MSP430ISelLowering.cpp revision fe16848601bdde6e3a5e0860199169dd171222a4
1//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the MSP430TargetLowering class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "msp430-lower" 15 16#include "MSP430ISelLowering.h" 17#include "MSP430.h" 18#include "MSP430MachineFunctionInfo.h" 19#include "MSP430Subtarget.h" 20#include "MSP430TargetMachine.h" 21#include "llvm/CodeGen/CallingConvLower.h" 22#include "llvm/CodeGen/MachineFrameInfo.h" 23#include "llvm/CodeGen/MachineFunction.h" 24#include "llvm/CodeGen/MachineInstrBuilder.h" 25#include "llvm/CodeGen/MachineRegisterInfo.h" 26#include "llvm/CodeGen/SelectionDAGISel.h" 27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28#include "llvm/CodeGen/ValueTypes.h" 29#include "llvm/IR/CallingConv.h" 30#include "llvm/IR/DerivedTypes.h" 31#include "llvm/IR/Function.h" 32#include "llvm/IR/GlobalAlias.h" 33#include "llvm/IR/GlobalVariable.h" 34#include "llvm/IR/Intrinsics.h" 35#include "llvm/Support/CommandLine.h" 36#include "llvm/Support/Debug.h" 37#include "llvm/Support/ErrorHandling.h" 38#include "llvm/Support/raw_ostream.h" 39using namespace llvm; 40 41typedef enum { 42 NoHWMult, 43 HWMultIntr, 44 HWMultNoIntr 45} HWMultUseMode; 46 47static cl::opt<HWMultUseMode> 48HWMultMode("msp430-hwmult-mode", cl::Hidden, 49 cl::desc("Hardware multiplier use mode"), 50 cl::init(HWMultNoIntr), 51 cl::values( 52 clEnumValN(NoHWMult, "no", 53 "Do not use hardware multiplier"), 54 clEnumValN(HWMultIntr, "interrupts", 55 "Assume hardware multiplier can be used inside interrupts"), 56 clEnumValN(HWMultNoIntr, "use", 57 "Assume hardware multiplier cannot be used inside interrupts"), 58 clEnumValEnd)); 59 60MSP430TargetLowering::MSP430TargetLowering(MSP430TargetMachine &tm) : 61 TargetLowering(tm, new TargetLoweringObjectFileELF()), 62 Subtarget(*tm.getSubtargetImpl()) { 63 64 TD = getDataLayout(); 65 66 // Set up the register classes. 67 addRegisterClass(MVT::i8, &MSP430::GR8RegClass); 68 addRegisterClass(MVT::i16, &MSP430::GR16RegClass); 69 70 // Compute derived properties from the register classes 71 computeRegisterProperties(); 72 73 // Provide all sorts of operation actions 74 75 // Division is expensive 76 setIntDivIsCheap(false); 77 78 setStackPointerRegisterToSaveRestore(MSP430::SPW); 79 setBooleanContents(ZeroOrOneBooleanContent); 80 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 81 82 // We have post-incremented loads / stores. 83 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); 84 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); 85 86 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 87 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 88 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 89 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 90 setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand); 91 92 // We don't have any truncstores 93 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 94 95 setOperationAction(ISD::SRA, MVT::i8, Custom); 96 setOperationAction(ISD::SHL, MVT::i8, Custom); 97 setOperationAction(ISD::SRL, MVT::i8, Custom); 98 setOperationAction(ISD::SRA, MVT::i16, Custom); 99 setOperationAction(ISD::SHL, MVT::i16, Custom); 100 setOperationAction(ISD::SRL, MVT::i16, Custom); 101 setOperationAction(ISD::ROTL, MVT::i8, Expand); 102 setOperationAction(ISD::ROTR, MVT::i8, Expand); 103 setOperationAction(ISD::ROTL, MVT::i16, Expand); 104 setOperationAction(ISD::ROTR, MVT::i16, Expand); 105 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); 106 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom); 107 setOperationAction(ISD::BlockAddress, MVT::i16, Custom); 108 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 109 setOperationAction(ISD::BR_CC, MVT::i8, Custom); 110 setOperationAction(ISD::BR_CC, MVT::i16, Custom); 111 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 112 setOperationAction(ISD::SETCC, MVT::i8, Custom); 113 setOperationAction(ISD::SETCC, MVT::i16, Custom); 114 setOperationAction(ISD::SELECT, MVT::i8, Expand); 115 setOperationAction(ISD::SELECT, MVT::i16, Expand); 116 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); 117 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); 118 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom); 119 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); 120 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); 121 122 setOperationAction(ISD::CTTZ, MVT::i8, Expand); 123 setOperationAction(ISD::CTTZ, MVT::i16, Expand); 124 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8, Expand); 125 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand); 126 setOperationAction(ISD::CTLZ, MVT::i8, Expand); 127 setOperationAction(ISD::CTLZ, MVT::i16, Expand); 128 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8, Expand); 129 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Expand); 130 setOperationAction(ISD::CTPOP, MVT::i8, Expand); 131 setOperationAction(ISD::CTPOP, MVT::i16, Expand); 132 133 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand); 134 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); 135 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand); 136 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); 137 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand); 138 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); 139 140 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 141 142 // FIXME: Implement efficiently multiplication by a constant 143 setOperationAction(ISD::MUL, MVT::i8, Expand); 144 setOperationAction(ISD::MULHS, MVT::i8, Expand); 145 setOperationAction(ISD::MULHU, MVT::i8, Expand); 146 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand); 147 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand); 148 setOperationAction(ISD::MUL, MVT::i16, Expand); 149 setOperationAction(ISD::MULHS, MVT::i16, Expand); 150 setOperationAction(ISD::MULHU, MVT::i16, Expand); 151 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); 152 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); 153 154 setOperationAction(ISD::UDIV, MVT::i8, Expand); 155 setOperationAction(ISD::UDIVREM, MVT::i8, Expand); 156 setOperationAction(ISD::UREM, MVT::i8, Expand); 157 setOperationAction(ISD::SDIV, MVT::i8, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i8, Expand); 159 setOperationAction(ISD::SREM, MVT::i8, Expand); 160 setOperationAction(ISD::UDIV, MVT::i16, Expand); 161 setOperationAction(ISD::UDIVREM, MVT::i16, Expand); 162 setOperationAction(ISD::UREM, MVT::i16, Expand); 163 setOperationAction(ISD::SDIV, MVT::i16, Expand); 164 setOperationAction(ISD::SDIVREM, MVT::i16, Expand); 165 setOperationAction(ISD::SREM, MVT::i16, Expand); 166 167 // varargs support 168 setOperationAction(ISD::VASTART, MVT::Other, Custom); 169 setOperationAction(ISD::VAARG, MVT::Other, Expand); 170 setOperationAction(ISD::VAEND, MVT::Other, Expand); 171 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 172 setOperationAction(ISD::JumpTable, MVT::i16, Custom); 173 174 // Libcalls names. 175 if (HWMultMode == HWMultIntr) { 176 setLibcallName(RTLIB::MUL_I8, "__mulqi3hw"); 177 setLibcallName(RTLIB::MUL_I16, "__mulhi3hw"); 178 } else if (HWMultMode == HWMultNoIntr) { 179 setLibcallName(RTLIB::MUL_I8, "__mulqi3hw_noint"); 180 setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint"); 181 } 182 183 setMinFunctionAlignment(1); 184 setPrefFunctionAlignment(2); 185} 186 187SDValue MSP430TargetLowering::LowerOperation(SDValue Op, 188 SelectionDAG &DAG) const { 189 switch (Op.getOpcode()) { 190 case ISD::SHL: // FALLTHROUGH 191 case ISD::SRL: 192 case ISD::SRA: return LowerShifts(Op, DAG); 193 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 194 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 195 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 196 case ISD::SETCC: return LowerSETCC(Op, DAG); 197 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 198 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 199 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG); 200 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 201 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 202 case ISD::VASTART: return LowerVASTART(Op, DAG); 203 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 204 default: 205 llvm_unreachable("unimplemented operand"); 206 } 207} 208 209//===----------------------------------------------------------------------===// 210// MSP430 Inline Assembly Support 211//===----------------------------------------------------------------------===// 212 213/// getConstraintType - Given a constraint letter, return the type of 214/// constraint it is for this target. 215TargetLowering::ConstraintType 216MSP430TargetLowering::getConstraintType(const std::string &Constraint) const { 217 if (Constraint.size() == 1) { 218 switch (Constraint[0]) { 219 case 'r': 220 return C_RegisterClass; 221 default: 222 break; 223 } 224 } 225 return TargetLowering::getConstraintType(Constraint); 226} 227 228std::pair<unsigned, const TargetRegisterClass*> 229MSP430TargetLowering:: 230getRegForInlineAsmConstraint(const std::string &Constraint, 231 MVT VT) const { 232 if (Constraint.size() == 1) { 233 // GCC Constraint Letters 234 switch (Constraint[0]) { 235 default: break; 236 case 'r': // GENERAL_REGS 237 if (VT == MVT::i8) 238 return std::make_pair(0U, &MSP430::GR8RegClass); 239 240 return std::make_pair(0U, &MSP430::GR16RegClass); 241 } 242 } 243 244 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 245} 246 247//===----------------------------------------------------------------------===// 248// Calling Convention Implementation 249//===----------------------------------------------------------------------===// 250 251#include "MSP430GenCallingConv.inc" 252 253/// For each argument in a function store the number of pieces it is composed 254/// of. 255template<typename ArgT> 256static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args, 257 SmallVectorImpl<unsigned> &Out) { 258 unsigned CurrentArgIndex = ~0U; 259 for (unsigned i = 0, e = Args.size(); i != e; i++) { 260 if (CurrentArgIndex == Args[i].OrigArgIndex) { 261 Out.back()++; 262 } else { 263 Out.push_back(1); 264 CurrentArgIndex++; 265 } 266 } 267} 268 269static void AnalyzeVarArgs(CCState &State, 270 const SmallVectorImpl<ISD::OutputArg> &Outs) { 271 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack); 272} 273 274static void AnalyzeVarArgs(CCState &State, 275 const SmallVectorImpl<ISD::InputArg> &Ins) { 276 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack); 277} 278 279/// Analyze incoming and outgoing function arguments. We need custom C++ code 280/// to handle special constraints in the ABI like reversing the order of the 281/// pieces of splitted arguments. In addition, all pieces of a certain argument 282/// have to be passed either using registers or the stack but never mixing both. 283template<typename ArgT> 284static void AnalyzeArguments(CCState &State, 285 SmallVectorImpl<CCValAssign> &ArgLocs, 286 const SmallVectorImpl<ArgT> &Args) { 287 static const uint16_t RegList[] = { 288 MSP430::R15W, MSP430::R14W, MSP430::R13W, MSP430::R12W 289 }; 290 static const unsigned NbRegs = array_lengthof(RegList); 291 292 if (State.isVarArg()) { 293 AnalyzeVarArgs(State, Args); 294 return; 295 } 296 297 SmallVector<unsigned, 4> ArgsParts; 298 ParseFunctionArgs(Args, ArgsParts); 299 300 unsigned RegsLeft = NbRegs; 301 bool UseStack = false; 302 unsigned ValNo = 0; 303 304 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) { 305 MVT ArgVT = Args[ValNo].VT; 306 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags; 307 MVT LocVT = ArgVT; 308 CCValAssign::LocInfo LocInfo = CCValAssign::Full; 309 310 // Promote i8 to i16 311 if (LocVT == MVT::i8) { 312 LocVT = MVT::i16; 313 if (ArgFlags.isSExt()) 314 LocInfo = CCValAssign::SExt; 315 else if (ArgFlags.isZExt()) 316 LocInfo = CCValAssign::ZExt; 317 else 318 LocInfo = CCValAssign::AExt; 319 } 320 321 // Handle byval arguments 322 if (ArgFlags.isByVal()) { 323 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags); 324 continue; 325 } 326 327 unsigned Parts = ArgsParts[i]; 328 329 if (!UseStack && Parts <= RegsLeft) { 330 unsigned FirstVal = ValNo; 331 for (unsigned j = 0; j < Parts; j++) { 332 unsigned Reg = State.AllocateReg(RegList, NbRegs); 333 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo)); 334 RegsLeft--; 335 } 336 337 // Reverse the order of the pieces to agree with the "big endian" format 338 // required in the calling convention ABI. 339 SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal; 340 std::reverse(B, B + Parts); 341 } else { 342 UseStack = true; 343 for (unsigned j = 0; j < Parts; j++) 344 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State); 345 } 346 } 347} 348 349static void AnalyzeRetResult(CCState &State, 350 const SmallVectorImpl<ISD::InputArg> &Ins) { 351 State.AnalyzeCallResult(Ins, RetCC_MSP430); 352} 353 354static void AnalyzeRetResult(CCState &State, 355 const SmallVectorImpl<ISD::OutputArg> &Outs) { 356 State.AnalyzeReturn(Outs, RetCC_MSP430); 357} 358 359template<typename ArgT> 360static void AnalyzeReturnValues(CCState &State, 361 SmallVectorImpl<CCValAssign> &RVLocs, 362 const SmallVectorImpl<ArgT> &Args) { 363 AnalyzeRetResult(State, Args); 364 365 // Reverse splitted return values to get the "big endian" format required 366 // to agree with the calling convention ABI. 367 std::reverse(RVLocs.begin(), RVLocs.end()); 368} 369 370SDValue 371MSP430TargetLowering::LowerFormalArguments(SDValue Chain, 372 CallingConv::ID CallConv, 373 bool isVarArg, 374 const SmallVectorImpl<ISD::InputArg> 375 &Ins, 376 SDLoc dl, 377 SelectionDAG &DAG, 378 SmallVectorImpl<SDValue> &InVals) 379 const { 380 381 switch (CallConv) { 382 default: 383 llvm_unreachable("Unsupported calling convention"); 384 case CallingConv::C: 385 case CallingConv::Fast: 386 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); 387 case CallingConv::MSP430_INTR: 388 if (Ins.empty()) 389 return Chain; 390 report_fatal_error("ISRs cannot have arguments"); 391 } 392} 393 394SDValue 395MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 396 SmallVectorImpl<SDValue> &InVals) const { 397 SelectionDAG &DAG = CLI.DAG; 398 SDLoc &dl = CLI.DL; 399 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 400 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 401 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 402 SDValue Chain = CLI.Chain; 403 SDValue Callee = CLI.Callee; 404 bool &isTailCall = CLI.IsTailCall; 405 CallingConv::ID CallConv = CLI.CallConv; 406 bool isVarArg = CLI.IsVarArg; 407 408 // MSP430 target does not yet support tail call optimization. 409 isTailCall = false; 410 411 switch (CallConv) { 412 default: 413 llvm_unreachable("Unsupported calling convention"); 414 case CallingConv::Fast: 415 case CallingConv::C: 416 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 417 Outs, OutVals, Ins, dl, DAG, InVals); 418 case CallingConv::MSP430_INTR: 419 report_fatal_error("ISRs cannot be called directly"); 420 } 421} 422 423/// LowerCCCArguments - transform physical registers into virtual registers and 424/// generate load operations for arguments places on the stack. 425// FIXME: struct return stuff 426SDValue 427MSP430TargetLowering::LowerCCCArguments(SDValue Chain, 428 CallingConv::ID CallConv, 429 bool isVarArg, 430 const SmallVectorImpl<ISD::InputArg> 431 &Ins, 432 SDLoc dl, 433 SelectionDAG &DAG, 434 SmallVectorImpl<SDValue> &InVals) 435 const { 436 MachineFunction &MF = DAG.getMachineFunction(); 437 MachineFrameInfo *MFI = MF.getFrameInfo(); 438 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 439 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 440 441 // Assign locations to all of the incoming arguments. 442 SmallVector<CCValAssign, 16> ArgLocs; 443 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 444 getTargetMachine(), ArgLocs, *DAG.getContext()); 445 AnalyzeArguments(CCInfo, ArgLocs, Ins); 446 447 // Create frame index for the start of the first vararg value 448 if (isVarArg) { 449 unsigned Offset = CCInfo.getNextStackOffset(); 450 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true)); 451 } 452 453 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 454 CCValAssign &VA = ArgLocs[i]; 455 if (VA.isRegLoc()) { 456 // Arguments passed in registers 457 EVT RegVT = VA.getLocVT(); 458 switch (RegVT.getSimpleVT().SimpleTy) { 459 default: 460 { 461#ifndef NDEBUG 462 errs() << "LowerFormalArguments Unhandled argument type: " 463 << RegVT.getSimpleVT().SimpleTy << "\n"; 464#endif 465 llvm_unreachable(0); 466 } 467 case MVT::i16: 468 unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass); 469 RegInfo.addLiveIn(VA.getLocReg(), VReg); 470 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 471 472 // If this is an 8-bit value, it is really passed promoted to 16 473 // bits. Insert an assert[sz]ext to capture this, then truncate to the 474 // right size. 475 if (VA.getLocInfo() == CCValAssign::SExt) 476 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 477 DAG.getValueType(VA.getValVT())); 478 else if (VA.getLocInfo() == CCValAssign::ZExt) 479 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 480 DAG.getValueType(VA.getValVT())); 481 482 if (VA.getLocInfo() != CCValAssign::Full) 483 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 484 485 InVals.push_back(ArgValue); 486 } 487 } else { 488 // Sanity check 489 assert(VA.isMemLoc()); 490 491 SDValue InVal; 492 ISD::ArgFlagsTy Flags = Ins[i].Flags; 493 494 if (Flags.isByVal()) { 495 int FI = MFI->CreateFixedObject(Flags.getByValSize(), 496 VA.getLocMemOffset(), true); 497 InVal = DAG.getFrameIndex(FI, getPointerTy()); 498 } else { 499 // Load the argument to a virtual register 500 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 501 if (ObjSize > 2) { 502 errs() << "LowerFormalArguments Unhandled argument type: " 503 << EVT(VA.getLocVT()).getEVTString() 504 << "\n"; 505 } 506 // Create the frame index object for this incoming parameter... 507 int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 508 509 // Create the SelectionDAG nodes corresponding to a load 510 //from this parameter 511 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16); 512 InVal = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 513 MachinePointerInfo::getFixedStack(FI), 514 false, false, false, 0); 515 } 516 517 InVals.push_back(InVal); 518 } 519 } 520 521 return Chain; 522} 523 524SDValue 525MSP430TargetLowering::LowerReturn(SDValue Chain, 526 CallingConv::ID CallConv, bool isVarArg, 527 const SmallVectorImpl<ISD::OutputArg> &Outs, 528 const SmallVectorImpl<SDValue> &OutVals, 529 SDLoc dl, SelectionDAG &DAG) const { 530 531 // CCValAssign - represent the assignment of the return value to a location 532 SmallVector<CCValAssign, 16> RVLocs; 533 534 // ISRs cannot return any value. 535 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty()) 536 report_fatal_error("ISRs cannot return any value"); 537 538 // CCState - Info about the registers and stack slot. 539 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 540 getTargetMachine(), RVLocs, *DAG.getContext()); 541 542 // Analize return values. 543 AnalyzeReturnValues(CCInfo, RVLocs, Outs); 544 545 SDValue Flag; 546 SmallVector<SDValue, 4> RetOps(1, Chain); 547 548 // Copy the result values into the output registers. 549 for (unsigned i = 0; i != RVLocs.size(); ++i) { 550 CCValAssign &VA = RVLocs[i]; 551 assert(VA.isRegLoc() && "Can only return in registers!"); 552 553 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 554 OutVals[i], Flag); 555 556 // Guarantee that all emitted copies are stuck together, 557 // avoiding something bad. 558 Flag = Chain.getValue(1); 559 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 560 } 561 562 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ? 563 MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG); 564 565 RetOps[0] = Chain; // Update chain. 566 567 // Add the flag if we have it. 568 if (Flag.getNode()) 569 RetOps.push_back(Flag); 570 571 return DAG.getNode(Opc, dl, MVT::Other, &RetOps[0], RetOps.size()); 572} 573 574/// LowerCCCCallTo - functions arguments are copied from virtual regs to 575/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 576// TODO: sret. 577SDValue 578MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 579 CallingConv::ID CallConv, bool isVarArg, 580 bool isTailCall, 581 const SmallVectorImpl<ISD::OutputArg> 582 &Outs, 583 const SmallVectorImpl<SDValue> &OutVals, 584 const SmallVectorImpl<ISD::InputArg> &Ins, 585 SDLoc dl, SelectionDAG &DAG, 586 SmallVectorImpl<SDValue> &InVals) const { 587 // Analyze operands of the call, assigning locations to each operand. 588 SmallVector<CCValAssign, 16> ArgLocs; 589 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 590 getTargetMachine(), ArgLocs, *DAG.getContext()); 591 AnalyzeArguments(CCInfo, ArgLocs, Outs); 592 593 // Get a count of how many bytes are to be pushed on the stack. 594 unsigned NumBytes = CCInfo.getNextStackOffset(); 595 596 Chain = DAG.getCALLSEQ_START(Chain ,DAG.getConstant(NumBytes, 597 getPointerTy(), true), 598 dl); 599 600 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 601 SmallVector<SDValue, 12> MemOpChains; 602 SDValue StackPtr; 603 604 // Walk the register/memloc assignments, inserting copies/loads. 605 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 606 CCValAssign &VA = ArgLocs[i]; 607 608 SDValue Arg = OutVals[i]; 609 610 // Promote the value if needed. 611 switch (VA.getLocInfo()) { 612 default: llvm_unreachable("Unknown loc info!"); 613 case CCValAssign::Full: break; 614 case CCValAssign::SExt: 615 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 616 break; 617 case CCValAssign::ZExt: 618 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 619 break; 620 case CCValAssign::AExt: 621 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 622 break; 623 } 624 625 // Arguments that can be passed on register must be kept at RegsToPass 626 // vector 627 if (VA.isRegLoc()) { 628 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 629 } else { 630 assert(VA.isMemLoc()); 631 632 if (StackPtr.getNode() == 0) 633 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SPW, getPointerTy()); 634 635 SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), 636 StackPtr, 637 DAG.getIntPtrConstant(VA.getLocMemOffset())); 638 639 SDValue MemOp; 640 ISD::ArgFlagsTy Flags = Outs[i].Flags; 641 642 if (Flags.isByVal()) { 643 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i16); 644 MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode, 645 Flags.getByValAlign(), 646 /*isVolatile*/false, 647 /*AlwaysInline=*/true, 648 MachinePointerInfo(), 649 MachinePointerInfo()); 650 } else { 651 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), 652 false, false, 0); 653 } 654 655 MemOpChains.push_back(MemOp); 656 } 657 } 658 659 // Transform all store nodes into one single node because all store nodes are 660 // independent of each other. 661 if (!MemOpChains.empty()) 662 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 663 &MemOpChains[0], MemOpChains.size()); 664 665 // Build a sequence of copy-to-reg nodes chained together with token chain and 666 // flag operands which copy the outgoing args into registers. The InFlag in 667 // necessary since all emitted instructions must be stuck together. 668 SDValue InFlag; 669 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 670 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 671 RegsToPass[i].second, InFlag); 672 InFlag = Chain.getValue(1); 673 } 674 675 // If the callee is a GlobalAddress node (quite common, every direct call is) 676 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 677 // Likewise ExternalSymbol -> TargetExternalSymbol. 678 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 679 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16); 680 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 681 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16); 682 683 // Returns a chain & a flag for retval copy to use. 684 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 685 SmallVector<SDValue, 8> Ops; 686 Ops.push_back(Chain); 687 Ops.push_back(Callee); 688 689 // Add argument registers to the end of the list so that they are 690 // known live into the call. 691 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 692 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 693 RegsToPass[i].second.getValueType())); 694 695 if (InFlag.getNode()) 696 Ops.push_back(InFlag); 697 698 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); 699 InFlag = Chain.getValue(1); 700 701 // Create the CALLSEQ_END node. 702 Chain = DAG.getCALLSEQ_END(Chain, 703 DAG.getConstant(NumBytes, getPointerTy(), true), 704 DAG.getConstant(0, getPointerTy(), true), 705 InFlag, dl); 706 InFlag = Chain.getValue(1); 707 708 // Handle result values, copying them out of physregs into vregs that we 709 // return. 710 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, 711 DAG, InVals); 712} 713 714/// LowerCallResult - Lower the result values of a call into the 715/// appropriate copies out of appropriate physical registers. 716/// 717SDValue 718MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 719 CallingConv::ID CallConv, bool isVarArg, 720 const SmallVectorImpl<ISD::InputArg> &Ins, 721 SDLoc dl, SelectionDAG &DAG, 722 SmallVectorImpl<SDValue> &InVals) const { 723 724 // Assign locations to each value returned by this call. 725 SmallVector<CCValAssign, 16> RVLocs; 726 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 727 getTargetMachine(), RVLocs, *DAG.getContext()); 728 729 AnalyzeReturnValues(CCInfo, RVLocs, Ins); 730 731 // Copy all of the result registers out of their specified physreg. 732 for (unsigned i = 0; i != RVLocs.size(); ++i) { 733 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 734 RVLocs[i].getValVT(), InFlag).getValue(1); 735 InFlag = Chain.getValue(2); 736 InVals.push_back(Chain.getValue(0)); 737 } 738 739 return Chain; 740} 741 742SDValue MSP430TargetLowering::LowerShifts(SDValue Op, 743 SelectionDAG &DAG) const { 744 unsigned Opc = Op.getOpcode(); 745 SDNode* N = Op.getNode(); 746 EVT VT = Op.getValueType(); 747 SDLoc dl(N); 748 749 // Expand non-constant shifts to loops: 750 if (!isa<ConstantSDNode>(N->getOperand(1))) 751 switch (Opc) { 752 default: llvm_unreachable("Invalid shift opcode!"); 753 case ISD::SHL: 754 return DAG.getNode(MSP430ISD::SHL, dl, 755 VT, N->getOperand(0), N->getOperand(1)); 756 case ISD::SRA: 757 return DAG.getNode(MSP430ISD::SRA, dl, 758 VT, N->getOperand(0), N->getOperand(1)); 759 case ISD::SRL: 760 return DAG.getNode(MSP430ISD::SRL, dl, 761 VT, N->getOperand(0), N->getOperand(1)); 762 } 763 764 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 765 766 // Expand the stuff into sequence of shifts. 767 // FIXME: for some shift amounts this might be done better! 768 // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N 769 SDValue Victim = N->getOperand(0); 770 771 if (Opc == ISD::SRL && ShiftAmount) { 772 // Emit a special goodness here: 773 // srl A, 1 => clrc; rrc A 774 Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim); 775 ShiftAmount -= 1; 776 } 777 778 while (ShiftAmount--) 779 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA), 780 dl, VT, Victim); 781 782 return Victim; 783} 784 785SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op, 786 SelectionDAG &DAG) const { 787 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 788 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 789 790 // Create the TargetGlobalAddress node, folding in the constant offset. 791 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), 792 getPointerTy(), Offset); 793 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), 794 getPointerTy(), Result); 795} 796 797SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op, 798 SelectionDAG &DAG) const { 799 SDLoc dl(Op); 800 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 801 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); 802 803 return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result); 804} 805 806SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op, 807 SelectionDAG &DAG) const { 808 SDLoc dl(Op); 809 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 810 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy()); 811 812 return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result); 813} 814 815static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC, 816 ISD::CondCode CC, 817 SDLoc dl, SelectionDAG &DAG) { 818 // FIXME: Handle bittests someday 819 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet"); 820 821 // FIXME: Handle jump negative someday 822 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID; 823 switch (CC) { 824 default: llvm_unreachable("Invalid integer condition!"); 825 case ISD::SETEQ: 826 TCC = MSP430CC::COND_E; // aka COND_Z 827 // Minor optimization: if LHS is a constant, swap operands, then the 828 // constant can be folded into comparison. 829 if (LHS.getOpcode() == ISD::Constant) 830 std::swap(LHS, RHS); 831 break; 832 case ISD::SETNE: 833 TCC = MSP430CC::COND_NE; // aka COND_NZ 834 // Minor optimization: if LHS is a constant, swap operands, then the 835 // constant can be folded into comparison. 836 if (LHS.getOpcode() == ISD::Constant) 837 std::swap(LHS, RHS); 838 break; 839 case ISD::SETULE: 840 std::swap(LHS, RHS); // FALLTHROUGH 841 case ISD::SETUGE: 842 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to 843 // fold constant into instruction. 844 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 845 LHS = RHS; 846 RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0)); 847 TCC = MSP430CC::COND_LO; 848 break; 849 } 850 TCC = MSP430CC::COND_HS; // aka COND_C 851 break; 852 case ISD::SETUGT: 853 std::swap(LHS, RHS); // FALLTHROUGH 854 case ISD::SETULT: 855 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to 856 // fold constant into instruction. 857 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 858 LHS = RHS; 859 RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0)); 860 TCC = MSP430CC::COND_HS; 861 break; 862 } 863 TCC = MSP430CC::COND_LO; // aka COND_NC 864 break; 865 case ISD::SETLE: 866 std::swap(LHS, RHS); // FALLTHROUGH 867 case ISD::SETGE: 868 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to 869 // fold constant into instruction. 870 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 871 LHS = RHS; 872 RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0)); 873 TCC = MSP430CC::COND_L; 874 break; 875 } 876 TCC = MSP430CC::COND_GE; 877 break; 878 case ISD::SETGT: 879 std::swap(LHS, RHS); // FALLTHROUGH 880 case ISD::SETLT: 881 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to 882 // fold constant into instruction. 883 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 884 LHS = RHS; 885 RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0)); 886 TCC = MSP430CC::COND_GE; 887 break; 888 } 889 TCC = MSP430CC::COND_L; 890 break; 891 } 892 893 TargetCC = DAG.getConstant(TCC, MVT::i8); 894 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS); 895} 896 897 898SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 899 SDValue Chain = Op.getOperand(0); 900 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 901 SDValue LHS = Op.getOperand(2); 902 SDValue RHS = Op.getOperand(3); 903 SDValue Dest = Op.getOperand(4); 904 SDLoc dl (Op); 905 906 SDValue TargetCC; 907 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 908 909 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(), 910 Chain, Dest, TargetCC, Flag); 911} 912 913SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 914 SDValue LHS = Op.getOperand(0); 915 SDValue RHS = Op.getOperand(1); 916 SDLoc dl (Op); 917 918 // If we are doing an AND and testing against zero, then the CMP 919 // will not be generated. The AND (or BIT) will generate the condition codes, 920 // but they are different from CMP. 921 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so 922 // lowering & isel wouldn't diverge. 923 bool andCC = false; 924 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 925 if (RHSC->isNullValue() && LHS.hasOneUse() && 926 (LHS.getOpcode() == ISD::AND || 927 (LHS.getOpcode() == ISD::TRUNCATE && 928 LHS.getOperand(0).getOpcode() == ISD::AND))) { 929 andCC = true; 930 } 931 } 932 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 933 SDValue TargetCC; 934 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 935 936 // Get the condition codes directly from the status register, if its easy. 937 // Otherwise a branch will be generated. Note that the AND and BIT 938 // instructions generate different flags than CMP, the carry bit can be used 939 // for NE/EQ. 940 bool Invert = false; 941 bool Shift = false; 942 bool Convert = true; 943 switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) { 944 default: 945 Convert = false; 946 break; 947 case MSP430CC::COND_HS: 948 // Res = SRW & 1, no processing is required 949 break; 950 case MSP430CC::COND_LO: 951 // Res = ~(SRW & 1) 952 Invert = true; 953 break; 954 case MSP430CC::COND_NE: 955 if (andCC) { 956 // C = ~Z, thus Res = SRW & 1, no processing is required 957 } else { 958 // Res = ~((SRW >> 1) & 1) 959 Shift = true; 960 Invert = true; 961 } 962 break; 963 case MSP430CC::COND_E: 964 Shift = true; 965 // C = ~Z for AND instruction, thus we can put Res = ~(SRW & 1), however, 966 // Res = (SRW >> 1) & 1 is 1 word shorter. 967 break; 968 } 969 EVT VT = Op.getValueType(); 970 SDValue One = DAG.getConstant(1, VT); 971 if (Convert) { 972 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SRW, 973 MVT::i16, Flag); 974 if (Shift) 975 // FIXME: somewhere this is turned into a SRL, lower it MSP specific? 976 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One); 977 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One); 978 if (Invert) 979 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One); 980 return SR; 981 } else { 982 SDValue Zero = DAG.getConstant(0, VT); 983 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 984 SmallVector<SDValue, 4> Ops; 985 Ops.push_back(One); 986 Ops.push_back(Zero); 987 Ops.push_back(TargetCC); 988 Ops.push_back(Flag); 989 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, &Ops[0], Ops.size()); 990 } 991} 992 993SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op, 994 SelectionDAG &DAG) const { 995 SDValue LHS = Op.getOperand(0); 996 SDValue RHS = Op.getOperand(1); 997 SDValue TrueV = Op.getOperand(2); 998 SDValue FalseV = Op.getOperand(3); 999 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 1000 SDLoc dl (Op); 1001 1002 SDValue TargetCC; 1003 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 1004 1005 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1006 SmallVector<SDValue, 4> Ops; 1007 Ops.push_back(TrueV); 1008 Ops.push_back(FalseV); 1009 Ops.push_back(TargetCC); 1010 Ops.push_back(Flag); 1011 1012 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, &Ops[0], Ops.size()); 1013} 1014 1015SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op, 1016 SelectionDAG &DAG) const { 1017 SDValue Val = Op.getOperand(0); 1018 EVT VT = Op.getValueType(); 1019 SDLoc dl(Op); 1020 1021 assert(VT == MVT::i16 && "Only support i16 for now!"); 1022 1023 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 1024 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val), 1025 DAG.getValueType(Val.getValueType())); 1026} 1027 1028SDValue 1029MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { 1030 MachineFunction &MF = DAG.getMachineFunction(); 1031 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1032 int ReturnAddrIndex = FuncInfo->getRAIndex(); 1033 1034 if (ReturnAddrIndex == 0) { 1035 // Set up a frame object for the return address. 1036 uint64_t SlotSize = TD->getPointerSize(); 1037 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, 1038 true); 1039 FuncInfo->setRAIndex(ReturnAddrIndex); 1040 } 1041 1042 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); 1043} 1044 1045SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op, 1046 SelectionDAG &DAG) const { 1047 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1048 MFI->setReturnAddressIsTaken(true); 1049 1050 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1051 SDLoc dl(Op); 1052 1053 if (Depth > 0) { 1054 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1055 SDValue Offset = 1056 DAG.getConstant(TD->getPointerSize(), MVT::i16); 1057 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 1058 DAG.getNode(ISD::ADD, dl, getPointerTy(), 1059 FrameAddr, Offset), 1060 MachinePointerInfo(), false, false, false, 0); 1061 } 1062 1063 // Just load the return address. 1064 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 1065 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 1066 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 1067} 1068 1069SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op, 1070 SelectionDAG &DAG) const { 1071 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1072 MFI->setFrameAddressIsTaken(true); 1073 1074 EVT VT = Op.getValueType(); 1075 SDLoc dl(Op); // FIXME probably not meaningful 1076 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1077 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 1078 MSP430::FPW, VT); 1079 while (Depth--) 1080 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 1081 MachinePointerInfo(), 1082 false, false, false, 0); 1083 return FrameAddr; 1084} 1085 1086SDValue MSP430TargetLowering::LowerVASTART(SDValue Op, 1087 SelectionDAG &DAG) const { 1088 MachineFunction &MF = DAG.getMachineFunction(); 1089 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1090 1091 // Frame index of first vararg argument 1092 SDValue FrameIndex = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1093 getPointerTy()); 1094 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1095 1096 // Create a store of the frame index to the location operand 1097 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, 1098 Op.getOperand(1), MachinePointerInfo(SV), 1099 false, false, 0); 1100} 1101 1102SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op, 1103 SelectionDAG &DAG) const { 1104 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1105 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); 1106 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), 1107 getPointerTy(), Result); 1108} 1109 1110/// getPostIndexedAddressParts - returns true by value, base pointer and 1111/// offset pointer and addressing mode by reference if this node can be 1112/// combined with a load / store to form a post-indexed load / store. 1113bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 1114 SDValue &Base, 1115 SDValue &Offset, 1116 ISD::MemIndexedMode &AM, 1117 SelectionDAG &DAG) const { 1118 1119 LoadSDNode *LD = cast<LoadSDNode>(N); 1120 if (LD->getExtensionType() != ISD::NON_EXTLOAD) 1121 return false; 1122 1123 EVT VT = LD->getMemoryVT(); 1124 if (VT != MVT::i8 && VT != MVT::i16) 1125 return false; 1126 1127 if (Op->getOpcode() != ISD::ADD) 1128 return false; 1129 1130 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 1131 uint64_t RHSC = RHS->getZExtValue(); 1132 if ((VT == MVT::i16 && RHSC != 2) || 1133 (VT == MVT::i8 && RHSC != 1)) 1134 return false; 1135 1136 Base = Op->getOperand(0); 1137 Offset = DAG.getConstant(RHSC, VT); 1138 AM = ISD::POST_INC; 1139 return true; 1140 } 1141 1142 return false; 1143} 1144 1145 1146const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const { 1147 switch (Opcode) { 1148 default: return NULL; 1149 case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG"; 1150 case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG"; 1151 case MSP430ISD::RRA: return "MSP430ISD::RRA"; 1152 case MSP430ISD::RLA: return "MSP430ISD::RLA"; 1153 case MSP430ISD::RRC: return "MSP430ISD::RRC"; 1154 case MSP430ISD::CALL: return "MSP430ISD::CALL"; 1155 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper"; 1156 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC"; 1157 case MSP430ISD::CMP: return "MSP430ISD::CMP"; 1158 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC"; 1159 case MSP430ISD::SHL: return "MSP430ISD::SHL"; 1160 case MSP430ISD::SRA: return "MSP430ISD::SRA"; 1161 } 1162} 1163 1164bool MSP430TargetLowering::isTruncateFree(Type *Ty1, 1165 Type *Ty2) const { 1166 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 1167 return false; 1168 1169 return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits()); 1170} 1171 1172bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 1173 if (!VT1.isInteger() || !VT2.isInteger()) 1174 return false; 1175 1176 return (VT1.getSizeInBits() > VT2.getSizeInBits()); 1177} 1178 1179bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 1180 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1181 return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16); 1182} 1183 1184bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 1185 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1186 return 0 && VT1 == MVT::i8 && VT2 == MVT::i16; 1187} 1188 1189bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1190 return isZExtFree(Val.getValueType(), VT2); 1191} 1192 1193//===----------------------------------------------------------------------===// 1194// Other Lowering Code 1195//===----------------------------------------------------------------------===// 1196 1197MachineBasicBlock* 1198MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI, 1199 MachineBasicBlock *BB) const { 1200 MachineFunction *F = BB->getParent(); 1201 MachineRegisterInfo &RI = F->getRegInfo(); 1202 DebugLoc dl = MI->getDebugLoc(); 1203 const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo(); 1204 1205 unsigned Opc; 1206 const TargetRegisterClass * RC; 1207 switch (MI->getOpcode()) { 1208 default: llvm_unreachable("Invalid shift opcode!"); 1209 case MSP430::Shl8: 1210 Opc = MSP430::SHL8r1; 1211 RC = &MSP430::GR8RegClass; 1212 break; 1213 case MSP430::Shl16: 1214 Opc = MSP430::SHL16r1; 1215 RC = &MSP430::GR16RegClass; 1216 break; 1217 case MSP430::Sra8: 1218 Opc = MSP430::SAR8r1; 1219 RC = &MSP430::GR8RegClass; 1220 break; 1221 case MSP430::Sra16: 1222 Opc = MSP430::SAR16r1; 1223 RC = &MSP430::GR16RegClass; 1224 break; 1225 case MSP430::Srl8: 1226 Opc = MSP430::SAR8r1c; 1227 RC = &MSP430::GR8RegClass; 1228 break; 1229 case MSP430::Srl16: 1230 Opc = MSP430::SAR16r1c; 1231 RC = &MSP430::GR16RegClass; 1232 break; 1233 } 1234 1235 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1236 MachineFunction::iterator I = BB; 1237 ++I; 1238 1239 // Create loop block 1240 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); 1241 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); 1242 1243 F->insert(I, LoopBB); 1244 F->insert(I, RemBB); 1245 1246 // Update machine-CFG edges by transferring all successors of the current 1247 // block to the block containing instructions after shift. 1248 RemBB->splice(RemBB->begin(), BB, 1249 llvm::next(MachineBasicBlock::iterator(MI)), 1250 BB->end()); 1251 RemBB->transferSuccessorsAndUpdatePHIs(BB); 1252 1253 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB 1254 BB->addSuccessor(LoopBB); 1255 BB->addSuccessor(RemBB); 1256 LoopBB->addSuccessor(RemBB); 1257 LoopBB->addSuccessor(LoopBB); 1258 1259 unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass); 1260 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass); 1261 unsigned ShiftReg = RI.createVirtualRegister(RC); 1262 unsigned ShiftReg2 = RI.createVirtualRegister(RC); 1263 unsigned ShiftAmtSrcReg = MI->getOperand(2).getReg(); 1264 unsigned SrcReg = MI->getOperand(1).getReg(); 1265 unsigned DstReg = MI->getOperand(0).getReg(); 1266 1267 // BB: 1268 // cmp 0, N 1269 // je RemBB 1270 BuildMI(BB, dl, TII.get(MSP430::CMP8ri)) 1271 .addReg(ShiftAmtSrcReg).addImm(0); 1272 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1273 .addMBB(RemBB) 1274 .addImm(MSP430CC::COND_E); 1275 1276 // LoopBB: 1277 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] 1278 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] 1279 // ShiftReg2 = shift ShiftReg 1280 // ShiftAmt2 = ShiftAmt - 1; 1281 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg) 1282 .addReg(SrcReg).addMBB(BB) 1283 .addReg(ShiftReg2).addMBB(LoopBB); 1284 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg) 1285 .addReg(ShiftAmtSrcReg).addMBB(BB) 1286 .addReg(ShiftAmtReg2).addMBB(LoopBB); 1287 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2) 1288 .addReg(ShiftReg); 1289 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2) 1290 .addReg(ShiftAmtReg).addImm(1); 1291 BuildMI(LoopBB, dl, TII.get(MSP430::JCC)) 1292 .addMBB(LoopBB) 1293 .addImm(MSP430CC::COND_NE); 1294 1295 // RemBB: 1296 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] 1297 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg) 1298 .addReg(SrcReg).addMBB(BB) 1299 .addReg(ShiftReg2).addMBB(LoopBB); 1300 1301 MI->eraseFromParent(); // The pseudo instruction is gone now. 1302 return RemBB; 1303} 1304 1305MachineBasicBlock* 1306MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1307 MachineBasicBlock *BB) const { 1308 unsigned Opc = MI->getOpcode(); 1309 1310 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 || 1311 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 || 1312 Opc == MSP430::Srl8 || Opc == MSP430::Srl16) 1313 return EmitShiftInstr(MI, BB); 1314 1315 const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo(); 1316 DebugLoc dl = MI->getDebugLoc(); 1317 1318 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) && 1319 "Unexpected instr type to insert"); 1320 1321 // To "insert" a SELECT instruction, we actually have to insert the diamond 1322 // control-flow pattern. The incoming instruction knows the destination vreg 1323 // to set, the condition code register to branch on, the true/false values to 1324 // select between, and a branch opcode to use. 1325 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1326 MachineFunction::iterator I = BB; 1327 ++I; 1328 1329 // thisMBB: 1330 // ... 1331 // TrueVal = ... 1332 // cmpTY ccX, r1, r2 1333 // jCC copy1MBB 1334 // fallthrough --> copy0MBB 1335 MachineBasicBlock *thisMBB = BB; 1336 MachineFunction *F = BB->getParent(); 1337 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1338 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); 1339 F->insert(I, copy0MBB); 1340 F->insert(I, copy1MBB); 1341 // Update machine-CFG edges by transferring all successors of the current 1342 // block to the new block which will contain the Phi node for the select. 1343 copy1MBB->splice(copy1MBB->begin(), BB, 1344 llvm::next(MachineBasicBlock::iterator(MI)), 1345 BB->end()); 1346 copy1MBB->transferSuccessorsAndUpdatePHIs(BB); 1347 // Next, add the true and fallthrough blocks as its successors. 1348 BB->addSuccessor(copy0MBB); 1349 BB->addSuccessor(copy1MBB); 1350 1351 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1352 .addMBB(copy1MBB) 1353 .addImm(MI->getOperand(3).getImm()); 1354 1355 // copy0MBB: 1356 // %FalseValue = ... 1357 // # fallthrough to copy1MBB 1358 BB = copy0MBB; 1359 1360 // Update machine-CFG edges 1361 BB->addSuccessor(copy1MBB); 1362 1363 // copy1MBB: 1364 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1365 // ... 1366 BB = copy1MBB; 1367 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), 1368 MI->getOperand(0).getReg()) 1369 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB) 1370 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB); 1371 1372 MI->eraseFromParent(); // The pseudo instruction is gone now. 1373 return BB; 1374} 1375