MSP430ISelLowering.cpp revision de2d8694e25a814696358e95141f4b1aa4d8847e
1//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the MSP430TargetLowering class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "MSP430ISelLowering.h" 15#include "MSP430.h" 16#include "MSP430MachineFunctionInfo.h" 17#include "MSP430Subtarget.h" 18#include "MSP430TargetMachine.h" 19#include "llvm/CodeGen/CallingConvLower.h" 20#include "llvm/CodeGen/MachineFrameInfo.h" 21#include "llvm/CodeGen/MachineFunction.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/CodeGen/SelectionDAGISel.h" 25#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 26#include "llvm/CodeGen/ValueTypes.h" 27#include "llvm/IR/CallingConv.h" 28#include "llvm/IR/DerivedTypes.h" 29#include "llvm/IR/Function.h" 30#include "llvm/IR/GlobalAlias.h" 31#include "llvm/IR/GlobalVariable.h" 32#include "llvm/IR/Intrinsics.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/Debug.h" 35#include "llvm/Support/ErrorHandling.h" 36#include "llvm/Support/raw_ostream.h" 37using namespace llvm; 38 39#define DEBUG_TYPE "msp430-lower" 40 41typedef enum { 42 NoHWMult, 43 HWMultIntr, 44 HWMultNoIntr 45} HWMultUseMode; 46 47static cl::opt<HWMultUseMode> 48HWMultMode("msp430-hwmult-mode", cl::Hidden, 49 cl::desc("Hardware multiplier use mode"), 50 cl::init(HWMultNoIntr), 51 cl::values( 52 clEnumValN(NoHWMult, "no", 53 "Do not use hardware multiplier"), 54 clEnumValN(HWMultIntr, "interrupts", 55 "Assume hardware multiplier can be used inside interrupts"), 56 clEnumValN(HWMultNoIntr, "use", 57 "Assume hardware multiplier cannot be used inside interrupts"), 58 clEnumValEnd)); 59 60MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM, 61 const MSP430Subtarget &STI) 62 : TargetLowering(TM) { 63 64 // Set up the register classes. 65 addRegisterClass(MVT::i8, &MSP430::GR8RegClass); 66 addRegisterClass(MVT::i16, &MSP430::GR16RegClass); 67 68 // Compute derived properties from the register classes 69 computeRegisterProperties(STI.getRegisterInfo()); 70 71 // Provide all sorts of operation actions 72 setStackPointerRegisterToSaveRestore(MSP430::SP); 73 setBooleanContents(ZeroOrOneBooleanContent); 74 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 75 76 // We have post-incremented loads / stores. 77 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); 78 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); 79 80 for (MVT VT : MVT::integer_valuetypes()) { 81 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 82 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 83 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 84 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 85 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand); 86 } 87 88 // We don't have any truncstores 89 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 90 91 setOperationAction(ISD::SRA, MVT::i8, Custom); 92 setOperationAction(ISD::SHL, MVT::i8, Custom); 93 setOperationAction(ISD::SRL, MVT::i8, Custom); 94 setOperationAction(ISD::SRA, MVT::i16, Custom); 95 setOperationAction(ISD::SHL, MVT::i16, Custom); 96 setOperationAction(ISD::SRL, MVT::i16, Custom); 97 setOperationAction(ISD::ROTL, MVT::i8, Expand); 98 setOperationAction(ISD::ROTR, MVT::i8, Expand); 99 setOperationAction(ISD::ROTL, MVT::i16, Expand); 100 setOperationAction(ISD::ROTR, MVT::i16, Expand); 101 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); 102 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom); 103 setOperationAction(ISD::BlockAddress, MVT::i16, Custom); 104 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 105 setOperationAction(ISD::BR_CC, MVT::i8, Custom); 106 setOperationAction(ISD::BR_CC, MVT::i16, Custom); 107 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 108 setOperationAction(ISD::SETCC, MVT::i8, Custom); 109 setOperationAction(ISD::SETCC, MVT::i16, Custom); 110 setOperationAction(ISD::SELECT, MVT::i8, Expand); 111 setOperationAction(ISD::SELECT, MVT::i16, Expand); 112 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); 113 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); 114 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom); 115 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); 116 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); 117 118 setOperationAction(ISD::CTTZ, MVT::i8, Expand); 119 setOperationAction(ISD::CTTZ, MVT::i16, Expand); 120 setOperationAction(ISD::CTLZ, MVT::i8, Expand); 121 setOperationAction(ISD::CTLZ, MVT::i16, Expand); 122 setOperationAction(ISD::CTPOP, MVT::i8, Expand); 123 setOperationAction(ISD::CTPOP, MVT::i16, Expand); 124 125 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand); 126 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); 127 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand); 128 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); 129 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand); 130 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); 131 132 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 133 134 // FIXME: Implement efficiently multiplication by a constant 135 setOperationAction(ISD::MUL, MVT::i8, Expand); 136 setOperationAction(ISD::MULHS, MVT::i8, Expand); 137 setOperationAction(ISD::MULHU, MVT::i8, Expand); 138 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand); 139 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand); 140 setOperationAction(ISD::MUL, MVT::i16, Expand); 141 setOperationAction(ISD::MULHS, MVT::i16, Expand); 142 setOperationAction(ISD::MULHU, MVT::i16, Expand); 143 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); 144 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); 145 146 setOperationAction(ISD::UDIV, MVT::i8, Expand); 147 setOperationAction(ISD::UDIVREM, MVT::i8, Expand); 148 setOperationAction(ISD::UREM, MVT::i8, Expand); 149 setOperationAction(ISD::SDIV, MVT::i8, Expand); 150 setOperationAction(ISD::SDIVREM, MVT::i8, Expand); 151 setOperationAction(ISD::SREM, MVT::i8, Expand); 152 setOperationAction(ISD::UDIV, MVT::i16, Expand); 153 setOperationAction(ISD::UDIVREM, MVT::i16, Expand); 154 setOperationAction(ISD::UREM, MVT::i16, Expand); 155 setOperationAction(ISD::SDIV, MVT::i16, Expand); 156 setOperationAction(ISD::SDIVREM, MVT::i16, Expand); 157 setOperationAction(ISD::SREM, MVT::i16, Expand); 158 159 // varargs support 160 setOperationAction(ISD::VASTART, MVT::Other, Custom); 161 setOperationAction(ISD::VAARG, MVT::Other, Expand); 162 setOperationAction(ISD::VAEND, MVT::Other, Expand); 163 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 164 setOperationAction(ISD::JumpTable, MVT::i16, Custom); 165 166 // Libcalls names. 167 if (HWMultMode == HWMultIntr) { 168 setLibcallName(RTLIB::MUL_I8, "__mulqi3hw"); 169 setLibcallName(RTLIB::MUL_I16, "__mulhi3hw"); 170 } else if (HWMultMode == HWMultNoIntr) { 171 setLibcallName(RTLIB::MUL_I8, "__mulqi3hw_noint"); 172 setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint"); 173 } 174 175 setMinFunctionAlignment(1); 176 setPrefFunctionAlignment(2); 177} 178 179SDValue MSP430TargetLowering::LowerOperation(SDValue Op, 180 SelectionDAG &DAG) const { 181 switch (Op.getOpcode()) { 182 case ISD::SHL: // FALLTHROUGH 183 case ISD::SRL: 184 case ISD::SRA: return LowerShifts(Op, DAG); 185 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 186 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 187 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 188 case ISD::SETCC: return LowerSETCC(Op, DAG); 189 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 190 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 191 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG); 192 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 193 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 194 case ISD::VASTART: return LowerVASTART(Op, DAG); 195 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 196 default: 197 llvm_unreachable("unimplemented operand"); 198 } 199} 200 201//===----------------------------------------------------------------------===// 202// MSP430 Inline Assembly Support 203//===----------------------------------------------------------------------===// 204 205/// getConstraintType - Given a constraint letter, return the type of 206/// constraint it is for this target. 207TargetLowering::ConstraintType 208MSP430TargetLowering::getConstraintType(StringRef Constraint) const { 209 if (Constraint.size() == 1) { 210 switch (Constraint[0]) { 211 case 'r': 212 return C_RegisterClass; 213 default: 214 break; 215 } 216 } 217 return TargetLowering::getConstraintType(Constraint); 218} 219 220std::pair<unsigned, const TargetRegisterClass *> 221MSP430TargetLowering::getRegForInlineAsmConstraint( 222 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 223 if (Constraint.size() == 1) { 224 // GCC Constraint Letters 225 switch (Constraint[0]) { 226 default: break; 227 case 'r': // GENERAL_REGS 228 if (VT == MVT::i8) 229 return std::make_pair(0U, &MSP430::GR8RegClass); 230 231 return std::make_pair(0U, &MSP430::GR16RegClass); 232 } 233 } 234 235 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 236} 237 238//===----------------------------------------------------------------------===// 239// Calling Convention Implementation 240//===----------------------------------------------------------------------===// 241 242#include "MSP430GenCallingConv.inc" 243 244/// For each argument in a function store the number of pieces it is composed 245/// of. 246template<typename ArgT> 247static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args, 248 SmallVectorImpl<unsigned> &Out) { 249 unsigned CurrentArgIndex = ~0U; 250 for (unsigned i = 0, e = Args.size(); i != e; i++) { 251 if (CurrentArgIndex == Args[i].OrigArgIndex) { 252 Out.back()++; 253 } else { 254 Out.push_back(1); 255 CurrentArgIndex++; 256 } 257 } 258} 259 260static void AnalyzeVarArgs(CCState &State, 261 const SmallVectorImpl<ISD::OutputArg> &Outs) { 262 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack); 263} 264 265static void AnalyzeVarArgs(CCState &State, 266 const SmallVectorImpl<ISD::InputArg> &Ins) { 267 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack); 268} 269 270/// Analyze incoming and outgoing function arguments. We need custom C++ code 271/// to handle special constraints in the ABI like reversing the order of the 272/// pieces of splitted arguments. In addition, all pieces of a certain argument 273/// have to be passed either using registers or the stack but never mixing both. 274template<typename ArgT> 275static void AnalyzeArguments(CCState &State, 276 SmallVectorImpl<CCValAssign> &ArgLocs, 277 const SmallVectorImpl<ArgT> &Args) { 278 static const MCPhysReg RegList[] = { 279 MSP430::R15, MSP430::R14, MSP430::R13, MSP430::R12 280 }; 281 static const unsigned NbRegs = array_lengthof(RegList); 282 283 if (State.isVarArg()) { 284 AnalyzeVarArgs(State, Args); 285 return; 286 } 287 288 SmallVector<unsigned, 4> ArgsParts; 289 ParseFunctionArgs(Args, ArgsParts); 290 291 unsigned RegsLeft = NbRegs; 292 bool UseStack = false; 293 unsigned ValNo = 0; 294 295 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) { 296 MVT ArgVT = Args[ValNo].VT; 297 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags; 298 MVT LocVT = ArgVT; 299 CCValAssign::LocInfo LocInfo = CCValAssign::Full; 300 301 // Promote i8 to i16 302 if (LocVT == MVT::i8) { 303 LocVT = MVT::i16; 304 if (ArgFlags.isSExt()) 305 LocInfo = CCValAssign::SExt; 306 else if (ArgFlags.isZExt()) 307 LocInfo = CCValAssign::ZExt; 308 else 309 LocInfo = CCValAssign::AExt; 310 } 311 312 // Handle byval arguments 313 if (ArgFlags.isByVal()) { 314 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags); 315 continue; 316 } 317 318 unsigned Parts = ArgsParts[i]; 319 320 if (!UseStack && Parts <= RegsLeft) { 321 unsigned FirstVal = ValNo; 322 for (unsigned j = 0; j < Parts; j++) { 323 unsigned Reg = State.AllocateReg(RegList); 324 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo)); 325 RegsLeft--; 326 } 327 328 // Reverse the order of the pieces to agree with the "big endian" format 329 // required in the calling convention ABI. 330 SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal; 331 std::reverse(B, B + Parts); 332 } else { 333 UseStack = true; 334 for (unsigned j = 0; j < Parts; j++) 335 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State); 336 } 337 } 338} 339 340static void AnalyzeRetResult(CCState &State, 341 const SmallVectorImpl<ISD::InputArg> &Ins) { 342 State.AnalyzeCallResult(Ins, RetCC_MSP430); 343} 344 345static void AnalyzeRetResult(CCState &State, 346 const SmallVectorImpl<ISD::OutputArg> &Outs) { 347 State.AnalyzeReturn(Outs, RetCC_MSP430); 348} 349 350template<typename ArgT> 351static void AnalyzeReturnValues(CCState &State, 352 SmallVectorImpl<CCValAssign> &RVLocs, 353 const SmallVectorImpl<ArgT> &Args) { 354 AnalyzeRetResult(State, Args); 355 356 // Reverse splitted return values to get the "big endian" format required 357 // to agree with the calling convention ABI. 358 std::reverse(RVLocs.begin(), RVLocs.end()); 359} 360 361SDValue MSP430TargetLowering::LowerFormalArguments( 362 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 363 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 364 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 365 366 switch (CallConv) { 367 default: 368 llvm_unreachable("Unsupported calling convention"); 369 case CallingConv::C: 370 case CallingConv::Fast: 371 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); 372 case CallingConv::MSP430_INTR: 373 if (Ins.empty()) 374 return Chain; 375 report_fatal_error("ISRs cannot have arguments"); 376 } 377} 378 379SDValue 380MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 381 SmallVectorImpl<SDValue> &InVals) const { 382 SelectionDAG &DAG = CLI.DAG; 383 SDLoc &dl = CLI.DL; 384 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 385 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 386 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 387 SDValue Chain = CLI.Chain; 388 SDValue Callee = CLI.Callee; 389 bool &isTailCall = CLI.IsTailCall; 390 CallingConv::ID CallConv = CLI.CallConv; 391 bool isVarArg = CLI.IsVarArg; 392 393 // MSP430 target does not yet support tail call optimization. 394 isTailCall = false; 395 396 switch (CallConv) { 397 default: 398 llvm_unreachable("Unsupported calling convention"); 399 case CallingConv::Fast: 400 case CallingConv::C: 401 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 402 Outs, OutVals, Ins, dl, DAG, InVals); 403 case CallingConv::MSP430_INTR: 404 report_fatal_error("ISRs cannot be called directly"); 405 } 406} 407 408/// LowerCCCArguments - transform physical registers into virtual registers and 409/// generate load operations for arguments places on the stack. 410// FIXME: struct return stuff 411SDValue MSP430TargetLowering::LowerCCCArguments( 412 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 413 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 414 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 415 MachineFunction &MF = DAG.getMachineFunction(); 416 MachineFrameInfo *MFI = MF.getFrameInfo(); 417 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 418 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 419 420 // Assign locations to all of the incoming arguments. 421 SmallVector<CCValAssign, 16> ArgLocs; 422 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 423 *DAG.getContext()); 424 AnalyzeArguments(CCInfo, ArgLocs, Ins); 425 426 // Create frame index for the start of the first vararg value 427 if (isVarArg) { 428 unsigned Offset = CCInfo.getNextStackOffset(); 429 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true)); 430 } 431 432 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 433 CCValAssign &VA = ArgLocs[i]; 434 if (VA.isRegLoc()) { 435 // Arguments passed in registers 436 EVT RegVT = VA.getLocVT(); 437 switch (RegVT.getSimpleVT().SimpleTy) { 438 default: 439 { 440#ifndef NDEBUG 441 errs() << "LowerFormalArguments Unhandled argument type: " 442 << RegVT.getEVTString() << "\n"; 443#endif 444 llvm_unreachable(nullptr); 445 } 446 case MVT::i16: 447 unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass); 448 RegInfo.addLiveIn(VA.getLocReg(), VReg); 449 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 450 451 // If this is an 8-bit value, it is really passed promoted to 16 452 // bits. Insert an assert[sz]ext to capture this, then truncate to the 453 // right size. 454 if (VA.getLocInfo() == CCValAssign::SExt) 455 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 456 DAG.getValueType(VA.getValVT())); 457 else if (VA.getLocInfo() == CCValAssign::ZExt) 458 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 459 DAG.getValueType(VA.getValVT())); 460 461 if (VA.getLocInfo() != CCValAssign::Full) 462 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 463 464 InVals.push_back(ArgValue); 465 } 466 } else { 467 // Sanity check 468 assert(VA.isMemLoc()); 469 470 SDValue InVal; 471 ISD::ArgFlagsTy Flags = Ins[i].Flags; 472 473 if (Flags.isByVal()) { 474 int FI = MFI->CreateFixedObject(Flags.getByValSize(), 475 VA.getLocMemOffset(), true); 476 InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 477 } else { 478 // Load the argument to a virtual register 479 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 480 if (ObjSize > 2) { 481 errs() << "LowerFormalArguments Unhandled argument type: " 482 << EVT(VA.getLocVT()).getEVTString() 483 << "\n"; 484 } 485 // Create the frame index object for this incoming parameter... 486 int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 487 488 // Create the SelectionDAG nodes corresponding to a load 489 //from this parameter 490 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16); 491 InVal = DAG.getLoad( 492 VA.getLocVT(), dl, Chain, FIN, 493 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 494 false, false, false, 0); 495 } 496 497 InVals.push_back(InVal); 498 } 499 } 500 501 return Chain; 502} 503 504SDValue 505MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 506 bool isVarArg, 507 const SmallVectorImpl<ISD::OutputArg> &Outs, 508 const SmallVectorImpl<SDValue> &OutVals, 509 const SDLoc &dl, SelectionDAG &DAG) const { 510 511 // CCValAssign - represent the assignment of the return value to a location 512 SmallVector<CCValAssign, 16> RVLocs; 513 514 // ISRs cannot return any value. 515 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty()) 516 report_fatal_error("ISRs cannot return any value"); 517 518 // CCState - Info about the registers and stack slot. 519 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 520 *DAG.getContext()); 521 522 // Analize return values. 523 AnalyzeReturnValues(CCInfo, RVLocs, Outs); 524 525 SDValue Flag; 526 SmallVector<SDValue, 4> RetOps(1, Chain); 527 528 // Copy the result values into the output registers. 529 for (unsigned i = 0; i != RVLocs.size(); ++i) { 530 CCValAssign &VA = RVLocs[i]; 531 assert(VA.isRegLoc() && "Can only return in registers!"); 532 533 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 534 OutVals[i], Flag); 535 536 // Guarantee that all emitted copies are stuck together, 537 // avoiding something bad. 538 Flag = Chain.getValue(1); 539 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 540 } 541 542 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ? 543 MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG); 544 545 RetOps[0] = Chain; // Update chain. 546 547 // Add the flag if we have it. 548 if (Flag.getNode()) 549 RetOps.push_back(Flag); 550 551 return DAG.getNode(Opc, dl, MVT::Other, RetOps); 552} 553 554/// LowerCCCCallTo - functions arguments are copied from virtual regs to 555/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 556// TODO: sret. 557SDValue MSP430TargetLowering::LowerCCCCallTo( 558 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 559 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, 560 const SmallVectorImpl<SDValue> &OutVals, 561 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 562 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 563 // Analyze operands of the call, assigning locations to each operand. 564 SmallVector<CCValAssign, 16> ArgLocs; 565 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 566 *DAG.getContext()); 567 AnalyzeArguments(CCInfo, ArgLocs, Outs); 568 569 // Get a count of how many bytes are to be pushed on the stack. 570 unsigned NumBytes = CCInfo.getNextStackOffset(); 571 auto PtrVT = getPointerTy(DAG.getDataLayout()); 572 573 Chain = DAG.getCALLSEQ_START(Chain, 574 DAG.getConstant(NumBytes, dl, PtrVT, true), dl); 575 576 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 577 SmallVector<SDValue, 12> MemOpChains; 578 SDValue StackPtr; 579 580 // Walk the register/memloc assignments, inserting copies/loads. 581 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 582 CCValAssign &VA = ArgLocs[i]; 583 584 SDValue Arg = OutVals[i]; 585 586 // Promote the value if needed. 587 switch (VA.getLocInfo()) { 588 default: llvm_unreachable("Unknown loc info!"); 589 case CCValAssign::Full: break; 590 case CCValAssign::SExt: 591 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 592 break; 593 case CCValAssign::ZExt: 594 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 595 break; 596 case CCValAssign::AExt: 597 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 598 break; 599 } 600 601 // Arguments that can be passed on register must be kept at RegsToPass 602 // vector 603 if (VA.isRegLoc()) { 604 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 605 } else { 606 assert(VA.isMemLoc()); 607 608 if (!StackPtr.getNode()) 609 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT); 610 611 SDValue PtrOff = 612 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 613 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl)); 614 615 SDValue MemOp; 616 ISD::ArgFlagsTy Flags = Outs[i].Flags; 617 618 if (Flags.isByVal()) { 619 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16); 620 MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode, 621 Flags.getByValAlign(), 622 /*isVolatile*/false, 623 /*AlwaysInline=*/true, 624 /*isTailCall=*/false, 625 MachinePointerInfo(), 626 MachinePointerInfo()); 627 } else { 628 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), 629 false, false, 0); 630 } 631 632 MemOpChains.push_back(MemOp); 633 } 634 } 635 636 // Transform all store nodes into one single node because all store nodes are 637 // independent of each other. 638 if (!MemOpChains.empty()) 639 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 640 641 // Build a sequence of copy-to-reg nodes chained together with token chain and 642 // flag operands which copy the outgoing args into registers. The InFlag in 643 // necessary since all emitted instructions must be stuck together. 644 SDValue InFlag; 645 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 646 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 647 RegsToPass[i].second, InFlag); 648 InFlag = Chain.getValue(1); 649 } 650 651 // If the callee is a GlobalAddress node (quite common, every direct call is) 652 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 653 // Likewise ExternalSymbol -> TargetExternalSymbol. 654 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 655 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16); 656 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 657 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16); 658 659 // Returns a chain & a flag for retval copy to use. 660 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 661 SmallVector<SDValue, 8> Ops; 662 Ops.push_back(Chain); 663 Ops.push_back(Callee); 664 665 // Add argument registers to the end of the list so that they are 666 // known live into the call. 667 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 668 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 669 RegsToPass[i].second.getValueType())); 670 671 if (InFlag.getNode()) 672 Ops.push_back(InFlag); 673 674 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops); 675 InFlag = Chain.getValue(1); 676 677 // Create the CALLSEQ_END node. 678 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true), 679 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl); 680 InFlag = Chain.getValue(1); 681 682 // Handle result values, copying them out of physregs into vregs that we 683 // return. 684 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, 685 DAG, InVals); 686} 687 688/// LowerCallResult - Lower the result values of a call into the 689/// appropriate copies out of appropriate physical registers. 690/// 691SDValue MSP430TargetLowering::LowerCallResult( 692 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 693 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 694 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 695 696 // Assign locations to each value returned by this call. 697 SmallVector<CCValAssign, 16> RVLocs; 698 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 699 *DAG.getContext()); 700 701 AnalyzeReturnValues(CCInfo, RVLocs, Ins); 702 703 // Copy all of the result registers out of their specified physreg. 704 for (unsigned i = 0; i != RVLocs.size(); ++i) { 705 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 706 RVLocs[i].getValVT(), InFlag).getValue(1); 707 InFlag = Chain.getValue(2); 708 InVals.push_back(Chain.getValue(0)); 709 } 710 711 return Chain; 712} 713 714SDValue MSP430TargetLowering::LowerShifts(SDValue Op, 715 SelectionDAG &DAG) const { 716 unsigned Opc = Op.getOpcode(); 717 SDNode* N = Op.getNode(); 718 EVT VT = Op.getValueType(); 719 SDLoc dl(N); 720 721 // Expand non-constant shifts to loops: 722 if (!isa<ConstantSDNode>(N->getOperand(1))) 723 switch (Opc) { 724 default: llvm_unreachable("Invalid shift opcode!"); 725 case ISD::SHL: 726 return DAG.getNode(MSP430ISD::SHL, dl, 727 VT, N->getOperand(0), N->getOperand(1)); 728 case ISD::SRA: 729 return DAG.getNode(MSP430ISD::SRA, dl, 730 VT, N->getOperand(0), N->getOperand(1)); 731 case ISD::SRL: 732 return DAG.getNode(MSP430ISD::SRL, dl, 733 VT, N->getOperand(0), N->getOperand(1)); 734 } 735 736 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 737 738 // Expand the stuff into sequence of shifts. 739 // FIXME: for some shift amounts this might be done better! 740 // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N 741 SDValue Victim = N->getOperand(0); 742 743 if (Opc == ISD::SRL && ShiftAmount) { 744 // Emit a special goodness here: 745 // srl A, 1 => clrc; rrc A 746 Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim); 747 ShiftAmount -= 1; 748 } 749 750 while (ShiftAmount--) 751 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA), 752 dl, VT, Victim); 753 754 return Victim; 755} 756 757SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op, 758 SelectionDAG &DAG) const { 759 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 760 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 761 auto PtrVT = getPointerTy(DAG.getDataLayout()); 762 763 // Create the TargetGlobalAddress node, folding in the constant offset. 764 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset); 765 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result); 766} 767 768SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op, 769 SelectionDAG &DAG) const { 770 SDLoc dl(Op); 771 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 772 auto PtrVT = getPointerTy(DAG.getDataLayout()); 773 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT); 774 775 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result); 776} 777 778SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op, 779 SelectionDAG &DAG) const { 780 SDLoc dl(Op); 781 auto PtrVT = getPointerTy(DAG.getDataLayout()); 782 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 783 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT); 784 785 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result); 786} 787 788static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC, 789 ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) { 790 // FIXME: Handle bittests someday 791 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet"); 792 793 // FIXME: Handle jump negative someday 794 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID; 795 switch (CC) { 796 default: llvm_unreachable("Invalid integer condition!"); 797 case ISD::SETEQ: 798 TCC = MSP430CC::COND_E; // aka COND_Z 799 // Minor optimization: if LHS is a constant, swap operands, then the 800 // constant can be folded into comparison. 801 if (LHS.getOpcode() == ISD::Constant) 802 std::swap(LHS, RHS); 803 break; 804 case ISD::SETNE: 805 TCC = MSP430CC::COND_NE; // aka COND_NZ 806 // Minor optimization: if LHS is a constant, swap operands, then the 807 // constant can be folded into comparison. 808 if (LHS.getOpcode() == ISD::Constant) 809 std::swap(LHS, RHS); 810 break; 811 case ISD::SETULE: 812 std::swap(LHS, RHS); // FALLTHROUGH 813 case ISD::SETUGE: 814 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to 815 // fold constant into instruction. 816 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 817 LHS = RHS; 818 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 819 TCC = MSP430CC::COND_LO; 820 break; 821 } 822 TCC = MSP430CC::COND_HS; // aka COND_C 823 break; 824 case ISD::SETUGT: 825 std::swap(LHS, RHS); // FALLTHROUGH 826 case ISD::SETULT: 827 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to 828 // fold constant into instruction. 829 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 830 LHS = RHS; 831 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 832 TCC = MSP430CC::COND_HS; 833 break; 834 } 835 TCC = MSP430CC::COND_LO; // aka COND_NC 836 break; 837 case ISD::SETLE: 838 std::swap(LHS, RHS); // FALLTHROUGH 839 case ISD::SETGE: 840 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to 841 // fold constant into instruction. 842 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 843 LHS = RHS; 844 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 845 TCC = MSP430CC::COND_L; 846 break; 847 } 848 TCC = MSP430CC::COND_GE; 849 break; 850 case ISD::SETGT: 851 std::swap(LHS, RHS); // FALLTHROUGH 852 case ISD::SETLT: 853 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to 854 // fold constant into instruction. 855 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 856 LHS = RHS; 857 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 858 TCC = MSP430CC::COND_GE; 859 break; 860 } 861 TCC = MSP430CC::COND_L; 862 break; 863 } 864 865 TargetCC = DAG.getConstant(TCC, dl, MVT::i8); 866 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS); 867} 868 869 870SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 871 SDValue Chain = Op.getOperand(0); 872 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 873 SDValue LHS = Op.getOperand(2); 874 SDValue RHS = Op.getOperand(3); 875 SDValue Dest = Op.getOperand(4); 876 SDLoc dl (Op); 877 878 SDValue TargetCC; 879 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 880 881 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(), 882 Chain, Dest, TargetCC, Flag); 883} 884 885SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 886 SDValue LHS = Op.getOperand(0); 887 SDValue RHS = Op.getOperand(1); 888 SDLoc dl (Op); 889 890 // If we are doing an AND and testing against zero, then the CMP 891 // will not be generated. The AND (or BIT) will generate the condition codes, 892 // but they are different from CMP. 893 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so 894 // lowering & isel wouldn't diverge. 895 bool andCC = false; 896 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 897 if (RHSC->isNullValue() && LHS.hasOneUse() && 898 (LHS.getOpcode() == ISD::AND || 899 (LHS.getOpcode() == ISD::TRUNCATE && 900 LHS.getOperand(0).getOpcode() == ISD::AND))) { 901 andCC = true; 902 } 903 } 904 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 905 SDValue TargetCC; 906 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 907 908 // Get the condition codes directly from the status register, if its easy. 909 // Otherwise a branch will be generated. Note that the AND and BIT 910 // instructions generate different flags than CMP, the carry bit can be used 911 // for NE/EQ. 912 bool Invert = false; 913 bool Shift = false; 914 bool Convert = true; 915 switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) { 916 default: 917 Convert = false; 918 break; 919 case MSP430CC::COND_HS: 920 // Res = SR & 1, no processing is required 921 break; 922 case MSP430CC::COND_LO: 923 // Res = ~(SR & 1) 924 Invert = true; 925 break; 926 case MSP430CC::COND_NE: 927 if (andCC) { 928 // C = ~Z, thus Res = SR & 1, no processing is required 929 } else { 930 // Res = ~((SR >> 1) & 1) 931 Shift = true; 932 Invert = true; 933 } 934 break; 935 case MSP430CC::COND_E: 936 Shift = true; 937 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however, 938 // Res = (SR >> 1) & 1 is 1 word shorter. 939 break; 940 } 941 EVT VT = Op.getValueType(); 942 SDValue One = DAG.getConstant(1, dl, VT); 943 if (Convert) { 944 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR, 945 MVT::i16, Flag); 946 if (Shift) 947 // FIXME: somewhere this is turned into a SRL, lower it MSP specific? 948 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One); 949 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One); 950 if (Invert) 951 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One); 952 return SR; 953 } else { 954 SDValue Zero = DAG.getConstant(0, dl, VT); 955 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 956 SDValue Ops[] = {One, Zero, TargetCC, Flag}; 957 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops); 958 } 959} 960 961SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op, 962 SelectionDAG &DAG) const { 963 SDValue LHS = Op.getOperand(0); 964 SDValue RHS = Op.getOperand(1); 965 SDValue TrueV = Op.getOperand(2); 966 SDValue FalseV = Op.getOperand(3); 967 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 968 SDLoc dl (Op); 969 970 SDValue TargetCC; 971 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 972 973 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 974 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag}; 975 976 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops); 977} 978 979SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op, 980 SelectionDAG &DAG) const { 981 SDValue Val = Op.getOperand(0); 982 EVT VT = Op.getValueType(); 983 SDLoc dl(Op); 984 985 assert(VT == MVT::i16 && "Only support i16 for now!"); 986 987 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 988 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val), 989 DAG.getValueType(Val.getValueType())); 990} 991 992SDValue 993MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { 994 MachineFunction &MF = DAG.getMachineFunction(); 995 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 996 int ReturnAddrIndex = FuncInfo->getRAIndex(); 997 auto PtrVT = getPointerTy(MF.getDataLayout()); 998 999 if (ReturnAddrIndex == 0) { 1000 // Set up a frame object for the return address. 1001 uint64_t SlotSize = MF.getDataLayout().getPointerSize(); 1002 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, 1003 true); 1004 FuncInfo->setRAIndex(ReturnAddrIndex); 1005 } 1006 1007 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT); 1008} 1009 1010SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op, 1011 SelectionDAG &DAG) const { 1012 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1013 MFI->setReturnAddressIsTaken(true); 1014 1015 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1016 return SDValue(); 1017 1018 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1019 SDLoc dl(Op); 1020 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1021 1022 if (Depth > 0) { 1023 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1024 SDValue Offset = 1025 DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16); 1026 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 1027 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 1028 MachinePointerInfo(), false, false, false, 0); 1029 } 1030 1031 // Just load the return address. 1032 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 1033 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 1034 MachinePointerInfo(), false, false, false, 0); 1035} 1036 1037SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op, 1038 SelectionDAG &DAG) const { 1039 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1040 MFI->setFrameAddressIsTaken(true); 1041 1042 EVT VT = Op.getValueType(); 1043 SDLoc dl(Op); // FIXME probably not meaningful 1044 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1045 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 1046 MSP430::FP, VT); 1047 while (Depth--) 1048 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 1049 MachinePointerInfo(), 1050 false, false, false, 0); 1051 return FrameAddr; 1052} 1053 1054SDValue MSP430TargetLowering::LowerVASTART(SDValue Op, 1055 SelectionDAG &DAG) const { 1056 MachineFunction &MF = DAG.getMachineFunction(); 1057 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1058 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1059 1060 // Frame index of first vararg argument 1061 SDValue FrameIndex = 1062 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1063 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1064 1065 // Create a store of the frame index to the location operand 1066 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, 1067 Op.getOperand(1), MachinePointerInfo(SV), 1068 false, false, 0); 1069} 1070 1071SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op, 1072 SelectionDAG &DAG) const { 1073 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1074 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1075 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1076 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result); 1077} 1078 1079/// getPostIndexedAddressParts - returns true by value, base pointer and 1080/// offset pointer and addressing mode by reference if this node can be 1081/// combined with a load / store to form a post-indexed load / store. 1082bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 1083 SDValue &Base, 1084 SDValue &Offset, 1085 ISD::MemIndexedMode &AM, 1086 SelectionDAG &DAG) const { 1087 1088 LoadSDNode *LD = cast<LoadSDNode>(N); 1089 if (LD->getExtensionType() != ISD::NON_EXTLOAD) 1090 return false; 1091 1092 EVT VT = LD->getMemoryVT(); 1093 if (VT != MVT::i8 && VT != MVT::i16) 1094 return false; 1095 1096 if (Op->getOpcode() != ISD::ADD) 1097 return false; 1098 1099 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 1100 uint64_t RHSC = RHS->getZExtValue(); 1101 if ((VT == MVT::i16 && RHSC != 2) || 1102 (VT == MVT::i8 && RHSC != 1)) 1103 return false; 1104 1105 Base = Op->getOperand(0); 1106 Offset = DAG.getConstant(RHSC, SDLoc(N), VT); 1107 AM = ISD::POST_INC; 1108 return true; 1109 } 1110 1111 return false; 1112} 1113 1114 1115const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const { 1116 switch ((MSP430ISD::NodeType)Opcode) { 1117 case MSP430ISD::FIRST_NUMBER: break; 1118 case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG"; 1119 case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG"; 1120 case MSP430ISD::RRA: return "MSP430ISD::RRA"; 1121 case MSP430ISD::RLA: return "MSP430ISD::RLA"; 1122 case MSP430ISD::RRC: return "MSP430ISD::RRC"; 1123 case MSP430ISD::CALL: return "MSP430ISD::CALL"; 1124 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper"; 1125 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC"; 1126 case MSP430ISD::CMP: return "MSP430ISD::CMP"; 1127 case MSP430ISD::SETCC: return "MSP430ISD::SETCC"; 1128 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC"; 1129 case MSP430ISD::SHL: return "MSP430ISD::SHL"; 1130 case MSP430ISD::SRA: return "MSP430ISD::SRA"; 1131 case MSP430ISD::SRL: return "MSP430ISD::SRL"; 1132 } 1133 return nullptr; 1134} 1135 1136bool MSP430TargetLowering::isTruncateFree(Type *Ty1, 1137 Type *Ty2) const { 1138 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 1139 return false; 1140 1141 return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits()); 1142} 1143 1144bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 1145 if (!VT1.isInteger() || !VT2.isInteger()) 1146 return false; 1147 1148 return (VT1.getSizeInBits() > VT2.getSizeInBits()); 1149} 1150 1151bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 1152 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1153 return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16); 1154} 1155 1156bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 1157 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1158 return 0 && VT1 == MVT::i8 && VT2 == MVT::i16; 1159} 1160 1161bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1162 return isZExtFree(Val.getValueType(), VT2); 1163} 1164 1165//===----------------------------------------------------------------------===// 1166// Other Lowering Code 1167//===----------------------------------------------------------------------===// 1168 1169MachineBasicBlock * 1170MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI, 1171 MachineBasicBlock *BB) const { 1172 MachineFunction *F = BB->getParent(); 1173 MachineRegisterInfo &RI = F->getRegInfo(); 1174 DebugLoc dl = MI.getDebugLoc(); 1175 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo(); 1176 1177 unsigned Opc; 1178 const TargetRegisterClass * RC; 1179 switch (MI.getOpcode()) { 1180 default: llvm_unreachable("Invalid shift opcode!"); 1181 case MSP430::Shl8: 1182 Opc = MSP430::SHL8r1; 1183 RC = &MSP430::GR8RegClass; 1184 break; 1185 case MSP430::Shl16: 1186 Opc = MSP430::SHL16r1; 1187 RC = &MSP430::GR16RegClass; 1188 break; 1189 case MSP430::Sra8: 1190 Opc = MSP430::SAR8r1; 1191 RC = &MSP430::GR8RegClass; 1192 break; 1193 case MSP430::Sra16: 1194 Opc = MSP430::SAR16r1; 1195 RC = &MSP430::GR16RegClass; 1196 break; 1197 case MSP430::Srl8: 1198 Opc = MSP430::SAR8r1c; 1199 RC = &MSP430::GR8RegClass; 1200 break; 1201 case MSP430::Srl16: 1202 Opc = MSP430::SAR16r1c; 1203 RC = &MSP430::GR16RegClass; 1204 break; 1205 } 1206 1207 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1208 MachineFunction::iterator I = ++BB->getIterator(); 1209 1210 // Create loop block 1211 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); 1212 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); 1213 1214 F->insert(I, LoopBB); 1215 F->insert(I, RemBB); 1216 1217 // Update machine-CFG edges by transferring all successors of the current 1218 // block to the block containing instructions after shift. 1219 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), 1220 BB->end()); 1221 RemBB->transferSuccessorsAndUpdatePHIs(BB); 1222 1223 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB 1224 BB->addSuccessor(LoopBB); 1225 BB->addSuccessor(RemBB); 1226 LoopBB->addSuccessor(RemBB); 1227 LoopBB->addSuccessor(LoopBB); 1228 1229 unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass); 1230 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass); 1231 unsigned ShiftReg = RI.createVirtualRegister(RC); 1232 unsigned ShiftReg2 = RI.createVirtualRegister(RC); 1233 unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg(); 1234 unsigned SrcReg = MI.getOperand(1).getReg(); 1235 unsigned DstReg = MI.getOperand(0).getReg(); 1236 1237 // BB: 1238 // cmp 0, N 1239 // je RemBB 1240 BuildMI(BB, dl, TII.get(MSP430::CMP8ri)) 1241 .addReg(ShiftAmtSrcReg).addImm(0); 1242 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1243 .addMBB(RemBB) 1244 .addImm(MSP430CC::COND_E); 1245 1246 // LoopBB: 1247 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] 1248 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] 1249 // ShiftReg2 = shift ShiftReg 1250 // ShiftAmt2 = ShiftAmt - 1; 1251 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg) 1252 .addReg(SrcReg).addMBB(BB) 1253 .addReg(ShiftReg2).addMBB(LoopBB); 1254 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg) 1255 .addReg(ShiftAmtSrcReg).addMBB(BB) 1256 .addReg(ShiftAmtReg2).addMBB(LoopBB); 1257 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2) 1258 .addReg(ShiftReg); 1259 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2) 1260 .addReg(ShiftAmtReg).addImm(1); 1261 BuildMI(LoopBB, dl, TII.get(MSP430::JCC)) 1262 .addMBB(LoopBB) 1263 .addImm(MSP430CC::COND_NE); 1264 1265 // RemBB: 1266 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] 1267 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg) 1268 .addReg(SrcReg).addMBB(BB) 1269 .addReg(ShiftReg2).addMBB(LoopBB); 1270 1271 MI.eraseFromParent(); // The pseudo instruction is gone now. 1272 return RemBB; 1273} 1274 1275MachineBasicBlock * 1276MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1277 MachineBasicBlock *BB) const { 1278 unsigned Opc = MI.getOpcode(); 1279 1280 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 || 1281 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 || 1282 Opc == MSP430::Srl8 || Opc == MSP430::Srl16) 1283 return EmitShiftInstr(MI, BB); 1284 1285 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1286 DebugLoc dl = MI.getDebugLoc(); 1287 1288 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) && 1289 "Unexpected instr type to insert"); 1290 1291 // To "insert" a SELECT instruction, we actually have to insert the diamond 1292 // control-flow pattern. The incoming instruction knows the destination vreg 1293 // to set, the condition code register to branch on, the true/false values to 1294 // select between, and a branch opcode to use. 1295 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1296 MachineFunction::iterator I = ++BB->getIterator(); 1297 1298 // thisMBB: 1299 // ... 1300 // TrueVal = ... 1301 // cmpTY ccX, r1, r2 1302 // jCC copy1MBB 1303 // fallthrough --> copy0MBB 1304 MachineBasicBlock *thisMBB = BB; 1305 MachineFunction *F = BB->getParent(); 1306 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1307 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); 1308 F->insert(I, copy0MBB); 1309 F->insert(I, copy1MBB); 1310 // Update machine-CFG edges by transferring all successors of the current 1311 // block to the new block which will contain the Phi node for the select. 1312 copy1MBB->splice(copy1MBB->begin(), BB, 1313 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1314 copy1MBB->transferSuccessorsAndUpdatePHIs(BB); 1315 // Next, add the true and fallthrough blocks as its successors. 1316 BB->addSuccessor(copy0MBB); 1317 BB->addSuccessor(copy1MBB); 1318 1319 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1320 .addMBB(copy1MBB) 1321 .addImm(MI.getOperand(3).getImm()); 1322 1323 // copy0MBB: 1324 // %FalseValue = ... 1325 // # fallthrough to copy1MBB 1326 BB = copy0MBB; 1327 1328 // Update machine-CFG edges 1329 BB->addSuccessor(copy1MBB); 1330 1331 // copy1MBB: 1332 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1333 // ... 1334 BB = copy1MBB; 1335 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg()) 1336 .addReg(MI.getOperand(2).getReg()) 1337 .addMBB(copy0MBB) 1338 .addReg(MI.getOperand(1).getReg()) 1339 .addMBB(thisMBB); 1340 1341 MI.eraseFromParent(); // The pseudo instruction is gone now. 1342 return BB; 1343} 1344