1de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//
3de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//                     The LLVM Compiler Infrastructure
4de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//
5de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// This file is distributed under the University of Illinois Open Source
6de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// License. See LICENSE.TXT for details.
7de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//
8de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//===----------------------------------------------------------------------===//
9de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// \file
10de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// This file defines the pass that looks through the machine instructions
11de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// late in the compilation, and finds byte or word instructions that
12de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// can be profitably replaced with 32 bit instructions that give equivalent
13de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// results for the bits of the results that are used. There are two possible
14de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// reasons to do this.
15de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar///
16de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// One reason is to avoid false-dependences on the upper portions
17de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// of the registers.  Only instructions that have a destination register
18de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// which is not in any of the source registers can be affected by this.
19de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// Any instruction where one of the source registers is also the destination
20de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// register is unaffected, because it has a true dependence on the source
21de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// register already.  So, this consideration primarily affects load
22de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// instructions and register-to-register moves.  It would
23de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// seem like cmov(s) would also be affected, but because of the way cmov is
24de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// really implemented by most machines as reading both the destination and
25de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// and source regsters, and then "merging" the two based on a condition,
26de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// it really already should be considered as having a true dependence on the
27de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// destination register as well.
28de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar///
29de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// The other reason to do this is for potential code size savings.  Word
30de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// operations need an extra override byte compared to their 32 bit
31de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// versions. So this can convert many word operations to their larger
32de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// size, saving a byte in encoding. This could introduce partial register
33de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// dependences where none existed however.  As an example take:
34de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar///   orw  ax, $0x1000
35de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar///   addw ax, $3
36de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// now if this were to get transformed into
37de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar///   orw  ax, $1000
38de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar///   addl eax, $3
39de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// because the addl encodes shorter than the addw, this would introduce
40de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// a use of a register that was only partially written earlier.  On older
41de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// Intel processors this can be quite a performance penalty, so this should
42de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// probably only be done when it can be proven that a new partial dependence
43de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// wouldn't be created, or when your know a newer processor is being
44de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar/// targeted, or when optimizing for minimum code size.
45de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar///
46de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//===----------------------------------------------------------------------===//
47de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
48de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "X86.h"
49de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "X86InstrInfo.h"
50de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "X86Subtarget.h"
51de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/ADT/Statistic.h"
52de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/CodeGen/LivePhysRegs.h"
53de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/CodeGen/MachineFunctionPass.h"
54de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/CodeGen/MachineInstrBuilder.h"
55de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/CodeGen/MachineLoopInfo.h"
56de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/CodeGen/MachineRegisterInfo.h"
57de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/CodeGen/Passes.h"
58de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/Support/Debug.h"
59de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/Support/raw_ostream.h"
60de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/Target/TargetInstrInfo.h"
61de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarusing namespace llvm;
62de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
63de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
64de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#define FIXUPBW_NAME "x86-fixup-bw-insts"
65de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
66de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#define DEBUG_TYPE FIXUPBW_NAME
67de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
68de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// Option to allow this optimization pass to have fine-grained control.
69de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// This is turned off by default so as not to affect a large number of
70de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// existing lit tests.
71de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarstatic cl::opt<bool>
72de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    FixupBWInsts("fixup-byte-word-insts",
73de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                 cl::desc("Change byte and word instructions to larger sizes"),
74de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                 cl::init(true), cl::Hidden);
75de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
76de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarnamespace {
77de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarclass FixupBWInstPass : public MachineFunctionPass {
78de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// Loop over all of the instructions in the basic block replacing applicable
79de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// byte or word instructions with better alternatives.
80de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
81de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
82de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// This sets the \p SuperDestReg to the 32 bit super reg of the original
83de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// destination register of the MachineInstr passed in. It returns true if
84de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// that super register is dead just prior to \p OrigMI, and false if not.
85de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  bool getSuperRegDestIfDead(MachineInstr *OrigMI,
86de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                             unsigned &SuperDestReg) const;
87de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
88de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
89de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// register if it is safe to do so.  Return the replacement instruction if
90de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// OK, otherwise return nullptr.
91de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
92de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
93de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
94de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// safe to do so.  Return the replacement instruction if OK, otherwise return
95de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// nullptr.
96de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
97de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
98de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
99de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // possible.  Return the replacement instruction if OK, return nullptr
100de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // otherwise. Set WasCandidate to true or false depending on whether the
101de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // MI was a candidate for this sort of transformation.
102de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB,
103de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                                bool &WasCandidate) const;
104de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarpublic:
105de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  static char ID;
106de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
107de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  const char *getPassName() const override {
108de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    return FIXUPBW_DESC;
109de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  }
110de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
111de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  FixupBWInstPass() : MachineFunctionPass(ID) {
112de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
113de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  }
114de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
115de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  void getAnalysisUsage(AnalysisUsage &AU) const override {
116de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
117de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                                       // guide some heuristics.
118de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    MachineFunctionPass::getAnalysisUsage(AU);
119de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  }
120de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
121de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// Loop over all of the basic blocks, replacing byte and word instructions by
122de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// equivalent 32 bit instructions where performance or code size can be
123de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// improved.
124de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  bool runOnMachineFunction(MachineFunction &MF) override;
125de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
126de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineFunctionProperties getRequiredProperties() const override {
127de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    return MachineFunctionProperties().set(
128de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar        MachineFunctionProperties::Property::AllVRegsAllocated);
129de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  }
130de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
131de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarprivate:
132de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineFunction *MF;
133de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
134de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// Machine instruction info used throughout the class.
135de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  const X86InstrInfo *TII;
136de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
137de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// Local member for function's OptForSize attribute.
138de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  bool OptForSize;
139de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
140de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// Machine loop info used for guiding some heruistics.
141de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineLoopInfo *MLI;
142de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
143de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  /// Register Liveness information after the current instruction.
144de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  LivePhysRegs LiveRegs;
145de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar};
146de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarchar FixupBWInstPass::ID = 0;
147de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar}
148de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
149de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga NainarINITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
150de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
151de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga NainarFunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
152de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
153de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarbool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
154de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  if (!FixupBWInsts || skipFunction(*MF.getFunction()))
155de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    return false;
156de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
157de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  this->MF = &MF;
158de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
159de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  OptForSize = MF.getFunction()->optForSize();
160de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MLI = &getAnalysis<MachineLoopInfo>();
161de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  LiveRegs.init(&TII->getRegisterInfo());
162de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
163de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
164de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
165de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // Process all basic blocks.
166de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  for (auto &MBB : MF)
167de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    processBasicBlock(MF, MBB);
168de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
169de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  DEBUG(dbgs() << "End X86FixupBWInsts\n";);
170de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
171de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  return true;
172de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar}
173de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
174de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// TODO: This method of analysis can miss some legal cases, because the
175de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// super-register could be live into the address expression for a memory
176de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// reference for the instruction, and still be killed/last used by the
177de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// instruction. However, the existing query interfaces don't seem to
178de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// easily allow that to be checked.
179de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//
180de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// What we'd really like to know is whether after OrigMI, the
181de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// only portion of SuperDestReg that is alive is the portion that
182de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// was the destination register of OrigMI.
183de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarbool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
184de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                                            unsigned &SuperDestReg) const {
185de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  auto *TRI = &TII->getRegisterInfo();
186de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
187de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
188de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
189de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
190de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
191de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
192de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // Make sure that the sub-register that this instruction has as its
193de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // destination is the lowest order sub-register of the super-register.
194de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // If it isn't, then the register isn't really dead even if the
195de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // super-register is considered dead.
196de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  if (SubRegIdx == X86::sub_8bit_hi)
197de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    return false;
198de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
199de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  if (LiveRegs.contains(SuperDestReg))
200de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    return false;
201de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
202de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  if (SubRegIdx == X86::sub_8bit) {
203de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // In the case of byte registers, we also have to check that the upper
204de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // byte register is also dead. That is considered to be independent of
205de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // whether the super-register is dead.
206de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    unsigned UpperByteReg =
207de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar        getX86SubSuperRegister(SuperDestReg, 8, /*High=*/true);
208de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
209de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    if (LiveRegs.contains(UpperByteReg))
210de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      return false;
211de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  }
212de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
213de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  return true;
214de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar}
215de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
216de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga NainarMachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
217de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                                              MachineInstr *MI) const {
218de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  unsigned NewDestReg;
219de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
220de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // We are going to try to rewrite this load to a larger zero-extending
221de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // load.  This is safe if all portions of the 32 bit super-register
222de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // of the original destination register, except for the original destination
223de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // register are dead. getSuperRegDestIfDead checks that.
224de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  if (!getSuperRegDestIfDead(MI, NewDestReg))
225de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    return nullptr;
226de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
227de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // Safe to change the instruction.
228de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineInstrBuilder MIB =
229de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
230de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
231de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  unsigned NumArgs = MI->getNumOperands();
232de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  for (unsigned i = 1; i < NumArgs; ++i)
233de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    MIB.addOperand(MI->getOperand(i));
234de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
235de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
236de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
237de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  return MIB;
238de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar}
239de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
240de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga NainarMachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
241de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  assert(MI->getNumExplicitOperands() == 2);
242de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  auto &OldDest = MI->getOperand(0);
243de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  auto &OldSrc = MI->getOperand(1);
244de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
245de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  unsigned NewDestReg;
246de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  if (!getSuperRegDestIfDead(MI, NewDestReg))
247de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    return nullptr;
248de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
249de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
250de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
251de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // This is only correct if we access the same subregister index: otherwise,
252de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
253de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  auto *TRI = &TII->getRegisterInfo();
254de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
255de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
256de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    return nullptr;
257de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
258de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // Safe to change the instruction.
259de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // Don't set src flags, as we don't know if we're also killing the superreg.
260de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // However, the superregister might not be defined; make it explicit that
261de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // we don't care about the higher bits by reading it as Undef, and adding
262de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // an imp-use on the original subregister.
263de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineInstrBuilder MIB =
264de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
265de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar          .addReg(NewSrcReg, RegState::Undef)
266de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar          .addReg(OldSrc.getReg(), RegState::Implicit);
267de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
268de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // Drop imp-defs/uses that would be redundant with the new def/use.
269de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  for (auto &Op : MI->implicit_operands())
270de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
271de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      MIB.addOperand(Op);
272de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
273de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  return MIB;
274de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar}
275de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
276de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga NainarMachineInstr *FixupBWInstPass::tryReplaceInstr(
277de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                  MachineInstr *MI, MachineBasicBlock &MBB,
278de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                  bool &WasCandidate) const {
279de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  MachineInstr *NewMI = nullptr;
280de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  WasCandidate = false;
281de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
282de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // See if this is an instruction of the type we are currently looking for.
283de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  switch (MI->getOpcode()) {
284de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
285de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  case X86::MOV8rm:
286de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // Only replace 8 bit loads with the zero extending versions if
287de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // in an inner most loop and not optimizing for size. This takes
288de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // an extra byte to encode, and provides limited performance upside.
289de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    if (MachineLoop *ML = MLI->getLoopFor(&MBB)) {
290de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      if (ML->begin() == ML->end() && !OptForSize) {
291de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar        NewMI = tryReplaceLoad(X86::MOVZX32rm8, MI);
292de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar        WasCandidate = true;
293de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      }
294de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    }
295de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    break;
296de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
297de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  case X86::MOV16rm:
298de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // Always try to replace 16 bit load with 32 bit zero extending.
299de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // Code size is the same, and there is sometimes a perf advantage
300de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // from eliminating a false dependence on the upper portion of
301de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // the register.
302de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    NewMI = tryReplaceLoad(X86::MOVZX32rm16, MI);
303de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    WasCandidate = true;
304de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    break;
305de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
306de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  case X86::MOV8rr:
307de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  case X86::MOV16rr:
308de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // Always try to replace 8/16 bit copies with a 32 bit copy.
309de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // Code size is either less (16) or equal (8), and there is sometimes a
310de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // perf advantage from eliminating a false dependence on the upper portion
311de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // of the register.
312de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    NewMI = tryReplaceCopy(MI);
313de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    WasCandidate = true;
314de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    break;
315de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
316de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  default:
317de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // nothing to do here.
318de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    break;
319de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  }
320de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
321de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  return NewMI;
322de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar}
323de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
324de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarvoid FixupBWInstPass::processBasicBlock(MachineFunction &MF,
325de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar                                        MachineBasicBlock &MBB) {
326de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
327de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // This algorithm doesn't delete the instructions it is replacing
328de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // right away.  By leaving the existing instructions in place, the
329de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // register liveness information doesn't change, and this makes the
330de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // analysis that goes on be better than if the replaced instructions
331de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // were immediately removed.
332de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  //
333de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // This algorithm always creates a replacement instruction
334de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // and notes that and the original in a data structure, until the
335de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // whole BB has been analyzed.  This keeps the replacement instructions
336de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // from making it seem as if the larger register might be live.
337de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
338de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
339de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // Start computing liveness for this block. We iterate from the end to be able
340de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // to update this for each instruction.
341de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  LiveRegs.clear();
342de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  // We run after PEI, so we need to AddPristinesAndCSRs.
343de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  LiveRegs.addLiveOuts(MBB);
344de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
345de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  bool WasCandidate = false;
346de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
347de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
348de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    MachineInstr *MI = &*I;
349de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
350de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    MachineInstr *NewMI = tryReplaceInstr(MI, MBB, WasCandidate);
351de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
352de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // Add this to replacements if it was a candidate, even if NewMI is
353de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // nullptr.  We will revisit that in a bit.
354de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    if (WasCandidate) {
355de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      MIReplacements.push_back(std::make_pair(MI, NewMI));
356de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    }
357de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
358de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    // We're done with this instruction, update liveness for the next one.
359de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    LiveRegs.stepBackward(*MI);
360de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  }
361de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
362de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  while (!MIReplacements.empty()) {
363de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    MachineInstr *MI = MIReplacements.back().first;
364de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    MachineInstr *NewMI = MIReplacements.back().second;
365de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    MIReplacements.pop_back();
366de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    if (NewMI) {
367de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      MBB.insert(MI, NewMI);
368de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar      MBB.erase(MI);
369de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar    }
370de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  }
371de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar}
372