X86ISelLowering.cpp revision 014278e6a11fa0767853b831e5bf51b95bf541c5
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43// Forward declarations.
44static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
45
46X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
47  : TargetLowering(TM) {
48  Subtarget = &TM.getSubtarget<X86Subtarget>();
49  X86ScalarSSEf64 = Subtarget->hasSSE2();
50  X86ScalarSSEf32 = Subtarget->hasSSE1();
51  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
52
53  bool Fast = false;
54
55  RegInfo = TM.getRegisterInfo();
56  TD = getTargetData();
57
58  // Set up the TargetLowering object.
59
60  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61  setShiftAmountType(MVT::i8);
62  setSetCCResultContents(ZeroOrOneSetCCResult);
63  setSchedulingPreference(SchedulingForRegPressure);
64  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65  setStackPointerRegisterToSaveRestore(X86StackPtr);
66
67  if (Subtarget->isTargetDarwin()) {
68    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69    setUseUnderscoreSetJmp(false);
70    setUseUnderscoreLongJmp(false);
71  } else if (Subtarget->isTargetMingw()) {
72    // MS runtime is weird: it exports _setjmp, but longjmp!
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(false);
75  } else {
76    setUseUnderscoreSetJmp(true);
77    setUseUnderscoreLongJmp(true);
78  }
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
88
89  // We don't accept any truncstore of integer registers.
90  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
96
97  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
98  // operation.
99  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
100  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
101  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
102
103  if (Subtarget->is64Bit()) {
104    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
105    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
106  } else {
107    if (X86ScalarSSEf64)
108      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
109      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
110    else
111      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
112  }
113
114  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
115  // this operation.
116  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
117  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
118  // SSE has no i16 to fp conversion, only i32
119  if (X86ScalarSSEf32) {
120    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
121    // f32 and f64 cases are Legal, f80 case is not
122    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
123  } else {
124    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
125    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
126  }
127
128  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
129  // are Legal, f80 is custom lowered.
130  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
131  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
132
133  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
134  // this operation.
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
136  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
137
138  if (X86ScalarSSEf32) {
139    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
140    // f32 and f64 cases are Legal, f80 case is not
141    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
142  } else {
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
144    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
145  }
146
147  // Handle FP_TO_UINT by promoting the destination to a larger signed
148  // conversion.
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
151  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
152
153  if (Subtarget->is64Bit()) {
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
155    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
156  } else {
157    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
158      // Expand FP_TO_UINT into a select.
159      // FIXME: We would like to use a Custom expander here eventually to do
160      // the optimal thing for SSE vs. the default expansion in the legalizer.
161      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
162    else
163      // With SSE3 we can use fisttpll to convert to a signed i64.
164      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
165  }
166
167  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
168  if (!X86ScalarSSEf64) {
169    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
170    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
171  }
172
173  // Scalar integer divide and remainder are lowered to use operations that
174  // produce two results, to match the available instructions. This exposes
175  // the two-result form to trivial CSE, which is able to combine x/y and x%y
176  // into a single instruction.
177  //
178  // Scalar integer multiply-high is also lowered to use two-result
179  // operations, to match the available instructions. However, plain multiply
180  // (low) operations are left as Legal, as there are single-result
181  // instructions for this in x86. Using the two-result multiply instructions
182  // when both high and low results are needed must be arranged by dagcombine.
183  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
184  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
185  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
186  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
187  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
188  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
189  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
190  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
191  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
192  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
193  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
194  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
195  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
196  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
197  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
199  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
201  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
202  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
203  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
205  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
206  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
207
208  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
209  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
210  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
211  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
212  if (Subtarget->is64Bit())
213    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
216  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
217  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
220  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
221  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
222
223  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
224  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
226  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
227  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
229  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
230  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
231  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
232  if (Subtarget->is64Bit()) {
233    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
234    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
235    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
236  }
237
238  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
239  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
240
241  // These should be promoted to a larger select which is supported.
242  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
243  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
244  // X86 wants to expand cmov itself.
245  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
249  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
255  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
258    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
259  }
260  // X86 ret instruction may pop stack.
261  setOperationAction(ISD::RET             , MVT::Other, Custom);
262  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
263
264  // Darwin ABI issue.
265  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
266  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
267  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
269  if (Subtarget->is64Bit())
270    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
271  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
272  if (Subtarget->is64Bit()) {
273    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
274    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
275    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
276    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
277  }
278  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
279  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
280  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
281  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
282  if (Subtarget->is64Bit()) {
283    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
284    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
285    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
286  }
287
288  if (Subtarget->hasSSE1())
289    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
290
291  if (!Subtarget->hasSSE2())
292    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
293
294  // Expand certain atomics
295  setOperationAction(ISD::ATOMIC_CMP_SWAP_8 , MVT::i8, Custom);
296  setOperationAction(ISD::ATOMIC_CMP_SWAP_16, MVT::i16, Custom);
297  setOperationAction(ISD::ATOMIC_CMP_SWAP_32, MVT::i32, Custom);
298  setOperationAction(ISD::ATOMIC_CMP_SWAP_64, MVT::i64, Custom);
299
300  setOperationAction(ISD::ATOMIC_LOAD_SUB_8, MVT::i8, Expand);
301  setOperationAction(ISD::ATOMIC_LOAD_SUB_16, MVT::i16, Expand);
302  setOperationAction(ISD::ATOMIC_LOAD_SUB_32, MVT::i32, Expand);
303  setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Expand);
304
305  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
306  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
307  // FIXME - use subtarget debug flags
308  if (!Subtarget->isTargetDarwin() &&
309      !Subtarget->isTargetELF() &&
310      !Subtarget->isTargetCygMing()) {
311    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
312    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
313  }
314
315  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
316  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
317  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
318  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
319  if (Subtarget->is64Bit()) {
320    setExceptionPointerRegister(X86::RAX);
321    setExceptionSelectorRegister(X86::RDX);
322  } else {
323    setExceptionPointerRegister(X86::EAX);
324    setExceptionSelectorRegister(X86::EDX);
325  }
326  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
327  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
328
329  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
330
331  setOperationAction(ISD::TRAP, MVT::Other, Legal);
332
333  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
334  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
335  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
336  if (Subtarget->is64Bit()) {
337    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
338    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
339  } else {
340    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
341    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
342  }
343
344  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
345  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
346  if (Subtarget->is64Bit())
347    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
348  if (Subtarget->isTargetCygMing())
349    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
350  else
351    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
352
353  if (X86ScalarSSEf64) {
354    // f32 and f64 use SSE.
355    // Set up the FP register classes.
356    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
357    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
358
359    // Use ANDPD to simulate FABS.
360    setOperationAction(ISD::FABS , MVT::f64, Custom);
361    setOperationAction(ISD::FABS , MVT::f32, Custom);
362
363    // Use XORP to simulate FNEG.
364    setOperationAction(ISD::FNEG , MVT::f64, Custom);
365    setOperationAction(ISD::FNEG , MVT::f32, Custom);
366
367    // Use ANDPD and ORPD to simulate FCOPYSIGN.
368    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
369    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
370
371    // We don't support sin/cos/fmod
372    setOperationAction(ISD::FSIN , MVT::f64, Expand);
373    setOperationAction(ISD::FCOS , MVT::f64, Expand);
374    setOperationAction(ISD::FSIN , MVT::f32, Expand);
375    setOperationAction(ISD::FCOS , MVT::f32, Expand);
376
377    // Expand FP immediates into loads from the stack, except for the special
378    // cases we handle.
379    addLegalFPImmediate(APFloat(+0.0)); // xorpd
380    addLegalFPImmediate(APFloat(+0.0f)); // xorps
381
382    // Floating truncations from f80 and extensions to f80 go through memory.
383    // If optimizing, we lie about this though and handle it in
384    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
385    if (Fast) {
386      setConvertAction(MVT::f32, MVT::f80, Expand);
387      setConvertAction(MVT::f64, MVT::f80, Expand);
388      setConvertAction(MVT::f80, MVT::f32, Expand);
389      setConvertAction(MVT::f80, MVT::f64, Expand);
390    }
391  } else if (X86ScalarSSEf32) {
392    // Use SSE for f32, x87 for f64.
393    // Set up the FP register classes.
394    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
395    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
396
397    // Use ANDPS to simulate FABS.
398    setOperationAction(ISD::FABS , MVT::f32, Custom);
399
400    // Use XORP to simulate FNEG.
401    setOperationAction(ISD::FNEG , MVT::f32, Custom);
402
403    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
404
405    // Use ANDPS and ORPS to simulate FCOPYSIGN.
406    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
407    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
408
409    // We don't support sin/cos/fmod
410    setOperationAction(ISD::FSIN , MVT::f32, Expand);
411    setOperationAction(ISD::FCOS , MVT::f32, Expand);
412
413    // Special cases we handle for FP constants.
414    addLegalFPImmediate(APFloat(+0.0f)); // xorps
415    addLegalFPImmediate(APFloat(+0.0)); // FLD0
416    addLegalFPImmediate(APFloat(+1.0)); // FLD1
417    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
418    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
419
420    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
421    // this though and handle it in InstructionSelectPreprocess so that
422    // dagcombine2 can hack on these.
423    if (Fast) {
424      setConvertAction(MVT::f32, MVT::f64, Expand);
425      setConvertAction(MVT::f32, MVT::f80, Expand);
426      setConvertAction(MVT::f80, MVT::f32, Expand);
427      setConvertAction(MVT::f64, MVT::f32, Expand);
428      // And x87->x87 truncations also.
429      setConvertAction(MVT::f80, MVT::f64, Expand);
430    }
431
432    if (!UnsafeFPMath) {
433      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
434      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
435    }
436  } else {
437    // f32 and f64 in x87.
438    // Set up the FP register classes.
439    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
440    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
441
442    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
443    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
444    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
445    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
446
447    // Floating truncations go through memory.  If optimizing, we lie about
448    // this though and handle it in InstructionSelectPreprocess so that
449    // dagcombine2 can hack on these.
450    if (Fast) {
451      setConvertAction(MVT::f80, MVT::f32, Expand);
452      setConvertAction(MVT::f64, MVT::f32, Expand);
453      setConvertAction(MVT::f80, MVT::f64, Expand);
454    }
455
456    if (!UnsafeFPMath) {
457      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
458      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
459    }
460    addLegalFPImmediate(APFloat(+0.0)); // FLD0
461    addLegalFPImmediate(APFloat(+1.0)); // FLD1
462    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
463    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
464    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
465    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
466    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
467    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
468  }
469
470  // Long double always uses X87.
471  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
472  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
473  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
474  {
475    APFloat TmpFlt(+0.0);
476    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
477    addLegalFPImmediate(TmpFlt);  // FLD0
478    TmpFlt.changeSign();
479    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
480    APFloat TmpFlt2(+1.0);
481    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
482    addLegalFPImmediate(TmpFlt2);  // FLD1
483    TmpFlt2.changeSign();
484    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
485  }
486
487  if (!UnsafeFPMath) {
488    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
489    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
490  }
491
492  // Always use a library call for pow.
493  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
494  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
495  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
496
497  setOperationAction(ISD::FLOG, MVT::f32, Expand);
498  setOperationAction(ISD::FLOG, MVT::f64, Expand);
499  setOperationAction(ISD::FLOG, MVT::f80, Expand);
500  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
501  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
502  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
503  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
504  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
505  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
506  setOperationAction(ISD::FEXP, MVT::f32, Expand);
507  setOperationAction(ISD::FEXP, MVT::f64, Expand);
508  setOperationAction(ISD::FEXP, MVT::f80, Expand);
509  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
510  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
511  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
512
513  // First set operation action for all vector types to expand. Then we
514  // will selectively turn on ones that can be effectively codegen'd.
515  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
516       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
517    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
518    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
519    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
520    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
521    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
522    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
523    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
524    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
525    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
526    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
527    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
532    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
560  }
561
562  if (Subtarget->hasMMX()) {
563    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
564    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
565    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
566    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
567    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
568
569    // FIXME: add MMX packed arithmetics
570
571    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
572    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
573    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
574    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
575
576    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
577    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
578    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
579    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
580
581    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
582    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
583
584    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
585    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
586    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
587    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
588    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
589    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
590    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
591
592    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
593    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
594    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
595    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
596    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
597    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
598    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
599
600    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
601    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
602    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
603    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
604    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
605    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
606    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
607
608    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
609    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
610    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
611    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
612    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
613    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
614    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
615    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
616    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
617
618    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
619    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
620    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
621    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
622    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
623
624    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
625    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
626    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
627    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
628
629    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
630    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
631    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
632    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
633
634    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
635  }
636
637  if (Subtarget->hasSSE1()) {
638    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
639
640    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
641    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
642    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
643    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
644    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
645    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
646    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
647    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
648    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
649    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
650    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
651    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
652  }
653
654  if (Subtarget->hasSSE2()) {
655    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
656    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
657    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
658    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
659    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
660
661    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
662    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
663    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
664    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
665    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
666    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
667    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
668    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
669    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
670    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
671    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
672    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
673    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
674    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
675    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
676
677    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
678    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
679    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
680    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
681
682    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
683    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
684    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
685    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
686    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
687
688    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
689    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
690      MVT VT = (MVT::SimpleValueType)i;
691      // Do not attempt to custom lower non-power-of-2 vectors
692      if (!isPowerOf2_32(VT.getVectorNumElements()))
693        continue;
694      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
695      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
696      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
697    }
698    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
699    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
700    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
701    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
702    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
703    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
704    if (Subtarget->is64Bit()) {
705      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
706      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
707    }
708
709    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
710    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
711      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
712      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
713      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
714      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
715      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
716      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
717      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
718      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
719      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
720      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
721    }
722
723    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
724
725    // Custom lower v2i64 and v2f64 selects.
726    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
727    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
728    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
729    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
730
731  }
732
733  if (Subtarget->hasSSE41()) {
734    // FIXME: Do we need to handle scalar-to-vector here?
735    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
736    setOperationAction(ISD::MUL,                MVT::v2i64, Legal);
737
738    // i8 and i16 vectors are custom , because the source register and source
739    // source memory operand types are not the same width.  f32 vectors are
740    // custom since the immediate controlling the insert encodes additional
741    // information.
742    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
743    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
744    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
745    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
746
747    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
748    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
749    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
750    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
751
752    if (Subtarget->is64Bit()) {
753      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
754      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
755    }
756  }
757
758  if (Subtarget->hasSSE42()) {
759    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
760  }
761
762  // We want to custom lower some of our intrinsics.
763  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
764
765  // We have target-specific dag combine patterns for the following nodes:
766  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
767  setTargetDAGCombine(ISD::BUILD_VECTOR);
768  setTargetDAGCombine(ISD::SELECT);
769  setTargetDAGCombine(ISD::STORE);
770
771  computeRegisterProperties();
772
773  // FIXME: These should be based on subtarget info. Plus, the values should
774  // be smaller when we are in optimizing for size mode.
775  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
776  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
777  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
778  allowUnalignedMemoryAccesses = true; // x86 supports it!
779  setPrefLoopAlignment(16);
780}
781
782
783MVT X86TargetLowering::getSetCCResultType(const SDValue &) const {
784  return MVT::i8;
785}
786
787
788/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
789/// the desired ByVal argument alignment.
790static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
791  if (MaxAlign == 16)
792    return;
793  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
794    if (VTy->getBitWidth() == 128)
795      MaxAlign = 16;
796  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
797    unsigned EltAlign = 0;
798    getMaxByValAlign(ATy->getElementType(), EltAlign);
799    if (EltAlign > MaxAlign)
800      MaxAlign = EltAlign;
801  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
802    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
803      unsigned EltAlign = 0;
804      getMaxByValAlign(STy->getElementType(i), EltAlign);
805      if (EltAlign > MaxAlign)
806        MaxAlign = EltAlign;
807      if (MaxAlign == 16)
808        break;
809    }
810  }
811  return;
812}
813
814/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
815/// function arguments in the caller parameter area. For X86, aggregates
816/// that contain SSE vectors are placed at 16-byte boundaries while the rest
817/// are at 4-byte boundaries.
818unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
819  if (Subtarget->is64Bit()) {
820    // Max of 8 and alignment of type.
821    unsigned TyAlign = TD->getABITypeAlignment(Ty);
822    if (TyAlign > 8)
823      return TyAlign;
824    return 8;
825  }
826
827  unsigned Align = 4;
828  if (Subtarget->hasSSE1())
829    getMaxByValAlign(Ty, Align);
830  return Align;
831}
832
833/// getOptimalMemOpType - Returns the target specific optimal type for load
834/// and store operations as a result of memset, memcpy, and memmove
835/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
836/// determining it.
837MVT
838X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
839                                       bool isSrcConst, bool isSrcStr) const {
840  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
841    return MVT::v4i32;
842  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
843    return MVT::v4f32;
844  if (Subtarget->is64Bit() && Size >= 8)
845    return MVT::i64;
846  return MVT::i32;
847}
848
849
850/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
851/// jumptable.
852SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
853                                                      SelectionDAG &DAG) const {
854  if (usesGlobalOffsetTable())
855    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
856  if (!Subtarget->isPICStyleRIPRel())
857    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
858  return Table;
859}
860
861//===----------------------------------------------------------------------===//
862//               Return Value Calling Convention Implementation
863//===----------------------------------------------------------------------===//
864
865#include "X86GenCallingConv.inc"
866
867/// LowerRET - Lower an ISD::RET node.
868SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
869  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
870
871  SmallVector<CCValAssign, 16> RVLocs;
872  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
873  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
874  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
875  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
876
877  // If this is the first return lowered for this function, add the regs to the
878  // liveout set for the function.
879  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
880    for (unsigned i = 0; i != RVLocs.size(); ++i)
881      if (RVLocs[i].isRegLoc())
882        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
883  }
884  SDValue Chain = Op.getOperand(0);
885
886  // Handle tail call return.
887  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
888  if (Chain.getOpcode() == X86ISD::TAILCALL) {
889    SDValue TailCall = Chain;
890    SDValue TargetAddress = TailCall.getOperand(1);
891    SDValue StackAdjustment = TailCall.getOperand(2);
892    assert(((TargetAddress.getOpcode() == ISD::Register &&
893               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
894                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
895              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
896              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
897             "Expecting an global address, external symbol, or register");
898    assert(StackAdjustment.getOpcode() == ISD::Constant &&
899           "Expecting a const value");
900
901    SmallVector<SDValue,8> Operands;
902    Operands.push_back(Chain.getOperand(0));
903    Operands.push_back(TargetAddress);
904    Operands.push_back(StackAdjustment);
905    // Copy registers used by the call. Last operand is a flag so it is not
906    // copied.
907    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
908      Operands.push_back(Chain.getOperand(i));
909    }
910    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
911                       Operands.size());
912  }
913
914  // Regular return.
915  SDValue Flag;
916
917  SmallVector<SDValue, 6> RetOps;
918  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
919  // Operand #1 = Bytes To Pop
920  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
921
922  // Copy the result values into the output registers.
923  for (unsigned i = 0; i != RVLocs.size(); ++i) {
924    CCValAssign &VA = RVLocs[i];
925    assert(VA.isRegLoc() && "Can only return in registers!");
926    SDValue ValToCopy = Op.getOperand(i*2+1);
927
928    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
929    // the RET instruction and handled by the FP Stackifier.
930    if (RVLocs[i].getLocReg() == X86::ST0 ||
931        RVLocs[i].getLocReg() == X86::ST1) {
932      // If this is a copy from an xmm register to ST(0), use an FPExtend to
933      // change the value to the FP stack register class.
934      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
935        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
936      RetOps.push_back(ValToCopy);
937      // Don't emit a copytoreg.
938      continue;
939    }
940
941    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
942    Flag = Chain.getValue(1);
943  }
944
945  // The x86-64 ABI for returning structs by value requires that we copy
946  // the sret argument into %rax for the return. We saved the argument into
947  // a virtual register in the entry block, so now we copy the value out
948  // and into %rax.
949  if (Subtarget->is64Bit() &&
950      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
951    MachineFunction &MF = DAG.getMachineFunction();
952    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
953    unsigned Reg = FuncInfo->getSRetReturnReg();
954    if (!Reg) {
955      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
956      FuncInfo->setSRetReturnReg(Reg);
957    }
958    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
959
960    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
961    Flag = Chain.getValue(1);
962  }
963
964  RetOps[0] = Chain;  // Update chain.
965
966  // Add the flag if we have it.
967  if (Flag.getNode())
968    RetOps.push_back(Flag);
969
970  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
971}
972
973
974/// LowerCallResult - Lower the result values of an ISD::CALL into the
975/// appropriate copies out of appropriate physical registers.  This assumes that
976/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
977/// being lowered.  The returns a SDNode with the same number of values as the
978/// ISD::CALL.
979SDNode *X86TargetLowering::
980LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
981                unsigned CallingConv, SelectionDAG &DAG) {
982
983  // Assign locations to each value returned by this call.
984  SmallVector<CCValAssign, 16> RVLocs;
985  bool isVarArg = TheCall->isVarArg();
986  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
987  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
988
989  SmallVector<SDValue, 8> ResultVals;
990
991  // Copy all of the result registers out of their specified physreg.
992  for (unsigned i = 0; i != RVLocs.size(); ++i) {
993    MVT CopyVT = RVLocs[i].getValVT();
994
995    // If this is a call to a function that returns an fp value on the floating
996    // point stack, but where we prefer to use the value in xmm registers, copy
997    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
998    if ((RVLocs[i].getLocReg() == X86::ST0 ||
999         RVLocs[i].getLocReg() == X86::ST1) &&
1000        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1001      CopyVT = MVT::f80;
1002    }
1003
1004    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
1005                               CopyVT, InFlag).getValue(1);
1006    SDValue Val = Chain.getValue(0);
1007    InFlag = Chain.getValue(2);
1008
1009    if (CopyVT != RVLocs[i].getValVT()) {
1010      // Round the F80 the right size, which also moves to the appropriate xmm
1011      // register.
1012      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
1013                        // This truncation won't change the value.
1014                        DAG.getIntPtrConstant(1));
1015    }
1016
1017    ResultVals.push_back(Val);
1018  }
1019
1020  // Merge everything together with a MERGE_VALUES node.
1021  ResultVals.push_back(Chain);
1022  return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
1023                            ResultVals.size()).getNode();
1024}
1025
1026
1027//===----------------------------------------------------------------------===//
1028//                C & StdCall & Fast Calling Convention implementation
1029//===----------------------------------------------------------------------===//
1030//  StdCall calling convention seems to be standard for many Windows' API
1031//  routines and around. It differs from C calling convention just a little:
1032//  callee should clean up the stack, not caller. Symbols should be also
1033//  decorated in some fancy way :) It doesn't support any vector arguments.
1034//  For info on fast calling convention see Fast Calling Convention (tail call)
1035//  implementation LowerX86_32FastCCCallTo.
1036
1037/// AddLiveIn - This helper function adds the specified physical register to the
1038/// MachineFunction as a live in value.  It also creates a corresponding virtual
1039/// register for it.
1040static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1041                          const TargetRegisterClass *RC) {
1042  assert(RC->contains(PReg) && "Not the correct regclass!");
1043  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1044  MF.getRegInfo().addLiveIn(PReg, VReg);
1045  return VReg;
1046}
1047
1048/// CallIsStructReturn - Determines whether a CALL node uses struct return
1049/// semantics.
1050static bool CallIsStructReturn(CallSDNode *TheCall) {
1051  unsigned NumOps = TheCall->getNumArgs();
1052  if (!NumOps)
1053    return false;
1054
1055  return TheCall->getArgFlags(0).isSRet();
1056}
1057
1058/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1059/// return semantics.
1060static bool ArgsAreStructReturn(SDValue Op) {
1061  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1062  if (!NumArgs)
1063    return false;
1064
1065  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1066}
1067
1068/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1069/// the callee to pop its own arguments. Callee pop is necessary to support tail
1070/// calls.
1071bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1072  if (IsVarArg)
1073    return false;
1074
1075  switch (CallingConv) {
1076  default:
1077    return false;
1078  case CallingConv::X86_StdCall:
1079    return !Subtarget->is64Bit();
1080  case CallingConv::X86_FastCall:
1081    return !Subtarget->is64Bit();
1082  case CallingConv::Fast:
1083    return PerformTailCallOpt;
1084  }
1085}
1086
1087/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1088/// given CallingConvention value.
1089CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1090  if (Subtarget->is64Bit()) {
1091    if (Subtarget->isTargetWin64())
1092      return CC_X86_Win64_C;
1093    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1094      return CC_X86_64_TailCall;
1095    else
1096      return CC_X86_64_C;
1097  }
1098
1099  if (CC == CallingConv::X86_FastCall)
1100    return CC_X86_32_FastCall;
1101  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1102    return CC_X86_32_TailCall;
1103  else if (CC == CallingConv::Fast)
1104    return CC_X86_32_FastCC;
1105  else
1106    return CC_X86_32_C;
1107}
1108
1109/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1110/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1111NameDecorationStyle
1112X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1113  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1114  if (CC == CallingConv::X86_FastCall)
1115    return FastCall;
1116  else if (CC == CallingConv::X86_StdCall)
1117    return StdCall;
1118  return None;
1119}
1120
1121
1122/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1123/// in a register before calling.
1124bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1125  return !IsTailCall && !Is64Bit &&
1126    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1127    Subtarget->isPICStyleGOT();
1128}
1129
1130/// CallRequiresFnAddressInReg - Check whether the call requires the function
1131/// address to be loaded in a register.
1132bool
1133X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1134  return !Is64Bit && IsTailCall &&
1135    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1136    Subtarget->isPICStyleGOT();
1137}
1138
1139/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1140/// by "Src" to address "Dst" with size and alignment information specified by
1141/// the specific parameter attribute. The copy will be passed as a byval
1142/// function parameter.
1143static SDValue
1144CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1145                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1146  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1147  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1148                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1149}
1150
1151SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1152                                              const CCValAssign &VA,
1153                                              MachineFrameInfo *MFI,
1154                                              unsigned CC,
1155                                              SDValue Root, unsigned i) {
1156  // Create the nodes corresponding to a load from this parameter slot.
1157  ISD::ArgFlagsTy Flags =
1158    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1159  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1160  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1161
1162  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1163  // changed with more analysis.
1164  // In case of tail call optimization mark all arguments mutable. Since they
1165  // could be overwritten by lowering of arguments in case of a tail call.
1166  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1167                                  VA.getLocMemOffset(), isImmutable);
1168  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1169  if (Flags.isByVal())
1170    return FIN;
1171  return DAG.getLoad(VA.getValVT(), Root, FIN,
1172                     PseudoSourceValue::getFixedStack(FI), 0);
1173}
1174
1175SDValue
1176X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1177  MachineFunction &MF = DAG.getMachineFunction();
1178  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1179
1180  const Function* Fn = MF.getFunction();
1181  if (Fn->hasExternalLinkage() &&
1182      Subtarget->isTargetCygMing() &&
1183      Fn->getName() == "main")
1184    FuncInfo->setForceFramePointer(true);
1185
1186  // Decorate the function name.
1187  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1188
1189  MachineFrameInfo *MFI = MF.getFrameInfo();
1190  SDValue Root = Op.getOperand(0);
1191  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1192  unsigned CC = MF.getFunction()->getCallingConv();
1193  bool Is64Bit = Subtarget->is64Bit();
1194  bool IsWin64 = Subtarget->isTargetWin64();
1195
1196  assert(!(isVarArg && CC == CallingConv::Fast) &&
1197         "Var args not supported with calling convention fastcc");
1198
1199  // Assign locations to all of the incoming arguments.
1200  SmallVector<CCValAssign, 16> ArgLocs;
1201  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1202  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1203
1204  SmallVector<SDValue, 8> ArgValues;
1205  unsigned LastVal = ~0U;
1206  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1207    CCValAssign &VA = ArgLocs[i];
1208    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1209    // places.
1210    assert(VA.getValNo() != LastVal &&
1211           "Don't support value assigned to multiple locs yet");
1212    LastVal = VA.getValNo();
1213
1214    if (VA.isRegLoc()) {
1215      MVT RegVT = VA.getLocVT();
1216      TargetRegisterClass *RC;
1217      if (RegVT == MVT::i32)
1218        RC = X86::GR32RegisterClass;
1219      else if (Is64Bit && RegVT == MVT::i64)
1220        RC = X86::GR64RegisterClass;
1221      else if (RegVT == MVT::f32)
1222        RC = X86::FR32RegisterClass;
1223      else if (RegVT == MVT::f64)
1224        RC = X86::FR64RegisterClass;
1225      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1226        RC = X86::VR128RegisterClass;
1227      else if (RegVT.isVector()) {
1228        assert(RegVT.getSizeInBits() == 64);
1229        if (!Is64Bit)
1230          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1231        else {
1232          // Darwin calling convention passes MMX values in either GPRs or
1233          // XMMs in x86-64. Other targets pass them in memory.
1234          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1235            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1236            RegVT = MVT::v2i64;
1237          } else {
1238            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1239            RegVT = MVT::i64;
1240          }
1241        }
1242      } else {
1243        assert(0 && "Unknown argument type!");
1244      }
1245
1246      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1247      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1248
1249      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1250      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1251      // right size.
1252      if (VA.getLocInfo() == CCValAssign::SExt)
1253        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1254                               DAG.getValueType(VA.getValVT()));
1255      else if (VA.getLocInfo() == CCValAssign::ZExt)
1256        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1257                               DAG.getValueType(VA.getValVT()));
1258
1259      if (VA.getLocInfo() != CCValAssign::Full)
1260        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1261
1262      // Handle MMX values passed in GPRs.
1263      if (Is64Bit && RegVT != VA.getLocVT()) {
1264        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1265          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1266        else if (RC == X86::VR128RegisterClass) {
1267          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1268                                 DAG.getConstant(0, MVT::i64));
1269          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1270        }
1271      }
1272
1273      ArgValues.push_back(ArgValue);
1274    } else {
1275      assert(VA.isMemLoc());
1276      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1277    }
1278  }
1279
1280  // The x86-64 ABI for returning structs by value requires that we copy
1281  // the sret argument into %rax for the return. Save the argument into
1282  // a virtual register so that we can access it from the return points.
1283  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1284    MachineFunction &MF = DAG.getMachineFunction();
1285    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1286    unsigned Reg = FuncInfo->getSRetReturnReg();
1287    if (!Reg) {
1288      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1289      FuncInfo->setSRetReturnReg(Reg);
1290    }
1291    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1292    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1293  }
1294
1295  unsigned StackSize = CCInfo.getNextStackOffset();
1296  // align stack specially for tail calls
1297  if (PerformTailCallOpt && CC == CallingConv::Fast)
1298    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1299
1300  // If the function takes variable number of arguments, make a frame index for
1301  // the start of the first vararg value... for expansion of llvm.va_start.
1302  if (isVarArg) {
1303    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1304      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1305    }
1306    if (Is64Bit) {
1307      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1308
1309      // FIXME: We should really autogenerate these arrays
1310      static const unsigned GPR64ArgRegsWin64[] = {
1311        X86::RCX, X86::RDX, X86::R8,  X86::R9
1312      };
1313      static const unsigned XMMArgRegsWin64[] = {
1314        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1315      };
1316      static const unsigned GPR64ArgRegs64Bit[] = {
1317        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1318      };
1319      static const unsigned XMMArgRegs64Bit[] = {
1320        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1321        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1322      };
1323      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1324
1325      if (IsWin64) {
1326        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1327        GPR64ArgRegs = GPR64ArgRegsWin64;
1328        XMMArgRegs = XMMArgRegsWin64;
1329      } else {
1330        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1331        GPR64ArgRegs = GPR64ArgRegs64Bit;
1332        XMMArgRegs = XMMArgRegs64Bit;
1333      }
1334      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1335                                                       TotalNumIntRegs);
1336      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1337                                                       TotalNumXMMRegs);
1338
1339      // For X86-64, if there are vararg parameters that are passed via
1340      // registers, then we must store them to their spots on the stack so they
1341      // may be loaded by deferencing the result of va_next.
1342      VarArgsGPOffset = NumIntRegs * 8;
1343      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1344      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1345                                                 TotalNumXMMRegs * 16, 16);
1346
1347      // Store the integer parameter registers.
1348      SmallVector<SDValue, 8> MemOps;
1349      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1350      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1351                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1352      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1353        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1354                                  X86::GR64RegisterClass);
1355        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1356        SDValue Store =
1357          DAG.getStore(Val.getValue(1), Val, FIN,
1358                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1359        MemOps.push_back(Store);
1360        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1361                          DAG.getIntPtrConstant(8));
1362      }
1363
1364      // Now store the XMM (fp + vector) parameter registers.
1365      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1366                        DAG.getIntPtrConstant(VarArgsFPOffset));
1367      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1368        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1369                                  X86::VR128RegisterClass);
1370        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1371        SDValue Store =
1372          DAG.getStore(Val.getValue(1), Val, FIN,
1373                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1374        MemOps.push_back(Store);
1375        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1376                          DAG.getIntPtrConstant(16));
1377      }
1378      if (!MemOps.empty())
1379          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1380                             &MemOps[0], MemOps.size());
1381    }
1382  }
1383
1384  ArgValues.push_back(Root);
1385
1386  // Some CCs need callee pop.
1387  if (IsCalleePop(isVarArg, CC)) {
1388    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1389    BytesCallerReserves = 0;
1390  } else {
1391    BytesToPopOnReturn  = 0; // Callee pops nothing.
1392    // If this is an sret function, the return should pop the hidden pointer.
1393    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1394      BytesToPopOnReturn = 4;
1395    BytesCallerReserves = StackSize;
1396  }
1397
1398  if (!Is64Bit) {
1399    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1400    if (CC == CallingConv::X86_FastCall)
1401      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1402  }
1403
1404  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1405
1406  // Return the new list of results.
1407  return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
1408                            ArgValues.size()).getValue(Op.getResNo());
1409}
1410
1411SDValue
1412X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1413                                    const SDValue &StackPtr,
1414                                    const CCValAssign &VA,
1415                                    SDValue Chain,
1416                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1417  unsigned LocMemOffset = VA.getLocMemOffset();
1418  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1419  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1420  if (Flags.isByVal()) {
1421    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1422  }
1423  return DAG.getStore(Chain, Arg, PtrOff,
1424                      PseudoSourceValue::getStack(), LocMemOffset);
1425}
1426
1427/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1428/// optimization is performed and it is required.
1429SDValue
1430X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1431                                           SDValue &OutRetAddr,
1432                                           SDValue Chain,
1433                                           bool IsTailCall,
1434                                           bool Is64Bit,
1435                                           int FPDiff) {
1436  if (!IsTailCall || FPDiff==0) return Chain;
1437
1438  // Adjust the Return address stack slot.
1439  MVT VT = getPointerTy();
1440  OutRetAddr = getReturnAddressFrameIndex(DAG);
1441  // Load the "old" Return address.
1442  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1443  return SDValue(OutRetAddr.getNode(), 1);
1444}
1445
1446/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1447/// optimization is performed and it is required (FPDiff!=0).
1448static SDValue
1449EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1450                         SDValue Chain, SDValue RetAddrFrIdx,
1451                         bool Is64Bit, int FPDiff) {
1452  // Store the return address to the appropriate stack slot.
1453  if (!FPDiff) return Chain;
1454  // Calculate the new stack slot for the return address.
1455  int SlotSize = Is64Bit ? 8 : 4;
1456  int NewReturnAddrFI =
1457    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1458  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1459  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1460  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1461                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1462  return Chain;
1463}
1464
1465SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1466  MachineFunction &MF = DAG.getMachineFunction();
1467  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1468  SDValue Chain       = TheCall->getChain();
1469  unsigned CC         = TheCall->getCallingConv();
1470  bool isVarArg       = TheCall->isVarArg();
1471  bool IsTailCall     = TheCall->isTailCall() &&
1472                        CC == CallingConv::Fast && PerformTailCallOpt;
1473  SDValue Callee      = TheCall->getCallee();
1474  bool Is64Bit        = Subtarget->is64Bit();
1475  bool IsStructRet    = CallIsStructReturn(TheCall);
1476
1477  assert(!(isVarArg && CC == CallingConv::Fast) &&
1478         "Var args not supported with calling convention fastcc");
1479
1480  // Analyze operands of the call, assigning locations to each operand.
1481  SmallVector<CCValAssign, 16> ArgLocs;
1482  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1483  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1484
1485  // Get a count of how many bytes are to be pushed on the stack.
1486  unsigned NumBytes = CCInfo.getNextStackOffset();
1487  if (PerformTailCallOpt && CC == CallingConv::Fast)
1488    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1489
1490  int FPDiff = 0;
1491  if (IsTailCall) {
1492    // Lower arguments at fp - stackoffset + fpdiff.
1493    unsigned NumBytesCallerPushed =
1494      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1495    FPDiff = NumBytesCallerPushed - NumBytes;
1496
1497    // Set the delta of movement of the returnaddr stackslot.
1498    // But only set if delta is greater than previous delta.
1499    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1500      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1501  }
1502
1503  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1504
1505  SDValue RetAddrFrIdx;
1506  // Load return adress for tail calls.
1507  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1508                                  FPDiff);
1509
1510  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1511  SmallVector<SDValue, 8> MemOpChains;
1512  SDValue StackPtr;
1513
1514  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1515  // of tail call optimization arguments are handle later.
1516  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1517    CCValAssign &VA = ArgLocs[i];
1518    SDValue Arg = TheCall->getArg(i);
1519    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1520    bool isByVal = Flags.isByVal();
1521
1522    // Promote the value if needed.
1523    switch (VA.getLocInfo()) {
1524    default: assert(0 && "Unknown loc info!");
1525    case CCValAssign::Full: break;
1526    case CCValAssign::SExt:
1527      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1528      break;
1529    case CCValAssign::ZExt:
1530      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1531      break;
1532    case CCValAssign::AExt:
1533      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1534      break;
1535    }
1536
1537    if (VA.isRegLoc()) {
1538      if (Is64Bit) {
1539        MVT RegVT = VA.getLocVT();
1540        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1541          switch (VA.getLocReg()) {
1542          default:
1543            break;
1544          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1545          case X86::R8: {
1546            // Special case: passing MMX values in GPR registers.
1547            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1548            break;
1549          }
1550          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1551          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1552            // Special case: passing MMX values in XMM registers.
1553            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1554            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1555            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1556                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1557                              getMOVLMask(2, DAG));
1558            break;
1559          }
1560          }
1561      }
1562      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1563    } else {
1564      if (!IsTailCall || (IsTailCall && isByVal)) {
1565        assert(VA.isMemLoc());
1566        if (StackPtr.getNode() == 0)
1567          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1568
1569        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1570                                               Chain, Arg, Flags));
1571      }
1572    }
1573  }
1574
1575  if (!MemOpChains.empty())
1576    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1577                        &MemOpChains[0], MemOpChains.size());
1578
1579  // Build a sequence of copy-to-reg nodes chained together with token chain
1580  // and flag operands which copy the outgoing args into registers.
1581  SDValue InFlag;
1582  // Tail call byval lowering might overwrite argument registers so in case of
1583  // tail call optimization the copies to registers are lowered later.
1584  if (!IsTailCall)
1585    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1586      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1587                               InFlag);
1588      InFlag = Chain.getValue(1);
1589    }
1590
1591  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1592  // GOT pointer.
1593  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1594    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1595                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1596                             InFlag);
1597    InFlag = Chain.getValue(1);
1598  }
1599  // If we are tail calling and generating PIC/GOT style code load the address
1600  // of the callee into ecx. The value in ecx is used as target of the tail
1601  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1602  // calls on PIC/GOT architectures. Normally we would just put the address of
1603  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1604  // restored (since ebx is callee saved) before jumping to the target@PLT.
1605  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1606    // Note: The actual moving to ecx is done further down.
1607    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1608    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1609        !G->getGlobal()->hasProtectedVisibility())
1610      Callee =  LowerGlobalAddress(Callee, DAG);
1611    else if (isa<ExternalSymbolSDNode>(Callee))
1612      Callee = LowerExternalSymbol(Callee,DAG);
1613  }
1614
1615  if (Is64Bit && isVarArg) {
1616    // From AMD64 ABI document:
1617    // For calls that may call functions that use varargs or stdargs
1618    // (prototype-less calls or calls to functions containing ellipsis (...) in
1619    // the declaration) %al is used as hidden argument to specify the number
1620    // of SSE registers used. The contents of %al do not need to match exactly
1621    // the number of registers, but must be an ubound on the number of SSE
1622    // registers used and is in the range 0 - 8 inclusive.
1623
1624    // FIXME: Verify this on Win64
1625    // Count the number of XMM registers allocated.
1626    static const unsigned XMMArgRegs[] = {
1627      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1628      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1629    };
1630    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1631
1632    Chain = DAG.getCopyToReg(Chain, X86::AL,
1633                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1634    InFlag = Chain.getValue(1);
1635  }
1636
1637
1638  // For tail calls lower the arguments to the 'real' stack slot.
1639  if (IsTailCall) {
1640    SmallVector<SDValue, 8> MemOpChains2;
1641    SDValue FIN;
1642    int FI = 0;
1643    // Do not flag preceeding copytoreg stuff together with the following stuff.
1644    InFlag = SDValue();
1645    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1646      CCValAssign &VA = ArgLocs[i];
1647      if (!VA.isRegLoc()) {
1648        assert(VA.isMemLoc());
1649        SDValue Arg = TheCall->getArg(i);
1650        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1651        // Create frame index.
1652        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1653        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1654        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1655        FIN = DAG.getFrameIndex(FI, getPointerTy());
1656
1657        if (Flags.isByVal()) {
1658          // Copy relative to framepointer.
1659          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1660          if (StackPtr.getNode() == 0)
1661            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1662          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1663
1664          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1665                                                           Flags, DAG));
1666        } else {
1667          // Store relative to framepointer.
1668          MemOpChains2.push_back(
1669            DAG.getStore(Chain, Arg, FIN,
1670                         PseudoSourceValue::getFixedStack(FI), 0));
1671        }
1672      }
1673    }
1674
1675    if (!MemOpChains2.empty())
1676      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1677                          &MemOpChains2[0], MemOpChains2.size());
1678
1679    // Copy arguments to their registers.
1680    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1681      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1682                               InFlag);
1683      InFlag = Chain.getValue(1);
1684    }
1685    InFlag =SDValue();
1686
1687    // Store the return address to the appropriate stack slot.
1688    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1689                                     FPDiff);
1690  }
1691
1692  // If the callee is a GlobalAddress node (quite common, every direct call is)
1693  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1694  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1695    // We should use extra load for direct calls to dllimported functions in
1696    // non-JIT mode.
1697    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1698                                        getTargetMachine(), true))
1699      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1700  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1701    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1702  } else if (IsTailCall) {
1703    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1704
1705    Chain = DAG.getCopyToReg(Chain,
1706                             DAG.getRegister(Opc, getPointerTy()),
1707                             Callee,InFlag);
1708    Callee = DAG.getRegister(Opc, getPointerTy());
1709    // Add register as live out.
1710    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1711  }
1712
1713  // Returns a chain & a flag for retval copy to use.
1714  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1715  SmallVector<SDValue, 8> Ops;
1716
1717  if (IsTailCall) {
1718    Ops.push_back(Chain);
1719    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1720    Ops.push_back(DAG.getIntPtrConstant(0));
1721    if (InFlag.getNode())
1722      Ops.push_back(InFlag);
1723    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1724    InFlag = Chain.getValue(1);
1725
1726    // Returns a chain & a flag for retval copy to use.
1727    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1728    Ops.clear();
1729  }
1730
1731  Ops.push_back(Chain);
1732  Ops.push_back(Callee);
1733
1734  if (IsTailCall)
1735    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1736
1737  // Add argument registers to the end of the list so that they are known live
1738  // into the call.
1739  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1740    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1741                                  RegsToPass[i].second.getValueType()));
1742
1743  // Add an implicit use GOT pointer in EBX.
1744  if (!IsTailCall && !Is64Bit &&
1745      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1746      Subtarget->isPICStyleGOT())
1747    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1748
1749  // Add an implicit use of AL for x86 vararg functions.
1750  if (Is64Bit && isVarArg)
1751    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1752
1753  if (InFlag.getNode())
1754    Ops.push_back(InFlag);
1755
1756  if (IsTailCall) {
1757    assert(InFlag.getNode() &&
1758           "Flag must be set. Depend on flag being set in LowerRET");
1759    Chain = DAG.getNode(X86ISD::TAILCALL,
1760                        TheCall->getVTList(), &Ops[0], Ops.size());
1761
1762    return SDValue(Chain.getNode(), Op.getResNo());
1763  }
1764
1765  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1766  InFlag = Chain.getValue(1);
1767
1768  // Create the CALLSEQ_END node.
1769  unsigned NumBytesForCalleeToPush;
1770  if (IsCalleePop(isVarArg, CC))
1771    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1772  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1773    // If this is is a call to a struct-return function, the callee
1774    // pops the hidden struct pointer, so we have to push it back.
1775    // This is common for Darwin/X86, Linux & Mingw32 targets.
1776    NumBytesForCalleeToPush = 4;
1777  else
1778    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1779
1780  // Returns a flag for retval copy to use.
1781  Chain = DAG.getCALLSEQ_END(Chain,
1782                             DAG.getIntPtrConstant(NumBytes),
1783                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1784                             InFlag);
1785  InFlag = Chain.getValue(1);
1786
1787  // Handle result values, copying them out of physregs into vregs that we
1788  // return.
1789  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1790                 Op.getResNo());
1791}
1792
1793
1794//===----------------------------------------------------------------------===//
1795//                Fast Calling Convention (tail call) implementation
1796//===----------------------------------------------------------------------===//
1797
1798//  Like std call, callee cleans arguments, convention except that ECX is
1799//  reserved for storing the tail called function address. Only 2 registers are
1800//  free for argument passing (inreg). Tail call optimization is performed
1801//  provided:
1802//                * tailcallopt is enabled
1803//                * caller/callee are fastcc
1804//  On X86_64 architecture with GOT-style position independent code only local
1805//  (within module) calls are supported at the moment.
1806//  To keep the stack aligned according to platform abi the function
1807//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1808//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1809//  If a tail called function callee has more arguments than the caller the
1810//  caller needs to make sure that there is room to move the RETADDR to. This is
1811//  achieved by reserving an area the size of the argument delta right after the
1812//  original REtADDR, but before the saved framepointer or the spilled registers
1813//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1814//  stack layout:
1815//    arg1
1816//    arg2
1817//    RETADDR
1818//    [ new RETADDR
1819//      move area ]
1820//    (possible EBP)
1821//    ESI
1822//    EDI
1823//    local1 ..
1824
1825/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1826/// for a 16 byte align requirement.
1827unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1828                                                        SelectionDAG& DAG) {
1829  MachineFunction &MF = DAG.getMachineFunction();
1830  const TargetMachine &TM = MF.getTarget();
1831  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1832  unsigned StackAlignment = TFI.getStackAlignment();
1833  uint64_t AlignMask = StackAlignment - 1;
1834  int64_t Offset = StackSize;
1835  uint64_t SlotSize = TD->getPointerSize();
1836  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1837    // Number smaller than 12 so just add the difference.
1838    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1839  } else {
1840    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1841    Offset = ((~AlignMask) & Offset) + StackAlignment +
1842      (StackAlignment-SlotSize);
1843  }
1844  return Offset;
1845}
1846
1847/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1848/// following the call is a return. A function is eligible if caller/callee
1849/// calling conventions match, currently only fastcc supports tail calls, and
1850/// the function CALL is immediatly followed by a RET.
1851bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1852                                                      SDValue Ret,
1853                                                      SelectionDAG& DAG) const {
1854  if (!PerformTailCallOpt)
1855    return false;
1856
1857  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1858    MachineFunction &MF = DAG.getMachineFunction();
1859    unsigned CallerCC = MF.getFunction()->getCallingConv();
1860    unsigned CalleeCC= TheCall->getCallingConv();
1861    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1862      SDValue Callee = TheCall->getCallee();
1863      // On x86/32Bit PIC/GOT  tail calls are supported.
1864      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1865          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1866        return true;
1867
1868      // Can only do local tail calls (in same module, hidden or protected) on
1869      // x86_64 PIC/GOT at the moment.
1870      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1871        return G->getGlobal()->hasHiddenVisibility()
1872            || G->getGlobal()->hasProtectedVisibility();
1873    }
1874  }
1875
1876  return false;
1877}
1878
1879FastISel *
1880X86TargetLowering::createFastISel(MachineFunction &mf,
1881                                  DenseMap<const Value *, unsigned> &vm,
1882                                  DenseMap<const BasicBlock *,
1883                                           MachineBasicBlock *> &bm,
1884                                  DenseMap<const AllocaInst *, int> &am) {
1885
1886  return X86::createFastISel(mf, vm, bm, am);
1887}
1888
1889
1890//===----------------------------------------------------------------------===//
1891//                           Other Lowering Hooks
1892//===----------------------------------------------------------------------===//
1893
1894
1895SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1896  MachineFunction &MF = DAG.getMachineFunction();
1897  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1898  int ReturnAddrIndex = FuncInfo->getRAIndex();
1899  uint64_t SlotSize = TD->getPointerSize();
1900
1901  if (ReturnAddrIndex == 0) {
1902    // Set up a frame object for the return address.
1903    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
1904    FuncInfo->setRAIndex(ReturnAddrIndex);
1905  }
1906
1907  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1908}
1909
1910
1911/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1912/// specific condition code. It returns a false if it cannot do a direct
1913/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1914/// needed.
1915static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1916                           unsigned &X86CC, SDValue &LHS, SDValue &RHS,
1917                           SelectionDAG &DAG) {
1918  X86CC = X86::COND_INVALID;
1919  if (!isFP) {
1920    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1921      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1922        // X > -1   -> X == 0, jump !sign.
1923        RHS = DAG.getConstant(0, RHS.getValueType());
1924        X86CC = X86::COND_NS;
1925        return true;
1926      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1927        // X < 0   -> X == 0, jump on sign.
1928        X86CC = X86::COND_S;
1929        return true;
1930      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1931        // X < 1   -> X <= 0
1932        RHS = DAG.getConstant(0, RHS.getValueType());
1933        X86CC = X86::COND_LE;
1934        return true;
1935      }
1936    }
1937
1938    switch (SetCCOpcode) {
1939    default: break;
1940    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1941    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1942    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1943    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1944    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1945    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1946    case ISD::SETULT: X86CC = X86::COND_B;  break;
1947    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1948    case ISD::SETULE: X86CC = X86::COND_BE; break;
1949    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1950    }
1951  } else {
1952    // First determine if it requires or is profitable to flip the operands.
1953    bool Flip = false;
1954    switch (SetCCOpcode) {
1955    default: break;
1956    case ISD::SETOLT:
1957    case ISD::SETOLE:
1958    case ISD::SETUGT:
1959    case ISD::SETUGE:
1960      Flip = true;
1961      break;
1962    }
1963
1964    // If LHS is a foldable load, but RHS is not, flip the condition.
1965    if (!Flip &&
1966        (ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
1967        !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
1968      SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
1969      Flip = true;
1970    }
1971    if (Flip)
1972      std::swap(LHS, RHS);
1973
1974    // On a floating point condition, the flags are set as follows:
1975    // ZF  PF  CF   op
1976    //  0 | 0 | 0 | X > Y
1977    //  0 | 0 | 1 | X < Y
1978    //  1 | 0 | 0 | X == Y
1979    //  1 | 1 | 1 | unordered
1980    switch (SetCCOpcode) {
1981    default: break;
1982    case ISD::SETUEQ:
1983    case ISD::SETEQ:
1984      X86CC = X86::COND_E;
1985      break;
1986    case ISD::SETOLT:              // flipped
1987    case ISD::SETOGT:
1988    case ISD::SETGT:
1989      X86CC = X86::COND_A;
1990      break;
1991    case ISD::SETOLE:              // flipped
1992    case ISD::SETOGE:
1993    case ISD::SETGE:
1994      X86CC = X86::COND_AE;
1995      break;
1996    case ISD::SETUGT:              // flipped
1997    case ISD::SETULT:
1998    case ISD::SETLT:
1999      X86CC = X86::COND_B;
2000      break;
2001    case ISD::SETUGE:              // flipped
2002    case ISD::SETULE:
2003    case ISD::SETLE:
2004      X86CC = X86::COND_BE;
2005      break;
2006    case ISD::SETONE:
2007    case ISD::SETNE:
2008      X86CC = X86::COND_NE;
2009      break;
2010    case ISD::SETUO:
2011      X86CC = X86::COND_P;
2012      break;
2013    case ISD::SETO:
2014      X86CC = X86::COND_NP;
2015      break;
2016    }
2017  }
2018
2019  return X86CC != X86::COND_INVALID;
2020}
2021
2022/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2023/// code. Current x86 isa includes the following FP cmov instructions:
2024/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2025static bool hasFPCMov(unsigned X86CC) {
2026  switch (X86CC) {
2027  default:
2028    return false;
2029  case X86::COND_B:
2030  case X86::COND_BE:
2031  case X86::COND_E:
2032  case X86::COND_P:
2033  case X86::COND_A:
2034  case X86::COND_AE:
2035  case X86::COND_NE:
2036  case X86::COND_NP:
2037    return true;
2038  }
2039}
2040
2041/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2042/// true if Op is undef or if its value falls within the specified range (L, H].
2043static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2044  if (Op.getOpcode() == ISD::UNDEF)
2045    return true;
2046
2047  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2048  return (Val >= Low && Val < Hi);
2049}
2050
2051/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2052/// true if Op is undef or if its value equal to the specified value.
2053static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2054  if (Op.getOpcode() == ISD::UNDEF)
2055    return true;
2056  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2057}
2058
2059/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2060/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2061bool X86::isPSHUFDMask(SDNode *N) {
2062  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2063
2064  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2065    return false;
2066
2067  // Check if the value doesn't reference the second vector.
2068  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2069    SDValue Arg = N->getOperand(i);
2070    if (Arg.getOpcode() == ISD::UNDEF) continue;
2071    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2072    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2073      return false;
2074  }
2075
2076  return true;
2077}
2078
2079/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2080/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2081bool X86::isPSHUFHWMask(SDNode *N) {
2082  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2083
2084  if (N->getNumOperands() != 8)
2085    return false;
2086
2087  // Lower quadword copied in order.
2088  for (unsigned i = 0; i != 4; ++i) {
2089    SDValue Arg = N->getOperand(i);
2090    if (Arg.getOpcode() == ISD::UNDEF) continue;
2091    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2092    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2093      return false;
2094  }
2095
2096  // Upper quadword shuffled.
2097  for (unsigned i = 4; i != 8; ++i) {
2098    SDValue Arg = N->getOperand(i);
2099    if (Arg.getOpcode() == ISD::UNDEF) continue;
2100    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2101    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2102    if (Val < 4 || Val > 7)
2103      return false;
2104  }
2105
2106  return true;
2107}
2108
2109/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2110/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2111bool X86::isPSHUFLWMask(SDNode *N) {
2112  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2113
2114  if (N->getNumOperands() != 8)
2115    return false;
2116
2117  // Upper quadword copied in order.
2118  for (unsigned i = 4; i != 8; ++i)
2119    if (!isUndefOrEqual(N->getOperand(i), i))
2120      return false;
2121
2122  // Lower quadword shuffled.
2123  for (unsigned i = 0; i != 4; ++i)
2124    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2125      return false;
2126
2127  return true;
2128}
2129
2130/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2131/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2132static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2133  if (NumElems != 2 && NumElems != 4) return false;
2134
2135  unsigned Half = NumElems / 2;
2136  for (unsigned i = 0; i < Half; ++i)
2137    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2138      return false;
2139  for (unsigned i = Half; i < NumElems; ++i)
2140    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2141      return false;
2142
2143  return true;
2144}
2145
2146bool X86::isSHUFPMask(SDNode *N) {
2147  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2148  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2149}
2150
2151/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2152/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2153/// half elements to come from vector 1 (which would equal the dest.) and
2154/// the upper half to come from vector 2.
2155static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2156  if (NumOps != 2 && NumOps != 4) return false;
2157
2158  unsigned Half = NumOps / 2;
2159  for (unsigned i = 0; i < Half; ++i)
2160    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2161      return false;
2162  for (unsigned i = Half; i < NumOps; ++i)
2163    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2164      return false;
2165  return true;
2166}
2167
2168static bool isCommutedSHUFP(SDNode *N) {
2169  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2170  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2171}
2172
2173/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2174/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2175bool X86::isMOVHLPSMask(SDNode *N) {
2176  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2177
2178  if (N->getNumOperands() != 4)
2179    return false;
2180
2181  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2182  return isUndefOrEqual(N->getOperand(0), 6) &&
2183         isUndefOrEqual(N->getOperand(1), 7) &&
2184         isUndefOrEqual(N->getOperand(2), 2) &&
2185         isUndefOrEqual(N->getOperand(3), 3);
2186}
2187
2188/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2189/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2190/// <2, 3, 2, 3>
2191bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2192  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2193
2194  if (N->getNumOperands() != 4)
2195    return false;
2196
2197  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2198  return isUndefOrEqual(N->getOperand(0), 2) &&
2199         isUndefOrEqual(N->getOperand(1), 3) &&
2200         isUndefOrEqual(N->getOperand(2), 2) &&
2201         isUndefOrEqual(N->getOperand(3), 3);
2202}
2203
2204/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2205/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2206bool X86::isMOVLPMask(SDNode *N) {
2207  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2208
2209  unsigned NumElems = N->getNumOperands();
2210  if (NumElems != 2 && NumElems != 4)
2211    return false;
2212
2213  for (unsigned i = 0; i < NumElems/2; ++i)
2214    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2215      return false;
2216
2217  for (unsigned i = NumElems/2; i < NumElems; ++i)
2218    if (!isUndefOrEqual(N->getOperand(i), i))
2219      return false;
2220
2221  return true;
2222}
2223
2224/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2225/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2226/// and MOVLHPS.
2227bool X86::isMOVHPMask(SDNode *N) {
2228  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2229
2230  unsigned NumElems = N->getNumOperands();
2231  if (NumElems != 2 && NumElems != 4)
2232    return false;
2233
2234  for (unsigned i = 0; i < NumElems/2; ++i)
2235    if (!isUndefOrEqual(N->getOperand(i), i))
2236      return false;
2237
2238  for (unsigned i = 0; i < NumElems/2; ++i) {
2239    SDValue Arg = N->getOperand(i + NumElems/2);
2240    if (!isUndefOrEqual(Arg, i + NumElems))
2241      return false;
2242  }
2243
2244  return true;
2245}
2246
2247/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2248/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2249bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2250                         bool V2IsSplat = false) {
2251  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2252    return false;
2253
2254  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2255    SDValue BitI  = Elts[i];
2256    SDValue BitI1 = Elts[i+1];
2257    if (!isUndefOrEqual(BitI, j))
2258      return false;
2259    if (V2IsSplat) {
2260      if (isUndefOrEqual(BitI1, NumElts))
2261        return false;
2262    } else {
2263      if (!isUndefOrEqual(BitI1, j + NumElts))
2264        return false;
2265    }
2266  }
2267
2268  return true;
2269}
2270
2271bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2272  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2273  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2274}
2275
2276/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2277/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2278bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2279                         bool V2IsSplat = false) {
2280  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2281    return false;
2282
2283  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2284    SDValue BitI  = Elts[i];
2285    SDValue BitI1 = Elts[i+1];
2286    if (!isUndefOrEqual(BitI, j + NumElts/2))
2287      return false;
2288    if (V2IsSplat) {
2289      if (isUndefOrEqual(BitI1, NumElts))
2290        return false;
2291    } else {
2292      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2293        return false;
2294    }
2295  }
2296
2297  return true;
2298}
2299
2300bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2301  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2302  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2303}
2304
2305/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2306/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2307/// <0, 0, 1, 1>
2308bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2309  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2310
2311  unsigned NumElems = N->getNumOperands();
2312  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2313    return false;
2314
2315  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2316    SDValue BitI  = N->getOperand(i);
2317    SDValue BitI1 = N->getOperand(i+1);
2318
2319    if (!isUndefOrEqual(BitI, j))
2320      return false;
2321    if (!isUndefOrEqual(BitI1, j))
2322      return false;
2323  }
2324
2325  return true;
2326}
2327
2328/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2329/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2330/// <2, 2, 3, 3>
2331bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2332  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2333
2334  unsigned NumElems = N->getNumOperands();
2335  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2336    return false;
2337
2338  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2339    SDValue BitI  = N->getOperand(i);
2340    SDValue BitI1 = N->getOperand(i + 1);
2341
2342    if (!isUndefOrEqual(BitI, j))
2343      return false;
2344    if (!isUndefOrEqual(BitI1, j))
2345      return false;
2346  }
2347
2348  return true;
2349}
2350
2351/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2352/// specifies a shuffle of elements that is suitable for input to MOVSS,
2353/// MOVSD, and MOVD, i.e. setting the lowest element.
2354static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2355  if (NumElts != 2 && NumElts != 4)
2356    return false;
2357
2358  if (!isUndefOrEqual(Elts[0], NumElts))
2359    return false;
2360
2361  for (unsigned i = 1; i < NumElts; ++i) {
2362    if (!isUndefOrEqual(Elts[i], i))
2363      return false;
2364  }
2365
2366  return true;
2367}
2368
2369bool X86::isMOVLMask(SDNode *N) {
2370  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2371  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2372}
2373
2374/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2375/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2376/// element of vector 2 and the other elements to come from vector 1 in order.
2377static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2378                           bool V2IsSplat = false,
2379                           bool V2IsUndef = false) {
2380  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2381    return false;
2382
2383  if (!isUndefOrEqual(Ops[0], 0))
2384    return false;
2385
2386  for (unsigned i = 1; i < NumOps; ++i) {
2387    SDValue Arg = Ops[i];
2388    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2389          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2390          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2391      return false;
2392  }
2393
2394  return true;
2395}
2396
2397static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2398                           bool V2IsUndef = false) {
2399  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2400  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2401                        V2IsSplat, V2IsUndef);
2402}
2403
2404/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2405/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2406bool X86::isMOVSHDUPMask(SDNode *N) {
2407  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2408
2409  if (N->getNumOperands() != 4)
2410    return false;
2411
2412  // Expect 1, 1, 3, 3
2413  for (unsigned i = 0; i < 2; ++i) {
2414    SDValue Arg = N->getOperand(i);
2415    if (Arg.getOpcode() == ISD::UNDEF) continue;
2416    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2417    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2418    if (Val != 1) return false;
2419  }
2420
2421  bool HasHi = false;
2422  for (unsigned i = 2; i < 4; ++i) {
2423    SDValue Arg = N->getOperand(i);
2424    if (Arg.getOpcode() == ISD::UNDEF) continue;
2425    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2426    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2427    if (Val != 3) return false;
2428    HasHi = true;
2429  }
2430
2431  // Don't use movshdup if it can be done with a shufps.
2432  return HasHi;
2433}
2434
2435/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2436/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2437bool X86::isMOVSLDUPMask(SDNode *N) {
2438  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2439
2440  if (N->getNumOperands() != 4)
2441    return false;
2442
2443  // Expect 0, 0, 2, 2
2444  for (unsigned i = 0; i < 2; ++i) {
2445    SDValue Arg = N->getOperand(i);
2446    if (Arg.getOpcode() == ISD::UNDEF) continue;
2447    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2448    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2449    if (Val != 0) return false;
2450  }
2451
2452  bool HasHi = false;
2453  for (unsigned i = 2; i < 4; ++i) {
2454    SDValue Arg = N->getOperand(i);
2455    if (Arg.getOpcode() == ISD::UNDEF) continue;
2456    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2457    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2458    if (Val != 2) return false;
2459    HasHi = true;
2460  }
2461
2462  // Don't use movshdup if it can be done with a shufps.
2463  return HasHi;
2464}
2465
2466/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2467/// specifies a identity operation on the LHS or RHS.
2468static bool isIdentityMask(SDNode *N, bool RHS = false) {
2469  unsigned NumElems = N->getNumOperands();
2470  for (unsigned i = 0; i < NumElems; ++i)
2471    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2472      return false;
2473  return true;
2474}
2475
2476/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2477/// a splat of a single element.
2478static bool isSplatMask(SDNode *N) {
2479  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2480
2481  // This is a splat operation if each element of the permute is the same, and
2482  // if the value doesn't reference the second vector.
2483  unsigned NumElems = N->getNumOperands();
2484  SDValue ElementBase;
2485  unsigned i = 0;
2486  for (; i != NumElems; ++i) {
2487    SDValue Elt = N->getOperand(i);
2488    if (isa<ConstantSDNode>(Elt)) {
2489      ElementBase = Elt;
2490      break;
2491    }
2492  }
2493
2494  if (!ElementBase.getNode())
2495    return false;
2496
2497  for (; i != NumElems; ++i) {
2498    SDValue Arg = N->getOperand(i);
2499    if (Arg.getOpcode() == ISD::UNDEF) continue;
2500    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2501    if (Arg != ElementBase) return false;
2502  }
2503
2504  // Make sure it is a splat of the first vector operand.
2505  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2506}
2507
2508/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2509/// a splat of a single element and it's a 2 or 4 element mask.
2510bool X86::isSplatMask(SDNode *N) {
2511  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2512
2513  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2514  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2515    return false;
2516  return ::isSplatMask(N);
2517}
2518
2519/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2520/// specifies a splat of zero element.
2521bool X86::isSplatLoMask(SDNode *N) {
2522  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2523
2524  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2525    if (!isUndefOrEqual(N->getOperand(i), 0))
2526      return false;
2527  return true;
2528}
2529
2530/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2531/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2532/// instructions.
2533unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2534  unsigned NumOperands = N->getNumOperands();
2535  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2536  unsigned Mask = 0;
2537  for (unsigned i = 0; i < NumOperands; ++i) {
2538    unsigned Val = 0;
2539    SDValue Arg = N->getOperand(NumOperands-i-1);
2540    if (Arg.getOpcode() != ISD::UNDEF)
2541      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2542    if (Val >= NumOperands) Val -= NumOperands;
2543    Mask |= Val;
2544    if (i != NumOperands - 1)
2545      Mask <<= Shift;
2546  }
2547
2548  return Mask;
2549}
2550
2551/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2552/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2553/// instructions.
2554unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2555  unsigned Mask = 0;
2556  // 8 nodes, but we only care about the last 4.
2557  for (unsigned i = 7; i >= 4; --i) {
2558    unsigned Val = 0;
2559    SDValue Arg = N->getOperand(i);
2560    if (Arg.getOpcode() != ISD::UNDEF)
2561      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2562    Mask |= (Val - 4);
2563    if (i != 4)
2564      Mask <<= 2;
2565  }
2566
2567  return Mask;
2568}
2569
2570/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2571/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2572/// instructions.
2573unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2574  unsigned Mask = 0;
2575  // 8 nodes, but we only care about the first 4.
2576  for (int i = 3; i >= 0; --i) {
2577    unsigned Val = 0;
2578    SDValue Arg = N->getOperand(i);
2579    if (Arg.getOpcode() != ISD::UNDEF)
2580      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2581    Mask |= Val;
2582    if (i != 0)
2583      Mask <<= 2;
2584  }
2585
2586  return Mask;
2587}
2588
2589/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2590/// specifies a 8 element shuffle that can be broken into a pair of
2591/// PSHUFHW and PSHUFLW.
2592static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2593  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2594
2595  if (N->getNumOperands() != 8)
2596    return false;
2597
2598  // Lower quadword shuffled.
2599  for (unsigned i = 0; i != 4; ++i) {
2600    SDValue Arg = N->getOperand(i);
2601    if (Arg.getOpcode() == ISD::UNDEF) continue;
2602    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2603    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2604    if (Val >= 4)
2605      return false;
2606  }
2607
2608  // Upper quadword shuffled.
2609  for (unsigned i = 4; i != 8; ++i) {
2610    SDValue Arg = N->getOperand(i);
2611    if (Arg.getOpcode() == ISD::UNDEF) continue;
2612    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2613    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2614    if (Val < 4 || Val > 7)
2615      return false;
2616  }
2617
2618  return true;
2619}
2620
2621/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2622/// values in ther permute mask.
2623static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2624                                      SDValue &V2, SDValue &Mask,
2625                                      SelectionDAG &DAG) {
2626  MVT VT = Op.getValueType();
2627  MVT MaskVT = Mask.getValueType();
2628  MVT EltVT = MaskVT.getVectorElementType();
2629  unsigned NumElems = Mask.getNumOperands();
2630  SmallVector<SDValue, 8> MaskVec;
2631
2632  for (unsigned i = 0; i != NumElems; ++i) {
2633    SDValue Arg = Mask.getOperand(i);
2634    if (Arg.getOpcode() == ISD::UNDEF) {
2635      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2636      continue;
2637    }
2638    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2639    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2640    if (Val < NumElems)
2641      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2642    else
2643      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2644  }
2645
2646  std::swap(V1, V2);
2647  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2648  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2649}
2650
2651/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2652/// the two vector operands have swapped position.
2653static
2654SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2655  MVT MaskVT = Mask.getValueType();
2656  MVT EltVT = MaskVT.getVectorElementType();
2657  unsigned NumElems = Mask.getNumOperands();
2658  SmallVector<SDValue, 8> MaskVec;
2659  for (unsigned i = 0; i != NumElems; ++i) {
2660    SDValue Arg = Mask.getOperand(i);
2661    if (Arg.getOpcode() == ISD::UNDEF) {
2662      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2663      continue;
2664    }
2665    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2666    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2667    if (Val < NumElems)
2668      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2669    else
2670      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2671  }
2672  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2673}
2674
2675
2676/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2677/// match movhlps. The lower half elements should come from upper half of
2678/// V1 (and in order), and the upper half elements should come from the upper
2679/// half of V2 (and in order).
2680static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2681  unsigned NumElems = Mask->getNumOperands();
2682  if (NumElems != 4)
2683    return false;
2684  for (unsigned i = 0, e = 2; i != e; ++i)
2685    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2686      return false;
2687  for (unsigned i = 2; i != 4; ++i)
2688    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2689      return false;
2690  return true;
2691}
2692
2693/// isScalarLoadToVector - Returns true if the node is a scalar load that
2694/// is promoted to a vector. It also returns the LoadSDNode by reference if
2695/// required.
2696static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2697  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2698    N = N->getOperand(0).getNode();
2699    if (ISD::isNON_EXTLoad(N)) {
2700      if (LD)
2701        *LD = cast<LoadSDNode>(N);
2702      return true;
2703    }
2704  }
2705  return false;
2706}
2707
2708/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2709/// match movlp{s|d}. The lower half elements should come from lower half of
2710/// V1 (and in order), and the upper half elements should come from the upper
2711/// half of V2 (and in order). And since V1 will become the source of the
2712/// MOVLP, it must be either a vector load or a scalar load to vector.
2713static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2714  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2715    return false;
2716  // Is V2 is a vector load, don't do this transformation. We will try to use
2717  // load folding shufps op.
2718  if (ISD::isNON_EXTLoad(V2))
2719    return false;
2720
2721  unsigned NumElems = Mask->getNumOperands();
2722  if (NumElems != 2 && NumElems != 4)
2723    return false;
2724  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2725    if (!isUndefOrEqual(Mask->getOperand(i), i))
2726      return false;
2727  for (unsigned i = NumElems/2; i != NumElems; ++i)
2728    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2729      return false;
2730  return true;
2731}
2732
2733/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2734/// all the same.
2735static bool isSplatVector(SDNode *N) {
2736  if (N->getOpcode() != ISD::BUILD_VECTOR)
2737    return false;
2738
2739  SDValue SplatValue = N->getOperand(0);
2740  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2741    if (N->getOperand(i) != SplatValue)
2742      return false;
2743  return true;
2744}
2745
2746/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2747/// to an undef.
2748static bool isUndefShuffle(SDNode *N) {
2749  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2750    return false;
2751
2752  SDValue V1 = N->getOperand(0);
2753  SDValue V2 = N->getOperand(1);
2754  SDValue Mask = N->getOperand(2);
2755  unsigned NumElems = Mask.getNumOperands();
2756  for (unsigned i = 0; i != NumElems; ++i) {
2757    SDValue Arg = Mask.getOperand(i);
2758    if (Arg.getOpcode() != ISD::UNDEF) {
2759      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2760      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2761        return false;
2762      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2763        return false;
2764    }
2765  }
2766  return true;
2767}
2768
2769/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2770/// constant +0.0.
2771static inline bool isZeroNode(SDValue Elt) {
2772  return ((isa<ConstantSDNode>(Elt) &&
2773           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2774          (isa<ConstantFPSDNode>(Elt) &&
2775           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2776}
2777
2778/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2779/// to an zero vector.
2780static bool isZeroShuffle(SDNode *N) {
2781  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2782    return false;
2783
2784  SDValue V1 = N->getOperand(0);
2785  SDValue V2 = N->getOperand(1);
2786  SDValue Mask = N->getOperand(2);
2787  unsigned NumElems = Mask.getNumOperands();
2788  for (unsigned i = 0; i != NumElems; ++i) {
2789    SDValue Arg = Mask.getOperand(i);
2790    if (Arg.getOpcode() == ISD::UNDEF)
2791      continue;
2792
2793    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2794    if (Idx < NumElems) {
2795      unsigned Opc = V1.getNode()->getOpcode();
2796      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2797        continue;
2798      if (Opc != ISD::BUILD_VECTOR ||
2799          !isZeroNode(V1.getNode()->getOperand(Idx)))
2800        return false;
2801    } else if (Idx >= NumElems) {
2802      unsigned Opc = V2.getNode()->getOpcode();
2803      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2804        continue;
2805      if (Opc != ISD::BUILD_VECTOR ||
2806          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2807        return false;
2808    }
2809  }
2810  return true;
2811}
2812
2813/// getZeroVector - Returns a vector of specified type with all zero elements.
2814///
2815static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2816  assert(VT.isVector() && "Expected a vector type");
2817
2818  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2819  // type.  This ensures they get CSE'd.
2820  SDValue Vec;
2821  if (VT.getSizeInBits() == 64) { // MMX
2822    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2823    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2824  } else if (HasSSE2) {  // SSE2
2825    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2826    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2827  } else { // SSE1
2828    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2829    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2830  }
2831  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2832}
2833
2834/// getOnesVector - Returns a vector of specified type with all bits set.
2835///
2836static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2837  assert(VT.isVector() && "Expected a vector type");
2838
2839  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2840  // type.  This ensures they get CSE'd.
2841  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2842  SDValue Vec;
2843  if (VT.getSizeInBits() == 64)  // MMX
2844    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2845  else                                              // SSE
2846    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2847  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2848}
2849
2850
2851/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2852/// that point to V2 points to its first element.
2853static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2854  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2855
2856  bool Changed = false;
2857  SmallVector<SDValue, 8> MaskVec;
2858  unsigned NumElems = Mask.getNumOperands();
2859  for (unsigned i = 0; i != NumElems; ++i) {
2860    SDValue Arg = Mask.getOperand(i);
2861    if (Arg.getOpcode() != ISD::UNDEF) {
2862      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2863      if (Val > NumElems) {
2864        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2865        Changed = true;
2866      }
2867    }
2868    MaskVec.push_back(Arg);
2869  }
2870
2871  if (Changed)
2872    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2873                       &MaskVec[0], MaskVec.size());
2874  return Mask;
2875}
2876
2877/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2878/// operation of specified width.
2879static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2880  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2881  MVT BaseVT = MaskVT.getVectorElementType();
2882
2883  SmallVector<SDValue, 8> MaskVec;
2884  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2885  for (unsigned i = 1; i != NumElems; ++i)
2886    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2887  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2888}
2889
2890/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2891/// of specified width.
2892static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2893  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2894  MVT BaseVT = MaskVT.getVectorElementType();
2895  SmallVector<SDValue, 8> MaskVec;
2896  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2897    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2898    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2899  }
2900  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2901}
2902
2903/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2904/// of specified width.
2905static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2906  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2907  MVT BaseVT = MaskVT.getVectorElementType();
2908  unsigned Half = NumElems/2;
2909  SmallVector<SDValue, 8> MaskVec;
2910  for (unsigned i = 0; i != Half; ++i) {
2911    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2912    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2913  }
2914  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2915}
2916
2917/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2918/// element #0 of a vector with the specified index, leaving the rest of the
2919/// elements in place.
2920static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2921                                   SelectionDAG &DAG) {
2922  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2923  MVT BaseVT = MaskVT.getVectorElementType();
2924  SmallVector<SDValue, 8> MaskVec;
2925  // Element #0 of the result gets the elt we are replacing.
2926  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2927  for (unsigned i = 1; i != NumElems; ++i)
2928    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2929  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2930}
2931
2932/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2933static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
2934  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2935  MVT VT = Op.getValueType();
2936  if (PVT == VT)
2937    return Op;
2938  SDValue V1 = Op.getOperand(0);
2939  SDValue Mask = Op.getOperand(2);
2940  unsigned NumElems = Mask.getNumOperands();
2941  // Special handling of v4f32 -> v4i32.
2942  if (VT != MVT::v4f32) {
2943    Mask = getUnpacklMask(NumElems, DAG);
2944    while (NumElems > 4) {
2945      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2946      NumElems >>= 1;
2947    }
2948    Mask = getZeroVector(MVT::v4i32, true, DAG);
2949  }
2950
2951  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2952  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2953                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2954  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2955}
2956
2957/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2958/// vector of zero or undef vector.  This produces a shuffle where the low
2959/// element of V2 is swizzled into the zero/undef vector, landing at element
2960/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2961static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
2962                                             bool isZero, bool HasSSE2,
2963                                             SelectionDAG &DAG) {
2964  MVT VT = V2.getValueType();
2965  SDValue V1 = isZero
2966    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
2967  unsigned NumElems = V2.getValueType().getVectorNumElements();
2968  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2969  MVT EVT = MaskVT.getVectorElementType();
2970  SmallVector<SDValue, 16> MaskVec;
2971  for (unsigned i = 0; i != NumElems; ++i)
2972    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2973      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2974    else
2975      MaskVec.push_back(DAG.getConstant(i, EVT));
2976  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2977                               &MaskVec[0], MaskVec.size());
2978  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2979}
2980
2981/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2982/// a shuffle that is zero.
2983static
2984unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
2985                                  unsigned NumElems, bool Low,
2986                                  SelectionDAG &DAG) {
2987  unsigned NumZeros = 0;
2988  for (unsigned i = 0; i < NumElems; ++i) {
2989    unsigned Index = Low ? i : NumElems-i-1;
2990    SDValue Idx = Mask.getOperand(Index);
2991    if (Idx.getOpcode() == ISD::UNDEF) {
2992      ++NumZeros;
2993      continue;
2994    }
2995    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
2996    if (Elt.getNode() && isZeroNode(Elt))
2997      ++NumZeros;
2998    else
2999      break;
3000  }
3001  return NumZeros;
3002}
3003
3004/// isVectorShift - Returns true if the shuffle can be implemented as a
3005/// logical left or right shift of a vector.
3006static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3007                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3008  unsigned NumElems = Mask.getNumOperands();
3009
3010  isLeft = true;
3011  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3012  if (!NumZeros) {
3013    isLeft = false;
3014    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3015    if (!NumZeros)
3016      return false;
3017  }
3018
3019  bool SeenV1 = false;
3020  bool SeenV2 = false;
3021  for (unsigned i = NumZeros; i < NumElems; ++i) {
3022    unsigned Val = isLeft ? (i - NumZeros) : i;
3023    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3024    if (Idx.getOpcode() == ISD::UNDEF)
3025      continue;
3026    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3027    if (Index < NumElems)
3028      SeenV1 = true;
3029    else {
3030      Index -= NumElems;
3031      SeenV2 = true;
3032    }
3033    if (Index != Val)
3034      return false;
3035  }
3036  if (SeenV1 && SeenV2)
3037    return false;
3038
3039  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3040  ShAmt = NumZeros;
3041  return true;
3042}
3043
3044
3045/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3046///
3047static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3048                                       unsigned NumNonZero, unsigned NumZero,
3049                                       SelectionDAG &DAG, TargetLowering &TLI) {
3050  if (NumNonZero > 8)
3051    return SDValue();
3052
3053  SDValue V(0, 0);
3054  bool First = true;
3055  for (unsigned i = 0; i < 16; ++i) {
3056    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3057    if (ThisIsNonZero && First) {
3058      if (NumZero)
3059        V = getZeroVector(MVT::v8i16, true, DAG);
3060      else
3061        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3062      First = false;
3063    }
3064
3065    if ((i & 1) != 0) {
3066      SDValue ThisElt(0, 0), LastElt(0, 0);
3067      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3068      if (LastIsNonZero) {
3069        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3070      }
3071      if (ThisIsNonZero) {
3072        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3073        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3074                              ThisElt, DAG.getConstant(8, MVT::i8));
3075        if (LastIsNonZero)
3076          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3077      } else
3078        ThisElt = LastElt;
3079
3080      if (ThisElt.getNode())
3081        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3082                        DAG.getIntPtrConstant(i/2));
3083    }
3084  }
3085
3086  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3087}
3088
3089/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3090///
3091static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3092                                       unsigned NumNonZero, unsigned NumZero,
3093                                       SelectionDAG &DAG, TargetLowering &TLI) {
3094  if (NumNonZero > 4)
3095    return SDValue();
3096
3097  SDValue V(0, 0);
3098  bool First = true;
3099  for (unsigned i = 0; i < 8; ++i) {
3100    bool isNonZero = (NonZeros & (1 << i)) != 0;
3101    if (isNonZero) {
3102      if (First) {
3103        if (NumZero)
3104          V = getZeroVector(MVT::v8i16, true, DAG);
3105        else
3106          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3107        First = false;
3108      }
3109      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3110                      DAG.getIntPtrConstant(i));
3111    }
3112  }
3113
3114  return V;
3115}
3116
3117/// getVShift - Return a vector logical shift node.
3118///
3119static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3120                           unsigned NumBits, SelectionDAG &DAG,
3121                           const TargetLowering &TLI) {
3122  bool isMMX = VT.getSizeInBits() == 64;
3123  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3124  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3125  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3126  return DAG.getNode(ISD::BIT_CONVERT, VT,
3127                     DAG.getNode(Opc, ShVT, SrcOp,
3128                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3129}
3130
3131SDValue
3132X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3133  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3134  if (ISD::isBuildVectorAllZeros(Op.getNode())
3135      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3136    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3137    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3138    // eliminated on x86-32 hosts.
3139    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3140      return Op;
3141
3142    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3143      return getOnesVector(Op.getValueType(), DAG);
3144    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3145  }
3146
3147  MVT VT = Op.getValueType();
3148  MVT EVT = VT.getVectorElementType();
3149  unsigned EVTBits = EVT.getSizeInBits();
3150
3151  unsigned NumElems = Op.getNumOperands();
3152  unsigned NumZero  = 0;
3153  unsigned NumNonZero = 0;
3154  unsigned NonZeros = 0;
3155  bool IsAllConstants = true;
3156  SmallSet<SDValue, 8> Values;
3157  for (unsigned i = 0; i < NumElems; ++i) {
3158    SDValue Elt = Op.getOperand(i);
3159    if (Elt.getOpcode() == ISD::UNDEF)
3160      continue;
3161    Values.insert(Elt);
3162    if (Elt.getOpcode() != ISD::Constant &&
3163        Elt.getOpcode() != ISD::ConstantFP)
3164      IsAllConstants = false;
3165    if (isZeroNode(Elt))
3166      NumZero++;
3167    else {
3168      NonZeros |= (1 << i);
3169      NumNonZero++;
3170    }
3171  }
3172
3173  if (NumNonZero == 0) {
3174    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3175    return DAG.getNode(ISD::UNDEF, VT);
3176  }
3177
3178  // Special case for single non-zero, non-undef, element.
3179  if (NumNonZero == 1 && NumElems <= 4) {
3180    unsigned Idx = CountTrailingZeros_32(NonZeros);
3181    SDValue Item = Op.getOperand(Idx);
3182
3183    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3184    // the value are obviously zero, truncate the value to i32 and do the
3185    // insertion that way.  Only do this if the value is non-constant or if the
3186    // value is a constant being inserted into element 0.  It is cheaper to do
3187    // a constant pool load than it is to do a movd + shuffle.
3188    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3189        (!IsAllConstants || Idx == 0)) {
3190      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3191        // Handle MMX and SSE both.
3192        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3193        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3194
3195        // Truncate the value (which may itself be a constant) to i32, and
3196        // convert it to a vector with movd (S2V+shuffle to zero extend).
3197        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3198        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3199        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3200                                           Subtarget->hasSSE2(), DAG);
3201
3202        // Now we have our 32-bit value zero extended in the low element of
3203        // a vector.  If Idx != 0, swizzle it into place.
3204        if (Idx != 0) {
3205          SDValue Ops[] = {
3206            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3207            getSwapEltZeroMask(VecElts, Idx, DAG)
3208          };
3209          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3210        }
3211        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3212      }
3213    }
3214
3215    // If we have a constant or non-constant insertion into the low element of
3216    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3217    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3218    // depending on what the source datatype is.  Because we can only get here
3219    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3220    if (Idx == 0 &&
3221        // Don't do this for i64 values on x86-32.
3222        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3223      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3224      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3225      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3226                                         Subtarget->hasSSE2(), DAG);
3227    }
3228
3229    // Is it a vector logical left shift?
3230    if (NumElems == 2 && Idx == 1 &&
3231        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3232      unsigned NumBits = VT.getSizeInBits();
3233      return getVShift(true, VT,
3234                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3235                       NumBits/2, DAG, *this);
3236    }
3237
3238    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3239      return SDValue();
3240
3241    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3242    // is a non-constant being inserted into an element other than the low one,
3243    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3244    // movd/movss) to move this into the low element, then shuffle it into
3245    // place.
3246    if (EVTBits == 32) {
3247      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3248
3249      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3250      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3251                                         Subtarget->hasSSE2(), DAG);
3252      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3253      MVT MaskEVT = MaskVT.getVectorElementType();
3254      SmallVector<SDValue, 8> MaskVec;
3255      for (unsigned i = 0; i < NumElems; i++)
3256        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3257      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3258                                   &MaskVec[0], MaskVec.size());
3259      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3260                         DAG.getNode(ISD::UNDEF, VT), Mask);
3261    }
3262  }
3263
3264  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3265  if (Values.size() == 1)
3266    return SDValue();
3267
3268  // A vector full of immediates; various special cases are already
3269  // handled, so this is best done with a single constant-pool load.
3270  if (IsAllConstants)
3271    return SDValue();
3272
3273  // Let legalizer expand 2-wide build_vectors.
3274  if (EVTBits == 64) {
3275    if (NumNonZero == 1) {
3276      // One half is zero or undef.
3277      unsigned Idx = CountTrailingZeros_32(NonZeros);
3278      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3279                                 Op.getOperand(Idx));
3280      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3281                                         Subtarget->hasSSE2(), DAG);
3282    }
3283    return SDValue();
3284  }
3285
3286  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3287  if (EVTBits == 8 && NumElems == 16) {
3288    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3289                                        *this);
3290    if (V.getNode()) return V;
3291  }
3292
3293  if (EVTBits == 16 && NumElems == 8) {
3294    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3295                                        *this);
3296    if (V.getNode()) return V;
3297  }
3298
3299  // If element VT is == 32 bits, turn it into a number of shuffles.
3300  SmallVector<SDValue, 8> V;
3301  V.resize(NumElems);
3302  if (NumElems == 4 && NumZero > 0) {
3303    for (unsigned i = 0; i < 4; ++i) {
3304      bool isZero = !(NonZeros & (1 << i));
3305      if (isZero)
3306        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3307      else
3308        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3309    }
3310
3311    for (unsigned i = 0; i < 2; ++i) {
3312      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3313        default: break;
3314        case 0:
3315          V[i] = V[i*2];  // Must be a zero vector.
3316          break;
3317        case 1:
3318          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3319                             getMOVLMask(NumElems, DAG));
3320          break;
3321        case 2:
3322          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3323                             getMOVLMask(NumElems, DAG));
3324          break;
3325        case 3:
3326          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3327                             getUnpacklMask(NumElems, DAG));
3328          break;
3329      }
3330    }
3331
3332    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3333    MVT EVT = MaskVT.getVectorElementType();
3334    SmallVector<SDValue, 8> MaskVec;
3335    bool Reverse = (NonZeros & 0x3) == 2;
3336    for (unsigned i = 0; i < 2; ++i)
3337      if (Reverse)
3338        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3339      else
3340        MaskVec.push_back(DAG.getConstant(i, EVT));
3341    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3342    for (unsigned i = 0; i < 2; ++i)
3343      if (Reverse)
3344        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3345      else
3346        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3347    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3348                                     &MaskVec[0], MaskVec.size());
3349    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3350  }
3351
3352  if (Values.size() > 2) {
3353    // Expand into a number of unpckl*.
3354    // e.g. for v4f32
3355    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3356    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3357    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3358    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3359    for (unsigned i = 0; i < NumElems; ++i)
3360      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3361    NumElems >>= 1;
3362    while (NumElems != 0) {
3363      for (unsigned i = 0; i < NumElems; ++i)
3364        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3365                           UnpckMask);
3366      NumElems >>= 1;
3367    }
3368    return V[0];
3369  }
3370
3371  return SDValue();
3372}
3373
3374static
3375SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3376                                 SDValue PermMask, SelectionDAG &DAG,
3377                                 TargetLowering &TLI) {
3378  SDValue NewV;
3379  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3380  MVT MaskEVT = MaskVT.getVectorElementType();
3381  MVT PtrVT = TLI.getPointerTy();
3382  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3383                                   PermMask.getNode()->op_end());
3384
3385  // First record which half of which vector the low elements come from.
3386  SmallVector<unsigned, 4> LowQuad(4);
3387  for (unsigned i = 0; i < 4; ++i) {
3388    SDValue Elt = MaskElts[i];
3389    if (Elt.getOpcode() == ISD::UNDEF)
3390      continue;
3391    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3392    int QuadIdx = EltIdx / 4;
3393    ++LowQuad[QuadIdx];
3394  }
3395
3396  int BestLowQuad = -1;
3397  unsigned MaxQuad = 1;
3398  for (unsigned i = 0; i < 4; ++i) {
3399    if (LowQuad[i] > MaxQuad) {
3400      BestLowQuad = i;
3401      MaxQuad = LowQuad[i];
3402    }
3403  }
3404
3405  // Record which half of which vector the high elements come from.
3406  SmallVector<unsigned, 4> HighQuad(4);
3407  for (unsigned i = 4; i < 8; ++i) {
3408    SDValue Elt = MaskElts[i];
3409    if (Elt.getOpcode() == ISD::UNDEF)
3410      continue;
3411    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3412    int QuadIdx = EltIdx / 4;
3413    ++HighQuad[QuadIdx];
3414  }
3415
3416  int BestHighQuad = -1;
3417  MaxQuad = 1;
3418  for (unsigned i = 0; i < 4; ++i) {
3419    if (HighQuad[i] > MaxQuad) {
3420      BestHighQuad = i;
3421      MaxQuad = HighQuad[i];
3422    }
3423  }
3424
3425  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3426  if (BestLowQuad != -1 || BestHighQuad != -1) {
3427    // First sort the 4 chunks in order using shufpd.
3428    SmallVector<SDValue, 8> MaskVec;
3429
3430    if (BestLowQuad != -1)
3431      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3432    else
3433      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3434
3435    if (BestHighQuad != -1)
3436      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3437    else
3438      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3439
3440    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3441    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3442                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3443                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3444    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3445
3446    // Now sort high and low parts separately.
3447    BitVector InOrder(8);
3448    if (BestLowQuad != -1) {
3449      // Sort lower half in order using PSHUFLW.
3450      MaskVec.clear();
3451      bool AnyOutOrder = false;
3452
3453      for (unsigned i = 0; i != 4; ++i) {
3454        SDValue Elt = MaskElts[i];
3455        if (Elt.getOpcode() == ISD::UNDEF) {
3456          MaskVec.push_back(Elt);
3457          InOrder.set(i);
3458        } else {
3459          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3460          if (EltIdx != i)
3461            AnyOutOrder = true;
3462
3463          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3464
3465          // If this element is in the right place after this shuffle, then
3466          // remember it.
3467          if ((int)(EltIdx / 4) == BestLowQuad)
3468            InOrder.set(i);
3469        }
3470      }
3471      if (AnyOutOrder) {
3472        for (unsigned i = 4; i != 8; ++i)
3473          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3474        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3475        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3476      }
3477    }
3478
3479    if (BestHighQuad != -1) {
3480      // Sort high half in order using PSHUFHW if possible.
3481      MaskVec.clear();
3482
3483      for (unsigned i = 0; i != 4; ++i)
3484        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3485
3486      bool AnyOutOrder = false;
3487      for (unsigned i = 4; i != 8; ++i) {
3488        SDValue Elt = MaskElts[i];
3489        if (Elt.getOpcode() == ISD::UNDEF) {
3490          MaskVec.push_back(Elt);
3491          InOrder.set(i);
3492        } else {
3493          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3494          if (EltIdx != i)
3495            AnyOutOrder = true;
3496
3497          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3498
3499          // If this element is in the right place after this shuffle, then
3500          // remember it.
3501          if ((int)(EltIdx / 4) == BestHighQuad)
3502            InOrder.set(i);
3503        }
3504      }
3505
3506      if (AnyOutOrder) {
3507        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3508        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3509      }
3510    }
3511
3512    // The other elements are put in the right place using pextrw and pinsrw.
3513    for (unsigned i = 0; i != 8; ++i) {
3514      if (InOrder[i])
3515        continue;
3516      SDValue Elt = MaskElts[i];
3517      if (Elt.getOpcode() == ISD::UNDEF)
3518        continue;
3519      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3520      SDValue ExtOp = (EltIdx < 8)
3521        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3522                      DAG.getConstant(EltIdx, PtrVT))
3523        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3524                      DAG.getConstant(EltIdx - 8, PtrVT));
3525      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3526                         DAG.getConstant(i, PtrVT));
3527    }
3528
3529    return NewV;
3530  }
3531
3532  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
3533  // few as possible. First, let's find out how many elements are already in the
3534  // right order.
3535  unsigned V1InOrder = 0;
3536  unsigned V1FromV1 = 0;
3537  unsigned V2InOrder = 0;
3538  unsigned V2FromV2 = 0;
3539  SmallVector<SDValue, 8> V1Elts;
3540  SmallVector<SDValue, 8> V2Elts;
3541  for (unsigned i = 0; i < 8; ++i) {
3542    SDValue Elt = MaskElts[i];
3543    if (Elt.getOpcode() == ISD::UNDEF) {
3544      V1Elts.push_back(Elt);
3545      V2Elts.push_back(Elt);
3546      ++V1InOrder;
3547      ++V2InOrder;
3548      continue;
3549    }
3550    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3551    if (EltIdx == i) {
3552      V1Elts.push_back(Elt);
3553      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3554      ++V1InOrder;
3555    } else if (EltIdx == i+8) {
3556      V1Elts.push_back(Elt);
3557      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3558      ++V2InOrder;
3559    } else if (EltIdx < 8) {
3560      V1Elts.push_back(Elt);
3561      ++V1FromV1;
3562    } else {
3563      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3564      ++V2FromV2;
3565    }
3566  }
3567
3568  if (V2InOrder > V1InOrder) {
3569    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3570    std::swap(V1, V2);
3571    std::swap(V1Elts, V2Elts);
3572    std::swap(V1FromV1, V2FromV2);
3573  }
3574
3575  if ((V1FromV1 + V1InOrder) != 8) {
3576    // Some elements are from V2.
3577    if (V1FromV1) {
3578      // If there are elements that are from V1 but out of place,
3579      // then first sort them in place
3580      SmallVector<SDValue, 8> MaskVec;
3581      for (unsigned i = 0; i < 8; ++i) {
3582        SDValue Elt = V1Elts[i];
3583        if (Elt.getOpcode() == ISD::UNDEF) {
3584          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3585          continue;
3586        }
3587        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3588        if (EltIdx >= 8)
3589          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3590        else
3591          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3592      }
3593      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3594      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3595    }
3596
3597    NewV = V1;
3598    for (unsigned i = 0; i < 8; ++i) {
3599      SDValue Elt = V1Elts[i];
3600      if (Elt.getOpcode() == ISD::UNDEF)
3601        continue;
3602      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3603      if (EltIdx < 8)
3604        continue;
3605      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3606                                    DAG.getConstant(EltIdx - 8, PtrVT));
3607      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3608                         DAG.getConstant(i, PtrVT));
3609    }
3610    return NewV;
3611  } else {
3612    // All elements are from V1.
3613    NewV = V1;
3614    for (unsigned i = 0; i < 8; ++i) {
3615      SDValue Elt = V1Elts[i];
3616      if (Elt.getOpcode() == ISD::UNDEF)
3617        continue;
3618      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3619      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3620                                    DAG.getConstant(EltIdx, PtrVT));
3621      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3622                         DAG.getConstant(i, PtrVT));
3623    }
3624    return NewV;
3625  }
3626}
3627
3628/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3629/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3630/// done when every pair / quad of shuffle mask elements point to elements in
3631/// the right sequence. e.g.
3632/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3633static
3634SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3635                                MVT VT,
3636                                SDValue PermMask, SelectionDAG &DAG,
3637                                TargetLowering &TLI) {
3638  unsigned NumElems = PermMask.getNumOperands();
3639  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3640  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3641  MVT MaskEltVT = MaskVT.getVectorElementType();
3642  MVT NewVT = MaskVT;
3643  switch (VT.getSimpleVT()) {
3644  default: assert(false && "Unexpected!");
3645  case MVT::v4f32: NewVT = MVT::v2f64; break;
3646  case MVT::v4i32: NewVT = MVT::v2i64; break;
3647  case MVT::v8i16: NewVT = MVT::v4i32; break;
3648  case MVT::v16i8: NewVT = MVT::v4i32; break;
3649  }
3650
3651  if (NewWidth == 2) {
3652    if (VT.isInteger())
3653      NewVT = MVT::v2i64;
3654    else
3655      NewVT = MVT::v2f64;
3656  }
3657  unsigned Scale = NumElems / NewWidth;
3658  SmallVector<SDValue, 8> MaskVec;
3659  for (unsigned i = 0; i < NumElems; i += Scale) {
3660    unsigned StartIdx = ~0U;
3661    for (unsigned j = 0; j < Scale; ++j) {
3662      SDValue Elt = PermMask.getOperand(i+j);
3663      if (Elt.getOpcode() == ISD::UNDEF)
3664        continue;
3665      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3666      if (StartIdx == ~0U)
3667        StartIdx = EltIdx - (EltIdx % Scale);
3668      if (EltIdx != StartIdx + j)
3669        return SDValue();
3670    }
3671    if (StartIdx == ~0U)
3672      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3673    else
3674      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3675  }
3676
3677  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3678  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3679  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3680                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3681                                 &MaskVec[0], MaskVec.size()));
3682}
3683
3684/// getVZextMovL - Return a zero-extending vector move low node.
3685///
3686static SDValue getVZextMovL(MVT VT, MVT OpVT,
3687                              SDValue SrcOp, SelectionDAG &DAG,
3688                              const X86Subtarget *Subtarget) {
3689  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3690    LoadSDNode *LD = NULL;
3691    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3692      LD = dyn_cast<LoadSDNode>(SrcOp);
3693    if (!LD) {
3694      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3695      // instead.
3696      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3697      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3698          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3699          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3700          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3701        // PR2108
3702        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3703        return DAG.getNode(ISD::BIT_CONVERT, VT,
3704                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3705                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3706                                                   SrcOp.getOperand(0)
3707                                                          .getOperand(0))));
3708      }
3709    }
3710  }
3711
3712  return DAG.getNode(ISD::BIT_CONVERT, VT,
3713                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3714                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3715}
3716
3717/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3718/// shuffles.
3719static SDValue
3720LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3721                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3722  MVT MaskVT = PermMask.getValueType();
3723  MVT MaskEVT = MaskVT.getVectorElementType();
3724  SmallVector<std::pair<int, int>, 8> Locs;
3725  Locs.resize(4);
3726  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3727  unsigned NumHi = 0;
3728  unsigned NumLo = 0;
3729  for (unsigned i = 0; i != 4; ++i) {
3730    SDValue Elt = PermMask.getOperand(i);
3731    if (Elt.getOpcode() == ISD::UNDEF) {
3732      Locs[i] = std::make_pair(-1, -1);
3733    } else {
3734      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3735      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3736      if (Val < 4) {
3737        Locs[i] = std::make_pair(0, NumLo);
3738        Mask1[NumLo] = Elt;
3739        NumLo++;
3740      } else {
3741        Locs[i] = std::make_pair(1, NumHi);
3742        if (2+NumHi < 4)
3743          Mask1[2+NumHi] = Elt;
3744        NumHi++;
3745      }
3746    }
3747  }
3748
3749  if (NumLo <= 2 && NumHi <= 2) {
3750    // If no more than two elements come from either vector. This can be
3751    // implemented with two shuffles. First shuffle gather the elements.
3752    // The second shuffle, which takes the first shuffle as both of its
3753    // vector operands, put the elements into the right order.
3754    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3755                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3756                                 &Mask1[0], Mask1.size()));
3757
3758    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3759    for (unsigned i = 0; i != 4; ++i) {
3760      if (Locs[i].first == -1)
3761        continue;
3762      else {
3763        unsigned Idx = (i < 2) ? 0 : 4;
3764        Idx += Locs[i].first * 2 + Locs[i].second;
3765        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3766      }
3767    }
3768
3769    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3770                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3771                                   &Mask2[0], Mask2.size()));
3772  } else if (NumLo == 3 || NumHi == 3) {
3773    // Otherwise, we must have three elements from one vector, call it X, and
3774    // one element from the other, call it Y.  First, use a shufps to build an
3775    // intermediate vector with the one element from Y and the element from X
3776    // that will be in the same half in the final destination (the indexes don't
3777    // matter). Then, use a shufps to build the final vector, taking the half
3778    // containing the element from Y from the intermediate, and the other half
3779    // from X.
3780    if (NumHi == 3) {
3781      // Normalize it so the 3 elements come from V1.
3782      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3783      std::swap(V1, V2);
3784    }
3785
3786    // Find the element from V2.
3787    unsigned HiIndex;
3788    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3789      SDValue Elt = PermMask.getOperand(HiIndex);
3790      if (Elt.getOpcode() == ISD::UNDEF)
3791        continue;
3792      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3793      if (Val >= 4)
3794        break;
3795    }
3796
3797    Mask1[0] = PermMask.getOperand(HiIndex);
3798    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3799    Mask1[2] = PermMask.getOperand(HiIndex^1);
3800    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3801    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3802                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3803
3804    if (HiIndex >= 2) {
3805      Mask1[0] = PermMask.getOperand(0);
3806      Mask1[1] = PermMask.getOperand(1);
3807      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3808      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3809      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3810                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3811    } else {
3812      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3813      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3814      Mask1[2] = PermMask.getOperand(2);
3815      Mask1[3] = PermMask.getOperand(3);
3816      if (Mask1[2].getOpcode() != ISD::UNDEF)
3817        Mask1[2] =
3818          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
3819                          MaskEVT);
3820      if (Mask1[3].getOpcode() != ISD::UNDEF)
3821        Mask1[3] =
3822          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
3823                          MaskEVT);
3824      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3825                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3826    }
3827  }
3828
3829  // Break it into (shuffle shuffle_hi, shuffle_lo).
3830  Locs.clear();
3831  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3832  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3833  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3834  unsigned MaskIdx = 0;
3835  unsigned LoIdx = 0;
3836  unsigned HiIdx = 2;
3837  for (unsigned i = 0; i != 4; ++i) {
3838    if (i == 2) {
3839      MaskPtr = &HiMask;
3840      MaskIdx = 1;
3841      LoIdx = 0;
3842      HiIdx = 2;
3843    }
3844    SDValue Elt = PermMask.getOperand(i);
3845    if (Elt.getOpcode() == ISD::UNDEF) {
3846      Locs[i] = std::make_pair(-1, -1);
3847    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
3848      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3849      (*MaskPtr)[LoIdx] = Elt;
3850      LoIdx++;
3851    } else {
3852      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3853      (*MaskPtr)[HiIdx] = Elt;
3854      HiIdx++;
3855    }
3856  }
3857
3858  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3859                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3860                                                &LoMask[0], LoMask.size()));
3861  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3862                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3863                                                &HiMask[0], HiMask.size()));
3864  SmallVector<SDValue, 8> MaskOps;
3865  for (unsigned i = 0; i != 4; ++i) {
3866    if (Locs[i].first == -1) {
3867      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3868    } else {
3869      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3870      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3871    }
3872  }
3873  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3874                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3875                                 &MaskOps[0], MaskOps.size()));
3876}
3877
3878SDValue
3879X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3880  SDValue V1 = Op.getOperand(0);
3881  SDValue V2 = Op.getOperand(1);
3882  SDValue PermMask = Op.getOperand(2);
3883  MVT VT = Op.getValueType();
3884  unsigned NumElems = PermMask.getNumOperands();
3885  bool isMMX = VT.getSizeInBits() == 64;
3886  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3887  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3888  bool V1IsSplat = false;
3889  bool V2IsSplat = false;
3890
3891  if (isUndefShuffle(Op.getNode()))
3892    return DAG.getNode(ISD::UNDEF, VT);
3893
3894  if (isZeroShuffle(Op.getNode()))
3895    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3896
3897  if (isIdentityMask(PermMask.getNode()))
3898    return V1;
3899  else if (isIdentityMask(PermMask.getNode(), true))
3900    return V2;
3901
3902  if (isSplatMask(PermMask.getNode())) {
3903    if (isMMX || NumElems < 4) return Op;
3904    // Promote it to a v4{if}32 splat.
3905    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3906  }
3907
3908  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3909  // do it!
3910  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3911    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3912    if (NewOp.getNode())
3913      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3914  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3915    // FIXME: Figure out a cleaner way to do this.
3916    // Try to make use of movq to zero out the top part.
3917    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
3918      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3919                                                 DAG, *this);
3920      if (NewOp.getNode()) {
3921        SDValue NewV1 = NewOp.getOperand(0);
3922        SDValue NewV2 = NewOp.getOperand(1);
3923        SDValue NewMask = NewOp.getOperand(2);
3924        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
3925          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3926          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
3927        }
3928      }
3929    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
3930      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3931                                                DAG, *this);
3932      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
3933        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3934                             DAG, Subtarget);
3935    }
3936  }
3937
3938  // Check if this can be converted into a logical shift.
3939  bool isLeft = false;
3940  unsigned ShAmt = 0;
3941  SDValue ShVal;
3942  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
3943  if (isShift && ShVal.hasOneUse()) {
3944    // If the shifted value has multiple uses, it may be cheaper to use
3945    // v_set0 + movlhps or movhlps, etc.
3946    MVT EVT = VT.getVectorElementType();
3947    ShAmt *= EVT.getSizeInBits();
3948    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3949  }
3950
3951  if (X86::isMOVLMask(PermMask.getNode())) {
3952    if (V1IsUndef)
3953      return V2;
3954    if (ISD::isBuildVectorAllZeros(V1.getNode()))
3955      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
3956    if (!isMMX)
3957      return Op;
3958  }
3959
3960  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
3961                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
3962                 X86::isMOVHLPSMask(PermMask.getNode()) ||
3963                 X86::isMOVHPMask(PermMask.getNode()) ||
3964                 X86::isMOVLPMask(PermMask.getNode())))
3965    return Op;
3966
3967  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
3968      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
3969    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3970
3971  if (isShift) {
3972    // No better options. Use a vshl / vsrl.
3973    MVT EVT = VT.getVectorElementType();
3974    ShAmt *= EVT.getSizeInBits();
3975    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3976  }
3977
3978  bool Commuted = false;
3979  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3980  // 1,1,1,1 -> v8i16 though.
3981  V1IsSplat = isSplatVector(V1.getNode());
3982  V2IsSplat = isSplatVector(V2.getNode());
3983
3984  // Canonicalize the splat or undef, if present, to be on the RHS.
3985  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3986    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3987    std::swap(V1IsSplat, V2IsSplat);
3988    std::swap(V1IsUndef, V2IsUndef);
3989    Commuted = true;
3990  }
3991
3992  // FIXME: Figure out a cleaner way to do this.
3993  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
3994    if (V2IsUndef) return V1;
3995    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3996    if (V2IsSplat) {
3997      // V2 is a splat, so the mask may be malformed. That is, it may point
3998      // to any V2 element. The instruction selectior won't like this. Get
3999      // a corrected mask and commute to form a proper MOVS{S|D}.
4000      SDValue NewMask = getMOVLMask(NumElems, DAG);
4001      if (NewMask.getNode() != PermMask.getNode())
4002        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4003    }
4004    return Op;
4005  }
4006
4007  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4008      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4009      X86::isUNPCKLMask(PermMask.getNode()) ||
4010      X86::isUNPCKHMask(PermMask.getNode()))
4011    return Op;
4012
4013  if (V2IsSplat) {
4014    // Normalize mask so all entries that point to V2 points to its first
4015    // element then try to match unpck{h|l} again. If match, return a
4016    // new vector_shuffle with the corrected mask.
4017    SDValue NewMask = NormalizeMask(PermMask, DAG);
4018    if (NewMask.getNode() != PermMask.getNode()) {
4019      if (X86::isUNPCKLMask(PermMask.getNode(), true)) {
4020        SDValue NewMask = getUnpacklMask(NumElems, DAG);
4021        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4022      } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) {
4023        SDValue NewMask = getUnpackhMask(NumElems, DAG);
4024        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4025      }
4026    }
4027  }
4028
4029  // Normalize the node to match x86 shuffle ops if needed
4030  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4031      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4032
4033  if (Commuted) {
4034    // Commute is back and try unpck* again.
4035    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4036    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4037        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4038        X86::isUNPCKLMask(PermMask.getNode()) ||
4039        X86::isUNPCKHMask(PermMask.getNode()))
4040      return Op;
4041  }
4042
4043  // Try PSHUF* first, then SHUFP*.
4044  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4045  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4046  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4047    if (V2.getOpcode() != ISD::UNDEF)
4048      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
4049                         DAG.getNode(ISD::UNDEF, VT), PermMask);
4050    return Op;
4051  }
4052
4053  if (!isMMX) {
4054    if (Subtarget->hasSSE2() &&
4055        (X86::isPSHUFDMask(PermMask.getNode()) ||
4056         X86::isPSHUFHWMask(PermMask.getNode()) ||
4057         X86::isPSHUFLWMask(PermMask.getNode()))) {
4058      MVT RVT = VT;
4059      if (VT == MVT::v4f32) {
4060        RVT = MVT::v4i32;
4061        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4062                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4063                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4064      } else if (V2.getOpcode() != ISD::UNDEF)
4065        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4066                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4067      if (RVT != VT)
4068        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4069      return Op;
4070    }
4071
4072    // Binary or unary shufps.
4073    if (X86::isSHUFPMask(PermMask.getNode()) ||
4074        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4075      return Op;
4076  }
4077
4078  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4079  if (VT == MVT::v8i16) {
4080    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4081    if (NewOp.getNode())
4082      return NewOp;
4083  }
4084
4085  // Handle all 4 wide cases with a number of shuffles except for MMX.
4086  if (NumElems == 4 && !isMMX)
4087    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4088
4089  return SDValue();
4090}
4091
4092SDValue
4093X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4094                                                SelectionDAG &DAG) {
4095  MVT VT = Op.getValueType();
4096  if (VT.getSizeInBits() == 8) {
4097    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4098                                    Op.getOperand(0), Op.getOperand(1));
4099    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4100                                    DAG.getValueType(VT));
4101    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4102  } else if (VT.getSizeInBits() == 16) {
4103    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4104                                    Op.getOperand(0), Op.getOperand(1));
4105    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4106                                    DAG.getValueType(VT));
4107    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4108  } else if (VT == MVT::f32) {
4109    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4110    // the result back to FR32 register. It's only worth matching if the
4111    // result has a single use which is a store or a bitcast to i32.
4112    if (!Op.hasOneUse())
4113      return SDValue();
4114    SDNode *User = *Op.getNode()->use_begin();
4115    if (User->getOpcode() != ISD::STORE &&
4116        (User->getOpcode() != ISD::BIT_CONVERT ||
4117         User->getValueType(0) != MVT::i32))
4118      return SDValue();
4119    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4120                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4121                                    Op.getOperand(1));
4122    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4123  }
4124  return SDValue();
4125}
4126
4127
4128SDValue
4129X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4130  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4131    return SDValue();
4132
4133  if (Subtarget->hasSSE41()) {
4134    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4135    if (Res.getNode())
4136      return Res;
4137  }
4138
4139  MVT VT = Op.getValueType();
4140  // TODO: handle v16i8.
4141  if (VT.getSizeInBits() == 16) {
4142    SDValue Vec = Op.getOperand(0);
4143    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4144    if (Idx == 0)
4145      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4146                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4147                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4148                                     Op.getOperand(1)));
4149    // Transform it so it match pextrw which produces a 32-bit result.
4150    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4151    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4152                                    Op.getOperand(0), Op.getOperand(1));
4153    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4154                                    DAG.getValueType(VT));
4155    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4156  } else if (VT.getSizeInBits() == 32) {
4157    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4158    if (Idx == 0)
4159      return Op;
4160    // SHUFPS the element to the lowest double word, then movss.
4161    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4162    SmallVector<SDValue, 8> IdxVec;
4163    IdxVec.
4164      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4165    IdxVec.
4166      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4167    IdxVec.
4168      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4169    IdxVec.
4170      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4171    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4172                                 &IdxVec[0], IdxVec.size());
4173    SDValue Vec = Op.getOperand(0);
4174    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4175                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4176    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4177                       DAG.getIntPtrConstant(0));
4178  } else if (VT.getSizeInBits() == 64) {
4179    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4180    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4181    //        to match extract_elt for f64.
4182    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4183    if (Idx == 0)
4184      return Op;
4185
4186    // UNPCKHPD the element to the lowest double word, then movsd.
4187    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4188    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4189    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4190    SmallVector<SDValue, 8> IdxVec;
4191    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4192    IdxVec.
4193      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4194    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4195                                 &IdxVec[0], IdxVec.size());
4196    SDValue Vec = Op.getOperand(0);
4197    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4198                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4199    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4200                       DAG.getIntPtrConstant(0));
4201  }
4202
4203  return SDValue();
4204}
4205
4206SDValue
4207X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4208  MVT VT = Op.getValueType();
4209  MVT EVT = VT.getVectorElementType();
4210
4211  SDValue N0 = Op.getOperand(0);
4212  SDValue N1 = Op.getOperand(1);
4213  SDValue N2 = Op.getOperand(2);
4214
4215  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4216      isa<ConstantSDNode>(N2)) {
4217    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4218                                                  : X86ISD::PINSRW;
4219    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4220    // argument.
4221    if (N1.getValueType() != MVT::i32)
4222      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4223    if (N2.getValueType() != MVT::i32)
4224      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4225    return DAG.getNode(Opc, VT, N0, N1, N2);
4226  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4227    // Bits [7:6] of the constant are the source select.  This will always be
4228    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4229    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4230    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4231    // Bits [5:4] of the constant are the destination select.  This is the
4232    //  value of the incoming immediate.
4233    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4234    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4235    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4236    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4237  }
4238  return SDValue();
4239}
4240
4241SDValue
4242X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4243  MVT VT = Op.getValueType();
4244  MVT EVT = VT.getVectorElementType();
4245
4246  if (Subtarget->hasSSE41())
4247    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4248
4249  if (EVT == MVT::i8)
4250    return SDValue();
4251
4252  SDValue N0 = Op.getOperand(0);
4253  SDValue N1 = Op.getOperand(1);
4254  SDValue N2 = Op.getOperand(2);
4255
4256  if (EVT.getSizeInBits() == 16) {
4257    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4258    // as its second argument.
4259    if (N1.getValueType() != MVT::i32)
4260      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4261    if (N2.getValueType() != MVT::i32)
4262      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4263    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4264  }
4265  return SDValue();
4266}
4267
4268SDValue
4269X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4270  if (Op.getValueType() == MVT::v2f32)
4271    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4272                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4273                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4274                                               Op.getOperand(0))));
4275
4276  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4277  MVT VT = MVT::v2i32;
4278  switch (Op.getValueType().getSimpleVT()) {
4279  default: break;
4280  case MVT::v16i8:
4281  case MVT::v8i16:
4282    VT = MVT::v4i32;
4283    break;
4284  }
4285  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4286                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4287}
4288
4289// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4290// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4291// one of the above mentioned nodes. It has to be wrapped because otherwise
4292// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4293// be used to form addressing mode. These wrapped nodes will be selected
4294// into MOV32ri.
4295SDValue
4296X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4297  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4298  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4299                                               getPointerTy(),
4300                                               CP->getAlignment());
4301  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4302  // With PIC, the address is actually $g + Offset.
4303  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4304      !Subtarget->isPICStyleRIPRel()) {
4305    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4306                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4307                         Result);
4308  }
4309
4310  return Result;
4311}
4312
4313SDValue
4314X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4315  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4316  SDValue Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4317  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4318  // With PIC, the address is actually $g + Offset.
4319  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4320      !Subtarget->isPICStyleRIPRel()) {
4321    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4322                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4323                         Result);
4324  }
4325
4326  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4327  // load the value at address GV, not the value of GV itself. This means that
4328  // the GlobalAddress must be in the base or index register of the address, not
4329  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4330  // The same applies for external symbols during PIC codegen
4331  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4332    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4333                         PseudoSourceValue::getGOT(), 0);
4334
4335  return Result;
4336}
4337
4338// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4339static SDValue
4340LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4341                                const MVT PtrVT) {
4342  SDValue InFlag;
4343  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4344                                     DAG.getNode(X86ISD::GlobalBaseReg,
4345                                                 PtrVT), InFlag);
4346  InFlag = Chain.getValue(1);
4347
4348  // emit leal symbol@TLSGD(,%ebx,1), %eax
4349  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4350  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4351                                             GA->getValueType(0),
4352                                             GA->getOffset());
4353  SDValue Ops[] = { Chain,  TGA, InFlag };
4354  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4355  InFlag = Result.getValue(2);
4356  Chain = Result.getValue(1);
4357
4358  // call ___tls_get_addr. This function receives its argument in
4359  // the register EAX.
4360  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4361  InFlag = Chain.getValue(1);
4362
4363  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4364  SDValue Ops1[] = { Chain,
4365                      DAG.getTargetExternalSymbol("___tls_get_addr",
4366                                                  PtrVT),
4367                      DAG.getRegister(X86::EAX, PtrVT),
4368                      DAG.getRegister(X86::EBX, PtrVT),
4369                      InFlag };
4370  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4371  InFlag = Chain.getValue(1);
4372
4373  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4374}
4375
4376// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4377static SDValue
4378LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4379                                const MVT PtrVT) {
4380  SDValue InFlag, Chain;
4381
4382  // emit leaq symbol@TLSGD(%rip), %rdi
4383  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4384  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4385                                             GA->getValueType(0),
4386                                             GA->getOffset());
4387  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4388  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4389  Chain  = Result.getValue(1);
4390  InFlag = Result.getValue(2);
4391
4392  // call __tls_get_addr. This function receives its argument in
4393  // the register RDI.
4394  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4395  InFlag = Chain.getValue(1);
4396
4397  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4398  SDValue Ops1[] = { Chain,
4399                      DAG.getTargetExternalSymbol("__tls_get_addr",
4400                                                  PtrVT),
4401                      DAG.getRegister(X86::RDI, PtrVT),
4402                      InFlag };
4403  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4404  InFlag = Chain.getValue(1);
4405
4406  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4407}
4408
4409// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4410// "local exec" model.
4411static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4412                                     const MVT PtrVT) {
4413  // Get the Thread Pointer
4414  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4415  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4416  // exec)
4417  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4418                                             GA->getValueType(0),
4419                                             GA->getOffset());
4420  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4421
4422  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4423    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4424                         PseudoSourceValue::getGOT(), 0);
4425
4426  // The address of the thread local variable is the add of the thread
4427  // pointer with the offset of the variable.
4428  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4429}
4430
4431SDValue
4432X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4433  // TODO: implement the "local dynamic" model
4434  // TODO: implement the "initial exec"model for pic executables
4435  assert(Subtarget->isTargetELF() &&
4436         "TLS not implemented for non-ELF targets");
4437  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4438  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4439  // otherwise use the "Local Exec"TLS Model
4440  if (Subtarget->is64Bit()) {
4441    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4442  } else {
4443    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4444      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4445    else
4446      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4447  }
4448}
4449
4450SDValue
4451X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4452  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4453  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4454  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4455  // With PIC, the address is actually $g + Offset.
4456  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4457      !Subtarget->isPICStyleRIPRel()) {
4458    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4459                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4460                         Result);
4461  }
4462
4463  return Result;
4464}
4465
4466SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4467  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4468  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4469  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4470  // With PIC, the address is actually $g + Offset.
4471  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4472      !Subtarget->isPICStyleRIPRel()) {
4473    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4474                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4475                         Result);
4476  }
4477
4478  return Result;
4479}
4480
4481/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4482/// take a 2 x i32 value to shift plus a shift amount.
4483SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4484  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4485  MVT VT = Op.getValueType();
4486  unsigned VTBits = VT.getSizeInBits();
4487  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4488  SDValue ShOpLo = Op.getOperand(0);
4489  SDValue ShOpHi = Op.getOperand(1);
4490  SDValue ShAmt  = Op.getOperand(2);
4491  SDValue Tmp1 = isSRA ?
4492    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4493    DAG.getConstant(0, VT);
4494
4495  SDValue Tmp2, Tmp3;
4496  if (Op.getOpcode() == ISD::SHL_PARTS) {
4497    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4498    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4499  } else {
4500    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4501    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4502  }
4503
4504  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4505                                  DAG.getConstant(VTBits, MVT::i8));
4506  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4507                               AndNode, DAG.getConstant(0, MVT::i8));
4508
4509  SDValue Hi, Lo;
4510  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4511  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4512  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4513
4514  if (Op.getOpcode() == ISD::SHL_PARTS) {
4515    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4516    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4517  } else {
4518    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4519    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4520  }
4521
4522  SDValue Ops[2] = { Lo, Hi };
4523  return DAG.getMergeValues(Ops, 2);
4524}
4525
4526SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4527  MVT SrcVT = Op.getOperand(0).getValueType();
4528  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4529         "Unknown SINT_TO_FP to lower!");
4530
4531  // These are really Legal; caller falls through into that case.
4532  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4533    return SDValue();
4534  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4535      Subtarget->is64Bit())
4536    return SDValue();
4537
4538  unsigned Size = SrcVT.getSizeInBits()/8;
4539  MachineFunction &MF = DAG.getMachineFunction();
4540  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4541  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4542  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4543                                 StackSlot,
4544                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4545
4546  // Build the FILD
4547  SDVTList Tys;
4548  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4549  if (useSSE)
4550    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4551  else
4552    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4553  SmallVector<SDValue, 8> Ops;
4554  Ops.push_back(Chain);
4555  Ops.push_back(StackSlot);
4556  Ops.push_back(DAG.getValueType(SrcVT));
4557  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4558                                 Tys, &Ops[0], Ops.size());
4559
4560  if (useSSE) {
4561    Chain = Result.getValue(1);
4562    SDValue InFlag = Result.getValue(2);
4563
4564    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4565    // shouldn't be necessary except that RFP cannot be live across
4566    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4567    MachineFunction &MF = DAG.getMachineFunction();
4568    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4569    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4570    Tys = DAG.getVTList(MVT::Other);
4571    SmallVector<SDValue, 8> Ops;
4572    Ops.push_back(Chain);
4573    Ops.push_back(Result);
4574    Ops.push_back(StackSlot);
4575    Ops.push_back(DAG.getValueType(Op.getValueType()));
4576    Ops.push_back(InFlag);
4577    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4578    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4579                         PseudoSourceValue::getFixedStack(SSFI), 0);
4580  }
4581
4582  return Result;
4583}
4584
4585std::pair<SDValue,SDValue> X86TargetLowering::
4586FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4587  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4588         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4589         "Unknown FP_TO_SINT to lower!");
4590
4591  // These are really Legal.
4592  if (Op.getValueType() == MVT::i32 &&
4593      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4594    return std::make_pair(SDValue(), SDValue());
4595  if (Subtarget->is64Bit() &&
4596      Op.getValueType() == MVT::i64 &&
4597      Op.getOperand(0).getValueType() != MVT::f80)
4598    return std::make_pair(SDValue(), SDValue());
4599
4600  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4601  // stack slot.
4602  MachineFunction &MF = DAG.getMachineFunction();
4603  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4604  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4605  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4606  unsigned Opc;
4607  switch (Op.getValueType().getSimpleVT()) {
4608  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4609  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4610  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4611  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4612  }
4613
4614  SDValue Chain = DAG.getEntryNode();
4615  SDValue Value = Op.getOperand(0);
4616  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4617    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4618    Chain = DAG.getStore(Chain, Value, StackSlot,
4619                         PseudoSourceValue::getFixedStack(SSFI), 0);
4620    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4621    SDValue Ops[] = {
4622      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4623    };
4624    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4625    Chain = Value.getValue(1);
4626    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4627    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4628  }
4629
4630  // Build the FP_TO_INT*_IN_MEM
4631  SDValue Ops[] = { Chain, Value, StackSlot };
4632  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4633
4634  return std::make_pair(FIST, StackSlot);
4635}
4636
4637SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4638  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4639  SDValue FIST = Vals.first, StackSlot = Vals.second;
4640  if (FIST.getNode() == 0) return SDValue();
4641
4642  // Load the result.
4643  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4644}
4645
4646SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4647  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
4648  SDValue FIST = Vals.first, StackSlot = Vals.second;
4649  if (FIST.getNode() == 0) return 0;
4650
4651  MVT VT = N->getValueType(0);
4652
4653  // Return a load from the stack slot.
4654  SDValue Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0);
4655
4656  // Use MERGE_VALUES to drop the chain result value and get a node with one
4657  // result.  This requires turning off getMergeValues simplification, since
4658  // otherwise it will give us Res back.
4659  return DAG.getMergeValues(&Res, 1, false).getNode();
4660}
4661
4662SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4663  MVT VT = Op.getValueType();
4664  MVT EltVT = VT;
4665  if (VT.isVector())
4666    EltVT = VT.getVectorElementType();
4667  std::vector<Constant*> CV;
4668  if (EltVT == MVT::f64) {
4669    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4670    CV.push_back(C);
4671    CV.push_back(C);
4672  } else {
4673    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4674    CV.push_back(C);
4675    CV.push_back(C);
4676    CV.push_back(C);
4677    CV.push_back(C);
4678  }
4679  Constant *C = ConstantVector::get(CV);
4680  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4681  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4682                               PseudoSourceValue::getConstantPool(), 0,
4683                               false, 16);
4684  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4685}
4686
4687SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4688  MVT VT = Op.getValueType();
4689  MVT EltVT = VT;
4690  unsigned EltNum = 1;
4691  if (VT.isVector()) {
4692    EltVT = VT.getVectorElementType();
4693    EltNum = VT.getVectorNumElements();
4694  }
4695  std::vector<Constant*> CV;
4696  if (EltVT == MVT::f64) {
4697    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4698    CV.push_back(C);
4699    CV.push_back(C);
4700  } else {
4701    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4702    CV.push_back(C);
4703    CV.push_back(C);
4704    CV.push_back(C);
4705    CV.push_back(C);
4706  }
4707  Constant *C = ConstantVector::get(CV);
4708  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4709  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4710                               PseudoSourceValue::getConstantPool(), 0,
4711                               false, 16);
4712  if (VT.isVector()) {
4713    return DAG.getNode(ISD::BIT_CONVERT, VT,
4714                       DAG.getNode(ISD::XOR, MVT::v2i64,
4715                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4716                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4717  } else {
4718    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4719  }
4720}
4721
4722SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4723  SDValue Op0 = Op.getOperand(0);
4724  SDValue Op1 = Op.getOperand(1);
4725  MVT VT = Op.getValueType();
4726  MVT SrcVT = Op1.getValueType();
4727
4728  // If second operand is smaller, extend it first.
4729  if (SrcVT.bitsLT(VT)) {
4730    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4731    SrcVT = VT;
4732  }
4733  // And if it is bigger, shrink it first.
4734  if (SrcVT.bitsGT(VT)) {
4735    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4736    SrcVT = VT;
4737  }
4738
4739  // At this point the operands and the result should have the same
4740  // type, and that won't be f80 since that is not custom lowered.
4741
4742  // First get the sign bit of second operand.
4743  std::vector<Constant*> CV;
4744  if (SrcVT == MVT::f64) {
4745    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4746    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4747  } else {
4748    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4749    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4750    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4751    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4752  }
4753  Constant *C = ConstantVector::get(CV);
4754  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4755  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4756                                PseudoSourceValue::getConstantPool(), 0,
4757                                false, 16);
4758  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4759
4760  // Shift sign bit right or left if the two operands have different types.
4761  if (SrcVT.bitsGT(VT)) {
4762    // Op0 is MVT::f32, Op1 is MVT::f64.
4763    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4764    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4765                          DAG.getConstant(32, MVT::i32));
4766    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4767    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4768                          DAG.getIntPtrConstant(0));
4769  }
4770
4771  // Clear first operand sign bit.
4772  CV.clear();
4773  if (VT == MVT::f64) {
4774    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4775    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4776  } else {
4777    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4778    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4779    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4780    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4781  }
4782  C = ConstantVector::get(CV);
4783  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4784  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4785                                PseudoSourceValue::getConstantPool(), 0,
4786                                false, 16);
4787  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4788
4789  // Or the value with the sign bit.
4790  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4791}
4792
4793SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
4794  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4795  SDValue Cond;
4796  SDValue Op0 = Op.getOperand(0);
4797  SDValue Op1 = Op.getOperand(1);
4798  SDValue CC = Op.getOperand(2);
4799  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4800  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4801  unsigned X86CC;
4802
4803  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4804                     Op0, Op1, DAG)) {
4805    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4806    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4807                       DAG.getConstant(X86CC, MVT::i8), Cond);
4808  }
4809
4810  assert(isFP && "Illegal integer SetCC!");
4811
4812  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4813  switch (SetCCOpcode) {
4814  default: assert(false && "Illegal floating point SetCC!");
4815  case ISD::SETOEQ: {  // !PF & ZF
4816    SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4817                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4818    SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4819                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4820    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4821  }
4822  case ISD::SETUNE: {  // PF | !ZF
4823    SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4824                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4825    SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4826                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4827    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4828  }
4829  }
4830}
4831
4832SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4833  SDValue Cond;
4834  SDValue Op0 = Op.getOperand(0);
4835  SDValue Op1 = Op.getOperand(1);
4836  SDValue CC = Op.getOperand(2);
4837  MVT VT = Op.getValueType();
4838  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4839  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4840
4841  if (isFP) {
4842    unsigned SSECC = 8;
4843    MVT VT0 = Op0.getValueType();
4844    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
4845    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
4846    bool Swap = false;
4847
4848    switch (SetCCOpcode) {
4849    default: break;
4850    case ISD::SETOEQ:
4851    case ISD::SETEQ:  SSECC = 0; break;
4852    case ISD::SETOGT:
4853    case ISD::SETGT: Swap = true; // Fallthrough
4854    case ISD::SETLT:
4855    case ISD::SETOLT: SSECC = 1; break;
4856    case ISD::SETOGE:
4857    case ISD::SETGE: Swap = true; // Fallthrough
4858    case ISD::SETLE:
4859    case ISD::SETOLE: SSECC = 2; break;
4860    case ISD::SETUO:  SSECC = 3; break;
4861    case ISD::SETUNE:
4862    case ISD::SETNE:  SSECC = 4; break;
4863    case ISD::SETULE: Swap = true;
4864    case ISD::SETUGE: SSECC = 5; break;
4865    case ISD::SETULT: Swap = true;
4866    case ISD::SETUGT: SSECC = 6; break;
4867    case ISD::SETO:   SSECC = 7; break;
4868    }
4869    if (Swap)
4870      std::swap(Op0, Op1);
4871
4872    // In the two special cases we can't handle, emit two comparisons.
4873    if (SSECC == 8) {
4874      if (SetCCOpcode == ISD::SETUEQ) {
4875        SDValue UNORD, EQ;
4876        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
4877        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
4878        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
4879      }
4880      else if (SetCCOpcode == ISD::SETONE) {
4881        SDValue ORD, NEQ;
4882        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
4883        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
4884        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
4885      }
4886      assert(0 && "Illegal FP comparison");
4887    }
4888    // Handle all other FP comparisons here.
4889    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
4890  }
4891
4892  // We are handling one of the integer comparisons here.  Since SSE only has
4893  // GT and EQ comparisons for integer, swapping operands and multiple
4894  // operations may be required for some comparisons.
4895  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
4896  bool Swap = false, Invert = false, FlipSigns = false;
4897
4898  switch (VT.getSimpleVT()) {
4899  default: break;
4900  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
4901  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
4902  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
4903  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
4904  }
4905
4906  switch (SetCCOpcode) {
4907  default: break;
4908  case ISD::SETNE:  Invert = true;
4909  case ISD::SETEQ:  Opc = EQOpc; break;
4910  case ISD::SETLT:  Swap = true;
4911  case ISD::SETGT:  Opc = GTOpc; break;
4912  case ISD::SETGE:  Swap = true;
4913  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
4914  case ISD::SETULT: Swap = true;
4915  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
4916  case ISD::SETUGE: Swap = true;
4917  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
4918  }
4919  if (Swap)
4920    std::swap(Op0, Op1);
4921
4922  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
4923  // bits of the inputs before performing those operations.
4924  if (FlipSigns) {
4925    MVT EltVT = VT.getVectorElementType();
4926    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
4927    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
4928    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
4929                                    SignBits.size());
4930    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
4931    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
4932  }
4933
4934  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
4935
4936  // If the logical-not of the result is required, perform that now.
4937  if (Invert) {
4938    MVT EltVT = VT.getVectorElementType();
4939    SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
4940    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne);
4941    SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
4942                                    NegOnes.size());
4943    Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
4944  }
4945  return Result;
4946}
4947
4948SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
4949  bool addTest = true;
4950  SDValue Cond  = Op.getOperand(0);
4951  SDValue CC;
4952
4953  if (Cond.getOpcode() == ISD::SETCC)
4954    Cond = LowerSETCC(Cond, DAG);
4955
4956  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4957  // setting operand in place of the X86ISD::SETCC.
4958  if (Cond.getOpcode() == X86ISD::SETCC) {
4959    CC = Cond.getOperand(0);
4960
4961    SDValue Cmp = Cond.getOperand(1);
4962    unsigned Opc = Cmp.getOpcode();
4963    MVT VT = Op.getValueType();
4964
4965    bool IllegalFPCMov = false;
4966    if (VT.isFloatingPoint() && !VT.isVector() &&
4967        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4968      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4969
4970    if ((Opc == X86ISD::CMP ||
4971         Opc == X86ISD::COMI ||
4972         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4973      Cond = Cmp;
4974      addTest = false;
4975    }
4976  }
4977
4978  if (addTest) {
4979    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4980    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4981  }
4982
4983  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4984                                                    MVT::Flag);
4985  SmallVector<SDValue, 4> Ops;
4986  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4987  // condition is true.
4988  Ops.push_back(Op.getOperand(2));
4989  Ops.push_back(Op.getOperand(1));
4990  Ops.push_back(CC);
4991  Ops.push_back(Cond);
4992  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4993}
4994
4995SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
4996  bool addTest = true;
4997  SDValue Chain = Op.getOperand(0);
4998  SDValue Cond  = Op.getOperand(1);
4999  SDValue Dest  = Op.getOperand(2);
5000  SDValue CC;
5001
5002  if (Cond.getOpcode() == ISD::SETCC)
5003    Cond = LowerSETCC(Cond, DAG);
5004
5005  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5006  // setting operand in place of the X86ISD::SETCC.
5007  if (Cond.getOpcode() == X86ISD::SETCC) {
5008    CC = Cond.getOperand(0);
5009
5010    SDValue Cmp = Cond.getOperand(1);
5011    unsigned Opc = Cmp.getOpcode();
5012    if (Opc == X86ISD::CMP ||
5013        Opc == X86ISD::COMI ||
5014        Opc == X86ISD::UCOMI) {
5015      Cond = Cmp;
5016      addTest = false;
5017    }
5018  }
5019
5020  if (addTest) {
5021    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5022    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5023  }
5024  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5025                     Chain, Op.getOperand(2), CC, Cond);
5026}
5027
5028
5029// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5030// Calls to _alloca is needed to probe the stack when allocating more than 4k
5031// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5032// that the guard pages used by the OS virtual memory manager are allocated in
5033// correct sequence.
5034SDValue
5035X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5036                                           SelectionDAG &DAG) {
5037  assert(Subtarget->isTargetCygMing() &&
5038         "This should be used only on Cygwin/Mingw targets");
5039
5040  // Get the inputs.
5041  SDValue Chain = Op.getOperand(0);
5042  SDValue Size  = Op.getOperand(1);
5043  // FIXME: Ensure alignment here
5044
5045  SDValue Flag;
5046
5047  MVT IntPtr = getPointerTy();
5048  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5049
5050  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0));
5051
5052  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
5053  Flag = Chain.getValue(1);
5054
5055  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5056  SDValue Ops[] = { Chain,
5057                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5058                      DAG.getRegister(X86::EAX, IntPtr),
5059                      DAG.getRegister(X86StackPtr, SPTy),
5060                      Flag };
5061  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5062  Flag = Chain.getValue(1);
5063
5064  Chain = DAG.getCALLSEQ_END(Chain,
5065                             DAG.getIntPtrConstant(0),
5066                             DAG.getIntPtrConstant(0),
5067                             Flag);
5068
5069  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5070
5071  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5072  return DAG.getMergeValues(Ops1, 2);
5073}
5074
5075SDValue
5076X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5077                                        SDValue Chain,
5078                                        SDValue Dst, SDValue Src,
5079                                        SDValue Size, unsigned Align,
5080                                        const Value *DstSV, uint64_t DstSVOff) {
5081  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5082
5083  /// If not DWORD aligned or size is more than the threshold, call the library.
5084  /// The libc version is likely to be faster for these cases. It can use the
5085  /// address value and run time information about the CPU.
5086  if ((Align & 3) != 0 ||
5087      !ConstantSize ||
5088      ConstantSize->getZExtValue() >
5089        getSubtarget()->getMaxInlineSizeThreshold()) {
5090    SDValue InFlag(0, 0);
5091
5092    // Check to see if there is a specialized entry-point for memory zeroing.
5093    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5094    if (const char *bzeroEntry =
5095          V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5096      MVT IntPtr = getPointerTy();
5097      const Type *IntPtrTy = TD->getIntPtrType();
5098      TargetLowering::ArgListTy Args;
5099      TargetLowering::ArgListEntry Entry;
5100      Entry.Node = Dst;
5101      Entry.Ty = IntPtrTy;
5102      Args.push_back(Entry);
5103      Entry.Node = Size;
5104      Args.push_back(Entry);
5105      std::pair<SDValue,SDValue> CallResult =
5106        LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
5107                    false, DAG.getExternalSymbol(bzeroEntry, IntPtr),
5108                    Args, DAG);
5109      return CallResult.second;
5110    }
5111
5112    // Otherwise have the target-independent code call memset.
5113    return SDValue();
5114  }
5115
5116  uint64_t SizeVal = ConstantSize->getZExtValue();
5117  SDValue InFlag(0, 0);
5118  MVT AVT;
5119  SDValue Count;
5120  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5121  unsigned BytesLeft = 0;
5122  bool TwoRepStos = false;
5123  if (ValC) {
5124    unsigned ValReg;
5125    uint64_t Val = ValC->getZExtValue() & 255;
5126
5127    // If the value is a constant, then we can potentially use larger sets.
5128    switch (Align & 3) {
5129    case 2:   // WORD aligned
5130      AVT = MVT::i16;
5131      ValReg = X86::AX;
5132      Val = (Val << 8) | Val;
5133      break;
5134    case 0:  // DWORD aligned
5135      AVT = MVT::i32;
5136      ValReg = X86::EAX;
5137      Val = (Val << 8)  | Val;
5138      Val = (Val << 16) | Val;
5139      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5140        AVT = MVT::i64;
5141        ValReg = X86::RAX;
5142        Val = (Val << 32) | Val;
5143      }
5144      break;
5145    default:  // Byte aligned
5146      AVT = MVT::i8;
5147      ValReg = X86::AL;
5148      Count = DAG.getIntPtrConstant(SizeVal);
5149      break;
5150    }
5151
5152    if (AVT.bitsGT(MVT::i8)) {
5153      unsigned UBytes = AVT.getSizeInBits() / 8;
5154      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5155      BytesLeft = SizeVal % UBytes;
5156    }
5157
5158    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5159                              InFlag);
5160    InFlag = Chain.getValue(1);
5161  } else {
5162    AVT = MVT::i8;
5163    Count  = DAG.getIntPtrConstant(SizeVal);
5164    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5165    InFlag = Chain.getValue(1);
5166  }
5167
5168  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5169                            Count, InFlag);
5170  InFlag = Chain.getValue(1);
5171  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5172                            Dst, InFlag);
5173  InFlag = Chain.getValue(1);
5174
5175  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5176  SmallVector<SDValue, 8> Ops;
5177  Ops.push_back(Chain);
5178  Ops.push_back(DAG.getValueType(AVT));
5179  Ops.push_back(InFlag);
5180  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5181
5182  if (TwoRepStos) {
5183    InFlag = Chain.getValue(1);
5184    Count  = Size;
5185    MVT CVT = Count.getValueType();
5186    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5187                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5188    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5189                              Left, InFlag);
5190    InFlag = Chain.getValue(1);
5191    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5192    Ops.clear();
5193    Ops.push_back(Chain);
5194    Ops.push_back(DAG.getValueType(MVT::i8));
5195    Ops.push_back(InFlag);
5196    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5197  } else if (BytesLeft) {
5198    // Handle the last 1 - 7 bytes.
5199    unsigned Offset = SizeVal - BytesLeft;
5200    MVT AddrVT = Dst.getValueType();
5201    MVT SizeVT = Size.getValueType();
5202
5203    Chain = DAG.getMemset(Chain,
5204                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5205                                      DAG.getConstant(Offset, AddrVT)),
5206                          Src,
5207                          DAG.getConstant(BytesLeft, SizeVT),
5208                          Align, DstSV, DstSVOff + Offset);
5209  }
5210
5211  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5212  return Chain;
5213}
5214
5215SDValue
5216X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5217                                      SDValue Chain, SDValue Dst, SDValue Src,
5218                                      SDValue Size, unsigned Align,
5219                                      bool AlwaysInline,
5220                                      const Value *DstSV, uint64_t DstSVOff,
5221                                      const Value *SrcSV, uint64_t SrcSVOff) {
5222  // This requires the copy size to be a constant, preferrably
5223  // within a subtarget-specific limit.
5224  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5225  if (!ConstantSize)
5226    return SDValue();
5227  uint64_t SizeVal = ConstantSize->getZExtValue();
5228  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5229    return SDValue();
5230
5231  /// If not DWORD aligned, call the library.
5232  if ((Align & 3) != 0)
5233    return SDValue();
5234
5235  // DWORD aligned
5236  MVT AVT = MVT::i32;
5237  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5238    AVT = MVT::i64;
5239
5240  unsigned UBytes = AVT.getSizeInBits() / 8;
5241  unsigned CountVal = SizeVal / UBytes;
5242  SDValue Count = DAG.getIntPtrConstant(CountVal);
5243  unsigned BytesLeft = SizeVal % UBytes;
5244
5245  SDValue InFlag(0, 0);
5246  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5247                            Count, InFlag);
5248  InFlag = Chain.getValue(1);
5249  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5250                            Dst, InFlag);
5251  InFlag = Chain.getValue(1);
5252  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5253                            Src, InFlag);
5254  InFlag = Chain.getValue(1);
5255
5256  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5257  SmallVector<SDValue, 8> Ops;
5258  Ops.push_back(Chain);
5259  Ops.push_back(DAG.getValueType(AVT));
5260  Ops.push_back(InFlag);
5261  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5262
5263  SmallVector<SDValue, 4> Results;
5264  Results.push_back(RepMovs);
5265  if (BytesLeft) {
5266    // Handle the last 1 - 7 bytes.
5267    unsigned Offset = SizeVal - BytesLeft;
5268    MVT DstVT = Dst.getValueType();
5269    MVT SrcVT = Src.getValueType();
5270    MVT SizeVT = Size.getValueType();
5271    Results.push_back(DAG.getMemcpy(Chain,
5272                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5273                                                DAG.getConstant(Offset, DstVT)),
5274                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5275                                                DAG.getConstant(Offset, SrcVT)),
5276                                    DAG.getConstant(BytesLeft, SizeVT),
5277                                    Align, AlwaysInline,
5278                                    DstSV, DstSVOff + Offset,
5279                                    SrcSV, SrcSVOff + Offset));
5280  }
5281
5282  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5283}
5284
5285/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5286SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
5287  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5288  SDValue TheChain = N->getOperand(0);
5289  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
5290  if (Subtarget->is64Bit()) {
5291    SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5292    SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5293                                       MVT::i64, rax.getValue(2));
5294    SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
5295                                DAG.getConstant(32, MVT::i8));
5296    SDValue Ops[] = {
5297      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
5298    };
5299
5300    return DAG.getMergeValues(Ops, 2).getNode();
5301  }
5302
5303  SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5304  SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5305                                       MVT::i32, eax.getValue(2));
5306  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5307  SDValue Ops[] = { eax, edx };
5308  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5309
5310  // Use a MERGE_VALUES to return the value and chain.
5311  Ops[1] = edx.getValue(1);
5312  return DAG.getMergeValues(Ops, 2).getNode();
5313}
5314
5315SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5316  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5317
5318  if (!Subtarget->is64Bit()) {
5319    // vastart just stores the address of the VarArgsFrameIndex slot into the
5320    // memory location argument.
5321    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5322    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5323  }
5324
5325  // __va_list_tag:
5326  //   gp_offset         (0 - 6 * 8)
5327  //   fp_offset         (48 - 48 + 8 * 16)
5328  //   overflow_arg_area (point to parameters coming in memory).
5329  //   reg_save_area
5330  SmallVector<SDValue, 8> MemOps;
5331  SDValue FIN = Op.getOperand(1);
5332  // Store gp_offset
5333  SDValue Store = DAG.getStore(Op.getOperand(0),
5334                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5335                                 FIN, SV, 0);
5336  MemOps.push_back(Store);
5337
5338  // Store fp_offset
5339  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5340  Store = DAG.getStore(Op.getOperand(0),
5341                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5342                       FIN, SV, 0);
5343  MemOps.push_back(Store);
5344
5345  // Store ptr to overflow_arg_area
5346  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5347  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5348  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5349  MemOps.push_back(Store);
5350
5351  // Store ptr to reg_save_area.
5352  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5353  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5354  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5355  MemOps.push_back(Store);
5356  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5357}
5358
5359SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5360  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5361  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5362  SDValue Chain = Op.getOperand(0);
5363  SDValue SrcPtr = Op.getOperand(1);
5364  SDValue SrcSV = Op.getOperand(2);
5365
5366  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5367  abort();
5368  return SDValue();
5369}
5370
5371SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5372  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5373  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5374  SDValue Chain = Op.getOperand(0);
5375  SDValue DstPtr = Op.getOperand(1);
5376  SDValue SrcPtr = Op.getOperand(2);
5377  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5378  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5379
5380  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5381                       DAG.getIntPtrConstant(24), 8, false,
5382                       DstSV, 0, SrcSV, 0);
5383}
5384
5385SDValue
5386X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5387  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5388  switch (IntNo) {
5389  default: return SDValue();    // Don't custom lower most intrinsics.
5390  // Comparison intrinsics.
5391  case Intrinsic::x86_sse_comieq_ss:
5392  case Intrinsic::x86_sse_comilt_ss:
5393  case Intrinsic::x86_sse_comile_ss:
5394  case Intrinsic::x86_sse_comigt_ss:
5395  case Intrinsic::x86_sse_comige_ss:
5396  case Intrinsic::x86_sse_comineq_ss:
5397  case Intrinsic::x86_sse_ucomieq_ss:
5398  case Intrinsic::x86_sse_ucomilt_ss:
5399  case Intrinsic::x86_sse_ucomile_ss:
5400  case Intrinsic::x86_sse_ucomigt_ss:
5401  case Intrinsic::x86_sse_ucomige_ss:
5402  case Intrinsic::x86_sse_ucomineq_ss:
5403  case Intrinsic::x86_sse2_comieq_sd:
5404  case Intrinsic::x86_sse2_comilt_sd:
5405  case Intrinsic::x86_sse2_comile_sd:
5406  case Intrinsic::x86_sse2_comigt_sd:
5407  case Intrinsic::x86_sse2_comige_sd:
5408  case Intrinsic::x86_sse2_comineq_sd:
5409  case Intrinsic::x86_sse2_ucomieq_sd:
5410  case Intrinsic::x86_sse2_ucomilt_sd:
5411  case Intrinsic::x86_sse2_ucomile_sd:
5412  case Intrinsic::x86_sse2_ucomigt_sd:
5413  case Intrinsic::x86_sse2_ucomige_sd:
5414  case Intrinsic::x86_sse2_ucomineq_sd: {
5415    unsigned Opc = 0;
5416    ISD::CondCode CC = ISD::SETCC_INVALID;
5417    switch (IntNo) {
5418    default: break;
5419    case Intrinsic::x86_sse_comieq_ss:
5420    case Intrinsic::x86_sse2_comieq_sd:
5421      Opc = X86ISD::COMI;
5422      CC = ISD::SETEQ;
5423      break;
5424    case Intrinsic::x86_sse_comilt_ss:
5425    case Intrinsic::x86_sse2_comilt_sd:
5426      Opc = X86ISD::COMI;
5427      CC = ISD::SETLT;
5428      break;
5429    case Intrinsic::x86_sse_comile_ss:
5430    case Intrinsic::x86_sse2_comile_sd:
5431      Opc = X86ISD::COMI;
5432      CC = ISD::SETLE;
5433      break;
5434    case Intrinsic::x86_sse_comigt_ss:
5435    case Intrinsic::x86_sse2_comigt_sd:
5436      Opc = X86ISD::COMI;
5437      CC = ISD::SETGT;
5438      break;
5439    case Intrinsic::x86_sse_comige_ss:
5440    case Intrinsic::x86_sse2_comige_sd:
5441      Opc = X86ISD::COMI;
5442      CC = ISD::SETGE;
5443      break;
5444    case Intrinsic::x86_sse_comineq_ss:
5445    case Intrinsic::x86_sse2_comineq_sd:
5446      Opc = X86ISD::COMI;
5447      CC = ISD::SETNE;
5448      break;
5449    case Intrinsic::x86_sse_ucomieq_ss:
5450    case Intrinsic::x86_sse2_ucomieq_sd:
5451      Opc = X86ISD::UCOMI;
5452      CC = ISD::SETEQ;
5453      break;
5454    case Intrinsic::x86_sse_ucomilt_ss:
5455    case Intrinsic::x86_sse2_ucomilt_sd:
5456      Opc = X86ISD::UCOMI;
5457      CC = ISD::SETLT;
5458      break;
5459    case Intrinsic::x86_sse_ucomile_ss:
5460    case Intrinsic::x86_sse2_ucomile_sd:
5461      Opc = X86ISD::UCOMI;
5462      CC = ISD::SETLE;
5463      break;
5464    case Intrinsic::x86_sse_ucomigt_ss:
5465    case Intrinsic::x86_sse2_ucomigt_sd:
5466      Opc = X86ISD::UCOMI;
5467      CC = ISD::SETGT;
5468      break;
5469    case Intrinsic::x86_sse_ucomige_ss:
5470    case Intrinsic::x86_sse2_ucomige_sd:
5471      Opc = X86ISD::UCOMI;
5472      CC = ISD::SETGE;
5473      break;
5474    case Intrinsic::x86_sse_ucomineq_ss:
5475    case Intrinsic::x86_sse2_ucomineq_sd:
5476      Opc = X86ISD::UCOMI;
5477      CC = ISD::SETNE;
5478      break;
5479    }
5480
5481    unsigned X86CC;
5482    SDValue LHS = Op.getOperand(1);
5483    SDValue RHS = Op.getOperand(2);
5484    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5485
5486    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5487    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5488                                DAG.getConstant(X86CC, MVT::i8), Cond);
5489    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5490  }
5491
5492  // Fix vector shift instructions where the last operand is a non-immediate
5493  // i32 value.
5494  case Intrinsic::x86_sse2_pslli_w:
5495  case Intrinsic::x86_sse2_pslli_d:
5496  case Intrinsic::x86_sse2_pslli_q:
5497  case Intrinsic::x86_sse2_psrli_w:
5498  case Intrinsic::x86_sse2_psrli_d:
5499  case Intrinsic::x86_sse2_psrli_q:
5500  case Intrinsic::x86_sse2_psrai_w:
5501  case Intrinsic::x86_sse2_psrai_d:
5502  case Intrinsic::x86_mmx_pslli_w:
5503  case Intrinsic::x86_mmx_pslli_d:
5504  case Intrinsic::x86_mmx_pslli_q:
5505  case Intrinsic::x86_mmx_psrli_w:
5506  case Intrinsic::x86_mmx_psrli_d:
5507  case Intrinsic::x86_mmx_psrli_q:
5508  case Intrinsic::x86_mmx_psrai_w:
5509  case Intrinsic::x86_mmx_psrai_d: {
5510    SDValue ShAmt = Op.getOperand(2);
5511    if (isa<ConstantSDNode>(ShAmt))
5512      return SDValue();
5513
5514    unsigned NewIntNo = 0;
5515    MVT ShAmtVT = MVT::v4i32;
5516    switch (IntNo) {
5517    case Intrinsic::x86_sse2_pslli_w:
5518      NewIntNo = Intrinsic::x86_sse2_psll_w;
5519      break;
5520    case Intrinsic::x86_sse2_pslli_d:
5521      NewIntNo = Intrinsic::x86_sse2_psll_d;
5522      break;
5523    case Intrinsic::x86_sse2_pslli_q:
5524      NewIntNo = Intrinsic::x86_sse2_psll_q;
5525      break;
5526    case Intrinsic::x86_sse2_psrli_w:
5527      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5528      break;
5529    case Intrinsic::x86_sse2_psrli_d:
5530      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5531      break;
5532    case Intrinsic::x86_sse2_psrli_q:
5533      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5534      break;
5535    case Intrinsic::x86_sse2_psrai_w:
5536      NewIntNo = Intrinsic::x86_sse2_psra_w;
5537      break;
5538    case Intrinsic::x86_sse2_psrai_d:
5539      NewIntNo = Intrinsic::x86_sse2_psra_d;
5540      break;
5541    default: {
5542      ShAmtVT = MVT::v2i32;
5543      switch (IntNo) {
5544      case Intrinsic::x86_mmx_pslli_w:
5545        NewIntNo = Intrinsic::x86_mmx_psll_w;
5546        break;
5547      case Intrinsic::x86_mmx_pslli_d:
5548        NewIntNo = Intrinsic::x86_mmx_psll_d;
5549        break;
5550      case Intrinsic::x86_mmx_pslli_q:
5551        NewIntNo = Intrinsic::x86_mmx_psll_q;
5552        break;
5553      case Intrinsic::x86_mmx_psrli_w:
5554        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5555        break;
5556      case Intrinsic::x86_mmx_psrli_d:
5557        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5558        break;
5559      case Intrinsic::x86_mmx_psrli_q:
5560        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5561        break;
5562      case Intrinsic::x86_mmx_psrai_w:
5563        NewIntNo = Intrinsic::x86_mmx_psra_w;
5564        break;
5565      case Intrinsic::x86_mmx_psrai_d:
5566        NewIntNo = Intrinsic::x86_mmx_psra_d;
5567        break;
5568      default: abort();  // Can't reach here.
5569      }
5570      break;
5571    }
5572    }
5573    MVT VT = Op.getValueType();
5574    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5575                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5576    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5577                       DAG.getConstant(NewIntNo, MVT::i32),
5578                       Op.getOperand(1), ShAmt);
5579  }
5580  }
5581}
5582
5583SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5584  // Depths > 0 not supported yet!
5585  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5586    return SDValue();
5587
5588  // Just load the return address
5589  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5590  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5591}
5592
5593SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5594  // Depths > 0 not supported yet!
5595  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5596    return SDValue();
5597
5598  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5599  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5600                     DAG.getIntPtrConstant(TD->getPointerSize()));
5601}
5602
5603SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5604                                                     SelectionDAG &DAG) {
5605  return DAG.getIntPtrConstant(2*TD->getPointerSize());
5606}
5607
5608SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
5609{
5610  MachineFunction &MF = DAG.getMachineFunction();
5611  SDValue Chain     = Op.getOperand(0);
5612  SDValue Offset    = Op.getOperand(1);
5613  SDValue Handler   = Op.getOperand(2);
5614
5615  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
5616                                  getPointerTy());
5617  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
5618
5619  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5620                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
5621  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5622  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5623  Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr);
5624  MF.getRegInfo().addLiveOut(StoreAddrReg);
5625
5626  return DAG.getNode(X86ISD::EH_RETURN,
5627                     MVT::Other,
5628                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
5629}
5630
5631SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
5632                                             SelectionDAG &DAG) {
5633  SDValue Root = Op.getOperand(0);
5634  SDValue Trmp = Op.getOperand(1); // trampoline
5635  SDValue FPtr = Op.getOperand(2); // nested function
5636  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
5637
5638  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5639
5640  const X86InstrInfo *TII =
5641    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5642
5643  if (Subtarget->is64Bit()) {
5644    SDValue OutChains[6];
5645
5646    // Large code-model.
5647
5648    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5649    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5650
5651    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5652    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5653
5654    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5655
5656    // Load the pointer to the nested function into R11.
5657    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5658    SDValue Addr = Trmp;
5659    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5660                                TrmpAddr, 0);
5661
5662    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5663    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5664
5665    // Load the 'nest' parameter value into R10.
5666    // R10 is specified in X86CallingConv.td
5667    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5668    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5669    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5670                                TrmpAddr, 10);
5671
5672    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5673    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5674
5675    // Jump to the nested function.
5676    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5677    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5678    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5679                                TrmpAddr, 20);
5680
5681    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5682    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5683    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5684                                TrmpAddr, 22);
5685
5686    SDValue Ops[] =
5687      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5688    return DAG.getMergeValues(Ops, 2);
5689  } else {
5690    const Function *Func =
5691      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5692    unsigned CC = Func->getCallingConv();
5693    unsigned NestReg;
5694
5695    switch (CC) {
5696    default:
5697      assert(0 && "Unsupported calling convention");
5698    case CallingConv::C:
5699    case CallingConv::X86_StdCall: {
5700      // Pass 'nest' parameter in ECX.
5701      // Must be kept in sync with X86CallingConv.td
5702      NestReg = X86::ECX;
5703
5704      // Check that ECX wasn't needed by an 'inreg' parameter.
5705      const FunctionType *FTy = Func->getFunctionType();
5706      const PAListPtr &Attrs = Func->getParamAttrs();
5707
5708      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5709        unsigned InRegCount = 0;
5710        unsigned Idx = 1;
5711
5712        for (FunctionType::param_iterator I = FTy->param_begin(),
5713             E = FTy->param_end(); I != E; ++I, ++Idx)
5714          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5715            // FIXME: should only count parameters that are lowered to integers.
5716            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
5717
5718        if (InRegCount > 2) {
5719          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5720          abort();
5721        }
5722      }
5723      break;
5724    }
5725    case CallingConv::X86_FastCall:
5726    case CallingConv::Fast:
5727      // Pass 'nest' parameter in EAX.
5728      // Must be kept in sync with X86CallingConv.td
5729      NestReg = X86::EAX;
5730      break;
5731    }
5732
5733    SDValue OutChains[4];
5734    SDValue Addr, Disp;
5735
5736    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5737    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5738
5739    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5740    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
5741    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5742                                Trmp, TrmpAddr, 0);
5743
5744    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5745    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5746
5747    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5748    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5749    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5750                                TrmpAddr, 5, false, 1);
5751
5752    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5753    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5754
5755    SDValue Ops[] =
5756      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5757    return DAG.getMergeValues(Ops, 2);
5758  }
5759}
5760
5761SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
5762  /*
5763   The rounding mode is in bits 11:10 of FPSR, and has the following
5764   settings:
5765     00 Round to nearest
5766     01 Round to -inf
5767     10 Round to +inf
5768     11 Round to 0
5769
5770  FLT_ROUNDS, on the other hand, expects the following:
5771    -1 Undefined
5772     0 Round to 0
5773     1 Round to nearest
5774     2 Round to +inf
5775     3 Round to -inf
5776
5777  To perform the conversion, we do:
5778    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5779  */
5780
5781  MachineFunction &MF = DAG.getMachineFunction();
5782  const TargetMachine &TM = MF.getTarget();
5783  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5784  unsigned StackAlignment = TFI.getStackAlignment();
5785  MVT VT = Op.getValueType();
5786
5787  // Save FP Control Word to stack slot
5788  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5789  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5790
5791  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5792                                DAG.getEntryNode(), StackSlot);
5793
5794  // Load FP Control Word from stack slot
5795  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5796
5797  // Transform as necessary
5798  SDValue CWD1 =
5799    DAG.getNode(ISD::SRL, MVT::i16,
5800                DAG.getNode(ISD::AND, MVT::i16,
5801                            CWD, DAG.getConstant(0x800, MVT::i16)),
5802                DAG.getConstant(11, MVT::i8));
5803  SDValue CWD2 =
5804    DAG.getNode(ISD::SRL, MVT::i16,
5805                DAG.getNode(ISD::AND, MVT::i16,
5806                            CWD, DAG.getConstant(0x400, MVT::i16)),
5807                DAG.getConstant(9, MVT::i8));
5808
5809  SDValue RetVal =
5810    DAG.getNode(ISD::AND, MVT::i16,
5811                DAG.getNode(ISD::ADD, MVT::i16,
5812                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5813                            DAG.getConstant(1, MVT::i16)),
5814                DAG.getConstant(3, MVT::i16));
5815
5816
5817  return DAG.getNode((VT.getSizeInBits() < 16 ?
5818                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5819}
5820
5821SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
5822  MVT VT = Op.getValueType();
5823  MVT OpVT = VT;
5824  unsigned NumBits = VT.getSizeInBits();
5825
5826  Op = Op.getOperand(0);
5827  if (VT == MVT::i8) {
5828    // Zero extend to i32 since there is not an i8 bsr.
5829    OpVT = MVT::i32;
5830    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5831  }
5832
5833  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5834  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5835  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5836
5837  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5838  SmallVector<SDValue, 4> Ops;
5839  Ops.push_back(Op);
5840  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5841  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5842  Ops.push_back(Op.getValue(1));
5843  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5844
5845  // Finally xor with NumBits-1.
5846  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5847
5848  if (VT == MVT::i8)
5849    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5850  return Op;
5851}
5852
5853SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
5854  MVT VT = Op.getValueType();
5855  MVT OpVT = VT;
5856  unsigned NumBits = VT.getSizeInBits();
5857
5858  Op = Op.getOperand(0);
5859  if (VT == MVT::i8) {
5860    OpVT = MVT::i32;
5861    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5862  }
5863
5864  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5865  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5866  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5867
5868  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5869  SmallVector<SDValue, 4> Ops;
5870  Ops.push_back(Op);
5871  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5872  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5873  Ops.push_back(Op.getValue(1));
5874  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5875
5876  if (VT == MVT::i8)
5877    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5878  return Op;
5879}
5880
5881SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
5882  MVT T = Op.getValueType();
5883  unsigned Reg = 0;
5884  unsigned size = 0;
5885  switch(T.getSimpleVT()) {
5886  default:
5887    assert(false && "Invalid value type!");
5888  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5889  case MVT::i16: Reg = X86::AX;  size = 2; break;
5890  case MVT::i32: Reg = X86::EAX; size = 4; break;
5891  case MVT::i64:
5892    if (Subtarget->is64Bit()) {
5893      Reg = X86::RAX; size = 8;
5894    } else //Should go away when LowerType stuff lands
5895      return SDValue(ExpandATOMIC_CMP_SWAP(Op.getNode(), DAG), 0);
5896    break;
5897  };
5898  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5899                                    Op.getOperand(2), SDValue());
5900  SDValue Ops[] = { cpIn.getValue(0),
5901                      Op.getOperand(1),
5902                      Op.getOperand(3),
5903                      DAG.getTargetConstant(size, MVT::i8),
5904                      cpIn.getValue(1) };
5905  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5906  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5907  SDValue cpOut =
5908    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5909  return cpOut;
5910}
5911
5912SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op,
5913                                                 SelectionDAG &DAG) {
5914  MVT T = Op->getValueType(0);
5915  assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
5916  SDValue cpInL, cpInH;
5917  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5918                      DAG.getConstant(0, MVT::i32));
5919  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5920                      DAG.getConstant(1, MVT::i32));
5921  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5922                           cpInL, SDValue());
5923  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5924                           cpInH, cpInL.getValue(1));
5925  SDValue swapInL, swapInH;
5926  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5927                        DAG.getConstant(0, MVT::i32));
5928  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5929                        DAG.getConstant(1, MVT::i32));
5930  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5931                             swapInL, cpInH.getValue(1));
5932  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5933                             swapInH, swapInL.getValue(1));
5934  SDValue Ops[] = { swapInH.getValue(0),
5935                      Op->getOperand(1),
5936                      swapInH.getValue(1)};
5937  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5938  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5939  SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5940                                        Result.getValue(1));
5941  SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5942                                        cpOutL.getValue(2));
5943  SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5944  SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5945  SDValue Vals[2] = { ResultVal, cpOutH.getValue(1) };
5946  return DAG.getMergeValues(Vals, 2).getNode();
5947}
5948
5949SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op,
5950                                                 SelectionDAG &DAG) {
5951  MVT T = Op->getValueType(0);
5952  SDValue negOp = DAG.getNode(ISD::SUB, T,
5953                                DAG.getConstant(0, T), Op->getOperand(2));
5954  return DAG.getAtomic((T==MVT::i8 ? ISD::ATOMIC_LOAD_ADD_8:
5955                        T==MVT::i16 ? ISD::ATOMIC_LOAD_ADD_16:
5956                        T==MVT::i32 ? ISD::ATOMIC_LOAD_ADD_32:
5957                        T==MVT::i64 ? ISD::ATOMIC_LOAD_ADD_64: 0),
5958                       Op->getOperand(0), Op->getOperand(1), negOp,
5959                       cast<AtomicSDNode>(Op)->getSrcValue(),
5960                       cast<AtomicSDNode>(Op)->getAlignment()).getNode();
5961}
5962
5963/// LowerOperation - Provide custom lowering hooks for some operations.
5964///
5965SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5966  switch (Op.getOpcode()) {
5967  default: assert(0 && "Should not custom lower this!");
5968  case ISD::ATOMIC_CMP_SWAP_8:  return LowerCMP_SWAP(Op,DAG);
5969  case ISD::ATOMIC_CMP_SWAP_16: return LowerCMP_SWAP(Op,DAG);
5970  case ISD::ATOMIC_CMP_SWAP_32: return LowerCMP_SWAP(Op,DAG);
5971  case ISD::ATOMIC_CMP_SWAP_64: return LowerCMP_SWAP(Op,DAG);
5972  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5973  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5974  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5975  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5976  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5977  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5978  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5979  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5980  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5981  case ISD::SHL_PARTS:
5982  case ISD::SRA_PARTS:
5983  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5984  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5985  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5986  case ISD::FABS:               return LowerFABS(Op, DAG);
5987  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5988  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5989  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5990  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
5991  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5992  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5993  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5994  case ISD::CALL:               return LowerCALL(Op, DAG);
5995  case ISD::RET:                return LowerRET(Op, DAG);
5996  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5997  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5998  case ISD::VAARG:              return LowerVAARG(Op, DAG);
5999  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6000  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6001  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6002  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6003  case ISD::FRAME_TO_ARGS_OFFSET:
6004                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6005  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6006  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6007  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6008  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6009  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6010  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6011
6012  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
6013  case ISD::READCYCLECOUNTER:
6014    return SDValue(ExpandREADCYCLECOUNTER(Op.getNode(), DAG), 0);
6015  }
6016}
6017
6018/// ReplaceNodeResults - Replace a node with an illegal result type
6019/// with a new node built out of custom code.
6020SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
6021  switch (N->getOpcode()) {
6022  default: assert(0 && "Should not custom lower this!");
6023  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
6024  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
6025  case ISD::ATOMIC_CMP_SWAP_64: return ExpandATOMIC_CMP_SWAP(N, DAG);
6026  case ISD::ATOMIC_LOAD_SUB_8:  return ExpandATOMIC_LOAD_SUB(N,DAG);
6027  case ISD::ATOMIC_LOAD_SUB_16: return ExpandATOMIC_LOAD_SUB(N,DAG);
6028  case ISD::ATOMIC_LOAD_SUB_32: return ExpandATOMIC_LOAD_SUB(N,DAG);
6029  case ISD::ATOMIC_LOAD_SUB_64: return ExpandATOMIC_LOAD_SUB(N,DAG);
6030  }
6031}
6032
6033const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6034  switch (Opcode) {
6035  default: return NULL;
6036  case X86ISD::BSF:                return "X86ISD::BSF";
6037  case X86ISD::BSR:                return "X86ISD::BSR";
6038  case X86ISD::SHLD:               return "X86ISD::SHLD";
6039  case X86ISD::SHRD:               return "X86ISD::SHRD";
6040  case X86ISD::FAND:               return "X86ISD::FAND";
6041  case X86ISD::FOR:                return "X86ISD::FOR";
6042  case X86ISD::FXOR:               return "X86ISD::FXOR";
6043  case X86ISD::FSRL:               return "X86ISD::FSRL";
6044  case X86ISD::FILD:               return "X86ISD::FILD";
6045  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6046  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6047  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6048  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6049  case X86ISD::FLD:                return "X86ISD::FLD";
6050  case X86ISD::FST:                return "X86ISD::FST";
6051  case X86ISD::CALL:               return "X86ISD::CALL";
6052  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6053  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6054  case X86ISD::CMP:                return "X86ISD::CMP";
6055  case X86ISD::COMI:               return "X86ISD::COMI";
6056  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6057  case X86ISD::SETCC:              return "X86ISD::SETCC";
6058  case X86ISD::CMOV:               return "X86ISD::CMOV";
6059  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6060  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6061  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6062  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6063  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6064  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6065  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6066  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6067  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6068  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6069  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6070  case X86ISD::FMAX:               return "X86ISD::FMAX";
6071  case X86ISD::FMIN:               return "X86ISD::FMIN";
6072  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6073  case X86ISD::FRCP:               return "X86ISD::FRCP";
6074  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6075  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6076  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6077  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6078  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6079  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6080  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6081  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6082  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6083  case X86ISD::VSHL:               return "X86ISD::VSHL";
6084  case X86ISD::VSRL:               return "X86ISD::VSRL";
6085  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6086  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6087  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6088  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6089  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6090  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6091  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6092  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6093  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6094  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6095  }
6096}
6097
6098// isLegalAddressingMode - Return true if the addressing mode represented
6099// by AM is legal for this target, for a load/store of the specified type.
6100bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6101                                              const Type *Ty) const {
6102  // X86 supports extremely general addressing modes.
6103
6104  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6105  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6106    return false;
6107
6108  if (AM.BaseGV) {
6109    // We can only fold this if we don't need an extra load.
6110    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6111      return false;
6112
6113    // X86-64 only supports addr of globals in small code model.
6114    if (Subtarget->is64Bit()) {
6115      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6116        return false;
6117      // If lower 4G is not available, then we must use rip-relative addressing.
6118      if (AM.BaseOffs || AM.Scale > 1)
6119        return false;
6120    }
6121  }
6122
6123  switch (AM.Scale) {
6124  case 0:
6125  case 1:
6126  case 2:
6127  case 4:
6128  case 8:
6129    // These scales always work.
6130    break;
6131  case 3:
6132  case 5:
6133  case 9:
6134    // These scales are formed with basereg+scalereg.  Only accept if there is
6135    // no basereg yet.
6136    if (AM.HasBaseReg)
6137      return false;
6138    break;
6139  default:  // Other stuff never works.
6140    return false;
6141  }
6142
6143  return true;
6144}
6145
6146
6147bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6148  if (!Ty1->isInteger() || !Ty2->isInteger())
6149    return false;
6150  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6151  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6152  if (NumBits1 <= NumBits2)
6153    return false;
6154  return Subtarget->is64Bit() || NumBits1 < 64;
6155}
6156
6157bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6158  if (!VT1.isInteger() || !VT2.isInteger())
6159    return false;
6160  unsigned NumBits1 = VT1.getSizeInBits();
6161  unsigned NumBits2 = VT2.getSizeInBits();
6162  if (NumBits1 <= NumBits2)
6163    return false;
6164  return Subtarget->is64Bit() || NumBits1 < 64;
6165}
6166
6167/// isShuffleMaskLegal - Targets can use this to indicate that they only
6168/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6169/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6170/// are assumed to be legal.
6171bool
6172X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6173  // Only do shuffles on 128-bit vector types for now.
6174  if (VT.getSizeInBits() == 64) return false;
6175  return (Mask.getNode()->getNumOperands() <= 4 ||
6176          isIdentityMask(Mask.getNode()) ||
6177          isIdentityMask(Mask.getNode(), true) ||
6178          isSplatMask(Mask.getNode())  ||
6179          isPSHUFHW_PSHUFLWMask(Mask.getNode()) ||
6180          X86::isUNPCKLMask(Mask.getNode()) ||
6181          X86::isUNPCKHMask(Mask.getNode()) ||
6182          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
6183          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
6184}
6185
6186bool
6187X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6188                                          MVT EVT, SelectionDAG &DAG) const {
6189  unsigned NumElts = BVOps.size();
6190  // Only do shuffles on 128-bit vector types for now.
6191  if (EVT.getSizeInBits() * NumElts == 64) return false;
6192  if (NumElts == 2) return true;
6193  if (NumElts == 4) {
6194    return (isMOVLMask(&BVOps[0], 4)  ||
6195            isCommutedMOVL(&BVOps[0], 4, true) ||
6196            isSHUFPMask(&BVOps[0], 4) ||
6197            isCommutedSHUFP(&BVOps[0], 4));
6198  }
6199  return false;
6200}
6201
6202//===----------------------------------------------------------------------===//
6203//                           X86 Scheduler Hooks
6204//===----------------------------------------------------------------------===//
6205
6206// private utility function
6207MachineBasicBlock *
6208X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6209                                                       MachineBasicBlock *MBB,
6210                                                       unsigned regOpc,
6211                                                       unsigned immOpc,
6212                                                       unsigned LoadOpc,
6213                                                       unsigned CXchgOpc,
6214                                                       unsigned copyOpc,
6215                                                       unsigned notOpc,
6216                                                       unsigned EAXreg,
6217                                                       TargetRegisterClass *RC,
6218                                                       bool invSrc) {
6219  // For the atomic bitwise operator, we generate
6220  //   thisMBB:
6221  //   newMBB:
6222  //     ld  t1 = [bitinstr.addr]
6223  //     op  t2 = t1, [bitinstr.val]
6224  //     mov EAX = t1
6225  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6226  //     bz  newMBB
6227  //     fallthrough -->nextMBB
6228  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6229  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6230  MachineFunction::iterator MBBIter = MBB;
6231  ++MBBIter;
6232
6233  /// First build the CFG
6234  MachineFunction *F = MBB->getParent();
6235  MachineBasicBlock *thisMBB = MBB;
6236  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6237  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6238  F->insert(MBBIter, newMBB);
6239  F->insert(MBBIter, nextMBB);
6240
6241  // Move all successors to thisMBB to nextMBB
6242  nextMBB->transferSuccessors(thisMBB);
6243
6244  // Update thisMBB to fall through to newMBB
6245  thisMBB->addSuccessor(newMBB);
6246
6247  // newMBB jumps to itself and fall through to nextMBB
6248  newMBB->addSuccessor(nextMBB);
6249  newMBB->addSuccessor(newMBB);
6250
6251  // Insert instructions into newMBB based on incoming instruction
6252  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6253  MachineOperand& destOper = bInstr->getOperand(0);
6254  MachineOperand* argOpers[6];
6255  int numArgs = bInstr->getNumOperands() - 1;
6256  for (int i=0; i < numArgs; ++i)
6257    argOpers[i] = &bInstr->getOperand(i+1);
6258
6259  // x86 address has 4 operands: base, index, scale, and displacement
6260  int lastAddrIndx = 3; // [0,3]
6261  int valArgIndx = 4;
6262
6263  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6264  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6265  for (int i=0; i <= lastAddrIndx; ++i)
6266    (*MIB).addOperand(*argOpers[i]);
6267
6268  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6269  if (invSrc) {
6270    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6271  }
6272  else
6273    tt = t1;
6274
6275  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6276  assert((argOpers[valArgIndx]->isRegister() ||
6277          argOpers[valArgIndx]->isImmediate()) &&
6278         "invalid operand");
6279  if (argOpers[valArgIndx]->isRegister())
6280    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6281  else
6282    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6283  MIB.addReg(tt);
6284  (*MIB).addOperand(*argOpers[valArgIndx]);
6285
6286  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6287  MIB.addReg(t1);
6288
6289  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6290  for (int i=0; i <= lastAddrIndx; ++i)
6291    (*MIB).addOperand(*argOpers[i]);
6292  MIB.addReg(t2);
6293  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6294  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6295
6296  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6297  MIB.addReg(EAXreg);
6298
6299  // insert branch
6300  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6301
6302  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6303  return nextMBB;
6304}
6305
6306// private utility function
6307MachineBasicBlock *
6308X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6309                                                      MachineBasicBlock *MBB,
6310                                                      unsigned cmovOpc) {
6311  // For the atomic min/max operator, we generate
6312  //   thisMBB:
6313  //   newMBB:
6314  //     ld t1 = [min/max.addr]
6315  //     mov t2 = [min/max.val]
6316  //     cmp  t1, t2
6317  //     cmov[cond] t2 = t1
6318  //     mov EAX = t1
6319  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6320  //     bz   newMBB
6321  //     fallthrough -->nextMBB
6322  //
6323  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6324  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6325  MachineFunction::iterator MBBIter = MBB;
6326  ++MBBIter;
6327
6328  /// First build the CFG
6329  MachineFunction *F = MBB->getParent();
6330  MachineBasicBlock *thisMBB = MBB;
6331  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6332  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6333  F->insert(MBBIter, newMBB);
6334  F->insert(MBBIter, nextMBB);
6335
6336  // Move all successors to thisMBB to nextMBB
6337  nextMBB->transferSuccessors(thisMBB);
6338
6339  // Update thisMBB to fall through to newMBB
6340  thisMBB->addSuccessor(newMBB);
6341
6342  // newMBB jumps to newMBB and fall through to nextMBB
6343  newMBB->addSuccessor(nextMBB);
6344  newMBB->addSuccessor(newMBB);
6345
6346  // Insert instructions into newMBB based on incoming instruction
6347  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6348  MachineOperand& destOper = mInstr->getOperand(0);
6349  MachineOperand* argOpers[6];
6350  int numArgs = mInstr->getNumOperands() - 1;
6351  for (int i=0; i < numArgs; ++i)
6352    argOpers[i] = &mInstr->getOperand(i+1);
6353
6354  // x86 address has 4 operands: base, index, scale, and displacement
6355  int lastAddrIndx = 3; // [0,3]
6356  int valArgIndx = 4;
6357
6358  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6359  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6360  for (int i=0; i <= lastAddrIndx; ++i)
6361    (*MIB).addOperand(*argOpers[i]);
6362
6363  // We only support register and immediate values
6364  assert((argOpers[valArgIndx]->isRegister() ||
6365          argOpers[valArgIndx]->isImmediate()) &&
6366         "invalid operand");
6367
6368  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6369  if (argOpers[valArgIndx]->isRegister())
6370    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6371  else
6372    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6373  (*MIB).addOperand(*argOpers[valArgIndx]);
6374
6375  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6376  MIB.addReg(t1);
6377
6378  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6379  MIB.addReg(t1);
6380  MIB.addReg(t2);
6381
6382  // Generate movc
6383  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6384  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6385  MIB.addReg(t2);
6386  MIB.addReg(t1);
6387
6388  // Cmp and exchange if none has modified the memory location
6389  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6390  for (int i=0; i <= lastAddrIndx; ++i)
6391    (*MIB).addOperand(*argOpers[i]);
6392  MIB.addReg(t3);
6393  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6394  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6395
6396  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6397  MIB.addReg(X86::EAX);
6398
6399  // insert branch
6400  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6401
6402  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
6403  return nextMBB;
6404}
6405
6406
6407MachineBasicBlock *
6408X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6409                                               MachineBasicBlock *BB) {
6410  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6411  switch (MI->getOpcode()) {
6412  default: assert(false && "Unexpected instr type to insert");
6413  case X86::CMOV_FR32:
6414  case X86::CMOV_FR64:
6415  case X86::CMOV_V4F32:
6416  case X86::CMOV_V2F64:
6417  case X86::CMOV_V2I64: {
6418    // To "insert" a SELECT_CC instruction, we actually have to insert the
6419    // diamond control-flow pattern.  The incoming instruction knows the
6420    // destination vreg to set, the condition code register to branch on, the
6421    // true/false values to select between, and a branch opcode to use.
6422    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6423    MachineFunction::iterator It = BB;
6424    ++It;
6425
6426    //  thisMBB:
6427    //  ...
6428    //   TrueVal = ...
6429    //   cmpTY ccX, r1, r2
6430    //   bCC copy1MBB
6431    //   fallthrough --> copy0MBB
6432    MachineBasicBlock *thisMBB = BB;
6433    MachineFunction *F = BB->getParent();
6434    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6435    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6436    unsigned Opc =
6437      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6438    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6439    F->insert(It, copy0MBB);
6440    F->insert(It, sinkMBB);
6441    // Update machine-CFG edges by transferring all successors of the current
6442    // block to the new block which will contain the Phi node for the select.
6443    sinkMBB->transferSuccessors(BB);
6444
6445    // Add the true and fallthrough blocks as its successors.
6446    BB->addSuccessor(copy0MBB);
6447    BB->addSuccessor(sinkMBB);
6448
6449    //  copy0MBB:
6450    //   %FalseValue = ...
6451    //   # fallthrough to sinkMBB
6452    BB = copy0MBB;
6453
6454    // Update machine-CFG edges
6455    BB->addSuccessor(sinkMBB);
6456
6457    //  sinkMBB:
6458    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6459    //  ...
6460    BB = sinkMBB;
6461    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6462      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6463      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6464
6465    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6466    return BB;
6467  }
6468
6469  case X86::FP32_TO_INT16_IN_MEM:
6470  case X86::FP32_TO_INT32_IN_MEM:
6471  case X86::FP32_TO_INT64_IN_MEM:
6472  case X86::FP64_TO_INT16_IN_MEM:
6473  case X86::FP64_TO_INT32_IN_MEM:
6474  case X86::FP64_TO_INT64_IN_MEM:
6475  case X86::FP80_TO_INT16_IN_MEM:
6476  case X86::FP80_TO_INT32_IN_MEM:
6477  case X86::FP80_TO_INT64_IN_MEM: {
6478    // Change the floating point control register to use "round towards zero"
6479    // mode when truncating to an integer value.
6480    MachineFunction *F = BB->getParent();
6481    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6482    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6483
6484    // Load the old value of the high byte of the control word...
6485    unsigned OldCW =
6486      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6487    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6488
6489    // Set the high part to be round to zero...
6490    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6491      .addImm(0xC7F);
6492
6493    // Reload the modified control word now...
6494    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6495
6496    // Restore the memory image of control word to original value
6497    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6498      .addReg(OldCW);
6499
6500    // Get the X86 opcode to use.
6501    unsigned Opc;
6502    switch (MI->getOpcode()) {
6503    default: assert(0 && "illegal opcode!");
6504    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6505    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6506    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6507    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6508    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6509    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6510    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6511    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6512    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6513    }
6514
6515    X86AddressMode AM;
6516    MachineOperand &Op = MI->getOperand(0);
6517    if (Op.isRegister()) {
6518      AM.BaseType = X86AddressMode::RegBase;
6519      AM.Base.Reg = Op.getReg();
6520    } else {
6521      AM.BaseType = X86AddressMode::FrameIndexBase;
6522      AM.Base.FrameIndex = Op.getIndex();
6523    }
6524    Op = MI->getOperand(1);
6525    if (Op.isImmediate())
6526      AM.Scale = Op.getImm();
6527    Op = MI->getOperand(2);
6528    if (Op.isImmediate())
6529      AM.IndexReg = Op.getImm();
6530    Op = MI->getOperand(3);
6531    if (Op.isGlobalAddress()) {
6532      AM.GV = Op.getGlobal();
6533    } else {
6534      AM.Disp = Op.getImm();
6535    }
6536    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6537                      .addReg(MI->getOperand(4).getReg());
6538
6539    // Reload the original control word now.
6540    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6541
6542    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6543    return BB;
6544  }
6545  case X86::ATOMAND32:
6546    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6547                                               X86::AND32ri, X86::MOV32rm,
6548                                               X86::LCMPXCHG32, X86::MOV32rr,
6549                                               X86::NOT32r, X86::EAX,
6550                                               X86::GR32RegisterClass);
6551  case X86::ATOMOR32:
6552    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
6553                                               X86::OR32ri, X86::MOV32rm,
6554                                               X86::LCMPXCHG32, X86::MOV32rr,
6555                                               X86::NOT32r, X86::EAX,
6556                                               X86::GR32RegisterClass);
6557  case X86::ATOMXOR32:
6558    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
6559                                               X86::XOR32ri, X86::MOV32rm,
6560                                               X86::LCMPXCHG32, X86::MOV32rr,
6561                                               X86::NOT32r, X86::EAX,
6562                                               X86::GR32RegisterClass);
6563  case X86::ATOMNAND32:
6564    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6565                                               X86::AND32ri, X86::MOV32rm,
6566                                               X86::LCMPXCHG32, X86::MOV32rr,
6567                                               X86::NOT32r, X86::EAX,
6568                                               X86::GR32RegisterClass, true);
6569  case X86::ATOMMIN32:
6570    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
6571  case X86::ATOMMAX32:
6572    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
6573  case X86::ATOMUMIN32:
6574    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
6575  case X86::ATOMUMAX32:
6576    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
6577
6578  case X86::ATOMAND16:
6579    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
6580                                               X86::AND16ri, X86::MOV16rm,
6581                                               X86::LCMPXCHG16, X86::MOV16rr,
6582                                               X86::NOT16r, X86::AX,
6583                                               X86::GR16RegisterClass);
6584  case X86::ATOMOR16:
6585    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
6586                                               X86::OR16ri, X86::MOV16rm,
6587                                               X86::LCMPXCHG16, X86::MOV16rr,
6588                                               X86::NOT16r, X86::AX,
6589                                               X86::GR16RegisterClass);
6590  case X86::ATOMXOR16:
6591    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
6592                                               X86::XOR16ri, X86::MOV16rm,
6593                                               X86::LCMPXCHG16, X86::MOV16rr,
6594                                               X86::NOT16r, X86::AX,
6595                                               X86::GR16RegisterClass);
6596  case X86::ATOMNAND16:
6597    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
6598                                               X86::AND16ri, X86::MOV16rm,
6599                                               X86::LCMPXCHG16, X86::MOV16rr,
6600                                               X86::NOT16r, X86::AX,
6601                                               X86::GR16RegisterClass, true);
6602  case X86::ATOMMIN16:
6603    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
6604  case X86::ATOMMAX16:
6605    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
6606  case X86::ATOMUMIN16:
6607    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
6608  case X86::ATOMUMAX16:
6609    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
6610
6611  case X86::ATOMAND8:
6612    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
6613                                               X86::AND8ri, X86::MOV8rm,
6614                                               X86::LCMPXCHG8, X86::MOV8rr,
6615                                               X86::NOT8r, X86::AL,
6616                                               X86::GR8RegisterClass);
6617  case X86::ATOMOR8:
6618    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
6619                                               X86::OR8ri, X86::MOV8rm,
6620                                               X86::LCMPXCHG8, X86::MOV8rr,
6621                                               X86::NOT8r, X86::AL,
6622                                               X86::GR8RegisterClass);
6623  case X86::ATOMXOR8:
6624    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
6625                                               X86::XOR8ri, X86::MOV8rm,
6626                                               X86::LCMPXCHG8, X86::MOV8rr,
6627                                               X86::NOT8r, X86::AL,
6628                                               X86::GR8RegisterClass);
6629  case X86::ATOMNAND8:
6630    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
6631                                               X86::AND8ri, X86::MOV8rm,
6632                                               X86::LCMPXCHG8, X86::MOV8rr,
6633                                               X86::NOT8r, X86::AL,
6634                                               X86::GR8RegisterClass, true);
6635  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
6636  case X86::ATOMAND64:
6637    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
6638                                               X86::AND64ri32, X86::MOV64rm,
6639                                               X86::LCMPXCHG64, X86::MOV64rr,
6640                                               X86::NOT64r, X86::RAX,
6641                                               X86::GR64RegisterClass);
6642  case X86::ATOMOR64:
6643    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
6644                                               X86::OR64ri32, X86::MOV64rm,
6645                                               X86::LCMPXCHG64, X86::MOV64rr,
6646                                               X86::NOT64r, X86::RAX,
6647                                               X86::GR64RegisterClass);
6648  case X86::ATOMXOR64:
6649    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
6650                                               X86::XOR64ri32, X86::MOV64rm,
6651                                               X86::LCMPXCHG64, X86::MOV64rr,
6652                                               X86::NOT64r, X86::RAX,
6653                                               X86::GR64RegisterClass);
6654  case X86::ATOMNAND64:
6655    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
6656                                               X86::AND64ri32, X86::MOV64rm,
6657                                               X86::LCMPXCHG64, X86::MOV64rr,
6658                                               X86::NOT64r, X86::RAX,
6659                                               X86::GR64RegisterClass, true);
6660  case X86::ATOMMIN64:
6661    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
6662  case X86::ATOMMAX64:
6663    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
6664  case X86::ATOMUMIN64:
6665    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
6666  case X86::ATOMUMAX64:
6667    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
6668  }
6669}
6670
6671//===----------------------------------------------------------------------===//
6672//                           X86 Optimization Hooks
6673//===----------------------------------------------------------------------===//
6674
6675void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6676                                                       const APInt &Mask,
6677                                                       APInt &KnownZero,
6678                                                       APInt &KnownOne,
6679                                                       const SelectionDAG &DAG,
6680                                                       unsigned Depth) const {
6681  unsigned Opc = Op.getOpcode();
6682  assert((Opc >= ISD::BUILTIN_OP_END ||
6683          Opc == ISD::INTRINSIC_WO_CHAIN ||
6684          Opc == ISD::INTRINSIC_W_CHAIN ||
6685          Opc == ISD::INTRINSIC_VOID) &&
6686         "Should use MaskedValueIsZero if you don't know whether Op"
6687         " is a target node!");
6688
6689  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
6690  switch (Opc) {
6691  default: break;
6692  case X86ISD::SETCC:
6693    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
6694                                       Mask.getBitWidth() - 1);
6695    break;
6696  }
6697}
6698
6699/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
6700/// node is a GlobalAddress + offset.
6701bool X86TargetLowering::isGAPlusOffset(SDNode *N,
6702                                       GlobalValue* &GA, int64_t &Offset) const{
6703  if (N->getOpcode() == X86ISD::Wrapper) {
6704    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
6705      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
6706      return true;
6707    }
6708  }
6709  return TargetLowering::isGAPlusOffset(N, GA, Offset);
6710}
6711
6712static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
6713                               const TargetLowering &TLI) {
6714  GlobalValue *GV;
6715  int64_t Offset = 0;
6716  if (TLI.isGAPlusOffset(Base, GV, Offset))
6717    return (GV->getAlignment() >= N && (Offset % N) == 0);
6718  // DAG combine handles the stack object case.
6719  return false;
6720}
6721
6722static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
6723                                     unsigned NumElems, MVT EVT,
6724                                     SDNode *&Base,
6725                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
6726                                     const TargetLowering &TLI) {
6727  Base = NULL;
6728  for (unsigned i = 0; i < NumElems; ++i) {
6729    SDValue Idx = PermMask.getOperand(i);
6730    if (Idx.getOpcode() == ISD::UNDEF) {
6731      if (!Base)
6732        return false;
6733      continue;
6734    }
6735
6736    SDValue Elt = DAG.getShuffleScalarElt(N, i);
6737    if (!Elt.getNode() ||
6738        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
6739      return false;
6740    if (!Base) {
6741      Base = Elt.getNode();
6742      if (Base->getOpcode() == ISD::UNDEF)
6743        return false;
6744      continue;
6745    }
6746    if (Elt.getOpcode() == ISD::UNDEF)
6747      continue;
6748
6749    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
6750                               EVT.getSizeInBits()/8, i, MFI))
6751      return false;
6752  }
6753  return true;
6754}
6755
6756/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
6757/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
6758/// if the load addresses are consecutive, non-overlapping, and in the right
6759/// order.
6760static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
6761                                       const TargetLowering &TLI) {
6762  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6763  MVT VT = N->getValueType(0);
6764  MVT EVT = VT.getVectorElementType();
6765  SDValue PermMask = N->getOperand(2);
6766  unsigned NumElems = PermMask.getNumOperands();
6767  SDNode *Base = NULL;
6768  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
6769                                DAG, MFI, TLI))
6770    return SDValue();
6771
6772  LoadSDNode *LD = cast<LoadSDNode>(Base);
6773  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
6774    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6775                       LD->getSrcValueOffset(), LD->isVolatile());
6776  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6777                     LD->getSrcValueOffset(), LD->isVolatile(),
6778                     LD->getAlignment());
6779}
6780
6781/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
6782static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
6783                                           const X86Subtarget *Subtarget,
6784                                           const TargetLowering &TLI) {
6785  unsigned NumOps = N->getNumOperands();
6786
6787  // Ignore single operand BUILD_VECTOR.
6788  if (NumOps == 1)
6789    return SDValue();
6790
6791  MVT VT = N->getValueType(0);
6792  MVT EVT = VT.getVectorElementType();
6793  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
6794    // We are looking for load i64 and zero extend. We want to transform
6795    // it before legalizer has a chance to expand it. Also look for i64
6796    // BUILD_PAIR bit casted to f64.
6797    return SDValue();
6798  // This must be an insertion into a zero vector.
6799  SDValue HighElt = N->getOperand(1);
6800  if (!isZeroNode(HighElt))
6801    return SDValue();
6802
6803  // Value must be a load.
6804  SDNode *Base = N->getOperand(0).getNode();
6805  if (!isa<LoadSDNode>(Base)) {
6806    if (Base->getOpcode() != ISD::BIT_CONVERT)
6807      return SDValue();
6808    Base = Base->getOperand(0).getNode();
6809    if (!isa<LoadSDNode>(Base))
6810      return SDValue();
6811  }
6812
6813  // Transform it into VZEXT_LOAD addr.
6814  LoadSDNode *LD = cast<LoadSDNode>(Base);
6815
6816  // Load must not be an extload.
6817  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
6818    return SDValue();
6819
6820  return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr());
6821}
6822
6823/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6824static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6825                                      const X86Subtarget *Subtarget) {
6826  SDValue Cond = N->getOperand(0);
6827
6828  // If we have SSE[12] support, try to form min/max nodes.
6829  if (Subtarget->hasSSE2() &&
6830      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6831    if (Cond.getOpcode() == ISD::SETCC) {
6832      // Get the LHS/RHS of the select.
6833      SDValue LHS = N->getOperand(1);
6834      SDValue RHS = N->getOperand(2);
6835      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6836
6837      unsigned Opcode = 0;
6838      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6839        switch (CC) {
6840        default: break;
6841        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6842        case ISD::SETULE:
6843        case ISD::SETLE:
6844          if (!UnsafeFPMath) break;
6845          // FALL THROUGH.
6846        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6847        case ISD::SETLT:
6848          Opcode = X86ISD::FMIN;
6849          break;
6850
6851        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6852        case ISD::SETUGT:
6853        case ISD::SETGT:
6854          if (!UnsafeFPMath) break;
6855          // FALL THROUGH.
6856        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6857        case ISD::SETGE:
6858          Opcode = X86ISD::FMAX;
6859          break;
6860        }
6861      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6862        switch (CC) {
6863        default: break;
6864        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6865        case ISD::SETUGT:
6866        case ISD::SETGT:
6867          if (!UnsafeFPMath) break;
6868          // FALL THROUGH.
6869        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6870        case ISD::SETGE:
6871          Opcode = X86ISD::FMIN;
6872          break;
6873
6874        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6875        case ISD::SETULE:
6876        case ISD::SETLE:
6877          if (!UnsafeFPMath) break;
6878          // FALL THROUGH.
6879        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6880        case ISD::SETLT:
6881          Opcode = X86ISD::FMAX;
6882          break;
6883        }
6884      }
6885
6886      if (Opcode)
6887        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6888    }
6889
6890  }
6891
6892  return SDValue();
6893}
6894
6895/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6896static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
6897                                     const X86Subtarget *Subtarget) {
6898  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6899  // the FP state in cases where an emms may be missing.
6900  // A preferable solution to the general problem is to figure out the right
6901  // places to insert EMMS.  This qualifies as a quick hack.
6902  StoreSDNode *St = cast<StoreSDNode>(N);
6903  if (St->getValue().getValueType().isVector() &&
6904      St->getValue().getValueType().getSizeInBits() == 64 &&
6905      isa<LoadSDNode>(St->getValue()) &&
6906      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6907      St->getChain().hasOneUse() && !St->isVolatile()) {
6908    SDNode* LdVal = St->getValue().getNode();
6909    LoadSDNode *Ld = 0;
6910    int TokenFactorIndex = -1;
6911    SmallVector<SDValue, 8> Ops;
6912    SDNode* ChainVal = St->getChain().getNode();
6913    // Must be a store of a load.  We currently handle two cases:  the load
6914    // is a direct child, and it's under an intervening TokenFactor.  It is
6915    // possible to dig deeper under nested TokenFactors.
6916    if (ChainVal == LdVal)
6917      Ld = cast<LoadSDNode>(St->getChain());
6918    else if (St->getValue().hasOneUse() &&
6919             ChainVal->getOpcode() == ISD::TokenFactor) {
6920      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6921        if (ChainVal->getOperand(i).getNode() == LdVal) {
6922          TokenFactorIndex = i;
6923          Ld = cast<LoadSDNode>(St->getValue());
6924        } else
6925          Ops.push_back(ChainVal->getOperand(i));
6926      }
6927    }
6928    if (Ld) {
6929      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6930      if (Subtarget->is64Bit()) {
6931        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6932                                      Ld->getBasePtr(), Ld->getSrcValue(),
6933                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6934                                      Ld->getAlignment());
6935        SDValue NewChain = NewLd.getValue(1);
6936        if (TokenFactorIndex != -1) {
6937          Ops.push_back(NewChain);
6938          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6939                                 Ops.size());
6940        }
6941        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6942                            St->getSrcValue(), St->getSrcValueOffset(),
6943                            St->isVolatile(), St->getAlignment());
6944      }
6945
6946      // Otherwise, lower to two 32-bit copies.
6947      SDValue LoAddr = Ld->getBasePtr();
6948      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6949                                     DAG.getConstant(4, MVT::i32));
6950
6951      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6952                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6953                                   Ld->isVolatile(), Ld->getAlignment());
6954      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6955                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6956                                   Ld->isVolatile(),
6957                                   MinAlign(Ld->getAlignment(), 4));
6958
6959      SDValue NewChain = LoLd.getValue(1);
6960      if (TokenFactorIndex != -1) {
6961        Ops.push_back(LoLd);
6962        Ops.push_back(HiLd);
6963        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6964                               Ops.size());
6965      }
6966
6967      LoAddr = St->getBasePtr();
6968      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6969                           DAG.getConstant(4, MVT::i32));
6970
6971      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6972                          St->getSrcValue(), St->getSrcValueOffset(),
6973                          St->isVolatile(), St->getAlignment());
6974      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6975                                    St->getSrcValue(),
6976                                    St->getSrcValueOffset() + 4,
6977                                    St->isVolatile(),
6978                                    MinAlign(St->getAlignment(), 4));
6979      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6980    }
6981  }
6982  return SDValue();
6983}
6984
6985/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6986/// X86ISD::FXOR nodes.
6987static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6988  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6989  // F[X]OR(0.0, x) -> x
6990  // F[X]OR(x, 0.0) -> x
6991  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6992    if (C->getValueAPF().isPosZero())
6993      return N->getOperand(1);
6994  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6995    if (C->getValueAPF().isPosZero())
6996      return N->getOperand(0);
6997  return SDValue();
6998}
6999
7000/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
7001static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
7002  // FAND(0.0, x) -> 0.0
7003  // FAND(x, 0.0) -> 0.0
7004  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7005    if (C->getValueAPF().isPosZero())
7006      return N->getOperand(0);
7007  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7008    if (C->getValueAPF().isPosZero())
7009      return N->getOperand(1);
7010  return SDValue();
7011}
7012
7013
7014SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
7015                                               DAGCombinerInfo &DCI) const {
7016  SelectionDAG &DAG = DCI.DAG;
7017  switch (N->getOpcode()) {
7018  default: break;
7019  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
7020  case ISD::BUILD_VECTOR:
7021    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
7022  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
7023  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
7024  case X86ISD::FXOR:
7025  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
7026  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
7027  }
7028
7029  return SDValue();
7030}
7031
7032//===----------------------------------------------------------------------===//
7033//                           X86 Inline Assembly Support
7034//===----------------------------------------------------------------------===//
7035
7036/// getConstraintType - Given a constraint letter, return the type of
7037/// constraint it is for this target.
7038X86TargetLowering::ConstraintType
7039X86TargetLowering::getConstraintType(const std::string &Constraint) const {
7040  if (Constraint.size() == 1) {
7041    switch (Constraint[0]) {
7042    case 'A':
7043    case 'f':
7044    case 'r':
7045    case 'R':
7046    case 'l':
7047    case 'q':
7048    case 'Q':
7049    case 'x':
7050    case 'y':
7051    case 'Y':
7052      return C_RegisterClass;
7053    default:
7054      break;
7055    }
7056  }
7057  return TargetLowering::getConstraintType(Constraint);
7058}
7059
7060/// LowerXConstraint - try to replace an X constraint, which matches anything,
7061/// with another that has more specific requirements based on the type of the
7062/// corresponding operand.
7063const char *X86TargetLowering::
7064LowerXConstraint(MVT ConstraintVT) const {
7065  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
7066  // 'f' like normal targets.
7067  if (ConstraintVT.isFloatingPoint()) {
7068    if (Subtarget->hasSSE2())
7069      return "Y";
7070    if (Subtarget->hasSSE1())
7071      return "x";
7072  }
7073
7074  return TargetLowering::LowerXConstraint(ConstraintVT);
7075}
7076
7077/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7078/// vector.  If it is invalid, don't add anything to Ops.
7079void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7080                                                     char Constraint,
7081                                                     std::vector<SDValue>&Ops,
7082                                                     SelectionDAG &DAG) const {
7083  SDValue Result(0, 0);
7084
7085  switch (Constraint) {
7086  default: break;
7087  case 'I':
7088    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7089      if (C->getZExtValue() <= 31) {
7090        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7091        break;
7092      }
7093    }
7094    return;
7095  case 'N':
7096    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7097      if (C->getZExtValue() <= 255) {
7098        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7099        break;
7100      }
7101    }
7102    return;
7103  case 'i': {
7104    // Literal immediates are always ok.
7105    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7106      Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType());
7107      break;
7108    }
7109
7110    // If we are in non-pic codegen mode, we allow the address of a global (with
7111    // an optional displacement) to be used with 'i'.
7112    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7113    int64_t Offset = 0;
7114
7115    // Match either (GA) or (GA+C)
7116    if (GA) {
7117      Offset = GA->getOffset();
7118    } else if (Op.getOpcode() == ISD::ADD) {
7119      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7120      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7121      if (C && GA) {
7122        Offset = GA->getOffset()+C->getZExtValue();
7123      } else {
7124        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7125        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7126        if (C && GA)
7127          Offset = GA->getOffset()+C->getZExtValue();
7128        else
7129          C = 0, GA = 0;
7130      }
7131    }
7132
7133    if (GA) {
7134      // If addressing this global requires a load (e.g. in PIC mode), we can't
7135      // match.
7136      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
7137                                         false))
7138        return;
7139
7140      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
7141                                      Offset);
7142      Result = Op;
7143      break;
7144    }
7145
7146    // Otherwise, not valid for this mode.
7147    return;
7148  }
7149  }
7150
7151  if (Result.getNode()) {
7152    Ops.push_back(Result);
7153    return;
7154  }
7155  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7156}
7157
7158std::vector<unsigned> X86TargetLowering::
7159getRegClassForInlineAsmConstraint(const std::string &Constraint,
7160                                  MVT VT) const {
7161  if (Constraint.size() == 1) {
7162    // FIXME: not handling fp-stack yet!
7163    switch (Constraint[0]) {      // GCC X86 Constraint Letters
7164    default: break;  // Unknown constraint letter
7165    case 'A':   // EAX/EDX
7166      if (VT == MVT::i32 || VT == MVT::i64)
7167        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
7168      break;
7169    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
7170    case 'Q':   // Q_REGS
7171      if (VT == MVT::i32)
7172        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
7173      else if (VT == MVT::i16)
7174        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
7175      else if (VT == MVT::i8)
7176        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
7177      else if (VT == MVT::i64)
7178        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
7179      break;
7180    }
7181  }
7182
7183  return std::vector<unsigned>();
7184}
7185
7186std::pair<unsigned, const TargetRegisterClass*>
7187X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7188                                                MVT VT) const {
7189  // First, see if this is a constraint that directly corresponds to an LLVM
7190  // register class.
7191  if (Constraint.size() == 1) {
7192    // GCC Constraint Letters
7193    switch (Constraint[0]) {
7194    default: break;
7195    case 'r':   // GENERAL_REGS
7196    case 'R':   // LEGACY_REGS
7197    case 'l':   // INDEX_REGS
7198      if (VT == MVT::i64 && Subtarget->is64Bit())
7199        return std::make_pair(0U, X86::GR64RegisterClass);
7200      if (VT == MVT::i32)
7201        return std::make_pair(0U, X86::GR32RegisterClass);
7202      else if (VT == MVT::i16)
7203        return std::make_pair(0U, X86::GR16RegisterClass);
7204      else if (VT == MVT::i8)
7205        return std::make_pair(0U, X86::GR8RegisterClass);
7206      break;
7207    case 'f':  // FP Stack registers.
7208      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7209      // value to the correct fpstack register class.
7210      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7211        return std::make_pair(0U, X86::RFP32RegisterClass);
7212      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7213        return std::make_pair(0U, X86::RFP64RegisterClass);
7214      return std::make_pair(0U, X86::RFP80RegisterClass);
7215    case 'y':   // MMX_REGS if MMX allowed.
7216      if (!Subtarget->hasMMX()) break;
7217      return std::make_pair(0U, X86::VR64RegisterClass);
7218      break;
7219    case 'Y':   // SSE_REGS if SSE2 allowed
7220      if (!Subtarget->hasSSE2()) break;
7221      // FALL THROUGH.
7222    case 'x':   // SSE_REGS if SSE1 allowed
7223      if (!Subtarget->hasSSE1()) break;
7224
7225      switch (VT.getSimpleVT()) {
7226      default: break;
7227      // Scalar SSE types.
7228      case MVT::f32:
7229      case MVT::i32:
7230        return std::make_pair(0U, X86::FR32RegisterClass);
7231      case MVT::f64:
7232      case MVT::i64:
7233        return std::make_pair(0U, X86::FR64RegisterClass);
7234      // Vector types.
7235      case MVT::v16i8:
7236      case MVT::v8i16:
7237      case MVT::v4i32:
7238      case MVT::v2i64:
7239      case MVT::v4f32:
7240      case MVT::v2f64:
7241        return std::make_pair(0U, X86::VR128RegisterClass);
7242      }
7243      break;
7244    }
7245  }
7246
7247  // Use the default implementation in TargetLowering to convert the register
7248  // constraint into a member of a register class.
7249  std::pair<unsigned, const TargetRegisterClass*> Res;
7250  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7251
7252  // Not found as a standard register?
7253  if (Res.second == 0) {
7254    // GCC calls "st(0)" just plain "st".
7255    if (StringsEqualNoCase("{st}", Constraint)) {
7256      Res.first = X86::ST0;
7257      Res.second = X86::RFP80RegisterClass;
7258    }
7259
7260    return Res;
7261  }
7262
7263  // Otherwise, check to see if this is a register class of the wrong value
7264  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
7265  // turn into {ax},{dx}.
7266  if (Res.second->hasType(VT))
7267    return Res;   // Correct type already, nothing to do.
7268
7269  // All of the single-register GCC register classes map their values onto
7270  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
7271  // really want an 8-bit or 32-bit register, map to the appropriate register
7272  // class and return the appropriate register.
7273  if (Res.second == X86::GR16RegisterClass) {
7274    if (VT == MVT::i8) {
7275      unsigned DestReg = 0;
7276      switch (Res.first) {
7277      default: break;
7278      case X86::AX: DestReg = X86::AL; break;
7279      case X86::DX: DestReg = X86::DL; break;
7280      case X86::CX: DestReg = X86::CL; break;
7281      case X86::BX: DestReg = X86::BL; break;
7282      }
7283      if (DestReg) {
7284        Res.first = DestReg;
7285        Res.second = Res.second = X86::GR8RegisterClass;
7286      }
7287    } else if (VT == MVT::i32) {
7288      unsigned DestReg = 0;
7289      switch (Res.first) {
7290      default: break;
7291      case X86::AX: DestReg = X86::EAX; break;
7292      case X86::DX: DestReg = X86::EDX; break;
7293      case X86::CX: DestReg = X86::ECX; break;
7294      case X86::BX: DestReg = X86::EBX; break;
7295      case X86::SI: DestReg = X86::ESI; break;
7296      case X86::DI: DestReg = X86::EDI; break;
7297      case X86::BP: DestReg = X86::EBP; break;
7298      case X86::SP: DestReg = X86::ESP; break;
7299      }
7300      if (DestReg) {
7301        Res.first = DestReg;
7302        Res.second = Res.second = X86::GR32RegisterClass;
7303      }
7304    } else if (VT == MVT::i64) {
7305      unsigned DestReg = 0;
7306      switch (Res.first) {
7307      default: break;
7308      case X86::AX: DestReg = X86::RAX; break;
7309      case X86::DX: DestReg = X86::RDX; break;
7310      case X86::CX: DestReg = X86::RCX; break;
7311      case X86::BX: DestReg = X86::RBX; break;
7312      case X86::SI: DestReg = X86::RSI; break;
7313      case X86::DI: DestReg = X86::RDI; break;
7314      case X86::BP: DestReg = X86::RBP; break;
7315      case X86::SP: DestReg = X86::RSP; break;
7316      }
7317      if (DestReg) {
7318        Res.first = DestReg;
7319        Res.second = Res.second = X86::GR64RegisterClass;
7320      }
7321    }
7322  } else if (Res.second == X86::FR32RegisterClass ||
7323             Res.second == X86::FR64RegisterClass ||
7324             Res.second == X86::VR128RegisterClass) {
7325    // Handle references to XMM physical registers that got mapped into the
7326    // wrong class.  This can happen with constraints like {xmm0} where the
7327    // target independent register mapper will just pick the first match it can
7328    // find, ignoring the required type.
7329    if (VT == MVT::f32)
7330      Res.second = X86::FR32RegisterClass;
7331    else if (VT == MVT::f64)
7332      Res.second = X86::FR64RegisterClass;
7333    else if (X86::VR128RegisterClass->hasType(VT))
7334      Res.second = X86::VR128RegisterClass;
7335  }
7336
7337  return Res;
7338}
7339