PPCFastISel.cpp revision de2d8694e25a814696358e95141f4b1aa4d8847e
1//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the PowerPC-specific support for the FastISel class. Some 11// of the target-specific code is generated by tablegen in the file 12// PPCGenFastISel.inc, which is #included here. 13// 14//===----------------------------------------------------------------------===// 15 16#include "PPC.h" 17#include "MCTargetDesc/PPCPredicates.h" 18#include "PPCCallingConv.h" 19#include "PPCCCState.h" 20#include "PPCISelLowering.h" 21#include "PPCMachineFunctionInfo.h" 22#include "PPCSubtarget.h" 23#include "PPCTargetMachine.h" 24#include "llvm/ADT/Optional.h" 25#include "llvm/CodeGen/CallingConvLower.h" 26#include "llvm/CodeGen/FastISel.h" 27#include "llvm/CodeGen/FunctionLoweringInfo.h" 28#include "llvm/CodeGen/MachineConstantPool.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineInstrBuilder.h" 31#include "llvm/CodeGen/MachineRegisterInfo.h" 32#include "llvm/IR/CallingConv.h" 33#include "llvm/IR/GetElementPtrTypeIterator.h" 34#include "llvm/IR/GlobalAlias.h" 35#include "llvm/IR/GlobalVariable.h" 36#include "llvm/IR/IntrinsicInst.h" 37#include "llvm/IR/Operator.h" 38#include "llvm/Support/Debug.h" 39#include "llvm/Target/TargetLowering.h" 40#include "llvm/Target/TargetMachine.h" 41 42//===----------------------------------------------------------------------===// 43// 44// TBD: 45// fastLowerArguments: Handle simple cases. 46// PPCMaterializeGV: Handle TLS. 47// SelectCall: Handle function pointers. 48// SelectCall: Handle multi-register return values. 49// SelectCall: Optimize away nops for local calls. 50// processCallArgs: Handle bit-converted arguments. 51// finishCall: Handle multi-register return values. 52// PPCComputeAddress: Handle parameter references as FrameIndex's. 53// PPCEmitCmp: Handle immediate as operand 1. 54// SelectCall: Handle small byval arguments. 55// SelectIntrinsicCall: Implement. 56// SelectSelect: Implement. 57// Consider factoring isTypeLegal into the base class. 58// Implement switches and jump tables. 59// 60//===----------------------------------------------------------------------===// 61using namespace llvm; 62 63#define DEBUG_TYPE "ppcfastisel" 64 65namespace { 66 67typedef struct Address { 68 enum { 69 RegBase, 70 FrameIndexBase 71 } BaseType; 72 73 union { 74 unsigned Reg; 75 int FI; 76 } Base; 77 78 long Offset; 79 80 // Innocuous defaults for our address. 81 Address() 82 : BaseType(RegBase), Offset(0) { 83 Base.Reg = 0; 84 } 85} Address; 86 87class PPCFastISel final : public FastISel { 88 89 const TargetMachine &TM; 90 const PPCSubtarget *PPCSubTarget; 91 PPCFunctionInfo *PPCFuncInfo; 92 const TargetInstrInfo &TII; 93 const TargetLowering &TLI; 94 LLVMContext *Context; 95 96 public: 97 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 98 const TargetLibraryInfo *LibInfo) 99 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 100 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 101 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 102 TII(*PPCSubTarget->getInstrInfo()), 103 TLI(*PPCSubTarget->getTargetLowering()), 104 Context(&FuncInfo.Fn->getContext()) {} 105 106 // Backend specific FastISel code. 107 private: 108 bool fastSelectInstruction(const Instruction *I) override; 109 unsigned fastMaterializeConstant(const Constant *C) override; 110 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 111 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 112 const LoadInst *LI) override; 113 bool fastLowerArguments() override; 114 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 115 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 unsigned Op0, bool Op0IsKill, 118 uint64_t Imm); 119 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill); 122 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 123 const TargetRegisterClass *RC, 124 unsigned Op0, bool Op0IsKill, 125 unsigned Op1, bool Op1IsKill); 126 127 bool fastLowerCall(CallLoweringInfo &CLI) override; 128 129 // Instruction selection routines. 130 private: 131 bool SelectLoad(const Instruction *I); 132 bool SelectStore(const Instruction *I); 133 bool SelectBranch(const Instruction *I); 134 bool SelectIndirectBr(const Instruction *I); 135 bool SelectFPExt(const Instruction *I); 136 bool SelectFPTrunc(const Instruction *I); 137 bool SelectIToFP(const Instruction *I, bool IsSigned); 138 bool SelectFPToI(const Instruction *I, bool IsSigned); 139 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 140 bool SelectRet(const Instruction *I); 141 bool SelectTrunc(const Instruction *I); 142 bool SelectIntExt(const Instruction *I); 143 144 // Utility routines. 145 private: 146 bool isTypeLegal(Type *Ty, MVT &VT); 147 bool isLoadTypeLegal(Type *Ty, MVT &VT); 148 bool isValueAvailable(const Value *V) const; 149 bool isVSFRCRegister(unsigned Register) const { 150 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 151 } 152 bool isVSSRCRegister(unsigned Register) const { 153 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID; 154 } 155 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 156 bool isZExt, unsigned DestReg); 157 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 158 const TargetRegisterClass *RC, bool IsZExt = true, 159 unsigned FP64LoadOpc = PPC::LFD); 160 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 161 bool PPCComputeAddress(const Value *Obj, Address &Addr); 162 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 163 unsigned &IndexReg); 164 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 165 unsigned DestReg, bool IsZExt); 166 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 167 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 168 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 169 bool UseSExt = true); 170 unsigned PPCMaterialize32BitInt(int64_t Imm, 171 const TargetRegisterClass *RC); 172 unsigned PPCMaterialize64BitInt(int64_t Imm, 173 const TargetRegisterClass *RC); 174 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 175 unsigned SrcReg, bool IsSigned); 176 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 177 178 // Call handling routines. 179 private: 180 bool processCallArgs(SmallVectorImpl<Value*> &Args, 181 SmallVectorImpl<unsigned> &ArgRegs, 182 SmallVectorImpl<MVT> &ArgVTs, 183 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 184 SmallVectorImpl<unsigned> &RegArgs, 185 CallingConv::ID CC, 186 unsigned &NumBytes, 187 bool IsVarArg); 188 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 189 LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag); 190 191 private: 192 #include "PPCGenFastISel.inc" 193 194}; 195 196} // end anonymous namespace 197 198#include "PPCGenCallingConv.inc" 199 200// Function whose sole purpose is to kill compiler warnings 201// stemming from unused functions included from PPCGenCallingConv.inc. 202CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 203 if (Flag == 1) 204 return CC_PPC32_SVR4; 205 else if (Flag == 2) 206 return CC_PPC32_SVR4_ByVal; 207 else if (Flag == 3) 208 return CC_PPC32_SVR4_VarArg; 209 else 210 return RetCC_PPC; 211} 212 213static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 214 switch (Pred) { 215 // These are not representable with any single compare. 216 case CmpInst::FCMP_FALSE: 217 case CmpInst::FCMP_TRUE: 218 // Major concern about the following 6 cases is NaN result. The comparison 219 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 220 // only one of which will be set. The result is generated by fcmpu 221 // instruction. However, bc instruction only inspects one of the first 3 222 // bits, so when un is set, bc instruction may jump to to an undesired 223 // place. 224 // 225 // More specifically, if we expect an unordered comparison and un is set, we 226 // expect to always go to true branch; in such case UEQ, UGT and ULT still 227 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 228 // since they are tested by inspecting !eq, !lt, !gt, respectively. 229 // 230 // Similarly, for ordered comparison, when un is set, we always expect the 231 // result to be false. In such case OGT, OLT and OEQ is good, since they are 232 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 233 // and ONE are tested through !lt, !gt and !eq, and these are true. 234 case CmpInst::FCMP_UEQ: 235 case CmpInst::FCMP_UGT: 236 case CmpInst::FCMP_ULT: 237 case CmpInst::FCMP_OGE: 238 case CmpInst::FCMP_OLE: 239 case CmpInst::FCMP_ONE: 240 default: 241 return Optional<PPC::Predicate>(); 242 243 case CmpInst::FCMP_OEQ: 244 case CmpInst::ICMP_EQ: 245 return PPC::PRED_EQ; 246 247 case CmpInst::FCMP_OGT: 248 case CmpInst::ICMP_UGT: 249 case CmpInst::ICMP_SGT: 250 return PPC::PRED_GT; 251 252 case CmpInst::FCMP_UGE: 253 case CmpInst::ICMP_UGE: 254 case CmpInst::ICMP_SGE: 255 return PPC::PRED_GE; 256 257 case CmpInst::FCMP_OLT: 258 case CmpInst::ICMP_ULT: 259 case CmpInst::ICMP_SLT: 260 return PPC::PRED_LT; 261 262 case CmpInst::FCMP_ULE: 263 case CmpInst::ICMP_ULE: 264 case CmpInst::ICMP_SLE: 265 return PPC::PRED_LE; 266 267 case CmpInst::FCMP_UNE: 268 case CmpInst::ICMP_NE: 269 return PPC::PRED_NE; 270 271 case CmpInst::FCMP_ORD: 272 return PPC::PRED_NU; 273 274 case CmpInst::FCMP_UNO: 275 return PPC::PRED_UN; 276 } 277} 278 279// Determine whether the type Ty is simple enough to be handled by 280// fast-isel, and return its equivalent machine type in VT. 281// FIXME: Copied directly from ARM -- factor into base class? 282bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 283 EVT Evt = TLI.getValueType(DL, Ty, true); 284 285 // Only handle simple types. 286 if (Evt == MVT::Other || !Evt.isSimple()) return false; 287 VT = Evt.getSimpleVT(); 288 289 // Handle all legal types, i.e. a register that will directly hold this 290 // value. 291 return TLI.isTypeLegal(VT); 292} 293 294// Determine whether the type Ty is simple enough to be handled by 295// fast-isel as a load target, and return its equivalent machine type in VT. 296bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 297 if (isTypeLegal(Ty, VT)) return true; 298 299 // If this is a type than can be sign or zero-extended to a basic operation 300 // go ahead and accept it now. 301 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 302 return true; 303 } 304 305 return false; 306} 307 308bool PPCFastISel::isValueAvailable(const Value *V) const { 309 if (!isa<Instruction>(V)) 310 return true; 311 312 const auto *I = cast<Instruction>(V); 313 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 314} 315 316// Given a value Obj, create an Address object Addr that represents its 317// address. Return false if we can't handle it. 318bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 319 const User *U = nullptr; 320 unsigned Opcode = Instruction::UserOp1; 321 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 322 // Don't walk into other basic blocks unless the object is an alloca from 323 // another block, otherwise it may not have a virtual register assigned. 324 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 325 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 326 Opcode = I->getOpcode(); 327 U = I; 328 } 329 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 330 Opcode = C->getOpcode(); 331 U = C; 332 } 333 334 switch (Opcode) { 335 default: 336 break; 337 case Instruction::BitCast: 338 // Look through bitcasts. 339 return PPCComputeAddress(U->getOperand(0), Addr); 340 case Instruction::IntToPtr: 341 // Look past no-op inttoptrs. 342 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 343 TLI.getPointerTy(DL)) 344 return PPCComputeAddress(U->getOperand(0), Addr); 345 break; 346 case Instruction::PtrToInt: 347 // Look past no-op ptrtoints. 348 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 349 return PPCComputeAddress(U->getOperand(0), Addr); 350 break; 351 case Instruction::GetElementPtr: { 352 Address SavedAddr = Addr; 353 long TmpOffset = Addr.Offset; 354 355 // Iterate through the GEP folding the constants into offsets where 356 // we can. 357 gep_type_iterator GTI = gep_type_begin(U); 358 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 359 II != IE; ++II, ++GTI) { 360 const Value *Op = *II; 361 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 362 const StructLayout *SL = DL.getStructLayout(STy); 363 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 364 TmpOffset += SL->getElementOffset(Idx); 365 } else { 366 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 367 for (;;) { 368 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 369 // Constant-offset addressing. 370 TmpOffset += CI->getSExtValue() * S; 371 break; 372 } 373 if (canFoldAddIntoGEP(U, Op)) { 374 // A compatible add with a constant operand. Fold the constant. 375 ConstantInt *CI = 376 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 377 TmpOffset += CI->getSExtValue() * S; 378 // Iterate on the other operand. 379 Op = cast<AddOperator>(Op)->getOperand(0); 380 continue; 381 } 382 // Unsupported 383 goto unsupported_gep; 384 } 385 } 386 } 387 388 // Try to grab the base operand now. 389 Addr.Offset = TmpOffset; 390 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 391 392 // We failed, restore everything and try the other options. 393 Addr = SavedAddr; 394 395 unsupported_gep: 396 break; 397 } 398 case Instruction::Alloca: { 399 const AllocaInst *AI = cast<AllocaInst>(Obj); 400 DenseMap<const AllocaInst*, int>::iterator SI = 401 FuncInfo.StaticAllocaMap.find(AI); 402 if (SI != FuncInfo.StaticAllocaMap.end()) { 403 Addr.BaseType = Address::FrameIndexBase; 404 Addr.Base.FI = SI->second; 405 return true; 406 } 407 break; 408 } 409 } 410 411 // FIXME: References to parameters fall through to the behavior 412 // below. They should be able to reference a frame index since 413 // they are stored to the stack, so we can get "ld rx, offset(r1)" 414 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 415 // just contain the parameter. Try to handle this with a FI. 416 417 // Try to get this in a register if nothing else has worked. 418 if (Addr.Base.Reg == 0) 419 Addr.Base.Reg = getRegForValue(Obj); 420 421 // Prevent assignment of base register to X0, which is inappropriate 422 // for loads and stores alike. 423 if (Addr.Base.Reg != 0) 424 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 425 426 return Addr.Base.Reg != 0; 427} 428 429// Fix up some addresses that can't be used directly. For example, if 430// an offset won't fit in an instruction field, we may need to move it 431// into an index register. 432void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 433 unsigned &IndexReg) { 434 435 // Check whether the offset fits in the instruction field. 436 if (!isInt<16>(Addr.Offset)) 437 UseOffset = false; 438 439 // If this is a stack pointer and the offset needs to be simplified then 440 // put the alloca address into a register, set the base type back to 441 // register and continue. This should almost never happen. 442 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 443 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 444 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 445 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 446 Addr.Base.Reg = ResultReg; 447 Addr.BaseType = Address::RegBase; 448 } 449 450 if (!UseOffset) { 451 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 452 const ConstantInt *Offset = 453 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 454 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 455 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 456 } 457} 458 459// Emit a load instruction if possible, returning true if we succeeded, 460// otherwise false. See commentary below for how the register class of 461// the load is determined. 462bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 463 const TargetRegisterClass *RC, 464 bool IsZExt, unsigned FP64LoadOpc) { 465 unsigned Opc; 466 bool UseOffset = true; 467 468 // If ResultReg is given, it determines the register class of the load. 469 // Otherwise, RC is the register class to use. If the result of the 470 // load isn't anticipated in this block, both may be zero, in which 471 // case we must make a conservative guess. In particular, don't assign 472 // R0 or X0 to the result register, as the result may be used in a load, 473 // store, add-immediate, or isel that won't permit this. (Though 474 // perhaps the spill and reload of live-exit values would handle this?) 475 const TargetRegisterClass *UseRC = 476 (ResultReg ? MRI.getRegClass(ResultReg) : 477 (RC ? RC : 478 (VT == MVT::f64 ? &PPC::F8RCRegClass : 479 (VT == MVT::f32 ? &PPC::F4RCRegClass : 480 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 481 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 482 483 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 484 485 switch (VT.SimpleTy) { 486 default: // e.g., vector types not handled 487 return false; 488 case MVT::i8: 489 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 490 break; 491 case MVT::i16: 492 Opc = (IsZExt ? 493 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 494 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 495 break; 496 case MVT::i32: 497 Opc = (IsZExt ? 498 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 499 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 500 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 501 UseOffset = false; 502 break; 503 case MVT::i64: 504 Opc = PPC::LD; 505 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 506 "64-bit load with 32-bit target??"); 507 UseOffset = ((Addr.Offset & 3) == 0); 508 break; 509 case MVT::f32: 510 Opc = PPC::LFS; 511 break; 512 case MVT::f64: 513 Opc = FP64LoadOpc; 514 break; 515 } 516 517 // If necessary, materialize the offset into a register and use 518 // the indexed form. Also handle stack pointers with special needs. 519 unsigned IndexReg = 0; 520 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 521 522 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 523 // be used. 524 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg); 525 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 526 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 527 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD; 528 if ((Is32VSXLoad || Is64VSXLoad) && 529 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 530 (Addr.Offset == 0)) { 531 UseOffset = false; 532 } 533 534 if (ResultReg == 0) 535 ResultReg = createResultReg(UseRC); 536 537 // Note: If we still have a frame index here, we know the offset is 538 // in range, as otherwise PPCSimplifyAddress would have converted it 539 // into a RegBase. 540 if (Addr.BaseType == Address::FrameIndexBase) { 541 // VSX only provides an indexed load. 542 if (Is32VSXLoad || Is64VSXLoad) return false; 543 544 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 545 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 546 Addr.Offset), 547 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 548 MFI.getObjectAlignment(Addr.Base.FI)); 549 550 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 551 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 552 553 // Base reg with offset in range. 554 } else if (UseOffset) { 555 // VSX only provides an indexed load. 556 if (Is32VSXLoad || Is64VSXLoad) return false; 557 558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 559 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 560 561 // Indexed form. 562 } else { 563 // Get the RR opcode corresponding to the RI one. FIXME: It would be 564 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 565 // is hard to get at. 566 switch (Opc) { 567 default: llvm_unreachable("Unexpected opcode!"); 568 case PPC::LBZ: Opc = PPC::LBZX; break; 569 case PPC::LBZ8: Opc = PPC::LBZX8; break; 570 case PPC::LHZ: Opc = PPC::LHZX; break; 571 case PPC::LHZ8: Opc = PPC::LHZX8; break; 572 case PPC::LHA: Opc = PPC::LHAX; break; 573 case PPC::LHA8: Opc = PPC::LHAX8; break; 574 case PPC::LWZ: Opc = PPC::LWZX; break; 575 case PPC::LWZ8: Opc = PPC::LWZX8; break; 576 case PPC::LWA: Opc = PPC::LWAX; break; 577 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 578 case PPC::LD: Opc = PPC::LDX; break; 579 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 580 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 581 } 582 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 583 .addReg(Addr.Base.Reg).addReg(IndexReg); 584 } 585 586 return true; 587} 588 589// Attempt to fast-select a load instruction. 590bool PPCFastISel::SelectLoad(const Instruction *I) { 591 // FIXME: No atomic loads are supported. 592 if (cast<LoadInst>(I)->isAtomic()) 593 return false; 594 595 // Verify we have a legal type before going any further. 596 MVT VT; 597 if (!isLoadTypeLegal(I->getType(), VT)) 598 return false; 599 600 // See if we can handle this address. 601 Address Addr; 602 if (!PPCComputeAddress(I->getOperand(0), Addr)) 603 return false; 604 605 // Look at the currently assigned register for this instruction 606 // to determine the required register class. This is necessary 607 // to constrain RA from using R0/X0 when this is not legal. 608 unsigned AssignedReg = FuncInfo.ValueMap[I]; 609 const TargetRegisterClass *RC = 610 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 611 612 unsigned ResultReg = 0; 613 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 614 return false; 615 updateValueMap(I, ResultReg); 616 return true; 617} 618 619// Emit a store instruction to store SrcReg at Addr. 620bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 621 assert(SrcReg && "Nothing to store!"); 622 unsigned Opc; 623 bool UseOffset = true; 624 625 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 626 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 627 628 switch (VT.SimpleTy) { 629 default: // e.g., vector types not handled 630 return false; 631 case MVT::i8: 632 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 633 break; 634 case MVT::i16: 635 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 636 break; 637 case MVT::i32: 638 assert(Is32BitInt && "Not GPRC for i32??"); 639 Opc = PPC::STW; 640 break; 641 case MVT::i64: 642 Opc = PPC::STD; 643 UseOffset = ((Addr.Offset & 3) == 0); 644 break; 645 case MVT::f32: 646 Opc = PPC::STFS; 647 break; 648 case MVT::f64: 649 Opc = PPC::STFD; 650 break; 651 } 652 653 // If necessary, materialize the offset into a register and use 654 // the indexed form. Also handle stack pointers with special needs. 655 unsigned IndexReg = 0; 656 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 657 658 // If this is a potential VSX store with an offset of 0, a VSX indexed store 659 // can be used. 660 bool IsVSSRC = isVSSRCRegister(SrcReg); 661 bool IsVSFRC = isVSFRCRegister(SrcReg); 662 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 663 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 664 if ((Is32VSXStore || Is64VSXStore) && 665 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 666 (Addr.Offset == 0)) { 667 UseOffset = false; 668 } 669 670 // Note: If we still have a frame index here, we know the offset is 671 // in range, as otherwise PPCSimplifyAddress would have converted it 672 // into a RegBase. 673 if (Addr.BaseType == Address::FrameIndexBase) { 674 // VSX only provides an indexed store. 675 if (Is32VSXStore || Is64VSXStore) return false; 676 677 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 678 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 679 Addr.Offset), 680 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 681 MFI.getObjectAlignment(Addr.Base.FI)); 682 683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 684 .addReg(SrcReg) 685 .addImm(Addr.Offset) 686 .addFrameIndex(Addr.Base.FI) 687 .addMemOperand(MMO); 688 689 // Base reg with offset in range. 690 } else if (UseOffset) { 691 // VSX only provides an indexed store. 692 if (Is32VSXStore || Is64VSXStore) return false; 693 694 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 695 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 696 697 // Indexed form. 698 } else { 699 // Get the RR opcode corresponding to the RI one. FIXME: It would be 700 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 701 // is hard to get at. 702 switch (Opc) { 703 default: llvm_unreachable("Unexpected opcode!"); 704 case PPC::STB: Opc = PPC::STBX; break; 705 case PPC::STH : Opc = PPC::STHX; break; 706 case PPC::STW : Opc = PPC::STWX; break; 707 case PPC::STB8: Opc = PPC::STBX8; break; 708 case PPC::STH8: Opc = PPC::STHX8; break; 709 case PPC::STW8: Opc = PPC::STWX8; break; 710 case PPC::STD: Opc = PPC::STDX; break; 711 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 712 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 713 } 714 715 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 716 .addReg(SrcReg); 717 718 // If we have an index register defined we use it in the store inst, 719 // otherwise we use X0 as base as it makes the vector instructions to 720 // use zero in the computation of the effective address regardless the 721 // content of the register. 722 if (IndexReg) 723 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 724 else 725 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 726 } 727 728 return true; 729} 730 731// Attempt to fast-select a store instruction. 732bool PPCFastISel::SelectStore(const Instruction *I) { 733 Value *Op0 = I->getOperand(0); 734 unsigned SrcReg = 0; 735 736 // FIXME: No atomics loads are supported. 737 if (cast<StoreInst>(I)->isAtomic()) 738 return false; 739 740 // Verify we have a legal type before going any further. 741 MVT VT; 742 if (!isLoadTypeLegal(Op0->getType(), VT)) 743 return false; 744 745 // Get the value to be stored into a register. 746 SrcReg = getRegForValue(Op0); 747 if (SrcReg == 0) 748 return false; 749 750 // See if we can handle this address. 751 Address Addr; 752 if (!PPCComputeAddress(I->getOperand(1), Addr)) 753 return false; 754 755 if (!PPCEmitStore(VT, SrcReg, Addr)) 756 return false; 757 758 return true; 759} 760 761// Attempt to fast-select a branch instruction. 762bool PPCFastISel::SelectBranch(const Instruction *I) { 763 const BranchInst *BI = cast<BranchInst>(I); 764 MachineBasicBlock *BrBB = FuncInfo.MBB; 765 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 766 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 767 768 // For now, just try the simplest case where it's fed by a compare. 769 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 770 if (isValueAvailable(CI)) { 771 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 772 if (!OptPPCPred) 773 return false; 774 775 PPC::Predicate PPCPred = OptPPCPred.getValue(); 776 777 // Take advantage of fall-through opportunities. 778 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 779 std::swap(TBB, FBB); 780 PPCPred = PPC::InvertPredicate(PPCPred); 781 } 782 783 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 784 785 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 786 CondReg)) 787 return false; 788 789 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 790 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 791 finishCondBranch(BI->getParent(), TBB, FBB); 792 return true; 793 } 794 } else if (const ConstantInt *CI = 795 dyn_cast<ConstantInt>(BI->getCondition())) { 796 uint64_t Imm = CI->getZExtValue(); 797 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 798 fastEmitBranch(Target, DbgLoc); 799 return true; 800 } 801 802 // FIXME: ARM looks for a case where the block containing the compare 803 // has been split from the block containing the branch. If this happens, 804 // there is a vreg available containing the result of the compare. I'm 805 // not sure we can do much, as we've lost the predicate information with 806 // the compare instruction -- we have a 4-bit CR but don't know which bit 807 // to test here. 808 return false; 809} 810 811// Attempt to emit a compare of the two source values. Signed and unsigned 812// comparisons are supported. Return false if we can't handle it. 813bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 814 bool IsZExt, unsigned DestReg) { 815 Type *Ty = SrcValue1->getType(); 816 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 817 if (!SrcEVT.isSimple()) 818 return false; 819 MVT SrcVT = SrcEVT.getSimpleVT(); 820 821 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 822 return false; 823 824 // See if operand 2 is an immediate encodeable in the compare. 825 // FIXME: Operands are not in canonical order at -O0, so an immediate 826 // operand in position 1 is a lost opportunity for now. We are 827 // similar to ARM in this regard. 828 long Imm = 0; 829 bool UseImm = false; 830 831 // Only 16-bit integer constants can be represented in compares for 832 // PowerPC. Others will be materialized into a register. 833 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 834 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 835 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 836 const APInt &CIVal = ConstInt->getValue(); 837 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 838 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 839 UseImm = true; 840 } 841 } 842 843 unsigned CmpOpc; 844 bool NeedsExt = false; 845 switch (SrcVT.SimpleTy) { 846 default: return false; 847 case MVT::f32: 848 CmpOpc = PPC::FCMPUS; 849 break; 850 case MVT::f64: 851 CmpOpc = PPC::FCMPUD; 852 break; 853 case MVT::i1: 854 case MVT::i8: 855 case MVT::i16: 856 NeedsExt = true; 857 // Intentional fall-through. 858 case MVT::i32: 859 if (!UseImm) 860 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 861 else 862 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 863 break; 864 case MVT::i64: 865 if (!UseImm) 866 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 867 else 868 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 869 break; 870 } 871 872 unsigned SrcReg1 = getRegForValue(SrcValue1); 873 if (SrcReg1 == 0) 874 return false; 875 876 unsigned SrcReg2 = 0; 877 if (!UseImm) { 878 SrcReg2 = getRegForValue(SrcValue2); 879 if (SrcReg2 == 0) 880 return false; 881 } 882 883 if (NeedsExt) { 884 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 885 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 886 return false; 887 SrcReg1 = ExtReg; 888 889 if (!UseImm) { 890 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 891 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 892 return false; 893 SrcReg2 = ExtReg; 894 } 895 } 896 897 if (!UseImm) 898 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 899 .addReg(SrcReg1).addReg(SrcReg2); 900 else 901 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 902 .addReg(SrcReg1).addImm(Imm); 903 904 return true; 905} 906 907// Attempt to fast-select a floating-point extend instruction. 908bool PPCFastISel::SelectFPExt(const Instruction *I) { 909 Value *Src = I->getOperand(0); 910 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 911 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 912 913 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 914 return false; 915 916 unsigned SrcReg = getRegForValue(Src); 917 if (!SrcReg) 918 return false; 919 920 // No code is generated for a FP extend. 921 updateValueMap(I, SrcReg); 922 return true; 923} 924 925// Attempt to fast-select a floating-point truncate instruction. 926bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 927 Value *Src = I->getOperand(0); 928 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 929 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 930 931 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 932 return false; 933 934 unsigned SrcReg = getRegForValue(Src); 935 if (!SrcReg) 936 return false; 937 938 // Round the result to single precision. 939 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 941 .addReg(SrcReg); 942 943 updateValueMap(I, DestReg); 944 return true; 945} 946 947// Move an i32 or i64 value in a GPR to an f64 value in an FPR. 948// FIXME: When direct register moves are implemented (see PowerISA 2.07), 949// those should be used instead of moving via a stack slot when the 950// subtarget permits. 951// FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 952// stack slot and 4-byte store/load sequence. Or just sext the 4-byte 953// case to 8 bytes which produces tighter code but wastes stack space. 954unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 955 bool IsSigned) { 956 957 // If necessary, extend 32-bit int to 64-bit. 958 if (SrcVT == MVT::i32) { 959 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 960 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 961 return 0; 962 SrcReg = TmpReg; 963 } 964 965 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 966 Address Addr; 967 Addr.BaseType = Address::FrameIndexBase; 968 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 969 970 // Store the value from the GPR. 971 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 972 return 0; 973 974 // Load the integer value into an FPR. The kind of load used depends 975 // on a number of conditions. 976 unsigned LoadOpc = PPC::LFD; 977 978 if (SrcVT == MVT::i32) { 979 if (!IsSigned) { 980 LoadOpc = PPC::LFIWZX; 981 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 982 } else if (PPCSubTarget->hasLFIWAX()) { 983 LoadOpc = PPC::LFIWAX; 984 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 985 } 986 } 987 988 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 989 unsigned ResultReg = 0; 990 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 991 return 0; 992 993 return ResultReg; 994} 995 996// Attempt to fast-select an integer-to-floating-point conversion. 997// FIXME: Once fast-isel has better support for VSX, conversions using 998// direct moves should be implemented. 999bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1000 MVT DstVT; 1001 Type *DstTy = I->getType(); 1002 if (!isTypeLegal(DstTy, DstVT)) 1003 return false; 1004 1005 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1006 return false; 1007 1008 Value *Src = I->getOperand(0); 1009 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1010 if (!SrcEVT.isSimple()) 1011 return false; 1012 1013 MVT SrcVT = SrcEVT.getSimpleVT(); 1014 1015 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1016 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1017 return false; 1018 1019 unsigned SrcReg = getRegForValue(Src); 1020 if (SrcReg == 0) 1021 return false; 1022 1023 // We can only lower an unsigned convert if we have the newer 1024 // floating-point conversion operations. 1025 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1026 return false; 1027 1028 // FIXME: For now we require the newer floating-point conversion operations 1029 // (which are present only on P7 and A2 server models) when converting 1030 // to single-precision float. Otherwise we have to generate a lot of 1031 // fiddly code to avoid double rounding. If necessary, the fiddly code 1032 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1033 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1034 return false; 1035 1036 // Extend the input if necessary. 1037 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1038 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1039 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1040 return false; 1041 SrcVT = MVT::i64; 1042 SrcReg = TmpReg; 1043 } 1044 1045 // Move the integer value to an FPR. 1046 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1047 if (FPReg == 0) 1048 return false; 1049 1050 // Determine the opcode for the conversion. 1051 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1052 unsigned DestReg = createResultReg(RC); 1053 unsigned Opc; 1054 1055 if (DstVT == MVT::f32) 1056 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1057 else 1058 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1059 1060 // Generate the convert. 1061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1062 .addReg(FPReg); 1063 1064 updateValueMap(I, DestReg); 1065 return true; 1066} 1067 1068// Move the floating-point value in SrcReg into an integer destination 1069// register, and return the register (or zero if we can't handle it). 1070// FIXME: When direct register moves are implemented (see PowerISA 2.07), 1071// those should be used instead of moving via a stack slot when the 1072// subtarget permits. 1073unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1074 unsigned SrcReg, bool IsSigned) { 1075 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1076 // Note that if have STFIWX available, we could use a 4-byte stack 1077 // slot for i32, but this being fast-isel we'll just go with the 1078 // easiest code gen possible. 1079 Address Addr; 1080 Addr.BaseType = Address::FrameIndexBase; 1081 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1082 1083 // Store the value from the FPR. 1084 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1085 return 0; 1086 1087 // Reload it into a GPR. If we want an i32 on big endian, modify the 1088 // address to have a 4-byte offset so we load from the right place. 1089 if (VT == MVT::i32) 1090 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1091 1092 // Look at the currently assigned register for this instruction 1093 // to determine the required register class. 1094 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1095 const TargetRegisterClass *RC = 1096 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1097 1098 unsigned ResultReg = 0; 1099 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1100 return 0; 1101 1102 return ResultReg; 1103} 1104 1105// Attempt to fast-select a floating-point-to-integer conversion. 1106// FIXME: Once fast-isel has better support for VSX, conversions using 1107// direct moves should be implemented. 1108bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1109 MVT DstVT, SrcVT; 1110 Type *DstTy = I->getType(); 1111 if (!isTypeLegal(DstTy, DstVT)) 1112 return false; 1113 1114 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1115 return false; 1116 1117 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1118 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1119 return false; 1120 1121 Value *Src = I->getOperand(0); 1122 Type *SrcTy = Src->getType(); 1123 if (!isTypeLegal(SrcTy, SrcVT)) 1124 return false; 1125 1126 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1127 return false; 1128 1129 unsigned SrcReg = getRegForValue(Src); 1130 if (SrcReg == 0) 1131 return false; 1132 1133 // Convert f32 to f64 if necessary. This is just a meaningless copy 1134 // to get the register class right. 1135 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1136 if (InRC == &PPC::F4RCRegClass) { 1137 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1139 TII.get(TargetOpcode::COPY), TmpReg) 1140 .addReg(SrcReg); 1141 SrcReg = TmpReg; 1142 } 1143 1144 // Determine the opcode for the conversion, which takes place 1145 // entirely within FPRs. 1146 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1147 unsigned Opc; 1148 1149 if (DstVT == MVT::i32) 1150 if (IsSigned) 1151 Opc = PPC::FCTIWZ; 1152 else 1153 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1154 else 1155 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1156 1157 // Generate the convert. 1158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1159 .addReg(SrcReg); 1160 1161 // Now move the integer value from a float register to an integer register. 1162 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1163 if (IntReg == 0) 1164 return false; 1165 1166 updateValueMap(I, IntReg); 1167 return true; 1168} 1169 1170// Attempt to fast-select a binary integer operation that isn't already 1171// handled automatically. 1172bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1173 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1174 1175 // We can get here in the case when we have a binary operation on a non-legal 1176 // type and the target independent selector doesn't know how to handle it. 1177 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1178 return false; 1179 1180 // Look at the currently assigned register for this instruction 1181 // to determine the required register class. If there is no register, 1182 // make a conservative choice (don't assign R0). 1183 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1184 const TargetRegisterClass *RC = 1185 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1186 &PPC::GPRC_and_GPRC_NOR0RegClass); 1187 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1188 1189 unsigned Opc; 1190 switch (ISDOpcode) { 1191 default: return false; 1192 case ISD::ADD: 1193 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1194 break; 1195 case ISD::OR: 1196 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1197 break; 1198 case ISD::SUB: 1199 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1200 break; 1201 } 1202 1203 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1204 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1205 if (SrcReg1 == 0) return false; 1206 1207 // Handle case of small immediate operand. 1208 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1209 const APInt &CIVal = ConstInt->getValue(); 1210 int Imm = (int)CIVal.getSExtValue(); 1211 bool UseImm = true; 1212 if (isInt<16>(Imm)) { 1213 switch (Opc) { 1214 default: 1215 llvm_unreachable("Missing case!"); 1216 case PPC::ADD4: 1217 Opc = PPC::ADDI; 1218 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1219 break; 1220 case PPC::ADD8: 1221 Opc = PPC::ADDI8; 1222 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1223 break; 1224 case PPC::OR: 1225 Opc = PPC::ORI; 1226 break; 1227 case PPC::OR8: 1228 Opc = PPC::ORI8; 1229 break; 1230 case PPC::SUBF: 1231 if (Imm == -32768) 1232 UseImm = false; 1233 else { 1234 Opc = PPC::ADDI; 1235 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1236 Imm = -Imm; 1237 } 1238 break; 1239 case PPC::SUBF8: 1240 if (Imm == -32768) 1241 UseImm = false; 1242 else { 1243 Opc = PPC::ADDI8; 1244 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1245 Imm = -Imm; 1246 } 1247 break; 1248 } 1249 1250 if (UseImm) { 1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1252 ResultReg) 1253 .addReg(SrcReg1) 1254 .addImm(Imm); 1255 updateValueMap(I, ResultReg); 1256 return true; 1257 } 1258 } 1259 } 1260 1261 // Reg-reg case. 1262 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1263 if (SrcReg2 == 0) return false; 1264 1265 // Reverse operands for subtract-from. 1266 if (ISDOpcode == ISD::SUB) 1267 std::swap(SrcReg1, SrcReg2); 1268 1269 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1270 .addReg(SrcReg1).addReg(SrcReg2); 1271 updateValueMap(I, ResultReg); 1272 return true; 1273} 1274 1275// Handle arguments to a call that we're attempting to fast-select. 1276// Return false if the arguments are too complex for us at the moment. 1277bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1278 SmallVectorImpl<unsigned> &ArgRegs, 1279 SmallVectorImpl<MVT> &ArgVTs, 1280 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1281 SmallVectorImpl<unsigned> &RegArgs, 1282 CallingConv::ID CC, 1283 unsigned &NumBytes, 1284 bool IsVarArg) { 1285 SmallVector<CCValAssign, 16> ArgLocs; 1286 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1287 1288 // Reserve space for the linkage area on the stack. 1289 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1290 CCInfo.AllocateStack(LinkageSize, 8); 1291 1292 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1293 1294 // Bail out if we can't handle any of the arguments. 1295 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1296 CCValAssign &VA = ArgLocs[I]; 1297 MVT ArgVT = ArgVTs[VA.getValNo()]; 1298 1299 // Skip vector arguments for now, as well as long double and 1300 // uint128_t, and anything that isn't passed in a register. 1301 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1302 !VA.isRegLoc() || VA.needsCustom()) 1303 return false; 1304 1305 // Skip bit-converted arguments for now. 1306 if (VA.getLocInfo() == CCValAssign::BCvt) 1307 return false; 1308 } 1309 1310 // Get a count of how many bytes are to be pushed onto the stack. 1311 NumBytes = CCInfo.getNextStackOffset(); 1312 1313 // The prolog code of the callee may store up to 8 GPR argument registers to 1314 // the stack, allowing va_start to index over them in memory if its varargs. 1315 // Because we cannot tell if this is needed on the caller side, we have to 1316 // conservatively assume that it is needed. As such, make sure we have at 1317 // least enough stack space for the caller to store the 8 GPRs. 1318 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1319 NumBytes = std::max(NumBytes, LinkageSize + 64); 1320 1321 // Issue CALLSEQ_START. 1322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1323 TII.get(TII.getCallFrameSetupOpcode())) 1324 .addImm(NumBytes); 1325 1326 // Prepare to assign register arguments. Every argument uses up a 1327 // GPR protocol register even if it's passed in a floating-point 1328 // register (unless we're using the fast calling convention). 1329 unsigned NextGPR = PPC::X3; 1330 unsigned NextFPR = PPC::F1; 1331 1332 // Process arguments. 1333 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1334 CCValAssign &VA = ArgLocs[I]; 1335 unsigned Arg = ArgRegs[VA.getValNo()]; 1336 MVT ArgVT = ArgVTs[VA.getValNo()]; 1337 1338 // Handle argument promotion and bitcasts. 1339 switch (VA.getLocInfo()) { 1340 default: 1341 llvm_unreachable("Unknown loc info!"); 1342 case CCValAssign::Full: 1343 break; 1344 case CCValAssign::SExt: { 1345 MVT DestVT = VA.getLocVT(); 1346 const TargetRegisterClass *RC = 1347 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1348 unsigned TmpReg = createResultReg(RC); 1349 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1350 llvm_unreachable("Failed to emit a sext!"); 1351 ArgVT = DestVT; 1352 Arg = TmpReg; 1353 break; 1354 } 1355 case CCValAssign::AExt: 1356 case CCValAssign::ZExt: { 1357 MVT DestVT = VA.getLocVT(); 1358 const TargetRegisterClass *RC = 1359 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1360 unsigned TmpReg = createResultReg(RC); 1361 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1362 llvm_unreachable("Failed to emit a zext!"); 1363 ArgVT = DestVT; 1364 Arg = TmpReg; 1365 break; 1366 } 1367 case CCValAssign::BCvt: { 1368 // FIXME: Not yet handled. 1369 llvm_unreachable("Should have bailed before getting here!"); 1370 break; 1371 } 1372 } 1373 1374 // Copy this argument to the appropriate register. 1375 unsigned ArgReg; 1376 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1377 ArgReg = NextFPR++; 1378 if (CC != CallingConv::Fast) 1379 ++NextGPR; 1380 } else 1381 ArgReg = NextGPR++; 1382 1383 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1384 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1385 RegArgs.push_back(ArgReg); 1386 } 1387 1388 return true; 1389} 1390 1391// For a call that we've determined we can fast-select, finish the 1392// call sequence and generate a copy to obtain the return value (if any). 1393bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1394 CallingConv::ID CC = CLI.CallConv; 1395 1396 // Issue CallSEQ_END. 1397 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1398 TII.get(TII.getCallFrameDestroyOpcode())) 1399 .addImm(NumBytes).addImm(0); 1400 1401 // Next, generate a copy to obtain the return value. 1402 // FIXME: No multi-register return values yet, though I don't foresee 1403 // any real difficulties there. 1404 if (RetVT != MVT::isVoid) { 1405 SmallVector<CCValAssign, 16> RVLocs; 1406 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1407 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1408 CCValAssign &VA = RVLocs[0]; 1409 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1410 assert(VA.isRegLoc() && "Can only return in registers!"); 1411 1412 MVT DestVT = VA.getValVT(); 1413 MVT CopyVT = DestVT; 1414 1415 // Ints smaller than a register still arrive in a full 64-bit 1416 // register, so make sure we recognize this. 1417 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1418 CopyVT = MVT::i64; 1419 1420 unsigned SourcePhysReg = VA.getLocReg(); 1421 unsigned ResultReg = 0; 1422 1423 if (RetVT == CopyVT) { 1424 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1425 ResultReg = createResultReg(CpyRC); 1426 1427 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1428 TII.get(TargetOpcode::COPY), ResultReg) 1429 .addReg(SourcePhysReg); 1430 1431 // If necessary, round the floating result to single precision. 1432 } else if (CopyVT == MVT::f64) { 1433 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1434 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1435 ResultReg).addReg(SourcePhysReg); 1436 1437 // If only the low half of a general register is needed, generate 1438 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1439 // used along the fast-isel path (not lowered), and downstream logic 1440 // also doesn't like a direct subreg copy on a physical reg.) 1441 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1442 ResultReg = createResultReg(&PPC::GPRCRegClass); 1443 // Convert physical register from G8RC to GPRC. 1444 SourcePhysReg -= PPC::X0 - PPC::R0; 1445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1446 TII.get(TargetOpcode::COPY), ResultReg) 1447 .addReg(SourcePhysReg); 1448 } 1449 1450 assert(ResultReg && "ResultReg unset!"); 1451 CLI.InRegs.push_back(SourcePhysReg); 1452 CLI.ResultReg = ResultReg; 1453 CLI.NumResultRegs = 1; 1454 } 1455 1456 return true; 1457} 1458 1459bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1460 CallingConv::ID CC = CLI.CallConv; 1461 bool IsTailCall = CLI.IsTailCall; 1462 bool IsVarArg = CLI.IsVarArg; 1463 const Value *Callee = CLI.Callee; 1464 const MCSymbol *Symbol = CLI.Symbol; 1465 1466 if (!Callee && !Symbol) 1467 return false; 1468 1469 // Allow SelectionDAG isel to handle tail calls. 1470 if (IsTailCall) 1471 return false; 1472 1473 // Let SDISel handle vararg functions. 1474 if (IsVarArg) 1475 return false; 1476 1477 // Handle simple calls for now, with legal return types and 1478 // those that can be extended. 1479 Type *RetTy = CLI.RetTy; 1480 MVT RetVT; 1481 if (RetTy->isVoidTy()) 1482 RetVT = MVT::isVoid; 1483 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1484 RetVT != MVT::i8) 1485 return false; 1486 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1487 // We can't handle boolean returns when CR bits are in use. 1488 return false; 1489 1490 // FIXME: No multi-register return values yet. 1491 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1492 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1493 RetVT != MVT::f64) { 1494 SmallVector<CCValAssign, 16> RVLocs; 1495 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1496 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1497 if (RVLocs.size() > 1) 1498 return false; 1499 } 1500 1501 // Bail early if more than 8 arguments, as we only currently 1502 // handle arguments passed in registers. 1503 unsigned NumArgs = CLI.OutVals.size(); 1504 if (NumArgs > 8) 1505 return false; 1506 1507 // Set up the argument vectors. 1508 SmallVector<Value*, 8> Args; 1509 SmallVector<unsigned, 8> ArgRegs; 1510 SmallVector<MVT, 8> ArgVTs; 1511 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1512 1513 Args.reserve(NumArgs); 1514 ArgRegs.reserve(NumArgs); 1515 ArgVTs.reserve(NumArgs); 1516 ArgFlags.reserve(NumArgs); 1517 1518 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1519 // Only handle easy calls for now. It would be reasonably easy 1520 // to handle <= 8-byte structures passed ByVal in registers, but we 1521 // have to ensure they are right-justified in the register. 1522 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1523 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1524 return false; 1525 1526 Value *ArgValue = CLI.OutVals[i]; 1527 Type *ArgTy = ArgValue->getType(); 1528 MVT ArgVT; 1529 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1530 return false; 1531 1532 if (ArgVT.isVector()) 1533 return false; 1534 1535 unsigned Arg = getRegForValue(ArgValue); 1536 if (Arg == 0) 1537 return false; 1538 1539 Args.push_back(ArgValue); 1540 ArgRegs.push_back(Arg); 1541 ArgVTs.push_back(ArgVT); 1542 ArgFlags.push_back(Flags); 1543 } 1544 1545 // Process the arguments. 1546 SmallVector<unsigned, 8> RegArgs; 1547 unsigned NumBytes; 1548 1549 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1550 RegArgs, CC, NumBytes, IsVarArg)) 1551 return false; 1552 1553 MachineInstrBuilder MIB; 1554 // FIXME: No handling for function pointers yet. This requires 1555 // implementing the function descriptor (OPD) setup. 1556 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1557 if (!GV) { 1558 // patchpoints are a special case; they always dispatch to a pointer value. 1559 // However, we don't actually want to generate the indirect call sequence 1560 // here (that will be generated, as necessary, during asm printing), and 1561 // the call we generate here will be erased by FastISel::selectPatchpoint, 1562 // so don't try very hard... 1563 if (CLI.IsPatchPoint) 1564 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1565 else 1566 return false; 1567 } else { 1568 // Build direct call with NOP for TOC restore. 1569 // FIXME: We can and should optimize away the NOP for local calls. 1570 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1571 TII.get(PPC::BL8_NOP)); 1572 // Add callee. 1573 MIB.addGlobalAddress(GV); 1574 } 1575 1576 // Add implicit physical register uses to the call. 1577 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1578 MIB.addReg(RegArgs[II], RegState::Implicit); 1579 1580 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1581 // into the call. 1582 PPCFuncInfo->setUsesTOCBasePtr(); 1583 MIB.addReg(PPC::X2, RegState::Implicit); 1584 1585 // Add a register mask with the call-preserved registers. Proper 1586 // defs for return values will be added by setPhysRegsDeadExcept(). 1587 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1588 1589 CLI.Call = MIB; 1590 1591 // Finish off the call including any return values. 1592 return finishCall(RetVT, CLI, NumBytes); 1593} 1594 1595// Attempt to fast-select a return instruction. 1596bool PPCFastISel::SelectRet(const Instruction *I) { 1597 1598 if (!FuncInfo.CanLowerReturn) 1599 return false; 1600 1601 if (TLI.supportSplitCSR(FuncInfo.MF)) 1602 return false; 1603 1604 const ReturnInst *Ret = cast<ReturnInst>(I); 1605 const Function &F = *I->getParent()->getParent(); 1606 1607 // Build a list of return value registers. 1608 SmallVector<unsigned, 4> RetRegs; 1609 CallingConv::ID CC = F.getCallingConv(); 1610 1611 if (Ret->getNumOperands() > 0) { 1612 SmallVector<ISD::OutputArg, 4> Outs; 1613 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1614 1615 // Analyze operands of the call, assigning locations to each operand. 1616 SmallVector<CCValAssign, 16> ValLocs; 1617 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1618 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1619 const Value *RV = Ret->getOperand(0); 1620 1621 // FIXME: Only one output register for now. 1622 if (ValLocs.size() > 1) 1623 return false; 1624 1625 // Special case for returning a constant integer of any size - materialize 1626 // the constant as an i64 and copy it to the return register. 1627 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1628 CCValAssign &VA = ValLocs[0]; 1629 1630 unsigned RetReg = VA.getLocReg(); 1631 // We still need to worry about properly extending the sign. For example, 1632 // we could have only a single bit or a constant that needs zero 1633 // extension rather than sign extension. Make sure we pass the return 1634 // value extension property to integer materialization. 1635 unsigned SrcReg = 1636 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1637 1638 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1639 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1640 1641 RetRegs.push_back(RetReg); 1642 1643 } else { 1644 unsigned Reg = getRegForValue(RV); 1645 1646 if (Reg == 0) 1647 return false; 1648 1649 // Copy the result values into the output registers. 1650 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1651 1652 CCValAssign &VA = ValLocs[i]; 1653 assert(VA.isRegLoc() && "Can only return in registers!"); 1654 RetRegs.push_back(VA.getLocReg()); 1655 unsigned SrcReg = Reg + VA.getValNo(); 1656 1657 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1658 if (!RVEVT.isSimple()) 1659 return false; 1660 MVT RVVT = RVEVT.getSimpleVT(); 1661 MVT DestVT = VA.getLocVT(); 1662 1663 if (RVVT != DestVT && RVVT != MVT::i8 && 1664 RVVT != MVT::i16 && RVVT != MVT::i32) 1665 return false; 1666 1667 if (RVVT != DestVT) { 1668 switch (VA.getLocInfo()) { 1669 default: 1670 llvm_unreachable("Unknown loc info!"); 1671 case CCValAssign::Full: 1672 llvm_unreachable("Full value assign but types don't match?"); 1673 case CCValAssign::AExt: 1674 case CCValAssign::ZExt: { 1675 const TargetRegisterClass *RC = 1676 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1677 unsigned TmpReg = createResultReg(RC); 1678 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1679 return false; 1680 SrcReg = TmpReg; 1681 break; 1682 } 1683 case CCValAssign::SExt: { 1684 const TargetRegisterClass *RC = 1685 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1686 unsigned TmpReg = createResultReg(RC); 1687 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1688 return false; 1689 SrcReg = TmpReg; 1690 break; 1691 } 1692 } 1693 } 1694 1695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1696 TII.get(TargetOpcode::COPY), RetRegs[i]) 1697 .addReg(SrcReg); 1698 } 1699 } 1700 } 1701 1702 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1703 TII.get(PPC::BLR8)); 1704 1705 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1706 MIB.addReg(RetRegs[i], RegState::Implicit); 1707 1708 return true; 1709} 1710 1711// Attempt to emit an integer extend of SrcReg into DestReg. Both 1712// signed and zero extensions are supported. Return false if we 1713// can't handle it. 1714bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1715 unsigned DestReg, bool IsZExt) { 1716 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1717 return false; 1718 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1719 return false; 1720 1721 // Signed extensions use EXTSB, EXTSH, EXTSW. 1722 if (!IsZExt) { 1723 unsigned Opc; 1724 if (SrcVT == MVT::i8) 1725 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1726 else if (SrcVT == MVT::i16) 1727 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1728 else { 1729 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1730 Opc = PPC::EXTSW_32_64; 1731 } 1732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1733 .addReg(SrcReg); 1734 1735 // Unsigned 32-bit extensions use RLWINM. 1736 } else if (DestVT == MVT::i32) { 1737 unsigned MB; 1738 if (SrcVT == MVT::i8) 1739 MB = 24; 1740 else { 1741 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1742 MB = 16; 1743 } 1744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1745 DestReg) 1746 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1747 1748 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1749 } else { 1750 unsigned MB; 1751 if (SrcVT == MVT::i8) 1752 MB = 56; 1753 else if (SrcVT == MVT::i16) 1754 MB = 48; 1755 else 1756 MB = 32; 1757 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1758 TII.get(PPC::RLDICL_32_64), DestReg) 1759 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1760 } 1761 1762 return true; 1763} 1764 1765// Attempt to fast-select an indirect branch instruction. 1766bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1767 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1768 if (AddrReg == 0) 1769 return false; 1770 1771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1772 .addReg(AddrReg); 1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1774 1775 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1776 for (const BasicBlock *SuccBB : IB->successors()) 1777 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1778 1779 return true; 1780} 1781 1782// Attempt to fast-select an integer truncate instruction. 1783bool PPCFastISel::SelectTrunc(const Instruction *I) { 1784 Value *Src = I->getOperand(0); 1785 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1786 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1787 1788 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1789 return false; 1790 1791 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1792 return false; 1793 1794 unsigned SrcReg = getRegForValue(Src); 1795 if (!SrcReg) 1796 return false; 1797 1798 // The only interesting case is when we need to switch register classes. 1799 if (SrcVT == MVT::i64) { 1800 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1802 TII.get(TargetOpcode::COPY), 1803 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1804 SrcReg = ResultReg; 1805 } 1806 1807 updateValueMap(I, SrcReg); 1808 return true; 1809} 1810 1811// Attempt to fast-select an integer extend instruction. 1812bool PPCFastISel::SelectIntExt(const Instruction *I) { 1813 Type *DestTy = I->getType(); 1814 Value *Src = I->getOperand(0); 1815 Type *SrcTy = Src->getType(); 1816 1817 bool IsZExt = isa<ZExtInst>(I); 1818 unsigned SrcReg = getRegForValue(Src); 1819 if (!SrcReg) return false; 1820 1821 EVT SrcEVT, DestEVT; 1822 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1823 DestEVT = TLI.getValueType(DL, DestTy, true); 1824 if (!SrcEVT.isSimple()) 1825 return false; 1826 if (!DestEVT.isSimple()) 1827 return false; 1828 1829 MVT SrcVT = SrcEVT.getSimpleVT(); 1830 MVT DestVT = DestEVT.getSimpleVT(); 1831 1832 // If we know the register class needed for the result of this 1833 // instruction, use it. Otherwise pick the register class of the 1834 // correct size that does not contain X0/R0, since we don't know 1835 // whether downstream uses permit that assignment. 1836 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1837 const TargetRegisterClass *RC = 1838 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1839 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1840 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1841 unsigned ResultReg = createResultReg(RC); 1842 1843 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1844 return false; 1845 1846 updateValueMap(I, ResultReg); 1847 return true; 1848} 1849 1850// Attempt to fast-select an instruction that wasn't handled by 1851// the table-generated machinery. 1852bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1853 1854 switch (I->getOpcode()) { 1855 case Instruction::Load: 1856 return SelectLoad(I); 1857 case Instruction::Store: 1858 return SelectStore(I); 1859 case Instruction::Br: 1860 return SelectBranch(I); 1861 case Instruction::IndirectBr: 1862 return SelectIndirectBr(I); 1863 case Instruction::FPExt: 1864 return SelectFPExt(I); 1865 case Instruction::FPTrunc: 1866 return SelectFPTrunc(I); 1867 case Instruction::SIToFP: 1868 return SelectIToFP(I, /*IsSigned*/ true); 1869 case Instruction::UIToFP: 1870 return SelectIToFP(I, /*IsSigned*/ false); 1871 case Instruction::FPToSI: 1872 return SelectFPToI(I, /*IsSigned*/ true); 1873 case Instruction::FPToUI: 1874 return SelectFPToI(I, /*IsSigned*/ false); 1875 case Instruction::Add: 1876 return SelectBinaryIntOp(I, ISD::ADD); 1877 case Instruction::Or: 1878 return SelectBinaryIntOp(I, ISD::OR); 1879 case Instruction::Sub: 1880 return SelectBinaryIntOp(I, ISD::SUB); 1881 case Instruction::Call: 1882 return selectCall(I); 1883 case Instruction::Ret: 1884 return SelectRet(I); 1885 case Instruction::Trunc: 1886 return SelectTrunc(I); 1887 case Instruction::ZExt: 1888 case Instruction::SExt: 1889 return SelectIntExt(I); 1890 // Here add other flavors of Instruction::XXX that automated 1891 // cases don't catch. For example, switches are terminators 1892 // that aren't yet handled. 1893 default: 1894 break; 1895 } 1896 return false; 1897} 1898 1899// Materialize a floating-point constant into a register, and return 1900// the register number (or zero if we failed to handle it). 1901unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1902 // No plans to handle long double here. 1903 if (VT != MVT::f32 && VT != MVT::f64) 1904 return 0; 1905 1906 // All FP constants are loaded from the constant pool. 1907 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1908 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1909 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1910 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1911 CodeModel::Model CModel = TM.getCodeModel(); 1912 1913 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1914 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 1915 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 1916 1917 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1918 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1919 1920 PPCFuncInfo->setUsesTOCBasePtr(); 1921 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1922 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1924 TmpReg) 1925 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1927 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1928 } else { 1929 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1931 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1932 // But for large code model, we must generate a LDtocL followed 1933 // by the LF[SD]. 1934 if (CModel == CodeModel::Large) { 1935 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1937 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1939 .addImm(0).addReg(TmpReg2); 1940 } else 1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1942 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1943 .addReg(TmpReg) 1944 .addMemOperand(MMO); 1945 } 1946 1947 return DestReg; 1948} 1949 1950// Materialize the address of a global value into a register, and return 1951// the register number (or zero if we failed to handle it). 1952unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1953 assert(VT == MVT::i64 && "Non-address!"); 1954 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1955 unsigned DestReg = createResultReg(RC); 1956 1957 // Global values may be plain old object addresses, TLS object 1958 // addresses, constant pool entries, or jump tables. How we generate 1959 // code for these may depend on small, medium, or large code model. 1960 CodeModel::Model CModel = TM.getCodeModel(); 1961 1962 // FIXME: Jump tables are not yet required because fast-isel doesn't 1963 // handle switches; if that changes, we need them as well. For now, 1964 // what follows assumes everything's a generic (or TLS) global address. 1965 1966 // FIXME: We don't yet handle the complexity of TLS. 1967 if (GV->isThreadLocal()) 1968 return 0; 1969 1970 PPCFuncInfo->setUsesTOCBasePtr(); 1971 // For small code model, generate a simple TOC load. 1972 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1974 DestReg) 1975 .addGlobalAddress(GV) 1976 .addReg(PPC::X2); 1977 else { 1978 // If the address is an externally defined symbol, a symbol with common 1979 // or externally available linkage, a non-local function address, or a 1980 // jump table address (not yet needed), or if we are generating code 1981 // for large code model, we generate: 1982 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1983 // Otherwise we generate: 1984 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1985 // Either way, start with the ADDIStocHA: 1986 unsigned HighPartReg = createResultReg(RC); 1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1988 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1989 1990 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 1991 if (GVFlags & PPCII::MO_NLP_FLAG) { 1992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1993 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1994 } else { 1995 // Otherwise generate the ADDItocL. 1996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1997 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1998 } 1999 } 2000 2001 return DestReg; 2002} 2003 2004// Materialize a 32-bit integer constant into a register, and return 2005// the register number (or zero if we failed to handle it). 2006unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2007 const TargetRegisterClass *RC) { 2008 unsigned Lo = Imm & 0xFFFF; 2009 unsigned Hi = (Imm >> 16) & 0xFFFF; 2010 2011 unsigned ResultReg = createResultReg(RC); 2012 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2013 2014 if (isInt<16>(Imm)) 2015 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2016 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2017 .addImm(Imm); 2018 else if (Lo) { 2019 // Both Lo and Hi have nonzero bits. 2020 unsigned TmpReg = createResultReg(RC); 2021 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2022 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2023 .addImm(Hi); 2024 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2025 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2026 .addReg(TmpReg).addImm(Lo); 2027 } else 2028 // Just Hi bits. 2029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2030 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2031 .addImm(Hi); 2032 2033 return ResultReg; 2034} 2035 2036// Materialize a 64-bit integer constant into a register, and return 2037// the register number (or zero if we failed to handle it). 2038unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2039 const TargetRegisterClass *RC) { 2040 unsigned Remainder = 0; 2041 unsigned Shift = 0; 2042 2043 // If the value doesn't fit in 32 bits, see if we can shift it 2044 // so that it fits in 32 bits. 2045 if (!isInt<32>(Imm)) { 2046 Shift = countTrailingZeros<uint64_t>(Imm); 2047 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2048 2049 if (isInt<32>(ImmSh)) 2050 Imm = ImmSh; 2051 else { 2052 Remainder = Imm; 2053 Shift = 32; 2054 Imm >>= 32; 2055 } 2056 } 2057 2058 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2059 // (if not shifted). 2060 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2061 if (!Shift) 2062 return TmpReg1; 2063 2064 // If upper 32 bits were not zero, we've built them and need to shift 2065 // them into place. 2066 unsigned TmpReg2; 2067 if (Imm) { 2068 TmpReg2 = createResultReg(RC); 2069 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2070 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2071 } else 2072 TmpReg2 = TmpReg1; 2073 2074 unsigned TmpReg3, Hi, Lo; 2075 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2076 TmpReg3 = createResultReg(RC); 2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2078 TmpReg3).addReg(TmpReg2).addImm(Hi); 2079 } else 2080 TmpReg3 = TmpReg2; 2081 2082 if ((Lo = Remainder & 0xFFFF)) { 2083 unsigned ResultReg = createResultReg(RC); 2084 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2085 ResultReg).addReg(TmpReg3).addImm(Lo); 2086 return ResultReg; 2087 } 2088 2089 return TmpReg3; 2090} 2091 2092// Materialize an integer constant into a register, and return 2093// the register number (or zero if we failed to handle it). 2094unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2095 bool UseSExt) { 2096 // If we're using CR bit registers for i1 values, handle that as a special 2097 // case first. 2098 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2099 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2101 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2102 return ImmReg; 2103 } 2104 2105 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2106 VT != MVT::i1) 2107 return 0; 2108 2109 const TargetRegisterClass *RC = 2110 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2111 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2112 2113 // If the constant is in range, use a load-immediate. 2114 // Since LI will sign extend the constant we need to make sure that for 2115 // our zeroext constants that the sign extended constant fits into 16-bits - 2116 // a range of 0..0x7fff. 2117 if (isInt<16>(Imm)) { 2118 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2119 unsigned ImmReg = createResultReg(RC); 2120 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2121 .addImm(Imm); 2122 return ImmReg; 2123 } 2124 2125 // Construct the constant piecewise. 2126 if (VT == MVT::i64) 2127 return PPCMaterialize64BitInt(Imm, RC); 2128 else if (VT == MVT::i32) 2129 return PPCMaterialize32BitInt(Imm, RC); 2130 2131 return 0; 2132} 2133 2134// Materialize a constant into a register, and return the register 2135// number (or zero if we failed to handle it). 2136unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2137 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2138 2139 // Only handle simple types. 2140 if (!CEVT.isSimple()) return 0; 2141 MVT VT = CEVT.getSimpleVT(); 2142 2143 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2144 return PPCMaterializeFP(CFP, VT); 2145 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2146 return PPCMaterializeGV(GV, VT); 2147 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2148 return PPCMaterializeInt(CI, VT, VT != MVT::i1); 2149 2150 return 0; 2151} 2152 2153// Materialize the address created by an alloca into a register, and 2154// return the register number (or zero if we failed to handle it). 2155unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2156 // Don't handle dynamic allocas. 2157 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2158 2159 MVT VT; 2160 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2161 2162 DenseMap<const AllocaInst*, int>::iterator SI = 2163 FuncInfo.StaticAllocaMap.find(AI); 2164 2165 if (SI != FuncInfo.StaticAllocaMap.end()) { 2166 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2167 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2168 ResultReg).addFrameIndex(SI->second).addImm(0); 2169 return ResultReg; 2170 } 2171 2172 return 0; 2173} 2174 2175// Fold loads into extends when possible. 2176// FIXME: We can have multiple redundant extend/trunc instructions 2177// following a load. The folding only picks up one. Extend this 2178// to check subsequent instructions for the same pattern and remove 2179// them. Thus ResultReg should be the def reg for the last redundant 2180// instruction in a chain, and all intervening instructions can be 2181// removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2182// to add ELF64-NOT: rldicl to the appropriate tests when this works. 2183bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2184 const LoadInst *LI) { 2185 // Verify we have a legal type before going any further. 2186 MVT VT; 2187 if (!isLoadTypeLegal(LI->getType(), VT)) 2188 return false; 2189 2190 // Combine load followed by zero- or sign-extend. 2191 bool IsZExt = false; 2192 switch(MI->getOpcode()) { 2193 default: 2194 return false; 2195 2196 case PPC::RLDICL: 2197 case PPC::RLDICL_32_64: { 2198 IsZExt = true; 2199 unsigned MB = MI->getOperand(3).getImm(); 2200 if ((VT == MVT::i8 && MB <= 56) || 2201 (VT == MVT::i16 && MB <= 48) || 2202 (VT == MVT::i32 && MB <= 32)) 2203 break; 2204 return false; 2205 } 2206 2207 case PPC::RLWINM: 2208 case PPC::RLWINM8: { 2209 IsZExt = true; 2210 unsigned MB = MI->getOperand(3).getImm(); 2211 if ((VT == MVT::i8 && MB <= 24) || 2212 (VT == MVT::i16 && MB <= 16)) 2213 break; 2214 return false; 2215 } 2216 2217 case PPC::EXTSB: 2218 case PPC::EXTSB8: 2219 case PPC::EXTSB8_32_64: 2220 /* There is no sign-extending load-byte instruction. */ 2221 return false; 2222 2223 case PPC::EXTSH: 2224 case PPC::EXTSH8: 2225 case PPC::EXTSH8_32_64: { 2226 if (VT != MVT::i16 && VT != MVT::i8) 2227 return false; 2228 break; 2229 } 2230 2231 case PPC::EXTSW: 2232 case PPC::EXTSW_32_64: { 2233 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2234 return false; 2235 break; 2236 } 2237 } 2238 2239 // See if we can handle this address. 2240 Address Addr; 2241 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2242 return false; 2243 2244 unsigned ResultReg = MI->getOperand(0).getReg(); 2245 2246 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2247 return false; 2248 2249 MI->eraseFromParent(); 2250 return true; 2251} 2252 2253// Attempt to lower call arguments in a faster way than done by 2254// the selection DAG code. 2255bool PPCFastISel::fastLowerArguments() { 2256 // Defer to normal argument lowering for now. It's reasonably 2257 // efficient. Consider doing something like ARM to handle the 2258 // case where all args fit in registers, no varargs, no float 2259 // or vector args. 2260 return false; 2261} 2262 2263// Handle materializing integer constants into a register. This is not 2264// automatically generated for PowerPC, so must be explicitly created here. 2265unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2266 2267 if (Opc != ISD::Constant) 2268 return 0; 2269 2270 // If we're using CR bit registers for i1 values, handle that as a special 2271 // case first. 2272 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2273 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2275 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2276 return ImmReg; 2277 } 2278 2279 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2280 VT != MVT::i8 && VT != MVT::i1) 2281 return 0; 2282 2283 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2284 &PPC::GPRCRegClass); 2285 if (VT == MVT::i64) 2286 return PPCMaterialize64BitInt(Imm, RC); 2287 else 2288 return PPCMaterialize32BitInt(Imm, RC); 2289} 2290 2291// Override for ADDI and ADDI8 to set the correct register class 2292// on RHS operand 0. The automatic infrastructure naively assumes 2293// GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2294// for these cases. At the moment, none of the other automatically 2295// generated RI instructions require special treatment. However, once 2296// SelectSelect is implemented, "isel" requires similar handling. 2297// 2298// Also be conservative about the output register class. Avoid 2299// assigning R0 or X0 to the output register for GPRC and G8RC 2300// register classes, as any such result could be used in ADDI, etc., 2301// where those regs have another meaning. 2302unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2303 const TargetRegisterClass *RC, 2304 unsigned Op0, bool Op0IsKill, 2305 uint64_t Imm) { 2306 if (MachineInstOpcode == PPC::ADDI) 2307 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2308 else if (MachineInstOpcode == PPC::ADDI8) 2309 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2310 2311 const TargetRegisterClass *UseRC = 2312 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2313 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2314 2315 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2316 Op0, Op0IsKill, Imm); 2317} 2318 2319// Override for instructions with one register operand to avoid use of 2320// R0/X0. The automatic infrastructure isn't aware of the context so 2321// we must be conservative. 2322unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2323 const TargetRegisterClass* RC, 2324 unsigned Op0, bool Op0IsKill) { 2325 const TargetRegisterClass *UseRC = 2326 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2327 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2328 2329 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2330} 2331 2332// Override for instructions with two register operands to avoid use 2333// of R0/X0. The automatic infrastructure isn't aware of the context 2334// so we must be conservative. 2335unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2336 const TargetRegisterClass* RC, 2337 unsigned Op0, bool Op0IsKill, 2338 unsigned Op1, bool Op1IsKill) { 2339 const TargetRegisterClass *UseRC = 2340 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2341 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2342 2343 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2344 Op1, Op1IsKill); 2345} 2346 2347namespace llvm { 2348 // Create the fast instruction selector for PowerPC64 ELF. 2349 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2350 const TargetLibraryInfo *LibInfo) { 2351 // Only available on 64-bit ELF for now. 2352 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2353 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2354 return new PPCFastISel(FuncInfo, LibInfo); 2355 return nullptr; 2356 } 2357} 2358