsigned ImN, RegN, Width;
1030  switch (Opc) {
1031    case S2_asl_i_p:
1032      ImN = 2;
1033      RegN = 1;
1034      Width = 64;
1035      break;
1036    case S2_asl_i_p_acc:
1037    case S2_asl_i_p_and:
1038    case S2_asl_i_p_nac:
1039    case S2_asl_i_p_or:
1040    case S2_asl_i_p_xacc:
1041      ImN = 3;
1042      RegN = 2;
1043      Width = 64;
1044      break;
1045    case S2_asl_i_r:
1046      ImN = 2;
1047      RegN = 1;
1048      Width = 32;
1049      break;
1050    case S2_addasl_rrri:
1051    case S4_andi_asl_ri:
1052    case S4_ori_asl_ri:
1053    case S4_addi_asl_ri:
1054    case S4_subi_asl_ri:
1055    case S2_asl_i_r_acc:
1056    case S2_asl_i_r_and:
1057    case S2_asl_i_r_nac:
1058    case S2_asl_i_r_or:
1059    case S2_asl_i_r_sat:
1060    case S2_asl_i_r_xacc:
1061      ImN = 3;
1062      RegN = 2;
1063      Width = 32;
1064      break;
1065    default:
1066      return false;
1067  }
1068
1069  if (RegN != OpN)
1070    return false;
1071
1072  assert(MI.getOperand(ImN).isImm());
1073  unsigned S = MI.getOperand(ImN).getImm();
1074  if (S == 0)
1075    return false;
1076  LostB = Width-S;
1077  LostE = Width;
1078  return true;
1079}
1080
1081
1082// Check if the instruction is a lossy shift right, where the input being
1083// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1084// of bit indices that are lost.
1085bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1086      unsigned OpN, unsigned &LostB, unsigned &LostE) {
1087  using namespace Hexagon;
1088  unsigned Opc = MI.getOpcode();
1089  unsigned ImN, RegN;
1090  switch (Opc) {
1091    case S2_asr_i_p:
1092    case S2_lsr_i_p:
1093      ImN = 2;
1094      RegN = 1;
1095      break;
1096    case S2_asr_i_p_acc:
1097    case S2_asr_i_p_and:
1098    case S2_asr_i_p_nac:
1099    case S2_asr_i_p_or:
1100    case S2_lsr_i_p_acc:
1101    case S2_lsr_i_p_and:
1102    case S2_lsr_i_p_nac:
1103    case S2_lsr_i_p_or:
1104    case S2_lsr_i_p_xacc:
1105      ImN = 3;
1106      RegN = 2;
1107      break;
1108    case S2_asr_i_r:
1109    case S2_lsr_i_r:
1110      ImN = 2;
1111      RegN = 1;
1112      break;
1113    case S4_andi_lsr_ri:
1114    case S4_ori_lsr_ri:
1115    case S4_addi_lsr_ri:
1116    case S4_subi_lsr_ri:
1117    case S2_asr_i_r_acc:
1118    case S2_asr_i_r_and:
1119    case S2_asr_i_r_nac:
1120    case S2_asr_i_r_or:
1121    case S2_lsr_i_r_acc:
1122    case S2_lsr_i_r_and:
1123    case S2_lsr_i_r_nac:
1124    case S2_lsr_i_r_or:
1125    case S2_lsr_i_r_xacc:
1126      ImN = 3;
1127      RegN = 2;
1128      break;
1129
1130    default:
1131      return false;
1132  }
1133
1134  if (RegN != OpN)
1135    return false;
1136
1137  assert(MI.getOperand(ImN).isImm());
1138  unsigned S = MI.getOperand(ImN).getImm();
1139  LostB = 0;
1140  LostE = S;
1141  return true;
1142}
1143
1144
1145// Calculate the bit vector that corresponds to the used bits of register Reg.
1146// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1147// culation fails (i.e. the used bits are unknown), it returns false. Other-
1148// wise, it returns true and sets the corresponding bits in Bits.
1149bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1150  BitVector Used(Bits.size());
1151  RegisterSet Visited;
1152  std::vector<unsigned> Pending;
1153  Pending.push_back(Reg);
1154
1155  for (unsigned i = 0; i < Pending.size(); ++i) {
1156    unsigned R = Pending[i];
1157    if (Visited.has(R))
1158      continue;
1159    Visited.insert(R);
1160    for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1161      BitTracker::RegisterRef UR = *I;
1162      unsigned B, W;
1163      if (!HBS::getSubregMask(UR, B, W, MRI))
1164        return false;
1165      MachineInstr &UseI = *I->getParent();
1166      if (UseI.isPHI() || UseI.isCopy()) {
1167        unsigned DefR = UseI.getOperand(0).getReg();
1168        if (!TargetRegisterInfo::isVirtualRegister(DefR))
1169          return false;
1170        Pending.push_back(DefR);
1171      } else {
1172        if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1173          return false;
1174      }
1175    }
1176  }
1177  Bits |= Used;
1178  return true;
1179}
1180
1181
1182// Calculate the bits used by instruction MI in a register in operand OpN.
1183// Return true/false if the calculation succeeds/fails. If is succeeds, set
1184// used bits in Bits. This function does not reset any bits in Bits, so
1185// subsequent calls over different instructions will result in the union
1186// of the used bits in all these instructions.
1187// The register in question may be used with a sub-register, whereas Bits
1188// holds the bits for the entire register. To keep track of that, the
1189// argument Begin indicates where in Bits is the lowest-significant bit
1190// of the register used in operand OpN. For example, in instruction:
1191//   vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1192// the operand 1 is a 32-bit register, which happens to be a subregister
1193// of the 64-bit register vreg2, and that subregister starts at position 32.
1194// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1195// of vreg2:subreg_hireg.
1196bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1197      unsigned OpN, BitVector &Bits, uint16_t Begin) {
1198  unsigned Opc = MI.getOpcode();
1199  BitVector T(Bits.size());
1200  bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1201  // Even if we don't have bits yet, we could still provide some information
1202  // if the instruction is a lossy shift: the lost bits will be marked as
1203  // not used.
1204  unsigned LB, LE;
1205  if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1206    assert(MI.getOperand(OpN).isReg());
1207    BitTracker::RegisterRef RR = MI.getOperand(OpN);
1208    const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1209    uint16_t Width = RC->getSize()*8;
1210
1211    if (!GotBits)
1212      T.set(Begin, Begin+Width);
1213    assert(LB <= LE && LB < Width && LE <= Width);
1214    T.reset(Begin+LB, Begin+LE);
1215    GotBits = true;
1216  }
1217  if (GotBits)
1218    Bits |= T;
1219  return GotBits;
1220}
1221
1222
1223// Calculates the used bits in RD ("defined register"), and checks if these
1224// bits in RS ("used register") and RD are identical.
1225bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1226      BitTracker::RegisterRef RS) {
1227  const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1228  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1229
1230  unsigned DB, DW;
1231  if (!HBS::getSubregMask(RD, DB, DW, MRI))
1232    return false;
1233  unsigned SB, SW;
1234  if (!HBS::getSubregMask(RS, SB, SW, MRI))
1235    return false;
1236  if (SW != DW)
1237    return false;
1238
1239  BitVector Used(DC.width());
1240  if (!computeUsedBits(RD.Reg, Used))
1241    return false;
1242
1243  for (unsigned i = 0; i != DW; ++i)
1244    if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1245      return false;
1246  return true;
1247}
1248
1249
1250bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1251      const RegisterSet&) {
1252  bool Changed = false;
1253
1254  for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1255    NextI = std::next(I);
1256    MachineInstr *MI = &*I;
1257
1258    if (MI->getOpcode() == TargetOpcode::COPY)
1259      continue;
1260    if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1261      continue;
1262    unsigned NumD = MI->getDesc().getNumDefs();
1263    if (NumD != 1)
1264      continue;
1265
1266    BitTracker::RegisterRef RD = MI->getOperand(0);
1267    if (!BT.has(RD.Reg))
1268      continue;
1269    const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1270    auto At = MI->isPHI() ? B.getFirstNonPHI()
1271                          : MachineBasicBlock::iterator(MI);
1272
1273    // Find a source operand that is equal to the result.
1274    for (auto &Op : MI->uses()) {
1275      if (!Op.isReg())
1276        continue;
1277      BitTracker::RegisterRef RS = Op;
1278      if (!BT.has(RS.Reg))
1279        continue;
1280      if (!HBS::isTransparentCopy(RD, RS, MRI))
1281        continue;
1282
1283      unsigned BN, BW;
1284      if (!HBS::getSubregMask(RS, BN, BW, MRI))
1285        continue;
1286
1287      const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1288      if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1289        continue;
1290
1291      // If found, replace the instruction with a COPY.
1292      const DebugLoc &DL = MI->getDebugLoc();
1293      const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1294      unsigned NewR = MRI.createVirtualRegister(FRC);
1295      BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1296          .addReg(RS.Reg, 0, RS.Sub);
1297      HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1298      BT.put(BitTracker::RegisterRef(NewR), SC);
1299      Changed = true;
1300      break;
1301    }
1302  }
1303
1304  return Changed;
1305}
1306
1307
1308//
1309// Const generation
1310//
1311// Recognize instructions that produce constant values known at compile-time.
1312// Replace them with register definitions that load these constants directly.
1313namespace {
1314  class ConstGeneration : public Transformation {
1315  public:
1316    ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1317        MachineRegisterInfo &mri)
1318      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1319    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1320  private:
1321    bool isTfrConst(const MachineInstr &MI) const;
1322    bool isConst(unsigned R, int64_t &V) const;
1323    unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1324        MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1325
1326    const HexagonInstrInfo &HII;
1327    MachineRegisterInfo &MRI;
1328    BitTracker &BT;
1329  };
1330}
1331
1332bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1333  if (!BT.has(R))
1334    return false;
1335  const BitTracker::RegisterCell &RC = BT.lookup(R);
1336  int64_t T = 0;
1337  for (unsigned i = RC.width(); i > 0; --i) {
1338    const BitTracker::BitValue &V = RC[i-1];
1339    T <<= 1;
1340    if (V.is(1))
1341      T |= 1;
1342    else if (!V.is(0))
1343      return false;
1344  }
1345  C = T;
1346  return true;
1347}
1348
1349bool ConstGeneration::isTfrConst(const MachineInstr &MI) const {
1350  unsigned Opc = MI.getOpcode();
1351  switch (Opc) {
1352    case Hexagon::A2_combineii:
1353    case Hexagon::A4_combineii:
1354    case Hexagon::A2_tfrsi:
1355    case Hexagon::A2_tfrpi:
1356    case Hexagon::TFR_PdTrue:
1357    case Hexagon::TFR_PdFalse:
1358    case Hexagon::CONST32_Int_Real:
1359    case Hexagon::CONST64_Int_Real:
1360      return true;
1361  }
1362  return false;
1363}
1364
1365
1366// Generate a transfer-immediate instruction that is appropriate for the
1367// register class and the actual value being transferred.
1368unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1369      MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1370  unsigned Reg = MRI.createVirtualRegister(RC);
1371  if (RC == &Hexagon::IntRegsRegClass) {
1372    BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1373        .addImm(int32_t(C));
1374    return Reg;
1375  }
1376
1377  if (RC == &Hexagon::DoubleRegsRegClass) {
1378    if (isInt<8>(C)) {
1379      BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1380          .addImm(C);
1381      return Reg;
1382    }
1383
1384    unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1385    if (isInt<8>(Lo) || isInt<8>(Hi)) {
1386      unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1387                                  : Hexagon::A4_combineii;
1388      BuildMI(B, At, DL, HII.get(Opc), Reg)
1389          .addImm(int32_t(Hi))
1390          .addImm(int32_t(Lo));
1391      return Reg;
1392    }
1393
1394    BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1395        .addImm(C);
1396    return Reg;
1397  }
1398
1399  if (RC == &Hexagon::PredRegsRegClass) {
1400    unsigned Opc;
1401    if (C == 0)
1402      Opc = Hexagon::TFR_PdFalse;
1403    else if ((C & 0xFF) == 0xFF)
1404      Opc = Hexagon::TFR_PdTrue;
1405    else
1406      return 0;
1407    BuildMI(B, At, DL, HII.get(Opc), Reg);
1408    return Reg;
1409  }
1410
1411  return 0;
1412}
1413
1414
1415bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1416  bool Changed = false;
1417  RegisterSet Defs;
1418
1419  for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1420    if (isTfrConst(*I))
1421      continue;
1422    Defs.clear();
1423    HBS::getInstrDefs(*I, Defs);
1424    if (Defs.count() != 1)
1425      continue;
1426    unsigned DR = Defs.find_first();
1427    if (!TargetRegisterInfo::isVirtualRegister(DR))
1428      continue;
1429    int64_t C;
1430    if (isConst(DR, C)) {
1431      DebugLoc DL = I->getDebugLoc();
1432      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1433      unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1434      if (ImmReg) {
1435        HBS::replaceReg(DR, ImmReg, MRI);
1436        BT.put(ImmReg, BT.lookup(DR));
1437        Changed = true;
1438      }
1439    }
1440  }
1441  return Changed;
1442}
1443
1444
1445//
1446// Copy generation
1447//
1448// Identify pairs of available registers which hold identical values.
1449// In such cases, only one of them needs to be calculated, the other one
1450// will be defined as a copy of the first.
1451//
1452// Copy propagation
1453//
1454// Eliminate register copies RD = RS, by replacing the uses of RD with
1455// with uses of RS.
1456namespace {
1457  class CopyGeneration : public Transformation {
1458  public:
1459    CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1460        MachineRegisterInfo &mri)
1461      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1462    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1463  private:
1464    bool findMatch(const BitTracker::RegisterRef &Inp,
1465        BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1466
1467    const HexagonInstrInfo &HII;
1468    MachineRegisterInfo &MRI;
1469    BitTracker &BT;
1470  };
1471
1472  class CopyPropagation : public Transformation {
1473  public:
1474    CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1475        : Transformation(false), MRI(mri) {}
1476    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1477    static bool isCopyReg(unsigned Opc);
1478  private:
1479    bool propagateRegCopy(MachineInstr &MI);
1480
1481    MachineRegisterInfo &MRI;
1482  };
1483
1484}
1485
1486
1487/// Check if there is a register in AVs that is identical to Inp. If so,
1488/// set Out to the found register. The output may be a pair Reg:Sub.
1489bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1490      BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1491  if (!BT.has(Inp.Reg))
1492    return false;
1493  const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1494  unsigned B, W;
1495  if (!HBS::getSubregMask(Inp, B, W, MRI))
1496    return false;
1497
1498  for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1499    if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
1500      continue;
1501    const BitTracker::RegisterCell &RC = BT.lookup(R);
1502    unsigned RW = RC.width();
1503    if (W == RW) {
1504      if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
1505        continue;
1506      if (!HBS::isEqual(InpRC, B, RC, 0, W))
1507        continue;
1508      Out.Reg = R;
1509      Out.Sub = 0;
1510      return true;
1511    }
1512    // Check if there is a super-register, whose part (with a subregister)
1513    // is equal to the input.
1514    // Only do double registers for now.
1515    if (W*2 != RW)
1516      continue;
1517    if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1518      continue;
1519
1520    if (HBS::isEqual(InpRC, B, RC, 0, W))
1521      Out.Sub = Hexagon::subreg_loreg;
1522    else if (HBS::isEqual(InpRC, B, RC, W, W))
1523      Out.Sub = Hexagon::subreg_hireg;
1524    else
1525      continue;
1526    Out.Reg = R;
1527    return true;
1528  }
1529  return false;
1530}
1531
1532
1533bool CopyGeneration::processBlock(MachineBasicBlock &B,
1534      const RegisterSet &AVs) {
1535  RegisterSet AVB(AVs);
1536  bool Changed = false;
1537  RegisterSet Defs;
1538
1539  for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1540       ++I, AVB.insert(Defs)) {
1541    NextI = std::next(I);
1542    Defs.clear();
1543    HBS::getInstrDefs(*I, Defs);
1544
1545    unsigned Opc = I->getOpcode();
1546    if (CopyPropagation::isCopyReg(Opc))
1547      continue;
1548
1549    for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1550      BitTracker::RegisterRef MR;
1551      if (!findMatch(R, MR, AVB))
1552        continue;
1553      DebugLoc DL = I->getDebugLoc();
1554      auto *FRC = HBS::getFinalVRegClass(MR, MRI);
1555      unsigned NewR = MRI.createVirtualRegister(FRC);
1556      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1557      BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1558        .addReg(MR.Reg, 0, MR.Sub);
1559      BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1560    }
1561  }
1562
1563  return Changed;
1564}
1565
1566
1567bool CopyPropagation::isCopyReg(unsigned Opc) {
1568  switch (Opc) {
1569    case TargetOpcode::COPY:
1570    case TargetOpcode::REG_SEQUENCE:
1571    case Hexagon::A2_tfr:
1572    case Hexagon::A2_tfrp:
1573    case Hexagon::A2_combinew:
1574    case Hexagon::A4_combineir:
1575    case Hexagon::A4_combineri:
1576      return true;
1577    default:
1578      break;
1579  }
1580  return false;
1581}
1582
1583
1584bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1585  bool Changed = false;
1586  unsigned Opc = MI.getOpcode();
1587  BitTracker::RegisterRef RD = MI.getOperand(0);
1588  assert(MI.getOperand(0).getSubReg() == 0);
1589
1590  switch (Opc) {
1591    case TargetOpcode::COPY:
1592    case Hexagon::A2_tfr:
1593    case Hexagon::A2_tfrp: {
1594      BitTracker::RegisterRef RS = MI.getOperand(1);
1595      if (!HBS::isTransparentCopy(RD, RS, MRI))
1596        break;
1597      if (RS.Sub != 0)
1598        Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1599      else
1600        Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1601      break;
1602    }
1603    case TargetOpcode::REG_SEQUENCE: {
1604      BitTracker::RegisterRef SL, SH;
1605      if (HBS::parseRegSequence(MI, SL, SH)) {
1606        Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1607                                         SL.Reg, SL.Sub, MRI);
1608        Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1609                                          SH.Reg, SH.Sub, MRI);
1610      }
1611      break;
1612    }
1613    case Hexagon::A2_combinew: {
1614      BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1615      Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1616                                       RL.Reg, RL.Sub, MRI);
1617      Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1618                                        RH.Reg, RH.Sub, MRI);
1619      break;
1620    }
1621    case Hexagon::A4_combineir:
1622    case Hexagon::A4_combineri: {
1623      unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1624      unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1625                                                    : Hexagon::subreg_hireg;
1626      BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1627      Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1628      break;
1629    }
1630  }
1631  return Changed;
1632}
1633
1634
1635bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1636  std::vector<MachineInstr*> Instrs;
1637  for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1638    Instrs.push_back(&*I);
1639
1640  bool Changed = false;
1641  for (auto I : Instrs) {
1642    unsigned Opc = I->getOpcode();
1643    if (!CopyPropagation::isCopyReg(Opc))
1644      continue;
1645    Changed |= propagateRegCopy(*I);
1646  }
1647
1648  return Changed;
1649}
1650
1651
1652//
1653// Bit simplification
1654//
1655// Recognize patterns that can be simplified and replace them with the
1656// simpler forms.
1657// This is by no means complete
1658namespace {
1659  class BitSimplification : public Transformation {
1660  public:
1661    BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1662        MachineRegisterInfo &mri)
1663      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1664    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1665  private:
1666    struct RegHalf : public BitTracker::RegisterRef {
1667      bool Low;  // Low/High halfword.
1668    };
1669
1670    bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1671          unsigned B, RegHalf &RH);
1672
1673    bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1674          BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1675    unsigned getCombineOpcode(bool HLow, bool LLow);
1676
1677    bool genStoreUpperHalf(MachineInstr *MI);
1678    bool genStoreImmediate(MachineInstr *MI);
1679    bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1680          const BitTracker::RegisterCell &RC);
1681    bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1682          const BitTracker::RegisterCell &RC);
1683    bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1684          const BitTracker::RegisterCell &RC);
1685    bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1686          const BitTracker::RegisterCell &RC);
1687    bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1688          const BitTracker::RegisterCell &RC);
1689
1690    const HexagonInstrInfo &HII;
1691    MachineRegisterInfo &MRI;
1692    BitTracker &BT;
1693  };
1694}
1695
1696
1697// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1698// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1699// set the information about the found register in RH.
1700bool BitSimplification::matchHalf(unsigned SelfR,
1701      const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1702  // XXX This could be searching in the set of available registers, in case
1703  // the match is not exact.
1704
1705  // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1706  // register and all the bits B..B+15 match between RC and the register.
1707  // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1708  // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1709  bool Low = false;
1710  unsigned I = B;
1711  while (I < B+16 && RC[I].num())
1712    I++;
1713  if (I == B+16)
1714    return false;
1715
1716  unsigned Reg = RC[I].RefI.Reg;
1717  unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1718  if (P < I-B)
1719    return false;
1720  unsigned Pos = P - (I-B);
1721
1722  if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1723    return false;
1724  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1725    return false;
1726  if (!BT.has(Reg))
1727    return false;
1728
1729  const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1730  if (Pos+16 > SC.width())
1731    return false;
1732
1733  for (unsigned i = 0; i < 16; ++i) {
1734    const BitTracker::BitValue &RV = RC[i+B];
1735    if (RV.Type == BitTracker::BitValue::Ref) {
1736      if (RV.RefI.Reg != Reg)
1737        return false;
1738      if (RV.RefI.Pos != i+Pos)
1739        return false;
1740      continue;
1741    }
1742    if (RC[i+B] != SC[i+Pos])
1743      return false;
1744  }
1745
1746  unsigned Sub = 0;
1747  switch (Pos) {
1748    case 0:
1749      Sub = Hexagon::subreg_loreg;
1750      Low = true;
1751      break;
1752    case 16:
1753      Sub = Hexagon::subreg_loreg;
1754      Low = false;
1755      break;
1756    case 32:
1757      Sub = Hexagon::subreg_hireg;
1758      Low = true;
1759      break;
1760    case 48:
1761      Sub = Hexagon::subreg_hireg;
1762      Low = false;
1763      break;
1764    default:
1765      return false;
1766  }
1767
1768  RH.Reg = Reg;
1769  RH.Sub = Sub;
1770  RH.Low = Low;
1771  // If the subregister is not valid with the register, set it to 0.
1772  if (!HBS::getFinalVRegClass(RH, MRI))
1773    RH.Sub = 0;
1774
1775  return true;
1776}
1777
1778
1779// Check if RC matches the pattern of a S2_packhl. If so, return true and
1780// set the inputs Rs and Rt.
1781bool BitSimplification::matchPackhl(unsigned SelfR,
1782      const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1783      BitTracker::RegisterRef &Rt) {
1784  RegHalf L1, H1, L2, H2;
1785
1786  if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1787    return false;
1788  if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1789    return false;
1790
1791  // Rs = H1.L1, Rt = H2.L2
1792  if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1793    return false;
1794  if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1795    return false;
1796
1797  Rs = H1;
1798  Rt = H2;
1799  return true;
1800}
1801
1802
1803unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1804  return HLow ? LLow ? Hexagon::A2_combine_ll
1805                     : Hexagon::A2_combine_lh
1806              : LLow ? Hexagon::A2_combine_hl
1807                     : Hexagon::A2_combine_hh;
1808}
1809
1810
1811// If MI stores the upper halfword of a register (potentially obtained via
1812// shifts or extracts), replace it with a storerf instruction. This could
1813// cause the "extraction" code to become dead.
1814bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1815  unsigned Opc = MI->getOpcode();
1816  if (Opc != Hexagon::S2_storerh_io)
1817    return false;
1818
1819  MachineOperand &ValOp = MI->getOperand(2);
1820  BitTracker::RegisterRef RS = ValOp;
1821  if (!BT.has(RS.Reg))
1822    return false;
1823  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1824  RegHalf H;
1825  if (!matchHalf(0, RC, 0, H))
1826    return false;
1827  if (H.Low)
1828    return false;
1829  MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1830  ValOp.setReg(H.Reg);
1831  ValOp.setSubReg(H.Sub);
1832  return true;
1833}
1834
1835
1836// If MI stores a value known at compile-time, and the value is within a range
1837// that avoids using constant-extenders, replace it with a store-immediate.
1838bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1839  unsigned Opc = MI->getOpcode();
1840  unsigned Align = 0;
1841  switch (Opc) {
1842    case Hexagon::S2_storeri_io:
1843      Align++;
1844    case Hexagon::S2_storerh_io:
1845      Align++;
1846    case Hexagon::S2_storerb_io:
1847      break;
1848    default:
1849      return false;
1850  }
1851
1852  // Avoid stores to frame-indices (due to an unknown offset).
1853  if (!MI->getOperand(0).isReg())
1854    return false;
1855  MachineOperand &OffOp = MI->getOperand(1);
1856  if (!OffOp.isImm())
1857    return false;
1858
1859  int64_t Off = OffOp.getImm();
1860  // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1861  if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1862    return false;
1863  // Source register:
1864  BitTracker::RegisterRef RS = MI->getOperand(2);
1865  if (!BT.has(RS.Reg))
1866    return false;
1867  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1868  uint64_t U;
1869  if (!HBS::getConst(RC, 0, RC.width(), U))
1870    return false;
1871
1872  // Only consider 8-bit values to avoid constant-extenders.
1873  int V;
1874  switch (Opc) {
1875    case Hexagon::S2_storerb_io:
1876      V = int8_t(U);
1877      break;
1878    case Hexagon::S2_storerh_io:
1879      V = int16_t(U);
1880      break;
1881    case Hexagon::S2_storeri_io:
1882      V = int32_t(U);
1883      break;
1884  }
1885  if (!isInt<8>(V))
1886    return false;
1887
1888  MI->RemoveOperand(2);
1889  switch (Opc) {
1890    case Hexagon::S2_storerb_io:
1891      MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1892      break;
1893    case Hexagon::S2_storerh_io:
1894      MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1895      break;
1896    case Hexagon::S2_storeri_io:
1897      MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1898      break;
1899  }
1900  MI->addOperand(MachineOperand::CreateImm(V));
1901  return true;
1902}
1903
1904
1905// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1906// last instruction in a sequence that results in something equivalent to
1907// the pack-halfwords. The intent is to cause the entire sequence to become
1908// dead.
1909bool BitSimplification::genPackhl(MachineInstr *MI,
1910      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1911  unsigned Opc = MI->getOpcode();
1912  if (Opc == Hexagon::S2_packhl)
1913    return false;
1914  BitTracker::RegisterRef Rs, Rt;
1915  if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1916    return false;
1917
1918  MachineBasicBlock &B = *MI->getParent();
1919  unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1920  DebugLoc DL = MI->getDebugLoc();
1921  auto At = MI->isPHI() ? B.getFirstNonPHI()
1922                        : MachineBasicBlock::iterator(MI);
1923  BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
1924      .addReg(Rs.Reg, 0, Rs.Sub)
1925      .addReg(Rt.Reg, 0, Rt.Sub);
1926  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1927  BT.put(BitTracker::RegisterRef(NewR), RC);
1928  return true;
1929}
1930
1931
1932// If MI produces halfword of the input in the low half of the output,
1933// replace it with zero-extend or extractu.
1934bool BitSimplification::genExtractHalf(MachineInstr *MI,
1935      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1936  RegHalf L;
1937  // Check for halfword in low 16 bits, zeros elsewhere.
1938  if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1939    return false;
1940
1941  unsigned Opc = MI->getOpcode();
1942  MachineBasicBlock &B = *MI->getParent();
1943  DebugLoc DL = MI->getDebugLoc();
1944
1945  // Prefer zxth, since zxth can go in any slot, while extractu only in
1946  // slots 2 and 3.
1947  unsigned NewR = 0;
1948  auto At = MI->isPHI() ? B.getFirstNonPHI()
1949                        : MachineBasicBlock::iterator(MI);
1950  if (L.Low && Opc != Hexagon::A2_zxth) {
1951    NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1952    BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
1953        .addReg(L.Reg, 0, L.Sub);
1954  } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
1955    NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1956    BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
1957        .addReg(L.Reg, 0, L.Sub)
1958        .addImm(16);
1959  }
1960  if (NewR == 0)
1961    return false;
1962  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1963  BT.put(BitTracker::RegisterRef(NewR), RC);
1964  return true;
1965}
1966
1967
1968// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
1969// combine.
1970bool BitSimplification::genCombineHalf(MachineInstr *MI,
1971      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1972  RegHalf L, H;
1973  // Check for combine h/l
1974  if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
1975    return false;
1976  // Do nothing if this is just a reg copy.
1977  if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
1978    return false;
1979
1980  unsigned Opc = MI->getOpcode();
1981  unsigned COpc = getCombineOpcode(H.Low, L.Low);
1982  if (COpc == Opc)
1983    return false;
1984
1985  MachineBasicBlock &B = *MI->getParent();
1986  DebugLoc DL = MI->getDebugLoc();
1987  unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1988  auto At = MI->isPHI() ? B.getFirstNonPHI()
1989                        : MachineBasicBlock::iterator(MI);
1990  BuildMI(B, At, DL, HII.get(COpc), NewR)
1991      .addReg(H.Reg, 0, H.Sub)
1992      .addReg(L.Reg, 0, L.Sub);
1993  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1994  BT.put(BitTracker::RegisterRef(NewR), RC);
1995  return true;
1996}
1997
1998
1999// If MI resets high bits of a register and keeps the lower ones, replace it
2000// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2001bool BitSimplification::genExtractLow(MachineInstr *MI,
2002      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2003  unsigned Opc = MI->getOpcode();
2004  switch (Opc) {
2005    case Hexagon::A2_zxtb:
2006    case Hexagon::A2_zxth:
2007    case Hexagon::S2_extractu:
2008      return false;
2009  }
2010  if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2011    int32_t Imm = MI->getOperand(2).getImm();
2012    if (isInt<10>(Imm))
2013      return false;
2014  }
2015
2016  if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2017    return false;
2018  unsigned W = RC.width();
2019  while (W > 0 && RC[W-1].is(0))
2020    W--;
2021  if (W == 0 || W == RC.width())
2022    return false;
2023  unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2024                  : (W == 16) ? Hexagon::A2_zxth
2025                  : (W < 10)  ? Hexagon::A2_andir
2026                  : Hexagon::S2_extractu;
2027  MachineBasicBlock &B = *MI->getParent();
2028  DebugLoc DL = MI->getDebugLoc();
2029
2030  for (auto &Op : MI->uses()) {
2031    if (!Op.isReg())
2032      continue;
2033    BitTracker::RegisterRef RS = Op;
2034    if (!BT.has(RS.Reg))
2035      continue;
2036    const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2037    unsigned BN, BW;
2038    if (!HBS::getSubregMask(RS, BN, BW, MRI))
2039      continue;
2040    if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2041      continue;
2042
2043    unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2044    auto At = MI->isPHI() ? B.getFirstNonPHI()
2045                          : MachineBasicBlock::iterator(MI);
2046    auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2047                  .addReg(RS.Reg, 0, RS.Sub);
2048    if (NewOpc == Hexagon::A2_andir)
2049      MIB.addImm((1 << W) - 1);
2050    else if (NewOpc == Hexagon::S2_extractu)
2051      MIB.addImm(W).addImm(0);
2052    HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2053    BT.put(BitTracker::RegisterRef(NewR), RC);
2054    return true;
2055  }
2056  return false;
2057}
2058
2059
2060// Check for tstbit simplification opportunity, where the bit being checked
2061// can be tracked back to another register. For example:
2062//   vreg2 = S2_lsr_i_r  vreg1, 5
2063//   vreg3 = S2_tstbit_i vreg2, 0
2064// =>
2065//   vreg3 = S2_tstbit_i vreg1, 5
2066bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2067      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2068  unsigned Opc = MI->getOpcode();
2069  if (Opc != Hexagon::S2_tstbit_i)
2070    return false;
2071
2072  unsigned BN = MI->getOperand(2).getImm();
2073  BitTracker::RegisterRef RS = MI->getOperand(1);
2074  unsigned F, W;
2075  DebugLoc DL = MI->getDebugLoc();
2076  if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2077    return false;
2078  MachineBasicBlock &B = *MI->getParent();
2079  auto At = MI->isPHI() ? B.getFirstNonPHI()
2080                        : MachineBasicBlock::iterator(MI);
2081
2082  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2083  const BitTracker::BitValue &V = SC[F+BN];
2084  if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2085    const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2086    // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2087    // a double register, need to use a subregister and adjust bit
2088    // number.
2089    unsigned P = UINT_MAX;
2090    BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2091    if (TC == &Hexagon::DoubleRegsRegClass) {
2092      P = V.RefI.Pos;
2093      RR.Sub = Hexagon::subreg_loreg;
2094      if (P >= 32) {
2095        P -= 32;
2096        RR.Sub = Hexagon::subreg_hireg;
2097      }
2098    } else if (TC == &Hexagon::IntRegsRegClass) {
2099      P = V.RefI.Pos;
2100    }
2101    if (P != UINT_MAX) {
2102      unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2103      BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2104          .addReg(RR.Reg, 0, RR.Sub)
2105          .addImm(P);
2106      HBS::replaceReg(RD.Reg, NewR, MRI);
2107      BT.put(NewR, RC);
2108      return true;
2109    }
2110  } else if (V.is(0) || V.is(1)) {
2111    unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2112    unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
2113    BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2114    HBS::replaceReg(RD.Reg, NewR, MRI);
2115    return true;
2116  }
2117
2118  return false;
2119}
2120
2121
2122bool BitSimplification::processBlock(MachineBasicBlock &B,
2123      const RegisterSet &AVs) {
2124  bool Changed = false;
2125  RegisterSet AVB = AVs;
2126  RegisterSet Defs;
2127
2128  for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2129    MachineInstr *MI = &*I;
2130    Defs.clear();
2131    HBS::getInstrDefs(*MI, Defs);
2132
2133    unsigned Opc = MI->getOpcode();
2134    if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2135      continue;
2136
2137    if (MI->mayStore()) {
2138      bool T = genStoreUpperHalf(MI);
2139      T = T || genStoreImmediate(MI);
2140      Changed |= T;
2141      continue;
2142    }
2143
2144    if (Defs.count() != 1)
2145      continue;
2146    const MachineOperand &Op0 = MI->getOperand(0);
2147    if (!Op0.isReg() || !Op0.isDef())
2148      continue;
2149    BitTracker::RegisterRef RD = Op0;
2150    if (!BT.has(RD.Reg))
2151      continue;
2152    const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2153    const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2154
2155    if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2156      bool T = genPackhl(MI, RD, RC);
2157      Changed |= T;
2158      continue;
2159    }
2160
2161    if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2162      bool T = genExtractHalf(MI, RD, RC);
2163      T = T || genCombineHalf(MI, RD, RC);
2164      T = T || genExtractLow(MI, RD, RC);
2165      Changed |= T;
2166      continue;
2167    }
2168
2169    if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2170      bool T = simplifyTstbit(MI, RD, RC);
2171      Changed |= T;
2172      continue;
2173    }
2174  }
2175  return Changed;
2176}
2177
2178
2179bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2180  if (skipFunction(*MF.getFunction()))
2181    return false;
2182
2183  auto &HST = MF.getSubtarget<HexagonSubtarget>();
2184  auto &HRI = *HST.getRegisterInfo();
2185  auto &HII = *HST.getInstrInfo();
2186
2187  MDT = &getAnalysis<MachineDominatorTree>();
2188  MachineRegisterInfo &MRI = MF.getRegInfo();
2189  bool Changed;
2190
2191  Changed = DeadCodeElimination(MF, *MDT).run();
2192
2193  const HexagonEvaluator HE(HRI, MRI, HII, MF);
2194  BitTracker BT(HE, MF);
2195  DEBUG(BT.trace(true));
2196  BT.run();
2197
2198  MachineBasicBlock &Entry = MF.front();
2199
2200  RegisterSet AIG;  // Available registers for IG.
2201  ConstGeneration ImmG(BT, HII, MRI);
2202  Changed |= visitBlock(Entry, ImmG, AIG);
2203
2204  RegisterSet ARE;  // Available registers for RIE.
2205  RedundantInstrElimination RIE(BT, HII, MRI);
2206  Changed |= visitBlock(Entry, RIE, ARE);
2207
2208  RegisterSet ACG;  // Available registers for CG.
2209  CopyGeneration CopyG(BT, HII, MRI);
2210  Changed |= visitBlock(Entry, CopyG, ACG);
2211
2212  RegisterSet ACP;  // Available registers for CP.
2213  CopyPropagation CopyP(HRI, MRI);
2214  Changed |= visitBlock(Entry, CopyP, ACP);
2215
2216  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2217
2218  BT.run();
2219  RegisterSet ABS;  // Available registers for BS.
2220  BitSimplification BitS(BT, HII, MRI);
2221  Changed |= visitBlock(Entry, BitS, ABS);
2222
2223  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2224
2225  if (Changed) {
2226    for (auto &B : MF)
2227      for (auto &I : B)
2228        I.clearKillInfo();
2229    DeadCodeElimination(MF, *MDT).run();
2230  }
2231  return Changed;
2232}
2233
2234
2235// Recognize loops where the code at the end of the loop matches the code
2236// before the entry of the loop, and the matching code is such that is can
2237// be simplified. This pass relies on the bit simplification above and only
2238// prepares code in a way that can be handled by the bit simplifcation.
2239//
2240// This is the motivating testcase (and explanation):
2241//
2242// {
2243//   loop0(.LBB0_2, r1)      // %for.body.preheader
2244//   r5:4 = memd(r0++#8)
2245// }
2246// {
2247//   r3 = lsr(r4, #16)
2248//   r7:6 = combine(r5, r5)
2249// }
2250// {
2251//   r3 = insert(r5, #16, #16)
2252//   r7:6 = vlsrw(r7:6, #16)
2253// }
2254// .LBB0_2:
2255// {
2256//   memh(r2+#4) = r5
2257//   memh(r2+#6) = r6            # R6 is really R5.H
2258// }
2259// {
2260//   r2 = add(r2, #8)
2261//   memh(r2+#0) = r4
2262//   memh(r2+#2) = r3            # R3 is really R4.H
2263// }
2264// {
2265//   r5:4 = memd(r0++#8)
2266// }
2267// {                             # "Shuffling" code that sets up R3 and R6
2268//   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2269//   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2270// }                             # the stores if the code was at the beginning
2271// {                             # of the loop iteration. Since the same code
2272//   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2273//   r7:6 = vlsrw(r7:6, #16)     # there.
2274// }:endloop0
2275//
2276//
2277// The outcome:
2278//
2279// {
2280//   loop0(.LBB0_2, r1)
2281//   r5:4 = memd(r0++#8)
2282// }
2283// .LBB0_2:
2284// {
2285//   memh(r2+#4) = r5
2286//   memh(r2+#6) = r5.h
2287// }
2288// {
2289//   r2 = add(r2, #8)
2290//   memh(r2+#0) = r4
2291//   memh(r2+#2) = r4.h
2292// }
2293// {
2294//   r5:4 = memd(r0++#8)
2295// }:endloop0
2296
2297namespace llvm {
2298  FunctionPass *createHexagonLoopRescheduling();
2299  void initializeHexagonLoopReschedulingPass(PassRegistry&);
2300}
2301
2302namespace {
2303  class HexagonLoopRescheduling : public MachineFunctionPass {
2304  public:
2305    static char ID;
2306    HexagonLoopRescheduling() : MachineFunctionPass(ID),
2307        HII(0), HRI(0), MRI(0), BTP(0) {
2308      initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2309    }
2310
2311    bool runOnMachineFunction(MachineFunction &MF) override;
2312
2313  private:
2314    const HexagonInstrInfo *HII;
2315    const HexagonRegisterInfo *HRI;
2316    MachineRegisterInfo *MRI;
2317    BitTracker *BTP;
2318
2319    struct LoopCand {
2320      LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2321            MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2322      MachineBasicBlock *LB, *PB, *EB;
2323    };
2324    typedef std::vector<MachineInstr*> InstrList;
2325    struct InstrGroup {
2326      BitTracker::RegisterRef Inp, Out;
2327      InstrList Ins;
2328    };
2329    struct PhiInfo {
2330      PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2331      unsigned DefR;
2332      BitTracker::RegisterRef LR, PR;
2333      MachineBasicBlock *LB, *PB;
2334    };
2335
2336    static unsigned getDefReg(const MachineInstr *MI);
2337    bool isConst(unsigned Reg) const;
2338    bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2339    bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2340    bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2341    bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2342        unsigned &InpR2) const;
2343    void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2344        MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2345    bool processLoop(LoopCand &C);
2346  };
2347}
2348
2349char HexagonLoopRescheduling::ID = 0;
2350
2351INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2352  "Hexagon Loop Rescheduling", false, false)
2353
2354
2355HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2356      MachineBasicBlock &B) {
2357  DefR = HexagonLoopRescheduling::getDefReg(&P);
2358  LB = &B;
2359  PB = nullptr;
2360  for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2361    const MachineOperand &OpB = P.getOperand(i+1);
2362    if (OpB.getMBB() == &B) {
2363      LR = P.getOperand(i);
2364      continue;
2365    }
2366    PB = OpB.getMBB();
2367    PR = P.getOperand(i);
2368  }
2369}
2370
2371
2372unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2373  RegisterSet Defs;
2374  HBS::getInstrDefs(*MI, Defs);
2375  if (Defs.count() != 1)
2376    return 0;
2377  return Defs.find_first();
2378}
2379
2380
2381bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2382  if (!BTP->has(Reg))
2383    return false;
2384  const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2385  for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2386    const BitTracker::BitValue &V = RC[i];
2387    if (!V.is(0) && !V.is(1))
2388      return false;
2389  }
2390  return true;
2391}
2392
2393
2394bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2395      unsigned DefR) const {
2396  unsigned Opc = MI->getOpcode();
2397  switch (Opc) {
2398    case TargetOpcode::COPY:
2399    case Hexagon::S2_lsr_i_r:
2400    case Hexagon::S2_asr_i_r:
2401    case Hexagon::S2_asl_i_r:
2402    case Hexagon::S2_lsr_i_p:
2403    case Hexagon::S2_asr_i_p:
2404    case Hexagon::S2_asl_i_p:
2405    case Hexagon::S2_insert:
2406    case Hexagon::A2_or:
2407    case Hexagon::A2_orp:
2408    case Hexagon::A2_and:
2409    case Hexagon::A2_andp:
2410    case Hexagon::A2_combinew:
2411    case Hexagon::A4_combineri:
2412    case Hexagon::A4_combineir:
2413    case Hexagon::A2_combineii:
2414    case Hexagon::A4_combineii:
2415    case Hexagon::A2_combine_ll:
2416    case Hexagon::A2_combine_lh:
2417    case Hexagon::A2_combine_hl:
2418    case Hexagon::A2_combine_hh:
2419      return true;
2420  }
2421  return false;
2422}
2423
2424
2425bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2426      unsigned InpR) const {
2427  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2428    const MachineOperand &Op = MI->getOperand(i);
2429    if (!Op.isReg())
2430      continue;
2431    if (Op.getReg() == InpR)
2432      return i == n-1;
2433  }
2434  return false;
2435}
2436
2437
2438bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2439  if (!BTP->has(OutR) || !BTP->has(InpR))
2440    return false;
2441  const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2442  for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2443    const BitTracker::BitValue &V = OutC[i];
2444    if (V.Type != BitTracker::BitValue::Ref)
2445      continue;
2446    if (V.RefI.Reg != InpR)
2447      return false;
2448  }
2449  return true;
2450}
2451
2452
2453bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2454      unsigned OutR2, unsigned &InpR2) const {
2455  if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2456    return false;
2457  const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2458  const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2459  unsigned W = OutC1.width();
2460  unsigned MatchR = 0;
2461  if (W != OutC2.width())
2462    return false;
2463  for (unsigned i = 0; i < W; ++i) {
2464    const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2465    if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2466      return false;
2467    if (V1.Type != BitTracker::BitValue::Ref)
2468      continue;
2469    if (V1.RefI.Pos != V2.RefI.Pos)
2470      return false;
2471    if (V1.RefI.Reg != InpR1)
2472      return false;
2473    if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2474      return false;
2475    if (!MatchR)
2476      MatchR = V2.RefI.Reg;
2477    else if (V2.RefI.Reg != MatchR)
2478      return false;
2479  }
2480  InpR2 = MatchR;
2481  return true;
2482}
2483
2484
2485void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2486      MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2487      unsigned NewPredR) {
2488  DenseMap<unsigned,unsigned> RegMap;
2489
2490  const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2491  unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2492  BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2493    .addReg(NewPredR)
2494    .addMBB(&PB)
2495    .addReg(G.Inp.Reg)
2496    .addMBB(&LB);
2497  RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2498
2499  for (unsigned i = G.Ins.size(); i > 0; --i) {
2500    const MachineInstr *SI = G.Ins[i-1];
2501    unsigned DR = getDefReg(SI);
2502    const TargetRegisterClass *RC = MRI->getRegClass(DR);
2503    unsigned NewDR = MRI->createVirtualRegister(RC);
2504    DebugLoc DL = SI->getDebugLoc();
2505
2506    auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2507    for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2508      const MachineOperand &Op = SI->getOperand(j);
2509      if (!Op.isReg()) {
2510        MIB.addOperand(Op);
2511        continue;
2512      }
2513      if (!Op.isUse())
2514        continue;
2515      unsigned UseR = RegMap[Op.getReg()];
2516      MIB.addReg(UseR, 0, Op.getSubReg());
2517    }
2518    RegMap.insert(std::make_pair(DR, NewDR));
2519  }
2520
2521  HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2522}
2523
2524
2525bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2526  DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2527  std::vector<PhiInfo> Phis;
2528  for (auto &I : *C.LB) {
2529    if (!I.isPHI())
2530      break;
2531    unsigned PR = getDefReg(&I);
2532    if (isConst(PR))
2533      continue;
2534    bool BadUse = false, GoodUse = false;
2535    for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2536      MachineInstr *UseI = UI->getParent();
2537      if (UseI->getParent() != C.LB) {
2538        BadUse = true;
2539        break;
2540      }
2541      if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2542        GoodUse = true;
2543    }
2544    if (BadUse || !GoodUse)
2545      continue;
2546
2547    Phis.push_back(PhiInfo(I, *C.LB));
2548  }
2549
2550  DEBUG({
2551    dbgs() << "Phis: {";
2552    for (auto &I : Phis) {
2553      dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2554             << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2555             << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2556             << I.LB->getNumber() << ')';
2557    }
2558    dbgs() << " }\n";
2559  });
2560
2561  if (Phis.empty())
2562    return false;
2563
2564  bool Changed = false;
2565  InstrList ShufIns;
2566
2567  // Go backwards in the block: for each bit shuffling instruction, check
2568  // if that instruction could potentially be moved to the front of the loop:
2569  // the output of the loop cannot be used in a non-shuffling instruction
2570  // in this loop.
2571  for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2572    if (I->isTerminator())
2573      continue;
2574    if (I->isPHI())
2575      break;
2576
2577    RegisterSet Defs;
2578    HBS::getInstrDefs(*I, Defs);
2579    if (Defs.count() != 1)
2580      continue;
2581    unsigned DefR = Defs.find_first();
2582    if (!TargetRegisterInfo::isVirtualRegister(DefR))
2583      continue;
2584    if (!isBitShuffle(&*I, DefR))
2585      continue;
2586
2587    bool BadUse = false;
2588    for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2589      MachineInstr *UseI = UI->getParent();
2590      if (UseI->getParent() == C.LB) {
2591        if (UseI->isPHI()) {
2592          // If the use is in a phi node in this loop, then it should be
2593          // the value corresponding to the back edge.
2594          unsigned Idx = UI.getOperandNo();
2595          if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2596            BadUse = true;
2597        } else {
2598          auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2599          if (F == ShufIns.end())
2600            BadUse = true;
2601        }
2602      } else {
2603        // There is a use outside of the loop, but there is no epilog block
2604        // suitable for a copy-out.
2605        if (C.EB == nullptr)
2606          BadUse = true;
2607      }
2608      if (BadUse)
2609        break;
2610    }
2611
2612    if (BadUse)
2613      continue;
2614    ShufIns.push_back(&*I);
2615  }
2616
2617  // Partition the list of shuffling instructions into instruction groups,
2618  // where each group has to be moved as a whole (i.e. a group is a chain of
2619  // dependent instructions). A group produces a single live output register,
2620  // which is meant to be the input of the loop phi node (although this is
2621  // not checked here yet). It also uses a single register as its input,
2622  // which is some value produced in the loop body. After moving the group
2623  // to the beginning of the loop, that input register would need to be
2624  // the loop-carried register (through a phi node) instead of the (currently
2625  // loop-carried) output register.
2626  typedef std::vector<InstrGroup> InstrGroupList;
2627  InstrGroupList Groups;
2628
2629  for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2630    MachineInstr *SI = ShufIns[i];
2631    if (SI == nullptr)
2632      continue;
2633
2634    InstrGroup G;
2635    G.Ins.push_back(SI);
2636    G.Out.Reg = getDefReg(SI);
2637    RegisterSet Inputs;
2638    HBS::getInstrUses(*SI, Inputs);
2639
2640    for (unsigned j = i+1; j < n; ++j) {
2641      MachineInstr *MI = ShufIns[j];
2642      if (MI == nullptr)
2643        continue;
2644      RegisterSet Defs;
2645      HBS::getInstrDefs(*MI, Defs);
2646      // If this instruction does not define any pending inputs, skip it.
2647      if (!Defs.intersects(Inputs))
2648        continue;
2649      // Otherwise, add it to the current group and remove the inputs that
2650      // are defined by MI.
2651      G.Ins.push_back(MI);
2652      Inputs.remove(Defs);
2653      // Then add all registers used by MI.
2654      HBS::getInstrUses(*MI, Inputs);
2655      ShufIns[j] = nullptr;
2656    }
2657
2658    // Only add a group if it requires at most one register.
2659    if (Inputs.count() > 1)
2660      continue;
2661    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2662      return G.Out.Reg == P.LR.Reg;
2663    };
2664    if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2665      continue;
2666
2667    G.Inp.Reg = Inputs.find_first();
2668    Groups.push_back(G);
2669  }
2670
2671  DEBUG({
2672    for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2673      InstrGroup &G = Groups[i];
2674      dbgs() << "Group[" << i << "] inp: "
2675             << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2676             << "  out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2677      for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2678        dbgs() << "  " << *G.Ins[j];
2679    }
2680  });
2681
2682  for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2683    InstrGroup &G = Groups[i];
2684    if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2685      continue;
2686    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2687      return G.Out.Reg == P.LR.Reg;
2688    };
2689    auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2690    if (F == Phis.end())
2691      continue;
2692    unsigned PredR = 0;
2693    if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
2694      const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
2695      unsigned Opc = DefPredR->getOpcode();
2696      if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2697        continue;
2698      if (!DefPredR->getOperand(1).isImm())
2699        continue;
2700      if (DefPredR->getOperand(1).getImm() != 0)
2701        continue;
2702      const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2703      if (RC != MRI->getRegClass(F->PR.Reg)) {
2704        PredR = MRI->createVirtualRegister(RC);
2705        unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2706                                                          : Hexagon::A2_tfrpi;
2707        auto T = C.PB->getFirstTerminator();
2708        DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
2709        BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
2710          .addImm(0);
2711      } else {
2712        PredR = F->PR.Reg;
2713      }
2714    }
2715    assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
2716    moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
2717    Changed = true;
2718  }
2719
2720  return Changed;
2721}
2722
2723
2724bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
2725  if (skipFunction(*MF.getFunction()))
2726    return false;
2727
2728  auto &HST = MF.getSubtarget<HexagonSubtarget>();
2729  HII = HST.getInstrInfo();
2730  HRI = HST.getRegisterInfo();
2731  MRI = &MF.getRegInfo();
2732  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2733  BitTracker BT(HE, MF);
2734  DEBUG(BT.trace(true));
2735  BT.run();
2736  BTP = &BT;
2737
2738  std::vector<LoopCand> Cand;
2739
2740  for (auto &B : MF) {
2741    if (B.pred_size() != 2 || B.succ_size() != 2)
2742      continue;
2743    MachineBasicBlock *PB = nullptr;
2744    bool IsLoop = false;
2745    for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2746      if (*PI != &B)
2747        PB = *PI;
2748      else
2749        IsLoop = true;
2750    }
2751    if (!IsLoop)
2752      continue;
2753
2754    MachineBasicBlock *EB = nullptr;
2755    for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2756      if (*SI == &B)
2757        continue;
2758      // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2759      // edge from B to EP is non-critical.
2760      if ((*SI)->pred_size() == 1)
2761        EB = *SI;
2762      break;
2763    }
2764
2765    Cand.push_back(LoopCand(&B, PB, EB));
2766  }
2767
2768  bool Changed = false;
2769  for (auto &C : Cand)
2770    Changed |= processLoop(C);
2771
2772  return Changed;
2773}
2774
2775//===----------------------------------------------------------------------===//
2776//                         Public Constructor Functions
2777//===----------------------------------------------------------------------===//
2778
2779FunctionPass *llvm::createHexagonLoopRescheduling() {
2780  return new HexagonLoopRescheduling();
2781}
2782
2783FunctionPass *llvm::createHexagonBitSimplify() {
2784  return new HexagonBitSimplify();
2785}
2786
2787