X86ISelLowering.cpp revision 02c2ecf9f166522cc1c58dd484668c1cbacc0c6e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  // If the input is a buildvector just emit a smaller one.
89  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
90    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
91                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
92
93  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
94  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
95                               VecIdx);
96
97  return Result;
98}
99
100/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
101/// sets things up to match to an AVX VINSERTF128 instruction or a
102/// simple superregister reference.  Idx is an index in the 128 bits
103/// we want.  It need not be aligned to a 128-bit bounday.  That makes
104/// lowering INSERT_VECTOR_ELT operations easier.
105static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
106                                  unsigned IdxVal, SelectionDAG &DAG,
107                                  DebugLoc dl) {
108  // Inserting UNDEF is Result
109  if (Vec.getOpcode() == ISD::UNDEF)
110    return Result;
111
112  EVT VT = Vec.getValueType();
113  assert(VT.is128BitVector() && "Unexpected vector size!");
114
115  EVT ElVT = VT.getVectorElementType();
116  EVT ResultVT = Result.getValueType();
117
118  // Insert the relevant 128 bits.
119  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
120
121  // This is the index of the first element of the 128-bit chunk
122  // we want.
123  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
124                               * ElemsPerChunk);
125
126  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
127  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
128                     VecIdx);
129}
130
131/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
132/// instructions. This is used because creating CONCAT_VECTOR nodes of
133/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
134/// large BUILD_VECTORS.
135static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
136                                   unsigned NumElems, SelectionDAG &DAG,
137                                   DebugLoc dl) {
138  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
139  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
140}
141
142static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
143  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
144  bool is64Bit = Subtarget->is64Bit();
145
146  if (Subtarget->isTargetEnvMacho()) {
147    if (is64Bit)
148      return new X86_64MachoTargetObjectFile();
149    return new TargetLoweringObjectFileMachO();
150  }
151
152  if (Subtarget->isTargetLinux())
153    return new X86LinuxTargetObjectFile();
154  if (Subtarget->isTargetELF())
155    return new TargetLoweringObjectFileELF();
156  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
157    return new TargetLoweringObjectFileCOFF();
158  llvm_unreachable("unknown subtarget type");
159}
160
161X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
162  : TargetLowering(TM, createTLOF(TM)) {
163  Subtarget = &TM.getSubtarget<X86Subtarget>();
164  X86ScalarSSEf64 = Subtarget->hasSSE2();
165  X86ScalarSSEf32 = Subtarget->hasSSE1();
166
167  RegInfo = TM.getRegisterInfo();
168  TD = getDataLayout();
169
170  // Set up the TargetLowering object.
171  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
172
173  // X86 is weird, it always uses i8 for shift amounts and setcc results.
174  setBooleanContents(ZeroOrOneBooleanContent);
175  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
176  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
177
178  // For 64-bit since we have so many registers use the ILP scheduler, for
179  // 32-bit code use the register pressure specific scheduling.
180  // For Atom, always use ILP scheduling.
181  if (Subtarget->isAtom())
182    setSchedulingPreference(Sched::ILP);
183  else if (Subtarget->is64Bit())
184    setSchedulingPreference(Sched::ILP);
185  else
186    setSchedulingPreference(Sched::RegPressure);
187  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
188
189  // Bypass expensive divides on Atom when compiling with O2
190  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
191    addBypassSlowDiv(32, 8);
192    if (Subtarget->is64Bit())
193      addBypassSlowDiv(64, 16);
194  }
195
196  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
197    // Setup Windows compiler runtime calls.
198    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
199    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
200    setLibcallName(RTLIB::SREM_I64, "_allrem");
201    setLibcallName(RTLIB::UREM_I64, "_aullrem");
202    setLibcallName(RTLIB::MUL_I64, "_allmul");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208
209    // The _ftol2 runtime function has an unusual calling conv, which
210    // is modeled by a special pseudo-instruction.
211    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
212    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
213    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
214    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
215  }
216
217  if (Subtarget->isTargetDarwin()) {
218    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
219    setUseUnderscoreSetJmp(false);
220    setUseUnderscoreLongJmp(false);
221  } else if (Subtarget->isTargetMingw()) {
222    // MS runtime is weird: it exports _setjmp, but longjmp!
223    setUseUnderscoreSetJmp(true);
224    setUseUnderscoreLongJmp(false);
225  } else {
226    setUseUnderscoreSetJmp(true);
227    setUseUnderscoreLongJmp(true);
228  }
229
230  // Set up the register classes.
231  addRegisterClass(MVT::i8, &X86::GR8RegClass);
232  addRegisterClass(MVT::i16, &X86::GR16RegClass);
233  addRegisterClass(MVT::i32, &X86::GR32RegClass);
234  if (Subtarget->is64Bit())
235    addRegisterClass(MVT::i64, &X86::GR64RegClass);
236
237  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
238
239  // We don't accept any truncstore of integer registers.
240  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
241  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
242  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
243  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
244  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
245  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
246
247  // SETOEQ and SETUNE require checking two conditions.
248  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
249  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
250  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
251  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
252  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
253  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
254
255  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
256  // operation.
257  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
258  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
259  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
260
261  if (Subtarget->is64Bit()) {
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264  } else if (!TM.Options.UseSoftFloat) {
265    // We have an algorithm for SSE2->double, and we turn this into a
266    // 64-bit FILD followed by conditional FADD for other targets.
267    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
268    // We have an algorithm for SSE2, and we turn this into a 64-bit
269    // FILD for other targets.
270    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
271  }
272
273  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
274  // this operation.
275  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
276  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
277
278  if (!TM.Options.UseSoftFloat) {
279    // SSE has no i16 to fp conversion, only i32
280    if (X86ScalarSSEf32) {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
282      // f32 and f64 cases are Legal, f80 case is not
283      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
284    } else {
285      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
286      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
287    }
288  } else {
289    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
290    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
291  }
292
293  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
294  // are Legal, f80 is custom lowered.
295  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
296  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
297
298  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
299  // this operation.
300  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
301  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
302
303  if (X86ScalarSSEf32) {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
305    // f32 and f64 cases are Legal, f80 case is not
306    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
307  } else {
308    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
309    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
310  }
311
312  // Handle FP_TO_UINT by promoting the destination to a larger signed
313  // conversion.
314  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
315  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
316  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
317
318  if (Subtarget->is64Bit()) {
319    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
320    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
321  } else if (!TM.Options.UseSoftFloat) {
322    // Since AVX is a superset of SSE3, only check for SSE here.
323    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
324      // Expand FP_TO_UINT into a select.
325      // FIXME: We would like to use a Custom expander here eventually to do
326      // the optimal thing for SSE vs. the default expansion in the legalizer.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
328    else
329      // With SSE3 we can use fisttpll to convert to a signed i64; without
330      // SSE, we're stuck with a fistpll.
331      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
332  }
333
334  if (isTargetFTOL()) {
335    // Use the _ftol2 runtime function, which has a pseudo-instruction
336    // to handle its weird calling convention.
337    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
338  }
339
340  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
341  if (!X86ScalarSSEf64) {
342    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
343    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
344    if (Subtarget->is64Bit()) {
345      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
346      // Without SSE, i64->f64 goes through memory.
347      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
348    }
349  }
350
351  // Scalar integer divide and remainder are lowered to use operations that
352  // produce two results, to match the available instructions. This exposes
353  // the two-result form to trivial CSE, which is able to combine x/y and x%y
354  // into a single instruction.
355  //
356  // Scalar integer multiply-high is also lowered to use two-result
357  // operations, to match the available instructions. However, plain multiply
358  // (low) operations are left as Legal, as there are single-result
359  // instructions for this in x86. Using the two-result multiply instructions
360  // when both high and low results are needed must be arranged by dagcombine.
361  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
362    MVT VT = IntVTs[i];
363    setOperationAction(ISD::MULHS, VT, Expand);
364    setOperationAction(ISD::MULHU, VT, Expand);
365    setOperationAction(ISD::SDIV, VT, Expand);
366    setOperationAction(ISD::UDIV, VT, Expand);
367    setOperationAction(ISD::SREM, VT, Expand);
368    setOperationAction(ISD::UREM, VT, Expand);
369
370    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
371    setOperationAction(ISD::ADDC, VT, Custom);
372    setOperationAction(ISD::ADDE, VT, Custom);
373    setOperationAction(ISD::SUBC, VT, Custom);
374    setOperationAction(ISD::SUBE, VT, Custom);
375  }
376
377  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
378  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
379  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
380  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
381  if (Subtarget->is64Bit())
382    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
383  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
384  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
385  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
386  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
387  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
388  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
389  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
390  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
391
392  // Promote the i8 variants and force them on up to i32 which has a shorter
393  // encoding.
394  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
395  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
396  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
397  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
398  if (Subtarget->hasBMI()) {
399    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
400    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
401    if (Subtarget->is64Bit())
402      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
403  } else {
404    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
405    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
408  }
409
410  if (Subtarget->hasLZCNT()) {
411    // When promoting the i8 variants, force them to i32 for a shorter
412    // encoding.
413    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
414    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
416    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
417    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
419    if (Subtarget->is64Bit())
420      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
421  } else {
422    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
423    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
424    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
425    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
426    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
427    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
428    if (Subtarget->is64Bit()) {
429      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
430      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
431    }
432  }
433
434  if (Subtarget->hasPOPCNT()) {
435    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
436  } else {
437    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
438    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
439    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
440    if (Subtarget->is64Bit())
441      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
442  }
443
444  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
445  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
446
447  // These should be promoted to a larger select which is supported.
448  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
449  // X86 wants to expand cmov itself.
450  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
451  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
452  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
453  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
454  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
455  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
456  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
457  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
458  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
459  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
460  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
461  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
462  if (Subtarget->is64Bit()) {
463    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
464    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
465  }
466  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
467  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
468  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
469  // support continuation, user-level threading, and etc.. As a result, no
470  // other SjLj exception interfaces are implemented and please don't build
471  // your own exception handling based on them.
472  // LLVM/Clang supports zero-cost DWARF exception handling.
473  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
474  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
475
476  // Darwin ABI issue.
477  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
478  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
479  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
480  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
481  if (Subtarget->is64Bit())
482    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
483  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
484  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
485  if (Subtarget->is64Bit()) {
486    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
487    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
488    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
489    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
490    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
491  }
492  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
493  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
494  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
495  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
496  if (Subtarget->is64Bit()) {
497    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
498    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
499    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
500  }
501
502  if (Subtarget->hasSSE1())
503    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
504
505  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
506  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
507
508  // On X86 and X86-64, atomic operations are lowered to locked instructions.
509  // Locked instructions, in turn, have implicit fence semantics (all memory
510  // operations are flushed before issuing the locked instruction, and they
511  // are not buffered), so we can fold away the common pattern of
512  // fence-atomic-fence.
513  setShouldFoldAtomicFences(true);
514
515  // Expand certain atomics
516  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
517    MVT VT = IntVTs[i];
518    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
520    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
521  }
522
523  if (!Subtarget->is64Bit()) {
524    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
526    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
527    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
528    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
529    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
530    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
531    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
532    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
533    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
534    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
535    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
536  }
537
538  if (Subtarget->hasCmpxchg16b()) {
539    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
540  }
541
542  // FIXME - use subtarget debug flags
543  if (!Subtarget->isTargetDarwin() &&
544      !Subtarget->isTargetELF() &&
545      !Subtarget->isTargetCygMing()) {
546    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
547  }
548
549  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
550  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
551  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
552  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
553  if (Subtarget->is64Bit()) {
554    setExceptionPointerRegister(X86::RAX);
555    setExceptionSelectorRegister(X86::RDX);
556  } else {
557    setExceptionPointerRegister(X86::EAX);
558    setExceptionSelectorRegister(X86::EDX);
559  }
560  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
561  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
562
563  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
564  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
565
566  setOperationAction(ISD::TRAP, MVT::Other, Legal);
567  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
568
569  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
570  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
571  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
572  if (Subtarget->is64Bit()) {
573    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
574    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
575  } else {
576    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
577    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
578  }
579
580  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
581  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
582
583  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
584    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
585                       MVT::i64 : MVT::i32, Custom);
586  else if (TM.Options.EnableSegmentedStacks)
587    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
588                       MVT::i64 : MVT::i32, Custom);
589  else
590    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
591                       MVT::i64 : MVT::i32, Expand);
592
593  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
594    // f32 and f64 use SSE.
595    // Set up the FP register classes.
596    addRegisterClass(MVT::f32, &X86::FR32RegClass);
597    addRegisterClass(MVT::f64, &X86::FR64RegClass);
598
599    // Use ANDPD to simulate FABS.
600    setOperationAction(ISD::FABS , MVT::f64, Custom);
601    setOperationAction(ISD::FABS , MVT::f32, Custom);
602
603    // Use XORP to simulate FNEG.
604    setOperationAction(ISD::FNEG , MVT::f64, Custom);
605    setOperationAction(ISD::FNEG , MVT::f32, Custom);
606
607    // Use ANDPD and ORPD to simulate FCOPYSIGN.
608    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
609    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
610
611    // Lower this to FGETSIGNx86 plus an AND.
612    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
613    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
614
615    // We don't support sin/cos/fmod
616    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
617    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
618    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
619    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
620    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
621    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
622
623    // Expand FP immediates into loads from the stack, except for the special
624    // cases we handle.
625    addLegalFPImmediate(APFloat(+0.0)); // xorpd
626    addLegalFPImmediate(APFloat(+0.0f)); // xorps
627  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
628    // Use SSE for f32, x87 for f64.
629    // Set up the FP register classes.
630    addRegisterClass(MVT::f32, &X86::FR32RegClass);
631    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
632
633    // Use ANDPS to simulate FABS.
634    setOperationAction(ISD::FABS , MVT::f32, Custom);
635
636    // Use XORP to simulate FNEG.
637    setOperationAction(ISD::FNEG , MVT::f32, Custom);
638
639    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
640
641    // Use ANDPS and ORPS to simulate FCOPYSIGN.
642    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
644
645    // We don't support sin/cos/fmod
646    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
647    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
648    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
649
650    // Special cases we handle for FP constants.
651    addLegalFPImmediate(APFloat(+0.0f)); // xorps
652    addLegalFPImmediate(APFloat(+0.0)); // FLD0
653    addLegalFPImmediate(APFloat(+1.0)); // FLD1
654    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
655    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
656
657    if (!TM.Options.UnsafeFPMath) {
658      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
659      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
660      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
661    }
662  } else if (!TM.Options.UseSoftFloat) {
663    // f32 and f64 in x87.
664    // Set up the FP register classes.
665    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
666    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
667
668    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
669    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
670    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
671    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
672
673    if (!TM.Options.UnsafeFPMath) {
674      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
675      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
676      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
677      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
678      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
679      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
680    }
681    addLegalFPImmediate(APFloat(+0.0)); // FLD0
682    addLegalFPImmediate(APFloat(+1.0)); // FLD1
683    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
684    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
685    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
686    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
687    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
688    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
689  }
690
691  // We don't support FMA.
692  setOperationAction(ISD::FMA, MVT::f64, Expand);
693  setOperationAction(ISD::FMA, MVT::f32, Expand);
694
695  // Long double always uses X87.
696  if (!TM.Options.UseSoftFloat) {
697    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
698    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
699    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
700    {
701      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
702      addLegalFPImmediate(TmpFlt);  // FLD0
703      TmpFlt.changeSign();
704      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
705
706      bool ignored;
707      APFloat TmpFlt2(+1.0);
708      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
709                      &ignored);
710      addLegalFPImmediate(TmpFlt2);  // FLD1
711      TmpFlt2.changeSign();
712      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
713    }
714
715    if (!TM.Options.UnsafeFPMath) {
716      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
717      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
718      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
719    }
720
721    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
722    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
723    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
724    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
725    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
726    setOperationAction(ISD::FMA, MVT::f80, Expand);
727  }
728
729  // Always use a library call for pow.
730  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
731  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
732  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
733
734  setOperationAction(ISD::FLOG, MVT::f80, Expand);
735  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
736  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
737  setOperationAction(ISD::FEXP, MVT::f80, Expand);
738  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
739
740  // First set operation action for all vector types to either promote
741  // (for widening) or expand (for scalarization). Then we will selectively
742  // turn on ones that can be effectively codegen'd.
743  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
744           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
745    MVT VT = (MVT::SimpleValueType)i;
746    setOperationAction(ISD::ADD , VT, Expand);
747    setOperationAction(ISD::SUB , VT, Expand);
748    setOperationAction(ISD::FADD, VT, Expand);
749    setOperationAction(ISD::FNEG, VT, Expand);
750    setOperationAction(ISD::FSUB, VT, Expand);
751    setOperationAction(ISD::MUL , VT, Expand);
752    setOperationAction(ISD::FMUL, VT, Expand);
753    setOperationAction(ISD::SDIV, VT, Expand);
754    setOperationAction(ISD::UDIV, VT, Expand);
755    setOperationAction(ISD::FDIV, VT, Expand);
756    setOperationAction(ISD::SREM, VT, Expand);
757    setOperationAction(ISD::UREM, VT, Expand);
758    setOperationAction(ISD::LOAD, VT, Expand);
759    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
760    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
761    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
762    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
763    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
764    setOperationAction(ISD::FABS, VT, Expand);
765    setOperationAction(ISD::FSIN, VT, Expand);
766    setOperationAction(ISD::FSINCOS, VT, Expand);
767    setOperationAction(ISD::FCOS, VT, Expand);
768    setOperationAction(ISD::FSINCOS, VT, Expand);
769    setOperationAction(ISD::FREM, VT, Expand);
770    setOperationAction(ISD::FMA,  VT, Expand);
771    setOperationAction(ISD::FPOWI, VT, Expand);
772    setOperationAction(ISD::FSQRT, VT, Expand);
773    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
774    setOperationAction(ISD::FFLOOR, VT, Expand);
775    setOperationAction(ISD::FCEIL, VT, Expand);
776    setOperationAction(ISD::FTRUNC, VT, Expand);
777    setOperationAction(ISD::FRINT, VT, Expand);
778    setOperationAction(ISD::FNEARBYINT, VT, Expand);
779    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
780    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
781    setOperationAction(ISD::SDIVREM, VT, Expand);
782    setOperationAction(ISD::UDIVREM, VT, Expand);
783    setOperationAction(ISD::FPOW, VT, Expand);
784    setOperationAction(ISD::CTPOP, VT, Expand);
785    setOperationAction(ISD::CTTZ, VT, Expand);
786    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
787    setOperationAction(ISD::CTLZ, VT, Expand);
788    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
789    setOperationAction(ISD::SHL, VT, Expand);
790    setOperationAction(ISD::SRA, VT, Expand);
791    setOperationAction(ISD::SRL, VT, Expand);
792    setOperationAction(ISD::ROTL, VT, Expand);
793    setOperationAction(ISD::ROTR, VT, Expand);
794    setOperationAction(ISD::BSWAP, VT, Expand);
795    setOperationAction(ISD::SETCC, VT, Expand);
796    setOperationAction(ISD::FLOG, VT, Expand);
797    setOperationAction(ISD::FLOG2, VT, Expand);
798    setOperationAction(ISD::FLOG10, VT, Expand);
799    setOperationAction(ISD::FEXP, VT, Expand);
800    setOperationAction(ISD::FEXP2, VT, Expand);
801    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
802    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
803    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
804    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
805    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
806    setOperationAction(ISD::TRUNCATE, VT, Expand);
807    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
808    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
809    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
810    setOperationAction(ISD::VSELECT, VT, Expand);
811    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
812             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
813      setTruncStoreAction(VT,
814                          (MVT::SimpleValueType)InnerVT, Expand);
815    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
816    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
817    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
818  }
819
820  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
821  // with -msoft-float, disable use of MMX as well.
822  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
823    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
824    // No operations on x86mmx supported, everything uses intrinsics.
825  }
826
827  // MMX-sized vectors (other than x86mmx) are expected to be expanded
828  // into smaller operations.
829  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
830  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
831  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
832  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
833  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
834  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
835  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
836  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
837  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
838  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
839  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
840  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
841  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
842  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
843  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
844  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
845  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
846  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
847  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
848  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
849  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
850  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
851  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
852  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
853  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
854  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
855  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
856  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
857  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
858
859  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
860    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
861
862    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
863    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
864    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
865    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
866    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
867    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
868    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
869    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
870    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
871    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
872    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
873    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
874  }
875
876  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
877    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
878
879    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
880    // registers cannot be used even for integer operations.
881    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
882    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
883    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
884    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
885
886    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
887    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
888    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
889    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
890    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
891    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
892    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
893    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
894    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
895    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
896    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
897    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
898    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
899    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
900    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
901    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
902    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
903    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
904
905    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
906    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
907    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
908    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
909
910    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
911    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
913    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
914    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
915
916    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
917    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
918      MVT VT = (MVT::SimpleValueType)i;
919      // Do not attempt to custom lower non-power-of-2 vectors
920      if (!isPowerOf2_32(VT.getVectorNumElements()))
921        continue;
922      // Do not attempt to custom lower non-128-bit vectors
923      if (!VT.is128BitVector())
924        continue;
925      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
926      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
927      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
928    }
929
930    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
931    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
932    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
933    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
934    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
935    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
936
937    if (Subtarget->is64Bit()) {
938      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
939      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
940    }
941
942    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
943    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
944      MVT VT = (MVT::SimpleValueType)i;
945
946      // Do not attempt to promote non-128-bit vectors
947      if (!VT.is128BitVector())
948        continue;
949
950      setOperationAction(ISD::AND,    VT, Promote);
951      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
952      setOperationAction(ISD::OR,     VT, Promote);
953      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
954      setOperationAction(ISD::XOR,    VT, Promote);
955      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
956      setOperationAction(ISD::LOAD,   VT, Promote);
957      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
958      setOperationAction(ISD::SELECT, VT, Promote);
959      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
960    }
961
962    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
963
964    // Custom lower v2i64 and v2f64 selects.
965    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
966    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
967    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
968    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
969
970    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
971    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
972
973    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
974    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
975    // As there is no 64-bit GPR available, we need build a special custom
976    // sequence to convert from v2i32 to v2f32.
977    if (!Subtarget->is64Bit())
978      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
979
980    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
981    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
982
983    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
984  }
985
986  if (Subtarget->hasSSE41()) {
987    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
988    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
989    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
990    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
991    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
992    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
993    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
994    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
995    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
996    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
997
998    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
999    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1000    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1001    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1002    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1003    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1004    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1005    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1006    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1007    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1008
1009    // FIXME: Do we need to handle scalar-to-vector here?
1010    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1011
1012    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1013    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1014    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1015    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1016    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1017
1018    // i8 and i16 vectors are custom , because the source register and source
1019    // source memory operand types are not the same width.  f32 vectors are
1020    // custom since the immediate controlling the insert encodes additional
1021    // information.
1022    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1023    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1024    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1025    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1026
1027    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1028    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1029    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1030    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1031
1032    // FIXME: these should be Legal but thats only for the case where
1033    // the index is constant.  For now custom expand to deal with that.
1034    if (Subtarget->is64Bit()) {
1035      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1036      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1037    }
1038  }
1039
1040  if (Subtarget->hasSSE2()) {
1041    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1042    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1043
1044    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1045    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1046
1047    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1048    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1049
1050    if (Subtarget->hasInt256()) {
1051      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1052      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1053
1054      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1055      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1056
1057      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1058    } else {
1059      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1060      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1061
1062      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1063      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1064
1065      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1066    }
1067    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1068    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1069  }
1070
1071  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1072    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1073    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1074    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1075    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1076    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1077    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1078
1079    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1080    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1081    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1082
1083    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1084    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1085    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1086    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1087    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1088    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1089    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1090    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1091    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1092    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1093    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1094    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1095
1096    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1097    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1098    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1099    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1100    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1101    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1102    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1103    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1104    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1105    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1106    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1107    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1108
1109    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1110    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1111
1112    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1113
1114    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1115    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1116    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1117
1118    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1119    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1120    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1121
1122    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1123
1124    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1125    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1126
1127    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1128    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1129
1130    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1131    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1132
1133    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1134
1135    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1136    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1137    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1138    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1139
1140    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1141    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1142    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1143
1144    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1145    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1146    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1147    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1148
1149    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1150    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1151    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1152    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1153    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1154    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1155
1156    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1157      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1158      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1159      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1160      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1161      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1162      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1163    }
1164
1165    if (Subtarget->hasInt256()) {
1166      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1167      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1168      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1169      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1170
1171      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1172      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1173      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1174      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1175
1176      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1177      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1178      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1179      // Don't lower v32i8 because there is no 128-bit byte mul
1180
1181      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1182
1183      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1184      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1185
1186      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1187      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1188
1189      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1190
1191      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1192    } else {
1193      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1194      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1195      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1196      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1197
1198      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1199      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1200      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1201      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1202
1203      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1204      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1205      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1206      // Don't lower v32i8 because there is no 128-bit byte mul
1207
1208      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1209      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1210
1211      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1212      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1213
1214      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1215    }
1216
1217    // Custom lower several nodes for 256-bit types.
1218    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1219             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1220      MVT VT = (MVT::SimpleValueType)i;
1221
1222      // Extract subvector is special because the value type
1223      // (result) is 128-bit but the source is 256-bit wide.
1224      if (VT.is128BitVector())
1225        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1226
1227      // Do not attempt to custom lower other non-256-bit vectors
1228      if (!VT.is256BitVector())
1229        continue;
1230
1231      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1232      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1233      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1234      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1235      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1236      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1237      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1238    }
1239
1240    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1241    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1242      MVT VT = (MVT::SimpleValueType)i;
1243
1244      // Do not attempt to promote non-256-bit vectors
1245      if (!VT.is256BitVector())
1246        continue;
1247
1248      setOperationAction(ISD::AND,    VT, Promote);
1249      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1250      setOperationAction(ISD::OR,     VT, Promote);
1251      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1252      setOperationAction(ISD::XOR,    VT, Promote);
1253      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1254      setOperationAction(ISD::LOAD,   VT, Promote);
1255      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1256      setOperationAction(ISD::SELECT, VT, Promote);
1257      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1258    }
1259  }
1260
1261  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1262  // of this type with custom code.
1263  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1264           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1265    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1266                       Custom);
1267  }
1268
1269  // We want to custom lower some of our intrinsics.
1270  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1271  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1272
1273  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1274  // handle type legalization for these operations here.
1275  //
1276  // FIXME: We really should do custom legalization for addition and
1277  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1278  // than generic legalization for 64-bit multiplication-with-overflow, though.
1279  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1280    // Add/Sub/Mul with overflow operations are custom lowered.
1281    MVT VT = IntVTs[i];
1282    setOperationAction(ISD::SADDO, VT, Custom);
1283    setOperationAction(ISD::UADDO, VT, Custom);
1284    setOperationAction(ISD::SSUBO, VT, Custom);
1285    setOperationAction(ISD::USUBO, VT, Custom);
1286    setOperationAction(ISD::SMULO, VT, Custom);
1287    setOperationAction(ISD::UMULO, VT, Custom);
1288  }
1289
1290  // There are no 8-bit 3-address imul/mul instructions
1291  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1292  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1293
1294  if (!Subtarget->is64Bit()) {
1295    // These libcalls are not available in 32-bit.
1296    setLibcallName(RTLIB::SHL_I128, 0);
1297    setLibcallName(RTLIB::SRL_I128, 0);
1298    setLibcallName(RTLIB::SRA_I128, 0);
1299  }
1300
1301  // Combine sin / cos into one node or libcall if possible.
1302  if (Subtarget->hasSinCos()) {
1303    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1304    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1305    if (Subtarget->isTargetDarwin()) {
1306      // For MacOSX, we don't want to the normal expansion of a libcall to
1307      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1308      // traffic.
1309      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1310      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1311    }
1312  }
1313
1314  // We have target-specific dag combine patterns for the following nodes:
1315  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1316  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1317  setTargetDAGCombine(ISD::VSELECT);
1318  setTargetDAGCombine(ISD::SELECT);
1319  setTargetDAGCombine(ISD::SHL);
1320  setTargetDAGCombine(ISD::SRA);
1321  setTargetDAGCombine(ISD::SRL);
1322  setTargetDAGCombine(ISD::OR);
1323  setTargetDAGCombine(ISD::AND);
1324  setTargetDAGCombine(ISD::ADD);
1325  setTargetDAGCombine(ISD::FADD);
1326  setTargetDAGCombine(ISD::FSUB);
1327  setTargetDAGCombine(ISD::FMA);
1328  setTargetDAGCombine(ISD::SUB);
1329  setTargetDAGCombine(ISD::LOAD);
1330  setTargetDAGCombine(ISD::STORE);
1331  setTargetDAGCombine(ISD::ZERO_EXTEND);
1332  setTargetDAGCombine(ISD::ANY_EXTEND);
1333  setTargetDAGCombine(ISD::SIGN_EXTEND);
1334  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1335  setTargetDAGCombine(ISD::TRUNCATE);
1336  setTargetDAGCombine(ISD::SINT_TO_FP);
1337  setTargetDAGCombine(ISD::SETCC);
1338  if (Subtarget->is64Bit())
1339    setTargetDAGCombine(ISD::MUL);
1340  setTargetDAGCombine(ISD::XOR);
1341
1342  computeRegisterProperties();
1343
1344  // On Darwin, -Os means optimize for size without hurting performance,
1345  // do not reduce the limit.
1346  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1347  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1348  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1349  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1350  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1351  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1352  setPrefLoopAlignment(4); // 2^4 bytes.
1353  BenefitFromCodePlacementOpt = true;
1354
1355  // Predictable cmov don't hurt on atom because it's in-order.
1356  PredictableSelectIsExpensive = !Subtarget->isAtom();
1357
1358  setPrefFunctionAlignment(4); // 2^4 bytes.
1359}
1360
1361EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1362  if (!VT.isVector()) return MVT::i8;
1363  return VT.changeVectorElementTypeToInteger();
1364}
1365
1366/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1367/// the desired ByVal argument alignment.
1368static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1369  if (MaxAlign == 16)
1370    return;
1371  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1372    if (VTy->getBitWidth() == 128)
1373      MaxAlign = 16;
1374  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1375    unsigned EltAlign = 0;
1376    getMaxByValAlign(ATy->getElementType(), EltAlign);
1377    if (EltAlign > MaxAlign)
1378      MaxAlign = EltAlign;
1379  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1380    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1381      unsigned EltAlign = 0;
1382      getMaxByValAlign(STy->getElementType(i), EltAlign);
1383      if (EltAlign > MaxAlign)
1384        MaxAlign = EltAlign;
1385      if (MaxAlign == 16)
1386        break;
1387    }
1388  }
1389}
1390
1391/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1392/// function arguments in the caller parameter area. For X86, aggregates
1393/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1394/// are at 4-byte boundaries.
1395unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1396  if (Subtarget->is64Bit()) {
1397    // Max of 8 and alignment of type.
1398    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1399    if (TyAlign > 8)
1400      return TyAlign;
1401    return 8;
1402  }
1403
1404  unsigned Align = 4;
1405  if (Subtarget->hasSSE1())
1406    getMaxByValAlign(Ty, Align);
1407  return Align;
1408}
1409
1410/// getOptimalMemOpType - Returns the target specific optimal type for load
1411/// and store operations as a result of memset, memcpy, and memmove
1412/// lowering. If DstAlign is zero that means it's safe to destination
1413/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1414/// means there isn't a need to check it against alignment requirement,
1415/// probably because the source does not need to be loaded. If 'IsMemset' is
1416/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1417/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1418/// source is constant so it does not need to be loaded.
1419/// It returns EVT::Other if the type should be determined using generic
1420/// target-independent logic.
1421EVT
1422X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1423                                       unsigned DstAlign, unsigned SrcAlign,
1424                                       bool IsMemset, bool ZeroMemset,
1425                                       bool MemcpyStrSrc,
1426                                       MachineFunction &MF) const {
1427  const Function *F = MF.getFunction();
1428  if ((!IsMemset || ZeroMemset) &&
1429      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1430                                       Attribute::NoImplicitFloat)) {
1431    if (Size >= 16 &&
1432        (Subtarget->isUnalignedMemAccessFast() ||
1433         ((DstAlign == 0 || DstAlign >= 16) &&
1434          (SrcAlign == 0 || SrcAlign >= 16)))) {
1435      if (Size >= 32) {
1436        if (Subtarget->hasInt256())
1437          return MVT::v8i32;
1438        if (Subtarget->hasFp256())
1439          return MVT::v8f32;
1440      }
1441      if (Subtarget->hasSSE2())
1442        return MVT::v4i32;
1443      if (Subtarget->hasSSE1())
1444        return MVT::v4f32;
1445    } else if (!MemcpyStrSrc && Size >= 8 &&
1446               !Subtarget->is64Bit() &&
1447               Subtarget->hasSSE2()) {
1448      // Do not use f64 to lower memcpy if source is string constant. It's
1449      // better to use i32 to avoid the loads.
1450      return MVT::f64;
1451    }
1452  }
1453  if (Subtarget->is64Bit() && Size >= 8)
1454    return MVT::i64;
1455  return MVT::i32;
1456}
1457
1458bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1459  if (VT == MVT::f32)
1460    return X86ScalarSSEf32;
1461  else if (VT == MVT::f64)
1462    return X86ScalarSSEf64;
1463  return true;
1464}
1465
1466bool
1467X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1468  if (Fast)
1469    *Fast = Subtarget->isUnalignedMemAccessFast();
1470  return true;
1471}
1472
1473/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1474/// current function.  The returned value is a member of the
1475/// MachineJumpTableInfo::JTEntryKind enum.
1476unsigned X86TargetLowering::getJumpTableEncoding() const {
1477  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1478  // symbol.
1479  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1480      Subtarget->isPICStyleGOT())
1481    return MachineJumpTableInfo::EK_Custom32;
1482
1483  // Otherwise, use the normal jump table encoding heuristics.
1484  return TargetLowering::getJumpTableEncoding();
1485}
1486
1487const MCExpr *
1488X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1489                                             const MachineBasicBlock *MBB,
1490                                             unsigned uid,MCContext &Ctx) const{
1491  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1492         Subtarget->isPICStyleGOT());
1493  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1494  // entries.
1495  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1496                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1497}
1498
1499/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1500/// jumptable.
1501SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1502                                                    SelectionDAG &DAG) const {
1503  if (!Subtarget->is64Bit())
1504    // This doesn't have DebugLoc associated with it, but is not really the
1505    // same as a Register.
1506    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1507  return Table;
1508}
1509
1510/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1511/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1512/// MCExpr.
1513const MCExpr *X86TargetLowering::
1514getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1515                             MCContext &Ctx) const {
1516  // X86-64 uses RIP relative addressing based on the jump table label.
1517  if (Subtarget->isPICStyleRIPRel())
1518    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1519
1520  // Otherwise, the reference is relative to the PIC base.
1521  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1522}
1523
1524// FIXME: Why this routine is here? Move to RegInfo!
1525std::pair<const TargetRegisterClass*, uint8_t>
1526X86TargetLowering::findRepresentativeClass(MVT VT) const{
1527  const TargetRegisterClass *RRC = 0;
1528  uint8_t Cost = 1;
1529  switch (VT.SimpleTy) {
1530  default:
1531    return TargetLowering::findRepresentativeClass(VT);
1532  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1533    RRC = Subtarget->is64Bit() ?
1534      (const TargetRegisterClass*)&X86::GR64RegClass :
1535      (const TargetRegisterClass*)&X86::GR32RegClass;
1536    break;
1537  case MVT::x86mmx:
1538    RRC = &X86::VR64RegClass;
1539    break;
1540  case MVT::f32: case MVT::f64:
1541  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1542  case MVT::v4f32: case MVT::v2f64:
1543  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1544  case MVT::v4f64:
1545    RRC = &X86::VR128RegClass;
1546    break;
1547  }
1548  return std::make_pair(RRC, Cost);
1549}
1550
1551bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1552                                               unsigned &Offset) const {
1553  if (!Subtarget->isTargetLinux())
1554    return false;
1555
1556  if (Subtarget->is64Bit()) {
1557    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1558    Offset = 0x28;
1559    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1560      AddressSpace = 256;
1561    else
1562      AddressSpace = 257;
1563  } else {
1564    // %gs:0x14 on i386
1565    Offset = 0x14;
1566    AddressSpace = 256;
1567  }
1568  return true;
1569}
1570
1571//===----------------------------------------------------------------------===//
1572//               Return Value Calling Convention Implementation
1573//===----------------------------------------------------------------------===//
1574
1575#include "X86GenCallingConv.inc"
1576
1577bool
1578X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1579                                  MachineFunction &MF, bool isVarArg,
1580                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1581                        LLVMContext &Context) const {
1582  SmallVector<CCValAssign, 16> RVLocs;
1583  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1584                 RVLocs, Context);
1585  return CCInfo.CheckReturn(Outs, RetCC_X86);
1586}
1587
1588SDValue
1589X86TargetLowering::LowerReturn(SDValue Chain,
1590                               CallingConv::ID CallConv, bool isVarArg,
1591                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1592                               const SmallVectorImpl<SDValue> &OutVals,
1593                               DebugLoc dl, SelectionDAG &DAG) const {
1594  MachineFunction &MF = DAG.getMachineFunction();
1595  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1596
1597  SmallVector<CCValAssign, 16> RVLocs;
1598  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1599                 RVLocs, *DAG.getContext());
1600  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1601
1602  SDValue Flag;
1603  SmallVector<SDValue, 6> RetOps;
1604  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1605  // Operand #1 = Bytes To Pop
1606  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1607                   MVT::i16));
1608
1609  // Copy the result values into the output registers.
1610  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1611    CCValAssign &VA = RVLocs[i];
1612    assert(VA.isRegLoc() && "Can only return in registers!");
1613    SDValue ValToCopy = OutVals[i];
1614    EVT ValVT = ValToCopy.getValueType();
1615
1616    // Promote values to the appropriate types
1617    if (VA.getLocInfo() == CCValAssign::SExt)
1618      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1619    else if (VA.getLocInfo() == CCValAssign::ZExt)
1620      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1621    else if (VA.getLocInfo() == CCValAssign::AExt)
1622      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1623    else if (VA.getLocInfo() == CCValAssign::BCvt)
1624      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1625
1626    // If this is x86-64, and we disabled SSE, we can't return FP values,
1627    // or SSE or MMX vectors.
1628    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1629         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1630          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1631      report_fatal_error("SSE register return with SSE disabled");
1632    }
1633    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1634    // llvm-gcc has never done it right and no one has noticed, so this
1635    // should be OK for now.
1636    if (ValVT == MVT::f64 &&
1637        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1638      report_fatal_error("SSE2 register return with SSE2 disabled");
1639
1640    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1641    // the RET instruction and handled by the FP Stackifier.
1642    if (VA.getLocReg() == X86::ST0 ||
1643        VA.getLocReg() == X86::ST1) {
1644      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1645      // change the value to the FP stack register class.
1646      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1647        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1648      RetOps.push_back(ValToCopy);
1649      // Don't emit a copytoreg.
1650      continue;
1651    }
1652
1653    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1654    // which is returned in RAX / RDX.
1655    if (Subtarget->is64Bit()) {
1656      if (ValVT == MVT::x86mmx) {
1657        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1658          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1659          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1660                                  ValToCopy);
1661          // If we don't have SSE2 available, convert to v4f32 so the generated
1662          // register is legal.
1663          if (!Subtarget->hasSSE2())
1664            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1665        }
1666      }
1667    }
1668
1669    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1670    Flag = Chain.getValue(1);
1671    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1672  }
1673
1674  // The x86-64 ABIs require that for returning structs by value we copy
1675  // the sret argument into %rax/%eax (depending on ABI) for the return.
1676  // We saved the argument into a virtual register in the entry block,
1677  // so now we copy the value out and into %rax/%eax.
1678  if (Subtarget->is64Bit() &&
1679      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1680    MachineFunction &MF = DAG.getMachineFunction();
1681    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1682    unsigned Reg = FuncInfo->getSRetReturnReg();
1683    assert(Reg &&
1684           "SRetReturnReg should have been set in LowerFormalArguments().");
1685    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1686
1687    unsigned RetValReg = Subtarget->isTarget64BitILP32() ? X86::EAX : X86::RAX;
1688    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1689    Flag = Chain.getValue(1);
1690
1691    // RAX/EAX now acts like a return value.
1692    RetOps.push_back(DAG.getRegister(RetValReg, MVT::i64));
1693  }
1694
1695  RetOps[0] = Chain;  // Update chain.
1696
1697  // Add the flag if we have it.
1698  if (Flag.getNode())
1699    RetOps.push_back(Flag);
1700
1701  return DAG.getNode(X86ISD::RET_FLAG, dl,
1702                     MVT::Other, &RetOps[0], RetOps.size());
1703}
1704
1705bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1706  if (N->getNumValues() != 1)
1707    return false;
1708  if (!N->hasNUsesOfValue(1, 0))
1709    return false;
1710
1711  SDValue TCChain = Chain;
1712  SDNode *Copy = *N->use_begin();
1713  if (Copy->getOpcode() == ISD::CopyToReg) {
1714    // If the copy has a glue operand, we conservatively assume it isn't safe to
1715    // perform a tail call.
1716    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1717      return false;
1718    TCChain = Copy->getOperand(0);
1719  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1720    return false;
1721
1722  bool HasRet = false;
1723  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1724       UI != UE; ++UI) {
1725    if (UI->getOpcode() != X86ISD::RET_FLAG)
1726      return false;
1727    HasRet = true;
1728  }
1729
1730  if (!HasRet)
1731    return false;
1732
1733  Chain = TCChain;
1734  return true;
1735}
1736
1737MVT
1738X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1739                                            ISD::NodeType ExtendKind) const {
1740  MVT ReturnMVT;
1741  // TODO: Is this also valid on 32-bit?
1742  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1743    ReturnMVT = MVT::i8;
1744  else
1745    ReturnMVT = MVT::i32;
1746
1747  MVT MinVT = getRegisterType(ReturnMVT);
1748  return VT.bitsLT(MinVT) ? MinVT : VT;
1749}
1750
1751/// LowerCallResult - Lower the result values of a call into the
1752/// appropriate copies out of appropriate physical registers.
1753///
1754SDValue
1755X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1756                                   CallingConv::ID CallConv, bool isVarArg,
1757                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1758                                   DebugLoc dl, SelectionDAG &DAG,
1759                                   SmallVectorImpl<SDValue> &InVals) const {
1760
1761  // Assign locations to each value returned by this call.
1762  SmallVector<CCValAssign, 16> RVLocs;
1763  bool Is64Bit = Subtarget->is64Bit();
1764  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1765                 getTargetMachine(), RVLocs, *DAG.getContext());
1766  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1767
1768  // Copy all of the result registers out of their specified physreg.
1769  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1770    CCValAssign &VA = RVLocs[i];
1771    EVT CopyVT = VA.getValVT();
1772
1773    // If this is x86-64, and we disabled SSE, we can't return FP values
1774    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1775        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1776      report_fatal_error("SSE register return with SSE disabled");
1777    }
1778
1779    SDValue Val;
1780
1781    // If this is a call to a function that returns an fp value on the floating
1782    // point stack, we must guarantee the value is popped from the stack, so
1783    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1784    // if the return value is not used. We use the FpPOP_RETVAL instruction
1785    // instead.
1786    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1787      // If we prefer to use the value in xmm registers, copy it out as f80 and
1788      // use a truncate to move it from fp stack reg to xmm reg.
1789      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1790      SDValue Ops[] = { Chain, InFlag };
1791      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1792                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1793      Val = Chain.getValue(0);
1794
1795      // Round the f80 to the right size, which also moves it to the appropriate
1796      // xmm register.
1797      if (CopyVT != VA.getValVT())
1798        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1799                          // This truncation won't change the value.
1800                          DAG.getIntPtrConstant(1));
1801    } else {
1802      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1803                                 CopyVT, InFlag).getValue(1);
1804      Val = Chain.getValue(0);
1805    }
1806    InFlag = Chain.getValue(2);
1807    InVals.push_back(Val);
1808  }
1809
1810  return Chain;
1811}
1812
1813//===----------------------------------------------------------------------===//
1814//                C & StdCall & Fast Calling Convention implementation
1815//===----------------------------------------------------------------------===//
1816//  StdCall calling convention seems to be standard for many Windows' API
1817//  routines and around. It differs from C calling convention just a little:
1818//  callee should clean up the stack, not caller. Symbols should be also
1819//  decorated in some fancy way :) It doesn't support any vector arguments.
1820//  For info on fast calling convention see Fast Calling Convention (tail call)
1821//  implementation LowerX86_32FastCCCallTo.
1822
1823/// CallIsStructReturn - Determines whether a call uses struct return
1824/// semantics.
1825enum StructReturnType {
1826  NotStructReturn,
1827  RegStructReturn,
1828  StackStructReturn
1829};
1830static StructReturnType
1831callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1832  if (Outs.empty())
1833    return NotStructReturn;
1834
1835  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1836  if (!Flags.isSRet())
1837    return NotStructReturn;
1838  if (Flags.isInReg())
1839    return RegStructReturn;
1840  return StackStructReturn;
1841}
1842
1843/// ArgsAreStructReturn - Determines whether a function uses struct
1844/// return semantics.
1845static StructReturnType
1846argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1847  if (Ins.empty())
1848    return NotStructReturn;
1849
1850  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1851  if (!Flags.isSRet())
1852    return NotStructReturn;
1853  if (Flags.isInReg())
1854    return RegStructReturn;
1855  return StackStructReturn;
1856}
1857
1858/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1859/// by "Src" to address "Dst" with size and alignment information specified by
1860/// the specific parameter attribute. The copy will be passed as a byval
1861/// function parameter.
1862static SDValue
1863CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1864                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1865                          DebugLoc dl) {
1866  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1867
1868  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1869                       /*isVolatile*/false, /*AlwaysInline=*/true,
1870                       MachinePointerInfo(), MachinePointerInfo());
1871}
1872
1873/// IsTailCallConvention - Return true if the calling convention is one that
1874/// supports tail call optimization.
1875static bool IsTailCallConvention(CallingConv::ID CC) {
1876  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1877          CC == CallingConv::HiPE);
1878}
1879
1880bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1881  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1882    return false;
1883
1884  CallSite CS(CI);
1885  CallingConv::ID CalleeCC = CS.getCallingConv();
1886  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1887    return false;
1888
1889  return true;
1890}
1891
1892/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1893/// a tailcall target by changing its ABI.
1894static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1895                                   bool GuaranteedTailCallOpt) {
1896  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1897}
1898
1899SDValue
1900X86TargetLowering::LowerMemArgument(SDValue Chain,
1901                                    CallingConv::ID CallConv,
1902                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1903                                    DebugLoc dl, SelectionDAG &DAG,
1904                                    const CCValAssign &VA,
1905                                    MachineFrameInfo *MFI,
1906                                    unsigned i) const {
1907  // Create the nodes corresponding to a load from this parameter slot.
1908  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1909  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1910                              getTargetMachine().Options.GuaranteedTailCallOpt);
1911  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1912  EVT ValVT;
1913
1914  // If value is passed by pointer we have address passed instead of the value
1915  // itself.
1916  if (VA.getLocInfo() == CCValAssign::Indirect)
1917    ValVT = VA.getLocVT();
1918  else
1919    ValVT = VA.getValVT();
1920
1921  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1922  // changed with more analysis.
1923  // In case of tail call optimization mark all arguments mutable. Since they
1924  // could be overwritten by lowering of arguments in case of a tail call.
1925  if (Flags.isByVal()) {
1926    unsigned Bytes = Flags.getByValSize();
1927    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1928    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1929    return DAG.getFrameIndex(FI, getPointerTy());
1930  } else {
1931    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1932                                    VA.getLocMemOffset(), isImmutable);
1933    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1934    return DAG.getLoad(ValVT, dl, Chain, FIN,
1935                       MachinePointerInfo::getFixedStack(FI),
1936                       false, false, false, 0);
1937  }
1938}
1939
1940SDValue
1941X86TargetLowering::LowerFormalArguments(SDValue Chain,
1942                                        CallingConv::ID CallConv,
1943                                        bool isVarArg,
1944                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1945                                        DebugLoc dl,
1946                                        SelectionDAG &DAG,
1947                                        SmallVectorImpl<SDValue> &InVals)
1948                                          const {
1949  MachineFunction &MF = DAG.getMachineFunction();
1950  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1951
1952  const Function* Fn = MF.getFunction();
1953  if (Fn->hasExternalLinkage() &&
1954      Subtarget->isTargetCygMing() &&
1955      Fn->getName() == "main")
1956    FuncInfo->setForceFramePointer(true);
1957
1958  MachineFrameInfo *MFI = MF.getFrameInfo();
1959  bool Is64Bit = Subtarget->is64Bit();
1960  bool IsWindows = Subtarget->isTargetWindows();
1961  bool IsWin64 = Subtarget->isTargetWin64();
1962
1963  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1964         "Var args not supported with calling convention fastcc, ghc or hipe");
1965
1966  // Assign locations to all of the incoming arguments.
1967  SmallVector<CCValAssign, 16> ArgLocs;
1968  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1969                 ArgLocs, *DAG.getContext());
1970
1971  // Allocate shadow area for Win64
1972  if (IsWin64) {
1973    CCInfo.AllocateStack(32, 8);
1974  }
1975
1976  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1977
1978  unsigned LastVal = ~0U;
1979  SDValue ArgValue;
1980  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1981    CCValAssign &VA = ArgLocs[i];
1982    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1983    // places.
1984    assert(VA.getValNo() != LastVal &&
1985           "Don't support value assigned to multiple locs yet");
1986    (void)LastVal;
1987    LastVal = VA.getValNo();
1988
1989    if (VA.isRegLoc()) {
1990      EVT RegVT = VA.getLocVT();
1991      const TargetRegisterClass *RC;
1992      if (RegVT == MVT::i32)
1993        RC = &X86::GR32RegClass;
1994      else if (Is64Bit && RegVT == MVT::i64)
1995        RC = &X86::GR64RegClass;
1996      else if (RegVT == MVT::f32)
1997        RC = &X86::FR32RegClass;
1998      else if (RegVT == MVT::f64)
1999        RC = &X86::FR64RegClass;
2000      else if (RegVT.is256BitVector())
2001        RC = &X86::VR256RegClass;
2002      else if (RegVT.is128BitVector())
2003        RC = &X86::VR128RegClass;
2004      else if (RegVT == MVT::x86mmx)
2005        RC = &X86::VR64RegClass;
2006      else
2007        llvm_unreachable("Unknown argument type!");
2008
2009      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2010      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2011
2012      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2013      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2014      // right size.
2015      if (VA.getLocInfo() == CCValAssign::SExt)
2016        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2017                               DAG.getValueType(VA.getValVT()));
2018      else if (VA.getLocInfo() == CCValAssign::ZExt)
2019        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2020                               DAG.getValueType(VA.getValVT()));
2021      else if (VA.getLocInfo() == CCValAssign::BCvt)
2022        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2023
2024      if (VA.isExtInLoc()) {
2025        // Handle MMX values passed in XMM regs.
2026        if (RegVT.isVector())
2027          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2028        else
2029          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2030      }
2031    } else {
2032      assert(VA.isMemLoc());
2033      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2034    }
2035
2036    // If value is passed via pointer - do a load.
2037    if (VA.getLocInfo() == CCValAssign::Indirect)
2038      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2039                             MachinePointerInfo(), false, false, false, 0);
2040
2041    InVals.push_back(ArgValue);
2042  }
2043
2044  // The x86-64 ABIs require that for returning structs by value we copy
2045  // the sret argument into %rax/%eax (depending on ABI) for the return.
2046  // Save the argument into a virtual register so that we can access it
2047  // from the return points.
2048  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
2049    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2050    unsigned Reg = FuncInfo->getSRetReturnReg();
2051    if (!Reg) {
2052      MVT PtrTy = getPointerTy();
2053      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2054      FuncInfo->setSRetReturnReg(Reg);
2055    }
2056    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2057    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2058  }
2059
2060  unsigned StackSize = CCInfo.getNextStackOffset();
2061  // Align stack specially for tail calls.
2062  if (FuncIsMadeTailCallSafe(CallConv,
2063                             MF.getTarget().Options.GuaranteedTailCallOpt))
2064    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2065
2066  // If the function takes variable number of arguments, make a frame index for
2067  // the start of the first vararg value... for expansion of llvm.va_start.
2068  if (isVarArg) {
2069    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2070                    CallConv != CallingConv::X86_ThisCall)) {
2071      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2072    }
2073    if (Is64Bit) {
2074      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2075
2076      // FIXME: We should really autogenerate these arrays
2077      static const uint16_t GPR64ArgRegsWin64[] = {
2078        X86::RCX, X86::RDX, X86::R8,  X86::R9
2079      };
2080      static const uint16_t GPR64ArgRegs64Bit[] = {
2081        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2082      };
2083      static const uint16_t XMMArgRegs64Bit[] = {
2084        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2085        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2086      };
2087      const uint16_t *GPR64ArgRegs;
2088      unsigned NumXMMRegs = 0;
2089
2090      if (IsWin64) {
2091        // The XMM registers which might contain var arg parameters are shadowed
2092        // in their paired GPR.  So we only need to save the GPR to their home
2093        // slots.
2094        TotalNumIntRegs = 4;
2095        GPR64ArgRegs = GPR64ArgRegsWin64;
2096      } else {
2097        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2098        GPR64ArgRegs = GPR64ArgRegs64Bit;
2099
2100        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2101                                                TotalNumXMMRegs);
2102      }
2103      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2104                                                       TotalNumIntRegs);
2105
2106      bool NoImplicitFloatOps = Fn->getAttributes().
2107        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2108      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2109             "SSE register cannot be used when SSE is disabled!");
2110      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2111               NoImplicitFloatOps) &&
2112             "SSE register cannot be used when SSE is disabled!");
2113      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2114          !Subtarget->hasSSE1())
2115        // Kernel mode asks for SSE to be disabled, so don't push them
2116        // on the stack.
2117        TotalNumXMMRegs = 0;
2118
2119      if (IsWin64) {
2120        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2121        // Get to the caller-allocated home save location.  Add 8 to account
2122        // for the return address.
2123        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2124        FuncInfo->setRegSaveFrameIndex(
2125          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2126        // Fixup to set vararg frame on shadow area (4 x i64).
2127        if (NumIntRegs < 4)
2128          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2129      } else {
2130        // For X86-64, if there are vararg parameters that are passed via
2131        // registers, then we must store them to their spots on the stack so
2132        // they may be loaded by deferencing the result of va_next.
2133        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2134        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2135        FuncInfo->setRegSaveFrameIndex(
2136          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2137                               false));
2138      }
2139
2140      // Store the integer parameter registers.
2141      SmallVector<SDValue, 8> MemOps;
2142      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2143                                        getPointerTy());
2144      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2145      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2146        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2147                                  DAG.getIntPtrConstant(Offset));
2148        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2149                                     &X86::GR64RegClass);
2150        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2151        SDValue Store =
2152          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2153                       MachinePointerInfo::getFixedStack(
2154                         FuncInfo->getRegSaveFrameIndex(), Offset),
2155                       false, false, 0);
2156        MemOps.push_back(Store);
2157        Offset += 8;
2158      }
2159
2160      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2161        // Now store the XMM (fp + vector) parameter registers.
2162        SmallVector<SDValue, 11> SaveXMMOps;
2163        SaveXMMOps.push_back(Chain);
2164
2165        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2166        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2167        SaveXMMOps.push_back(ALVal);
2168
2169        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2170                               FuncInfo->getRegSaveFrameIndex()));
2171        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2172                               FuncInfo->getVarArgsFPOffset()));
2173
2174        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2175          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2176                                       &X86::VR128RegClass);
2177          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2178          SaveXMMOps.push_back(Val);
2179        }
2180        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2181                                     MVT::Other,
2182                                     &SaveXMMOps[0], SaveXMMOps.size()));
2183      }
2184
2185      if (!MemOps.empty())
2186        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2187                            &MemOps[0], MemOps.size());
2188    }
2189  }
2190
2191  // Some CCs need callee pop.
2192  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2193                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2194    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2195  } else {
2196    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2197    // If this is an sret function, the return should pop the hidden pointer.
2198    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2199        argsAreStructReturn(Ins) == StackStructReturn)
2200      FuncInfo->setBytesToPopOnReturn(4);
2201  }
2202
2203  if (!Is64Bit) {
2204    // RegSaveFrameIndex is X86-64 only.
2205    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2206    if (CallConv == CallingConv::X86_FastCall ||
2207        CallConv == CallingConv::X86_ThisCall)
2208      // fastcc functions can't have varargs.
2209      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2210  }
2211
2212  FuncInfo->setArgumentStackSize(StackSize);
2213
2214  return Chain;
2215}
2216
2217SDValue
2218X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2219                                    SDValue StackPtr, SDValue Arg,
2220                                    DebugLoc dl, SelectionDAG &DAG,
2221                                    const CCValAssign &VA,
2222                                    ISD::ArgFlagsTy Flags) const {
2223  unsigned LocMemOffset = VA.getLocMemOffset();
2224  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2225  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2226  if (Flags.isByVal())
2227    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2228
2229  return DAG.getStore(Chain, dl, Arg, PtrOff,
2230                      MachinePointerInfo::getStack(LocMemOffset),
2231                      false, false, 0);
2232}
2233
2234/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2235/// optimization is performed and it is required.
2236SDValue
2237X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2238                                           SDValue &OutRetAddr, SDValue Chain,
2239                                           bool IsTailCall, bool Is64Bit,
2240                                           int FPDiff, DebugLoc dl) const {
2241  // Adjust the Return address stack slot.
2242  EVT VT = getPointerTy();
2243  OutRetAddr = getReturnAddressFrameIndex(DAG);
2244
2245  // Load the "old" Return address.
2246  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2247                           false, false, false, 0);
2248  return SDValue(OutRetAddr.getNode(), 1);
2249}
2250
2251/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2252/// optimization is performed and it is required (FPDiff!=0).
2253static SDValue
2254EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2255                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2256                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2257  // Store the return address to the appropriate stack slot.
2258  if (!FPDiff) return Chain;
2259  // Calculate the new stack slot for the return address.
2260  int NewReturnAddrFI =
2261    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2262  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2263  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2264                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2265                       false, false, 0);
2266  return Chain;
2267}
2268
2269SDValue
2270X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2271                             SmallVectorImpl<SDValue> &InVals) const {
2272  SelectionDAG &DAG                     = CLI.DAG;
2273  DebugLoc &dl                          = CLI.DL;
2274  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2275  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2276  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2277  SDValue Chain                         = CLI.Chain;
2278  SDValue Callee                        = CLI.Callee;
2279  CallingConv::ID CallConv              = CLI.CallConv;
2280  bool &isTailCall                      = CLI.IsTailCall;
2281  bool isVarArg                         = CLI.IsVarArg;
2282
2283  MachineFunction &MF = DAG.getMachineFunction();
2284  bool Is64Bit        = Subtarget->is64Bit();
2285  bool IsWin64        = Subtarget->isTargetWin64();
2286  bool IsWindows      = Subtarget->isTargetWindows();
2287  StructReturnType SR = callIsStructReturn(Outs);
2288  bool IsSibcall      = false;
2289
2290  if (MF.getTarget().Options.DisableTailCalls)
2291    isTailCall = false;
2292
2293  if (isTailCall) {
2294    // Check if it's really possible to do a tail call.
2295    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2296                    isVarArg, SR != NotStructReturn,
2297                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2298                    Outs, OutVals, Ins, DAG);
2299
2300    // Sibcalls are automatically detected tailcalls which do not require
2301    // ABI changes.
2302    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2303      IsSibcall = true;
2304
2305    if (isTailCall)
2306      ++NumTailCalls;
2307  }
2308
2309  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2310         "Var args not supported with calling convention fastcc, ghc or hipe");
2311
2312  // Analyze operands of the call, assigning locations to each operand.
2313  SmallVector<CCValAssign, 16> ArgLocs;
2314  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2315                 ArgLocs, *DAG.getContext());
2316
2317  // Allocate shadow area for Win64
2318  if (IsWin64) {
2319    CCInfo.AllocateStack(32, 8);
2320  }
2321
2322  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2323
2324  // Get a count of how many bytes are to be pushed on the stack.
2325  unsigned NumBytes = CCInfo.getNextStackOffset();
2326  if (IsSibcall)
2327    // This is a sibcall. The memory operands are available in caller's
2328    // own caller's stack.
2329    NumBytes = 0;
2330  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2331           IsTailCallConvention(CallConv))
2332    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2333
2334  int FPDiff = 0;
2335  if (isTailCall && !IsSibcall) {
2336    // Lower arguments at fp - stackoffset + fpdiff.
2337    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2338    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2339
2340    FPDiff = NumBytesCallerPushed - NumBytes;
2341
2342    // Set the delta of movement of the returnaddr stackslot.
2343    // But only set if delta is greater than previous delta.
2344    if (FPDiff < X86Info->getTCReturnAddrDelta())
2345      X86Info->setTCReturnAddrDelta(FPDiff);
2346  }
2347
2348  if (!IsSibcall)
2349    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2350
2351  SDValue RetAddrFrIdx;
2352  // Load return address for tail calls.
2353  if (isTailCall && FPDiff)
2354    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2355                                    Is64Bit, FPDiff, dl);
2356
2357  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2358  SmallVector<SDValue, 8> MemOpChains;
2359  SDValue StackPtr;
2360
2361  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2362  // of tail call optimization arguments are handle later.
2363  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2364    CCValAssign &VA = ArgLocs[i];
2365    EVT RegVT = VA.getLocVT();
2366    SDValue Arg = OutVals[i];
2367    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2368    bool isByVal = Flags.isByVal();
2369
2370    // Promote the value if needed.
2371    switch (VA.getLocInfo()) {
2372    default: llvm_unreachable("Unknown loc info!");
2373    case CCValAssign::Full: break;
2374    case CCValAssign::SExt:
2375      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2376      break;
2377    case CCValAssign::ZExt:
2378      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2379      break;
2380    case CCValAssign::AExt:
2381      if (RegVT.is128BitVector()) {
2382        // Special case: passing MMX values in XMM registers.
2383        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2384        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2385        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2386      } else
2387        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2388      break;
2389    case CCValAssign::BCvt:
2390      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2391      break;
2392    case CCValAssign::Indirect: {
2393      // Store the argument.
2394      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2395      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2396      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2397                           MachinePointerInfo::getFixedStack(FI),
2398                           false, false, 0);
2399      Arg = SpillSlot;
2400      break;
2401    }
2402    }
2403
2404    if (VA.isRegLoc()) {
2405      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2406      if (isVarArg && IsWin64) {
2407        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2408        // shadow reg if callee is a varargs function.
2409        unsigned ShadowReg = 0;
2410        switch (VA.getLocReg()) {
2411        case X86::XMM0: ShadowReg = X86::RCX; break;
2412        case X86::XMM1: ShadowReg = X86::RDX; break;
2413        case X86::XMM2: ShadowReg = X86::R8; break;
2414        case X86::XMM3: ShadowReg = X86::R9; break;
2415        }
2416        if (ShadowReg)
2417          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2418      }
2419    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2420      assert(VA.isMemLoc());
2421      if (StackPtr.getNode() == 0)
2422        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2423                                      getPointerTy());
2424      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2425                                             dl, DAG, VA, Flags));
2426    }
2427  }
2428
2429  if (!MemOpChains.empty())
2430    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2431                        &MemOpChains[0], MemOpChains.size());
2432
2433  if (Subtarget->isPICStyleGOT()) {
2434    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2435    // GOT pointer.
2436    if (!isTailCall) {
2437      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2438               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2439    } else {
2440      // If we are tail calling and generating PIC/GOT style code load the
2441      // address of the callee into ECX. The value in ecx is used as target of
2442      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2443      // for tail calls on PIC/GOT architectures. Normally we would just put the
2444      // address of GOT into ebx and then call target@PLT. But for tail calls
2445      // ebx would be restored (since ebx is callee saved) before jumping to the
2446      // target@PLT.
2447
2448      // Note: The actual moving to ECX is done further down.
2449      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2450      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2451          !G->getGlobal()->hasProtectedVisibility())
2452        Callee = LowerGlobalAddress(Callee, DAG);
2453      else if (isa<ExternalSymbolSDNode>(Callee))
2454        Callee = LowerExternalSymbol(Callee, DAG);
2455    }
2456  }
2457
2458  if (Is64Bit && isVarArg && !IsWin64) {
2459    // From AMD64 ABI document:
2460    // For calls that may call functions that use varargs or stdargs
2461    // (prototype-less calls or calls to functions containing ellipsis (...) in
2462    // the declaration) %al is used as hidden argument to specify the number
2463    // of SSE registers used. The contents of %al do not need to match exactly
2464    // the number of registers, but must be an ubound on the number of SSE
2465    // registers used and is in the range 0 - 8 inclusive.
2466
2467    // Count the number of XMM registers allocated.
2468    static const uint16_t XMMArgRegs[] = {
2469      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2470      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2471    };
2472    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2473    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2474           && "SSE registers cannot be used when SSE is disabled");
2475
2476    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2477                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2478  }
2479
2480  // For tail calls lower the arguments to the 'real' stack slot.
2481  if (isTailCall) {
2482    // Force all the incoming stack arguments to be loaded from the stack
2483    // before any new outgoing arguments are stored to the stack, because the
2484    // outgoing stack slots may alias the incoming argument stack slots, and
2485    // the alias isn't otherwise explicit. This is slightly more conservative
2486    // than necessary, because it means that each store effectively depends
2487    // on every argument instead of just those arguments it would clobber.
2488    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2489
2490    SmallVector<SDValue, 8> MemOpChains2;
2491    SDValue FIN;
2492    int FI = 0;
2493    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2494      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2495        CCValAssign &VA = ArgLocs[i];
2496        if (VA.isRegLoc())
2497          continue;
2498        assert(VA.isMemLoc());
2499        SDValue Arg = OutVals[i];
2500        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2501        // Create frame index.
2502        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2503        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2504        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2505        FIN = DAG.getFrameIndex(FI, getPointerTy());
2506
2507        if (Flags.isByVal()) {
2508          // Copy relative to framepointer.
2509          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2510          if (StackPtr.getNode() == 0)
2511            StackPtr = DAG.getCopyFromReg(Chain, dl,
2512                                          RegInfo->getStackRegister(),
2513                                          getPointerTy());
2514          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2515
2516          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2517                                                           ArgChain,
2518                                                           Flags, DAG, dl));
2519        } else {
2520          // Store relative to framepointer.
2521          MemOpChains2.push_back(
2522            DAG.getStore(ArgChain, dl, Arg, FIN,
2523                         MachinePointerInfo::getFixedStack(FI),
2524                         false, false, 0));
2525        }
2526      }
2527    }
2528
2529    if (!MemOpChains2.empty())
2530      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2531                          &MemOpChains2[0], MemOpChains2.size());
2532
2533    // Store the return address to the appropriate stack slot.
2534    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2535                                     getPointerTy(), RegInfo->getSlotSize(),
2536                                     FPDiff, dl);
2537  }
2538
2539  // Build a sequence of copy-to-reg nodes chained together with token chain
2540  // and flag operands which copy the outgoing args into registers.
2541  SDValue InFlag;
2542  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2543    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2544                             RegsToPass[i].second, InFlag);
2545    InFlag = Chain.getValue(1);
2546  }
2547
2548  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2549    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2550    // In the 64-bit large code model, we have to make all calls
2551    // through a register, since the call instruction's 32-bit
2552    // pc-relative offset may not be large enough to hold the whole
2553    // address.
2554  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2555    // If the callee is a GlobalAddress node (quite common, every direct call
2556    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2557    // it.
2558
2559    // We should use extra load for direct calls to dllimported functions in
2560    // non-JIT mode.
2561    const GlobalValue *GV = G->getGlobal();
2562    if (!GV->hasDLLImportLinkage()) {
2563      unsigned char OpFlags = 0;
2564      bool ExtraLoad = false;
2565      unsigned WrapperKind = ISD::DELETED_NODE;
2566
2567      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2568      // external symbols most go through the PLT in PIC mode.  If the symbol
2569      // has hidden or protected visibility, or if it is static or local, then
2570      // we don't need to use the PLT - we can directly call it.
2571      if (Subtarget->isTargetELF() &&
2572          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2573          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2574        OpFlags = X86II::MO_PLT;
2575      } else if (Subtarget->isPICStyleStubAny() &&
2576                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2577                 (!Subtarget->getTargetTriple().isMacOSX() ||
2578                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2579        // PC-relative references to external symbols should go through $stub,
2580        // unless we're building with the leopard linker or later, which
2581        // automatically synthesizes these stubs.
2582        OpFlags = X86II::MO_DARWIN_STUB;
2583      } else if (Subtarget->isPICStyleRIPRel() &&
2584                 isa<Function>(GV) &&
2585                 cast<Function>(GV)->getAttributes().
2586                   hasAttribute(AttributeSet::FunctionIndex,
2587                                Attribute::NonLazyBind)) {
2588        // If the function is marked as non-lazy, generate an indirect call
2589        // which loads from the GOT directly. This avoids runtime overhead
2590        // at the cost of eager binding (and one extra byte of encoding).
2591        OpFlags = X86II::MO_GOTPCREL;
2592        WrapperKind = X86ISD::WrapperRIP;
2593        ExtraLoad = true;
2594      }
2595
2596      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2597                                          G->getOffset(), OpFlags);
2598
2599      // Add a wrapper if needed.
2600      if (WrapperKind != ISD::DELETED_NODE)
2601        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2602      // Add extra indirection if needed.
2603      if (ExtraLoad)
2604        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2605                             MachinePointerInfo::getGOT(),
2606                             false, false, false, 0);
2607    }
2608  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2609    unsigned char OpFlags = 0;
2610
2611    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2612    // external symbols should go through the PLT.
2613    if (Subtarget->isTargetELF() &&
2614        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2615      OpFlags = X86II::MO_PLT;
2616    } else if (Subtarget->isPICStyleStubAny() &&
2617               (!Subtarget->getTargetTriple().isMacOSX() ||
2618                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2619      // PC-relative references to external symbols should go through $stub,
2620      // unless we're building with the leopard linker or later, which
2621      // automatically synthesizes these stubs.
2622      OpFlags = X86II::MO_DARWIN_STUB;
2623    }
2624
2625    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2626                                         OpFlags);
2627  }
2628
2629  // Returns a chain & a flag for retval copy to use.
2630  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2631  SmallVector<SDValue, 8> Ops;
2632
2633  if (!IsSibcall && isTailCall) {
2634    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2635                           DAG.getIntPtrConstant(0, true), InFlag);
2636    InFlag = Chain.getValue(1);
2637  }
2638
2639  Ops.push_back(Chain);
2640  Ops.push_back(Callee);
2641
2642  if (isTailCall)
2643    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2644
2645  // Add argument registers to the end of the list so that they are known live
2646  // into the call.
2647  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2648    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2649                                  RegsToPass[i].second.getValueType()));
2650
2651  // Add a register mask operand representing the call-preserved registers.
2652  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2653  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2654  assert(Mask && "Missing call preserved mask for calling convention");
2655  Ops.push_back(DAG.getRegisterMask(Mask));
2656
2657  if (InFlag.getNode())
2658    Ops.push_back(InFlag);
2659
2660  if (isTailCall) {
2661    // We used to do:
2662    //// If this is the first return lowered for this function, add the regs
2663    //// to the liveout set for the function.
2664    // This isn't right, although it's probably harmless on x86; liveouts
2665    // should be computed from returns not tail calls.  Consider a void
2666    // function making a tail call to a function returning int.
2667    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2668  }
2669
2670  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2671  InFlag = Chain.getValue(1);
2672
2673  // Create the CALLSEQ_END node.
2674  unsigned NumBytesForCalleeToPush;
2675  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2676                       getTargetMachine().Options.GuaranteedTailCallOpt))
2677    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2678  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2679           SR == StackStructReturn)
2680    // If this is a call to a struct-return function, the callee
2681    // pops the hidden struct pointer, so we have to push it back.
2682    // This is common for Darwin/X86, Linux & Mingw32 targets.
2683    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2684    NumBytesForCalleeToPush = 4;
2685  else
2686    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2687
2688  // Returns a flag for retval copy to use.
2689  if (!IsSibcall) {
2690    Chain = DAG.getCALLSEQ_END(Chain,
2691                               DAG.getIntPtrConstant(NumBytes, true),
2692                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2693                                                     true),
2694                               InFlag);
2695    InFlag = Chain.getValue(1);
2696  }
2697
2698  // Handle result values, copying them out of physregs into vregs that we
2699  // return.
2700  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2701                         Ins, dl, DAG, InVals);
2702}
2703
2704//===----------------------------------------------------------------------===//
2705//                Fast Calling Convention (tail call) implementation
2706//===----------------------------------------------------------------------===//
2707
2708//  Like std call, callee cleans arguments, convention except that ECX is
2709//  reserved for storing the tail called function address. Only 2 registers are
2710//  free for argument passing (inreg). Tail call optimization is performed
2711//  provided:
2712//                * tailcallopt is enabled
2713//                * caller/callee are fastcc
2714//  On X86_64 architecture with GOT-style position independent code only local
2715//  (within module) calls are supported at the moment.
2716//  To keep the stack aligned according to platform abi the function
2717//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2718//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2719//  If a tail called function callee has more arguments than the caller the
2720//  caller needs to make sure that there is room to move the RETADDR to. This is
2721//  achieved by reserving an area the size of the argument delta right after the
2722//  original REtADDR, but before the saved framepointer or the spilled registers
2723//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2724//  stack layout:
2725//    arg1
2726//    arg2
2727//    RETADDR
2728//    [ new RETADDR
2729//      move area ]
2730//    (possible EBP)
2731//    ESI
2732//    EDI
2733//    local1 ..
2734
2735/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2736/// for a 16 byte align requirement.
2737unsigned
2738X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2739                                               SelectionDAG& DAG) const {
2740  MachineFunction &MF = DAG.getMachineFunction();
2741  const TargetMachine &TM = MF.getTarget();
2742  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2743  unsigned StackAlignment = TFI.getStackAlignment();
2744  uint64_t AlignMask = StackAlignment - 1;
2745  int64_t Offset = StackSize;
2746  unsigned SlotSize = RegInfo->getSlotSize();
2747  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2748    // Number smaller than 12 so just add the difference.
2749    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2750  } else {
2751    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2752    Offset = ((~AlignMask) & Offset) + StackAlignment +
2753      (StackAlignment-SlotSize);
2754  }
2755  return Offset;
2756}
2757
2758/// MatchingStackOffset - Return true if the given stack call argument is
2759/// already available in the same position (relatively) of the caller's
2760/// incoming argument stack.
2761static
2762bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2763                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2764                         const X86InstrInfo *TII) {
2765  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2766  int FI = INT_MAX;
2767  if (Arg.getOpcode() == ISD::CopyFromReg) {
2768    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2769    if (!TargetRegisterInfo::isVirtualRegister(VR))
2770      return false;
2771    MachineInstr *Def = MRI->getVRegDef(VR);
2772    if (!Def)
2773      return false;
2774    if (!Flags.isByVal()) {
2775      if (!TII->isLoadFromStackSlot(Def, FI))
2776        return false;
2777    } else {
2778      unsigned Opcode = Def->getOpcode();
2779      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2780          Def->getOperand(1).isFI()) {
2781        FI = Def->getOperand(1).getIndex();
2782        Bytes = Flags.getByValSize();
2783      } else
2784        return false;
2785    }
2786  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2787    if (Flags.isByVal())
2788      // ByVal argument is passed in as a pointer but it's now being
2789      // dereferenced. e.g.
2790      // define @foo(%struct.X* %A) {
2791      //   tail call @bar(%struct.X* byval %A)
2792      // }
2793      return false;
2794    SDValue Ptr = Ld->getBasePtr();
2795    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2796    if (!FINode)
2797      return false;
2798    FI = FINode->getIndex();
2799  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2800    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2801    FI = FINode->getIndex();
2802    Bytes = Flags.getByValSize();
2803  } else
2804    return false;
2805
2806  assert(FI != INT_MAX);
2807  if (!MFI->isFixedObjectIndex(FI))
2808    return false;
2809  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2810}
2811
2812/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2813/// for tail call optimization. Targets which want to do tail call
2814/// optimization should implement this function.
2815bool
2816X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2817                                                     CallingConv::ID CalleeCC,
2818                                                     bool isVarArg,
2819                                                     bool isCalleeStructRet,
2820                                                     bool isCallerStructRet,
2821                                                     Type *RetTy,
2822                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2823                                    const SmallVectorImpl<SDValue> &OutVals,
2824                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2825                                                     SelectionDAG &DAG) const {
2826  if (!IsTailCallConvention(CalleeCC) &&
2827      CalleeCC != CallingConv::C)
2828    return false;
2829
2830  // If -tailcallopt is specified, make fastcc functions tail-callable.
2831  const MachineFunction &MF = DAG.getMachineFunction();
2832  const Function *CallerF = DAG.getMachineFunction().getFunction();
2833
2834  // If the function return type is x86_fp80 and the callee return type is not,
2835  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2836  // perform a tailcall optimization here.
2837  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2838    return false;
2839
2840  CallingConv::ID CallerCC = CallerF->getCallingConv();
2841  bool CCMatch = CallerCC == CalleeCC;
2842
2843  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2844    if (IsTailCallConvention(CalleeCC) && CCMatch)
2845      return true;
2846    return false;
2847  }
2848
2849  // Look for obvious safe cases to perform tail call optimization that do not
2850  // require ABI changes. This is what gcc calls sibcall.
2851
2852  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2853  // emit a special epilogue.
2854  if (RegInfo->needsStackRealignment(MF))
2855    return false;
2856
2857  // Also avoid sibcall optimization if either caller or callee uses struct
2858  // return semantics.
2859  if (isCalleeStructRet || isCallerStructRet)
2860    return false;
2861
2862  // An stdcall caller is expected to clean up its arguments; the callee
2863  // isn't going to do that.
2864  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
2865    return false;
2866
2867  // Do not sibcall optimize vararg calls unless all arguments are passed via
2868  // registers.
2869  if (isVarArg && !Outs.empty()) {
2870
2871    // Optimizing for varargs on Win64 is unlikely to be safe without
2872    // additional testing.
2873    if (Subtarget->isTargetWin64())
2874      return false;
2875
2876    SmallVector<CCValAssign, 16> ArgLocs;
2877    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2878                   getTargetMachine(), ArgLocs, *DAG.getContext());
2879
2880    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2881    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2882      if (!ArgLocs[i].isRegLoc())
2883        return false;
2884  }
2885
2886  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2887  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2888  // this into a sibcall.
2889  bool Unused = false;
2890  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2891    if (!Ins[i].Used) {
2892      Unused = true;
2893      break;
2894    }
2895  }
2896  if (Unused) {
2897    SmallVector<CCValAssign, 16> RVLocs;
2898    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2899                   getTargetMachine(), RVLocs, *DAG.getContext());
2900    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2901    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2902      CCValAssign &VA = RVLocs[i];
2903      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2904        return false;
2905    }
2906  }
2907
2908  // If the calling conventions do not match, then we'd better make sure the
2909  // results are returned in the same way as what the caller expects.
2910  if (!CCMatch) {
2911    SmallVector<CCValAssign, 16> RVLocs1;
2912    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2913                    getTargetMachine(), RVLocs1, *DAG.getContext());
2914    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2915
2916    SmallVector<CCValAssign, 16> RVLocs2;
2917    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2918                    getTargetMachine(), RVLocs2, *DAG.getContext());
2919    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2920
2921    if (RVLocs1.size() != RVLocs2.size())
2922      return false;
2923    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2924      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2925        return false;
2926      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2927        return false;
2928      if (RVLocs1[i].isRegLoc()) {
2929        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2930          return false;
2931      } else {
2932        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2933          return false;
2934      }
2935    }
2936  }
2937
2938  // If the callee takes no arguments then go on to check the results of the
2939  // call.
2940  if (!Outs.empty()) {
2941    // Check if stack adjustment is needed. For now, do not do this if any
2942    // argument is passed on the stack.
2943    SmallVector<CCValAssign, 16> ArgLocs;
2944    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2945                   getTargetMachine(), ArgLocs, *DAG.getContext());
2946
2947    // Allocate shadow area for Win64
2948    if (Subtarget->isTargetWin64()) {
2949      CCInfo.AllocateStack(32, 8);
2950    }
2951
2952    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2953    if (CCInfo.getNextStackOffset()) {
2954      MachineFunction &MF = DAG.getMachineFunction();
2955      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2956        return false;
2957
2958      // Check if the arguments are already laid out in the right way as
2959      // the caller's fixed stack objects.
2960      MachineFrameInfo *MFI = MF.getFrameInfo();
2961      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2962      const X86InstrInfo *TII =
2963        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2964      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2965        CCValAssign &VA = ArgLocs[i];
2966        SDValue Arg = OutVals[i];
2967        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2968        if (VA.getLocInfo() == CCValAssign::Indirect)
2969          return false;
2970        if (!VA.isRegLoc()) {
2971          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2972                                   MFI, MRI, TII))
2973            return false;
2974        }
2975      }
2976    }
2977
2978    // If the tailcall address may be in a register, then make sure it's
2979    // possible to register allocate for it. In 32-bit, the call address can
2980    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2981    // callee-saved registers are restored. These happen to be the same
2982    // registers used to pass 'inreg' arguments so watch out for those.
2983    if (!Subtarget->is64Bit() &&
2984        ((!isa<GlobalAddressSDNode>(Callee) &&
2985          !isa<ExternalSymbolSDNode>(Callee)) ||
2986         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
2987      unsigned NumInRegs = 0;
2988      // In PIC we need an extra register to formulate the address computation
2989      // for the callee.
2990      unsigned MaxInRegs =
2991          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
2992
2993      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2994        CCValAssign &VA = ArgLocs[i];
2995        if (!VA.isRegLoc())
2996          continue;
2997        unsigned Reg = VA.getLocReg();
2998        switch (Reg) {
2999        default: break;
3000        case X86::EAX: case X86::EDX: case X86::ECX:
3001          if (++NumInRegs == MaxInRegs)
3002            return false;
3003          break;
3004        }
3005      }
3006    }
3007  }
3008
3009  return true;
3010}
3011
3012FastISel *
3013X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3014                                  const TargetLibraryInfo *libInfo) const {
3015  return X86::createFastISel(funcInfo, libInfo);
3016}
3017
3018//===----------------------------------------------------------------------===//
3019//                           Other Lowering Hooks
3020//===----------------------------------------------------------------------===//
3021
3022static bool MayFoldLoad(SDValue Op) {
3023  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3024}
3025
3026static bool MayFoldIntoStore(SDValue Op) {
3027  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3028}
3029
3030static bool isTargetShuffle(unsigned Opcode) {
3031  switch(Opcode) {
3032  default: return false;
3033  case X86ISD::PSHUFD:
3034  case X86ISD::PSHUFHW:
3035  case X86ISD::PSHUFLW:
3036  case X86ISD::SHUFP:
3037  case X86ISD::PALIGNR:
3038  case X86ISD::MOVLHPS:
3039  case X86ISD::MOVLHPD:
3040  case X86ISD::MOVHLPS:
3041  case X86ISD::MOVLPS:
3042  case X86ISD::MOVLPD:
3043  case X86ISD::MOVSHDUP:
3044  case X86ISD::MOVSLDUP:
3045  case X86ISD::MOVDDUP:
3046  case X86ISD::MOVSS:
3047  case X86ISD::MOVSD:
3048  case X86ISD::UNPCKL:
3049  case X86ISD::UNPCKH:
3050  case X86ISD::VPERMILP:
3051  case X86ISD::VPERM2X128:
3052  case X86ISD::VPERMI:
3053    return true;
3054  }
3055}
3056
3057static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3058                                    SDValue V1, SelectionDAG &DAG) {
3059  switch(Opc) {
3060  default: llvm_unreachable("Unknown x86 shuffle node");
3061  case X86ISD::MOVSHDUP:
3062  case X86ISD::MOVSLDUP:
3063  case X86ISD::MOVDDUP:
3064    return DAG.getNode(Opc, dl, VT, V1);
3065  }
3066}
3067
3068static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3069                                    SDValue V1, unsigned TargetMask,
3070                                    SelectionDAG &DAG) {
3071  switch(Opc) {
3072  default: llvm_unreachable("Unknown x86 shuffle node");
3073  case X86ISD::PSHUFD:
3074  case X86ISD::PSHUFHW:
3075  case X86ISD::PSHUFLW:
3076  case X86ISD::VPERMILP:
3077  case X86ISD::VPERMI:
3078    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3079  }
3080}
3081
3082static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3083                                    SDValue V1, SDValue V2, unsigned TargetMask,
3084                                    SelectionDAG &DAG) {
3085  switch(Opc) {
3086  default: llvm_unreachable("Unknown x86 shuffle node");
3087  case X86ISD::PALIGNR:
3088  case X86ISD::SHUFP:
3089  case X86ISD::VPERM2X128:
3090    return DAG.getNode(Opc, dl, VT, V1, V2,
3091                       DAG.getConstant(TargetMask, MVT::i8));
3092  }
3093}
3094
3095static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3096                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3097  switch(Opc) {
3098  default: llvm_unreachable("Unknown x86 shuffle node");
3099  case X86ISD::MOVLHPS:
3100  case X86ISD::MOVLHPD:
3101  case X86ISD::MOVHLPS:
3102  case X86ISD::MOVLPS:
3103  case X86ISD::MOVLPD:
3104  case X86ISD::MOVSS:
3105  case X86ISD::MOVSD:
3106  case X86ISD::UNPCKL:
3107  case X86ISD::UNPCKH:
3108    return DAG.getNode(Opc, dl, VT, V1, V2);
3109  }
3110}
3111
3112SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3113  MachineFunction &MF = DAG.getMachineFunction();
3114  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3115  int ReturnAddrIndex = FuncInfo->getRAIndex();
3116
3117  if (ReturnAddrIndex == 0) {
3118    // Set up a frame object for the return address.
3119    unsigned SlotSize = RegInfo->getSlotSize();
3120    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3121                                                           false);
3122    FuncInfo->setRAIndex(ReturnAddrIndex);
3123  }
3124
3125  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3126}
3127
3128bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3129                                       bool hasSymbolicDisplacement) {
3130  // Offset should fit into 32 bit immediate field.
3131  if (!isInt<32>(Offset))
3132    return false;
3133
3134  // If we don't have a symbolic displacement - we don't have any extra
3135  // restrictions.
3136  if (!hasSymbolicDisplacement)
3137    return true;
3138
3139  // FIXME: Some tweaks might be needed for medium code model.
3140  if (M != CodeModel::Small && M != CodeModel::Kernel)
3141    return false;
3142
3143  // For small code model we assume that latest object is 16MB before end of 31
3144  // bits boundary. We may also accept pretty large negative constants knowing
3145  // that all objects are in the positive half of address space.
3146  if (M == CodeModel::Small && Offset < 16*1024*1024)
3147    return true;
3148
3149  // For kernel code model we know that all object resist in the negative half
3150  // of 32bits address space. We may not accept negative offsets, since they may
3151  // be just off and we may accept pretty large positive ones.
3152  if (M == CodeModel::Kernel && Offset > 0)
3153    return true;
3154
3155  return false;
3156}
3157
3158/// isCalleePop - Determines whether the callee is required to pop its
3159/// own arguments. Callee pop is necessary to support tail calls.
3160bool X86::isCalleePop(CallingConv::ID CallingConv,
3161                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3162  if (IsVarArg)
3163    return false;
3164
3165  switch (CallingConv) {
3166  default:
3167    return false;
3168  case CallingConv::X86_StdCall:
3169    return !is64Bit;
3170  case CallingConv::X86_FastCall:
3171    return !is64Bit;
3172  case CallingConv::X86_ThisCall:
3173    return !is64Bit;
3174  case CallingConv::Fast:
3175    return TailCallOpt;
3176  case CallingConv::GHC:
3177    return TailCallOpt;
3178  case CallingConv::HiPE:
3179    return TailCallOpt;
3180  }
3181}
3182
3183/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3184/// specific condition code, returning the condition code and the LHS/RHS of the
3185/// comparison to make.
3186static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3187                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3188  if (!isFP) {
3189    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3190      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3191        // X > -1   -> X == 0, jump !sign.
3192        RHS = DAG.getConstant(0, RHS.getValueType());
3193        return X86::COND_NS;
3194      }
3195      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3196        // X < 0   -> X == 0, jump on sign.
3197        return X86::COND_S;
3198      }
3199      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3200        // X < 1   -> X <= 0
3201        RHS = DAG.getConstant(0, RHS.getValueType());
3202        return X86::COND_LE;
3203      }
3204    }
3205
3206    switch (SetCCOpcode) {
3207    default: llvm_unreachable("Invalid integer condition!");
3208    case ISD::SETEQ:  return X86::COND_E;
3209    case ISD::SETGT:  return X86::COND_G;
3210    case ISD::SETGE:  return X86::COND_GE;
3211    case ISD::SETLT:  return X86::COND_L;
3212    case ISD::SETLE:  return X86::COND_LE;
3213    case ISD::SETNE:  return X86::COND_NE;
3214    case ISD::SETULT: return X86::COND_B;
3215    case ISD::SETUGT: return X86::COND_A;
3216    case ISD::SETULE: return X86::COND_BE;
3217    case ISD::SETUGE: return X86::COND_AE;
3218    }
3219  }
3220
3221  // First determine if it is required or is profitable to flip the operands.
3222
3223  // If LHS is a foldable load, but RHS is not, flip the condition.
3224  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3225      !ISD::isNON_EXTLoad(RHS.getNode())) {
3226    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3227    std::swap(LHS, RHS);
3228  }
3229
3230  switch (SetCCOpcode) {
3231  default: break;
3232  case ISD::SETOLT:
3233  case ISD::SETOLE:
3234  case ISD::SETUGT:
3235  case ISD::SETUGE:
3236    std::swap(LHS, RHS);
3237    break;
3238  }
3239
3240  // On a floating point condition, the flags are set as follows:
3241  // ZF  PF  CF   op
3242  //  0 | 0 | 0 | X > Y
3243  //  0 | 0 | 1 | X < Y
3244  //  1 | 0 | 0 | X == Y
3245  //  1 | 1 | 1 | unordered
3246  switch (SetCCOpcode) {
3247  default: llvm_unreachable("Condcode should be pre-legalized away");
3248  case ISD::SETUEQ:
3249  case ISD::SETEQ:   return X86::COND_E;
3250  case ISD::SETOLT:              // flipped
3251  case ISD::SETOGT:
3252  case ISD::SETGT:   return X86::COND_A;
3253  case ISD::SETOLE:              // flipped
3254  case ISD::SETOGE:
3255  case ISD::SETGE:   return X86::COND_AE;
3256  case ISD::SETUGT:              // flipped
3257  case ISD::SETULT:
3258  case ISD::SETLT:   return X86::COND_B;
3259  case ISD::SETUGE:              // flipped
3260  case ISD::SETULE:
3261  case ISD::SETLE:   return X86::COND_BE;
3262  case ISD::SETONE:
3263  case ISD::SETNE:   return X86::COND_NE;
3264  case ISD::SETUO:   return X86::COND_P;
3265  case ISD::SETO:    return X86::COND_NP;
3266  case ISD::SETOEQ:
3267  case ISD::SETUNE:  return X86::COND_INVALID;
3268  }
3269}
3270
3271/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3272/// code. Current x86 isa includes the following FP cmov instructions:
3273/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3274static bool hasFPCMov(unsigned X86CC) {
3275  switch (X86CC) {
3276  default:
3277    return false;
3278  case X86::COND_B:
3279  case X86::COND_BE:
3280  case X86::COND_E:
3281  case X86::COND_P:
3282  case X86::COND_A:
3283  case X86::COND_AE:
3284  case X86::COND_NE:
3285  case X86::COND_NP:
3286    return true;
3287  }
3288}
3289
3290/// isFPImmLegal - Returns true if the target can instruction select the
3291/// specified FP immediate natively. If false, the legalizer will
3292/// materialize the FP immediate as a load from a constant pool.
3293bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3294  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3295    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3296      return true;
3297  }
3298  return false;
3299}
3300
3301/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3302/// the specified range (L, H].
3303static bool isUndefOrInRange(int Val, int Low, int Hi) {
3304  return (Val < 0) || (Val >= Low && Val < Hi);
3305}
3306
3307/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3308/// specified value.
3309static bool isUndefOrEqual(int Val, int CmpVal) {
3310  return (Val < 0 || Val == CmpVal);
3311}
3312
3313/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3314/// from position Pos and ending in Pos+Size, falls within the specified
3315/// sequential range (L, L+Pos]. or is undef.
3316static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3317                                       unsigned Pos, unsigned Size, int Low) {
3318  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3319    if (!isUndefOrEqual(Mask[i], Low))
3320      return false;
3321  return true;
3322}
3323
3324/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3325/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3326/// the second operand.
3327static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3328  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3329    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3330  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3331    return (Mask[0] < 2 && Mask[1] < 2);
3332  return false;
3333}
3334
3335/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3336/// is suitable for input to PSHUFHW.
3337static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3338  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3339    return false;
3340
3341  // Lower quadword copied in order or undef.
3342  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3343    return false;
3344
3345  // Upper quadword shuffled.
3346  for (unsigned i = 4; i != 8; ++i)
3347    if (!isUndefOrInRange(Mask[i], 4, 8))
3348      return false;
3349
3350  if (VT == MVT::v16i16) {
3351    // Lower quadword copied in order or undef.
3352    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3353      return false;
3354
3355    // Upper quadword shuffled.
3356    for (unsigned i = 12; i != 16; ++i)
3357      if (!isUndefOrInRange(Mask[i], 12, 16))
3358        return false;
3359  }
3360
3361  return true;
3362}
3363
3364/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3365/// is suitable for input to PSHUFLW.
3366static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3367  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3368    return false;
3369
3370  // Upper quadword copied in order.
3371  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3372    return false;
3373
3374  // Lower quadword shuffled.
3375  for (unsigned i = 0; i != 4; ++i)
3376    if (!isUndefOrInRange(Mask[i], 0, 4))
3377      return false;
3378
3379  if (VT == MVT::v16i16) {
3380    // Upper quadword copied in order.
3381    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3382      return false;
3383
3384    // Lower quadword shuffled.
3385    for (unsigned i = 8; i != 12; ++i)
3386      if (!isUndefOrInRange(Mask[i], 8, 12))
3387        return false;
3388  }
3389
3390  return true;
3391}
3392
3393/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3394/// is suitable for input to PALIGNR.
3395static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3396                          const X86Subtarget *Subtarget) {
3397  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3398      (VT.is256BitVector() && !Subtarget->hasInt256()))
3399    return false;
3400
3401  unsigned NumElts = VT.getVectorNumElements();
3402  unsigned NumLanes = VT.getSizeInBits()/128;
3403  unsigned NumLaneElts = NumElts/NumLanes;
3404
3405  // Do not handle 64-bit element shuffles with palignr.
3406  if (NumLaneElts == 2)
3407    return false;
3408
3409  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3410    unsigned i;
3411    for (i = 0; i != NumLaneElts; ++i) {
3412      if (Mask[i+l] >= 0)
3413        break;
3414    }
3415
3416    // Lane is all undef, go to next lane
3417    if (i == NumLaneElts)
3418      continue;
3419
3420    int Start = Mask[i+l];
3421
3422    // Make sure its in this lane in one of the sources
3423    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3424        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3425      return false;
3426
3427    // If not lane 0, then we must match lane 0
3428    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3429      return false;
3430
3431    // Correct second source to be contiguous with first source
3432    if (Start >= (int)NumElts)
3433      Start -= NumElts - NumLaneElts;
3434
3435    // Make sure we're shifting in the right direction.
3436    if (Start <= (int)(i+l))
3437      return false;
3438
3439    Start -= i;
3440
3441    // Check the rest of the elements to see if they are consecutive.
3442    for (++i; i != NumLaneElts; ++i) {
3443      int Idx = Mask[i+l];
3444
3445      // Make sure its in this lane
3446      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3447          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3448        return false;
3449
3450      // If not lane 0, then we must match lane 0
3451      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3452        return false;
3453
3454      if (Idx >= (int)NumElts)
3455        Idx -= NumElts - NumLaneElts;
3456
3457      if (!isUndefOrEqual(Idx, Start+i))
3458        return false;
3459
3460    }
3461  }
3462
3463  return true;
3464}
3465
3466/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3467/// the two vector operands have swapped position.
3468static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3469                                     unsigned NumElems) {
3470  for (unsigned i = 0; i != NumElems; ++i) {
3471    int idx = Mask[i];
3472    if (idx < 0)
3473      continue;
3474    else if (idx < (int)NumElems)
3475      Mask[i] = idx + NumElems;
3476    else
3477      Mask[i] = idx - NumElems;
3478  }
3479}
3480
3481/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3482/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3483/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3484/// reverse of what x86 shuffles want.
3485static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3486                        bool Commuted = false) {
3487  if (!HasFp256 && VT.is256BitVector())
3488    return false;
3489
3490  unsigned NumElems = VT.getVectorNumElements();
3491  unsigned NumLanes = VT.getSizeInBits()/128;
3492  unsigned NumLaneElems = NumElems/NumLanes;
3493
3494  if (NumLaneElems != 2 && NumLaneElems != 4)
3495    return false;
3496
3497  // VSHUFPSY divides the resulting vector into 4 chunks.
3498  // The sources are also splitted into 4 chunks, and each destination
3499  // chunk must come from a different source chunk.
3500  //
3501  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3502  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3503  //
3504  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3505  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3506  //
3507  // VSHUFPDY divides the resulting vector into 4 chunks.
3508  // The sources are also splitted into 4 chunks, and each destination
3509  // chunk must come from a different source chunk.
3510  //
3511  //  SRC1 =>      X3       X2       X1       X0
3512  //  SRC2 =>      Y3       Y2       Y1       Y0
3513  //
3514  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3515  //
3516  unsigned HalfLaneElems = NumLaneElems/2;
3517  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3518    for (unsigned i = 0; i != NumLaneElems; ++i) {
3519      int Idx = Mask[i+l];
3520      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3521      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3522        return false;
3523      // For VSHUFPSY, the mask of the second half must be the same as the
3524      // first but with the appropriate offsets. This works in the same way as
3525      // VPERMILPS works with masks.
3526      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3527        continue;
3528      if (!isUndefOrEqual(Idx, Mask[i]+l))
3529        return false;
3530    }
3531  }
3532
3533  return true;
3534}
3535
3536/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3537/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3538static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3539  if (!VT.is128BitVector())
3540    return false;
3541
3542  unsigned NumElems = VT.getVectorNumElements();
3543
3544  if (NumElems != 4)
3545    return false;
3546
3547  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3548  return isUndefOrEqual(Mask[0], 6) &&
3549         isUndefOrEqual(Mask[1], 7) &&
3550         isUndefOrEqual(Mask[2], 2) &&
3551         isUndefOrEqual(Mask[3], 3);
3552}
3553
3554/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3555/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3556/// <2, 3, 2, 3>
3557static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3558  if (!VT.is128BitVector())
3559    return false;
3560
3561  unsigned NumElems = VT.getVectorNumElements();
3562
3563  if (NumElems != 4)
3564    return false;
3565
3566  return isUndefOrEqual(Mask[0], 2) &&
3567         isUndefOrEqual(Mask[1], 3) &&
3568         isUndefOrEqual(Mask[2], 2) &&
3569         isUndefOrEqual(Mask[3], 3);
3570}
3571
3572/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3573/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3574static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3575  if (!VT.is128BitVector())
3576    return false;
3577
3578  unsigned NumElems = VT.getVectorNumElements();
3579
3580  if (NumElems != 2 && NumElems != 4)
3581    return false;
3582
3583  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3584    if (!isUndefOrEqual(Mask[i], i + NumElems))
3585      return false;
3586
3587  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3588    if (!isUndefOrEqual(Mask[i], i))
3589      return false;
3590
3591  return true;
3592}
3593
3594/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3595/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3596static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3597  if (!VT.is128BitVector())
3598    return false;
3599
3600  unsigned NumElems = VT.getVectorNumElements();
3601
3602  if (NumElems != 2 && NumElems != 4)
3603    return false;
3604
3605  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3606    if (!isUndefOrEqual(Mask[i], i))
3607      return false;
3608
3609  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3610    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3611      return false;
3612
3613  return true;
3614}
3615
3616//
3617// Some special combinations that can be optimized.
3618//
3619static
3620SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3621                               SelectionDAG &DAG) {
3622  MVT VT = SVOp->getValueType(0).getSimpleVT();
3623  DebugLoc dl = SVOp->getDebugLoc();
3624
3625  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3626    return SDValue();
3627
3628  ArrayRef<int> Mask = SVOp->getMask();
3629
3630  // These are the special masks that may be optimized.
3631  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3632  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3633  bool MatchEvenMask = true;
3634  bool MatchOddMask  = true;
3635  for (int i=0; i<8; ++i) {
3636    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3637      MatchEvenMask = false;
3638    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3639      MatchOddMask = false;
3640  }
3641
3642  if (!MatchEvenMask && !MatchOddMask)
3643    return SDValue();
3644
3645  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3646
3647  SDValue Op0 = SVOp->getOperand(0);
3648  SDValue Op1 = SVOp->getOperand(1);
3649
3650  if (MatchEvenMask) {
3651    // Shift the second operand right to 32 bits.
3652    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3653    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3654  } else {
3655    // Shift the first operand left to 32 bits.
3656    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3657    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3658  }
3659  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3660  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3661}
3662
3663/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3664/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3665static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3666                         bool HasInt256, bool V2IsSplat = false) {
3667  unsigned NumElts = VT.getVectorNumElements();
3668
3669  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3670         "Unsupported vector type for unpckh");
3671
3672  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3673      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3674    return false;
3675
3676  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3677  // independently on 128-bit lanes.
3678  unsigned NumLanes = VT.getSizeInBits()/128;
3679  unsigned NumLaneElts = NumElts/NumLanes;
3680
3681  for (unsigned l = 0; l != NumLanes; ++l) {
3682    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3683         i != (l+1)*NumLaneElts;
3684         i += 2, ++j) {
3685      int BitI  = Mask[i];
3686      int BitI1 = Mask[i+1];
3687      if (!isUndefOrEqual(BitI, j))
3688        return false;
3689      if (V2IsSplat) {
3690        if (!isUndefOrEqual(BitI1, NumElts))
3691          return false;
3692      } else {
3693        if (!isUndefOrEqual(BitI1, j + NumElts))
3694          return false;
3695      }
3696    }
3697  }
3698
3699  return true;
3700}
3701
3702/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3703/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3704static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3705                         bool HasInt256, bool V2IsSplat = false) {
3706  unsigned NumElts = VT.getVectorNumElements();
3707
3708  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3709         "Unsupported vector type for unpckh");
3710
3711  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3712      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3713    return false;
3714
3715  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3716  // independently on 128-bit lanes.
3717  unsigned NumLanes = VT.getSizeInBits()/128;
3718  unsigned NumLaneElts = NumElts/NumLanes;
3719
3720  for (unsigned l = 0; l != NumLanes; ++l) {
3721    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3722         i != (l+1)*NumLaneElts; i += 2, ++j) {
3723      int BitI  = Mask[i];
3724      int BitI1 = Mask[i+1];
3725      if (!isUndefOrEqual(BitI, j))
3726        return false;
3727      if (V2IsSplat) {
3728        if (isUndefOrEqual(BitI1, NumElts))
3729          return false;
3730      } else {
3731        if (!isUndefOrEqual(BitI1, j+NumElts))
3732          return false;
3733      }
3734    }
3735  }
3736  return true;
3737}
3738
3739/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3740/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3741/// <0, 0, 1, 1>
3742static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3743  unsigned NumElts = VT.getVectorNumElements();
3744  bool Is256BitVec = VT.is256BitVector();
3745
3746  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3747         "Unsupported vector type for unpckh");
3748
3749  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3750      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3751    return false;
3752
3753  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3754  // FIXME: Need a better way to get rid of this, there's no latency difference
3755  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3756  // the former later. We should also remove the "_undef" special mask.
3757  if (NumElts == 4 && Is256BitVec)
3758    return false;
3759
3760  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3761  // independently on 128-bit lanes.
3762  unsigned NumLanes = VT.getSizeInBits()/128;
3763  unsigned NumLaneElts = NumElts/NumLanes;
3764
3765  for (unsigned l = 0; l != NumLanes; ++l) {
3766    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3767         i != (l+1)*NumLaneElts;
3768         i += 2, ++j) {
3769      int BitI  = Mask[i];
3770      int BitI1 = Mask[i+1];
3771
3772      if (!isUndefOrEqual(BitI, j))
3773        return false;
3774      if (!isUndefOrEqual(BitI1, j))
3775        return false;
3776    }
3777  }
3778
3779  return true;
3780}
3781
3782/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3783/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3784/// <2, 2, 3, 3>
3785static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3786  unsigned NumElts = VT.getVectorNumElements();
3787
3788  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3789         "Unsupported vector type for unpckh");
3790
3791  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3792      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3793    return false;
3794
3795  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3796  // independently on 128-bit lanes.
3797  unsigned NumLanes = VT.getSizeInBits()/128;
3798  unsigned NumLaneElts = NumElts/NumLanes;
3799
3800  for (unsigned l = 0; l != NumLanes; ++l) {
3801    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3802         i != (l+1)*NumLaneElts; i += 2, ++j) {
3803      int BitI  = Mask[i];
3804      int BitI1 = Mask[i+1];
3805      if (!isUndefOrEqual(BitI, j))
3806        return false;
3807      if (!isUndefOrEqual(BitI1, j))
3808        return false;
3809    }
3810  }
3811  return true;
3812}
3813
3814/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3815/// specifies a shuffle of elements that is suitable for input to MOVSS,
3816/// MOVSD, and MOVD, i.e. setting the lowest element.
3817static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3818  if (VT.getVectorElementType().getSizeInBits() < 32)
3819    return false;
3820  if (!VT.is128BitVector())
3821    return false;
3822
3823  unsigned NumElts = VT.getVectorNumElements();
3824
3825  if (!isUndefOrEqual(Mask[0], NumElts))
3826    return false;
3827
3828  for (unsigned i = 1; i != NumElts; ++i)
3829    if (!isUndefOrEqual(Mask[i], i))
3830      return false;
3831
3832  return true;
3833}
3834
3835/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3836/// as permutations between 128-bit chunks or halves. As an example: this
3837/// shuffle bellow:
3838///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3839/// The first half comes from the second half of V1 and the second half from the
3840/// the second half of V2.
3841static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3842  if (!HasFp256 || !VT.is256BitVector())
3843    return false;
3844
3845  // The shuffle result is divided into half A and half B. In total the two
3846  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3847  // B must come from C, D, E or F.
3848  unsigned HalfSize = VT.getVectorNumElements()/2;
3849  bool MatchA = false, MatchB = false;
3850
3851  // Check if A comes from one of C, D, E, F.
3852  for (unsigned Half = 0; Half != 4; ++Half) {
3853    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3854      MatchA = true;
3855      break;
3856    }
3857  }
3858
3859  // Check if B comes from one of C, D, E, F.
3860  for (unsigned Half = 0; Half != 4; ++Half) {
3861    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3862      MatchB = true;
3863      break;
3864    }
3865  }
3866
3867  return MatchA && MatchB;
3868}
3869
3870/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3871/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3872static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3873  MVT VT = SVOp->getValueType(0).getSimpleVT();
3874
3875  unsigned HalfSize = VT.getVectorNumElements()/2;
3876
3877  unsigned FstHalf = 0, SndHalf = 0;
3878  for (unsigned i = 0; i < HalfSize; ++i) {
3879    if (SVOp->getMaskElt(i) > 0) {
3880      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3881      break;
3882    }
3883  }
3884  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3885    if (SVOp->getMaskElt(i) > 0) {
3886      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3887      break;
3888    }
3889  }
3890
3891  return (FstHalf | (SndHalf << 4));
3892}
3893
3894/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3895/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3896/// Note that VPERMIL mask matching is different depending whether theunderlying
3897/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3898/// to the same elements of the low, but to the higher half of the source.
3899/// In VPERMILPD the two lanes could be shuffled independently of each other
3900/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3901static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3902  if (!HasFp256)
3903    return false;
3904
3905  unsigned NumElts = VT.getVectorNumElements();
3906  // Only match 256-bit with 32/64-bit types
3907  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3908    return false;
3909
3910  unsigned NumLanes = VT.getSizeInBits()/128;
3911  unsigned LaneSize = NumElts/NumLanes;
3912  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3913    for (unsigned i = 0; i != LaneSize; ++i) {
3914      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3915        return false;
3916      if (NumElts != 8 || l == 0)
3917        continue;
3918      // VPERMILPS handling
3919      if (Mask[i] < 0)
3920        continue;
3921      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3922        return false;
3923    }
3924  }
3925
3926  return true;
3927}
3928
3929/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3930/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3931/// element of vector 2 and the other elements to come from vector 1 in order.
3932static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3933                               bool V2IsSplat = false, bool V2IsUndef = false) {
3934  if (!VT.is128BitVector())
3935    return false;
3936
3937  unsigned NumOps = VT.getVectorNumElements();
3938  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3939    return false;
3940
3941  if (!isUndefOrEqual(Mask[0], 0))
3942    return false;
3943
3944  for (unsigned i = 1; i != NumOps; ++i)
3945    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3946          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3947          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3948      return false;
3949
3950  return true;
3951}
3952
3953/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3954/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3955/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3956static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3957                           const X86Subtarget *Subtarget) {
3958  if (!Subtarget->hasSSE3())
3959    return false;
3960
3961  unsigned NumElems = VT.getVectorNumElements();
3962
3963  if ((VT.is128BitVector() && NumElems != 4) ||
3964      (VT.is256BitVector() && NumElems != 8))
3965    return false;
3966
3967  // "i+1" is the value the indexed mask element must have
3968  for (unsigned i = 0; i != NumElems; i += 2)
3969    if (!isUndefOrEqual(Mask[i], i+1) ||
3970        !isUndefOrEqual(Mask[i+1], i+1))
3971      return false;
3972
3973  return true;
3974}
3975
3976/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3977/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3978/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3979static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3980                           const X86Subtarget *Subtarget) {
3981  if (!Subtarget->hasSSE3())
3982    return false;
3983
3984  unsigned NumElems = VT.getVectorNumElements();
3985
3986  if ((VT.is128BitVector() && NumElems != 4) ||
3987      (VT.is256BitVector() && NumElems != 8))
3988    return false;
3989
3990  // "i" is the value the indexed mask element must have
3991  for (unsigned i = 0; i != NumElems; i += 2)
3992    if (!isUndefOrEqual(Mask[i], i) ||
3993        !isUndefOrEqual(Mask[i+1], i))
3994      return false;
3995
3996  return true;
3997}
3998
3999/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4000/// specifies a shuffle of elements that is suitable for input to 256-bit
4001/// version of MOVDDUP.
4002static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
4003  if (!HasFp256 || !VT.is256BitVector())
4004    return false;
4005
4006  unsigned NumElts = VT.getVectorNumElements();
4007  if (NumElts != 4)
4008    return false;
4009
4010  for (unsigned i = 0; i != NumElts/2; ++i)
4011    if (!isUndefOrEqual(Mask[i], 0))
4012      return false;
4013  for (unsigned i = NumElts/2; i != NumElts; ++i)
4014    if (!isUndefOrEqual(Mask[i], NumElts/2))
4015      return false;
4016  return true;
4017}
4018
4019/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4020/// specifies a shuffle of elements that is suitable for input to 128-bit
4021/// version of MOVDDUP.
4022static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
4023  if (!VT.is128BitVector())
4024    return false;
4025
4026  unsigned e = VT.getVectorNumElements() / 2;
4027  for (unsigned i = 0; i != e; ++i)
4028    if (!isUndefOrEqual(Mask[i], i))
4029      return false;
4030  for (unsigned i = 0; i != e; ++i)
4031    if (!isUndefOrEqual(Mask[e+i], i))
4032      return false;
4033  return true;
4034}
4035
4036/// isVEXTRACTF128Index - Return true if the specified
4037/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4038/// suitable for input to VEXTRACTF128.
4039bool X86::isVEXTRACTF128Index(SDNode *N) {
4040  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4041    return false;
4042
4043  // The index should be aligned on a 128-bit boundary.
4044  uint64_t Index =
4045    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4046
4047  MVT VT = N->getValueType(0).getSimpleVT();
4048  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4049  bool Result = (Index * ElSize) % 128 == 0;
4050
4051  return Result;
4052}
4053
4054/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4055/// operand specifies a subvector insert that is suitable for input to
4056/// VINSERTF128.
4057bool X86::isVINSERTF128Index(SDNode *N) {
4058  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4059    return false;
4060
4061  // The index should be aligned on a 128-bit boundary.
4062  uint64_t Index =
4063    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4064
4065  MVT VT = N->getValueType(0).getSimpleVT();
4066  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4067  bool Result = (Index * ElSize) % 128 == 0;
4068
4069  return Result;
4070}
4071
4072/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4073/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4074/// Handles 128-bit and 256-bit.
4075static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4076  MVT VT = N->getValueType(0).getSimpleVT();
4077
4078  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4079         "Unsupported vector type for PSHUF/SHUFP");
4080
4081  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4082  // independently on 128-bit lanes.
4083  unsigned NumElts = VT.getVectorNumElements();
4084  unsigned NumLanes = VT.getSizeInBits()/128;
4085  unsigned NumLaneElts = NumElts/NumLanes;
4086
4087  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4088         "Only supports 2 or 4 elements per lane");
4089
4090  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4091  unsigned Mask = 0;
4092  for (unsigned i = 0; i != NumElts; ++i) {
4093    int Elt = N->getMaskElt(i);
4094    if (Elt < 0) continue;
4095    Elt &= NumLaneElts - 1;
4096    unsigned ShAmt = (i << Shift) % 8;
4097    Mask |= Elt << ShAmt;
4098  }
4099
4100  return Mask;
4101}
4102
4103/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4104/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4105static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4106  MVT VT = N->getValueType(0).getSimpleVT();
4107
4108  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4109         "Unsupported vector type for PSHUFHW");
4110
4111  unsigned NumElts = VT.getVectorNumElements();
4112
4113  unsigned Mask = 0;
4114  for (unsigned l = 0; l != NumElts; l += 8) {
4115    // 8 nodes per lane, but we only care about the last 4.
4116    for (unsigned i = 0; i < 4; ++i) {
4117      int Elt = N->getMaskElt(l+i+4);
4118      if (Elt < 0) continue;
4119      Elt &= 0x3; // only 2-bits.
4120      Mask |= Elt << (i * 2);
4121    }
4122  }
4123
4124  return Mask;
4125}
4126
4127/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4128/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4129static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4130  MVT VT = N->getValueType(0).getSimpleVT();
4131
4132  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4133         "Unsupported vector type for PSHUFHW");
4134
4135  unsigned NumElts = VT.getVectorNumElements();
4136
4137  unsigned Mask = 0;
4138  for (unsigned l = 0; l != NumElts; l += 8) {
4139    // 8 nodes per lane, but we only care about the first 4.
4140    for (unsigned i = 0; i < 4; ++i) {
4141      int Elt = N->getMaskElt(l+i);
4142      if (Elt < 0) continue;
4143      Elt &= 0x3; // only 2-bits
4144      Mask |= Elt << (i * 2);
4145    }
4146  }
4147
4148  return Mask;
4149}
4150
4151/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4152/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4153static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4154  MVT VT = SVOp->getValueType(0).getSimpleVT();
4155  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4156
4157  unsigned NumElts = VT.getVectorNumElements();
4158  unsigned NumLanes = VT.getSizeInBits()/128;
4159  unsigned NumLaneElts = NumElts/NumLanes;
4160
4161  int Val = 0;
4162  unsigned i;
4163  for (i = 0; i != NumElts; ++i) {
4164    Val = SVOp->getMaskElt(i);
4165    if (Val >= 0)
4166      break;
4167  }
4168  if (Val >= (int)NumElts)
4169    Val -= NumElts - NumLaneElts;
4170
4171  assert(Val - i > 0 && "PALIGNR imm should be positive");
4172  return (Val - i) * EltSize;
4173}
4174
4175/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4176/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4177/// instructions.
4178unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4179  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4180    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4181
4182  uint64_t Index =
4183    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4184
4185  MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
4186  MVT ElVT = VecVT.getVectorElementType();
4187
4188  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4189  return Index / NumElemsPerChunk;
4190}
4191
4192/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4193/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4194/// instructions.
4195unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4196  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4197    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4198
4199  uint64_t Index =
4200    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4201
4202  MVT VecVT = N->getValueType(0).getSimpleVT();
4203  MVT ElVT = VecVT.getVectorElementType();
4204
4205  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4206  return Index / NumElemsPerChunk;
4207}
4208
4209/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4210/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4211/// Handles 256-bit.
4212static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4213  MVT VT = N->getValueType(0).getSimpleVT();
4214
4215  unsigned NumElts = VT.getVectorNumElements();
4216
4217  assert((VT.is256BitVector() && NumElts == 4) &&
4218         "Unsupported vector type for VPERMQ/VPERMPD");
4219
4220  unsigned Mask = 0;
4221  for (unsigned i = 0; i != NumElts; ++i) {
4222    int Elt = N->getMaskElt(i);
4223    if (Elt < 0)
4224      continue;
4225    Mask |= Elt << (i*2);
4226  }
4227
4228  return Mask;
4229}
4230/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4231/// constant +0.0.
4232bool X86::isZeroNode(SDValue Elt) {
4233  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4234    return CN->isNullValue();
4235  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4236    return CFP->getValueAPF().isPosZero();
4237  return false;
4238}
4239
4240/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4241/// their permute mask.
4242static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4243                                    SelectionDAG &DAG) {
4244  MVT VT = SVOp->getValueType(0).getSimpleVT();
4245  unsigned NumElems = VT.getVectorNumElements();
4246  SmallVector<int, 8> MaskVec;
4247
4248  for (unsigned i = 0; i != NumElems; ++i) {
4249    int Idx = SVOp->getMaskElt(i);
4250    if (Idx >= 0) {
4251      if (Idx < (int)NumElems)
4252        Idx += NumElems;
4253      else
4254        Idx -= NumElems;
4255    }
4256    MaskVec.push_back(Idx);
4257  }
4258  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4259                              SVOp->getOperand(0), &MaskVec[0]);
4260}
4261
4262/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4263/// match movhlps. The lower half elements should come from upper half of
4264/// V1 (and in order), and the upper half elements should come from the upper
4265/// half of V2 (and in order).
4266static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4267  if (!VT.is128BitVector())
4268    return false;
4269  if (VT.getVectorNumElements() != 4)
4270    return false;
4271  for (unsigned i = 0, e = 2; i != e; ++i)
4272    if (!isUndefOrEqual(Mask[i], i+2))
4273      return false;
4274  for (unsigned i = 2; i != 4; ++i)
4275    if (!isUndefOrEqual(Mask[i], i+4))
4276      return false;
4277  return true;
4278}
4279
4280/// isScalarLoadToVector - Returns true if the node is a scalar load that
4281/// is promoted to a vector. It also returns the LoadSDNode by reference if
4282/// required.
4283static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4284  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4285    return false;
4286  N = N->getOperand(0).getNode();
4287  if (!ISD::isNON_EXTLoad(N))
4288    return false;
4289  if (LD)
4290    *LD = cast<LoadSDNode>(N);
4291  return true;
4292}
4293
4294// Test whether the given value is a vector value which will be legalized
4295// into a load.
4296static bool WillBeConstantPoolLoad(SDNode *N) {
4297  if (N->getOpcode() != ISD::BUILD_VECTOR)
4298    return false;
4299
4300  // Check for any non-constant elements.
4301  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4302    switch (N->getOperand(i).getNode()->getOpcode()) {
4303    case ISD::UNDEF:
4304    case ISD::ConstantFP:
4305    case ISD::Constant:
4306      break;
4307    default:
4308      return false;
4309    }
4310
4311  // Vectors of all-zeros and all-ones are materialized with special
4312  // instructions rather than being loaded.
4313  return !ISD::isBuildVectorAllZeros(N) &&
4314         !ISD::isBuildVectorAllOnes(N);
4315}
4316
4317/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4318/// match movlp{s|d}. The lower half elements should come from lower half of
4319/// V1 (and in order), and the upper half elements should come from the upper
4320/// half of V2 (and in order). And since V1 will become the source of the
4321/// MOVLP, it must be either a vector load or a scalar load to vector.
4322static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4323                               ArrayRef<int> Mask, EVT VT) {
4324  if (!VT.is128BitVector())
4325    return false;
4326
4327  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4328    return false;
4329  // Is V2 is a vector load, don't do this transformation. We will try to use
4330  // load folding shufps op.
4331  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4332    return false;
4333
4334  unsigned NumElems = VT.getVectorNumElements();
4335
4336  if (NumElems != 2 && NumElems != 4)
4337    return false;
4338  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4339    if (!isUndefOrEqual(Mask[i], i))
4340      return false;
4341  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4342    if (!isUndefOrEqual(Mask[i], i+NumElems))
4343      return false;
4344  return true;
4345}
4346
4347/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4348/// all the same.
4349static bool isSplatVector(SDNode *N) {
4350  if (N->getOpcode() != ISD::BUILD_VECTOR)
4351    return false;
4352
4353  SDValue SplatValue = N->getOperand(0);
4354  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4355    if (N->getOperand(i) != SplatValue)
4356      return false;
4357  return true;
4358}
4359
4360/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4361/// to an zero vector.
4362/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4363static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4364  SDValue V1 = N->getOperand(0);
4365  SDValue V2 = N->getOperand(1);
4366  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4367  for (unsigned i = 0; i != NumElems; ++i) {
4368    int Idx = N->getMaskElt(i);
4369    if (Idx >= (int)NumElems) {
4370      unsigned Opc = V2.getOpcode();
4371      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4372        continue;
4373      if (Opc != ISD::BUILD_VECTOR ||
4374          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4375        return false;
4376    } else if (Idx >= 0) {
4377      unsigned Opc = V1.getOpcode();
4378      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4379        continue;
4380      if (Opc != ISD::BUILD_VECTOR ||
4381          !X86::isZeroNode(V1.getOperand(Idx)))
4382        return false;
4383    }
4384  }
4385  return true;
4386}
4387
4388/// getZeroVector - Returns a vector of specified type with all zero elements.
4389///
4390static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4391                             SelectionDAG &DAG, DebugLoc dl) {
4392  assert(VT.isVector() && "Expected a vector type");
4393
4394  // Always build SSE zero vectors as <4 x i32> bitcasted
4395  // to their dest type. This ensures they get CSE'd.
4396  SDValue Vec;
4397  if (VT.is128BitVector()) {  // SSE
4398    if (Subtarget->hasSSE2()) {  // SSE2
4399      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4400      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4401    } else { // SSE1
4402      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4403      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4404    }
4405  } else if (VT.is256BitVector()) { // AVX
4406    if (Subtarget->hasInt256()) { // AVX2
4407      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4408      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4409      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4410    } else {
4411      // 256-bit logic and arithmetic instructions in AVX are all
4412      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4413      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4414      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4415      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4416    }
4417  } else
4418    llvm_unreachable("Unexpected vector type");
4419
4420  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4421}
4422
4423/// getOnesVector - Returns a vector of specified type with all bits set.
4424/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4425/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4426/// Then bitcast to their original type, ensuring they get CSE'd.
4427static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4428                             DebugLoc dl) {
4429  assert(VT.isVector() && "Expected a vector type");
4430
4431  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4432  SDValue Vec;
4433  if (VT.is256BitVector()) {
4434    if (HasInt256) { // AVX2
4435      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4436      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4437    } else { // AVX
4438      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4439      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4440    }
4441  } else if (VT.is128BitVector()) {
4442    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4443  } else
4444    llvm_unreachable("Unexpected vector type");
4445
4446  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4447}
4448
4449/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4450/// that point to V2 points to its first element.
4451static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4452  for (unsigned i = 0; i != NumElems; ++i) {
4453    if (Mask[i] > (int)NumElems) {
4454      Mask[i] = NumElems;
4455    }
4456  }
4457}
4458
4459/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4460/// operation of specified width.
4461static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4462                       SDValue V2) {
4463  unsigned NumElems = VT.getVectorNumElements();
4464  SmallVector<int, 8> Mask;
4465  Mask.push_back(NumElems);
4466  for (unsigned i = 1; i != NumElems; ++i)
4467    Mask.push_back(i);
4468  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4469}
4470
4471/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4472static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4473                          SDValue V2) {
4474  unsigned NumElems = VT.getVectorNumElements();
4475  SmallVector<int, 8> Mask;
4476  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4477    Mask.push_back(i);
4478    Mask.push_back(i + NumElems);
4479  }
4480  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4481}
4482
4483/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4484static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4485                          SDValue V2) {
4486  unsigned NumElems = VT.getVectorNumElements();
4487  SmallVector<int, 8> Mask;
4488  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4489    Mask.push_back(i + Half);
4490    Mask.push_back(i + NumElems + Half);
4491  }
4492  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4493}
4494
4495// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4496// a generic shuffle instruction because the target has no such instructions.
4497// Generate shuffles which repeat i16 and i8 several times until they can be
4498// represented by v4f32 and then be manipulated by target suported shuffles.
4499static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4500  EVT VT = V.getValueType();
4501  int NumElems = VT.getVectorNumElements();
4502  DebugLoc dl = V.getDebugLoc();
4503
4504  while (NumElems > 4) {
4505    if (EltNo < NumElems/2) {
4506      V = getUnpackl(DAG, dl, VT, V, V);
4507    } else {
4508      V = getUnpackh(DAG, dl, VT, V, V);
4509      EltNo -= NumElems/2;
4510    }
4511    NumElems >>= 1;
4512  }
4513  return V;
4514}
4515
4516/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4517static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4518  EVT VT = V.getValueType();
4519  DebugLoc dl = V.getDebugLoc();
4520
4521  if (VT.is128BitVector()) {
4522    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4523    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4524    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4525                             &SplatMask[0]);
4526  } else if (VT.is256BitVector()) {
4527    // To use VPERMILPS to splat scalars, the second half of indicies must
4528    // refer to the higher part, which is a duplication of the lower one,
4529    // because VPERMILPS can only handle in-lane permutations.
4530    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4531                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4532
4533    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4534    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4535                             &SplatMask[0]);
4536  } else
4537    llvm_unreachable("Vector size not supported");
4538
4539  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4540}
4541
4542/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4543static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4544  EVT SrcVT = SV->getValueType(0);
4545  SDValue V1 = SV->getOperand(0);
4546  DebugLoc dl = SV->getDebugLoc();
4547
4548  int EltNo = SV->getSplatIndex();
4549  int NumElems = SrcVT.getVectorNumElements();
4550  bool Is256BitVec = SrcVT.is256BitVector();
4551
4552  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4553         "Unknown how to promote splat for type");
4554
4555  // Extract the 128-bit part containing the splat element and update
4556  // the splat element index when it refers to the higher register.
4557  if (Is256BitVec) {
4558    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4559    if (EltNo >= NumElems/2)
4560      EltNo -= NumElems/2;
4561  }
4562
4563  // All i16 and i8 vector types can't be used directly by a generic shuffle
4564  // instruction because the target has no such instruction. Generate shuffles
4565  // which repeat i16 and i8 several times until they fit in i32, and then can
4566  // be manipulated by target suported shuffles.
4567  EVT EltVT = SrcVT.getVectorElementType();
4568  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4569    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4570
4571  // Recreate the 256-bit vector and place the same 128-bit vector
4572  // into the low and high part. This is necessary because we want
4573  // to use VPERM* to shuffle the vectors
4574  if (Is256BitVec) {
4575    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4576  }
4577
4578  return getLegalSplat(DAG, V1, EltNo);
4579}
4580
4581/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4582/// vector of zero or undef vector.  This produces a shuffle where the low
4583/// element of V2 is swizzled into the zero/undef vector, landing at element
4584/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4585static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4586                                           bool IsZero,
4587                                           const X86Subtarget *Subtarget,
4588                                           SelectionDAG &DAG) {
4589  EVT VT = V2.getValueType();
4590  SDValue V1 = IsZero
4591    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4592  unsigned NumElems = VT.getVectorNumElements();
4593  SmallVector<int, 16> MaskVec;
4594  for (unsigned i = 0; i != NumElems; ++i)
4595    // If this is the insertion idx, put the low elt of V2 here.
4596    MaskVec.push_back(i == Idx ? NumElems : i);
4597  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4598}
4599
4600/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4601/// target specific opcode. Returns true if the Mask could be calculated.
4602/// Sets IsUnary to true if only uses one source.
4603static bool getTargetShuffleMask(SDNode *N, MVT VT,
4604                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4605  unsigned NumElems = VT.getVectorNumElements();
4606  SDValue ImmN;
4607
4608  IsUnary = false;
4609  switch(N->getOpcode()) {
4610  case X86ISD::SHUFP:
4611    ImmN = N->getOperand(N->getNumOperands()-1);
4612    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4613    break;
4614  case X86ISD::UNPCKH:
4615    DecodeUNPCKHMask(VT, Mask);
4616    break;
4617  case X86ISD::UNPCKL:
4618    DecodeUNPCKLMask(VT, Mask);
4619    break;
4620  case X86ISD::MOVHLPS:
4621    DecodeMOVHLPSMask(NumElems, Mask);
4622    break;
4623  case X86ISD::MOVLHPS:
4624    DecodeMOVLHPSMask(NumElems, Mask);
4625    break;
4626  case X86ISD::PALIGNR:
4627    ImmN = N->getOperand(N->getNumOperands()-1);
4628    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4629    break;
4630  case X86ISD::PSHUFD:
4631  case X86ISD::VPERMILP:
4632    ImmN = N->getOperand(N->getNumOperands()-1);
4633    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4634    IsUnary = true;
4635    break;
4636  case X86ISD::PSHUFHW:
4637    ImmN = N->getOperand(N->getNumOperands()-1);
4638    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4639    IsUnary = true;
4640    break;
4641  case X86ISD::PSHUFLW:
4642    ImmN = N->getOperand(N->getNumOperands()-1);
4643    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4644    IsUnary = true;
4645    break;
4646  case X86ISD::VPERMI:
4647    ImmN = N->getOperand(N->getNumOperands()-1);
4648    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4649    IsUnary = true;
4650    break;
4651  case X86ISD::MOVSS:
4652  case X86ISD::MOVSD: {
4653    // The index 0 always comes from the first element of the second source,
4654    // this is why MOVSS and MOVSD are used in the first place. The other
4655    // elements come from the other positions of the first source vector
4656    Mask.push_back(NumElems);
4657    for (unsigned i = 1; i != NumElems; ++i) {
4658      Mask.push_back(i);
4659    }
4660    break;
4661  }
4662  case X86ISD::VPERM2X128:
4663    ImmN = N->getOperand(N->getNumOperands()-1);
4664    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4665    if (Mask.empty()) return false;
4666    break;
4667  case X86ISD::MOVDDUP:
4668  case X86ISD::MOVLHPD:
4669  case X86ISD::MOVLPD:
4670  case X86ISD::MOVLPS:
4671  case X86ISD::MOVSHDUP:
4672  case X86ISD::MOVSLDUP:
4673    // Not yet implemented
4674    return false;
4675  default: llvm_unreachable("unknown target shuffle node");
4676  }
4677
4678  return true;
4679}
4680
4681/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4682/// element of the result of the vector shuffle.
4683static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4684                                   unsigned Depth) {
4685  if (Depth == 6)
4686    return SDValue();  // Limit search depth.
4687
4688  SDValue V = SDValue(N, 0);
4689  EVT VT = V.getValueType();
4690  unsigned Opcode = V.getOpcode();
4691
4692  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4693  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4694    int Elt = SV->getMaskElt(Index);
4695
4696    if (Elt < 0)
4697      return DAG.getUNDEF(VT.getVectorElementType());
4698
4699    unsigned NumElems = VT.getVectorNumElements();
4700    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4701                                         : SV->getOperand(1);
4702    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4703  }
4704
4705  // Recurse into target specific vector shuffles to find scalars.
4706  if (isTargetShuffle(Opcode)) {
4707    MVT ShufVT = V.getValueType().getSimpleVT();
4708    unsigned NumElems = ShufVT.getVectorNumElements();
4709    SmallVector<int, 16> ShuffleMask;
4710    bool IsUnary;
4711
4712    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4713      return SDValue();
4714
4715    int Elt = ShuffleMask[Index];
4716    if (Elt < 0)
4717      return DAG.getUNDEF(ShufVT.getVectorElementType());
4718
4719    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4720                                         : N->getOperand(1);
4721    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4722                               Depth+1);
4723  }
4724
4725  // Actual nodes that may contain scalar elements
4726  if (Opcode == ISD::BITCAST) {
4727    V = V.getOperand(0);
4728    EVT SrcVT = V.getValueType();
4729    unsigned NumElems = VT.getVectorNumElements();
4730
4731    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4732      return SDValue();
4733  }
4734
4735  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4736    return (Index == 0) ? V.getOperand(0)
4737                        : DAG.getUNDEF(VT.getVectorElementType());
4738
4739  if (V.getOpcode() == ISD::BUILD_VECTOR)
4740    return V.getOperand(Index);
4741
4742  return SDValue();
4743}
4744
4745/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4746/// shuffle operation which come from a consecutively from a zero. The
4747/// search can start in two different directions, from left or right.
4748static
4749unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4750                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4751  unsigned i;
4752  for (i = 0; i != NumElems; ++i) {
4753    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4754    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4755    if (!(Elt.getNode() &&
4756         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4757      break;
4758  }
4759
4760  return i;
4761}
4762
4763/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4764/// correspond consecutively to elements from one of the vector operands,
4765/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4766static
4767bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4768                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4769                              unsigned NumElems, unsigned &OpNum) {
4770  bool SeenV1 = false;
4771  bool SeenV2 = false;
4772
4773  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4774    int Idx = SVOp->getMaskElt(i);
4775    // Ignore undef indicies
4776    if (Idx < 0)
4777      continue;
4778
4779    if (Idx < (int)NumElems)
4780      SeenV1 = true;
4781    else
4782      SeenV2 = true;
4783
4784    // Only accept consecutive elements from the same vector
4785    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4786      return false;
4787  }
4788
4789  OpNum = SeenV1 ? 0 : 1;
4790  return true;
4791}
4792
4793/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4794/// logical left shift of a vector.
4795static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4796                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4797  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4798  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4799              false /* check zeros from right */, DAG);
4800  unsigned OpSrc;
4801
4802  if (!NumZeros)
4803    return false;
4804
4805  // Considering the elements in the mask that are not consecutive zeros,
4806  // check if they consecutively come from only one of the source vectors.
4807  //
4808  //               V1 = {X, A, B, C}     0
4809  //                         \  \  \    /
4810  //   vector_shuffle V1, V2 <1, 2, 3, X>
4811  //
4812  if (!isShuffleMaskConsecutive(SVOp,
4813            0,                   // Mask Start Index
4814            NumElems-NumZeros,   // Mask End Index(exclusive)
4815            NumZeros,            // Where to start looking in the src vector
4816            NumElems,            // Number of elements in vector
4817            OpSrc))              // Which source operand ?
4818    return false;
4819
4820  isLeft = false;
4821  ShAmt = NumZeros;
4822  ShVal = SVOp->getOperand(OpSrc);
4823  return true;
4824}
4825
4826/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4827/// logical left shift of a vector.
4828static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4829                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4830  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4831  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4832              true /* check zeros from left */, DAG);
4833  unsigned OpSrc;
4834
4835  if (!NumZeros)
4836    return false;
4837
4838  // Considering the elements in the mask that are not consecutive zeros,
4839  // check if they consecutively come from only one of the source vectors.
4840  //
4841  //                           0    { A, B, X, X } = V2
4842  //                          / \    /  /
4843  //   vector_shuffle V1, V2 <X, X, 4, 5>
4844  //
4845  if (!isShuffleMaskConsecutive(SVOp,
4846            NumZeros,     // Mask Start Index
4847            NumElems,     // Mask End Index(exclusive)
4848            0,            // Where to start looking in the src vector
4849            NumElems,     // Number of elements in vector
4850            OpSrc))       // Which source operand ?
4851    return false;
4852
4853  isLeft = true;
4854  ShAmt = NumZeros;
4855  ShVal = SVOp->getOperand(OpSrc);
4856  return true;
4857}
4858
4859/// isVectorShift - Returns true if the shuffle can be implemented as a
4860/// logical left or right shift of a vector.
4861static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4862                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4863  // Although the logic below support any bitwidth size, there are no
4864  // shift instructions which handle more than 128-bit vectors.
4865  if (!SVOp->getValueType(0).is128BitVector())
4866    return false;
4867
4868  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4869      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4870    return true;
4871
4872  return false;
4873}
4874
4875/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4876///
4877static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4878                                       unsigned NumNonZero, unsigned NumZero,
4879                                       SelectionDAG &DAG,
4880                                       const X86Subtarget* Subtarget,
4881                                       const TargetLowering &TLI) {
4882  if (NumNonZero > 8)
4883    return SDValue();
4884
4885  DebugLoc dl = Op.getDebugLoc();
4886  SDValue V(0, 0);
4887  bool First = true;
4888  for (unsigned i = 0; i < 16; ++i) {
4889    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4890    if (ThisIsNonZero && First) {
4891      if (NumZero)
4892        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4893      else
4894        V = DAG.getUNDEF(MVT::v8i16);
4895      First = false;
4896    }
4897
4898    if ((i & 1) != 0) {
4899      SDValue ThisElt(0, 0), LastElt(0, 0);
4900      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4901      if (LastIsNonZero) {
4902        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4903                              MVT::i16, Op.getOperand(i-1));
4904      }
4905      if (ThisIsNonZero) {
4906        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4907        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4908                              ThisElt, DAG.getConstant(8, MVT::i8));
4909        if (LastIsNonZero)
4910          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4911      } else
4912        ThisElt = LastElt;
4913
4914      if (ThisElt.getNode())
4915        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4916                        DAG.getIntPtrConstant(i/2));
4917    }
4918  }
4919
4920  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4921}
4922
4923/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4924///
4925static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4926                                     unsigned NumNonZero, unsigned NumZero,
4927                                     SelectionDAG &DAG,
4928                                     const X86Subtarget* Subtarget,
4929                                     const TargetLowering &TLI) {
4930  if (NumNonZero > 4)
4931    return SDValue();
4932
4933  DebugLoc dl = Op.getDebugLoc();
4934  SDValue V(0, 0);
4935  bool First = true;
4936  for (unsigned i = 0; i < 8; ++i) {
4937    bool isNonZero = (NonZeros & (1 << i)) != 0;
4938    if (isNonZero) {
4939      if (First) {
4940        if (NumZero)
4941          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4942        else
4943          V = DAG.getUNDEF(MVT::v8i16);
4944        First = false;
4945      }
4946      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4947                      MVT::v8i16, V, Op.getOperand(i),
4948                      DAG.getIntPtrConstant(i));
4949    }
4950  }
4951
4952  return V;
4953}
4954
4955/// getVShift - Return a vector logical shift node.
4956///
4957static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4958                         unsigned NumBits, SelectionDAG &DAG,
4959                         const TargetLowering &TLI, DebugLoc dl) {
4960  assert(VT.is128BitVector() && "Unknown type for VShift");
4961  EVT ShVT = MVT::v2i64;
4962  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4963  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4964  return DAG.getNode(ISD::BITCAST, dl, VT,
4965                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4966                             DAG.getConstant(NumBits,
4967                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
4968}
4969
4970SDValue
4971X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4972                                          SelectionDAG &DAG) const {
4973
4974  // Check if the scalar load can be widened into a vector load. And if
4975  // the address is "base + cst" see if the cst can be "absorbed" into
4976  // the shuffle mask.
4977  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4978    SDValue Ptr = LD->getBasePtr();
4979    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4980      return SDValue();
4981    EVT PVT = LD->getValueType(0);
4982    if (PVT != MVT::i32 && PVT != MVT::f32)
4983      return SDValue();
4984
4985    int FI = -1;
4986    int64_t Offset = 0;
4987    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4988      FI = FINode->getIndex();
4989      Offset = 0;
4990    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4991               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4992      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4993      Offset = Ptr.getConstantOperandVal(1);
4994      Ptr = Ptr.getOperand(0);
4995    } else {
4996      return SDValue();
4997    }
4998
4999    // FIXME: 256-bit vector instructions don't require a strict alignment,
5000    // improve this code to support it better.
5001    unsigned RequiredAlign = VT.getSizeInBits()/8;
5002    SDValue Chain = LD->getChain();
5003    // Make sure the stack object alignment is at least 16 or 32.
5004    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5005    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5006      if (MFI->isFixedObjectIndex(FI)) {
5007        // Can't change the alignment. FIXME: It's possible to compute
5008        // the exact stack offset and reference FI + adjust offset instead.
5009        // If someone *really* cares about this. That's the way to implement it.
5010        return SDValue();
5011      } else {
5012        MFI->setObjectAlignment(FI, RequiredAlign);
5013      }
5014    }
5015
5016    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5017    // Ptr + (Offset & ~15).
5018    if (Offset < 0)
5019      return SDValue();
5020    if ((Offset % RequiredAlign) & 3)
5021      return SDValue();
5022    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5023    if (StartOffset)
5024      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
5025                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5026
5027    int EltNo = (Offset - StartOffset) >> 2;
5028    unsigned NumElems = VT.getVectorNumElements();
5029
5030    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5031    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5032                             LD->getPointerInfo().getWithOffset(StartOffset),
5033                             false, false, false, 0);
5034
5035    SmallVector<int, 8> Mask;
5036    for (unsigned i = 0; i != NumElems; ++i)
5037      Mask.push_back(EltNo);
5038
5039    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5040  }
5041
5042  return SDValue();
5043}
5044
5045/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5046/// vector of type 'VT', see if the elements can be replaced by a single large
5047/// load which has the same value as a build_vector whose operands are 'elts'.
5048///
5049/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5050///
5051/// FIXME: we'd also like to handle the case where the last elements are zero
5052/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5053/// There's even a handy isZeroNode for that purpose.
5054static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5055                                        DebugLoc &DL, SelectionDAG &DAG) {
5056  EVT EltVT = VT.getVectorElementType();
5057  unsigned NumElems = Elts.size();
5058
5059  LoadSDNode *LDBase = NULL;
5060  unsigned LastLoadedElt = -1U;
5061
5062  // For each element in the initializer, see if we've found a load or an undef.
5063  // If we don't find an initial load element, or later load elements are
5064  // non-consecutive, bail out.
5065  for (unsigned i = 0; i < NumElems; ++i) {
5066    SDValue Elt = Elts[i];
5067
5068    if (!Elt.getNode() ||
5069        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5070      return SDValue();
5071    if (!LDBase) {
5072      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5073        return SDValue();
5074      LDBase = cast<LoadSDNode>(Elt.getNode());
5075      LastLoadedElt = i;
5076      continue;
5077    }
5078    if (Elt.getOpcode() == ISD::UNDEF)
5079      continue;
5080
5081    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5082    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5083      return SDValue();
5084    LastLoadedElt = i;
5085  }
5086
5087  // If we have found an entire vector of loads and undefs, then return a large
5088  // load of the entire vector width starting at the base pointer.  If we found
5089  // consecutive loads for the low half, generate a vzext_load node.
5090  if (LastLoadedElt == NumElems - 1) {
5091    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5092      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5093                         LDBase->getPointerInfo(),
5094                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5095                         LDBase->isInvariant(), 0);
5096    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5097                       LDBase->getPointerInfo(),
5098                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5099                       LDBase->isInvariant(), LDBase->getAlignment());
5100  }
5101  if (NumElems == 4 && LastLoadedElt == 1 &&
5102      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5103    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5104    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5105    SDValue ResNode =
5106        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5107                                LDBase->getPointerInfo(),
5108                                LDBase->getAlignment(),
5109                                false/*isVolatile*/, true/*ReadMem*/,
5110                                false/*WriteMem*/);
5111
5112    // Make sure the newly-created LOAD is in the same position as LDBase in
5113    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5114    // update uses of LDBase's output chain to use the TokenFactor.
5115    if (LDBase->hasAnyUseOfValue(1)) {
5116      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5117                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5118      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5119      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5120                             SDValue(ResNode.getNode(), 1));
5121    }
5122
5123    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5124  }
5125  return SDValue();
5126}
5127
5128/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5129/// to generate a splat value for the following cases:
5130/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5131/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5132/// a scalar load, or a constant.
5133/// The VBROADCAST node is returned when a pattern is found,
5134/// or SDValue() otherwise.
5135SDValue
5136X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5137  if (!Subtarget->hasFp256())
5138    return SDValue();
5139
5140  MVT VT = Op.getValueType().getSimpleVT();
5141  DebugLoc dl = Op.getDebugLoc();
5142
5143  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5144         "Unsupported vector type for broadcast.");
5145
5146  SDValue Ld;
5147  bool ConstSplatVal;
5148
5149  switch (Op.getOpcode()) {
5150    default:
5151      // Unknown pattern found.
5152      return SDValue();
5153
5154    case ISD::BUILD_VECTOR: {
5155      // The BUILD_VECTOR node must be a splat.
5156      if (!isSplatVector(Op.getNode()))
5157        return SDValue();
5158
5159      Ld = Op.getOperand(0);
5160      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5161                     Ld.getOpcode() == ISD::ConstantFP);
5162
5163      // The suspected load node has several users. Make sure that all
5164      // of its users are from the BUILD_VECTOR node.
5165      // Constants may have multiple users.
5166      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5167        return SDValue();
5168      break;
5169    }
5170
5171    case ISD::VECTOR_SHUFFLE: {
5172      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5173
5174      // Shuffles must have a splat mask where the first element is
5175      // broadcasted.
5176      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5177        return SDValue();
5178
5179      SDValue Sc = Op.getOperand(0);
5180      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5181          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5182
5183        if (!Subtarget->hasInt256())
5184          return SDValue();
5185
5186        // Use the register form of the broadcast instruction available on AVX2.
5187        if (VT.is256BitVector())
5188          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5189        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5190      }
5191
5192      Ld = Sc.getOperand(0);
5193      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5194                       Ld.getOpcode() == ISD::ConstantFP);
5195
5196      // The scalar_to_vector node and the suspected
5197      // load node must have exactly one user.
5198      // Constants may have multiple users.
5199      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5200        return SDValue();
5201      break;
5202    }
5203  }
5204
5205  bool Is256 = VT.is256BitVector();
5206
5207  // Handle the broadcasting a single constant scalar from the constant pool
5208  // into a vector. On Sandybridge it is still better to load a constant vector
5209  // from the constant pool and not to broadcast it from a scalar.
5210  if (ConstSplatVal && Subtarget->hasInt256()) {
5211    EVT CVT = Ld.getValueType();
5212    assert(!CVT.isVector() && "Must not broadcast a vector type");
5213    unsigned ScalarSize = CVT.getSizeInBits();
5214
5215    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5216      const Constant *C = 0;
5217      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5218        C = CI->getConstantIntValue();
5219      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5220        C = CF->getConstantFPValue();
5221
5222      assert(C && "Invalid constant type");
5223
5224      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5225      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5226      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5227                       MachinePointerInfo::getConstantPool(),
5228                       false, false, false, Alignment);
5229
5230      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5231    }
5232  }
5233
5234  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5235  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5236
5237  // Handle AVX2 in-register broadcasts.
5238  if (!IsLoad && Subtarget->hasInt256() &&
5239      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5240    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5241
5242  // The scalar source must be a normal load.
5243  if (!IsLoad)
5244    return SDValue();
5245
5246  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5247    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5248
5249  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5250  // double since there is no vbroadcastsd xmm
5251  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5252    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5253      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5254  }
5255
5256  // Unsupported broadcast.
5257  return SDValue();
5258}
5259
5260SDValue
5261X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5262  EVT VT = Op.getValueType();
5263
5264  // Skip if insert_vec_elt is not supported.
5265  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5266    return SDValue();
5267
5268  DebugLoc DL = Op.getDebugLoc();
5269  unsigned NumElems = Op.getNumOperands();
5270
5271  SDValue VecIn1;
5272  SDValue VecIn2;
5273  SmallVector<unsigned, 4> InsertIndices;
5274  SmallVector<int, 8> Mask(NumElems, -1);
5275
5276  for (unsigned i = 0; i != NumElems; ++i) {
5277    unsigned Opc = Op.getOperand(i).getOpcode();
5278
5279    if (Opc == ISD::UNDEF)
5280      continue;
5281
5282    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5283      // Quit if more than 1 elements need inserting.
5284      if (InsertIndices.size() > 1)
5285        return SDValue();
5286
5287      InsertIndices.push_back(i);
5288      continue;
5289    }
5290
5291    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5292    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5293
5294    // Quit if extracted from vector of different type.
5295    if (ExtractedFromVec.getValueType() != VT)
5296      return SDValue();
5297
5298    // Quit if non-constant index.
5299    if (!isa<ConstantSDNode>(ExtIdx))
5300      return SDValue();
5301
5302    if (VecIn1.getNode() == 0)
5303      VecIn1 = ExtractedFromVec;
5304    else if (VecIn1 != ExtractedFromVec) {
5305      if (VecIn2.getNode() == 0)
5306        VecIn2 = ExtractedFromVec;
5307      else if (VecIn2 != ExtractedFromVec)
5308        // Quit if more than 2 vectors to shuffle
5309        return SDValue();
5310    }
5311
5312    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5313
5314    if (ExtractedFromVec == VecIn1)
5315      Mask[i] = Idx;
5316    else if (ExtractedFromVec == VecIn2)
5317      Mask[i] = Idx + NumElems;
5318  }
5319
5320  if (VecIn1.getNode() == 0)
5321    return SDValue();
5322
5323  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5324  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5325  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5326    unsigned Idx = InsertIndices[i];
5327    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5328                     DAG.getIntPtrConstant(Idx));
5329  }
5330
5331  return NV;
5332}
5333
5334SDValue
5335X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5336  DebugLoc dl = Op.getDebugLoc();
5337
5338  MVT VT = Op.getValueType().getSimpleVT();
5339  MVT ExtVT = VT.getVectorElementType();
5340  unsigned NumElems = Op.getNumOperands();
5341
5342  // Vectors containing all zeros can be matched by pxor and xorps later
5343  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5344    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5345    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5346    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5347      return Op;
5348
5349    return getZeroVector(VT, Subtarget, DAG, dl);
5350  }
5351
5352  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5353  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5354  // vpcmpeqd on 256-bit vectors.
5355  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5356    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5357      return Op;
5358
5359    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5360  }
5361
5362  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5363  if (Broadcast.getNode())
5364    return Broadcast;
5365
5366  unsigned EVTBits = ExtVT.getSizeInBits();
5367
5368  unsigned NumZero  = 0;
5369  unsigned NumNonZero = 0;
5370  unsigned NonZeros = 0;
5371  bool IsAllConstants = true;
5372  SmallSet<SDValue, 8> Values;
5373  for (unsigned i = 0; i < NumElems; ++i) {
5374    SDValue Elt = Op.getOperand(i);
5375    if (Elt.getOpcode() == ISD::UNDEF)
5376      continue;
5377    Values.insert(Elt);
5378    if (Elt.getOpcode() != ISD::Constant &&
5379        Elt.getOpcode() != ISD::ConstantFP)
5380      IsAllConstants = false;
5381    if (X86::isZeroNode(Elt))
5382      NumZero++;
5383    else {
5384      NonZeros |= (1 << i);
5385      NumNonZero++;
5386    }
5387  }
5388
5389  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5390  if (NumNonZero == 0)
5391    return DAG.getUNDEF(VT);
5392
5393  // Special case for single non-zero, non-undef, element.
5394  if (NumNonZero == 1) {
5395    unsigned Idx = CountTrailingZeros_32(NonZeros);
5396    SDValue Item = Op.getOperand(Idx);
5397
5398    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5399    // the value are obviously zero, truncate the value to i32 and do the
5400    // insertion that way.  Only do this if the value is non-constant or if the
5401    // value is a constant being inserted into element 0.  It is cheaper to do
5402    // a constant pool load than it is to do a movd + shuffle.
5403    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5404        (!IsAllConstants || Idx == 0)) {
5405      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5406        // Handle SSE only.
5407        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5408        EVT VecVT = MVT::v4i32;
5409        unsigned VecElts = 4;
5410
5411        // Truncate the value (which may itself be a constant) to i32, and
5412        // convert it to a vector with movd (S2V+shuffle to zero extend).
5413        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5414        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5415        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5416
5417        // Now we have our 32-bit value zero extended in the low element of
5418        // a vector.  If Idx != 0, swizzle it into place.
5419        if (Idx != 0) {
5420          SmallVector<int, 4> Mask;
5421          Mask.push_back(Idx);
5422          for (unsigned i = 1; i != VecElts; ++i)
5423            Mask.push_back(i);
5424          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5425                                      &Mask[0]);
5426        }
5427        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5428      }
5429    }
5430
5431    // If we have a constant or non-constant insertion into the low element of
5432    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5433    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5434    // depending on what the source datatype is.
5435    if (Idx == 0) {
5436      if (NumZero == 0)
5437        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5438
5439      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5440          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5441        if (VT.is256BitVector()) {
5442          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5443          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5444                             Item, DAG.getIntPtrConstant(0));
5445        }
5446        assert(VT.is128BitVector() && "Expected an SSE value type!");
5447        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5448        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5449        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5450      }
5451
5452      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5453        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5454        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5455        if (VT.is256BitVector()) {
5456          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5457          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5458        } else {
5459          assert(VT.is128BitVector() && "Expected an SSE value type!");
5460          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5461        }
5462        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5463      }
5464    }
5465
5466    // Is it a vector logical left shift?
5467    if (NumElems == 2 && Idx == 1 &&
5468        X86::isZeroNode(Op.getOperand(0)) &&
5469        !X86::isZeroNode(Op.getOperand(1))) {
5470      unsigned NumBits = VT.getSizeInBits();
5471      return getVShift(true, VT,
5472                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5473                                   VT, Op.getOperand(1)),
5474                       NumBits/2, DAG, *this, dl);
5475    }
5476
5477    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5478      return SDValue();
5479
5480    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5481    // is a non-constant being inserted into an element other than the low one,
5482    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5483    // movd/movss) to move this into the low element, then shuffle it into
5484    // place.
5485    if (EVTBits == 32) {
5486      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5487
5488      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5489      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5490      SmallVector<int, 8> MaskVec;
5491      for (unsigned i = 0; i != NumElems; ++i)
5492        MaskVec.push_back(i == Idx ? 0 : 1);
5493      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5494    }
5495  }
5496
5497  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5498  if (Values.size() == 1) {
5499    if (EVTBits == 32) {
5500      // Instead of a shuffle like this:
5501      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5502      // Check if it's possible to issue this instead.
5503      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5504      unsigned Idx = CountTrailingZeros_32(NonZeros);
5505      SDValue Item = Op.getOperand(Idx);
5506      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5507        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5508    }
5509    return SDValue();
5510  }
5511
5512  // A vector full of immediates; various special cases are already
5513  // handled, so this is best done with a single constant-pool load.
5514  if (IsAllConstants)
5515    return SDValue();
5516
5517  // For AVX-length vectors, build the individual 128-bit pieces and use
5518  // shuffles to put them in place.
5519  if (VT.is256BitVector()) {
5520    SmallVector<SDValue, 32> V;
5521    for (unsigned i = 0; i != NumElems; ++i)
5522      V.push_back(Op.getOperand(i));
5523
5524    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5525
5526    // Build both the lower and upper subvector.
5527    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5528    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5529                                NumElems/2);
5530
5531    // Recreate the wider vector with the lower and upper part.
5532    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5533  }
5534
5535  // Let legalizer expand 2-wide build_vectors.
5536  if (EVTBits == 64) {
5537    if (NumNonZero == 1) {
5538      // One half is zero or undef.
5539      unsigned Idx = CountTrailingZeros_32(NonZeros);
5540      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5541                                 Op.getOperand(Idx));
5542      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5543    }
5544    return SDValue();
5545  }
5546
5547  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5548  if (EVTBits == 8 && NumElems == 16) {
5549    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5550                                        Subtarget, *this);
5551    if (V.getNode()) return V;
5552  }
5553
5554  if (EVTBits == 16 && NumElems == 8) {
5555    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5556                                      Subtarget, *this);
5557    if (V.getNode()) return V;
5558  }
5559
5560  // If element VT is == 32 bits, turn it into a number of shuffles.
5561  SmallVector<SDValue, 8> V(NumElems);
5562  if (NumElems == 4 && NumZero > 0) {
5563    for (unsigned i = 0; i < 4; ++i) {
5564      bool isZero = !(NonZeros & (1 << i));
5565      if (isZero)
5566        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5567      else
5568        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5569    }
5570
5571    for (unsigned i = 0; i < 2; ++i) {
5572      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5573        default: break;
5574        case 0:
5575          V[i] = V[i*2];  // Must be a zero vector.
5576          break;
5577        case 1:
5578          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5579          break;
5580        case 2:
5581          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5582          break;
5583        case 3:
5584          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5585          break;
5586      }
5587    }
5588
5589    bool Reverse1 = (NonZeros & 0x3) == 2;
5590    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5591    int MaskVec[] = {
5592      Reverse1 ? 1 : 0,
5593      Reverse1 ? 0 : 1,
5594      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5595      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5596    };
5597    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5598  }
5599
5600  if (Values.size() > 1 && VT.is128BitVector()) {
5601    // Check for a build vector of consecutive loads.
5602    for (unsigned i = 0; i < NumElems; ++i)
5603      V[i] = Op.getOperand(i);
5604
5605    // Check for elements which are consecutive loads.
5606    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5607    if (LD.getNode())
5608      return LD;
5609
5610    // Check for a build vector from mostly shuffle plus few inserting.
5611    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5612    if (Sh.getNode())
5613      return Sh;
5614
5615    // For SSE 4.1, use insertps to put the high elements into the low element.
5616    if (getSubtarget()->hasSSE41()) {
5617      SDValue Result;
5618      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5619        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5620      else
5621        Result = DAG.getUNDEF(VT);
5622
5623      for (unsigned i = 1; i < NumElems; ++i) {
5624        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5625        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5626                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5627      }
5628      return Result;
5629    }
5630
5631    // Otherwise, expand into a number of unpckl*, start by extending each of
5632    // our (non-undef) elements to the full vector width with the element in the
5633    // bottom slot of the vector (which generates no code for SSE).
5634    for (unsigned i = 0; i < NumElems; ++i) {
5635      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5636        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5637      else
5638        V[i] = DAG.getUNDEF(VT);
5639    }
5640
5641    // Next, we iteratively mix elements, e.g. for v4f32:
5642    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5643    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5644    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5645    unsigned EltStride = NumElems >> 1;
5646    while (EltStride != 0) {
5647      for (unsigned i = 0; i < EltStride; ++i) {
5648        // If V[i+EltStride] is undef and this is the first round of mixing,
5649        // then it is safe to just drop this shuffle: V[i] is already in the
5650        // right place, the one element (since it's the first round) being
5651        // inserted as undef can be dropped.  This isn't safe for successive
5652        // rounds because they will permute elements within both vectors.
5653        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5654            EltStride == NumElems/2)
5655          continue;
5656
5657        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5658      }
5659      EltStride >>= 1;
5660    }
5661    return V[0];
5662  }
5663  return SDValue();
5664}
5665
5666// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5667// to create 256-bit vectors from two other 128-bit ones.
5668static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5669  DebugLoc dl = Op.getDebugLoc();
5670  MVT ResVT = Op.getValueType().getSimpleVT();
5671
5672  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5673
5674  SDValue V1 = Op.getOperand(0);
5675  SDValue V2 = Op.getOperand(1);
5676  unsigned NumElems = ResVT.getVectorNumElements();
5677
5678  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5679}
5680
5681static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5682  assert(Op.getNumOperands() == 2);
5683
5684  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5685  // from two other 128-bit ones.
5686  return LowerAVXCONCAT_VECTORS(Op, DAG);
5687}
5688
5689// Try to lower a shuffle node into a simple blend instruction.
5690static SDValue
5691LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5692                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5693  SDValue V1 = SVOp->getOperand(0);
5694  SDValue V2 = SVOp->getOperand(1);
5695  DebugLoc dl = SVOp->getDebugLoc();
5696  MVT VT = SVOp->getValueType(0).getSimpleVT();
5697  MVT EltVT = VT.getVectorElementType();
5698  unsigned NumElems = VT.getVectorNumElements();
5699
5700  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5701    return SDValue();
5702  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5703    return SDValue();
5704
5705  // Check the mask for BLEND and build the value.
5706  unsigned MaskValue = 0;
5707  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5708  unsigned NumLanes = (NumElems-1)/8 + 1;
5709  unsigned NumElemsInLane = NumElems / NumLanes;
5710
5711  // Blend for v16i16 should be symetric for the both lanes.
5712  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5713
5714    int SndLaneEltIdx = (NumLanes == 2) ?
5715      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5716    int EltIdx = SVOp->getMaskElt(i);
5717
5718    if ((EltIdx < 0 || EltIdx == (int)i) &&
5719        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5720      continue;
5721
5722    if (((unsigned)EltIdx == (i + NumElems)) &&
5723        (SndLaneEltIdx < 0 ||
5724         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5725      MaskValue |= (1<<i);
5726    else
5727      return SDValue();
5728  }
5729
5730  // Convert i32 vectors to floating point if it is not AVX2.
5731  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5732  MVT BlendVT = VT;
5733  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5734    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
5735                               NumElems);
5736    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5737    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5738  }
5739
5740  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5741                            DAG.getConstant(MaskValue, MVT::i32));
5742  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5743}
5744
5745// v8i16 shuffles - Prefer shuffles in the following order:
5746// 1. [all]   pshuflw, pshufhw, optional move
5747// 2. [ssse3] 1 x pshufb
5748// 3. [ssse3] 2 x pshufb + 1 x por
5749// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5750static SDValue
5751LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5752                         SelectionDAG &DAG) {
5753  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5754  SDValue V1 = SVOp->getOperand(0);
5755  SDValue V2 = SVOp->getOperand(1);
5756  DebugLoc dl = SVOp->getDebugLoc();
5757  SmallVector<int, 8> MaskVals;
5758
5759  // Determine if more than 1 of the words in each of the low and high quadwords
5760  // of the result come from the same quadword of one of the two inputs.  Undef
5761  // mask values count as coming from any quadword, for better codegen.
5762  unsigned LoQuad[] = { 0, 0, 0, 0 };
5763  unsigned HiQuad[] = { 0, 0, 0, 0 };
5764  std::bitset<4> InputQuads;
5765  for (unsigned i = 0; i < 8; ++i) {
5766    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5767    int EltIdx = SVOp->getMaskElt(i);
5768    MaskVals.push_back(EltIdx);
5769    if (EltIdx < 0) {
5770      ++Quad[0];
5771      ++Quad[1];
5772      ++Quad[2];
5773      ++Quad[3];
5774      continue;
5775    }
5776    ++Quad[EltIdx / 4];
5777    InputQuads.set(EltIdx / 4);
5778  }
5779
5780  int BestLoQuad = -1;
5781  unsigned MaxQuad = 1;
5782  for (unsigned i = 0; i < 4; ++i) {
5783    if (LoQuad[i] > MaxQuad) {
5784      BestLoQuad = i;
5785      MaxQuad = LoQuad[i];
5786    }
5787  }
5788
5789  int BestHiQuad = -1;
5790  MaxQuad = 1;
5791  for (unsigned i = 0; i < 4; ++i) {
5792    if (HiQuad[i] > MaxQuad) {
5793      BestHiQuad = i;
5794      MaxQuad = HiQuad[i];
5795    }
5796  }
5797
5798  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5799  // of the two input vectors, shuffle them into one input vector so only a
5800  // single pshufb instruction is necessary. If There are more than 2 input
5801  // quads, disable the next transformation since it does not help SSSE3.
5802  bool V1Used = InputQuads[0] || InputQuads[1];
5803  bool V2Used = InputQuads[2] || InputQuads[3];
5804  if (Subtarget->hasSSSE3()) {
5805    if (InputQuads.count() == 2 && V1Used && V2Used) {
5806      BestLoQuad = InputQuads[0] ? 0 : 1;
5807      BestHiQuad = InputQuads[2] ? 2 : 3;
5808    }
5809    if (InputQuads.count() > 2) {
5810      BestLoQuad = -1;
5811      BestHiQuad = -1;
5812    }
5813  }
5814
5815  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5816  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5817  // words from all 4 input quadwords.
5818  SDValue NewV;
5819  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5820    int MaskV[] = {
5821      BestLoQuad < 0 ? 0 : BestLoQuad,
5822      BestHiQuad < 0 ? 1 : BestHiQuad
5823    };
5824    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5825                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5826                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5827    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5828
5829    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5830    // source words for the shuffle, to aid later transformations.
5831    bool AllWordsInNewV = true;
5832    bool InOrder[2] = { true, true };
5833    for (unsigned i = 0; i != 8; ++i) {
5834      int idx = MaskVals[i];
5835      if (idx != (int)i)
5836        InOrder[i/4] = false;
5837      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5838        continue;
5839      AllWordsInNewV = false;
5840      break;
5841    }
5842
5843    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5844    if (AllWordsInNewV) {
5845      for (int i = 0; i != 8; ++i) {
5846        int idx = MaskVals[i];
5847        if (idx < 0)
5848          continue;
5849        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5850        if ((idx != i) && idx < 4)
5851          pshufhw = false;
5852        if ((idx != i) && idx > 3)
5853          pshuflw = false;
5854      }
5855      V1 = NewV;
5856      V2Used = false;
5857      BestLoQuad = 0;
5858      BestHiQuad = 1;
5859    }
5860
5861    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5862    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5863    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5864      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5865      unsigned TargetMask = 0;
5866      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5867                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5868      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5869      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5870                             getShufflePSHUFLWImmediate(SVOp);
5871      V1 = NewV.getOperand(0);
5872      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5873    }
5874  }
5875
5876  // Promote splats to a larger type which usually leads to more efficient code.
5877  // FIXME: Is this true if pshufb is available?
5878  if (SVOp->isSplat())
5879    return PromoteSplat(SVOp, DAG);
5880
5881  // If we have SSSE3, and all words of the result are from 1 input vector,
5882  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5883  // is present, fall back to case 4.
5884  if (Subtarget->hasSSSE3()) {
5885    SmallVector<SDValue,16> pshufbMask;
5886
5887    // If we have elements from both input vectors, set the high bit of the
5888    // shuffle mask element to zero out elements that come from V2 in the V1
5889    // mask, and elements that come from V1 in the V2 mask, so that the two
5890    // results can be OR'd together.
5891    bool TwoInputs = V1Used && V2Used;
5892    for (unsigned i = 0; i != 8; ++i) {
5893      int EltIdx = MaskVals[i] * 2;
5894      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5895      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5896      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5897      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5898    }
5899    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5900    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5901                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5902                                 MVT::v16i8, &pshufbMask[0], 16));
5903    if (!TwoInputs)
5904      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5905
5906    // Calculate the shuffle mask for the second input, shuffle it, and
5907    // OR it with the first shuffled input.
5908    pshufbMask.clear();
5909    for (unsigned i = 0; i != 8; ++i) {
5910      int EltIdx = MaskVals[i] * 2;
5911      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5912      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5913      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5914      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5915    }
5916    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5917    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5918                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5919                                 MVT::v16i8, &pshufbMask[0], 16));
5920    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5921    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5922  }
5923
5924  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5925  // and update MaskVals with new element order.
5926  std::bitset<8> InOrder;
5927  if (BestLoQuad >= 0) {
5928    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5929    for (int i = 0; i != 4; ++i) {
5930      int idx = MaskVals[i];
5931      if (idx < 0) {
5932        InOrder.set(i);
5933      } else if ((idx / 4) == BestLoQuad) {
5934        MaskV[i] = idx & 3;
5935        InOrder.set(i);
5936      }
5937    }
5938    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5939                                &MaskV[0]);
5940
5941    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5942      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5943      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5944                                  NewV.getOperand(0),
5945                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5946    }
5947  }
5948
5949  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5950  // and update MaskVals with the new element order.
5951  if (BestHiQuad >= 0) {
5952    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5953    for (unsigned i = 4; i != 8; ++i) {
5954      int idx = MaskVals[i];
5955      if (idx < 0) {
5956        InOrder.set(i);
5957      } else if ((idx / 4) == BestHiQuad) {
5958        MaskV[i] = (idx & 3) + 4;
5959        InOrder.set(i);
5960      }
5961    }
5962    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5963                                &MaskV[0]);
5964
5965    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5966      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5967      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5968                                  NewV.getOperand(0),
5969                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5970    }
5971  }
5972
5973  // In case BestHi & BestLo were both -1, which means each quadword has a word
5974  // from each of the four input quadwords, calculate the InOrder bitvector now
5975  // before falling through to the insert/extract cleanup.
5976  if (BestLoQuad == -1 && BestHiQuad == -1) {
5977    NewV = V1;
5978    for (int i = 0; i != 8; ++i)
5979      if (MaskVals[i] < 0 || MaskVals[i] == i)
5980        InOrder.set(i);
5981  }
5982
5983  // The other elements are put in the right place using pextrw and pinsrw.
5984  for (unsigned i = 0; i != 8; ++i) {
5985    if (InOrder[i])
5986      continue;
5987    int EltIdx = MaskVals[i];
5988    if (EltIdx < 0)
5989      continue;
5990    SDValue ExtOp = (EltIdx < 8) ?
5991      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5992                  DAG.getIntPtrConstant(EltIdx)) :
5993      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5994                  DAG.getIntPtrConstant(EltIdx - 8));
5995    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5996                       DAG.getIntPtrConstant(i));
5997  }
5998  return NewV;
5999}
6000
6001// v16i8 shuffles - Prefer shuffles in the following order:
6002// 1. [ssse3] 1 x pshufb
6003// 2. [ssse3] 2 x pshufb + 1 x por
6004// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6005static
6006SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6007                                 SelectionDAG &DAG,
6008                                 const X86TargetLowering &TLI) {
6009  SDValue V1 = SVOp->getOperand(0);
6010  SDValue V2 = SVOp->getOperand(1);
6011  DebugLoc dl = SVOp->getDebugLoc();
6012  ArrayRef<int> MaskVals = SVOp->getMask();
6013
6014  // Promote splats to a larger type which usually leads to more efficient code.
6015  // FIXME: Is this true if pshufb is available?
6016  if (SVOp->isSplat())
6017    return PromoteSplat(SVOp, DAG);
6018
6019  // If we have SSSE3, case 1 is generated when all result bytes come from
6020  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6021  // present, fall back to case 3.
6022
6023  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6024  if (TLI.getSubtarget()->hasSSSE3()) {
6025    SmallVector<SDValue,16> pshufbMask;
6026
6027    // If all result elements are from one input vector, then only translate
6028    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6029    //
6030    // Otherwise, we have elements from both input vectors, and must zero out
6031    // elements that come from V2 in the first mask, and V1 in the second mask
6032    // so that we can OR them together.
6033    for (unsigned i = 0; i != 16; ++i) {
6034      int EltIdx = MaskVals[i];
6035      if (EltIdx < 0 || EltIdx >= 16)
6036        EltIdx = 0x80;
6037      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6038    }
6039    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6040                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6041                                 MVT::v16i8, &pshufbMask[0], 16));
6042
6043    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6044    // the 2nd operand if it's undefined or zero.
6045    if (V2.getOpcode() == ISD::UNDEF ||
6046        ISD::isBuildVectorAllZeros(V2.getNode()))
6047      return V1;
6048
6049    // Calculate the shuffle mask for the second input, shuffle it, and
6050    // OR it with the first shuffled input.
6051    pshufbMask.clear();
6052    for (unsigned i = 0; i != 16; ++i) {
6053      int EltIdx = MaskVals[i];
6054      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6055      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6056    }
6057    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6058                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6059                                 MVT::v16i8, &pshufbMask[0], 16));
6060    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6061  }
6062
6063  // No SSSE3 - Calculate in place words and then fix all out of place words
6064  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6065  // the 16 different words that comprise the two doublequadword input vectors.
6066  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6067  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6068  SDValue NewV = V1;
6069  for (int i = 0; i != 8; ++i) {
6070    int Elt0 = MaskVals[i*2];
6071    int Elt1 = MaskVals[i*2+1];
6072
6073    // This word of the result is all undef, skip it.
6074    if (Elt0 < 0 && Elt1 < 0)
6075      continue;
6076
6077    // This word of the result is already in the correct place, skip it.
6078    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6079      continue;
6080
6081    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6082    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6083    SDValue InsElt;
6084
6085    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6086    // using a single extract together, load it and store it.
6087    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6088      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6089                           DAG.getIntPtrConstant(Elt1 / 2));
6090      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6091                        DAG.getIntPtrConstant(i));
6092      continue;
6093    }
6094
6095    // If Elt1 is defined, extract it from the appropriate source.  If the
6096    // source byte is not also odd, shift the extracted word left 8 bits
6097    // otherwise clear the bottom 8 bits if we need to do an or.
6098    if (Elt1 >= 0) {
6099      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6100                           DAG.getIntPtrConstant(Elt1 / 2));
6101      if ((Elt1 & 1) == 0)
6102        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6103                             DAG.getConstant(8,
6104                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6105      else if (Elt0 >= 0)
6106        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6107                             DAG.getConstant(0xFF00, MVT::i16));
6108    }
6109    // If Elt0 is defined, extract it from the appropriate source.  If the
6110    // source byte is not also even, shift the extracted word right 8 bits. If
6111    // Elt1 was also defined, OR the extracted values together before
6112    // inserting them in the result.
6113    if (Elt0 >= 0) {
6114      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6115                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6116      if ((Elt0 & 1) != 0)
6117        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6118                              DAG.getConstant(8,
6119                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6120      else if (Elt1 >= 0)
6121        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6122                             DAG.getConstant(0x00FF, MVT::i16));
6123      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6124                         : InsElt0;
6125    }
6126    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6127                       DAG.getIntPtrConstant(i));
6128  }
6129  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6130}
6131
6132// v32i8 shuffles - Translate to VPSHUFB if possible.
6133static
6134SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6135                                 const X86Subtarget *Subtarget,
6136                                 SelectionDAG &DAG) {
6137  MVT VT = SVOp->getValueType(0).getSimpleVT();
6138  SDValue V1 = SVOp->getOperand(0);
6139  SDValue V2 = SVOp->getOperand(1);
6140  DebugLoc dl = SVOp->getDebugLoc();
6141  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6142
6143  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6144  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6145  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6146
6147  // VPSHUFB may be generated if
6148  // (1) one of input vector is undefined or zeroinitializer.
6149  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6150  // And (2) the mask indexes don't cross the 128-bit lane.
6151  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6152      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6153    return SDValue();
6154
6155  if (V1IsAllZero && !V2IsAllZero) {
6156    CommuteVectorShuffleMask(MaskVals, 32);
6157    V1 = V2;
6158  }
6159  SmallVector<SDValue, 32> pshufbMask;
6160  for (unsigned i = 0; i != 32; i++) {
6161    int EltIdx = MaskVals[i];
6162    if (EltIdx < 0 || EltIdx >= 32)
6163      EltIdx = 0x80;
6164    else {
6165      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6166        // Cross lane is not allowed.
6167        return SDValue();
6168      EltIdx &= 0xf;
6169    }
6170    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6171  }
6172  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6173                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6174                                  MVT::v32i8, &pshufbMask[0], 32));
6175}
6176
6177/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6178/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6179/// done when every pair / quad of shuffle mask elements point to elements in
6180/// the right sequence. e.g.
6181/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6182static
6183SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6184                                 SelectionDAG &DAG) {
6185  MVT VT = SVOp->getValueType(0).getSimpleVT();
6186  DebugLoc dl = SVOp->getDebugLoc();
6187  unsigned NumElems = VT.getVectorNumElements();
6188  MVT NewVT;
6189  unsigned Scale;
6190  switch (VT.SimpleTy) {
6191  default: llvm_unreachable("Unexpected!");
6192  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6193  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6194  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6195  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6196  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6197  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6198  }
6199
6200  SmallVector<int, 8> MaskVec;
6201  for (unsigned i = 0; i != NumElems; i += Scale) {
6202    int StartIdx = -1;
6203    for (unsigned j = 0; j != Scale; ++j) {
6204      int EltIdx = SVOp->getMaskElt(i+j);
6205      if (EltIdx < 0)
6206        continue;
6207      if (StartIdx < 0)
6208        StartIdx = (EltIdx / Scale);
6209      if (EltIdx != (int)(StartIdx*Scale + j))
6210        return SDValue();
6211    }
6212    MaskVec.push_back(StartIdx);
6213  }
6214
6215  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6216  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6217  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6218}
6219
6220/// getVZextMovL - Return a zero-extending vector move low node.
6221///
6222static SDValue getVZextMovL(MVT VT, EVT OpVT,
6223                            SDValue SrcOp, SelectionDAG &DAG,
6224                            const X86Subtarget *Subtarget, DebugLoc dl) {
6225  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6226    LoadSDNode *LD = NULL;
6227    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6228      LD = dyn_cast<LoadSDNode>(SrcOp);
6229    if (!LD) {
6230      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6231      // instead.
6232      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6233      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6234          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6235          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6236          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6237        // PR2108
6238        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6239        return DAG.getNode(ISD::BITCAST, dl, VT,
6240                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6241                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6242                                                   OpVT,
6243                                                   SrcOp.getOperand(0)
6244                                                          .getOperand(0))));
6245      }
6246    }
6247  }
6248
6249  return DAG.getNode(ISD::BITCAST, dl, VT,
6250                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6251                                 DAG.getNode(ISD::BITCAST, dl,
6252                                             OpVT, SrcOp)));
6253}
6254
6255/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6256/// which could not be matched by any known target speficic shuffle
6257static SDValue
6258LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6259
6260  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6261  if (NewOp.getNode())
6262    return NewOp;
6263
6264  MVT VT = SVOp->getValueType(0).getSimpleVT();
6265
6266  unsigned NumElems = VT.getVectorNumElements();
6267  unsigned NumLaneElems = NumElems / 2;
6268
6269  DebugLoc dl = SVOp->getDebugLoc();
6270  MVT EltVT = VT.getVectorElementType();
6271  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6272  SDValue Output[2];
6273
6274  SmallVector<int, 16> Mask;
6275  for (unsigned l = 0; l < 2; ++l) {
6276    // Build a shuffle mask for the output, discovering on the fly which
6277    // input vectors to use as shuffle operands (recorded in InputUsed).
6278    // If building a suitable shuffle vector proves too hard, then bail
6279    // out with UseBuildVector set.
6280    bool UseBuildVector = false;
6281    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6282    unsigned LaneStart = l * NumLaneElems;
6283    for (unsigned i = 0; i != NumLaneElems; ++i) {
6284      // The mask element.  This indexes into the input.
6285      int Idx = SVOp->getMaskElt(i+LaneStart);
6286      if (Idx < 0) {
6287        // the mask element does not index into any input vector.
6288        Mask.push_back(-1);
6289        continue;
6290      }
6291
6292      // The input vector this mask element indexes into.
6293      int Input = Idx / NumLaneElems;
6294
6295      // Turn the index into an offset from the start of the input vector.
6296      Idx -= Input * NumLaneElems;
6297
6298      // Find or create a shuffle vector operand to hold this input.
6299      unsigned OpNo;
6300      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6301        if (InputUsed[OpNo] == Input)
6302          // This input vector is already an operand.
6303          break;
6304        if (InputUsed[OpNo] < 0) {
6305          // Create a new operand for this input vector.
6306          InputUsed[OpNo] = Input;
6307          break;
6308        }
6309      }
6310
6311      if (OpNo >= array_lengthof(InputUsed)) {
6312        // More than two input vectors used!  Give up on trying to create a
6313        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6314        UseBuildVector = true;
6315        break;
6316      }
6317
6318      // Add the mask index for the new shuffle vector.
6319      Mask.push_back(Idx + OpNo * NumLaneElems);
6320    }
6321
6322    if (UseBuildVector) {
6323      SmallVector<SDValue, 16> SVOps;
6324      for (unsigned i = 0; i != NumLaneElems; ++i) {
6325        // The mask element.  This indexes into the input.
6326        int Idx = SVOp->getMaskElt(i+LaneStart);
6327        if (Idx < 0) {
6328          SVOps.push_back(DAG.getUNDEF(EltVT));
6329          continue;
6330        }
6331
6332        // The input vector this mask element indexes into.
6333        int Input = Idx / NumElems;
6334
6335        // Turn the index into an offset from the start of the input vector.
6336        Idx -= Input * NumElems;
6337
6338        // Extract the vector element by hand.
6339        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6340                                    SVOp->getOperand(Input),
6341                                    DAG.getIntPtrConstant(Idx)));
6342      }
6343
6344      // Construct the output using a BUILD_VECTOR.
6345      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6346                              SVOps.size());
6347    } else if (InputUsed[0] < 0) {
6348      // No input vectors were used! The result is undefined.
6349      Output[l] = DAG.getUNDEF(NVT);
6350    } else {
6351      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6352                                        (InputUsed[0] % 2) * NumLaneElems,
6353                                        DAG, dl);
6354      // If only one input was used, use an undefined vector for the other.
6355      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6356        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6357                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6358      // At least one input vector was used. Create a new shuffle vector.
6359      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6360    }
6361
6362    Mask.clear();
6363  }
6364
6365  // Concatenate the result back
6366  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6367}
6368
6369/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6370/// 4 elements, and match them with several different shuffle types.
6371static SDValue
6372LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6373  SDValue V1 = SVOp->getOperand(0);
6374  SDValue V2 = SVOp->getOperand(1);
6375  DebugLoc dl = SVOp->getDebugLoc();
6376  MVT VT = SVOp->getValueType(0).getSimpleVT();
6377
6378  assert(VT.is128BitVector() && "Unsupported vector size");
6379
6380  std::pair<int, int> Locs[4];
6381  int Mask1[] = { -1, -1, -1, -1 };
6382  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6383
6384  unsigned NumHi = 0;
6385  unsigned NumLo = 0;
6386  for (unsigned i = 0; i != 4; ++i) {
6387    int Idx = PermMask[i];
6388    if (Idx < 0) {
6389      Locs[i] = std::make_pair(-1, -1);
6390    } else {
6391      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6392      if (Idx < 4) {
6393        Locs[i] = std::make_pair(0, NumLo);
6394        Mask1[NumLo] = Idx;
6395        NumLo++;
6396      } else {
6397        Locs[i] = std::make_pair(1, NumHi);
6398        if (2+NumHi < 4)
6399          Mask1[2+NumHi] = Idx;
6400        NumHi++;
6401      }
6402    }
6403  }
6404
6405  if (NumLo <= 2 && NumHi <= 2) {
6406    // If no more than two elements come from either vector. This can be
6407    // implemented with two shuffles. First shuffle gather the elements.
6408    // The second shuffle, which takes the first shuffle as both of its
6409    // vector operands, put the elements into the right order.
6410    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6411
6412    int Mask2[] = { -1, -1, -1, -1 };
6413
6414    for (unsigned i = 0; i != 4; ++i)
6415      if (Locs[i].first != -1) {
6416        unsigned Idx = (i < 2) ? 0 : 4;
6417        Idx += Locs[i].first * 2 + Locs[i].second;
6418        Mask2[i] = Idx;
6419      }
6420
6421    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6422  }
6423
6424  if (NumLo == 3 || NumHi == 3) {
6425    // Otherwise, we must have three elements from one vector, call it X, and
6426    // one element from the other, call it Y.  First, use a shufps to build an
6427    // intermediate vector with the one element from Y and the element from X
6428    // that will be in the same half in the final destination (the indexes don't
6429    // matter). Then, use a shufps to build the final vector, taking the half
6430    // containing the element from Y from the intermediate, and the other half
6431    // from X.
6432    if (NumHi == 3) {
6433      // Normalize it so the 3 elements come from V1.
6434      CommuteVectorShuffleMask(PermMask, 4);
6435      std::swap(V1, V2);
6436    }
6437
6438    // Find the element from V2.
6439    unsigned HiIndex;
6440    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6441      int Val = PermMask[HiIndex];
6442      if (Val < 0)
6443        continue;
6444      if (Val >= 4)
6445        break;
6446    }
6447
6448    Mask1[0] = PermMask[HiIndex];
6449    Mask1[1] = -1;
6450    Mask1[2] = PermMask[HiIndex^1];
6451    Mask1[3] = -1;
6452    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6453
6454    if (HiIndex >= 2) {
6455      Mask1[0] = PermMask[0];
6456      Mask1[1] = PermMask[1];
6457      Mask1[2] = HiIndex & 1 ? 6 : 4;
6458      Mask1[3] = HiIndex & 1 ? 4 : 6;
6459      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6460    }
6461
6462    Mask1[0] = HiIndex & 1 ? 2 : 0;
6463    Mask1[1] = HiIndex & 1 ? 0 : 2;
6464    Mask1[2] = PermMask[2];
6465    Mask1[3] = PermMask[3];
6466    if (Mask1[2] >= 0)
6467      Mask1[2] += 4;
6468    if (Mask1[3] >= 0)
6469      Mask1[3] += 4;
6470    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6471  }
6472
6473  // Break it into (shuffle shuffle_hi, shuffle_lo).
6474  int LoMask[] = { -1, -1, -1, -1 };
6475  int HiMask[] = { -1, -1, -1, -1 };
6476
6477  int *MaskPtr = LoMask;
6478  unsigned MaskIdx = 0;
6479  unsigned LoIdx = 0;
6480  unsigned HiIdx = 2;
6481  for (unsigned i = 0; i != 4; ++i) {
6482    if (i == 2) {
6483      MaskPtr = HiMask;
6484      MaskIdx = 1;
6485      LoIdx = 0;
6486      HiIdx = 2;
6487    }
6488    int Idx = PermMask[i];
6489    if (Idx < 0) {
6490      Locs[i] = std::make_pair(-1, -1);
6491    } else if (Idx < 4) {
6492      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6493      MaskPtr[LoIdx] = Idx;
6494      LoIdx++;
6495    } else {
6496      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6497      MaskPtr[HiIdx] = Idx;
6498      HiIdx++;
6499    }
6500  }
6501
6502  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6503  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6504  int MaskOps[] = { -1, -1, -1, -1 };
6505  for (unsigned i = 0; i != 4; ++i)
6506    if (Locs[i].first != -1)
6507      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6508  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6509}
6510
6511static bool MayFoldVectorLoad(SDValue V) {
6512  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6513    V = V.getOperand(0);
6514
6515  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6516    V = V.getOperand(0);
6517  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6518      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6519    // BUILD_VECTOR (load), undef
6520    V = V.getOperand(0);
6521
6522  return MayFoldLoad(V);
6523}
6524
6525static
6526SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6527  EVT VT = Op.getValueType();
6528
6529  // Canonizalize to v2f64.
6530  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6531  return DAG.getNode(ISD::BITCAST, dl, VT,
6532                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6533                                          V1, DAG));
6534}
6535
6536static
6537SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6538                        bool HasSSE2) {
6539  SDValue V1 = Op.getOperand(0);
6540  SDValue V2 = Op.getOperand(1);
6541  EVT VT = Op.getValueType();
6542
6543  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6544
6545  if (HasSSE2 && VT == MVT::v2f64)
6546    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6547
6548  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6549  return DAG.getNode(ISD::BITCAST, dl, VT,
6550                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6551                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6552                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6553}
6554
6555static
6556SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6557  SDValue V1 = Op.getOperand(0);
6558  SDValue V2 = Op.getOperand(1);
6559  EVT VT = Op.getValueType();
6560
6561  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6562         "unsupported shuffle type");
6563
6564  if (V2.getOpcode() == ISD::UNDEF)
6565    V2 = V1;
6566
6567  // v4i32 or v4f32
6568  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6569}
6570
6571static
6572SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6573  SDValue V1 = Op.getOperand(0);
6574  SDValue V2 = Op.getOperand(1);
6575  EVT VT = Op.getValueType();
6576  unsigned NumElems = VT.getVectorNumElements();
6577
6578  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6579  // operand of these instructions is only memory, so check if there's a
6580  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6581  // same masks.
6582  bool CanFoldLoad = false;
6583
6584  // Trivial case, when V2 comes from a load.
6585  if (MayFoldVectorLoad(V2))
6586    CanFoldLoad = true;
6587
6588  // When V1 is a load, it can be folded later into a store in isel, example:
6589  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6590  //    turns into:
6591  //  (MOVLPSmr addr:$src1, VR128:$src2)
6592  // So, recognize this potential and also use MOVLPS or MOVLPD
6593  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6594    CanFoldLoad = true;
6595
6596  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6597  if (CanFoldLoad) {
6598    if (HasSSE2 && NumElems == 2)
6599      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6600
6601    if (NumElems == 4)
6602      // If we don't care about the second element, proceed to use movss.
6603      if (SVOp->getMaskElt(1) != -1)
6604        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6605  }
6606
6607  // movl and movlp will both match v2i64, but v2i64 is never matched by
6608  // movl earlier because we make it strict to avoid messing with the movlp load
6609  // folding logic (see the code above getMOVLP call). Match it here then,
6610  // this is horrible, but will stay like this until we move all shuffle
6611  // matching to x86 specific nodes. Note that for the 1st condition all
6612  // types are matched with movsd.
6613  if (HasSSE2) {
6614    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6615    // as to remove this logic from here, as much as possible
6616    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6617      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6618    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6619  }
6620
6621  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6622
6623  // Invert the operand order and use SHUFPS to match it.
6624  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6625                              getShuffleSHUFImmediate(SVOp), DAG);
6626}
6627
6628// Reduce a vector shuffle to zext.
6629SDValue
6630X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6631  // PMOVZX is only available from SSE41.
6632  if (!Subtarget->hasSSE41())
6633    return SDValue();
6634
6635  EVT VT = Op.getValueType();
6636
6637  // Only AVX2 support 256-bit vector integer extending.
6638  if (!Subtarget->hasInt256() && VT.is256BitVector())
6639    return SDValue();
6640
6641  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6642  DebugLoc DL = Op.getDebugLoc();
6643  SDValue V1 = Op.getOperand(0);
6644  SDValue V2 = Op.getOperand(1);
6645  unsigned NumElems = VT.getVectorNumElements();
6646
6647  // Extending is an unary operation and the element type of the source vector
6648  // won't be equal to or larger than i64.
6649  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6650      VT.getVectorElementType() == MVT::i64)
6651    return SDValue();
6652
6653  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6654  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6655  while ((1U << Shift) < NumElems) {
6656    if (SVOp->getMaskElt(1U << Shift) == 1)
6657      break;
6658    Shift += 1;
6659    // The maximal ratio is 8, i.e. from i8 to i64.
6660    if (Shift > 3)
6661      return SDValue();
6662  }
6663
6664  // Check the shuffle mask.
6665  unsigned Mask = (1U << Shift) - 1;
6666  for (unsigned i = 0; i != NumElems; ++i) {
6667    int EltIdx = SVOp->getMaskElt(i);
6668    if ((i & Mask) != 0 && EltIdx != -1)
6669      return SDValue();
6670    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6671      return SDValue();
6672  }
6673
6674  LLVMContext *Context = DAG.getContext();
6675  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6676  EVT NeVT = EVT::getIntegerVT(*Context, NBits);
6677  EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift);
6678
6679  if (!isTypeLegal(NVT))
6680    return SDValue();
6681
6682  // Simplify the operand as it's prepared to be fed into shuffle.
6683  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6684  if (V1.getOpcode() == ISD::BITCAST &&
6685      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6686      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6687      V1.getOperand(0)
6688        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6689    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6690    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6691    ConstantSDNode *CIdx =
6692      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6693    // If it's foldable, i.e. normal load with single use, we will let code
6694    // selection to fold it. Otherwise, we will short the conversion sequence.
6695    if (CIdx && CIdx->getZExtValue() == 0 &&
6696        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
6697      if (V.getValueSizeInBits() > V1.getValueSizeInBits()) {
6698        // The "ext_vec_elt" node is wider than the result node.
6699        // In this case we should extract subvector from V.
6700        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
6701        unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits();
6702        EVT FullVT = V.getValueType();
6703        EVT SubVecVT = EVT::getVectorVT(*Context,
6704                                        FullVT.getVectorElementType(),
6705                                        FullVT.getVectorNumElements()/Ratio);
6706        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
6707                        DAG.getIntPtrConstant(0));
6708      }
6709      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6710    }
6711  }
6712
6713  return DAG.getNode(ISD::BITCAST, DL, VT,
6714                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6715}
6716
6717SDValue
6718X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6719  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6720  MVT VT = Op.getValueType().getSimpleVT();
6721  DebugLoc dl = Op.getDebugLoc();
6722  SDValue V1 = Op.getOperand(0);
6723  SDValue V2 = Op.getOperand(1);
6724
6725  if (isZeroShuffle(SVOp))
6726    return getZeroVector(VT, Subtarget, DAG, dl);
6727
6728  // Handle splat operations
6729  if (SVOp->isSplat()) {
6730    // Use vbroadcast whenever the splat comes from a foldable load
6731    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6732    if (Broadcast.getNode())
6733      return Broadcast;
6734  }
6735
6736  // Check integer expanding shuffles.
6737  SDValue NewOp = LowerVectorIntExtend(Op, DAG);
6738  if (NewOp.getNode())
6739    return NewOp;
6740
6741  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6742  // do it!
6743  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6744      VT == MVT::v16i16 || VT == MVT::v32i8) {
6745    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6746    if (NewOp.getNode())
6747      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6748  } else if ((VT == MVT::v4i32 ||
6749             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6750    // FIXME: Figure out a cleaner way to do this.
6751    // Try to make use of movq to zero out the top part.
6752    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6753      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6754      if (NewOp.getNode()) {
6755        MVT NewVT = NewOp.getValueType().getSimpleVT();
6756        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6757                               NewVT, true, false))
6758          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6759                              DAG, Subtarget, dl);
6760      }
6761    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6762      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6763      if (NewOp.getNode()) {
6764        MVT NewVT = NewOp.getValueType().getSimpleVT();
6765        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6766          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6767                              DAG, Subtarget, dl);
6768      }
6769    }
6770  }
6771  return SDValue();
6772}
6773
6774SDValue
6775X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6776  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6777  SDValue V1 = Op.getOperand(0);
6778  SDValue V2 = Op.getOperand(1);
6779  MVT VT = Op.getValueType().getSimpleVT();
6780  DebugLoc dl = Op.getDebugLoc();
6781  unsigned NumElems = VT.getVectorNumElements();
6782  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6783  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6784  bool V1IsSplat = false;
6785  bool V2IsSplat = false;
6786  bool HasSSE2 = Subtarget->hasSSE2();
6787  bool HasFp256    = Subtarget->hasFp256();
6788  bool HasInt256   = Subtarget->hasInt256();
6789  MachineFunction &MF = DAG.getMachineFunction();
6790  bool OptForSize = MF.getFunction()->getAttributes().
6791    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6792
6793  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6794
6795  if (V1IsUndef && V2IsUndef)
6796    return DAG.getUNDEF(VT);
6797
6798  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6799
6800  // Vector shuffle lowering takes 3 steps:
6801  //
6802  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6803  //    narrowing and commutation of operands should be handled.
6804  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6805  //    shuffle nodes.
6806  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6807  //    so the shuffle can be broken into other shuffles and the legalizer can
6808  //    try the lowering again.
6809  //
6810  // The general idea is that no vector_shuffle operation should be left to
6811  // be matched during isel, all of them must be converted to a target specific
6812  // node here.
6813
6814  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6815  // narrowing and commutation of operands should be handled. The actual code
6816  // doesn't include all of those, work in progress...
6817  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6818  if (NewOp.getNode())
6819    return NewOp;
6820
6821  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6822
6823  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6824  // unpckh_undef). Only use pshufd if speed is more important than size.
6825  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6826    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6827  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6828    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6829
6830  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6831      V2IsUndef && MayFoldVectorLoad(V1))
6832    return getMOVDDup(Op, dl, V1, DAG);
6833
6834  if (isMOVHLPS_v_undef_Mask(M, VT))
6835    return getMOVHighToLow(Op, dl, DAG);
6836
6837  // Use to match splats
6838  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6839      (VT == MVT::v2f64 || VT == MVT::v2i64))
6840    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6841
6842  if (isPSHUFDMask(M, VT)) {
6843    // The actual implementation will match the mask in the if above and then
6844    // during isel it can match several different instructions, not only pshufd
6845    // as its name says, sad but true, emulate the behavior for now...
6846    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6847      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6848
6849    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6850
6851    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6852      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6853
6854    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6855      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6856                                  DAG);
6857
6858    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6859                                TargetMask, DAG);
6860  }
6861
6862  // Check if this can be converted into a logical shift.
6863  bool isLeft = false;
6864  unsigned ShAmt = 0;
6865  SDValue ShVal;
6866  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6867  if (isShift && ShVal.hasOneUse()) {
6868    // If the shifted value has multiple uses, it may be cheaper to use
6869    // v_set0 + movlhps or movhlps, etc.
6870    MVT EltVT = VT.getVectorElementType();
6871    ShAmt *= EltVT.getSizeInBits();
6872    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6873  }
6874
6875  if (isMOVLMask(M, VT)) {
6876    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6877      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6878    if (!isMOVLPMask(M, VT)) {
6879      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6880        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6881
6882      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6883        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6884    }
6885  }
6886
6887  // FIXME: fold these into legal mask.
6888  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6889    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6890
6891  if (isMOVHLPSMask(M, VT))
6892    return getMOVHighToLow(Op, dl, DAG);
6893
6894  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6895    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6896
6897  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6898    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6899
6900  if (isMOVLPMask(M, VT))
6901    return getMOVLP(Op, dl, DAG, HasSSE2);
6902
6903  if (ShouldXformToMOVHLPS(M, VT) ||
6904      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6905    return CommuteVectorShuffle(SVOp, DAG);
6906
6907  if (isShift) {
6908    // No better options. Use a vshldq / vsrldq.
6909    MVT EltVT = VT.getVectorElementType();
6910    ShAmt *= EltVT.getSizeInBits();
6911    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6912  }
6913
6914  bool Commuted = false;
6915  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6916  // 1,1,1,1 -> v8i16 though.
6917  V1IsSplat = isSplatVector(V1.getNode());
6918  V2IsSplat = isSplatVector(V2.getNode());
6919
6920  // Canonicalize the splat or undef, if present, to be on the RHS.
6921  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6922    CommuteVectorShuffleMask(M, NumElems);
6923    std::swap(V1, V2);
6924    std::swap(V1IsSplat, V2IsSplat);
6925    Commuted = true;
6926  }
6927
6928  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6929    // Shuffling low element of v1 into undef, just return v1.
6930    if (V2IsUndef)
6931      return V1;
6932    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6933    // the instruction selector will not match, so get a canonical MOVL with
6934    // swapped operands to undo the commute.
6935    return getMOVL(DAG, dl, VT, V2, V1);
6936  }
6937
6938  if (isUNPCKLMask(M, VT, HasInt256))
6939    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6940
6941  if (isUNPCKHMask(M, VT, HasInt256))
6942    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6943
6944  if (V2IsSplat) {
6945    // Normalize mask so all entries that point to V2 points to its first
6946    // element then try to match unpck{h|l} again. If match, return a
6947    // new vector_shuffle with the corrected mask.p
6948    SmallVector<int, 8> NewMask(M.begin(), M.end());
6949    NormalizeMask(NewMask, NumElems);
6950    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6951      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6952    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6953      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6954  }
6955
6956  if (Commuted) {
6957    // Commute is back and try unpck* again.
6958    // FIXME: this seems wrong.
6959    CommuteVectorShuffleMask(M, NumElems);
6960    std::swap(V1, V2);
6961    std::swap(V1IsSplat, V2IsSplat);
6962    Commuted = false;
6963
6964    if (isUNPCKLMask(M, VT, HasInt256))
6965      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6966
6967    if (isUNPCKHMask(M, VT, HasInt256))
6968      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6969  }
6970
6971  // Normalize the node to match x86 shuffle ops if needed
6972  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
6973    return CommuteVectorShuffle(SVOp, DAG);
6974
6975  // The checks below are all present in isShuffleMaskLegal, but they are
6976  // inlined here right now to enable us to directly emit target specific
6977  // nodes, and remove one by one until they don't return Op anymore.
6978
6979  if (isPALIGNRMask(M, VT, Subtarget))
6980    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
6981                                getShufflePALIGNRImmediate(SVOp),
6982                                DAG);
6983
6984  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6985      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6986    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6987      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6988  }
6989
6990  if (isPSHUFHWMask(M, VT, HasInt256))
6991    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6992                                getShufflePSHUFHWImmediate(SVOp),
6993                                DAG);
6994
6995  if (isPSHUFLWMask(M, VT, HasInt256))
6996    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6997                                getShufflePSHUFLWImmediate(SVOp),
6998                                DAG);
6999
7000  if (isSHUFPMask(M, VT, HasFp256))
7001    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7002                                getShuffleSHUFImmediate(SVOp), DAG);
7003
7004  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7005    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7006  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7007    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7008
7009  //===--------------------------------------------------------------------===//
7010  // Generate target specific nodes for 128 or 256-bit shuffles only
7011  // supported in the AVX instruction set.
7012  //
7013
7014  // Handle VMOVDDUPY permutations
7015  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7016    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7017
7018  // Handle VPERMILPS/D* permutations
7019  if (isVPERMILPMask(M, VT, HasFp256)) {
7020    if (HasInt256 && VT == MVT::v8i32)
7021      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7022                                  getShuffleSHUFImmediate(SVOp), DAG);
7023    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7024                                getShuffleSHUFImmediate(SVOp), DAG);
7025  }
7026
7027  // Handle VPERM2F128/VPERM2I128 permutations
7028  if (isVPERM2X128Mask(M, VT, HasFp256))
7029    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7030                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7031
7032  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7033  if (BlendOp.getNode())
7034    return BlendOp;
7035
7036  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
7037    SmallVector<SDValue, 8> permclMask;
7038    for (unsigned i = 0; i != 8; ++i) {
7039      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
7040    }
7041    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
7042                               &permclMask[0], 8);
7043    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7044    return DAG.getNode(X86ISD::VPERMV, dl, VT,
7045                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7046  }
7047
7048  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
7049    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
7050                                getShuffleCLImmediate(SVOp), DAG);
7051
7052  //===--------------------------------------------------------------------===//
7053  // Since no target specific shuffle was selected for this generic one,
7054  // lower it into other known shuffles. FIXME: this isn't true yet, but
7055  // this is the plan.
7056  //
7057
7058  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7059  if (VT == MVT::v8i16) {
7060    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7061    if (NewOp.getNode())
7062      return NewOp;
7063  }
7064
7065  if (VT == MVT::v16i8) {
7066    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7067    if (NewOp.getNode())
7068      return NewOp;
7069  }
7070
7071  if (VT == MVT::v32i8) {
7072    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7073    if (NewOp.getNode())
7074      return NewOp;
7075  }
7076
7077  // Handle all 128-bit wide vectors with 4 elements, and match them with
7078  // several different shuffle types.
7079  if (NumElems == 4 && VT.is128BitVector())
7080    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7081
7082  // Handle general 256-bit shuffles
7083  if (VT.is256BitVector())
7084    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7085
7086  return SDValue();
7087}
7088
7089static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7090  MVT VT = Op.getValueType().getSimpleVT();
7091  DebugLoc dl = Op.getDebugLoc();
7092
7093  if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
7094    return SDValue();
7095
7096  if (VT.getSizeInBits() == 8) {
7097    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7098                                  Op.getOperand(0), Op.getOperand(1));
7099    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7100                                  DAG.getValueType(VT));
7101    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7102  }
7103
7104  if (VT.getSizeInBits() == 16) {
7105    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7106    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7107    if (Idx == 0)
7108      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7109                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7110                                     DAG.getNode(ISD::BITCAST, dl,
7111                                                 MVT::v4i32,
7112                                                 Op.getOperand(0)),
7113                                     Op.getOperand(1)));
7114    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7115                                  Op.getOperand(0), Op.getOperand(1));
7116    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7117                                  DAG.getValueType(VT));
7118    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7119  }
7120
7121  if (VT == MVT::f32) {
7122    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7123    // the result back to FR32 register. It's only worth matching if the
7124    // result has a single use which is a store or a bitcast to i32.  And in
7125    // the case of a store, it's not worth it if the index is a constant 0,
7126    // because a MOVSSmr can be used instead, which is smaller and faster.
7127    if (!Op.hasOneUse())
7128      return SDValue();
7129    SDNode *User = *Op.getNode()->use_begin();
7130    if ((User->getOpcode() != ISD::STORE ||
7131         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7132          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7133        (User->getOpcode() != ISD::BITCAST ||
7134         User->getValueType(0) != MVT::i32))
7135      return SDValue();
7136    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7137                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7138                                              Op.getOperand(0)),
7139                                              Op.getOperand(1));
7140    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7141  }
7142
7143  if (VT == MVT::i32 || VT == MVT::i64) {
7144    // ExtractPS/pextrq works with constant index.
7145    if (isa<ConstantSDNode>(Op.getOperand(1)))
7146      return Op;
7147  }
7148  return SDValue();
7149}
7150
7151SDValue
7152X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7153                                           SelectionDAG &DAG) const {
7154  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7155    return SDValue();
7156
7157  SDValue Vec = Op.getOperand(0);
7158  MVT VecVT = Vec.getValueType().getSimpleVT();
7159
7160  // If this is a 256-bit vector result, first extract the 128-bit vector and
7161  // then extract the element from the 128-bit vector.
7162  if (VecVT.is256BitVector()) {
7163    DebugLoc dl = Op.getNode()->getDebugLoc();
7164    unsigned NumElems = VecVT.getVectorNumElements();
7165    SDValue Idx = Op.getOperand(1);
7166    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7167
7168    // Get the 128-bit vector.
7169    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7170
7171    if (IdxVal >= NumElems/2)
7172      IdxVal -= NumElems/2;
7173    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7174                       DAG.getConstant(IdxVal, MVT::i32));
7175  }
7176
7177  assert(VecVT.is128BitVector() && "Unexpected vector length");
7178
7179  if (Subtarget->hasSSE41()) {
7180    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7181    if (Res.getNode())
7182      return Res;
7183  }
7184
7185  MVT VT = Op.getValueType().getSimpleVT();
7186  DebugLoc dl = Op.getDebugLoc();
7187  // TODO: handle v16i8.
7188  if (VT.getSizeInBits() == 16) {
7189    SDValue Vec = Op.getOperand(0);
7190    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7191    if (Idx == 0)
7192      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7193                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7194                                     DAG.getNode(ISD::BITCAST, dl,
7195                                                 MVT::v4i32, Vec),
7196                                     Op.getOperand(1)));
7197    // Transform it so it match pextrw which produces a 32-bit result.
7198    MVT EltVT = MVT::i32;
7199    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7200                                  Op.getOperand(0), Op.getOperand(1));
7201    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7202                                  DAG.getValueType(VT));
7203    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7204  }
7205
7206  if (VT.getSizeInBits() == 32) {
7207    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7208    if (Idx == 0)
7209      return Op;
7210
7211    // SHUFPS the element to the lowest double word, then movss.
7212    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7213    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7214    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7215                                       DAG.getUNDEF(VVT), Mask);
7216    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7217                       DAG.getIntPtrConstant(0));
7218  }
7219
7220  if (VT.getSizeInBits() == 64) {
7221    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7222    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7223    //        to match extract_elt for f64.
7224    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7225    if (Idx == 0)
7226      return Op;
7227
7228    // UNPCKHPD the element to the lowest double word, then movsd.
7229    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7230    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7231    int Mask[2] = { 1, -1 };
7232    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7233    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7234                                       DAG.getUNDEF(VVT), Mask);
7235    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7236                       DAG.getIntPtrConstant(0));
7237  }
7238
7239  return SDValue();
7240}
7241
7242static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7243  MVT VT = Op.getValueType().getSimpleVT();
7244  MVT EltVT = VT.getVectorElementType();
7245  DebugLoc dl = Op.getDebugLoc();
7246
7247  SDValue N0 = Op.getOperand(0);
7248  SDValue N1 = Op.getOperand(1);
7249  SDValue N2 = Op.getOperand(2);
7250
7251  if (!VT.is128BitVector())
7252    return SDValue();
7253
7254  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7255      isa<ConstantSDNode>(N2)) {
7256    unsigned Opc;
7257    if (VT == MVT::v8i16)
7258      Opc = X86ISD::PINSRW;
7259    else if (VT == MVT::v16i8)
7260      Opc = X86ISD::PINSRB;
7261    else
7262      Opc = X86ISD::PINSRB;
7263
7264    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7265    // argument.
7266    if (N1.getValueType() != MVT::i32)
7267      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7268    if (N2.getValueType() != MVT::i32)
7269      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7270    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7271  }
7272
7273  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7274    // Bits [7:6] of the constant are the source select.  This will always be
7275    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7276    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7277    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7278    // Bits [5:4] of the constant are the destination select.  This is the
7279    //  value of the incoming immediate.
7280    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7281    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7282    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7283    // Create this as a scalar to vector..
7284    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7285    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7286  }
7287
7288  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7289    // PINSR* works with constant index.
7290    return Op;
7291  }
7292  return SDValue();
7293}
7294
7295SDValue
7296X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7297  MVT VT = Op.getValueType().getSimpleVT();
7298  MVT EltVT = VT.getVectorElementType();
7299
7300  DebugLoc dl = Op.getDebugLoc();
7301  SDValue N0 = Op.getOperand(0);
7302  SDValue N1 = Op.getOperand(1);
7303  SDValue N2 = Op.getOperand(2);
7304
7305  // If this is a 256-bit vector result, first extract the 128-bit vector,
7306  // insert the element into the extracted half and then place it back.
7307  if (VT.is256BitVector()) {
7308    if (!isa<ConstantSDNode>(N2))
7309      return SDValue();
7310
7311    // Get the desired 128-bit vector half.
7312    unsigned NumElems = VT.getVectorNumElements();
7313    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7314    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7315
7316    // Insert the element into the desired half.
7317    bool Upper = IdxVal >= NumElems/2;
7318    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7319                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7320
7321    // Insert the changed part back to the 256-bit vector
7322    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7323  }
7324
7325  if (Subtarget->hasSSE41())
7326    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7327
7328  if (EltVT == MVT::i8)
7329    return SDValue();
7330
7331  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7332    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7333    // as its second argument.
7334    if (N1.getValueType() != MVT::i32)
7335      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7336    if (N2.getValueType() != MVT::i32)
7337      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7338    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7339  }
7340  return SDValue();
7341}
7342
7343static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7344  LLVMContext *Context = DAG.getContext();
7345  DebugLoc dl = Op.getDebugLoc();
7346  MVT OpVT = Op.getValueType().getSimpleVT();
7347
7348  // If this is a 256-bit vector result, first insert into a 128-bit
7349  // vector and then insert into the 256-bit vector.
7350  if (!OpVT.is128BitVector()) {
7351    // Insert into a 128-bit vector.
7352    EVT VT128 = EVT::getVectorVT(*Context,
7353                                 OpVT.getVectorElementType(),
7354                                 OpVT.getVectorNumElements() / 2);
7355
7356    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7357
7358    // Insert the 128-bit vector.
7359    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7360  }
7361
7362  if (OpVT == MVT::v1i64 &&
7363      Op.getOperand(0).getValueType() == MVT::i64)
7364    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7365
7366  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7367  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7368  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7369                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7370}
7371
7372// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7373// a simple subregister reference or explicit instructions to grab
7374// upper bits of a vector.
7375static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7376                                      SelectionDAG &DAG) {
7377  if (Subtarget->hasFp256()) {
7378    DebugLoc dl = Op.getNode()->getDebugLoc();
7379    SDValue Vec = Op.getNode()->getOperand(0);
7380    SDValue Idx = Op.getNode()->getOperand(1);
7381
7382    if (Op.getNode()->getValueType(0).is128BitVector() &&
7383        Vec.getNode()->getValueType(0).is256BitVector() &&
7384        isa<ConstantSDNode>(Idx)) {
7385      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7386      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7387    }
7388  }
7389  return SDValue();
7390}
7391
7392// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7393// simple superregister reference or explicit instructions to insert
7394// the upper bits of a vector.
7395static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7396                                     SelectionDAG &DAG) {
7397  if (Subtarget->hasFp256()) {
7398    DebugLoc dl = Op.getNode()->getDebugLoc();
7399    SDValue Vec = Op.getNode()->getOperand(0);
7400    SDValue SubVec = Op.getNode()->getOperand(1);
7401    SDValue Idx = Op.getNode()->getOperand(2);
7402
7403    if (Op.getNode()->getValueType(0).is256BitVector() &&
7404        SubVec.getNode()->getValueType(0).is128BitVector() &&
7405        isa<ConstantSDNode>(Idx)) {
7406      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7407      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7408    }
7409  }
7410  return SDValue();
7411}
7412
7413// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7414// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7415// one of the above mentioned nodes. It has to be wrapped because otherwise
7416// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7417// be used to form addressing mode. These wrapped nodes will be selected
7418// into MOV32ri.
7419SDValue
7420X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7421  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7422
7423  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7424  // global base reg.
7425  unsigned char OpFlag = 0;
7426  unsigned WrapperKind = X86ISD::Wrapper;
7427  CodeModel::Model M = getTargetMachine().getCodeModel();
7428
7429  if (Subtarget->isPICStyleRIPRel() &&
7430      (M == CodeModel::Small || M == CodeModel::Kernel))
7431    WrapperKind = X86ISD::WrapperRIP;
7432  else if (Subtarget->isPICStyleGOT())
7433    OpFlag = X86II::MO_GOTOFF;
7434  else if (Subtarget->isPICStyleStubPIC())
7435    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7436
7437  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7438                                             CP->getAlignment(),
7439                                             CP->getOffset(), OpFlag);
7440  DebugLoc DL = CP->getDebugLoc();
7441  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7442  // With PIC, the address is actually $g + Offset.
7443  if (OpFlag) {
7444    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7445                         DAG.getNode(X86ISD::GlobalBaseReg,
7446                                     DebugLoc(), getPointerTy()),
7447                         Result);
7448  }
7449
7450  return Result;
7451}
7452
7453SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7454  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7455
7456  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7457  // global base reg.
7458  unsigned char OpFlag = 0;
7459  unsigned WrapperKind = X86ISD::Wrapper;
7460  CodeModel::Model M = getTargetMachine().getCodeModel();
7461
7462  if (Subtarget->isPICStyleRIPRel() &&
7463      (M == CodeModel::Small || M == CodeModel::Kernel))
7464    WrapperKind = X86ISD::WrapperRIP;
7465  else if (Subtarget->isPICStyleGOT())
7466    OpFlag = X86II::MO_GOTOFF;
7467  else if (Subtarget->isPICStyleStubPIC())
7468    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7469
7470  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7471                                          OpFlag);
7472  DebugLoc DL = JT->getDebugLoc();
7473  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7474
7475  // With PIC, the address is actually $g + Offset.
7476  if (OpFlag)
7477    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7478                         DAG.getNode(X86ISD::GlobalBaseReg,
7479                                     DebugLoc(), getPointerTy()),
7480                         Result);
7481
7482  return Result;
7483}
7484
7485SDValue
7486X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7487  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7488
7489  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7490  // global base reg.
7491  unsigned char OpFlag = 0;
7492  unsigned WrapperKind = X86ISD::Wrapper;
7493  CodeModel::Model M = getTargetMachine().getCodeModel();
7494
7495  if (Subtarget->isPICStyleRIPRel() &&
7496      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7497    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7498      OpFlag = X86II::MO_GOTPCREL;
7499    WrapperKind = X86ISD::WrapperRIP;
7500  } else if (Subtarget->isPICStyleGOT()) {
7501    OpFlag = X86II::MO_GOT;
7502  } else if (Subtarget->isPICStyleStubPIC()) {
7503    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7504  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7505    OpFlag = X86II::MO_DARWIN_NONLAZY;
7506  }
7507
7508  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7509
7510  DebugLoc DL = Op.getDebugLoc();
7511  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7512
7513  // With PIC, the address is actually $g + Offset.
7514  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7515      !Subtarget->is64Bit()) {
7516    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7517                         DAG.getNode(X86ISD::GlobalBaseReg,
7518                                     DebugLoc(), getPointerTy()),
7519                         Result);
7520  }
7521
7522  // For symbols that require a load from a stub to get the address, emit the
7523  // load.
7524  if (isGlobalStubReference(OpFlag))
7525    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7526                         MachinePointerInfo::getGOT(), false, false, false, 0);
7527
7528  return Result;
7529}
7530
7531SDValue
7532X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7533  // Create the TargetBlockAddressAddress node.
7534  unsigned char OpFlags =
7535    Subtarget->ClassifyBlockAddressReference();
7536  CodeModel::Model M = getTargetMachine().getCodeModel();
7537  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7538  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7539  DebugLoc dl = Op.getDebugLoc();
7540  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7541                                             OpFlags);
7542
7543  if (Subtarget->isPICStyleRIPRel() &&
7544      (M == CodeModel::Small || M == CodeModel::Kernel))
7545    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7546  else
7547    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7548
7549  // With PIC, the address is actually $g + Offset.
7550  if (isGlobalRelativeToPICBase(OpFlags)) {
7551    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7552                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7553                         Result);
7554  }
7555
7556  return Result;
7557}
7558
7559SDValue
7560X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7561                                      int64_t Offset, SelectionDAG &DAG) const {
7562  // Create the TargetGlobalAddress node, folding in the constant
7563  // offset if it is legal.
7564  unsigned char OpFlags =
7565    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7566  CodeModel::Model M = getTargetMachine().getCodeModel();
7567  SDValue Result;
7568  if (OpFlags == X86II::MO_NO_FLAG &&
7569      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7570    // A direct static reference to a global.
7571    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7572    Offset = 0;
7573  } else {
7574    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7575  }
7576
7577  if (Subtarget->isPICStyleRIPRel() &&
7578      (M == CodeModel::Small || M == CodeModel::Kernel))
7579    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7580  else
7581    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7582
7583  // With PIC, the address is actually $g + Offset.
7584  if (isGlobalRelativeToPICBase(OpFlags)) {
7585    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7586                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7587                         Result);
7588  }
7589
7590  // For globals that require a load from a stub to get the address, emit the
7591  // load.
7592  if (isGlobalStubReference(OpFlags))
7593    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7594                         MachinePointerInfo::getGOT(), false, false, false, 0);
7595
7596  // If there was a non-zero offset that we didn't fold, create an explicit
7597  // addition for it.
7598  if (Offset != 0)
7599    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7600                         DAG.getConstant(Offset, getPointerTy()));
7601
7602  return Result;
7603}
7604
7605SDValue
7606X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7607  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7608  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7609  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7610}
7611
7612static SDValue
7613GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7614           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7615           unsigned char OperandFlags, bool LocalDynamic = false) {
7616  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7617  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7618  DebugLoc dl = GA->getDebugLoc();
7619  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7620                                           GA->getValueType(0),
7621                                           GA->getOffset(),
7622                                           OperandFlags);
7623
7624  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7625                                           : X86ISD::TLSADDR;
7626
7627  if (InFlag) {
7628    SDValue Ops[] = { Chain,  TGA, *InFlag };
7629    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7630  } else {
7631    SDValue Ops[]  = { Chain, TGA };
7632    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7633  }
7634
7635  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7636  MFI->setAdjustsStack(true);
7637
7638  SDValue Flag = Chain.getValue(1);
7639  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7640}
7641
7642// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7643static SDValue
7644LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7645                                const EVT PtrVT) {
7646  SDValue InFlag;
7647  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7648  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7649                                   DAG.getNode(X86ISD::GlobalBaseReg,
7650                                               DebugLoc(), PtrVT), InFlag);
7651  InFlag = Chain.getValue(1);
7652
7653  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7654}
7655
7656// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7657static SDValue
7658LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7659                                const EVT PtrVT) {
7660  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7661                    X86::RAX, X86II::MO_TLSGD);
7662}
7663
7664static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7665                                           SelectionDAG &DAG,
7666                                           const EVT PtrVT,
7667                                           bool is64Bit) {
7668  DebugLoc dl = GA->getDebugLoc();
7669
7670  // Get the start address of the TLS block for this module.
7671  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7672      .getInfo<X86MachineFunctionInfo>();
7673  MFI->incNumLocalDynamicTLSAccesses();
7674
7675  SDValue Base;
7676  if (is64Bit) {
7677    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7678                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7679  } else {
7680    SDValue InFlag;
7681    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7682        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7683    InFlag = Chain.getValue(1);
7684    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7685                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7686  }
7687
7688  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7689  // of Base.
7690
7691  // Build x@dtpoff.
7692  unsigned char OperandFlags = X86II::MO_DTPOFF;
7693  unsigned WrapperKind = X86ISD::Wrapper;
7694  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7695                                           GA->getValueType(0),
7696                                           GA->getOffset(), OperandFlags);
7697  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7698
7699  // Add x@dtpoff with the base.
7700  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7701}
7702
7703// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7704static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7705                                   const EVT PtrVT, TLSModel::Model model,
7706                                   bool is64Bit, bool isPIC) {
7707  DebugLoc dl = GA->getDebugLoc();
7708
7709  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7710  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7711                                                         is64Bit ? 257 : 256));
7712
7713  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7714                                      DAG.getIntPtrConstant(0),
7715                                      MachinePointerInfo(Ptr),
7716                                      false, false, false, 0);
7717
7718  unsigned char OperandFlags = 0;
7719  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7720  // initialexec.
7721  unsigned WrapperKind = X86ISD::Wrapper;
7722  if (model == TLSModel::LocalExec) {
7723    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7724  } else if (model == TLSModel::InitialExec) {
7725    if (is64Bit) {
7726      OperandFlags = X86II::MO_GOTTPOFF;
7727      WrapperKind = X86ISD::WrapperRIP;
7728    } else {
7729      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7730    }
7731  } else {
7732    llvm_unreachable("Unexpected model");
7733  }
7734
7735  // emit "addl x@ntpoff,%eax" (local exec)
7736  // or "addl x@indntpoff,%eax" (initial exec)
7737  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7738  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7739                                           GA->getValueType(0),
7740                                           GA->getOffset(), OperandFlags);
7741  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7742
7743  if (model == TLSModel::InitialExec) {
7744    if (isPIC && !is64Bit) {
7745      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7746                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7747                           Offset);
7748    }
7749
7750    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7751                         MachinePointerInfo::getGOT(), false, false, false,
7752                         0);
7753  }
7754
7755  // The address of the thread local variable is the add of the thread
7756  // pointer with the offset of the variable.
7757  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7758}
7759
7760SDValue
7761X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7762
7763  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7764  const GlobalValue *GV = GA->getGlobal();
7765
7766  if (Subtarget->isTargetELF()) {
7767    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7768
7769    switch (model) {
7770      case TLSModel::GeneralDynamic:
7771        if (Subtarget->is64Bit())
7772          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7773        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7774      case TLSModel::LocalDynamic:
7775        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7776                                           Subtarget->is64Bit());
7777      case TLSModel::InitialExec:
7778      case TLSModel::LocalExec:
7779        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7780                                   Subtarget->is64Bit(),
7781                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
7782    }
7783    llvm_unreachable("Unknown TLS model.");
7784  }
7785
7786  if (Subtarget->isTargetDarwin()) {
7787    // Darwin only has one model of TLS.  Lower to that.
7788    unsigned char OpFlag = 0;
7789    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7790                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7791
7792    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7793    // global base reg.
7794    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7795                  !Subtarget->is64Bit();
7796    if (PIC32)
7797      OpFlag = X86II::MO_TLVP_PIC_BASE;
7798    else
7799      OpFlag = X86II::MO_TLVP;
7800    DebugLoc DL = Op.getDebugLoc();
7801    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7802                                                GA->getValueType(0),
7803                                                GA->getOffset(), OpFlag);
7804    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7805
7806    // With PIC32, the address is actually $g + Offset.
7807    if (PIC32)
7808      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7809                           DAG.getNode(X86ISD::GlobalBaseReg,
7810                                       DebugLoc(), getPointerTy()),
7811                           Offset);
7812
7813    // Lowering the machine isd will make sure everything is in the right
7814    // location.
7815    SDValue Chain = DAG.getEntryNode();
7816    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7817    SDValue Args[] = { Chain, Offset };
7818    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7819
7820    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7821    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7822    MFI->setAdjustsStack(true);
7823
7824    // And our return value (tls address) is in the standard call return value
7825    // location.
7826    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7827    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7828                              Chain.getValue(1));
7829  }
7830
7831  if (Subtarget->isTargetWindows()) {
7832    // Just use the implicit TLS architecture
7833    // Need to generate someting similar to:
7834    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7835    //                                  ; from TEB
7836    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7837    //   mov     rcx, qword [rdx+rcx*8]
7838    //   mov     eax, .tls$:tlsvar
7839    //   [rax+rcx] contains the address
7840    // Windows 64bit: gs:0x58
7841    // Windows 32bit: fs:__tls_array
7842
7843    // If GV is an alias then use the aliasee for determining
7844    // thread-localness.
7845    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7846      GV = GA->resolveAliasedGlobal(false);
7847    DebugLoc dl = GA->getDebugLoc();
7848    SDValue Chain = DAG.getEntryNode();
7849
7850    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7851    // %gs:0x58 (64-bit).
7852    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7853                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7854                                                             256)
7855                                        : Type::getInt32PtrTy(*DAG.getContext(),
7856                                                              257));
7857
7858    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7859                                        Subtarget->is64Bit()
7860                                        ? DAG.getIntPtrConstant(0x58)
7861                                        : DAG.getExternalSymbol("_tls_array",
7862                                                                getPointerTy()),
7863                                        MachinePointerInfo(Ptr),
7864                                        false, false, false, 0);
7865
7866    // Load the _tls_index variable
7867    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7868    if (Subtarget->is64Bit())
7869      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7870                           IDX, MachinePointerInfo(), MVT::i32,
7871                           false, false, 0);
7872    else
7873      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7874                        false, false, false, 0);
7875
7876    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7877                                    getPointerTy());
7878    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7879
7880    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7881    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7882                      false, false, false, 0);
7883
7884    // Get the offset of start of .tls section
7885    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7886                                             GA->getValueType(0),
7887                                             GA->getOffset(), X86II::MO_SECREL);
7888    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7889
7890    // The address of the thread local variable is the add of the thread
7891    // pointer with the offset of the variable.
7892    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7893  }
7894
7895  llvm_unreachable("TLS not implemented for this target.");
7896}
7897
7898/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7899/// and take a 2 x i32 value to shift plus a shift amount.
7900SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7901  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7902  EVT VT = Op.getValueType();
7903  unsigned VTBits = VT.getSizeInBits();
7904  DebugLoc dl = Op.getDebugLoc();
7905  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7906  SDValue ShOpLo = Op.getOperand(0);
7907  SDValue ShOpHi = Op.getOperand(1);
7908  SDValue ShAmt  = Op.getOperand(2);
7909  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7910                                     DAG.getConstant(VTBits - 1, MVT::i8))
7911                       : DAG.getConstant(0, VT);
7912
7913  SDValue Tmp2, Tmp3;
7914  if (Op.getOpcode() == ISD::SHL_PARTS) {
7915    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7916    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7917  } else {
7918    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7919    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7920  }
7921
7922  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7923                                DAG.getConstant(VTBits, MVT::i8));
7924  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7925                             AndNode, DAG.getConstant(0, MVT::i8));
7926
7927  SDValue Hi, Lo;
7928  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7929  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7930  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7931
7932  if (Op.getOpcode() == ISD::SHL_PARTS) {
7933    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7934    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7935  } else {
7936    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7937    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7938  }
7939
7940  SDValue Ops[2] = { Lo, Hi };
7941  return DAG.getMergeValues(Ops, 2, dl);
7942}
7943
7944SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7945                                           SelectionDAG &DAG) const {
7946  EVT SrcVT = Op.getOperand(0).getValueType();
7947
7948  if (SrcVT.isVector())
7949    return SDValue();
7950
7951  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7952         "Unknown SINT_TO_FP to lower!");
7953
7954  // These are really Legal; return the operand so the caller accepts it as
7955  // Legal.
7956  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7957    return Op;
7958  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7959      Subtarget->is64Bit()) {
7960    return Op;
7961  }
7962
7963  DebugLoc dl = Op.getDebugLoc();
7964  unsigned Size = SrcVT.getSizeInBits()/8;
7965  MachineFunction &MF = DAG.getMachineFunction();
7966  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7967  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7968  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7969                               StackSlot,
7970                               MachinePointerInfo::getFixedStack(SSFI),
7971                               false, false, 0);
7972  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7973}
7974
7975SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7976                                     SDValue StackSlot,
7977                                     SelectionDAG &DAG) const {
7978  // Build the FILD
7979  DebugLoc DL = Op.getDebugLoc();
7980  SDVTList Tys;
7981  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7982  if (useSSE)
7983    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7984  else
7985    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7986
7987  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7988
7989  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7990  MachineMemOperand *MMO;
7991  if (FI) {
7992    int SSFI = FI->getIndex();
7993    MMO =
7994      DAG.getMachineFunction()
7995      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7996                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7997  } else {
7998    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7999    StackSlot = StackSlot.getOperand(1);
8000  }
8001  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8002  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8003                                           X86ISD::FILD, DL,
8004                                           Tys, Ops, array_lengthof(Ops),
8005                                           SrcVT, MMO);
8006
8007  if (useSSE) {
8008    Chain = Result.getValue(1);
8009    SDValue InFlag = Result.getValue(2);
8010
8011    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8012    // shouldn't be necessary except that RFP cannot be live across
8013    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8014    MachineFunction &MF = DAG.getMachineFunction();
8015    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8016    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8017    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8018    Tys = DAG.getVTList(MVT::Other);
8019    SDValue Ops[] = {
8020      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8021    };
8022    MachineMemOperand *MMO =
8023      DAG.getMachineFunction()
8024      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8025                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8026
8027    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8028                                    Ops, array_lengthof(Ops),
8029                                    Op.getValueType(), MMO);
8030    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8031                         MachinePointerInfo::getFixedStack(SSFI),
8032                         false, false, false, 0);
8033  }
8034
8035  return Result;
8036}
8037
8038// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8039SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8040                                               SelectionDAG &DAG) const {
8041  // This algorithm is not obvious. Here it is what we're trying to output:
8042  /*
8043     movq       %rax,  %xmm0
8044     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8045     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8046     #ifdef __SSE3__
8047       haddpd   %xmm0, %xmm0
8048     #else
8049       pshufd   $0x4e, %xmm0, %xmm1
8050       addpd    %xmm1, %xmm0
8051     #endif
8052  */
8053
8054  DebugLoc dl = Op.getDebugLoc();
8055  LLVMContext *Context = DAG.getContext();
8056
8057  // Build some magic constants.
8058  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8059  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8060  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8061
8062  SmallVector<Constant*,2> CV1;
8063  CV1.push_back(
8064    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8065                                      APInt(64, 0x4330000000000000ULL))));
8066  CV1.push_back(
8067    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8068                                      APInt(64, 0x4530000000000000ULL))));
8069  Constant *C1 = ConstantVector::get(CV1);
8070  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8071
8072  // Load the 64-bit value into an XMM register.
8073  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8074                            Op.getOperand(0));
8075  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8076                              MachinePointerInfo::getConstantPool(),
8077                              false, false, false, 16);
8078  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8079                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8080                              CLod0);
8081
8082  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8083                              MachinePointerInfo::getConstantPool(),
8084                              false, false, false, 16);
8085  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8086  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8087  SDValue Result;
8088
8089  if (Subtarget->hasSSE3()) {
8090    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8091    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8092  } else {
8093    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8094    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8095                                           S2F, 0x4E, DAG);
8096    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8097                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8098                         Sub);
8099  }
8100
8101  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8102                     DAG.getIntPtrConstant(0));
8103}
8104
8105// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8106SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8107                                               SelectionDAG &DAG) const {
8108  DebugLoc dl = Op.getDebugLoc();
8109  // FP constant to bias correct the final result.
8110  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8111                                   MVT::f64);
8112
8113  // Load the 32-bit value into an XMM register.
8114  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8115                             Op.getOperand(0));
8116
8117  // Zero out the upper parts of the register.
8118  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8119
8120  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8121                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8122                     DAG.getIntPtrConstant(0));
8123
8124  // Or the load with the bias.
8125  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8126                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8127                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8128                                                   MVT::v2f64, Load)),
8129                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8130                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8131                                                   MVT::v2f64, Bias)));
8132  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8133                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8134                   DAG.getIntPtrConstant(0));
8135
8136  // Subtract the bias.
8137  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8138
8139  // Handle final rounding.
8140  EVT DestVT = Op.getValueType();
8141
8142  if (DestVT.bitsLT(MVT::f64))
8143    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8144                       DAG.getIntPtrConstant(0));
8145  if (DestVT.bitsGT(MVT::f64))
8146    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8147
8148  // Handle final rounding.
8149  return Sub;
8150}
8151
8152SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8153                                               SelectionDAG &DAG) const {
8154  SDValue N0 = Op.getOperand(0);
8155  EVT SVT = N0.getValueType();
8156  DebugLoc dl = Op.getDebugLoc();
8157
8158  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8159          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8160         "Custom UINT_TO_FP is not supported!");
8161
8162  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8163                             SVT.getVectorNumElements());
8164  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8165                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8166}
8167
8168SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8169                                           SelectionDAG &DAG) const {
8170  SDValue N0 = Op.getOperand(0);
8171  DebugLoc dl = Op.getDebugLoc();
8172
8173  if (Op.getValueType().isVector())
8174    return lowerUINT_TO_FP_vec(Op, DAG);
8175
8176  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8177  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8178  // the optimization here.
8179  if (DAG.SignBitIsZero(N0))
8180    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8181
8182  EVT SrcVT = N0.getValueType();
8183  EVT DstVT = Op.getValueType();
8184  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8185    return LowerUINT_TO_FP_i64(Op, DAG);
8186  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8187    return LowerUINT_TO_FP_i32(Op, DAG);
8188  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8189    return SDValue();
8190
8191  // Make a 64-bit buffer, and use it to build an FILD.
8192  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8193  if (SrcVT == MVT::i32) {
8194    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8195    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8196                                     getPointerTy(), StackSlot, WordOff);
8197    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8198                                  StackSlot, MachinePointerInfo(),
8199                                  false, false, 0);
8200    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8201                                  OffsetSlot, MachinePointerInfo(),
8202                                  false, false, 0);
8203    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8204    return Fild;
8205  }
8206
8207  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8208  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8209                               StackSlot, MachinePointerInfo(),
8210                               false, false, 0);
8211  // For i64 source, we need to add the appropriate power of 2 if the input
8212  // was negative.  This is the same as the optimization in
8213  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8214  // we must be careful to do the computation in x87 extended precision, not
8215  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8216  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8217  MachineMemOperand *MMO =
8218    DAG.getMachineFunction()
8219    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8220                          MachineMemOperand::MOLoad, 8, 8);
8221
8222  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8223  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8224  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8225                                         MVT::i64, MMO);
8226
8227  APInt FF(32, 0x5F800000ULL);
8228
8229  // Check whether the sign bit is set.
8230  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8231                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8232                                 ISD::SETLT);
8233
8234  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8235  SDValue FudgePtr = DAG.getConstantPool(
8236                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8237                                         getPointerTy());
8238
8239  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8240  SDValue Zero = DAG.getIntPtrConstant(0);
8241  SDValue Four = DAG.getIntPtrConstant(4);
8242  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8243                               Zero, Four);
8244  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8245
8246  // Load the value out, extending it from f32 to f80.
8247  // FIXME: Avoid the extend by constructing the right constant pool?
8248  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8249                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8250                                 MVT::f32, false, false, 4);
8251  // Extend everything to 80 bits to force it to be done on x87.
8252  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8253  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8254}
8255
8256std::pair<SDValue,SDValue>
8257X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8258                                    bool IsSigned, bool IsReplace) const {
8259  DebugLoc DL = Op.getDebugLoc();
8260
8261  EVT DstTy = Op.getValueType();
8262
8263  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8264    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8265    DstTy = MVT::i64;
8266  }
8267
8268  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8269         DstTy.getSimpleVT() >= MVT::i16 &&
8270         "Unknown FP_TO_INT to lower!");
8271
8272  // These are really Legal.
8273  if (DstTy == MVT::i32 &&
8274      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8275    return std::make_pair(SDValue(), SDValue());
8276  if (Subtarget->is64Bit() &&
8277      DstTy == MVT::i64 &&
8278      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8279    return std::make_pair(SDValue(), SDValue());
8280
8281  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8282  // stack slot, or into the FTOL runtime function.
8283  MachineFunction &MF = DAG.getMachineFunction();
8284  unsigned MemSize = DstTy.getSizeInBits()/8;
8285  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8286  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8287
8288  unsigned Opc;
8289  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8290    Opc = X86ISD::WIN_FTOL;
8291  else
8292    switch (DstTy.getSimpleVT().SimpleTy) {
8293    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8294    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8295    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8296    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8297    }
8298
8299  SDValue Chain = DAG.getEntryNode();
8300  SDValue Value = Op.getOperand(0);
8301  EVT TheVT = Op.getOperand(0).getValueType();
8302  // FIXME This causes a redundant load/store if the SSE-class value is already
8303  // in memory, such as if it is on the callstack.
8304  if (isScalarFPTypeInSSEReg(TheVT)) {
8305    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8306    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8307                         MachinePointerInfo::getFixedStack(SSFI),
8308                         false, false, 0);
8309    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8310    SDValue Ops[] = {
8311      Chain, StackSlot, DAG.getValueType(TheVT)
8312    };
8313
8314    MachineMemOperand *MMO =
8315      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8316                              MachineMemOperand::MOLoad, MemSize, MemSize);
8317    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8318                                    DstTy, MMO);
8319    Chain = Value.getValue(1);
8320    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8321    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8322  }
8323
8324  MachineMemOperand *MMO =
8325    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8326                            MachineMemOperand::MOStore, MemSize, MemSize);
8327
8328  if (Opc != X86ISD::WIN_FTOL) {
8329    // Build the FP_TO_INT*_IN_MEM
8330    SDValue Ops[] = { Chain, Value, StackSlot };
8331    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8332                                           Ops, 3, DstTy, MMO);
8333    return std::make_pair(FIST, StackSlot);
8334  } else {
8335    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8336      DAG.getVTList(MVT::Other, MVT::Glue),
8337      Chain, Value);
8338    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8339      MVT::i32, ftol.getValue(1));
8340    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8341      MVT::i32, eax.getValue(2));
8342    SDValue Ops[] = { eax, edx };
8343    SDValue pair = IsReplace
8344      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8345      : DAG.getMergeValues(Ops, 2, DL);
8346    return std::make_pair(pair, SDValue());
8347  }
8348}
8349
8350static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8351                              const X86Subtarget *Subtarget) {
8352  MVT VT = Op->getValueType(0).getSimpleVT();
8353  SDValue In = Op->getOperand(0);
8354  MVT InVT = In.getValueType().getSimpleVT();
8355  DebugLoc dl = Op->getDebugLoc();
8356
8357  // Optimize vectors in AVX mode:
8358  //
8359  //   v8i16 -> v8i32
8360  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8361  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8362  //   Concat upper and lower parts.
8363  //
8364  //   v4i32 -> v4i64
8365  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8366  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8367  //   Concat upper and lower parts.
8368  //
8369
8370  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8371      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8372    return SDValue();
8373
8374  if (Subtarget->hasInt256())
8375    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8376
8377  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8378  SDValue Undef = DAG.getUNDEF(InVT);
8379  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8380  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8381  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8382
8383  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8384                             VT.getVectorNumElements()/2);
8385
8386  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8387  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8388
8389  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8390}
8391
8392SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8393                                           SelectionDAG &DAG) const {
8394  if (Subtarget->hasFp256()) {
8395    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8396    if (Res.getNode())
8397      return Res;
8398  }
8399
8400  return SDValue();
8401}
8402SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8403                                            SelectionDAG &DAG) const {
8404  DebugLoc DL = Op.getDebugLoc();
8405  MVT VT = Op.getValueType().getSimpleVT();
8406  SDValue In = Op.getOperand(0);
8407  MVT SVT = In.getValueType().getSimpleVT();
8408
8409  if (Subtarget->hasFp256()) {
8410    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8411    if (Res.getNode())
8412      return Res;
8413  }
8414
8415  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8416      VT.getVectorNumElements() != SVT.getVectorNumElements())
8417    return SDValue();
8418
8419  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8420
8421  // AVX2 has better support of integer extending.
8422  if (Subtarget->hasInt256())
8423    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8424
8425  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8426  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8427  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8428                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8429                                                DAG.getUNDEF(MVT::v8i16),
8430                                                &Mask[0]));
8431
8432  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8433}
8434
8435SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8436  DebugLoc DL = Op.getDebugLoc();
8437  MVT VT = Op.getValueType().getSimpleVT();
8438  SDValue In = Op.getOperand(0);
8439  MVT SVT = In.getValueType().getSimpleVT();
8440
8441  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8442    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8443    if (Subtarget->hasInt256()) {
8444      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8445      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8446      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8447                                ShufMask);
8448      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8449                         DAG.getIntPtrConstant(0));
8450    }
8451
8452    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8453    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8454                               DAG.getIntPtrConstant(0));
8455    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8456                               DAG.getIntPtrConstant(2));
8457
8458    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8459    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8460
8461    // The PSHUFD mask:
8462    static const int ShufMask1[] = {0, 2, 0, 0};
8463    SDValue Undef = DAG.getUNDEF(VT);
8464    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8465    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8466
8467    // The MOVLHPS mask:
8468    static const int ShufMask2[] = {0, 1, 4, 5};
8469    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8470  }
8471
8472  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8473    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8474    if (Subtarget->hasInt256()) {
8475      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8476
8477      SmallVector<SDValue,32> pshufbMask;
8478      for (unsigned i = 0; i < 2; ++i) {
8479        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8480        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8481        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8482        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8483        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8484        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8485        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8486        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8487        for (unsigned j = 0; j < 8; ++j)
8488          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8489      }
8490      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8491                               &pshufbMask[0], 32);
8492      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8493      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8494
8495      static const int ShufMask[] = {0,  2,  -1,  -1};
8496      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8497                                &ShufMask[0]);
8498      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8499                       DAG.getIntPtrConstant(0));
8500      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8501    }
8502
8503    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8504                               DAG.getIntPtrConstant(0));
8505
8506    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8507                               DAG.getIntPtrConstant(4));
8508
8509    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8510    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8511
8512    // The PSHUFB mask:
8513    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8514                                   -1, -1, -1, -1, -1, -1, -1, -1};
8515
8516    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8517    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8518    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8519
8520    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8521    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8522
8523    // The MOVLHPS Mask:
8524    static const int ShufMask2[] = {0, 1, 4, 5};
8525    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8526    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8527  }
8528
8529  // Handle truncation of V256 to V128 using shuffles.
8530  if (!VT.is128BitVector() || !SVT.is256BitVector())
8531    return SDValue();
8532
8533  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8534         "Invalid op");
8535  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8536
8537  unsigned NumElems = VT.getVectorNumElements();
8538  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8539                             NumElems * 2);
8540
8541  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8542  // Prepare truncation shuffle mask
8543  for (unsigned i = 0; i != NumElems; ++i)
8544    MaskVec[i] = i * 2;
8545  SDValue V = DAG.getVectorShuffle(NVT, DL,
8546                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8547                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8548  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8549                     DAG.getIntPtrConstant(0));
8550}
8551
8552SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8553                                           SelectionDAG &DAG) const {
8554  MVT VT = Op.getValueType().getSimpleVT();
8555  if (VT.isVector()) {
8556    if (VT == MVT::v8i16)
8557      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT,
8558                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8559                                     MVT::v8i32, Op.getOperand(0)));
8560    return SDValue();
8561  }
8562
8563  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8564    /*IsSigned=*/ true, /*IsReplace=*/ false);
8565  SDValue FIST = Vals.first, StackSlot = Vals.second;
8566  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8567  if (FIST.getNode() == 0) return Op;
8568
8569  if (StackSlot.getNode())
8570    // Load the result.
8571    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8572                       FIST, StackSlot, MachinePointerInfo(),
8573                       false, false, false, 0);
8574
8575  // The node is the result.
8576  return FIST;
8577}
8578
8579SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8580                                           SelectionDAG &DAG) const {
8581  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8582    /*IsSigned=*/ false, /*IsReplace=*/ false);
8583  SDValue FIST = Vals.first, StackSlot = Vals.second;
8584  assert(FIST.getNode() && "Unexpected failure");
8585
8586  if (StackSlot.getNode())
8587    // Load the result.
8588    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8589                       FIST, StackSlot, MachinePointerInfo(),
8590                       false, false, false, 0);
8591
8592  // The node is the result.
8593  return FIST;
8594}
8595
8596static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
8597  DebugLoc DL = Op.getDebugLoc();
8598  MVT VT = Op.getValueType().getSimpleVT();
8599  SDValue In = Op.getOperand(0);
8600  MVT SVT = In.getValueType().getSimpleVT();
8601
8602  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8603
8604  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8605                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8606                                 In, DAG.getUNDEF(SVT)));
8607}
8608
8609SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8610  LLVMContext *Context = DAG.getContext();
8611  DebugLoc dl = Op.getDebugLoc();
8612  MVT VT = Op.getValueType().getSimpleVT();
8613  MVT EltVT = VT;
8614  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8615  if (VT.isVector()) {
8616    EltVT = VT.getVectorElementType();
8617    NumElts = VT.getVectorNumElements();
8618  }
8619  Constant *C;
8620  if (EltVT == MVT::f64)
8621    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8622                                          APInt(64, ~(1ULL << 63))));
8623  else
8624    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8625                                          APInt(32, ~(1U << 31))));
8626  C = ConstantVector::getSplat(NumElts, C);
8627  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8628  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8629  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8630                             MachinePointerInfo::getConstantPool(),
8631                             false, false, false, Alignment);
8632  if (VT.isVector()) {
8633    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8634    return DAG.getNode(ISD::BITCAST, dl, VT,
8635                       DAG.getNode(ISD::AND, dl, ANDVT,
8636                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8637                                               Op.getOperand(0)),
8638                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8639  }
8640  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8641}
8642
8643SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8644  LLVMContext *Context = DAG.getContext();
8645  DebugLoc dl = Op.getDebugLoc();
8646  MVT VT = Op.getValueType().getSimpleVT();
8647  MVT EltVT = VT;
8648  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8649  if (VT.isVector()) {
8650    EltVT = VT.getVectorElementType();
8651    NumElts = VT.getVectorNumElements();
8652  }
8653  Constant *C;
8654  if (EltVT == MVT::f64)
8655    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8656                                          APInt(64, 1ULL << 63)));
8657  else
8658    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8659                                          APInt(32, 1U << 31)));
8660  C = ConstantVector::getSplat(NumElts, C);
8661  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8662  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8663  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8664                             MachinePointerInfo::getConstantPool(),
8665                             false, false, false, Alignment);
8666  if (VT.isVector()) {
8667    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8668    return DAG.getNode(ISD::BITCAST, dl, VT,
8669                       DAG.getNode(ISD::XOR, dl, XORVT,
8670                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8671                                               Op.getOperand(0)),
8672                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8673  }
8674
8675  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8676}
8677
8678SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8679  LLVMContext *Context = DAG.getContext();
8680  SDValue Op0 = Op.getOperand(0);
8681  SDValue Op1 = Op.getOperand(1);
8682  DebugLoc dl = Op.getDebugLoc();
8683  MVT VT = Op.getValueType().getSimpleVT();
8684  MVT SrcVT = Op1.getValueType().getSimpleVT();
8685
8686  // If second operand is smaller, extend it first.
8687  if (SrcVT.bitsLT(VT)) {
8688    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8689    SrcVT = VT;
8690  }
8691  // And if it is bigger, shrink it first.
8692  if (SrcVT.bitsGT(VT)) {
8693    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8694    SrcVT = VT;
8695  }
8696
8697  // At this point the operands and the result should have the same
8698  // type, and that won't be f80 since that is not custom lowered.
8699
8700  // First get the sign bit of second operand.
8701  SmallVector<Constant*,4> CV;
8702  if (SrcVT == MVT::f64) {
8703    const fltSemantics &Sem = APFloat::IEEEdouble;
8704    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
8705    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8706  } else {
8707    const fltSemantics &Sem = APFloat::IEEEsingle;
8708    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
8709    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8710    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8711    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8712  }
8713  Constant *C = ConstantVector::get(CV);
8714  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8715  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8716                              MachinePointerInfo::getConstantPool(),
8717                              false, false, false, 16);
8718  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8719
8720  // Shift sign bit right or left if the two operands have different types.
8721  if (SrcVT.bitsGT(VT)) {
8722    // Op0 is MVT::f32, Op1 is MVT::f64.
8723    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8724    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8725                          DAG.getConstant(32, MVT::i32));
8726    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8727    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8728                          DAG.getIntPtrConstant(0));
8729  }
8730
8731  // Clear first operand sign bit.
8732  CV.clear();
8733  if (VT == MVT::f64) {
8734    const fltSemantics &Sem = APFloat::IEEEdouble;
8735    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8736                                                   APInt(64, ~(1ULL << 63)))));
8737    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8738  } else {
8739    const fltSemantics &Sem = APFloat::IEEEsingle;
8740    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8741                                                   APInt(32, ~(1U << 31)))));
8742    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8743    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8744    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8745  }
8746  C = ConstantVector::get(CV);
8747  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8748  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8749                              MachinePointerInfo::getConstantPool(),
8750                              false, false, false, 16);
8751  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8752
8753  // Or the value with the sign bit.
8754  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8755}
8756
8757static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8758  SDValue N0 = Op.getOperand(0);
8759  DebugLoc dl = Op.getDebugLoc();
8760  MVT VT = Op.getValueType().getSimpleVT();
8761
8762  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8763  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8764                                  DAG.getConstant(1, VT));
8765  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8766}
8767
8768// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8769//
8770SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
8771                                                  SelectionDAG &DAG) const {
8772  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8773
8774  if (!Subtarget->hasSSE41())
8775    return SDValue();
8776
8777  if (!Op->hasOneUse())
8778    return SDValue();
8779
8780  SDNode *N = Op.getNode();
8781  DebugLoc DL = N->getDebugLoc();
8782
8783  SmallVector<SDValue, 8> Opnds;
8784  DenseMap<SDValue, unsigned> VecInMap;
8785  EVT VT = MVT::Other;
8786
8787  // Recognize a special case where a vector is casted into wide integer to
8788  // test all 0s.
8789  Opnds.push_back(N->getOperand(0));
8790  Opnds.push_back(N->getOperand(1));
8791
8792  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8793    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8794    // BFS traverse all OR'd operands.
8795    if (I->getOpcode() == ISD::OR) {
8796      Opnds.push_back(I->getOperand(0));
8797      Opnds.push_back(I->getOperand(1));
8798      // Re-evaluate the number of nodes to be traversed.
8799      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8800      continue;
8801    }
8802
8803    // Quit if a non-EXTRACT_VECTOR_ELT
8804    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8805      return SDValue();
8806
8807    // Quit if without a constant index.
8808    SDValue Idx = I->getOperand(1);
8809    if (!isa<ConstantSDNode>(Idx))
8810      return SDValue();
8811
8812    SDValue ExtractedFromVec = I->getOperand(0);
8813    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8814    if (M == VecInMap.end()) {
8815      VT = ExtractedFromVec.getValueType();
8816      // Quit if not 128/256-bit vector.
8817      if (!VT.is128BitVector() && !VT.is256BitVector())
8818        return SDValue();
8819      // Quit if not the same type.
8820      if (VecInMap.begin() != VecInMap.end() &&
8821          VT != VecInMap.begin()->first.getValueType())
8822        return SDValue();
8823      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8824    }
8825    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8826  }
8827
8828  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8829         "Not extracted from 128-/256-bit vector.");
8830
8831  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8832  SmallVector<SDValue, 8> VecIns;
8833
8834  for (DenseMap<SDValue, unsigned>::const_iterator
8835        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8836    // Quit if not all elements are used.
8837    if (I->second != FullMask)
8838      return SDValue();
8839    VecIns.push_back(I->first);
8840  }
8841
8842  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8843
8844  // Cast all vectors into TestVT for PTEST.
8845  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8846    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8847
8848  // If more than one full vectors are evaluated, OR them first before PTEST.
8849  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8850    // Each iteration will OR 2 nodes and append the result until there is only
8851    // 1 node left, i.e. the final OR'd value of all vectors.
8852    SDValue LHS = VecIns[Slot];
8853    SDValue RHS = VecIns[Slot + 1];
8854    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8855  }
8856
8857  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8858                     VecIns.back(), VecIns.back());
8859}
8860
8861/// Emit nodes that will be selected as "test Op0,Op0", or something
8862/// equivalent.
8863SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8864                                    SelectionDAG &DAG) const {
8865  DebugLoc dl = Op.getDebugLoc();
8866
8867  // CF and OF aren't always set the way we want. Determine which
8868  // of these we need.
8869  bool NeedCF = false;
8870  bool NeedOF = false;
8871  switch (X86CC) {
8872  default: break;
8873  case X86::COND_A: case X86::COND_AE:
8874  case X86::COND_B: case X86::COND_BE:
8875    NeedCF = true;
8876    break;
8877  case X86::COND_G: case X86::COND_GE:
8878  case X86::COND_L: case X86::COND_LE:
8879  case X86::COND_O: case X86::COND_NO:
8880    NeedOF = true;
8881    break;
8882  }
8883
8884  // See if we can use the EFLAGS value from the operand instead of
8885  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8886  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8887  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8888    // Emit a CMP with 0, which is the TEST pattern.
8889    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8890                       DAG.getConstant(0, Op.getValueType()));
8891
8892  unsigned Opcode = 0;
8893  unsigned NumOperands = 0;
8894
8895  // Truncate operations may prevent the merge of the SETCC instruction
8896  // and the arithmetic intruction before it. Attempt to truncate the operands
8897  // of the arithmetic instruction and use a reduced bit-width instruction.
8898  bool NeedTruncation = false;
8899  SDValue ArithOp = Op;
8900  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8901    SDValue Arith = Op->getOperand(0);
8902    // Both the trunc and the arithmetic op need to have one user each.
8903    if (Arith->hasOneUse())
8904      switch (Arith.getOpcode()) {
8905        default: break;
8906        case ISD::ADD:
8907        case ISD::SUB:
8908        case ISD::AND:
8909        case ISD::OR:
8910        case ISD::XOR: {
8911          NeedTruncation = true;
8912          ArithOp = Arith;
8913        }
8914      }
8915  }
8916
8917  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8918  // which may be the result of a CAST.  We use the variable 'Op', which is the
8919  // non-casted variable when we check for possible users.
8920  switch (ArithOp.getOpcode()) {
8921  case ISD::ADD:
8922    // Due to an isel shortcoming, be conservative if this add is likely to be
8923    // selected as part of a load-modify-store instruction. When the root node
8924    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8925    // uses of other nodes in the match, such as the ADD in this case. This
8926    // leads to the ADD being left around and reselected, with the result being
8927    // two adds in the output.  Alas, even if none our users are stores, that
8928    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8929    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8930    // climbing the DAG back to the root, and it doesn't seem to be worth the
8931    // effort.
8932    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8933         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8934      if (UI->getOpcode() != ISD::CopyToReg &&
8935          UI->getOpcode() != ISD::SETCC &&
8936          UI->getOpcode() != ISD::STORE)
8937        goto default_case;
8938
8939    if (ConstantSDNode *C =
8940        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8941      // An add of one will be selected as an INC.
8942      if (C->getAPIntValue() == 1) {
8943        Opcode = X86ISD::INC;
8944        NumOperands = 1;
8945        break;
8946      }
8947
8948      // An add of negative one (subtract of one) will be selected as a DEC.
8949      if (C->getAPIntValue().isAllOnesValue()) {
8950        Opcode = X86ISD::DEC;
8951        NumOperands = 1;
8952        break;
8953      }
8954    }
8955
8956    // Otherwise use a regular EFLAGS-setting add.
8957    Opcode = X86ISD::ADD;
8958    NumOperands = 2;
8959    break;
8960  case ISD::AND: {
8961    // If the primary and result isn't used, don't bother using X86ISD::AND,
8962    // because a TEST instruction will be better.
8963    bool NonFlagUse = false;
8964    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8965           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8966      SDNode *User = *UI;
8967      unsigned UOpNo = UI.getOperandNo();
8968      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8969        // Look pass truncate.
8970        UOpNo = User->use_begin().getOperandNo();
8971        User = *User->use_begin();
8972      }
8973
8974      if (User->getOpcode() != ISD::BRCOND &&
8975          User->getOpcode() != ISD::SETCC &&
8976          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8977        NonFlagUse = true;
8978        break;
8979      }
8980    }
8981
8982    if (!NonFlagUse)
8983      break;
8984  }
8985    // FALL THROUGH
8986  case ISD::SUB:
8987  case ISD::OR:
8988  case ISD::XOR:
8989    // Due to the ISEL shortcoming noted above, be conservative if this op is
8990    // likely to be selected as part of a load-modify-store instruction.
8991    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8992           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8993      if (UI->getOpcode() == ISD::STORE)
8994        goto default_case;
8995
8996    // Otherwise use a regular EFLAGS-setting instruction.
8997    switch (ArithOp.getOpcode()) {
8998    default: llvm_unreachable("unexpected operator!");
8999    case ISD::SUB: Opcode = X86ISD::SUB; break;
9000    case ISD::XOR: Opcode = X86ISD::XOR; break;
9001    case ISD::AND: Opcode = X86ISD::AND; break;
9002    case ISD::OR: {
9003      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9004        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
9005        if (EFLAGS.getNode())
9006          return EFLAGS;
9007      }
9008      Opcode = X86ISD::OR;
9009      break;
9010    }
9011    }
9012
9013    NumOperands = 2;
9014    break;
9015  case X86ISD::ADD:
9016  case X86ISD::SUB:
9017  case X86ISD::INC:
9018  case X86ISD::DEC:
9019  case X86ISD::OR:
9020  case X86ISD::XOR:
9021  case X86ISD::AND:
9022    return SDValue(Op.getNode(), 1);
9023  default:
9024  default_case:
9025    break;
9026  }
9027
9028  // If we found that truncation is beneficial, perform the truncation and
9029  // update 'Op'.
9030  if (NeedTruncation) {
9031    EVT VT = Op.getValueType();
9032    SDValue WideVal = Op->getOperand(0);
9033    EVT WideVT = WideVal.getValueType();
9034    unsigned ConvertedOp = 0;
9035    // Use a target machine opcode to prevent further DAGCombine
9036    // optimizations that may separate the arithmetic operations
9037    // from the setcc node.
9038    switch (WideVal.getOpcode()) {
9039      default: break;
9040      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9041      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9042      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9043      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9044      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9045    }
9046
9047    if (ConvertedOp) {
9048      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9049      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9050        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9051        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9052        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9053      }
9054    }
9055  }
9056
9057  if (Opcode == 0)
9058    // Emit a CMP with 0, which is the TEST pattern.
9059    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9060                       DAG.getConstant(0, Op.getValueType()));
9061
9062  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9063  SmallVector<SDValue, 4> Ops;
9064  for (unsigned i = 0; i != NumOperands; ++i)
9065    Ops.push_back(Op.getOperand(i));
9066
9067  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9068  DAG.ReplaceAllUsesWith(Op, New);
9069  return SDValue(New.getNode(), 1);
9070}
9071
9072/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9073/// equivalent.
9074SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9075                                   SelectionDAG &DAG) const {
9076  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9077    if (C->getAPIntValue() == 0)
9078      return EmitTest(Op0, X86CC, DAG);
9079
9080  DebugLoc dl = Op0.getDebugLoc();
9081  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9082       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9083    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9084    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9085    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9086                              Op0, Op1);
9087    return SDValue(Sub.getNode(), 1);
9088  }
9089  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9090}
9091
9092/// Convert a comparison if required by the subtarget.
9093SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9094                                                 SelectionDAG &DAG) const {
9095  // If the subtarget does not support the FUCOMI instruction, floating-point
9096  // comparisons have to be converted.
9097  if (Subtarget->hasCMov() ||
9098      Cmp.getOpcode() != X86ISD::CMP ||
9099      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9100      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9101    return Cmp;
9102
9103  // The instruction selector will select an FUCOM instruction instead of
9104  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9105  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9106  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9107  DebugLoc dl = Cmp.getDebugLoc();
9108  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9109  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9110  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9111                            DAG.getConstant(8, MVT::i8));
9112  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9113  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9114}
9115
9116static bool isAllOnes(SDValue V) {
9117  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9118  return C && C->isAllOnesValue();
9119}
9120
9121/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9122/// if it's possible.
9123SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9124                                     DebugLoc dl, SelectionDAG &DAG) const {
9125  SDValue Op0 = And.getOperand(0);
9126  SDValue Op1 = And.getOperand(1);
9127  if (Op0.getOpcode() == ISD::TRUNCATE)
9128    Op0 = Op0.getOperand(0);
9129  if (Op1.getOpcode() == ISD::TRUNCATE)
9130    Op1 = Op1.getOperand(0);
9131
9132  SDValue LHS, RHS;
9133  if (Op1.getOpcode() == ISD::SHL)
9134    std::swap(Op0, Op1);
9135  if (Op0.getOpcode() == ISD::SHL) {
9136    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9137      if (And00C->getZExtValue() == 1) {
9138        // If we looked past a truncate, check that it's only truncating away
9139        // known zeros.
9140        unsigned BitWidth = Op0.getValueSizeInBits();
9141        unsigned AndBitWidth = And.getValueSizeInBits();
9142        if (BitWidth > AndBitWidth) {
9143          APInt Zeros, Ones;
9144          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9145          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9146            return SDValue();
9147        }
9148        LHS = Op1;
9149        RHS = Op0.getOperand(1);
9150      }
9151  } else if (Op1.getOpcode() == ISD::Constant) {
9152    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9153    uint64_t AndRHSVal = AndRHS->getZExtValue();
9154    SDValue AndLHS = Op0;
9155
9156    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9157      LHS = AndLHS.getOperand(0);
9158      RHS = AndLHS.getOperand(1);
9159    }
9160
9161    // Use BT if the immediate can't be encoded in a TEST instruction.
9162    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9163      LHS = AndLHS;
9164      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9165    }
9166  }
9167
9168  if (LHS.getNode()) {
9169    // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip
9170    // the condition code later.
9171    bool Invert = false;
9172    if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) {
9173      Invert = true;
9174      LHS = LHS.getOperand(0);
9175    }
9176
9177    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9178    // instruction.  Since the shift amount is in-range-or-undefined, we know
9179    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9180    // the encoding for the i16 version is larger than the i32 version.
9181    // Also promote i16 to i32 for performance / code size reason.
9182    if (LHS.getValueType() == MVT::i8 ||
9183        LHS.getValueType() == MVT::i16)
9184      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9185
9186    // If the operand types disagree, extend the shift amount to match.  Since
9187    // BT ignores high bits (like shifts) we can use anyextend.
9188    if (LHS.getValueType() != RHS.getValueType())
9189      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9190
9191    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9192    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9193    // Flip the condition if the LHS was a not instruction
9194    if (Invert)
9195      Cond = X86::GetOppositeBranchCondition(Cond);
9196    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9197                       DAG.getConstant(Cond, MVT::i8), BT);
9198  }
9199
9200  return SDValue();
9201}
9202
9203// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9204// ones, and then concatenate the result back.
9205static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9206  MVT VT = Op.getValueType().getSimpleVT();
9207
9208  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9209         "Unsupported value type for operation");
9210
9211  unsigned NumElems = VT.getVectorNumElements();
9212  DebugLoc dl = Op.getDebugLoc();
9213  SDValue CC = Op.getOperand(2);
9214
9215  // Extract the LHS vectors
9216  SDValue LHS = Op.getOperand(0);
9217  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9218  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9219
9220  // Extract the RHS vectors
9221  SDValue RHS = Op.getOperand(1);
9222  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9223  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9224
9225  // Issue the operation on the smaller types and concatenate the result back
9226  MVT EltVT = VT.getVectorElementType();
9227  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9228  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9229                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9230                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9231}
9232
9233static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9234                           SelectionDAG &DAG) {
9235  SDValue Cond;
9236  SDValue Op0 = Op.getOperand(0);
9237  SDValue Op1 = Op.getOperand(1);
9238  SDValue CC = Op.getOperand(2);
9239  MVT VT = Op.getValueType().getSimpleVT();
9240  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9241  bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint();
9242  DebugLoc dl = Op.getDebugLoc();
9243
9244  if (isFP) {
9245#ifndef NDEBUG
9246    MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT();
9247    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9248#endif
9249
9250    unsigned SSECC;
9251    bool Swap = false;
9252
9253    // SSE Condition code mapping:
9254    //  0 - EQ
9255    //  1 - LT
9256    //  2 - LE
9257    //  3 - UNORD
9258    //  4 - NEQ
9259    //  5 - NLT
9260    //  6 - NLE
9261    //  7 - ORD
9262    switch (SetCCOpcode) {
9263    default: llvm_unreachable("Unexpected SETCC condition");
9264    case ISD::SETOEQ:
9265    case ISD::SETEQ:  SSECC = 0; break;
9266    case ISD::SETOGT:
9267    case ISD::SETGT: Swap = true; // Fallthrough
9268    case ISD::SETLT:
9269    case ISD::SETOLT: SSECC = 1; break;
9270    case ISD::SETOGE:
9271    case ISD::SETGE: Swap = true; // Fallthrough
9272    case ISD::SETLE:
9273    case ISD::SETOLE: SSECC = 2; break;
9274    case ISD::SETUO:  SSECC = 3; break;
9275    case ISD::SETUNE:
9276    case ISD::SETNE:  SSECC = 4; break;
9277    case ISD::SETULE: Swap = true; // Fallthrough
9278    case ISD::SETUGE: SSECC = 5; break;
9279    case ISD::SETULT: Swap = true; // Fallthrough
9280    case ISD::SETUGT: SSECC = 6; break;
9281    case ISD::SETO:   SSECC = 7; break;
9282    case ISD::SETUEQ:
9283    case ISD::SETONE: SSECC = 8; break;
9284    }
9285    if (Swap)
9286      std::swap(Op0, Op1);
9287
9288    // In the two special cases we can't handle, emit two comparisons.
9289    if (SSECC == 8) {
9290      unsigned CC0, CC1;
9291      unsigned CombineOpc;
9292      if (SetCCOpcode == ISD::SETUEQ) {
9293        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9294      } else {
9295        assert(SetCCOpcode == ISD::SETONE);
9296        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9297      }
9298
9299      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9300                                 DAG.getConstant(CC0, MVT::i8));
9301      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9302                                 DAG.getConstant(CC1, MVT::i8));
9303      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9304    }
9305    // Handle all other FP comparisons here.
9306    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9307                       DAG.getConstant(SSECC, MVT::i8));
9308  }
9309
9310  // Break 256-bit integer vector compare into smaller ones.
9311  if (VT.is256BitVector() && !Subtarget->hasInt256())
9312    return Lower256IntVSETCC(Op, DAG);
9313
9314  // We are handling one of the integer comparisons here.  Since SSE only has
9315  // GT and EQ comparisons for integer, swapping operands and multiple
9316  // operations may be required for some comparisons.
9317  unsigned Opc;
9318  bool Swap = false, Invert = false, FlipSigns = false;
9319
9320  switch (SetCCOpcode) {
9321  default: llvm_unreachable("Unexpected SETCC condition");
9322  case ISD::SETNE:  Invert = true;
9323  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9324  case ISD::SETLT:  Swap = true;
9325  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9326  case ISD::SETGE:  Swap = true;
9327  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9328  case ISD::SETULT: Swap = true;
9329  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9330  case ISD::SETUGE: Swap = true;
9331  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9332  }
9333  if (Swap)
9334    std::swap(Op0, Op1);
9335
9336  // Check that the operation in question is available (most are plain SSE2,
9337  // but PCMPGTQ and PCMPEQQ have different requirements).
9338  if (VT == MVT::v2i64) {
9339    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9340      return SDValue();
9341    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9342      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9343      // pcmpeqd + pshufd + pand.
9344      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9345
9346      // First cast everything to the right type,
9347      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9348      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9349
9350      // Do the compare.
9351      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9352
9353      // Make sure the lower and upper halves are both all-ones.
9354      const int Mask[] = { 1, 0, 3, 2 };
9355      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9356      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9357
9358      if (Invert)
9359        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9360
9361      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9362    }
9363  }
9364
9365  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9366  // bits of the inputs before performing those operations.
9367  if (FlipSigns) {
9368    EVT EltVT = VT.getVectorElementType();
9369    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9370                                      EltVT);
9371    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9372    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9373                                    SignBits.size());
9374    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9375    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9376  }
9377
9378  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9379
9380  // If the logical-not of the result is required, perform that now.
9381  if (Invert)
9382    Result = DAG.getNOT(dl, Result, VT);
9383
9384  return Result;
9385}
9386
9387SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9388
9389  MVT VT = Op.getValueType().getSimpleVT();
9390
9391  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
9392
9393  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
9394  SDValue Op0 = Op.getOperand(0);
9395  SDValue Op1 = Op.getOperand(1);
9396  DebugLoc dl = Op.getDebugLoc();
9397  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9398
9399  // Optimize to BT if possible.
9400  // Lower (X & (1 << N)) == 0 to BT(X, N).
9401  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9402  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9403  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9404      Op1.getOpcode() == ISD::Constant &&
9405      cast<ConstantSDNode>(Op1)->isNullValue() &&
9406      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9407    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9408    if (NewSetCC.getNode())
9409      return NewSetCC;
9410  }
9411
9412  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9413  // these.
9414  if (Op1.getOpcode() == ISD::Constant &&
9415      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9416       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9417      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9418
9419    // If the input is a setcc, then reuse the input setcc or use a new one with
9420    // the inverted condition.
9421    if (Op0.getOpcode() == X86ISD::SETCC) {
9422      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9423      bool Invert = (CC == ISD::SETNE) ^
9424        cast<ConstantSDNode>(Op1)->isNullValue();
9425      if (!Invert) return Op0;
9426
9427      CCode = X86::GetOppositeBranchCondition(CCode);
9428      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9429                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9430    }
9431  }
9432
9433  bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint();
9434  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9435  if (X86CC == X86::COND_INVALID)
9436    return SDValue();
9437
9438  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9439  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9440  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9441                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9442}
9443
9444// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9445static bool isX86LogicalCmp(SDValue Op) {
9446  unsigned Opc = Op.getNode()->getOpcode();
9447  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9448      Opc == X86ISD::SAHF)
9449    return true;
9450  if (Op.getResNo() == 1 &&
9451      (Opc == X86ISD::ADD ||
9452       Opc == X86ISD::SUB ||
9453       Opc == X86ISD::ADC ||
9454       Opc == X86ISD::SBB ||
9455       Opc == X86ISD::SMUL ||
9456       Opc == X86ISD::UMUL ||
9457       Opc == X86ISD::INC ||
9458       Opc == X86ISD::DEC ||
9459       Opc == X86ISD::OR ||
9460       Opc == X86ISD::XOR ||
9461       Opc == X86ISD::AND))
9462    return true;
9463
9464  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9465    return true;
9466
9467  return false;
9468}
9469
9470static bool isZero(SDValue V) {
9471  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9472  return C && C->isNullValue();
9473}
9474
9475static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9476  if (V.getOpcode() != ISD::TRUNCATE)
9477    return false;
9478
9479  SDValue VOp0 = V.getOperand(0);
9480  unsigned InBits = VOp0.getValueSizeInBits();
9481  unsigned Bits = V.getValueSizeInBits();
9482  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9483}
9484
9485SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9486  bool addTest = true;
9487  SDValue Cond  = Op.getOperand(0);
9488  SDValue Op1 = Op.getOperand(1);
9489  SDValue Op2 = Op.getOperand(2);
9490  DebugLoc DL = Op.getDebugLoc();
9491  SDValue CC;
9492
9493  if (Cond.getOpcode() == ISD::SETCC) {
9494    SDValue NewCond = LowerSETCC(Cond, DAG);
9495    if (NewCond.getNode())
9496      Cond = NewCond;
9497  }
9498
9499  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9500  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9501  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9502  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9503  if (Cond.getOpcode() == X86ISD::SETCC &&
9504      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9505      isZero(Cond.getOperand(1).getOperand(1))) {
9506    SDValue Cmp = Cond.getOperand(1);
9507
9508    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9509
9510    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9511        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9512      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9513
9514      SDValue CmpOp0 = Cmp.getOperand(0);
9515      // Apply further optimizations for special cases
9516      // (select (x != 0), -1, 0) -> neg & sbb
9517      // (select (x == 0), 0, -1) -> neg & sbb
9518      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9519        if (YC->isNullValue() &&
9520            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9521          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9522          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9523                                    DAG.getConstant(0, CmpOp0.getValueType()),
9524                                    CmpOp0);
9525          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9526                                    DAG.getConstant(X86::COND_B, MVT::i8),
9527                                    SDValue(Neg.getNode(), 1));
9528          return Res;
9529        }
9530
9531      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9532                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9533      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9534
9535      SDValue Res =   // Res = 0 or -1.
9536        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9537                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9538
9539      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9540        Res = DAG.getNOT(DL, Res, Res.getValueType());
9541
9542      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9543      if (N2C == 0 || !N2C->isNullValue())
9544        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9545      return Res;
9546    }
9547  }
9548
9549  // Look past (and (setcc_carry (cmp ...)), 1).
9550  if (Cond.getOpcode() == ISD::AND &&
9551      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9552    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9553    if (C && C->getAPIntValue() == 1)
9554      Cond = Cond.getOperand(0);
9555  }
9556
9557  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9558  // setting operand in place of the X86ISD::SETCC.
9559  unsigned CondOpcode = Cond.getOpcode();
9560  if (CondOpcode == X86ISD::SETCC ||
9561      CondOpcode == X86ISD::SETCC_CARRY) {
9562    CC = Cond.getOperand(0);
9563
9564    SDValue Cmp = Cond.getOperand(1);
9565    unsigned Opc = Cmp.getOpcode();
9566    MVT VT = Op.getValueType().getSimpleVT();
9567
9568    bool IllegalFPCMov = false;
9569    if (VT.isFloatingPoint() && !VT.isVector() &&
9570        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9571      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9572
9573    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9574        Opc == X86ISD::BT) { // FIXME
9575      Cond = Cmp;
9576      addTest = false;
9577    }
9578  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9579             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9580             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9581              Cond.getOperand(0).getValueType() != MVT::i8)) {
9582    SDValue LHS = Cond.getOperand(0);
9583    SDValue RHS = Cond.getOperand(1);
9584    unsigned X86Opcode;
9585    unsigned X86Cond;
9586    SDVTList VTs;
9587    switch (CondOpcode) {
9588    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9589    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9590    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9591    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9592    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9593    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9594    default: llvm_unreachable("unexpected overflowing operator");
9595    }
9596    if (CondOpcode == ISD::UMULO)
9597      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9598                          MVT::i32);
9599    else
9600      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9601
9602    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9603
9604    if (CondOpcode == ISD::UMULO)
9605      Cond = X86Op.getValue(2);
9606    else
9607      Cond = X86Op.getValue(1);
9608
9609    CC = DAG.getConstant(X86Cond, MVT::i8);
9610    addTest = false;
9611  }
9612
9613  if (addTest) {
9614    // Look pass the truncate if the high bits are known zero.
9615    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9616        Cond = Cond.getOperand(0);
9617
9618    // We know the result of AND is compared against zero. Try to match
9619    // it to BT.
9620    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9621      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9622      if (NewSetCC.getNode()) {
9623        CC = NewSetCC.getOperand(0);
9624        Cond = NewSetCC.getOperand(1);
9625        addTest = false;
9626      }
9627    }
9628  }
9629
9630  if (addTest) {
9631    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9632    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9633  }
9634
9635  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9636  // a <  b ?  0 : -1 -> RES = setcc_carry
9637  // a >= b ? -1 :  0 -> RES = setcc_carry
9638  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9639  if (Cond.getOpcode() == X86ISD::SUB) {
9640    Cond = ConvertCmpIfNecessary(Cond, DAG);
9641    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9642
9643    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9644        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9645      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9646                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9647      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9648        return DAG.getNOT(DL, Res, Res.getValueType());
9649      return Res;
9650    }
9651  }
9652
9653  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9654  // widen the cmov and push the truncate through. This avoids introducing a new
9655  // branch during isel and doesn't add any extensions.
9656  if (Op.getValueType() == MVT::i8 &&
9657      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9658    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9659    if (T1.getValueType() == T2.getValueType() &&
9660        // Blacklist CopyFromReg to avoid partial register stalls.
9661        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9662      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9663      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9664      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9665    }
9666  }
9667
9668  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9669  // condition is true.
9670  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9671  SDValue Ops[] = { Op2, Op1, CC, Cond };
9672  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9673}
9674
9675SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9676                                            SelectionDAG &DAG) const {
9677  MVT VT = Op->getValueType(0).getSimpleVT();
9678  SDValue In = Op->getOperand(0);
9679  MVT InVT = In.getValueType().getSimpleVT();
9680  DebugLoc dl = Op->getDebugLoc();
9681
9682  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9683      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9684    return SDValue();
9685
9686  if (Subtarget->hasInt256())
9687    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9688
9689  // Optimize vectors in AVX mode
9690  // Sign extend  v8i16 to v8i32 and
9691  //              v4i32 to v4i64
9692  //
9693  // Divide input vector into two parts
9694  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9695  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9696  // concat the vectors to original VT
9697
9698  unsigned NumElems = InVT.getVectorNumElements();
9699  SDValue Undef = DAG.getUNDEF(InVT);
9700
9701  SmallVector<int,8> ShufMask1(NumElems, -1);
9702  for (unsigned i = 0; i != NumElems/2; ++i)
9703    ShufMask1[i] = i;
9704
9705  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9706
9707  SmallVector<int,8> ShufMask2(NumElems, -1);
9708  for (unsigned i = 0; i != NumElems/2; ++i)
9709    ShufMask2[i] = i + NumElems/2;
9710
9711  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9712
9713  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
9714                                VT.getVectorNumElements()/2);
9715
9716  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9717  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9718
9719  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9720}
9721
9722// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9723// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9724// from the AND / OR.
9725static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9726  Opc = Op.getOpcode();
9727  if (Opc != ISD::OR && Opc != ISD::AND)
9728    return false;
9729  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9730          Op.getOperand(0).hasOneUse() &&
9731          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9732          Op.getOperand(1).hasOneUse());
9733}
9734
9735// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9736// 1 and that the SETCC node has a single use.
9737static bool isXor1OfSetCC(SDValue Op) {
9738  if (Op.getOpcode() != ISD::XOR)
9739    return false;
9740  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9741  if (N1C && N1C->getAPIntValue() == 1) {
9742    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9743      Op.getOperand(0).hasOneUse();
9744  }
9745  return false;
9746}
9747
9748SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9749  bool addTest = true;
9750  SDValue Chain = Op.getOperand(0);
9751  SDValue Cond  = Op.getOperand(1);
9752  SDValue Dest  = Op.getOperand(2);
9753  DebugLoc dl = Op.getDebugLoc();
9754  SDValue CC;
9755  bool Inverted = false;
9756
9757  if (Cond.getOpcode() == ISD::SETCC) {
9758    // Check for setcc([su]{add,sub,mul}o == 0).
9759    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9760        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9761        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9762        Cond.getOperand(0).getResNo() == 1 &&
9763        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9764         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9765         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9766         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9767         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9768         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9769      Inverted = true;
9770      Cond = Cond.getOperand(0);
9771    } else {
9772      SDValue NewCond = LowerSETCC(Cond, DAG);
9773      if (NewCond.getNode())
9774        Cond = NewCond;
9775    }
9776  }
9777#if 0
9778  // FIXME: LowerXALUO doesn't handle these!!
9779  else if (Cond.getOpcode() == X86ISD::ADD  ||
9780           Cond.getOpcode() == X86ISD::SUB  ||
9781           Cond.getOpcode() == X86ISD::SMUL ||
9782           Cond.getOpcode() == X86ISD::UMUL)
9783    Cond = LowerXALUO(Cond, DAG);
9784#endif
9785
9786  // Look pass (and (setcc_carry (cmp ...)), 1).
9787  if (Cond.getOpcode() == ISD::AND &&
9788      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9789    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9790    if (C && C->getAPIntValue() == 1)
9791      Cond = Cond.getOperand(0);
9792  }
9793
9794  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9795  // setting operand in place of the X86ISD::SETCC.
9796  unsigned CondOpcode = Cond.getOpcode();
9797  if (CondOpcode == X86ISD::SETCC ||
9798      CondOpcode == X86ISD::SETCC_CARRY) {
9799    CC = Cond.getOperand(0);
9800
9801    SDValue Cmp = Cond.getOperand(1);
9802    unsigned Opc = Cmp.getOpcode();
9803    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9804    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9805      Cond = Cmp;
9806      addTest = false;
9807    } else {
9808      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9809      default: break;
9810      case X86::COND_O:
9811      case X86::COND_B:
9812        // These can only come from an arithmetic instruction with overflow,
9813        // e.g. SADDO, UADDO.
9814        Cond = Cond.getNode()->getOperand(1);
9815        addTest = false;
9816        break;
9817      }
9818    }
9819  }
9820  CondOpcode = Cond.getOpcode();
9821  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9822      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9823      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9824       Cond.getOperand(0).getValueType() != MVT::i8)) {
9825    SDValue LHS = Cond.getOperand(0);
9826    SDValue RHS = Cond.getOperand(1);
9827    unsigned X86Opcode;
9828    unsigned X86Cond;
9829    SDVTList VTs;
9830    switch (CondOpcode) {
9831    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9832    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9833    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9834    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9835    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9836    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9837    default: llvm_unreachable("unexpected overflowing operator");
9838    }
9839    if (Inverted)
9840      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9841    if (CondOpcode == ISD::UMULO)
9842      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9843                          MVT::i32);
9844    else
9845      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9846
9847    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9848
9849    if (CondOpcode == ISD::UMULO)
9850      Cond = X86Op.getValue(2);
9851    else
9852      Cond = X86Op.getValue(1);
9853
9854    CC = DAG.getConstant(X86Cond, MVT::i8);
9855    addTest = false;
9856  } else {
9857    unsigned CondOpc;
9858    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9859      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9860      if (CondOpc == ISD::OR) {
9861        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9862        // two branches instead of an explicit OR instruction with a
9863        // separate test.
9864        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9865            isX86LogicalCmp(Cmp)) {
9866          CC = Cond.getOperand(0).getOperand(0);
9867          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9868                              Chain, Dest, CC, Cmp);
9869          CC = Cond.getOperand(1).getOperand(0);
9870          Cond = Cmp;
9871          addTest = false;
9872        }
9873      } else { // ISD::AND
9874        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9875        // two branches instead of an explicit AND instruction with a
9876        // separate test. However, we only do this if this block doesn't
9877        // have a fall-through edge, because this requires an explicit
9878        // jmp when the condition is false.
9879        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9880            isX86LogicalCmp(Cmp) &&
9881            Op.getNode()->hasOneUse()) {
9882          X86::CondCode CCode =
9883            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9884          CCode = X86::GetOppositeBranchCondition(CCode);
9885          CC = DAG.getConstant(CCode, MVT::i8);
9886          SDNode *User = *Op.getNode()->use_begin();
9887          // Look for an unconditional branch following this conditional branch.
9888          // We need this because we need to reverse the successors in order
9889          // to implement FCMP_OEQ.
9890          if (User->getOpcode() == ISD::BR) {
9891            SDValue FalseBB = User->getOperand(1);
9892            SDNode *NewBR =
9893              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9894            assert(NewBR == User);
9895            (void)NewBR;
9896            Dest = FalseBB;
9897
9898            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9899                                Chain, Dest, CC, Cmp);
9900            X86::CondCode CCode =
9901              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9902            CCode = X86::GetOppositeBranchCondition(CCode);
9903            CC = DAG.getConstant(CCode, MVT::i8);
9904            Cond = Cmp;
9905            addTest = false;
9906          }
9907        }
9908      }
9909    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9910      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9911      // It should be transformed during dag combiner except when the condition
9912      // is set by a arithmetics with overflow node.
9913      X86::CondCode CCode =
9914        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9915      CCode = X86::GetOppositeBranchCondition(CCode);
9916      CC = DAG.getConstant(CCode, MVT::i8);
9917      Cond = Cond.getOperand(0).getOperand(1);
9918      addTest = false;
9919    } else if (Cond.getOpcode() == ISD::SETCC &&
9920               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9921      // For FCMP_OEQ, we can emit
9922      // two branches instead of an explicit AND instruction with a
9923      // separate test. However, we only do this if this block doesn't
9924      // have a fall-through edge, because this requires an explicit
9925      // jmp when the condition is false.
9926      if (Op.getNode()->hasOneUse()) {
9927        SDNode *User = *Op.getNode()->use_begin();
9928        // Look for an unconditional branch following this conditional branch.
9929        // We need this because we need to reverse the successors in order
9930        // to implement FCMP_OEQ.
9931        if (User->getOpcode() == ISD::BR) {
9932          SDValue FalseBB = User->getOperand(1);
9933          SDNode *NewBR =
9934            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9935          assert(NewBR == User);
9936          (void)NewBR;
9937          Dest = FalseBB;
9938
9939          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9940                                    Cond.getOperand(0), Cond.getOperand(1));
9941          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9942          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9943          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9944                              Chain, Dest, CC, Cmp);
9945          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9946          Cond = Cmp;
9947          addTest = false;
9948        }
9949      }
9950    } else if (Cond.getOpcode() == ISD::SETCC &&
9951               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9952      // For FCMP_UNE, we can emit
9953      // two branches instead of an explicit AND instruction with a
9954      // separate test. However, we only do this if this block doesn't
9955      // have a fall-through edge, because this requires an explicit
9956      // jmp when the condition is false.
9957      if (Op.getNode()->hasOneUse()) {
9958        SDNode *User = *Op.getNode()->use_begin();
9959        // Look for an unconditional branch following this conditional branch.
9960        // We need this because we need to reverse the successors in order
9961        // to implement FCMP_UNE.
9962        if (User->getOpcode() == ISD::BR) {
9963          SDValue FalseBB = User->getOperand(1);
9964          SDNode *NewBR =
9965            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9966          assert(NewBR == User);
9967          (void)NewBR;
9968
9969          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9970                                    Cond.getOperand(0), Cond.getOperand(1));
9971          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9972          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9973          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9974                              Chain, Dest, CC, Cmp);
9975          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9976          Cond = Cmp;
9977          addTest = false;
9978          Dest = FalseBB;
9979        }
9980      }
9981    }
9982  }
9983
9984  if (addTest) {
9985    // Look pass the truncate if the high bits are known zero.
9986    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9987        Cond = Cond.getOperand(0);
9988
9989    // We know the result of AND is compared against zero. Try to match
9990    // it to BT.
9991    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9992      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9993      if (NewSetCC.getNode()) {
9994        CC = NewSetCC.getOperand(0);
9995        Cond = NewSetCC.getOperand(1);
9996        addTest = false;
9997      }
9998    }
9999  }
10000
10001  if (addTest) {
10002    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10003    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10004  }
10005  Cond = ConvertCmpIfNecessary(Cond, DAG);
10006  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10007                     Chain, Dest, CC, Cond);
10008}
10009
10010// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10011// Calls to _alloca is needed to probe the stack when allocating more than 4k
10012// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10013// that the guard pages used by the OS virtual memory manager are allocated in
10014// correct sequence.
10015SDValue
10016X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10017                                           SelectionDAG &DAG) const {
10018  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10019          getTargetMachine().Options.EnableSegmentedStacks) &&
10020         "This should be used only on Windows targets or when segmented stacks "
10021         "are being used");
10022  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10023  DebugLoc dl = Op.getDebugLoc();
10024
10025  // Get the inputs.
10026  SDValue Chain = Op.getOperand(0);
10027  SDValue Size  = Op.getOperand(1);
10028  // FIXME: Ensure alignment here
10029
10030  bool Is64Bit = Subtarget->is64Bit();
10031  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10032
10033  if (getTargetMachine().Options.EnableSegmentedStacks) {
10034    MachineFunction &MF = DAG.getMachineFunction();
10035    MachineRegisterInfo &MRI = MF.getRegInfo();
10036
10037    if (Is64Bit) {
10038      // The 64 bit implementation of segmented stacks needs to clobber both r10
10039      // r11. This makes it impossible to use it along with nested parameters.
10040      const Function *F = MF.getFunction();
10041
10042      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10043           I != E; ++I)
10044        if (I->hasNestAttr())
10045          report_fatal_error("Cannot use segmented stacks with functions that "
10046                             "have nested arguments.");
10047    }
10048
10049    const TargetRegisterClass *AddrRegClass =
10050      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10051    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10052    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10053    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10054                                DAG.getRegister(Vreg, SPTy));
10055    SDValue Ops1[2] = { Value, Chain };
10056    return DAG.getMergeValues(Ops1, 2, dl);
10057  } else {
10058    SDValue Flag;
10059    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10060
10061    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10062    Flag = Chain.getValue(1);
10063    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10064
10065    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10066    Flag = Chain.getValue(1);
10067
10068    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10069                               SPTy).getValue(1);
10070
10071    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10072    return DAG.getMergeValues(Ops1, 2, dl);
10073  }
10074}
10075
10076SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10077  MachineFunction &MF = DAG.getMachineFunction();
10078  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10079
10080  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10081  DebugLoc DL = Op.getDebugLoc();
10082
10083  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10084    // vastart just stores the address of the VarArgsFrameIndex slot into the
10085    // memory location argument.
10086    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10087                                   getPointerTy());
10088    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10089                        MachinePointerInfo(SV), false, false, 0);
10090  }
10091
10092  // __va_list_tag:
10093  //   gp_offset         (0 - 6 * 8)
10094  //   fp_offset         (48 - 48 + 8 * 16)
10095  //   overflow_arg_area (point to parameters coming in memory).
10096  //   reg_save_area
10097  SmallVector<SDValue, 8> MemOps;
10098  SDValue FIN = Op.getOperand(1);
10099  // Store gp_offset
10100  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10101                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10102                                               MVT::i32),
10103                               FIN, MachinePointerInfo(SV), false, false, 0);
10104  MemOps.push_back(Store);
10105
10106  // Store fp_offset
10107  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10108                    FIN, DAG.getIntPtrConstant(4));
10109  Store = DAG.getStore(Op.getOperand(0), DL,
10110                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10111                                       MVT::i32),
10112                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10113  MemOps.push_back(Store);
10114
10115  // Store ptr to overflow_arg_area
10116  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10117                    FIN, DAG.getIntPtrConstant(4));
10118  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10119                                    getPointerTy());
10120  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10121                       MachinePointerInfo(SV, 8),
10122                       false, false, 0);
10123  MemOps.push_back(Store);
10124
10125  // Store ptr to reg_save_area.
10126  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10127                    FIN, DAG.getIntPtrConstant(8));
10128  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10129                                    getPointerTy());
10130  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10131                       MachinePointerInfo(SV, 16), false, false, 0);
10132  MemOps.push_back(Store);
10133  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10134                     &MemOps[0], MemOps.size());
10135}
10136
10137SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10138  assert(Subtarget->is64Bit() &&
10139         "LowerVAARG only handles 64-bit va_arg!");
10140  assert((Subtarget->isTargetLinux() ||
10141          Subtarget->isTargetDarwin()) &&
10142          "Unhandled target in LowerVAARG");
10143  assert(Op.getNode()->getNumOperands() == 4);
10144  SDValue Chain = Op.getOperand(0);
10145  SDValue SrcPtr = Op.getOperand(1);
10146  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10147  unsigned Align = Op.getConstantOperandVal(3);
10148  DebugLoc dl = Op.getDebugLoc();
10149
10150  EVT ArgVT = Op.getNode()->getValueType(0);
10151  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10152  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10153  uint8_t ArgMode;
10154
10155  // Decide which area this value should be read from.
10156  // TODO: Implement the AMD64 ABI in its entirety. This simple
10157  // selection mechanism works only for the basic types.
10158  if (ArgVT == MVT::f80) {
10159    llvm_unreachable("va_arg for f80 not yet implemented");
10160  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10161    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10162  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10163    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10164  } else {
10165    llvm_unreachable("Unhandled argument type in LowerVAARG");
10166  }
10167
10168  if (ArgMode == 2) {
10169    // Sanity Check: Make sure using fp_offset makes sense.
10170    assert(!getTargetMachine().Options.UseSoftFloat &&
10171           !(DAG.getMachineFunction()
10172                .getFunction()->getAttributes()
10173                .hasAttribute(AttributeSet::FunctionIndex,
10174                              Attribute::NoImplicitFloat)) &&
10175           Subtarget->hasSSE1());
10176  }
10177
10178  // Insert VAARG_64 node into the DAG
10179  // VAARG_64 returns two values: Variable Argument Address, Chain
10180  SmallVector<SDValue, 11> InstOps;
10181  InstOps.push_back(Chain);
10182  InstOps.push_back(SrcPtr);
10183  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10184  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10185  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10186  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10187  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10188                                          VTs, &InstOps[0], InstOps.size(),
10189                                          MVT::i64,
10190                                          MachinePointerInfo(SV),
10191                                          /*Align=*/0,
10192                                          /*Volatile=*/false,
10193                                          /*ReadMem=*/true,
10194                                          /*WriteMem=*/true);
10195  Chain = VAARG.getValue(1);
10196
10197  // Load the next argument and return it
10198  return DAG.getLoad(ArgVT, dl,
10199                     Chain,
10200                     VAARG,
10201                     MachinePointerInfo(),
10202                     false, false, false, 0);
10203}
10204
10205static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10206                           SelectionDAG &DAG) {
10207  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10208  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10209  SDValue Chain = Op.getOperand(0);
10210  SDValue DstPtr = Op.getOperand(1);
10211  SDValue SrcPtr = Op.getOperand(2);
10212  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10213  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10214  DebugLoc DL = Op.getDebugLoc();
10215
10216  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10217                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10218                       false,
10219                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10220}
10221
10222// getTargetVShiftNode - Handle vector element shifts where the shift amount
10223// may or may not be a constant. Takes immediate version of shift as input.
10224static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10225                                   SDValue SrcOp, SDValue ShAmt,
10226                                   SelectionDAG &DAG) {
10227  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10228
10229  if (isa<ConstantSDNode>(ShAmt)) {
10230    // Constant may be a TargetConstant. Use a regular constant.
10231    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10232    switch (Opc) {
10233      default: llvm_unreachable("Unknown target vector shift node");
10234      case X86ISD::VSHLI:
10235      case X86ISD::VSRLI:
10236      case X86ISD::VSRAI:
10237        return DAG.getNode(Opc, dl, VT, SrcOp,
10238                           DAG.getConstant(ShiftAmt, MVT::i32));
10239    }
10240  }
10241
10242  // Change opcode to non-immediate version
10243  switch (Opc) {
10244    default: llvm_unreachable("Unknown target vector shift node");
10245    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10246    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10247    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10248  }
10249
10250  // Need to build a vector containing shift amount
10251  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10252  SDValue ShOps[4];
10253  ShOps[0] = ShAmt;
10254  ShOps[1] = DAG.getConstant(0, MVT::i32);
10255  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10256  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10257
10258  // The return type has to be a 128-bit type with the same element
10259  // type as the input type.
10260  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10261  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10262
10263  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10264  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10265}
10266
10267static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10268  DebugLoc dl = Op.getDebugLoc();
10269  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10270  switch (IntNo) {
10271  default: return SDValue();    // Don't custom lower most intrinsics.
10272  // Comparison intrinsics.
10273  case Intrinsic::x86_sse_comieq_ss:
10274  case Intrinsic::x86_sse_comilt_ss:
10275  case Intrinsic::x86_sse_comile_ss:
10276  case Intrinsic::x86_sse_comigt_ss:
10277  case Intrinsic::x86_sse_comige_ss:
10278  case Intrinsic::x86_sse_comineq_ss:
10279  case Intrinsic::x86_sse_ucomieq_ss:
10280  case Intrinsic::x86_sse_ucomilt_ss:
10281  case Intrinsic::x86_sse_ucomile_ss:
10282  case Intrinsic::x86_sse_ucomigt_ss:
10283  case Intrinsic::x86_sse_ucomige_ss:
10284  case Intrinsic::x86_sse_ucomineq_ss:
10285  case Intrinsic::x86_sse2_comieq_sd:
10286  case Intrinsic::x86_sse2_comilt_sd:
10287  case Intrinsic::x86_sse2_comile_sd:
10288  case Intrinsic::x86_sse2_comigt_sd:
10289  case Intrinsic::x86_sse2_comige_sd:
10290  case Intrinsic::x86_sse2_comineq_sd:
10291  case Intrinsic::x86_sse2_ucomieq_sd:
10292  case Intrinsic::x86_sse2_ucomilt_sd:
10293  case Intrinsic::x86_sse2_ucomile_sd:
10294  case Intrinsic::x86_sse2_ucomigt_sd:
10295  case Intrinsic::x86_sse2_ucomige_sd:
10296  case Intrinsic::x86_sse2_ucomineq_sd: {
10297    unsigned Opc;
10298    ISD::CondCode CC;
10299    switch (IntNo) {
10300    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10301    case Intrinsic::x86_sse_comieq_ss:
10302    case Intrinsic::x86_sse2_comieq_sd:
10303      Opc = X86ISD::COMI;
10304      CC = ISD::SETEQ;
10305      break;
10306    case Intrinsic::x86_sse_comilt_ss:
10307    case Intrinsic::x86_sse2_comilt_sd:
10308      Opc = X86ISD::COMI;
10309      CC = ISD::SETLT;
10310      break;
10311    case Intrinsic::x86_sse_comile_ss:
10312    case Intrinsic::x86_sse2_comile_sd:
10313      Opc = X86ISD::COMI;
10314      CC = ISD::SETLE;
10315      break;
10316    case Intrinsic::x86_sse_comigt_ss:
10317    case Intrinsic::x86_sse2_comigt_sd:
10318      Opc = X86ISD::COMI;
10319      CC = ISD::SETGT;
10320      break;
10321    case Intrinsic::x86_sse_comige_ss:
10322    case Intrinsic::x86_sse2_comige_sd:
10323      Opc = X86ISD::COMI;
10324      CC = ISD::SETGE;
10325      break;
10326    case Intrinsic::x86_sse_comineq_ss:
10327    case Intrinsic::x86_sse2_comineq_sd:
10328      Opc = X86ISD::COMI;
10329      CC = ISD::SETNE;
10330      break;
10331    case Intrinsic::x86_sse_ucomieq_ss:
10332    case Intrinsic::x86_sse2_ucomieq_sd:
10333      Opc = X86ISD::UCOMI;
10334      CC = ISD::SETEQ;
10335      break;
10336    case Intrinsic::x86_sse_ucomilt_ss:
10337    case Intrinsic::x86_sse2_ucomilt_sd:
10338      Opc = X86ISD::UCOMI;
10339      CC = ISD::SETLT;
10340      break;
10341    case Intrinsic::x86_sse_ucomile_ss:
10342    case Intrinsic::x86_sse2_ucomile_sd:
10343      Opc = X86ISD::UCOMI;
10344      CC = ISD::SETLE;
10345      break;
10346    case Intrinsic::x86_sse_ucomigt_ss:
10347    case Intrinsic::x86_sse2_ucomigt_sd:
10348      Opc = X86ISD::UCOMI;
10349      CC = ISD::SETGT;
10350      break;
10351    case Intrinsic::x86_sse_ucomige_ss:
10352    case Intrinsic::x86_sse2_ucomige_sd:
10353      Opc = X86ISD::UCOMI;
10354      CC = ISD::SETGE;
10355      break;
10356    case Intrinsic::x86_sse_ucomineq_ss:
10357    case Intrinsic::x86_sse2_ucomineq_sd:
10358      Opc = X86ISD::UCOMI;
10359      CC = ISD::SETNE;
10360      break;
10361    }
10362
10363    SDValue LHS = Op.getOperand(1);
10364    SDValue RHS = Op.getOperand(2);
10365    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10366    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10367    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10368    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10369                                DAG.getConstant(X86CC, MVT::i8), Cond);
10370    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10371  }
10372
10373  // Arithmetic intrinsics.
10374  case Intrinsic::x86_sse2_pmulu_dq:
10375  case Intrinsic::x86_avx2_pmulu_dq:
10376    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10377                       Op.getOperand(1), Op.getOperand(2));
10378
10379  // SSE2/AVX2 sub with unsigned saturation intrinsics
10380  case Intrinsic::x86_sse2_psubus_b:
10381  case Intrinsic::x86_sse2_psubus_w:
10382  case Intrinsic::x86_avx2_psubus_b:
10383  case Intrinsic::x86_avx2_psubus_w:
10384    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10385                       Op.getOperand(1), Op.getOperand(2));
10386
10387  // SSE3/AVX horizontal add/sub intrinsics
10388  case Intrinsic::x86_sse3_hadd_ps:
10389  case Intrinsic::x86_sse3_hadd_pd:
10390  case Intrinsic::x86_avx_hadd_ps_256:
10391  case Intrinsic::x86_avx_hadd_pd_256:
10392  case Intrinsic::x86_sse3_hsub_ps:
10393  case Intrinsic::x86_sse3_hsub_pd:
10394  case Intrinsic::x86_avx_hsub_ps_256:
10395  case Intrinsic::x86_avx_hsub_pd_256:
10396  case Intrinsic::x86_ssse3_phadd_w_128:
10397  case Intrinsic::x86_ssse3_phadd_d_128:
10398  case Intrinsic::x86_avx2_phadd_w:
10399  case Intrinsic::x86_avx2_phadd_d:
10400  case Intrinsic::x86_ssse3_phsub_w_128:
10401  case Intrinsic::x86_ssse3_phsub_d_128:
10402  case Intrinsic::x86_avx2_phsub_w:
10403  case Intrinsic::x86_avx2_phsub_d: {
10404    unsigned Opcode;
10405    switch (IntNo) {
10406    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10407    case Intrinsic::x86_sse3_hadd_ps:
10408    case Intrinsic::x86_sse3_hadd_pd:
10409    case Intrinsic::x86_avx_hadd_ps_256:
10410    case Intrinsic::x86_avx_hadd_pd_256:
10411      Opcode = X86ISD::FHADD;
10412      break;
10413    case Intrinsic::x86_sse3_hsub_ps:
10414    case Intrinsic::x86_sse3_hsub_pd:
10415    case Intrinsic::x86_avx_hsub_ps_256:
10416    case Intrinsic::x86_avx_hsub_pd_256:
10417      Opcode = X86ISD::FHSUB;
10418      break;
10419    case Intrinsic::x86_ssse3_phadd_w_128:
10420    case Intrinsic::x86_ssse3_phadd_d_128:
10421    case Intrinsic::x86_avx2_phadd_w:
10422    case Intrinsic::x86_avx2_phadd_d:
10423      Opcode = X86ISD::HADD;
10424      break;
10425    case Intrinsic::x86_ssse3_phsub_w_128:
10426    case Intrinsic::x86_ssse3_phsub_d_128:
10427    case Intrinsic::x86_avx2_phsub_w:
10428    case Intrinsic::x86_avx2_phsub_d:
10429      Opcode = X86ISD::HSUB;
10430      break;
10431    }
10432    return DAG.getNode(Opcode, dl, Op.getValueType(),
10433                       Op.getOperand(1), Op.getOperand(2));
10434  }
10435
10436  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10437  case Intrinsic::x86_sse2_pmaxu_b:
10438  case Intrinsic::x86_sse41_pmaxuw:
10439  case Intrinsic::x86_sse41_pmaxud:
10440  case Intrinsic::x86_avx2_pmaxu_b:
10441  case Intrinsic::x86_avx2_pmaxu_w:
10442  case Intrinsic::x86_avx2_pmaxu_d:
10443  case Intrinsic::x86_sse2_pminu_b:
10444  case Intrinsic::x86_sse41_pminuw:
10445  case Intrinsic::x86_sse41_pminud:
10446  case Intrinsic::x86_avx2_pminu_b:
10447  case Intrinsic::x86_avx2_pminu_w:
10448  case Intrinsic::x86_avx2_pminu_d:
10449  case Intrinsic::x86_sse41_pmaxsb:
10450  case Intrinsic::x86_sse2_pmaxs_w:
10451  case Intrinsic::x86_sse41_pmaxsd:
10452  case Intrinsic::x86_avx2_pmaxs_b:
10453  case Intrinsic::x86_avx2_pmaxs_w:
10454  case Intrinsic::x86_avx2_pmaxs_d:
10455  case Intrinsic::x86_sse41_pminsb:
10456  case Intrinsic::x86_sse2_pmins_w:
10457  case Intrinsic::x86_sse41_pminsd:
10458  case Intrinsic::x86_avx2_pmins_b:
10459  case Intrinsic::x86_avx2_pmins_w:
10460  case Intrinsic::x86_avx2_pmins_d: {
10461    unsigned Opcode;
10462    switch (IntNo) {
10463    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10464    case Intrinsic::x86_sse2_pmaxu_b:
10465    case Intrinsic::x86_sse41_pmaxuw:
10466    case Intrinsic::x86_sse41_pmaxud:
10467    case Intrinsic::x86_avx2_pmaxu_b:
10468    case Intrinsic::x86_avx2_pmaxu_w:
10469    case Intrinsic::x86_avx2_pmaxu_d:
10470      Opcode = X86ISD::UMAX;
10471      break;
10472    case Intrinsic::x86_sse2_pminu_b:
10473    case Intrinsic::x86_sse41_pminuw:
10474    case Intrinsic::x86_sse41_pminud:
10475    case Intrinsic::x86_avx2_pminu_b:
10476    case Intrinsic::x86_avx2_pminu_w:
10477    case Intrinsic::x86_avx2_pminu_d:
10478      Opcode = X86ISD::UMIN;
10479      break;
10480    case Intrinsic::x86_sse41_pmaxsb:
10481    case Intrinsic::x86_sse2_pmaxs_w:
10482    case Intrinsic::x86_sse41_pmaxsd:
10483    case Intrinsic::x86_avx2_pmaxs_b:
10484    case Intrinsic::x86_avx2_pmaxs_w:
10485    case Intrinsic::x86_avx2_pmaxs_d:
10486      Opcode = X86ISD::SMAX;
10487      break;
10488    case Intrinsic::x86_sse41_pminsb:
10489    case Intrinsic::x86_sse2_pmins_w:
10490    case Intrinsic::x86_sse41_pminsd:
10491    case Intrinsic::x86_avx2_pmins_b:
10492    case Intrinsic::x86_avx2_pmins_w:
10493    case Intrinsic::x86_avx2_pmins_d:
10494      Opcode = X86ISD::SMIN;
10495      break;
10496    }
10497    return DAG.getNode(Opcode, dl, Op.getValueType(),
10498                       Op.getOperand(1), Op.getOperand(2));
10499  }
10500
10501  // SSE/SSE2/AVX floating point max/min intrinsics.
10502  case Intrinsic::x86_sse_max_ps:
10503  case Intrinsic::x86_sse2_max_pd:
10504  case Intrinsic::x86_avx_max_ps_256:
10505  case Intrinsic::x86_avx_max_pd_256:
10506  case Intrinsic::x86_sse_min_ps:
10507  case Intrinsic::x86_sse2_min_pd:
10508  case Intrinsic::x86_avx_min_ps_256:
10509  case Intrinsic::x86_avx_min_pd_256: {
10510    unsigned Opcode;
10511    switch (IntNo) {
10512    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10513    case Intrinsic::x86_sse_max_ps:
10514    case Intrinsic::x86_sse2_max_pd:
10515    case Intrinsic::x86_avx_max_ps_256:
10516    case Intrinsic::x86_avx_max_pd_256:
10517      Opcode = X86ISD::FMAX;
10518      break;
10519    case Intrinsic::x86_sse_min_ps:
10520    case Intrinsic::x86_sse2_min_pd:
10521    case Intrinsic::x86_avx_min_ps_256:
10522    case Intrinsic::x86_avx_min_pd_256:
10523      Opcode = X86ISD::FMIN;
10524      break;
10525    }
10526    return DAG.getNode(Opcode, dl, Op.getValueType(),
10527                       Op.getOperand(1), Op.getOperand(2));
10528  }
10529
10530  // AVX2 variable shift intrinsics
10531  case Intrinsic::x86_avx2_psllv_d:
10532  case Intrinsic::x86_avx2_psllv_q:
10533  case Intrinsic::x86_avx2_psllv_d_256:
10534  case Intrinsic::x86_avx2_psllv_q_256:
10535  case Intrinsic::x86_avx2_psrlv_d:
10536  case Intrinsic::x86_avx2_psrlv_q:
10537  case Intrinsic::x86_avx2_psrlv_d_256:
10538  case Intrinsic::x86_avx2_psrlv_q_256:
10539  case Intrinsic::x86_avx2_psrav_d:
10540  case Intrinsic::x86_avx2_psrav_d_256: {
10541    unsigned Opcode;
10542    switch (IntNo) {
10543    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10544    case Intrinsic::x86_avx2_psllv_d:
10545    case Intrinsic::x86_avx2_psllv_q:
10546    case Intrinsic::x86_avx2_psllv_d_256:
10547    case Intrinsic::x86_avx2_psllv_q_256:
10548      Opcode = ISD::SHL;
10549      break;
10550    case Intrinsic::x86_avx2_psrlv_d:
10551    case Intrinsic::x86_avx2_psrlv_q:
10552    case Intrinsic::x86_avx2_psrlv_d_256:
10553    case Intrinsic::x86_avx2_psrlv_q_256:
10554      Opcode = ISD::SRL;
10555      break;
10556    case Intrinsic::x86_avx2_psrav_d:
10557    case Intrinsic::x86_avx2_psrav_d_256:
10558      Opcode = ISD::SRA;
10559      break;
10560    }
10561    return DAG.getNode(Opcode, dl, Op.getValueType(),
10562                       Op.getOperand(1), Op.getOperand(2));
10563  }
10564
10565  case Intrinsic::x86_ssse3_pshuf_b_128:
10566  case Intrinsic::x86_avx2_pshuf_b:
10567    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10568                       Op.getOperand(1), Op.getOperand(2));
10569
10570  case Intrinsic::x86_ssse3_psign_b_128:
10571  case Intrinsic::x86_ssse3_psign_w_128:
10572  case Intrinsic::x86_ssse3_psign_d_128:
10573  case Intrinsic::x86_avx2_psign_b:
10574  case Intrinsic::x86_avx2_psign_w:
10575  case Intrinsic::x86_avx2_psign_d:
10576    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10577                       Op.getOperand(1), Op.getOperand(2));
10578
10579  case Intrinsic::x86_sse41_insertps:
10580    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10581                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10582
10583  case Intrinsic::x86_avx_vperm2f128_ps_256:
10584  case Intrinsic::x86_avx_vperm2f128_pd_256:
10585  case Intrinsic::x86_avx_vperm2f128_si_256:
10586  case Intrinsic::x86_avx2_vperm2i128:
10587    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10588                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10589
10590  case Intrinsic::x86_avx2_permd:
10591  case Intrinsic::x86_avx2_permps:
10592    // Operands intentionally swapped. Mask is last operand to intrinsic,
10593    // but second operand for node/intruction.
10594    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10595                       Op.getOperand(2), Op.getOperand(1));
10596
10597  case Intrinsic::x86_sse_sqrt_ps:
10598  case Intrinsic::x86_sse2_sqrt_pd:
10599  case Intrinsic::x86_avx_sqrt_ps_256:
10600  case Intrinsic::x86_avx_sqrt_pd_256:
10601    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10602
10603  // ptest and testp intrinsics. The intrinsic these come from are designed to
10604  // return an integer value, not just an instruction so lower it to the ptest
10605  // or testp pattern and a setcc for the result.
10606  case Intrinsic::x86_sse41_ptestz:
10607  case Intrinsic::x86_sse41_ptestc:
10608  case Intrinsic::x86_sse41_ptestnzc:
10609  case Intrinsic::x86_avx_ptestz_256:
10610  case Intrinsic::x86_avx_ptestc_256:
10611  case Intrinsic::x86_avx_ptestnzc_256:
10612  case Intrinsic::x86_avx_vtestz_ps:
10613  case Intrinsic::x86_avx_vtestc_ps:
10614  case Intrinsic::x86_avx_vtestnzc_ps:
10615  case Intrinsic::x86_avx_vtestz_pd:
10616  case Intrinsic::x86_avx_vtestc_pd:
10617  case Intrinsic::x86_avx_vtestnzc_pd:
10618  case Intrinsic::x86_avx_vtestz_ps_256:
10619  case Intrinsic::x86_avx_vtestc_ps_256:
10620  case Intrinsic::x86_avx_vtestnzc_ps_256:
10621  case Intrinsic::x86_avx_vtestz_pd_256:
10622  case Intrinsic::x86_avx_vtestc_pd_256:
10623  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10624    bool IsTestPacked = false;
10625    unsigned X86CC;
10626    switch (IntNo) {
10627    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10628    case Intrinsic::x86_avx_vtestz_ps:
10629    case Intrinsic::x86_avx_vtestz_pd:
10630    case Intrinsic::x86_avx_vtestz_ps_256:
10631    case Intrinsic::x86_avx_vtestz_pd_256:
10632      IsTestPacked = true; // Fallthrough
10633    case Intrinsic::x86_sse41_ptestz:
10634    case Intrinsic::x86_avx_ptestz_256:
10635      // ZF = 1
10636      X86CC = X86::COND_E;
10637      break;
10638    case Intrinsic::x86_avx_vtestc_ps:
10639    case Intrinsic::x86_avx_vtestc_pd:
10640    case Intrinsic::x86_avx_vtestc_ps_256:
10641    case Intrinsic::x86_avx_vtestc_pd_256:
10642      IsTestPacked = true; // Fallthrough
10643    case Intrinsic::x86_sse41_ptestc:
10644    case Intrinsic::x86_avx_ptestc_256:
10645      // CF = 1
10646      X86CC = X86::COND_B;
10647      break;
10648    case Intrinsic::x86_avx_vtestnzc_ps:
10649    case Intrinsic::x86_avx_vtestnzc_pd:
10650    case Intrinsic::x86_avx_vtestnzc_ps_256:
10651    case Intrinsic::x86_avx_vtestnzc_pd_256:
10652      IsTestPacked = true; // Fallthrough
10653    case Intrinsic::x86_sse41_ptestnzc:
10654    case Intrinsic::x86_avx_ptestnzc_256:
10655      // ZF and CF = 0
10656      X86CC = X86::COND_A;
10657      break;
10658    }
10659
10660    SDValue LHS = Op.getOperand(1);
10661    SDValue RHS = Op.getOperand(2);
10662    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10663    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10664    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10665    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10666    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10667  }
10668
10669  // SSE/AVX shift intrinsics
10670  case Intrinsic::x86_sse2_psll_w:
10671  case Intrinsic::x86_sse2_psll_d:
10672  case Intrinsic::x86_sse2_psll_q:
10673  case Intrinsic::x86_avx2_psll_w:
10674  case Intrinsic::x86_avx2_psll_d:
10675  case Intrinsic::x86_avx2_psll_q:
10676  case Intrinsic::x86_sse2_psrl_w:
10677  case Intrinsic::x86_sse2_psrl_d:
10678  case Intrinsic::x86_sse2_psrl_q:
10679  case Intrinsic::x86_avx2_psrl_w:
10680  case Intrinsic::x86_avx2_psrl_d:
10681  case Intrinsic::x86_avx2_psrl_q:
10682  case Intrinsic::x86_sse2_psra_w:
10683  case Intrinsic::x86_sse2_psra_d:
10684  case Intrinsic::x86_avx2_psra_w:
10685  case Intrinsic::x86_avx2_psra_d: {
10686    unsigned Opcode;
10687    switch (IntNo) {
10688    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10689    case Intrinsic::x86_sse2_psll_w:
10690    case Intrinsic::x86_sse2_psll_d:
10691    case Intrinsic::x86_sse2_psll_q:
10692    case Intrinsic::x86_avx2_psll_w:
10693    case Intrinsic::x86_avx2_psll_d:
10694    case Intrinsic::x86_avx2_psll_q:
10695      Opcode = X86ISD::VSHL;
10696      break;
10697    case Intrinsic::x86_sse2_psrl_w:
10698    case Intrinsic::x86_sse2_psrl_d:
10699    case Intrinsic::x86_sse2_psrl_q:
10700    case Intrinsic::x86_avx2_psrl_w:
10701    case Intrinsic::x86_avx2_psrl_d:
10702    case Intrinsic::x86_avx2_psrl_q:
10703      Opcode = X86ISD::VSRL;
10704      break;
10705    case Intrinsic::x86_sse2_psra_w:
10706    case Intrinsic::x86_sse2_psra_d:
10707    case Intrinsic::x86_avx2_psra_w:
10708    case Intrinsic::x86_avx2_psra_d:
10709      Opcode = X86ISD::VSRA;
10710      break;
10711    }
10712    return DAG.getNode(Opcode, dl, Op.getValueType(),
10713                       Op.getOperand(1), Op.getOperand(2));
10714  }
10715
10716  // SSE/AVX immediate shift intrinsics
10717  case Intrinsic::x86_sse2_pslli_w:
10718  case Intrinsic::x86_sse2_pslli_d:
10719  case Intrinsic::x86_sse2_pslli_q:
10720  case Intrinsic::x86_avx2_pslli_w:
10721  case Intrinsic::x86_avx2_pslli_d:
10722  case Intrinsic::x86_avx2_pslli_q:
10723  case Intrinsic::x86_sse2_psrli_w:
10724  case Intrinsic::x86_sse2_psrli_d:
10725  case Intrinsic::x86_sse2_psrli_q:
10726  case Intrinsic::x86_avx2_psrli_w:
10727  case Intrinsic::x86_avx2_psrli_d:
10728  case Intrinsic::x86_avx2_psrli_q:
10729  case Intrinsic::x86_sse2_psrai_w:
10730  case Intrinsic::x86_sse2_psrai_d:
10731  case Intrinsic::x86_avx2_psrai_w:
10732  case Intrinsic::x86_avx2_psrai_d: {
10733    unsigned Opcode;
10734    switch (IntNo) {
10735    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10736    case Intrinsic::x86_sse2_pslli_w:
10737    case Intrinsic::x86_sse2_pslli_d:
10738    case Intrinsic::x86_sse2_pslli_q:
10739    case Intrinsic::x86_avx2_pslli_w:
10740    case Intrinsic::x86_avx2_pslli_d:
10741    case Intrinsic::x86_avx2_pslli_q:
10742      Opcode = X86ISD::VSHLI;
10743      break;
10744    case Intrinsic::x86_sse2_psrli_w:
10745    case Intrinsic::x86_sse2_psrli_d:
10746    case Intrinsic::x86_sse2_psrli_q:
10747    case Intrinsic::x86_avx2_psrli_w:
10748    case Intrinsic::x86_avx2_psrli_d:
10749    case Intrinsic::x86_avx2_psrli_q:
10750      Opcode = X86ISD::VSRLI;
10751      break;
10752    case Intrinsic::x86_sse2_psrai_w:
10753    case Intrinsic::x86_sse2_psrai_d:
10754    case Intrinsic::x86_avx2_psrai_w:
10755    case Intrinsic::x86_avx2_psrai_d:
10756      Opcode = X86ISD::VSRAI;
10757      break;
10758    }
10759    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10760                               Op.getOperand(1), Op.getOperand(2), DAG);
10761  }
10762
10763  case Intrinsic::x86_sse42_pcmpistria128:
10764  case Intrinsic::x86_sse42_pcmpestria128:
10765  case Intrinsic::x86_sse42_pcmpistric128:
10766  case Intrinsic::x86_sse42_pcmpestric128:
10767  case Intrinsic::x86_sse42_pcmpistrio128:
10768  case Intrinsic::x86_sse42_pcmpestrio128:
10769  case Intrinsic::x86_sse42_pcmpistris128:
10770  case Intrinsic::x86_sse42_pcmpestris128:
10771  case Intrinsic::x86_sse42_pcmpistriz128:
10772  case Intrinsic::x86_sse42_pcmpestriz128: {
10773    unsigned Opcode;
10774    unsigned X86CC;
10775    switch (IntNo) {
10776    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10777    case Intrinsic::x86_sse42_pcmpistria128:
10778      Opcode = X86ISD::PCMPISTRI;
10779      X86CC = X86::COND_A;
10780      break;
10781    case Intrinsic::x86_sse42_pcmpestria128:
10782      Opcode = X86ISD::PCMPESTRI;
10783      X86CC = X86::COND_A;
10784      break;
10785    case Intrinsic::x86_sse42_pcmpistric128:
10786      Opcode = X86ISD::PCMPISTRI;
10787      X86CC = X86::COND_B;
10788      break;
10789    case Intrinsic::x86_sse42_pcmpestric128:
10790      Opcode = X86ISD::PCMPESTRI;
10791      X86CC = X86::COND_B;
10792      break;
10793    case Intrinsic::x86_sse42_pcmpistrio128:
10794      Opcode = X86ISD::PCMPISTRI;
10795      X86CC = X86::COND_O;
10796      break;
10797    case Intrinsic::x86_sse42_pcmpestrio128:
10798      Opcode = X86ISD::PCMPESTRI;
10799      X86CC = X86::COND_O;
10800      break;
10801    case Intrinsic::x86_sse42_pcmpistris128:
10802      Opcode = X86ISD::PCMPISTRI;
10803      X86CC = X86::COND_S;
10804      break;
10805    case Intrinsic::x86_sse42_pcmpestris128:
10806      Opcode = X86ISD::PCMPESTRI;
10807      X86CC = X86::COND_S;
10808      break;
10809    case Intrinsic::x86_sse42_pcmpistriz128:
10810      Opcode = X86ISD::PCMPISTRI;
10811      X86CC = X86::COND_E;
10812      break;
10813    case Intrinsic::x86_sse42_pcmpestriz128:
10814      Opcode = X86ISD::PCMPESTRI;
10815      X86CC = X86::COND_E;
10816      break;
10817    }
10818    SmallVector<SDValue, 5> NewOps;
10819    NewOps.append(Op->op_begin()+1, Op->op_end());
10820    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10821    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10822    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10823                                DAG.getConstant(X86CC, MVT::i8),
10824                                SDValue(PCMP.getNode(), 1));
10825    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10826  }
10827
10828  case Intrinsic::x86_sse42_pcmpistri128:
10829  case Intrinsic::x86_sse42_pcmpestri128: {
10830    unsigned Opcode;
10831    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10832      Opcode = X86ISD::PCMPISTRI;
10833    else
10834      Opcode = X86ISD::PCMPESTRI;
10835
10836    SmallVector<SDValue, 5> NewOps;
10837    NewOps.append(Op->op_begin()+1, Op->op_end());
10838    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10839    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10840  }
10841  case Intrinsic::x86_fma_vfmadd_ps:
10842  case Intrinsic::x86_fma_vfmadd_pd:
10843  case Intrinsic::x86_fma_vfmsub_ps:
10844  case Intrinsic::x86_fma_vfmsub_pd:
10845  case Intrinsic::x86_fma_vfnmadd_ps:
10846  case Intrinsic::x86_fma_vfnmadd_pd:
10847  case Intrinsic::x86_fma_vfnmsub_ps:
10848  case Intrinsic::x86_fma_vfnmsub_pd:
10849  case Intrinsic::x86_fma_vfmaddsub_ps:
10850  case Intrinsic::x86_fma_vfmaddsub_pd:
10851  case Intrinsic::x86_fma_vfmsubadd_ps:
10852  case Intrinsic::x86_fma_vfmsubadd_pd:
10853  case Intrinsic::x86_fma_vfmadd_ps_256:
10854  case Intrinsic::x86_fma_vfmadd_pd_256:
10855  case Intrinsic::x86_fma_vfmsub_ps_256:
10856  case Intrinsic::x86_fma_vfmsub_pd_256:
10857  case Intrinsic::x86_fma_vfnmadd_ps_256:
10858  case Intrinsic::x86_fma_vfnmadd_pd_256:
10859  case Intrinsic::x86_fma_vfnmsub_ps_256:
10860  case Intrinsic::x86_fma_vfnmsub_pd_256:
10861  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10862  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10863  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10864  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10865    unsigned Opc;
10866    switch (IntNo) {
10867    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10868    case Intrinsic::x86_fma_vfmadd_ps:
10869    case Intrinsic::x86_fma_vfmadd_pd:
10870    case Intrinsic::x86_fma_vfmadd_ps_256:
10871    case Intrinsic::x86_fma_vfmadd_pd_256:
10872      Opc = X86ISD::FMADD;
10873      break;
10874    case Intrinsic::x86_fma_vfmsub_ps:
10875    case Intrinsic::x86_fma_vfmsub_pd:
10876    case Intrinsic::x86_fma_vfmsub_ps_256:
10877    case Intrinsic::x86_fma_vfmsub_pd_256:
10878      Opc = X86ISD::FMSUB;
10879      break;
10880    case Intrinsic::x86_fma_vfnmadd_ps:
10881    case Intrinsic::x86_fma_vfnmadd_pd:
10882    case Intrinsic::x86_fma_vfnmadd_ps_256:
10883    case Intrinsic::x86_fma_vfnmadd_pd_256:
10884      Opc = X86ISD::FNMADD;
10885      break;
10886    case Intrinsic::x86_fma_vfnmsub_ps:
10887    case Intrinsic::x86_fma_vfnmsub_pd:
10888    case Intrinsic::x86_fma_vfnmsub_ps_256:
10889    case Intrinsic::x86_fma_vfnmsub_pd_256:
10890      Opc = X86ISD::FNMSUB;
10891      break;
10892    case Intrinsic::x86_fma_vfmaddsub_ps:
10893    case Intrinsic::x86_fma_vfmaddsub_pd:
10894    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10895    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10896      Opc = X86ISD::FMADDSUB;
10897      break;
10898    case Intrinsic::x86_fma_vfmsubadd_ps:
10899    case Intrinsic::x86_fma_vfmsubadd_pd:
10900    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10901    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10902      Opc = X86ISD::FMSUBADD;
10903      break;
10904    }
10905
10906    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10907                       Op.getOperand(2), Op.getOperand(3));
10908  }
10909  }
10910}
10911
10912static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10913  DebugLoc dl = Op.getDebugLoc();
10914  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10915  switch (IntNo) {
10916  default: return SDValue();    // Don't custom lower most intrinsics.
10917
10918  // RDRAND intrinsics.
10919  case Intrinsic::x86_rdrand_16:
10920  case Intrinsic::x86_rdrand_32:
10921  case Intrinsic::x86_rdrand_64: {
10922    // Emit the node with the right value type.
10923    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10924    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10925
10926    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10927    // return the value from Rand, which is always 0, casted to i32.
10928    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10929                      DAG.getConstant(1, Op->getValueType(1)),
10930                      DAG.getConstant(X86::COND_B, MVT::i32),
10931                      SDValue(Result.getNode(), 1) };
10932    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10933                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10934                                  Ops, 4);
10935
10936    // Return { result, isValid, chain }.
10937    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10938                       SDValue(Result.getNode(), 2));
10939  }
10940  }
10941}
10942
10943SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10944                                           SelectionDAG &DAG) const {
10945  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10946  MFI->setReturnAddressIsTaken(true);
10947
10948  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10949  DebugLoc dl = Op.getDebugLoc();
10950  EVT PtrVT = getPointerTy();
10951
10952  if (Depth > 0) {
10953    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10954    SDValue Offset =
10955      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10956    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10957                       DAG.getNode(ISD::ADD, dl, PtrVT,
10958                                   FrameAddr, Offset),
10959                       MachinePointerInfo(), false, false, false, 0);
10960  }
10961
10962  // Just load the return address.
10963  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10964  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10965                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10966}
10967
10968SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10969  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10970  MFI->setFrameAddressIsTaken(true);
10971
10972  EVT VT = Op.getValueType();
10973  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10974  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10975  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10976  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10977  while (Depth--)
10978    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10979                            MachinePointerInfo(),
10980                            false, false, false, 0);
10981  return FrameAddr;
10982}
10983
10984SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10985                                                     SelectionDAG &DAG) const {
10986  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10987}
10988
10989SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10990  SDValue Chain     = Op.getOperand(0);
10991  SDValue Offset    = Op.getOperand(1);
10992  SDValue Handler   = Op.getOperand(2);
10993  DebugLoc dl       = Op.getDebugLoc();
10994
10995  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10996                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10997                                     getPointerTy());
10998  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10999
11000  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
11001                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
11002  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
11003  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
11004                       false, false, 0);
11005  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
11006
11007  return DAG.getNode(X86ISD::EH_RETURN, dl,
11008                     MVT::Other,
11009                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
11010}
11011
11012SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
11013                                               SelectionDAG &DAG) const {
11014  DebugLoc DL = Op.getDebugLoc();
11015  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
11016                     DAG.getVTList(MVT::i32, MVT::Other),
11017                     Op.getOperand(0), Op.getOperand(1));
11018}
11019
11020SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
11021                                                SelectionDAG &DAG) const {
11022  DebugLoc DL = Op.getDebugLoc();
11023  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
11024                     Op.getOperand(0), Op.getOperand(1));
11025}
11026
11027static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
11028  return Op.getOperand(0);
11029}
11030
11031SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
11032                                                SelectionDAG &DAG) const {
11033  SDValue Root = Op.getOperand(0);
11034  SDValue Trmp = Op.getOperand(1); // trampoline
11035  SDValue FPtr = Op.getOperand(2); // nested function
11036  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
11037  DebugLoc dl  = Op.getDebugLoc();
11038
11039  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
11040  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
11041
11042  if (Subtarget->is64Bit()) {
11043    SDValue OutChains[6];
11044
11045    // Large code-model.
11046    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
11047    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
11048
11049    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
11050    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
11051
11052    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
11053
11054    // Load the pointer to the nested function into R11.
11055    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
11056    SDValue Addr = Trmp;
11057    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11058                                Addr, MachinePointerInfo(TrmpAddr),
11059                                false, false, 0);
11060
11061    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11062                       DAG.getConstant(2, MVT::i64));
11063    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11064                                MachinePointerInfo(TrmpAddr, 2),
11065                                false, false, 2);
11066
11067    // Load the 'nest' parameter value into R10.
11068    // R10 is specified in X86CallingConv.td
11069    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11070    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11071                       DAG.getConstant(10, MVT::i64));
11072    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11073                                Addr, MachinePointerInfo(TrmpAddr, 10),
11074                                false, false, 0);
11075
11076    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11077                       DAG.getConstant(12, MVT::i64));
11078    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11079                                MachinePointerInfo(TrmpAddr, 12),
11080                                false, false, 2);
11081
11082    // Jump to the nested function.
11083    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11084    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11085                       DAG.getConstant(20, MVT::i64));
11086    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11087                                Addr, MachinePointerInfo(TrmpAddr, 20),
11088                                false, false, 0);
11089
11090    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11091    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11092                       DAG.getConstant(22, MVT::i64));
11093    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11094                                MachinePointerInfo(TrmpAddr, 22),
11095                                false, false, 0);
11096
11097    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11098  } else {
11099    const Function *Func =
11100      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11101    CallingConv::ID CC = Func->getCallingConv();
11102    unsigned NestReg;
11103
11104    switch (CC) {
11105    default:
11106      llvm_unreachable("Unsupported calling convention");
11107    case CallingConv::C:
11108    case CallingConv::X86_StdCall: {
11109      // Pass 'nest' parameter in ECX.
11110      // Must be kept in sync with X86CallingConv.td
11111      NestReg = X86::ECX;
11112
11113      // Check that ECX wasn't needed by an 'inreg' parameter.
11114      FunctionType *FTy = Func->getFunctionType();
11115      const AttributeSet &Attrs = Func->getAttributes();
11116
11117      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11118        unsigned InRegCount = 0;
11119        unsigned Idx = 1;
11120
11121        for (FunctionType::param_iterator I = FTy->param_begin(),
11122             E = FTy->param_end(); I != E; ++I, ++Idx)
11123          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11124            // FIXME: should only count parameters that are lowered to integers.
11125            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11126
11127        if (InRegCount > 2) {
11128          report_fatal_error("Nest register in use - reduce number of inreg"
11129                             " parameters!");
11130        }
11131      }
11132      break;
11133    }
11134    case CallingConv::X86_FastCall:
11135    case CallingConv::X86_ThisCall:
11136    case CallingConv::Fast:
11137      // Pass 'nest' parameter in EAX.
11138      // Must be kept in sync with X86CallingConv.td
11139      NestReg = X86::EAX;
11140      break;
11141    }
11142
11143    SDValue OutChains[4];
11144    SDValue Addr, Disp;
11145
11146    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11147                       DAG.getConstant(10, MVT::i32));
11148    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11149
11150    // This is storing the opcode for MOV32ri.
11151    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11152    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11153    OutChains[0] = DAG.getStore(Root, dl,
11154                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11155                                Trmp, MachinePointerInfo(TrmpAddr),
11156                                false, false, 0);
11157
11158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11159                       DAG.getConstant(1, MVT::i32));
11160    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11161                                MachinePointerInfo(TrmpAddr, 1),
11162                                false, false, 1);
11163
11164    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11165    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11166                       DAG.getConstant(5, MVT::i32));
11167    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11168                                MachinePointerInfo(TrmpAddr, 5),
11169                                false, false, 1);
11170
11171    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11172                       DAG.getConstant(6, MVT::i32));
11173    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11174                                MachinePointerInfo(TrmpAddr, 6),
11175                                false, false, 1);
11176
11177    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11178  }
11179}
11180
11181SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11182                                            SelectionDAG &DAG) const {
11183  /*
11184   The rounding mode is in bits 11:10 of FPSR, and has the following
11185   settings:
11186     00 Round to nearest
11187     01 Round to -inf
11188     10 Round to +inf
11189     11 Round to 0
11190
11191  FLT_ROUNDS, on the other hand, expects the following:
11192    -1 Undefined
11193     0 Round to 0
11194     1 Round to nearest
11195     2 Round to +inf
11196     3 Round to -inf
11197
11198  To perform the conversion, we do:
11199    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11200  */
11201
11202  MachineFunction &MF = DAG.getMachineFunction();
11203  const TargetMachine &TM = MF.getTarget();
11204  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11205  unsigned StackAlignment = TFI.getStackAlignment();
11206  EVT VT = Op.getValueType();
11207  DebugLoc DL = Op.getDebugLoc();
11208
11209  // Save FP Control Word to stack slot
11210  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11211  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11212
11213  MachineMemOperand *MMO =
11214   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11215                           MachineMemOperand::MOStore, 2, 2);
11216
11217  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11218  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11219                                          DAG.getVTList(MVT::Other),
11220                                          Ops, 2, MVT::i16, MMO);
11221
11222  // Load FP Control Word from stack slot
11223  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11224                            MachinePointerInfo(), false, false, false, 0);
11225
11226  // Transform as necessary
11227  SDValue CWD1 =
11228    DAG.getNode(ISD::SRL, DL, MVT::i16,
11229                DAG.getNode(ISD::AND, DL, MVT::i16,
11230                            CWD, DAG.getConstant(0x800, MVT::i16)),
11231                DAG.getConstant(11, MVT::i8));
11232  SDValue CWD2 =
11233    DAG.getNode(ISD::SRL, DL, MVT::i16,
11234                DAG.getNode(ISD::AND, DL, MVT::i16,
11235                            CWD, DAG.getConstant(0x400, MVT::i16)),
11236                DAG.getConstant(9, MVT::i8));
11237
11238  SDValue RetVal =
11239    DAG.getNode(ISD::AND, DL, MVT::i16,
11240                DAG.getNode(ISD::ADD, DL, MVT::i16,
11241                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11242                            DAG.getConstant(1, MVT::i16)),
11243                DAG.getConstant(3, MVT::i16));
11244
11245  return DAG.getNode((VT.getSizeInBits() < 16 ?
11246                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11247}
11248
11249static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11250  EVT VT = Op.getValueType();
11251  EVT OpVT = VT;
11252  unsigned NumBits = VT.getSizeInBits();
11253  DebugLoc dl = Op.getDebugLoc();
11254
11255  Op = Op.getOperand(0);
11256  if (VT == MVT::i8) {
11257    // Zero extend to i32 since there is not an i8 bsr.
11258    OpVT = MVT::i32;
11259    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11260  }
11261
11262  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11263  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11264  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11265
11266  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11267  SDValue Ops[] = {
11268    Op,
11269    DAG.getConstant(NumBits+NumBits-1, OpVT),
11270    DAG.getConstant(X86::COND_E, MVT::i8),
11271    Op.getValue(1)
11272  };
11273  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11274
11275  // Finally xor with NumBits-1.
11276  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11277
11278  if (VT == MVT::i8)
11279    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11280  return Op;
11281}
11282
11283static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11284  EVT VT = Op.getValueType();
11285  EVT OpVT = VT;
11286  unsigned NumBits = VT.getSizeInBits();
11287  DebugLoc dl = Op.getDebugLoc();
11288
11289  Op = Op.getOperand(0);
11290  if (VT == MVT::i8) {
11291    // Zero extend to i32 since there is not an i8 bsr.
11292    OpVT = MVT::i32;
11293    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11294  }
11295
11296  // Issue a bsr (scan bits in reverse).
11297  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11298  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11299
11300  // And xor with NumBits-1.
11301  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11302
11303  if (VT == MVT::i8)
11304    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11305  return Op;
11306}
11307
11308static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11309  EVT VT = Op.getValueType();
11310  unsigned NumBits = VT.getSizeInBits();
11311  DebugLoc dl = Op.getDebugLoc();
11312  Op = Op.getOperand(0);
11313
11314  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11315  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11316  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11317
11318  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11319  SDValue Ops[] = {
11320    Op,
11321    DAG.getConstant(NumBits, VT),
11322    DAG.getConstant(X86::COND_E, MVT::i8),
11323    Op.getValue(1)
11324  };
11325  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11326}
11327
11328// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11329// ones, and then concatenate the result back.
11330static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11331  EVT VT = Op.getValueType();
11332
11333  assert(VT.is256BitVector() && VT.isInteger() &&
11334         "Unsupported value type for operation");
11335
11336  unsigned NumElems = VT.getVectorNumElements();
11337  DebugLoc dl = Op.getDebugLoc();
11338
11339  // Extract the LHS vectors
11340  SDValue LHS = Op.getOperand(0);
11341  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11342  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11343
11344  // Extract the RHS vectors
11345  SDValue RHS = Op.getOperand(1);
11346  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11347  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11348
11349  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11350  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11351
11352  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11353                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11354                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11355}
11356
11357static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11358  assert(Op.getValueType().is256BitVector() &&
11359         Op.getValueType().isInteger() &&
11360         "Only handle AVX 256-bit vector integer operation");
11361  return Lower256IntArith(Op, DAG);
11362}
11363
11364static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11365  assert(Op.getValueType().is256BitVector() &&
11366         Op.getValueType().isInteger() &&
11367         "Only handle AVX 256-bit vector integer operation");
11368  return Lower256IntArith(Op, DAG);
11369}
11370
11371static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11372                        SelectionDAG &DAG) {
11373  DebugLoc dl = Op.getDebugLoc();
11374  EVT VT = Op.getValueType();
11375
11376  // Decompose 256-bit ops into smaller 128-bit ops.
11377  if (VT.is256BitVector() && !Subtarget->hasInt256())
11378    return Lower256IntArith(Op, DAG);
11379
11380  SDValue A = Op.getOperand(0);
11381  SDValue B = Op.getOperand(1);
11382
11383  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11384  if (VT == MVT::v4i32) {
11385    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11386           "Should not custom lower when pmuldq is available!");
11387
11388    // Extract the odd parts.
11389    const int UnpackMask[] = { 1, -1, 3, -1 };
11390    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11391    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11392
11393    // Multiply the even parts.
11394    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11395    // Now multiply odd parts.
11396    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11397
11398    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11399    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11400
11401    // Merge the two vectors back together with a shuffle. This expands into 2
11402    // shuffles.
11403    const int ShufMask[] = { 0, 4, 2, 6 };
11404    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11405  }
11406
11407  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11408         "Only know how to lower V2I64/V4I64 multiply");
11409
11410  //  Ahi = psrlqi(a, 32);
11411  //  Bhi = psrlqi(b, 32);
11412  //
11413  //  AloBlo = pmuludq(a, b);
11414  //  AloBhi = pmuludq(a, Bhi);
11415  //  AhiBlo = pmuludq(Ahi, b);
11416
11417  //  AloBhi = psllqi(AloBhi, 32);
11418  //  AhiBlo = psllqi(AhiBlo, 32);
11419  //  return AloBlo + AloBhi + AhiBlo;
11420
11421  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11422
11423  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11424  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11425
11426  // Bit cast to 32-bit vectors for MULUDQ
11427  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11428  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11429  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11430  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11431  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11432
11433  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11434  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11435  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11436
11437  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11438  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11439
11440  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11441  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11442}
11443
11444SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11445  EVT VT = Op.getValueType();
11446  EVT EltTy = VT.getVectorElementType();
11447  unsigned NumElts = VT.getVectorNumElements();
11448  SDValue N0 = Op.getOperand(0);
11449  DebugLoc dl = Op.getDebugLoc();
11450
11451  // Lower sdiv X, pow2-const.
11452  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11453  if (!C)
11454    return SDValue();
11455
11456  APInt SplatValue, SplatUndef;
11457  unsigned MinSplatBits;
11458  bool HasAnyUndefs;
11459  if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
11460    return SDValue();
11461
11462  if ((SplatValue != 0) &&
11463      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11464    unsigned lg2 = SplatValue.countTrailingZeros();
11465    // Splat the sign bit.
11466    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11467    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11468    // Add (N0 < 0) ? abs2 - 1 : 0;
11469    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11470    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11471    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11472    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11473    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11474
11475    // If we're dividing by a positive value, we're done.  Otherwise, we must
11476    // negate the result.
11477    if (SplatValue.isNonNegative())
11478      return SRA;
11479
11480    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11481    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11482    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11483  }
11484  return SDValue();
11485}
11486
11487SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11488
11489  EVT VT = Op.getValueType();
11490  DebugLoc dl = Op.getDebugLoc();
11491  SDValue R = Op.getOperand(0);
11492  SDValue Amt = Op.getOperand(1);
11493
11494  if (!Subtarget->hasSSE2())
11495    return SDValue();
11496
11497  // Optimize shl/srl/sra with constant shift amount.
11498  if (isSplatVector(Amt.getNode())) {
11499    SDValue SclrAmt = Amt->getOperand(0);
11500    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11501      uint64_t ShiftAmt = C->getZExtValue();
11502
11503      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11504          (Subtarget->hasInt256() &&
11505           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11506        if (Op.getOpcode() == ISD::SHL)
11507          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11508                             DAG.getConstant(ShiftAmt, MVT::i32));
11509        if (Op.getOpcode() == ISD::SRL)
11510          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11511                             DAG.getConstant(ShiftAmt, MVT::i32));
11512        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11513          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11514                             DAG.getConstant(ShiftAmt, MVT::i32));
11515      }
11516
11517      if (VT == MVT::v16i8) {
11518        if (Op.getOpcode() == ISD::SHL) {
11519          // Make a large shift.
11520          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11521                                    DAG.getConstant(ShiftAmt, MVT::i32));
11522          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11523          // Zero out the rightmost bits.
11524          SmallVector<SDValue, 16> V(16,
11525                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11526                                                     MVT::i8));
11527          return DAG.getNode(ISD::AND, dl, VT, SHL,
11528                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11529        }
11530        if (Op.getOpcode() == ISD::SRL) {
11531          // Make a large shift.
11532          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11533                                    DAG.getConstant(ShiftAmt, MVT::i32));
11534          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11535          // Zero out the leftmost bits.
11536          SmallVector<SDValue, 16> V(16,
11537                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11538                                                     MVT::i8));
11539          return DAG.getNode(ISD::AND, dl, VT, SRL,
11540                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11541        }
11542        if (Op.getOpcode() == ISD::SRA) {
11543          if (ShiftAmt == 7) {
11544            // R s>> 7  ===  R s< 0
11545            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11546            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11547          }
11548
11549          // R s>> a === ((R u>> a) ^ m) - m
11550          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11551          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11552                                                         MVT::i8));
11553          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11554          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11555          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11556          return Res;
11557        }
11558        llvm_unreachable("Unknown shift opcode.");
11559      }
11560
11561      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11562        if (Op.getOpcode() == ISD::SHL) {
11563          // Make a large shift.
11564          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11565                                    DAG.getConstant(ShiftAmt, MVT::i32));
11566          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11567          // Zero out the rightmost bits.
11568          SmallVector<SDValue, 32> V(32,
11569                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11570                                                     MVT::i8));
11571          return DAG.getNode(ISD::AND, dl, VT, SHL,
11572                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11573        }
11574        if (Op.getOpcode() == ISD::SRL) {
11575          // Make a large shift.
11576          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11577                                    DAG.getConstant(ShiftAmt, MVT::i32));
11578          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11579          // Zero out the leftmost bits.
11580          SmallVector<SDValue, 32> V(32,
11581                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11582                                                     MVT::i8));
11583          return DAG.getNode(ISD::AND, dl, VT, SRL,
11584                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11585        }
11586        if (Op.getOpcode() == ISD::SRA) {
11587          if (ShiftAmt == 7) {
11588            // R s>> 7  ===  R s< 0
11589            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11590            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11591          }
11592
11593          // R s>> a === ((R u>> a) ^ m) - m
11594          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11595          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11596                                                         MVT::i8));
11597          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11598          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11599          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11600          return Res;
11601        }
11602        llvm_unreachable("Unknown shift opcode.");
11603      }
11604    }
11605  }
11606
11607  // Lower SHL with variable shift amount.
11608  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11609    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
11610
11611    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
11612    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11613    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11614    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11615  }
11616  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11617    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11618
11619    // a = a << 5;
11620    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
11621    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11622
11623    // Turn 'a' into a mask suitable for VSELECT
11624    SDValue VSelM = DAG.getConstant(0x80, VT);
11625    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11626    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11627
11628    SDValue CM1 = DAG.getConstant(0x0f, VT);
11629    SDValue CM2 = DAG.getConstant(0x3f, VT);
11630
11631    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11632    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11633    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11634                            DAG.getConstant(4, MVT::i32), DAG);
11635    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11636    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11637
11638    // a += a
11639    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11640    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11641    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11642
11643    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11644    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11645    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11646                            DAG.getConstant(2, MVT::i32), DAG);
11647    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11648    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11649
11650    // a += a
11651    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11652    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11653    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11654
11655    // return VSELECT(r, r+r, a);
11656    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11657                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11658    return R;
11659  }
11660
11661  // Decompose 256-bit shifts into smaller 128-bit shifts.
11662  if (VT.is256BitVector()) {
11663    unsigned NumElems = VT.getVectorNumElements();
11664    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11665    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11666
11667    // Extract the two vectors
11668    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11669    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11670
11671    // Recreate the shift amount vectors
11672    SDValue Amt1, Amt2;
11673    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11674      // Constant shift amount
11675      SmallVector<SDValue, 4> Amt1Csts;
11676      SmallVector<SDValue, 4> Amt2Csts;
11677      for (unsigned i = 0; i != NumElems/2; ++i)
11678        Amt1Csts.push_back(Amt->getOperand(i));
11679      for (unsigned i = NumElems/2; i != NumElems; ++i)
11680        Amt2Csts.push_back(Amt->getOperand(i));
11681
11682      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11683                                 &Amt1Csts[0], NumElems/2);
11684      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11685                                 &Amt2Csts[0], NumElems/2);
11686    } else {
11687      // Variable shift amount
11688      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11689      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11690    }
11691
11692    // Issue new vector shifts for the smaller types
11693    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11694    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11695
11696    // Concatenate the result back
11697    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11698  }
11699
11700  return SDValue();
11701}
11702
11703static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11704  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11705  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11706  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11707  // has only one use.
11708  SDNode *N = Op.getNode();
11709  SDValue LHS = N->getOperand(0);
11710  SDValue RHS = N->getOperand(1);
11711  unsigned BaseOp = 0;
11712  unsigned Cond = 0;
11713  DebugLoc DL = Op.getDebugLoc();
11714  switch (Op.getOpcode()) {
11715  default: llvm_unreachable("Unknown ovf instruction!");
11716  case ISD::SADDO:
11717    // A subtract of one will be selected as a INC. Note that INC doesn't
11718    // set CF, so we can't do this for UADDO.
11719    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11720      if (C->isOne()) {
11721        BaseOp = X86ISD::INC;
11722        Cond = X86::COND_O;
11723        break;
11724      }
11725    BaseOp = X86ISD::ADD;
11726    Cond = X86::COND_O;
11727    break;
11728  case ISD::UADDO:
11729    BaseOp = X86ISD::ADD;
11730    Cond = X86::COND_B;
11731    break;
11732  case ISD::SSUBO:
11733    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11734    // set CF, so we can't do this for USUBO.
11735    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11736      if (C->isOne()) {
11737        BaseOp = X86ISD::DEC;
11738        Cond = X86::COND_O;
11739        break;
11740      }
11741    BaseOp = X86ISD::SUB;
11742    Cond = X86::COND_O;
11743    break;
11744  case ISD::USUBO:
11745    BaseOp = X86ISD::SUB;
11746    Cond = X86::COND_B;
11747    break;
11748  case ISD::SMULO:
11749    BaseOp = X86ISD::SMUL;
11750    Cond = X86::COND_O;
11751    break;
11752  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11753    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11754                                 MVT::i32);
11755    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11756
11757    SDValue SetCC =
11758      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11759                  DAG.getConstant(X86::COND_O, MVT::i32),
11760                  SDValue(Sum.getNode(), 2));
11761
11762    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11763  }
11764  }
11765
11766  // Also sets EFLAGS.
11767  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11768  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11769
11770  SDValue SetCC =
11771    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11772                DAG.getConstant(Cond, MVT::i32),
11773                SDValue(Sum.getNode(), 1));
11774
11775  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11776}
11777
11778SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11779                                                  SelectionDAG &DAG) const {
11780  DebugLoc dl = Op.getDebugLoc();
11781  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11782  EVT VT = Op.getValueType();
11783
11784  if (!Subtarget->hasSSE2() || !VT.isVector())
11785    return SDValue();
11786
11787  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11788                      ExtraVT.getScalarType().getSizeInBits();
11789  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11790
11791  switch (VT.getSimpleVT().SimpleTy) {
11792    default: return SDValue();
11793    case MVT::v8i32:
11794    case MVT::v16i16:
11795      if (!Subtarget->hasFp256())
11796        return SDValue();
11797      if (!Subtarget->hasInt256()) {
11798        // needs to be split
11799        unsigned NumElems = VT.getVectorNumElements();
11800
11801        // Extract the LHS vectors
11802        SDValue LHS = Op.getOperand(0);
11803        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11804        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11805
11806        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11807        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11808
11809        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11810        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11811        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11812                                   ExtraNumElems/2);
11813        SDValue Extra = DAG.getValueType(ExtraVT);
11814
11815        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11816        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11817
11818        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11819      }
11820      // fall through
11821    case MVT::v4i32:
11822    case MVT::v8i16: {
11823      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11824                                         Op.getOperand(0), ShAmt, DAG);
11825      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11826    }
11827  }
11828}
11829
11830static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11831                              SelectionDAG &DAG) {
11832  DebugLoc dl = Op.getDebugLoc();
11833
11834  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11835  // There isn't any reason to disable it if the target processor supports it.
11836  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11837    SDValue Chain = Op.getOperand(0);
11838    SDValue Zero = DAG.getConstant(0, MVT::i32);
11839    SDValue Ops[] = {
11840      DAG.getRegister(X86::ESP, MVT::i32), // Base
11841      DAG.getTargetConstant(1, MVT::i8),   // Scale
11842      DAG.getRegister(0, MVT::i32),        // Index
11843      DAG.getTargetConstant(0, MVT::i32),  // Disp
11844      DAG.getRegister(0, MVT::i32),        // Segment.
11845      Zero,
11846      Chain
11847    };
11848    SDNode *Res =
11849      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11850                          array_lengthof(Ops));
11851    return SDValue(Res, 0);
11852  }
11853
11854  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11855  if (!isDev)
11856    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11857
11858  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11859  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11860  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11861  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11862
11863  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11864  if (!Op1 && !Op2 && !Op3 && Op4)
11865    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11866
11867  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11868  if (Op1 && !Op2 && !Op3 && !Op4)
11869    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11870
11871  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11872  //           (MFENCE)>;
11873  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11874}
11875
11876static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11877                                 SelectionDAG &DAG) {
11878  DebugLoc dl = Op.getDebugLoc();
11879  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11880    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11881  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11882    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11883
11884  // The only fence that needs an instruction is a sequentially-consistent
11885  // cross-thread fence.
11886  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11887    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11888    // no-sse2). There isn't any reason to disable it if the target processor
11889    // supports it.
11890    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11891      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11892
11893    SDValue Chain = Op.getOperand(0);
11894    SDValue Zero = DAG.getConstant(0, MVT::i32);
11895    SDValue Ops[] = {
11896      DAG.getRegister(X86::ESP, MVT::i32), // Base
11897      DAG.getTargetConstant(1, MVT::i8),   // Scale
11898      DAG.getRegister(0, MVT::i32),        // Index
11899      DAG.getTargetConstant(0, MVT::i32),  // Disp
11900      DAG.getRegister(0, MVT::i32),        // Segment.
11901      Zero,
11902      Chain
11903    };
11904    SDNode *Res =
11905      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11906                         array_lengthof(Ops));
11907    return SDValue(Res, 0);
11908  }
11909
11910  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11911  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11912}
11913
11914static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11915                             SelectionDAG &DAG) {
11916  EVT T = Op.getValueType();
11917  DebugLoc DL = Op.getDebugLoc();
11918  unsigned Reg = 0;
11919  unsigned size = 0;
11920  switch(T.getSimpleVT().SimpleTy) {
11921  default: llvm_unreachable("Invalid value type!");
11922  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11923  case MVT::i16: Reg = X86::AX;  size = 2; break;
11924  case MVT::i32: Reg = X86::EAX; size = 4; break;
11925  case MVT::i64:
11926    assert(Subtarget->is64Bit() && "Node not type legal!");
11927    Reg = X86::RAX; size = 8;
11928    break;
11929  }
11930  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11931                                    Op.getOperand(2), SDValue());
11932  SDValue Ops[] = { cpIn.getValue(0),
11933                    Op.getOperand(1),
11934                    Op.getOperand(3),
11935                    DAG.getTargetConstant(size, MVT::i8),
11936                    cpIn.getValue(1) };
11937  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11938  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11939  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11940                                           Ops, 5, T, MMO);
11941  SDValue cpOut =
11942    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11943  return cpOut;
11944}
11945
11946static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11947                                     SelectionDAG &DAG) {
11948  assert(Subtarget->is64Bit() && "Result not type legalized?");
11949  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11950  SDValue TheChain = Op.getOperand(0);
11951  DebugLoc dl = Op.getDebugLoc();
11952  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11953  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11954  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11955                                   rax.getValue(2));
11956  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11957                            DAG.getConstant(32, MVT::i8));
11958  SDValue Ops[] = {
11959    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11960    rdx.getValue(1)
11961  };
11962  return DAG.getMergeValues(Ops, 2, dl);
11963}
11964
11965SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11966  EVT SrcVT = Op.getOperand(0).getValueType();
11967  EVT DstVT = Op.getValueType();
11968  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11969         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11970  assert((DstVT == MVT::i64 ||
11971          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11972         "Unexpected custom BITCAST");
11973  // i64 <=> MMX conversions are Legal.
11974  if (SrcVT==MVT::i64 && DstVT.isVector())
11975    return Op;
11976  if (DstVT==MVT::i64 && SrcVT.isVector())
11977    return Op;
11978  // MMX <=> MMX conversions are Legal.
11979  if (SrcVT.isVector() && DstVT.isVector())
11980    return Op;
11981  // All other conversions need to be expanded.
11982  return SDValue();
11983}
11984
11985static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11986  SDNode *Node = Op.getNode();
11987  DebugLoc dl = Node->getDebugLoc();
11988  EVT T = Node->getValueType(0);
11989  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11990                              DAG.getConstant(0, T), Node->getOperand(2));
11991  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11992                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11993                       Node->getOperand(0),
11994                       Node->getOperand(1), negOp,
11995                       cast<AtomicSDNode>(Node)->getSrcValue(),
11996                       cast<AtomicSDNode>(Node)->getAlignment(),
11997                       cast<AtomicSDNode>(Node)->getOrdering(),
11998                       cast<AtomicSDNode>(Node)->getSynchScope());
11999}
12000
12001static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
12002  SDNode *Node = Op.getNode();
12003  DebugLoc dl = Node->getDebugLoc();
12004  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12005
12006  // Convert seq_cst store -> xchg
12007  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
12008  // FIXME: On 32-bit, store -> fist or movq would be more efficient
12009  //        (The only way to get a 16-byte store is cmpxchg16b)
12010  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
12011  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
12012      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12013    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
12014                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
12015                                 Node->getOperand(0),
12016                                 Node->getOperand(1), Node->getOperand(2),
12017                                 cast<AtomicSDNode>(Node)->getMemOperand(),
12018                                 cast<AtomicSDNode>(Node)->getOrdering(),
12019                                 cast<AtomicSDNode>(Node)->getSynchScope());
12020    return Swap.getValue(1);
12021  }
12022  // Other atomic stores have a simple pattern.
12023  return Op;
12024}
12025
12026static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
12027  EVT VT = Op.getNode()->getValueType(0);
12028
12029  // Let legalize expand this if it isn't a legal type yet.
12030  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12031    return SDValue();
12032
12033  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12034
12035  unsigned Opc;
12036  bool ExtraOp = false;
12037  switch (Op.getOpcode()) {
12038  default: llvm_unreachable("Invalid code");
12039  case ISD::ADDC: Opc = X86ISD::ADD; break;
12040  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
12041  case ISD::SUBC: Opc = X86ISD::SUB; break;
12042  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
12043  }
12044
12045  if (!ExtraOp)
12046    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12047                       Op.getOperand(1));
12048  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12049                     Op.getOperand(1), Op.getOperand(2));
12050}
12051
12052SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
12053  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
12054
12055  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
12056  // which returns the values in two XMM registers.
12057  DebugLoc dl = Op.getDebugLoc();
12058  SDValue Arg = Op.getOperand(0);
12059  EVT ArgVT = Arg.getValueType();
12060  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
12061
12062  ArgListTy Args;
12063  ArgListEntry Entry;
12064
12065  Entry.Node = Arg;
12066  Entry.Ty = ArgTy;
12067  Entry.isSExt = false;
12068  Entry.isZExt = false;
12069  Args.push_back(Entry);
12070
12071  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
12072  // the small struct {f32, f32} is returned in (eax, edx). For f64,
12073  // the results are returned via SRet in memory.
12074  const char *LibcallName = (ArgVT == MVT::f64)
12075    ? "__sincos_stret" : "__sincosf_stret";
12076  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
12077
12078  StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
12079  TargetLowering::
12080    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
12081                         false, false, false, false, 0,
12082                         CallingConv::C, /*isTaillCall=*/false,
12083                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
12084                         Callee, Args, DAG, dl);
12085  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12086  return CallResult.first;
12087}
12088
12089/// LowerOperation - Provide custom lowering hooks for some operations.
12090///
12091SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
12092  switch (Op.getOpcode()) {
12093  default: llvm_unreachable("Should not custom lower this!");
12094  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12095  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
12096  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12097  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12098  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12099  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12100  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12101  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12102  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12103  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12104  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12105  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12106  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12107  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12108  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12109  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12110  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12111  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12112  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12113  case ISD::SHL_PARTS:
12114  case ISD::SRA_PARTS:
12115  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12116  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12117  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12118  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
12119  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12120  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12121  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12122  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12123  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12124  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
12125  case ISD::FABS:               return LowerFABS(Op, DAG);
12126  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12127  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12128  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12129  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12130  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12131  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12132  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12133  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12134  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12135  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12136  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12137  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12138  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12139  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12140  case ISD::FRAME_TO_ARGS_OFFSET:
12141                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12142  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12143  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12144  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12145  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12146  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12147  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12148  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12149  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12150  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12151  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12152  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12153  case ISD::SRA:
12154  case ISD::SRL:
12155  case ISD::SHL:                return LowerShift(Op, DAG);
12156  case ISD::SADDO:
12157  case ISD::UADDO:
12158  case ISD::SSUBO:
12159  case ISD::USUBO:
12160  case ISD::SMULO:
12161  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12162  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12163  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12164  case ISD::ADDC:
12165  case ISD::ADDE:
12166  case ISD::SUBC:
12167  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12168  case ISD::ADD:                return LowerADD(Op, DAG);
12169  case ISD::SUB:                return LowerSUB(Op, DAG);
12170  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12171  case ISD::FSINCOS:            return LowerFSINCOS(Op, DAG);
12172  }
12173}
12174
12175static void ReplaceATOMIC_LOAD(SDNode *Node,
12176                                  SmallVectorImpl<SDValue> &Results,
12177                                  SelectionDAG &DAG) {
12178  DebugLoc dl = Node->getDebugLoc();
12179  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12180
12181  // Convert wide load -> cmpxchg8b/cmpxchg16b
12182  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12183  //        (The only way to get a 16-byte load is cmpxchg16b)
12184  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12185  SDValue Zero = DAG.getConstant(0, VT);
12186  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12187                               Node->getOperand(0),
12188                               Node->getOperand(1), Zero, Zero,
12189                               cast<AtomicSDNode>(Node)->getMemOperand(),
12190                               cast<AtomicSDNode>(Node)->getOrdering(),
12191                               cast<AtomicSDNode>(Node)->getSynchScope());
12192  Results.push_back(Swap.getValue(0));
12193  Results.push_back(Swap.getValue(1));
12194}
12195
12196static void
12197ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12198                        SelectionDAG &DAG, unsigned NewOp) {
12199  DebugLoc dl = Node->getDebugLoc();
12200  assert (Node->getValueType(0) == MVT::i64 &&
12201          "Only know how to expand i64 atomics");
12202
12203  SDValue Chain = Node->getOperand(0);
12204  SDValue In1 = Node->getOperand(1);
12205  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12206                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12207  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12208                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12209  SDValue Ops[] = { Chain, In1, In2L, In2H };
12210  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12211  SDValue Result =
12212    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
12213                            cast<MemSDNode>(Node)->getMemOperand());
12214  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12215  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12216  Results.push_back(Result.getValue(2));
12217}
12218
12219/// ReplaceNodeResults - Replace a node with an illegal result type
12220/// with a new node built out of custom code.
12221void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12222                                           SmallVectorImpl<SDValue>&Results,
12223                                           SelectionDAG &DAG) const {
12224  DebugLoc dl = N->getDebugLoc();
12225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12226  switch (N->getOpcode()) {
12227  default:
12228    llvm_unreachable("Do not know how to custom type legalize this operation!");
12229  case ISD::SIGN_EXTEND_INREG:
12230  case ISD::ADDC:
12231  case ISD::ADDE:
12232  case ISD::SUBC:
12233  case ISD::SUBE:
12234    // We don't want to expand or promote these.
12235    return;
12236  case ISD::FP_TO_SINT:
12237  case ISD::FP_TO_UINT: {
12238    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12239
12240    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12241      return;
12242
12243    std::pair<SDValue,SDValue> Vals =
12244        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12245    SDValue FIST = Vals.first, StackSlot = Vals.second;
12246    if (FIST.getNode() != 0) {
12247      EVT VT = N->getValueType(0);
12248      // Return a load from the stack slot.
12249      if (StackSlot.getNode() != 0)
12250        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12251                                      MachinePointerInfo(),
12252                                      false, false, false, 0));
12253      else
12254        Results.push_back(FIST);
12255    }
12256    return;
12257  }
12258  case ISD::UINT_TO_FP: {
12259    if (N->getOperand(0).getValueType() != MVT::v2i32 &&
12260        N->getValueType(0) != MVT::v2f32)
12261      return;
12262    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12263                                 N->getOperand(0));
12264    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12265                                     MVT::f64);
12266    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12267    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12268                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12269    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12270    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12271    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12272    return;
12273  }
12274  case ISD::FP_ROUND: {
12275    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12276        return;
12277    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12278    Results.push_back(V);
12279    return;
12280  }
12281  case ISD::READCYCLECOUNTER: {
12282    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12283    SDValue TheChain = N->getOperand(0);
12284    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12285    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12286                                     rd.getValue(1));
12287    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12288                                     eax.getValue(2));
12289    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12290    SDValue Ops[] = { eax, edx };
12291    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
12292    Results.push_back(edx.getValue(1));
12293    return;
12294  }
12295  case ISD::ATOMIC_CMP_SWAP: {
12296    EVT T = N->getValueType(0);
12297    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12298    bool Regs64bit = T == MVT::i128;
12299    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12300    SDValue cpInL, cpInH;
12301    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12302                        DAG.getConstant(0, HalfT));
12303    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12304                        DAG.getConstant(1, HalfT));
12305    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12306                             Regs64bit ? X86::RAX : X86::EAX,
12307                             cpInL, SDValue());
12308    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12309                             Regs64bit ? X86::RDX : X86::EDX,
12310                             cpInH, cpInL.getValue(1));
12311    SDValue swapInL, swapInH;
12312    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12313                          DAG.getConstant(0, HalfT));
12314    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12315                          DAG.getConstant(1, HalfT));
12316    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12317                               Regs64bit ? X86::RBX : X86::EBX,
12318                               swapInL, cpInH.getValue(1));
12319    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12320                               Regs64bit ? X86::RCX : X86::ECX,
12321                               swapInH, swapInL.getValue(1));
12322    SDValue Ops[] = { swapInH.getValue(0),
12323                      N->getOperand(1),
12324                      swapInH.getValue(1) };
12325    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12326    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12327    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12328                                  X86ISD::LCMPXCHG8_DAG;
12329    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12330                                             Ops, 3, T, MMO);
12331    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12332                                        Regs64bit ? X86::RAX : X86::EAX,
12333                                        HalfT, Result.getValue(1));
12334    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12335                                        Regs64bit ? X86::RDX : X86::EDX,
12336                                        HalfT, cpOutL.getValue(2));
12337    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12338    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12339    Results.push_back(cpOutH.getValue(1));
12340    return;
12341  }
12342  case ISD::ATOMIC_LOAD_ADD:
12343  case ISD::ATOMIC_LOAD_AND:
12344  case ISD::ATOMIC_LOAD_NAND:
12345  case ISD::ATOMIC_LOAD_OR:
12346  case ISD::ATOMIC_LOAD_SUB:
12347  case ISD::ATOMIC_LOAD_XOR:
12348  case ISD::ATOMIC_LOAD_MAX:
12349  case ISD::ATOMIC_LOAD_MIN:
12350  case ISD::ATOMIC_LOAD_UMAX:
12351  case ISD::ATOMIC_LOAD_UMIN:
12352  case ISD::ATOMIC_SWAP: {
12353    unsigned Opc;
12354    switch (N->getOpcode()) {
12355    default: llvm_unreachable("Unexpected opcode");
12356    case ISD::ATOMIC_LOAD_ADD:
12357      Opc = X86ISD::ATOMADD64_DAG;
12358      break;
12359    case ISD::ATOMIC_LOAD_AND:
12360      Opc = X86ISD::ATOMAND64_DAG;
12361      break;
12362    case ISD::ATOMIC_LOAD_NAND:
12363      Opc = X86ISD::ATOMNAND64_DAG;
12364      break;
12365    case ISD::ATOMIC_LOAD_OR:
12366      Opc = X86ISD::ATOMOR64_DAG;
12367      break;
12368    case ISD::ATOMIC_LOAD_SUB:
12369      Opc = X86ISD::ATOMSUB64_DAG;
12370      break;
12371    case ISD::ATOMIC_LOAD_XOR:
12372      Opc = X86ISD::ATOMXOR64_DAG;
12373      break;
12374    case ISD::ATOMIC_LOAD_MAX:
12375      Opc = X86ISD::ATOMMAX64_DAG;
12376      break;
12377    case ISD::ATOMIC_LOAD_MIN:
12378      Opc = X86ISD::ATOMMIN64_DAG;
12379      break;
12380    case ISD::ATOMIC_LOAD_UMAX:
12381      Opc = X86ISD::ATOMUMAX64_DAG;
12382      break;
12383    case ISD::ATOMIC_LOAD_UMIN:
12384      Opc = X86ISD::ATOMUMIN64_DAG;
12385      break;
12386    case ISD::ATOMIC_SWAP:
12387      Opc = X86ISD::ATOMSWAP64_DAG;
12388      break;
12389    }
12390    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12391    return;
12392  }
12393  case ISD::ATOMIC_LOAD:
12394    ReplaceATOMIC_LOAD(N, Results, DAG);
12395  }
12396}
12397
12398const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12399  switch (Opcode) {
12400  default: return NULL;
12401  case X86ISD::BSF:                return "X86ISD::BSF";
12402  case X86ISD::BSR:                return "X86ISD::BSR";
12403  case X86ISD::SHLD:               return "X86ISD::SHLD";
12404  case X86ISD::SHRD:               return "X86ISD::SHRD";
12405  case X86ISD::FAND:               return "X86ISD::FAND";
12406  case X86ISD::FOR:                return "X86ISD::FOR";
12407  case X86ISD::FXOR:               return "X86ISD::FXOR";
12408  case X86ISD::FSRL:               return "X86ISD::FSRL";
12409  case X86ISD::FILD:               return "X86ISD::FILD";
12410  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12411  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12412  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12413  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12414  case X86ISD::FLD:                return "X86ISD::FLD";
12415  case X86ISD::FST:                return "X86ISD::FST";
12416  case X86ISD::CALL:               return "X86ISD::CALL";
12417  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12418  case X86ISD::BT:                 return "X86ISD::BT";
12419  case X86ISD::CMP:                return "X86ISD::CMP";
12420  case X86ISD::COMI:               return "X86ISD::COMI";
12421  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12422  case X86ISD::SETCC:              return "X86ISD::SETCC";
12423  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12424  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12425  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12426  case X86ISD::CMOV:               return "X86ISD::CMOV";
12427  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12428  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12429  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12430  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12431  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12432  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12433  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12434  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12435  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12436  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12437  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12438  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12439  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12440  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12441  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12442  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12443  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12444  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12445  case X86ISD::HADD:               return "X86ISD::HADD";
12446  case X86ISD::HSUB:               return "X86ISD::HSUB";
12447  case X86ISD::FHADD:              return "X86ISD::FHADD";
12448  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12449  case X86ISD::UMAX:               return "X86ISD::UMAX";
12450  case X86ISD::UMIN:               return "X86ISD::UMIN";
12451  case X86ISD::SMAX:               return "X86ISD::SMAX";
12452  case X86ISD::SMIN:               return "X86ISD::SMIN";
12453  case X86ISD::FMAX:               return "X86ISD::FMAX";
12454  case X86ISD::FMIN:               return "X86ISD::FMIN";
12455  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12456  case X86ISD::FMINC:              return "X86ISD::FMINC";
12457  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12458  case X86ISD::FRCP:               return "X86ISD::FRCP";
12459  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12460  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12461  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12462  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12463  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12464  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12465  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12466  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12467  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12468  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12469  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12470  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12471  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12472  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12473  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12474  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12475  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12476  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12477  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12478  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12479  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12480  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12481  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12482  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12483  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12484  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12485  case X86ISD::VSHL:               return "X86ISD::VSHL";
12486  case X86ISD::VSRL:               return "X86ISD::VSRL";
12487  case X86ISD::VSRA:               return "X86ISD::VSRA";
12488  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12489  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12490  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12491  case X86ISD::CMPP:               return "X86ISD::CMPP";
12492  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12493  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12494  case X86ISD::ADD:                return "X86ISD::ADD";
12495  case X86ISD::SUB:                return "X86ISD::SUB";
12496  case X86ISD::ADC:                return "X86ISD::ADC";
12497  case X86ISD::SBB:                return "X86ISD::SBB";
12498  case X86ISD::SMUL:               return "X86ISD::SMUL";
12499  case X86ISD::UMUL:               return "X86ISD::UMUL";
12500  case X86ISD::INC:                return "X86ISD::INC";
12501  case X86ISD::DEC:                return "X86ISD::DEC";
12502  case X86ISD::OR:                 return "X86ISD::OR";
12503  case X86ISD::XOR:                return "X86ISD::XOR";
12504  case X86ISD::AND:                return "X86ISD::AND";
12505  case X86ISD::BLSI:               return "X86ISD::BLSI";
12506  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12507  case X86ISD::BLSR:               return "X86ISD::BLSR";
12508  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12509  case X86ISD::PTEST:              return "X86ISD::PTEST";
12510  case X86ISD::TESTP:              return "X86ISD::TESTP";
12511  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
12512  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12513  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12514  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12515  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12516  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12517  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12518  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12519  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12520  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12521  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12522  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12523  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12524  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12525  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12526  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12527  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12528  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12529  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12530  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12531  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12532  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12533  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12534  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12535  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12536  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12537  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12538  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12539  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12540  case X86ISD::SAHF:               return "X86ISD::SAHF";
12541  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12542  case X86ISD::FMADD:              return "X86ISD::FMADD";
12543  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12544  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12545  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12546  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12547  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12548  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12549  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12550  }
12551}
12552
12553// isLegalAddressingMode - Return true if the addressing mode represented
12554// by AM is legal for this target, for a load/store of the specified type.
12555bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12556                                              Type *Ty) const {
12557  // X86 supports extremely general addressing modes.
12558  CodeModel::Model M = getTargetMachine().getCodeModel();
12559  Reloc::Model R = getTargetMachine().getRelocationModel();
12560
12561  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12562  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12563    return false;
12564
12565  if (AM.BaseGV) {
12566    unsigned GVFlags =
12567      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12568
12569    // If a reference to this global requires an extra load, we can't fold it.
12570    if (isGlobalStubReference(GVFlags))
12571      return false;
12572
12573    // If BaseGV requires a register for the PIC base, we cannot also have a
12574    // BaseReg specified.
12575    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12576      return false;
12577
12578    // If lower 4G is not available, then we must use rip-relative addressing.
12579    if ((M != CodeModel::Small || R != Reloc::Static) &&
12580        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12581      return false;
12582  }
12583
12584  switch (AM.Scale) {
12585  case 0:
12586  case 1:
12587  case 2:
12588  case 4:
12589  case 8:
12590    // These scales always work.
12591    break;
12592  case 3:
12593  case 5:
12594  case 9:
12595    // These scales are formed with basereg+scalereg.  Only accept if there is
12596    // no basereg yet.
12597    if (AM.HasBaseReg)
12598      return false;
12599    break;
12600  default:  // Other stuff never works.
12601    return false;
12602  }
12603
12604  return true;
12605}
12606
12607bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12608  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12609    return false;
12610  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12611  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12612  return NumBits1 > NumBits2;
12613}
12614
12615bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12616  return isInt<32>(Imm);
12617}
12618
12619bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12620  // Can also use sub to handle negated immediates.
12621  return isInt<32>(Imm);
12622}
12623
12624bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12625  if (!VT1.isInteger() || !VT2.isInteger())
12626    return false;
12627  unsigned NumBits1 = VT1.getSizeInBits();
12628  unsigned NumBits2 = VT2.getSizeInBits();
12629  return NumBits1 > NumBits2;
12630}
12631
12632bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12633  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12634  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12635}
12636
12637bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12638  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12639  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12640}
12641
12642bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12643  EVT VT1 = Val.getValueType();
12644  if (isZExtFree(VT1, VT2))
12645    return true;
12646
12647  if (Val.getOpcode() != ISD::LOAD)
12648    return false;
12649
12650  if (!VT1.isSimple() || !VT1.isInteger() ||
12651      !VT2.isSimple() || !VT2.isInteger())
12652    return false;
12653
12654  switch (VT1.getSimpleVT().SimpleTy) {
12655  default: break;
12656  case MVT::i8:
12657  case MVT::i16:
12658  case MVT::i32:
12659    // X86 has 8, 16, and 32-bit zero-extending loads.
12660    return true;
12661  }
12662
12663  return false;
12664}
12665
12666bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12667  // i16 instructions are longer (0x66 prefix) and potentially slower.
12668  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12669}
12670
12671/// isShuffleMaskLegal - Targets can use this to indicate that they only
12672/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12673/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12674/// are assumed to be legal.
12675bool
12676X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12677                                      EVT VT) const {
12678  // Very little shuffling can be done for 64-bit vectors right now.
12679  if (VT.getSizeInBits() == 64)
12680    return false;
12681
12682  // FIXME: pshufb, blends, shifts.
12683  return (VT.getVectorNumElements() == 2 ||
12684          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12685          isMOVLMask(M, VT) ||
12686          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12687          isPSHUFDMask(M, VT) ||
12688          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12689          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12690          isPALIGNRMask(M, VT, Subtarget) ||
12691          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12692          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12693          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12694          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12695}
12696
12697bool
12698X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12699                                          EVT VT) const {
12700  unsigned NumElts = VT.getVectorNumElements();
12701  // FIXME: This collection of masks seems suspect.
12702  if (NumElts == 2)
12703    return true;
12704  if (NumElts == 4 && VT.is128BitVector()) {
12705    return (isMOVLMask(Mask, VT)  ||
12706            isCommutedMOVLMask(Mask, VT, true) ||
12707            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12708            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12709  }
12710  return false;
12711}
12712
12713//===----------------------------------------------------------------------===//
12714//                           X86 Scheduler Hooks
12715//===----------------------------------------------------------------------===//
12716
12717/// Utility function to emit xbegin specifying the start of an RTM region.
12718static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12719                                     const TargetInstrInfo *TII) {
12720  DebugLoc DL = MI->getDebugLoc();
12721
12722  const BasicBlock *BB = MBB->getBasicBlock();
12723  MachineFunction::iterator I = MBB;
12724  ++I;
12725
12726  // For the v = xbegin(), we generate
12727  //
12728  // thisMBB:
12729  //  xbegin sinkMBB
12730  //
12731  // mainMBB:
12732  //  eax = -1
12733  //
12734  // sinkMBB:
12735  //  v = eax
12736
12737  MachineBasicBlock *thisMBB = MBB;
12738  MachineFunction *MF = MBB->getParent();
12739  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12740  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12741  MF->insert(I, mainMBB);
12742  MF->insert(I, sinkMBB);
12743
12744  // Transfer the remainder of BB and its successor edges to sinkMBB.
12745  sinkMBB->splice(sinkMBB->begin(), MBB,
12746                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12747  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12748
12749  // thisMBB:
12750  //  xbegin sinkMBB
12751  //  # fallthrough to mainMBB
12752  //  # abortion to sinkMBB
12753  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
12754  thisMBB->addSuccessor(mainMBB);
12755  thisMBB->addSuccessor(sinkMBB);
12756
12757  // mainMBB:
12758  //  EAX = -1
12759  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
12760  mainMBB->addSuccessor(sinkMBB);
12761
12762  // sinkMBB:
12763  // EAX is live into the sinkMBB
12764  sinkMBB->addLiveIn(X86::EAX);
12765  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12766          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12767    .addReg(X86::EAX);
12768
12769  MI->eraseFromParent();
12770  return sinkMBB;
12771}
12772
12773// Get CMPXCHG opcode for the specified data type.
12774static unsigned getCmpXChgOpcode(EVT VT) {
12775  switch (VT.getSimpleVT().SimpleTy) {
12776  case MVT::i8:  return X86::LCMPXCHG8;
12777  case MVT::i16: return X86::LCMPXCHG16;
12778  case MVT::i32: return X86::LCMPXCHG32;
12779  case MVT::i64: return X86::LCMPXCHG64;
12780  default:
12781    break;
12782  }
12783  llvm_unreachable("Invalid operand size!");
12784}
12785
12786// Get LOAD opcode for the specified data type.
12787static unsigned getLoadOpcode(EVT VT) {
12788  switch (VT.getSimpleVT().SimpleTy) {
12789  case MVT::i8:  return X86::MOV8rm;
12790  case MVT::i16: return X86::MOV16rm;
12791  case MVT::i32: return X86::MOV32rm;
12792  case MVT::i64: return X86::MOV64rm;
12793  default:
12794    break;
12795  }
12796  llvm_unreachable("Invalid operand size!");
12797}
12798
12799// Get opcode of the non-atomic one from the specified atomic instruction.
12800static unsigned getNonAtomicOpcode(unsigned Opc) {
12801  switch (Opc) {
12802  case X86::ATOMAND8:  return X86::AND8rr;
12803  case X86::ATOMAND16: return X86::AND16rr;
12804  case X86::ATOMAND32: return X86::AND32rr;
12805  case X86::ATOMAND64: return X86::AND64rr;
12806  case X86::ATOMOR8:   return X86::OR8rr;
12807  case X86::ATOMOR16:  return X86::OR16rr;
12808  case X86::ATOMOR32:  return X86::OR32rr;
12809  case X86::ATOMOR64:  return X86::OR64rr;
12810  case X86::ATOMXOR8:  return X86::XOR8rr;
12811  case X86::ATOMXOR16: return X86::XOR16rr;
12812  case X86::ATOMXOR32: return X86::XOR32rr;
12813  case X86::ATOMXOR64: return X86::XOR64rr;
12814  }
12815  llvm_unreachable("Unhandled atomic-load-op opcode!");
12816}
12817
12818// Get opcode of the non-atomic one from the specified atomic instruction with
12819// extra opcode.
12820static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12821                                               unsigned &ExtraOpc) {
12822  switch (Opc) {
12823  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12824  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12825  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12826  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12827  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12828  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12829  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12830  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12831  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12832  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12833  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12834  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12835  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12836  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12837  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12838  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12839  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12840  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12841  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12842  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12843  }
12844  llvm_unreachable("Unhandled atomic-load-op opcode!");
12845}
12846
12847// Get opcode of the non-atomic one from the specified atomic instruction for
12848// 64-bit data type on 32-bit target.
12849static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12850  switch (Opc) {
12851  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12852  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12853  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12854  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12855  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12856  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12857  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12858  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12859  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12860  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12861  }
12862  llvm_unreachable("Unhandled atomic-load-op opcode!");
12863}
12864
12865// Get opcode of the non-atomic one from the specified atomic instruction for
12866// 64-bit data type on 32-bit target with extra opcode.
12867static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12868                                                   unsigned &HiOpc,
12869                                                   unsigned &ExtraOpc) {
12870  switch (Opc) {
12871  case X86::ATOMNAND6432:
12872    ExtraOpc = X86::NOT32r;
12873    HiOpc = X86::AND32rr;
12874    return X86::AND32rr;
12875  }
12876  llvm_unreachable("Unhandled atomic-load-op opcode!");
12877}
12878
12879// Get pseudo CMOV opcode from the specified data type.
12880static unsigned getPseudoCMOVOpc(EVT VT) {
12881  switch (VT.getSimpleVT().SimpleTy) {
12882  case MVT::i8:  return X86::CMOV_GR8;
12883  case MVT::i16: return X86::CMOV_GR16;
12884  case MVT::i32: return X86::CMOV_GR32;
12885  default:
12886    break;
12887  }
12888  llvm_unreachable("Unknown CMOV opcode!");
12889}
12890
12891// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12892// They will be translated into a spin-loop or compare-exchange loop from
12893//
12894//    ...
12895//    dst = atomic-fetch-op MI.addr, MI.val
12896//    ...
12897//
12898// to
12899//
12900//    ...
12901//    t1 = LOAD MI.addr
12902// loop:
12903//    t4 = phi(t1, t3 / loop)
12904//    t2 = OP MI.val, t4
12905//    EAX = t4
12906//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
12907//    t3 = EAX
12908//    JNE loop
12909// sink:
12910//    dst = t3
12911//    ...
12912MachineBasicBlock *
12913X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12914                                       MachineBasicBlock *MBB) const {
12915  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12916  DebugLoc DL = MI->getDebugLoc();
12917
12918  MachineFunction *MF = MBB->getParent();
12919  MachineRegisterInfo &MRI = MF->getRegInfo();
12920
12921  const BasicBlock *BB = MBB->getBasicBlock();
12922  MachineFunction::iterator I = MBB;
12923  ++I;
12924
12925  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12926         "Unexpected number of operands");
12927
12928  assert(MI->hasOneMemOperand() &&
12929         "Expected atomic-load-op to have one memoperand");
12930
12931  // Memory Reference
12932  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12933  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12934
12935  unsigned DstReg, SrcReg;
12936  unsigned MemOpndSlot;
12937
12938  unsigned CurOp = 0;
12939
12940  DstReg = MI->getOperand(CurOp++).getReg();
12941  MemOpndSlot = CurOp;
12942  CurOp += X86::AddrNumOperands;
12943  SrcReg = MI->getOperand(CurOp++).getReg();
12944
12945  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12946  MVT::SimpleValueType VT = *RC->vt_begin();
12947  unsigned t1 = MRI.createVirtualRegister(RC);
12948  unsigned t2 = MRI.createVirtualRegister(RC);
12949  unsigned t3 = MRI.createVirtualRegister(RC);
12950  unsigned t4 = MRI.createVirtualRegister(RC);
12951  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
12952
12953  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12954  unsigned LOADOpc = getLoadOpcode(VT);
12955
12956  // For the atomic load-arith operator, we generate
12957  //
12958  //  thisMBB:
12959  //    t1 = LOAD [MI.addr]
12960  //  mainMBB:
12961  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
12962  //    t1 = OP MI.val, EAX
12963  //    EAX = t4
12964  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12965  //    t3 = EAX
12966  //    JNE mainMBB
12967  //  sinkMBB:
12968  //    dst = t3
12969
12970  MachineBasicBlock *thisMBB = MBB;
12971  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12972  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12973  MF->insert(I, mainMBB);
12974  MF->insert(I, sinkMBB);
12975
12976  MachineInstrBuilder MIB;
12977
12978  // Transfer the remainder of BB and its successor edges to sinkMBB.
12979  sinkMBB->splice(sinkMBB->begin(), MBB,
12980                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12981  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12982
12983  // thisMBB:
12984  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
12985  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
12986    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
12987    if (NewMO.isReg())
12988      NewMO.setIsKill(false);
12989    MIB.addOperand(NewMO);
12990  }
12991  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
12992    unsigned flags = (*MMOI)->getFlags();
12993    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
12994    MachineMemOperand *MMO =
12995      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
12996                               (*MMOI)->getSize(),
12997                               (*MMOI)->getBaseAlignment(),
12998                               (*MMOI)->getTBAAInfo(),
12999                               (*MMOI)->getRanges());
13000    MIB.addMemOperand(MMO);
13001  }
13002
13003  thisMBB->addSuccessor(mainMBB);
13004
13005  // mainMBB:
13006  MachineBasicBlock *origMainMBB = mainMBB;
13007
13008  // Add a PHI.
13009  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
13010                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13011
13012  unsigned Opc = MI->getOpcode();
13013  switch (Opc) {
13014  default:
13015    llvm_unreachable("Unhandled atomic-load-op opcode!");
13016  case X86::ATOMAND8:
13017  case X86::ATOMAND16:
13018  case X86::ATOMAND32:
13019  case X86::ATOMAND64:
13020  case X86::ATOMOR8:
13021  case X86::ATOMOR16:
13022  case X86::ATOMOR32:
13023  case X86::ATOMOR64:
13024  case X86::ATOMXOR8:
13025  case X86::ATOMXOR16:
13026  case X86::ATOMXOR32:
13027  case X86::ATOMXOR64: {
13028    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
13029    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
13030      .addReg(t4);
13031    break;
13032  }
13033  case X86::ATOMNAND8:
13034  case X86::ATOMNAND16:
13035  case X86::ATOMNAND32:
13036  case X86::ATOMNAND64: {
13037    unsigned Tmp = MRI.createVirtualRegister(RC);
13038    unsigned NOTOpc;
13039    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
13040    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
13041      .addReg(t4);
13042    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
13043    break;
13044  }
13045  case X86::ATOMMAX8:
13046  case X86::ATOMMAX16:
13047  case X86::ATOMMAX32:
13048  case X86::ATOMMAX64:
13049  case X86::ATOMMIN8:
13050  case X86::ATOMMIN16:
13051  case X86::ATOMMIN32:
13052  case X86::ATOMMIN64:
13053  case X86::ATOMUMAX8:
13054  case X86::ATOMUMAX16:
13055  case X86::ATOMUMAX32:
13056  case X86::ATOMUMAX64:
13057  case X86::ATOMUMIN8:
13058  case X86::ATOMUMIN16:
13059  case X86::ATOMUMIN32:
13060  case X86::ATOMUMIN64: {
13061    unsigned CMPOpc;
13062    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
13063
13064    BuildMI(mainMBB, DL, TII->get(CMPOpc))
13065      .addReg(SrcReg)
13066      .addReg(t4);
13067
13068    if (Subtarget->hasCMov()) {
13069      if (VT != MVT::i8) {
13070        // Native support
13071        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
13072          .addReg(SrcReg)
13073          .addReg(t4);
13074      } else {
13075        // Promote i8 to i32 to use CMOV32
13076        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13077        const TargetRegisterClass *RC32 =
13078          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
13079        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
13080        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
13081        unsigned Tmp = MRI.createVirtualRegister(RC32);
13082
13083        unsigned Undef = MRI.createVirtualRegister(RC32);
13084        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
13085
13086        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
13087          .addReg(Undef)
13088          .addReg(SrcReg)
13089          .addImm(X86::sub_8bit);
13090        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
13091          .addReg(Undef)
13092          .addReg(t4)
13093          .addImm(X86::sub_8bit);
13094
13095        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
13096          .addReg(SrcReg32)
13097          .addReg(AccReg32);
13098
13099        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
13100          .addReg(Tmp, 0, X86::sub_8bit);
13101      }
13102    } else {
13103      // Use pseudo select and lower them.
13104      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
13105             "Invalid atomic-load-op transformation!");
13106      unsigned SelOpc = getPseudoCMOVOpc(VT);
13107      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
13108      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
13109      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
13110              .addReg(SrcReg).addReg(t4)
13111              .addImm(CC);
13112      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13113      // Replace the original PHI node as mainMBB is changed after CMOV
13114      // lowering.
13115      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
13116        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13117      Phi->eraseFromParent();
13118    }
13119    break;
13120  }
13121  }
13122
13123  // Copy PhyReg back from virtual register.
13124  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
13125    .addReg(t4);
13126
13127  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13128  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13129    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13130    if (NewMO.isReg())
13131      NewMO.setIsKill(false);
13132    MIB.addOperand(NewMO);
13133  }
13134  MIB.addReg(t2);
13135  MIB.setMemRefs(MMOBegin, MMOEnd);
13136
13137  // Copy PhyReg back to virtual register.
13138  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
13139    .addReg(PhyReg);
13140
13141  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13142
13143  mainMBB->addSuccessor(origMainMBB);
13144  mainMBB->addSuccessor(sinkMBB);
13145
13146  // sinkMBB:
13147  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13148          TII->get(TargetOpcode::COPY), DstReg)
13149    .addReg(t3);
13150
13151  MI->eraseFromParent();
13152  return sinkMBB;
13153}
13154
13155// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13156// instructions. They will be translated into a spin-loop or compare-exchange
13157// loop from
13158//
13159//    ...
13160//    dst = atomic-fetch-op MI.addr, MI.val
13161//    ...
13162//
13163// to
13164//
13165//    ...
13166//    t1L = LOAD [MI.addr + 0]
13167//    t1H = LOAD [MI.addr + 4]
13168// loop:
13169//    t4L = phi(t1L, t3L / loop)
13170//    t4H = phi(t1H, t3H / loop)
13171//    t2L = OP MI.val.lo, t4L
13172//    t2H = OP MI.val.hi, t4H
13173//    EAX = t4L
13174//    EDX = t4H
13175//    EBX = t2L
13176//    ECX = t2H
13177//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13178//    t3L = EAX
13179//    t3H = EDX
13180//    JNE loop
13181// sink:
13182//    dstL = t3L
13183//    dstH = t3H
13184//    ...
13185MachineBasicBlock *
13186X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13187                                           MachineBasicBlock *MBB) const {
13188  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13189  DebugLoc DL = MI->getDebugLoc();
13190
13191  MachineFunction *MF = MBB->getParent();
13192  MachineRegisterInfo &MRI = MF->getRegInfo();
13193
13194  const BasicBlock *BB = MBB->getBasicBlock();
13195  MachineFunction::iterator I = MBB;
13196  ++I;
13197
13198  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
13199         "Unexpected number of operands");
13200
13201  assert(MI->hasOneMemOperand() &&
13202         "Expected atomic-load-op32 to have one memoperand");
13203
13204  // Memory Reference
13205  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13206  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13207
13208  unsigned DstLoReg, DstHiReg;
13209  unsigned SrcLoReg, SrcHiReg;
13210  unsigned MemOpndSlot;
13211
13212  unsigned CurOp = 0;
13213
13214  DstLoReg = MI->getOperand(CurOp++).getReg();
13215  DstHiReg = MI->getOperand(CurOp++).getReg();
13216  MemOpndSlot = CurOp;
13217  CurOp += X86::AddrNumOperands;
13218  SrcLoReg = MI->getOperand(CurOp++).getReg();
13219  SrcHiReg = MI->getOperand(CurOp++).getReg();
13220
13221  const TargetRegisterClass *RC = &X86::GR32RegClass;
13222  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13223
13224  unsigned t1L = MRI.createVirtualRegister(RC);
13225  unsigned t1H = MRI.createVirtualRegister(RC);
13226  unsigned t2L = MRI.createVirtualRegister(RC);
13227  unsigned t2H = MRI.createVirtualRegister(RC);
13228  unsigned t3L = MRI.createVirtualRegister(RC);
13229  unsigned t3H = MRI.createVirtualRegister(RC);
13230  unsigned t4L = MRI.createVirtualRegister(RC);
13231  unsigned t4H = MRI.createVirtualRegister(RC);
13232
13233  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13234  unsigned LOADOpc = X86::MOV32rm;
13235
13236  // For the atomic load-arith operator, we generate
13237  //
13238  //  thisMBB:
13239  //    t1L = LOAD [MI.addr + 0]
13240  //    t1H = LOAD [MI.addr + 4]
13241  //  mainMBB:
13242  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
13243  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
13244  //    t2L = OP MI.val.lo, t4L
13245  //    t2H = OP MI.val.hi, t4H
13246  //    EBX = t2L
13247  //    ECX = t2H
13248  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13249  //    t3L = EAX
13250  //    t3H = EDX
13251  //    JNE loop
13252  //  sinkMBB:
13253  //    dstL = t3L
13254  //    dstH = t3H
13255
13256  MachineBasicBlock *thisMBB = MBB;
13257  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13258  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13259  MF->insert(I, mainMBB);
13260  MF->insert(I, sinkMBB);
13261
13262  MachineInstrBuilder MIB;
13263
13264  // Transfer the remainder of BB and its successor edges to sinkMBB.
13265  sinkMBB->splice(sinkMBB->begin(), MBB,
13266                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13267  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13268
13269  // thisMBB:
13270  // Lo
13271  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
13272  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13273    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13274    if (NewMO.isReg())
13275      NewMO.setIsKill(false);
13276    MIB.addOperand(NewMO);
13277  }
13278  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13279    unsigned flags = (*MMOI)->getFlags();
13280    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13281    MachineMemOperand *MMO =
13282      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13283                               (*MMOI)->getSize(),
13284                               (*MMOI)->getBaseAlignment(),
13285                               (*MMOI)->getTBAAInfo(),
13286                               (*MMOI)->getRanges());
13287    MIB.addMemOperand(MMO);
13288  };
13289  MachineInstr *LowMI = MIB;
13290
13291  // Hi
13292  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
13293  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13294    if (i == X86::AddrDisp) {
13295      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13296    } else {
13297      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13298      if (NewMO.isReg())
13299        NewMO.setIsKill(false);
13300      MIB.addOperand(NewMO);
13301    }
13302  }
13303  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
13304
13305  thisMBB->addSuccessor(mainMBB);
13306
13307  // mainMBB:
13308  MachineBasicBlock *origMainMBB = mainMBB;
13309
13310  // Add PHIs.
13311  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
13312                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13313  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
13314                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13315
13316  unsigned Opc = MI->getOpcode();
13317  switch (Opc) {
13318  default:
13319    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13320  case X86::ATOMAND6432:
13321  case X86::ATOMOR6432:
13322  case X86::ATOMXOR6432:
13323  case X86::ATOMADD6432:
13324  case X86::ATOMSUB6432: {
13325    unsigned HiOpc;
13326    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13327    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
13328      .addReg(SrcLoReg);
13329    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
13330      .addReg(SrcHiReg);
13331    break;
13332  }
13333  case X86::ATOMNAND6432: {
13334    unsigned HiOpc, NOTOpc;
13335    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13336    unsigned TmpL = MRI.createVirtualRegister(RC);
13337    unsigned TmpH = MRI.createVirtualRegister(RC);
13338    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
13339      .addReg(t4L);
13340    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
13341      .addReg(t4H);
13342    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
13343    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
13344    break;
13345  }
13346  case X86::ATOMMAX6432:
13347  case X86::ATOMMIN6432:
13348  case X86::ATOMUMAX6432:
13349  case X86::ATOMUMIN6432: {
13350    unsigned HiOpc;
13351    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13352    unsigned cL = MRI.createVirtualRegister(RC8);
13353    unsigned cH = MRI.createVirtualRegister(RC8);
13354    unsigned cL32 = MRI.createVirtualRegister(RC);
13355    unsigned cH32 = MRI.createVirtualRegister(RC);
13356    unsigned cc = MRI.createVirtualRegister(RC);
13357    // cl := cmp src_lo, lo
13358    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13359      .addReg(SrcLoReg).addReg(t4L);
13360    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13361    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13362    // ch := cmp src_hi, hi
13363    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13364      .addReg(SrcHiReg).addReg(t4H);
13365    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13366    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13367    // cc := if (src_hi == hi) ? cl : ch;
13368    if (Subtarget->hasCMov()) {
13369      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13370        .addReg(cH32).addReg(cL32);
13371    } else {
13372      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13373              .addReg(cH32).addReg(cL32)
13374              .addImm(X86::COND_E);
13375      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13376    }
13377    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13378    if (Subtarget->hasCMov()) {
13379      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
13380        .addReg(SrcLoReg).addReg(t4L);
13381      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
13382        .addReg(SrcHiReg).addReg(t4H);
13383    } else {
13384      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
13385              .addReg(SrcLoReg).addReg(t4L)
13386              .addImm(X86::COND_NE);
13387      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13388      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
13389      // 2nd CMOV lowering.
13390      mainMBB->addLiveIn(X86::EFLAGS);
13391      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
13392              .addReg(SrcHiReg).addReg(t4H)
13393              .addImm(X86::COND_NE);
13394      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13395      // Replace the original PHI node as mainMBB is changed after CMOV
13396      // lowering.
13397      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
13398        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13399      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
13400        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13401      PhiL->eraseFromParent();
13402      PhiH->eraseFromParent();
13403    }
13404    break;
13405  }
13406  case X86::ATOMSWAP6432: {
13407    unsigned HiOpc;
13408    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13409    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
13410    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
13411    break;
13412  }
13413  }
13414
13415  // Copy EDX:EAX back from HiReg:LoReg
13416  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
13417  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
13418  // Copy ECX:EBX from t1H:t1L
13419  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
13420  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
13421
13422  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13423  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13424    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13425    if (NewMO.isReg())
13426      NewMO.setIsKill(false);
13427    MIB.addOperand(NewMO);
13428  }
13429  MIB.setMemRefs(MMOBegin, MMOEnd);
13430
13431  // Copy EDX:EAX back to t3H:t3L
13432  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
13433  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
13434
13435  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13436
13437  mainMBB->addSuccessor(origMainMBB);
13438  mainMBB->addSuccessor(sinkMBB);
13439
13440  // sinkMBB:
13441  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13442          TII->get(TargetOpcode::COPY), DstLoReg)
13443    .addReg(t3L);
13444  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13445          TII->get(TargetOpcode::COPY), DstHiReg)
13446    .addReg(t3H);
13447
13448  MI->eraseFromParent();
13449  return sinkMBB;
13450}
13451
13452// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13453// or XMM0_V32I8 in AVX all of this code can be replaced with that
13454// in the .td file.
13455static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13456                                       const TargetInstrInfo *TII) {
13457  unsigned Opc;
13458  switch (MI->getOpcode()) {
13459  default: llvm_unreachable("illegal opcode!");
13460  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13461  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13462  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13463  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13464  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13465  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13466  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13467  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13468  }
13469
13470  DebugLoc dl = MI->getDebugLoc();
13471  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13472
13473  unsigned NumArgs = MI->getNumOperands();
13474  for (unsigned i = 1; i < NumArgs; ++i) {
13475    MachineOperand &Op = MI->getOperand(i);
13476    if (!(Op.isReg() && Op.isImplicit()))
13477      MIB.addOperand(Op);
13478  }
13479  if (MI->hasOneMemOperand())
13480    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13481
13482  BuildMI(*BB, MI, dl,
13483    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13484    .addReg(X86::XMM0);
13485
13486  MI->eraseFromParent();
13487  return BB;
13488}
13489
13490// FIXME: Custom handling because TableGen doesn't support multiple implicit
13491// defs in an instruction pattern
13492static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13493                                       const TargetInstrInfo *TII) {
13494  unsigned Opc;
13495  switch (MI->getOpcode()) {
13496  default: llvm_unreachable("illegal opcode!");
13497  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13498  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13499  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13500  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13501  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13502  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13503  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13504  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13505  }
13506
13507  DebugLoc dl = MI->getDebugLoc();
13508  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13509
13510  unsigned NumArgs = MI->getNumOperands(); // remove the results
13511  for (unsigned i = 1; i < NumArgs; ++i) {
13512    MachineOperand &Op = MI->getOperand(i);
13513    if (!(Op.isReg() && Op.isImplicit()))
13514      MIB.addOperand(Op);
13515  }
13516  if (MI->hasOneMemOperand())
13517    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13518
13519  BuildMI(*BB, MI, dl,
13520    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13521    .addReg(X86::ECX);
13522
13523  MI->eraseFromParent();
13524  return BB;
13525}
13526
13527static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13528                                       const TargetInstrInfo *TII,
13529                                       const X86Subtarget* Subtarget) {
13530  DebugLoc dl = MI->getDebugLoc();
13531
13532  // Address into RAX/EAX, other two args into ECX, EDX.
13533  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13534  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13535  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13536  for (int i = 0; i < X86::AddrNumOperands; ++i)
13537    MIB.addOperand(MI->getOperand(i));
13538
13539  unsigned ValOps = X86::AddrNumOperands;
13540  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13541    .addReg(MI->getOperand(ValOps).getReg());
13542  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13543    .addReg(MI->getOperand(ValOps+1).getReg());
13544
13545  // The instruction doesn't actually take any operands though.
13546  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13547
13548  MI->eraseFromParent(); // The pseudo is gone now.
13549  return BB;
13550}
13551
13552MachineBasicBlock *
13553X86TargetLowering::EmitVAARG64WithCustomInserter(
13554                   MachineInstr *MI,
13555                   MachineBasicBlock *MBB) const {
13556  // Emit va_arg instruction on X86-64.
13557
13558  // Operands to this pseudo-instruction:
13559  // 0  ) Output        : destination address (reg)
13560  // 1-5) Input         : va_list address (addr, i64mem)
13561  // 6  ) ArgSize       : Size (in bytes) of vararg type
13562  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13563  // 8  ) Align         : Alignment of type
13564  // 9  ) EFLAGS (implicit-def)
13565
13566  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13567  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13568
13569  unsigned DestReg = MI->getOperand(0).getReg();
13570  MachineOperand &Base = MI->getOperand(1);
13571  MachineOperand &Scale = MI->getOperand(2);
13572  MachineOperand &Index = MI->getOperand(3);
13573  MachineOperand &Disp = MI->getOperand(4);
13574  MachineOperand &Segment = MI->getOperand(5);
13575  unsigned ArgSize = MI->getOperand(6).getImm();
13576  unsigned ArgMode = MI->getOperand(7).getImm();
13577  unsigned Align = MI->getOperand(8).getImm();
13578
13579  // Memory Reference
13580  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13581  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13582  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13583
13584  // Machine Information
13585  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13586  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13587  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13588  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13589  DebugLoc DL = MI->getDebugLoc();
13590
13591  // struct va_list {
13592  //   i32   gp_offset
13593  //   i32   fp_offset
13594  //   i64   overflow_area (address)
13595  //   i64   reg_save_area (address)
13596  // }
13597  // sizeof(va_list) = 24
13598  // alignment(va_list) = 8
13599
13600  unsigned TotalNumIntRegs = 6;
13601  unsigned TotalNumXMMRegs = 8;
13602  bool UseGPOffset = (ArgMode == 1);
13603  bool UseFPOffset = (ArgMode == 2);
13604  unsigned MaxOffset = TotalNumIntRegs * 8 +
13605                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13606
13607  /* Align ArgSize to a multiple of 8 */
13608  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13609  bool NeedsAlign = (Align > 8);
13610
13611  MachineBasicBlock *thisMBB = MBB;
13612  MachineBasicBlock *overflowMBB;
13613  MachineBasicBlock *offsetMBB;
13614  MachineBasicBlock *endMBB;
13615
13616  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13617  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13618  unsigned OffsetReg = 0;
13619
13620  if (!UseGPOffset && !UseFPOffset) {
13621    // If we only pull from the overflow region, we don't create a branch.
13622    // We don't need to alter control flow.
13623    OffsetDestReg = 0; // unused
13624    OverflowDestReg = DestReg;
13625
13626    offsetMBB = NULL;
13627    overflowMBB = thisMBB;
13628    endMBB = thisMBB;
13629  } else {
13630    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13631    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13632    // If not, pull from overflow_area. (branch to overflowMBB)
13633    //
13634    //       thisMBB
13635    //         |     .
13636    //         |        .
13637    //     offsetMBB   overflowMBB
13638    //         |        .
13639    //         |     .
13640    //        endMBB
13641
13642    // Registers for the PHI in endMBB
13643    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13644    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13645
13646    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13647    MachineFunction *MF = MBB->getParent();
13648    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13649    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13650    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13651
13652    MachineFunction::iterator MBBIter = MBB;
13653    ++MBBIter;
13654
13655    // Insert the new basic blocks
13656    MF->insert(MBBIter, offsetMBB);
13657    MF->insert(MBBIter, overflowMBB);
13658    MF->insert(MBBIter, endMBB);
13659
13660    // Transfer the remainder of MBB and its successor edges to endMBB.
13661    endMBB->splice(endMBB->begin(), thisMBB,
13662                    llvm::next(MachineBasicBlock::iterator(MI)),
13663                    thisMBB->end());
13664    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13665
13666    // Make offsetMBB and overflowMBB successors of thisMBB
13667    thisMBB->addSuccessor(offsetMBB);
13668    thisMBB->addSuccessor(overflowMBB);
13669
13670    // endMBB is a successor of both offsetMBB and overflowMBB
13671    offsetMBB->addSuccessor(endMBB);
13672    overflowMBB->addSuccessor(endMBB);
13673
13674    // Load the offset value into a register
13675    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13676    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13677      .addOperand(Base)
13678      .addOperand(Scale)
13679      .addOperand(Index)
13680      .addDisp(Disp, UseFPOffset ? 4 : 0)
13681      .addOperand(Segment)
13682      .setMemRefs(MMOBegin, MMOEnd);
13683
13684    // Check if there is enough room left to pull this argument.
13685    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13686      .addReg(OffsetReg)
13687      .addImm(MaxOffset + 8 - ArgSizeA8);
13688
13689    // Branch to "overflowMBB" if offset >= max
13690    // Fall through to "offsetMBB" otherwise
13691    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13692      .addMBB(overflowMBB);
13693  }
13694
13695  // In offsetMBB, emit code to use the reg_save_area.
13696  if (offsetMBB) {
13697    assert(OffsetReg != 0);
13698
13699    // Read the reg_save_area address.
13700    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13701    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13702      .addOperand(Base)
13703      .addOperand(Scale)
13704      .addOperand(Index)
13705      .addDisp(Disp, 16)
13706      .addOperand(Segment)
13707      .setMemRefs(MMOBegin, MMOEnd);
13708
13709    // Zero-extend the offset
13710    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13711      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13712        .addImm(0)
13713        .addReg(OffsetReg)
13714        .addImm(X86::sub_32bit);
13715
13716    // Add the offset to the reg_save_area to get the final address.
13717    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13718      .addReg(OffsetReg64)
13719      .addReg(RegSaveReg);
13720
13721    // Compute the offset for the next argument
13722    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13723    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13724      .addReg(OffsetReg)
13725      .addImm(UseFPOffset ? 16 : 8);
13726
13727    // Store it back into the va_list.
13728    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13729      .addOperand(Base)
13730      .addOperand(Scale)
13731      .addOperand(Index)
13732      .addDisp(Disp, UseFPOffset ? 4 : 0)
13733      .addOperand(Segment)
13734      .addReg(NextOffsetReg)
13735      .setMemRefs(MMOBegin, MMOEnd);
13736
13737    // Jump to endMBB
13738    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13739      .addMBB(endMBB);
13740  }
13741
13742  //
13743  // Emit code to use overflow area
13744  //
13745
13746  // Load the overflow_area address into a register.
13747  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13748  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13749    .addOperand(Base)
13750    .addOperand(Scale)
13751    .addOperand(Index)
13752    .addDisp(Disp, 8)
13753    .addOperand(Segment)
13754    .setMemRefs(MMOBegin, MMOEnd);
13755
13756  // If we need to align it, do so. Otherwise, just copy the address
13757  // to OverflowDestReg.
13758  if (NeedsAlign) {
13759    // Align the overflow address
13760    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13761    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
13762
13763    // aligned_addr = (addr + (align-1)) & ~(align-1)
13764    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
13765      .addReg(OverflowAddrReg)
13766      .addImm(Align-1);
13767
13768    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
13769      .addReg(TmpReg)
13770      .addImm(~(uint64_t)(Align-1));
13771  } else {
13772    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
13773      .addReg(OverflowAddrReg);
13774  }
13775
13776  // Compute the next overflow address after this argument.
13777  // (the overflow address should be kept 8-byte aligned)
13778  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
13779  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
13780    .addReg(OverflowDestReg)
13781    .addImm(ArgSizeA8);
13782
13783  // Store the new overflow address.
13784  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
13785    .addOperand(Base)
13786    .addOperand(Scale)
13787    .addOperand(Index)
13788    .addDisp(Disp, 8)
13789    .addOperand(Segment)
13790    .addReg(NextAddrReg)
13791    .setMemRefs(MMOBegin, MMOEnd);
13792
13793  // If we branched, emit the PHI to the front of endMBB.
13794  if (offsetMBB) {
13795    BuildMI(*endMBB, endMBB->begin(), DL,
13796            TII->get(X86::PHI), DestReg)
13797      .addReg(OffsetDestReg).addMBB(offsetMBB)
13798      .addReg(OverflowDestReg).addMBB(overflowMBB);
13799  }
13800
13801  // Erase the pseudo instruction
13802  MI->eraseFromParent();
13803
13804  return endMBB;
13805}
13806
13807MachineBasicBlock *
13808X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
13809                                                 MachineInstr *MI,
13810                                                 MachineBasicBlock *MBB) const {
13811  // Emit code to save XMM registers to the stack. The ABI says that the
13812  // number of registers to save is given in %al, so it's theoretically
13813  // possible to do an indirect jump trick to avoid saving all of them,
13814  // however this code takes a simpler approach and just executes all
13815  // of the stores if %al is non-zero. It's less code, and it's probably
13816  // easier on the hardware branch predictor, and stores aren't all that
13817  // expensive anyway.
13818
13819  // Create the new basic blocks. One block contains all the XMM stores,
13820  // and one block is the final destination regardless of whether any
13821  // stores were performed.
13822  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13823  MachineFunction *F = MBB->getParent();
13824  MachineFunction::iterator MBBIter = MBB;
13825  ++MBBIter;
13826  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
13827  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
13828  F->insert(MBBIter, XMMSaveMBB);
13829  F->insert(MBBIter, EndMBB);
13830
13831  // Transfer the remainder of MBB and its successor edges to EndMBB.
13832  EndMBB->splice(EndMBB->begin(), MBB,
13833                 llvm::next(MachineBasicBlock::iterator(MI)),
13834                 MBB->end());
13835  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
13836
13837  // The original block will now fall through to the XMM save block.
13838  MBB->addSuccessor(XMMSaveMBB);
13839  // The XMMSaveMBB will fall through to the end block.
13840  XMMSaveMBB->addSuccessor(EndMBB);
13841
13842  // Now add the instructions.
13843  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13844  DebugLoc DL = MI->getDebugLoc();
13845
13846  unsigned CountReg = MI->getOperand(0).getReg();
13847  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
13848  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
13849
13850  if (!Subtarget->isTargetWin64()) {
13851    // If %al is 0, branch around the XMM save block.
13852    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
13853    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
13854    MBB->addSuccessor(EndMBB);
13855  }
13856
13857  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
13858  // In the XMM save block, save all the XMM argument registers.
13859  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
13860    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
13861    MachineMemOperand *MMO =
13862      F->getMachineMemOperand(
13863          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
13864        MachineMemOperand::MOStore,
13865        /*Size=*/16, /*Align=*/16);
13866    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
13867      .addFrameIndex(RegSaveFrameIndex)
13868      .addImm(/*Scale=*/1)
13869      .addReg(/*IndexReg=*/0)
13870      .addImm(/*Disp=*/Offset)
13871      .addReg(/*Segment=*/0)
13872      .addReg(MI->getOperand(i).getReg())
13873      .addMemOperand(MMO);
13874  }
13875
13876  MI->eraseFromParent();   // The pseudo instruction is gone now.
13877
13878  return EndMBB;
13879}
13880
13881// The EFLAGS operand of SelectItr might be missing a kill marker
13882// because there were multiple uses of EFLAGS, and ISel didn't know
13883// which to mark. Figure out whether SelectItr should have had a
13884// kill marker, and set it if it should. Returns the correct kill
13885// marker value.
13886static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
13887                                     MachineBasicBlock* BB,
13888                                     const TargetRegisterInfo* TRI) {
13889  // Scan forward through BB for a use/def of EFLAGS.
13890  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
13891  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
13892    const MachineInstr& mi = *miI;
13893    if (mi.readsRegister(X86::EFLAGS))
13894      return false;
13895    if (mi.definesRegister(X86::EFLAGS))
13896      break; // Should have kill-flag - update below.
13897  }
13898
13899  // If we hit the end of the block, check whether EFLAGS is live into a
13900  // successor.
13901  if (miI == BB->end()) {
13902    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
13903                                          sEnd = BB->succ_end();
13904         sItr != sEnd; ++sItr) {
13905      MachineBasicBlock* succ = *sItr;
13906      if (succ->isLiveIn(X86::EFLAGS))
13907        return false;
13908    }
13909  }
13910
13911  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
13912  // out. SelectMI should have a kill flag on EFLAGS.
13913  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
13914  return true;
13915}
13916
13917MachineBasicBlock *
13918X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
13919                                     MachineBasicBlock *BB) const {
13920  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13921  DebugLoc DL = MI->getDebugLoc();
13922
13923  // To "insert" a SELECT_CC instruction, we actually have to insert the
13924  // diamond control-flow pattern.  The incoming instruction knows the
13925  // destination vreg to set, the condition code register to branch on, the
13926  // true/false values to select between, and a branch opcode to use.
13927  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13928  MachineFunction::iterator It = BB;
13929  ++It;
13930
13931  //  thisMBB:
13932  //  ...
13933  //   TrueVal = ...
13934  //   cmpTY ccX, r1, r2
13935  //   bCC copy1MBB
13936  //   fallthrough --> copy0MBB
13937  MachineBasicBlock *thisMBB = BB;
13938  MachineFunction *F = BB->getParent();
13939  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13940  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13941  F->insert(It, copy0MBB);
13942  F->insert(It, sinkMBB);
13943
13944  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13945  // live into the sink and copy blocks.
13946  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13947  if (!MI->killsRegister(X86::EFLAGS) &&
13948      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13949    copy0MBB->addLiveIn(X86::EFLAGS);
13950    sinkMBB->addLiveIn(X86::EFLAGS);
13951  }
13952
13953  // Transfer the remainder of BB and its successor edges to sinkMBB.
13954  sinkMBB->splice(sinkMBB->begin(), BB,
13955                  llvm::next(MachineBasicBlock::iterator(MI)),
13956                  BB->end());
13957  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13958
13959  // Add the true and fallthrough blocks as its successors.
13960  BB->addSuccessor(copy0MBB);
13961  BB->addSuccessor(sinkMBB);
13962
13963  // Create the conditional branch instruction.
13964  unsigned Opc =
13965    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13966  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13967
13968  //  copy0MBB:
13969  //   %FalseValue = ...
13970  //   # fallthrough to sinkMBB
13971  copy0MBB->addSuccessor(sinkMBB);
13972
13973  //  sinkMBB:
13974  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13975  //  ...
13976  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13977          TII->get(X86::PHI), MI->getOperand(0).getReg())
13978    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13979    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13980
13981  MI->eraseFromParent();   // The pseudo instruction is gone now.
13982  return sinkMBB;
13983}
13984
13985MachineBasicBlock *
13986X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13987                                        bool Is64Bit) const {
13988  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13989  DebugLoc DL = MI->getDebugLoc();
13990  MachineFunction *MF = BB->getParent();
13991  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13992
13993  assert(getTargetMachine().Options.EnableSegmentedStacks);
13994
13995  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13996  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13997
13998  // BB:
13999  //  ... [Till the alloca]
14000  // If stacklet is not large enough, jump to mallocMBB
14001  //
14002  // bumpMBB:
14003  //  Allocate by subtracting from RSP
14004  //  Jump to continueMBB
14005  //
14006  // mallocMBB:
14007  //  Allocate by call to runtime
14008  //
14009  // continueMBB:
14010  //  ...
14011  //  [rest of original BB]
14012  //
14013
14014  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14015  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14016  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14017
14018  MachineRegisterInfo &MRI = MF->getRegInfo();
14019  const TargetRegisterClass *AddrRegClass =
14020    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
14021
14022  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14023    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14024    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
14025    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
14026    sizeVReg = MI->getOperand(1).getReg(),
14027    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
14028
14029  MachineFunction::iterator MBBIter = BB;
14030  ++MBBIter;
14031
14032  MF->insert(MBBIter, bumpMBB);
14033  MF->insert(MBBIter, mallocMBB);
14034  MF->insert(MBBIter, continueMBB);
14035
14036  continueMBB->splice(continueMBB->begin(), BB, llvm::next
14037                      (MachineBasicBlock::iterator(MI)), BB->end());
14038  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
14039
14040  // Add code to the main basic block to check if the stack limit has been hit,
14041  // and if so, jump to mallocMBB otherwise to bumpMBB.
14042  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
14043  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
14044    .addReg(tmpSPVReg).addReg(sizeVReg);
14045  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
14046    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
14047    .addReg(SPLimitVReg);
14048  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
14049
14050  // bumpMBB simply decreases the stack pointer, since we know the current
14051  // stacklet has enough space.
14052  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
14053    .addReg(SPLimitVReg);
14054  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
14055    .addReg(SPLimitVReg);
14056  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14057
14058  // Calls into a routine in libgcc to allocate more space from the heap.
14059  const uint32_t *RegMask =
14060    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14061  if (Is64Bit) {
14062    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
14063      .addReg(sizeVReg);
14064    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
14065      .addExternalSymbol("__morestack_allocate_stack_space")
14066      .addRegMask(RegMask)
14067      .addReg(X86::RDI, RegState::Implicit)
14068      .addReg(X86::RAX, RegState::ImplicitDefine);
14069  } else {
14070    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
14071      .addImm(12);
14072    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
14073    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
14074      .addExternalSymbol("__morestack_allocate_stack_space")
14075      .addRegMask(RegMask)
14076      .addReg(X86::EAX, RegState::ImplicitDefine);
14077  }
14078
14079  if (!Is64Bit)
14080    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
14081      .addImm(16);
14082
14083  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
14084    .addReg(Is64Bit ? X86::RAX : X86::EAX);
14085  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14086
14087  // Set up the CFG correctly.
14088  BB->addSuccessor(bumpMBB);
14089  BB->addSuccessor(mallocMBB);
14090  mallocMBB->addSuccessor(continueMBB);
14091  bumpMBB->addSuccessor(continueMBB);
14092
14093  // Take care of the PHI nodes.
14094  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
14095          MI->getOperand(0).getReg())
14096    .addReg(mallocPtrVReg).addMBB(mallocMBB)
14097    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
14098
14099  // Delete the original pseudo instruction.
14100  MI->eraseFromParent();
14101
14102  // And we're done.
14103  return continueMBB;
14104}
14105
14106MachineBasicBlock *
14107X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
14108                                          MachineBasicBlock *BB) const {
14109  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14110  DebugLoc DL = MI->getDebugLoc();
14111
14112  assert(!Subtarget->isTargetEnvMacho());
14113
14114  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
14115  // non-trivial part is impdef of ESP.
14116
14117  if (Subtarget->isTargetWin64()) {
14118    if (Subtarget->isTargetCygMing()) {
14119      // ___chkstk(Mingw64):
14120      // Clobbers R10, R11, RAX and EFLAGS.
14121      // Updates RSP.
14122      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14123        .addExternalSymbol("___chkstk")
14124        .addReg(X86::RAX, RegState::Implicit)
14125        .addReg(X86::RSP, RegState::Implicit)
14126        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
14127        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
14128        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14129    } else {
14130      // __chkstk(MSVCRT): does not update stack pointer.
14131      // Clobbers R10, R11 and EFLAGS.
14132      // FIXME: RAX(allocated size) might be reused and not killed.
14133      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14134        .addExternalSymbol("__chkstk")
14135        .addReg(X86::RAX, RegState::Implicit)
14136        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14137      // RAX has the offset to subtracted from RSP.
14138      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
14139        .addReg(X86::RSP)
14140        .addReg(X86::RAX);
14141    }
14142  } else {
14143    const char *StackProbeSymbol =
14144      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
14145
14146    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
14147      .addExternalSymbol(StackProbeSymbol)
14148      .addReg(X86::EAX, RegState::Implicit)
14149      .addReg(X86::ESP, RegState::Implicit)
14150      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
14151      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
14152      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14153  }
14154
14155  MI->eraseFromParent();   // The pseudo instruction is gone now.
14156  return BB;
14157}
14158
14159MachineBasicBlock *
14160X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
14161                                      MachineBasicBlock *BB) const {
14162  // This is pretty easy.  We're taking the value that we received from
14163  // our load from the relocation, sticking it in either RDI (x86-64)
14164  // or EAX and doing an indirect call.  The return value will then
14165  // be in the normal return register.
14166  const X86InstrInfo *TII
14167    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
14168  DebugLoc DL = MI->getDebugLoc();
14169  MachineFunction *F = BB->getParent();
14170
14171  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
14172  assert(MI->getOperand(3).isGlobal() && "This should be a global");
14173
14174  // Get a register mask for the lowered call.
14175  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
14176  // proper register mask.
14177  const uint32_t *RegMask =
14178    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14179  if (Subtarget->is64Bit()) {
14180    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14181                                      TII->get(X86::MOV64rm), X86::RDI)
14182    .addReg(X86::RIP)
14183    .addImm(0).addReg(0)
14184    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14185                      MI->getOperand(3).getTargetFlags())
14186    .addReg(0);
14187    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
14188    addDirectMem(MIB, X86::RDI);
14189    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
14190  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14191    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14192                                      TII->get(X86::MOV32rm), X86::EAX)
14193    .addReg(0)
14194    .addImm(0).addReg(0)
14195    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14196                      MI->getOperand(3).getTargetFlags())
14197    .addReg(0);
14198    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14199    addDirectMem(MIB, X86::EAX);
14200    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14201  } else {
14202    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14203                                      TII->get(X86::MOV32rm), X86::EAX)
14204    .addReg(TII->getGlobalBaseReg(F))
14205    .addImm(0).addReg(0)
14206    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14207                      MI->getOperand(3).getTargetFlags())
14208    .addReg(0);
14209    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14210    addDirectMem(MIB, X86::EAX);
14211    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14212  }
14213
14214  MI->eraseFromParent(); // The pseudo instruction is gone now.
14215  return BB;
14216}
14217
14218MachineBasicBlock *
14219X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14220                                    MachineBasicBlock *MBB) const {
14221  DebugLoc DL = MI->getDebugLoc();
14222  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14223
14224  MachineFunction *MF = MBB->getParent();
14225  MachineRegisterInfo &MRI = MF->getRegInfo();
14226
14227  const BasicBlock *BB = MBB->getBasicBlock();
14228  MachineFunction::iterator I = MBB;
14229  ++I;
14230
14231  // Memory Reference
14232  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14233  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14234
14235  unsigned DstReg;
14236  unsigned MemOpndSlot = 0;
14237
14238  unsigned CurOp = 0;
14239
14240  DstReg = MI->getOperand(CurOp++).getReg();
14241  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14242  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14243  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14244  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14245
14246  MemOpndSlot = CurOp;
14247
14248  MVT PVT = getPointerTy();
14249  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14250         "Invalid Pointer Size!");
14251
14252  // For v = setjmp(buf), we generate
14253  //
14254  // thisMBB:
14255  //  buf[LabelOffset] = restoreMBB
14256  //  SjLjSetup restoreMBB
14257  //
14258  // mainMBB:
14259  //  v_main = 0
14260  //
14261  // sinkMBB:
14262  //  v = phi(main, restore)
14263  //
14264  // restoreMBB:
14265  //  v_restore = 1
14266
14267  MachineBasicBlock *thisMBB = MBB;
14268  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14269  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14270  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14271  MF->insert(I, mainMBB);
14272  MF->insert(I, sinkMBB);
14273  MF->push_back(restoreMBB);
14274
14275  MachineInstrBuilder MIB;
14276
14277  // Transfer the remainder of BB and its successor edges to sinkMBB.
14278  sinkMBB->splice(sinkMBB->begin(), MBB,
14279                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14280  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14281
14282  // thisMBB:
14283  unsigned PtrStoreOpc = 0;
14284  unsigned LabelReg = 0;
14285  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14286  Reloc::Model RM = getTargetMachine().getRelocationModel();
14287  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14288                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14289
14290  // Prepare IP either in reg or imm.
14291  if (!UseImmLabel) {
14292    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14293    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14294    LabelReg = MRI.createVirtualRegister(PtrRC);
14295    if (Subtarget->is64Bit()) {
14296      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14297              .addReg(X86::RIP)
14298              .addImm(0)
14299              .addReg(0)
14300              .addMBB(restoreMBB)
14301              .addReg(0);
14302    } else {
14303      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14304      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14305              .addReg(XII->getGlobalBaseReg(MF))
14306              .addImm(0)
14307              .addReg(0)
14308              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14309              .addReg(0);
14310    }
14311  } else
14312    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14313  // Store IP
14314  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14315  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14316    if (i == X86::AddrDisp)
14317      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14318    else
14319      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14320  }
14321  if (!UseImmLabel)
14322    MIB.addReg(LabelReg);
14323  else
14324    MIB.addMBB(restoreMBB);
14325  MIB.setMemRefs(MMOBegin, MMOEnd);
14326  // Setup
14327  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14328          .addMBB(restoreMBB);
14329  MIB.addRegMask(RegInfo->getNoPreservedMask());
14330  thisMBB->addSuccessor(mainMBB);
14331  thisMBB->addSuccessor(restoreMBB);
14332
14333  // mainMBB:
14334  //  EAX = 0
14335  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14336  mainMBB->addSuccessor(sinkMBB);
14337
14338  // sinkMBB:
14339  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14340          TII->get(X86::PHI), DstReg)
14341    .addReg(mainDstReg).addMBB(mainMBB)
14342    .addReg(restoreDstReg).addMBB(restoreMBB);
14343
14344  // restoreMBB:
14345  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14346  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14347  restoreMBB->addSuccessor(sinkMBB);
14348
14349  MI->eraseFromParent();
14350  return sinkMBB;
14351}
14352
14353MachineBasicBlock *
14354X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14355                                     MachineBasicBlock *MBB) const {
14356  DebugLoc DL = MI->getDebugLoc();
14357  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14358
14359  MachineFunction *MF = MBB->getParent();
14360  MachineRegisterInfo &MRI = MF->getRegInfo();
14361
14362  // Memory Reference
14363  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14364  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14365
14366  MVT PVT = getPointerTy();
14367  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14368         "Invalid Pointer Size!");
14369
14370  const TargetRegisterClass *RC =
14371    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14372  unsigned Tmp = MRI.createVirtualRegister(RC);
14373  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14374  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14375  unsigned SP = RegInfo->getStackRegister();
14376
14377  MachineInstrBuilder MIB;
14378
14379  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14380  const int64_t SPOffset = 2 * PVT.getStoreSize();
14381
14382  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14383  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14384
14385  // Reload FP
14386  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14387  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14388    MIB.addOperand(MI->getOperand(i));
14389  MIB.setMemRefs(MMOBegin, MMOEnd);
14390  // Reload IP
14391  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14392  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14393    if (i == X86::AddrDisp)
14394      MIB.addDisp(MI->getOperand(i), LabelOffset);
14395    else
14396      MIB.addOperand(MI->getOperand(i));
14397  }
14398  MIB.setMemRefs(MMOBegin, MMOEnd);
14399  // Reload SP
14400  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14401  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14402    if (i == X86::AddrDisp)
14403      MIB.addDisp(MI->getOperand(i), SPOffset);
14404    else
14405      MIB.addOperand(MI->getOperand(i));
14406  }
14407  MIB.setMemRefs(MMOBegin, MMOEnd);
14408  // Jump
14409  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14410
14411  MI->eraseFromParent();
14412  return MBB;
14413}
14414
14415MachineBasicBlock *
14416X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14417                                               MachineBasicBlock *BB) const {
14418  switch (MI->getOpcode()) {
14419  default: llvm_unreachable("Unexpected instr type to insert");
14420  case X86::TAILJMPd64:
14421  case X86::TAILJMPr64:
14422  case X86::TAILJMPm64:
14423    llvm_unreachable("TAILJMP64 would not be touched here.");
14424  case X86::TCRETURNdi64:
14425  case X86::TCRETURNri64:
14426  case X86::TCRETURNmi64:
14427    return BB;
14428  case X86::WIN_ALLOCA:
14429    return EmitLoweredWinAlloca(MI, BB);
14430  case X86::SEG_ALLOCA_32:
14431    return EmitLoweredSegAlloca(MI, BB, false);
14432  case X86::SEG_ALLOCA_64:
14433    return EmitLoweredSegAlloca(MI, BB, true);
14434  case X86::TLSCall_32:
14435  case X86::TLSCall_64:
14436    return EmitLoweredTLSCall(MI, BB);
14437  case X86::CMOV_GR8:
14438  case X86::CMOV_FR32:
14439  case X86::CMOV_FR64:
14440  case X86::CMOV_V4F32:
14441  case X86::CMOV_V2F64:
14442  case X86::CMOV_V2I64:
14443  case X86::CMOV_V8F32:
14444  case X86::CMOV_V4F64:
14445  case X86::CMOV_V4I64:
14446  case X86::CMOV_GR16:
14447  case X86::CMOV_GR32:
14448  case X86::CMOV_RFP32:
14449  case X86::CMOV_RFP64:
14450  case X86::CMOV_RFP80:
14451    return EmitLoweredSelect(MI, BB);
14452
14453  case X86::FP32_TO_INT16_IN_MEM:
14454  case X86::FP32_TO_INT32_IN_MEM:
14455  case X86::FP32_TO_INT64_IN_MEM:
14456  case X86::FP64_TO_INT16_IN_MEM:
14457  case X86::FP64_TO_INT32_IN_MEM:
14458  case X86::FP64_TO_INT64_IN_MEM:
14459  case X86::FP80_TO_INT16_IN_MEM:
14460  case X86::FP80_TO_INT32_IN_MEM:
14461  case X86::FP80_TO_INT64_IN_MEM: {
14462    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14463    DebugLoc DL = MI->getDebugLoc();
14464
14465    // Change the floating point control register to use "round towards zero"
14466    // mode when truncating to an integer value.
14467    MachineFunction *F = BB->getParent();
14468    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14469    addFrameReference(BuildMI(*BB, MI, DL,
14470                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14471
14472    // Load the old value of the high byte of the control word...
14473    unsigned OldCW =
14474      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14475    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14476                      CWFrameIdx);
14477
14478    // Set the high part to be round to zero...
14479    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14480      .addImm(0xC7F);
14481
14482    // Reload the modified control word now...
14483    addFrameReference(BuildMI(*BB, MI, DL,
14484                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14485
14486    // Restore the memory image of control word to original value
14487    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14488      .addReg(OldCW);
14489
14490    // Get the X86 opcode to use.
14491    unsigned Opc;
14492    switch (MI->getOpcode()) {
14493    default: llvm_unreachable("illegal opcode!");
14494    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14495    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14496    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14497    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14498    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14499    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14500    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14501    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14502    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14503    }
14504
14505    X86AddressMode AM;
14506    MachineOperand &Op = MI->getOperand(0);
14507    if (Op.isReg()) {
14508      AM.BaseType = X86AddressMode::RegBase;
14509      AM.Base.Reg = Op.getReg();
14510    } else {
14511      AM.BaseType = X86AddressMode::FrameIndexBase;
14512      AM.Base.FrameIndex = Op.getIndex();
14513    }
14514    Op = MI->getOperand(1);
14515    if (Op.isImm())
14516      AM.Scale = Op.getImm();
14517    Op = MI->getOperand(2);
14518    if (Op.isImm())
14519      AM.IndexReg = Op.getImm();
14520    Op = MI->getOperand(3);
14521    if (Op.isGlobal()) {
14522      AM.GV = Op.getGlobal();
14523    } else {
14524      AM.Disp = Op.getImm();
14525    }
14526    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14527                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14528
14529    // Reload the original control word now.
14530    addFrameReference(BuildMI(*BB, MI, DL,
14531                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14532
14533    MI->eraseFromParent();   // The pseudo instruction is gone now.
14534    return BB;
14535  }
14536    // String/text processing lowering.
14537  case X86::PCMPISTRM128REG:
14538  case X86::VPCMPISTRM128REG:
14539  case X86::PCMPISTRM128MEM:
14540  case X86::VPCMPISTRM128MEM:
14541  case X86::PCMPESTRM128REG:
14542  case X86::VPCMPESTRM128REG:
14543  case X86::PCMPESTRM128MEM:
14544  case X86::VPCMPESTRM128MEM:
14545    assert(Subtarget->hasSSE42() &&
14546           "Target must have SSE4.2 or AVX features enabled");
14547    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14548
14549  // String/text processing lowering.
14550  case X86::PCMPISTRIREG:
14551  case X86::VPCMPISTRIREG:
14552  case X86::PCMPISTRIMEM:
14553  case X86::VPCMPISTRIMEM:
14554  case X86::PCMPESTRIREG:
14555  case X86::VPCMPESTRIREG:
14556  case X86::PCMPESTRIMEM:
14557  case X86::VPCMPESTRIMEM:
14558    assert(Subtarget->hasSSE42() &&
14559           "Target must have SSE4.2 or AVX features enabled");
14560    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14561
14562  // Thread synchronization.
14563  case X86::MONITOR:
14564    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14565
14566  // xbegin
14567  case X86::XBEGIN:
14568    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14569
14570  // Atomic Lowering.
14571  case X86::ATOMAND8:
14572  case X86::ATOMAND16:
14573  case X86::ATOMAND32:
14574  case X86::ATOMAND64:
14575    // Fall through
14576  case X86::ATOMOR8:
14577  case X86::ATOMOR16:
14578  case X86::ATOMOR32:
14579  case X86::ATOMOR64:
14580    // Fall through
14581  case X86::ATOMXOR16:
14582  case X86::ATOMXOR8:
14583  case X86::ATOMXOR32:
14584  case X86::ATOMXOR64:
14585    // Fall through
14586  case X86::ATOMNAND8:
14587  case X86::ATOMNAND16:
14588  case X86::ATOMNAND32:
14589  case X86::ATOMNAND64:
14590    // Fall through
14591  case X86::ATOMMAX8:
14592  case X86::ATOMMAX16:
14593  case X86::ATOMMAX32:
14594  case X86::ATOMMAX64:
14595    // Fall through
14596  case X86::ATOMMIN8:
14597  case X86::ATOMMIN16:
14598  case X86::ATOMMIN32:
14599  case X86::ATOMMIN64:
14600    // Fall through
14601  case X86::ATOMUMAX8:
14602  case X86::ATOMUMAX16:
14603  case X86::ATOMUMAX32:
14604  case X86::ATOMUMAX64:
14605    // Fall through
14606  case X86::ATOMUMIN8:
14607  case X86::ATOMUMIN16:
14608  case X86::ATOMUMIN32:
14609  case X86::ATOMUMIN64:
14610    return EmitAtomicLoadArith(MI, BB);
14611
14612  // This group does 64-bit operations on a 32-bit host.
14613  case X86::ATOMAND6432:
14614  case X86::ATOMOR6432:
14615  case X86::ATOMXOR6432:
14616  case X86::ATOMNAND6432:
14617  case X86::ATOMADD6432:
14618  case X86::ATOMSUB6432:
14619  case X86::ATOMMAX6432:
14620  case X86::ATOMMIN6432:
14621  case X86::ATOMUMAX6432:
14622  case X86::ATOMUMIN6432:
14623  case X86::ATOMSWAP6432:
14624    return EmitAtomicLoadArith6432(MI, BB);
14625
14626  case X86::VASTART_SAVE_XMM_REGS:
14627    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14628
14629  case X86::VAARG_64:
14630    return EmitVAARG64WithCustomInserter(MI, BB);
14631
14632  case X86::EH_SjLj_SetJmp32:
14633  case X86::EH_SjLj_SetJmp64:
14634    return emitEHSjLjSetJmp(MI, BB);
14635
14636  case X86::EH_SjLj_LongJmp32:
14637  case X86::EH_SjLj_LongJmp64:
14638    return emitEHSjLjLongJmp(MI, BB);
14639  }
14640}
14641
14642//===----------------------------------------------------------------------===//
14643//                           X86 Optimization Hooks
14644//===----------------------------------------------------------------------===//
14645
14646void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14647                                                       APInt &KnownZero,
14648                                                       APInt &KnownOne,
14649                                                       const SelectionDAG &DAG,
14650                                                       unsigned Depth) const {
14651  unsigned BitWidth = KnownZero.getBitWidth();
14652  unsigned Opc = Op.getOpcode();
14653  assert((Opc >= ISD::BUILTIN_OP_END ||
14654          Opc == ISD::INTRINSIC_WO_CHAIN ||
14655          Opc == ISD::INTRINSIC_W_CHAIN ||
14656          Opc == ISD::INTRINSIC_VOID) &&
14657         "Should use MaskedValueIsZero if you don't know whether Op"
14658         " is a target node!");
14659
14660  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14661  switch (Opc) {
14662  default: break;
14663  case X86ISD::ADD:
14664  case X86ISD::SUB:
14665  case X86ISD::ADC:
14666  case X86ISD::SBB:
14667  case X86ISD::SMUL:
14668  case X86ISD::UMUL:
14669  case X86ISD::INC:
14670  case X86ISD::DEC:
14671  case X86ISD::OR:
14672  case X86ISD::XOR:
14673  case X86ISD::AND:
14674    // These nodes' second result is a boolean.
14675    if (Op.getResNo() == 0)
14676      break;
14677    // Fallthrough
14678  case X86ISD::SETCC:
14679    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14680    break;
14681  case ISD::INTRINSIC_WO_CHAIN: {
14682    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14683    unsigned NumLoBits = 0;
14684    switch (IntId) {
14685    default: break;
14686    case Intrinsic::x86_sse_movmsk_ps:
14687    case Intrinsic::x86_avx_movmsk_ps_256:
14688    case Intrinsic::x86_sse2_movmsk_pd:
14689    case Intrinsic::x86_avx_movmsk_pd_256:
14690    case Intrinsic::x86_mmx_pmovmskb:
14691    case Intrinsic::x86_sse2_pmovmskb_128:
14692    case Intrinsic::x86_avx2_pmovmskb: {
14693      // High bits of movmskp{s|d}, pmovmskb are known zero.
14694      switch (IntId) {
14695        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14696        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14697        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14698        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14699        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14700        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14701        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14702        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14703      }
14704      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14705      break;
14706    }
14707    }
14708    break;
14709  }
14710  }
14711}
14712
14713unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14714                                                         unsigned Depth) const {
14715  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14716  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14717    return Op.getValueType().getScalarType().getSizeInBits();
14718
14719  // Fallback case.
14720  return 1;
14721}
14722
14723/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14724/// node is a GlobalAddress + offset.
14725bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14726                                       const GlobalValue* &GA,
14727                                       int64_t &Offset) const {
14728  if (N->getOpcode() == X86ISD::Wrapper) {
14729    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14730      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14731      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14732      return true;
14733    }
14734  }
14735  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14736}
14737
14738/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14739/// same as extracting the high 128-bit part of 256-bit vector and then
14740/// inserting the result into the low part of a new 256-bit vector
14741static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14742  EVT VT = SVOp->getValueType(0);
14743  unsigned NumElems = VT.getVectorNumElements();
14744
14745  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14746  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14747    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14748        SVOp->getMaskElt(j) >= 0)
14749      return false;
14750
14751  return true;
14752}
14753
14754/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14755/// same as extracting the low 128-bit part of 256-bit vector and then
14756/// inserting the result into the high part of a new 256-bit vector
14757static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14758  EVT VT = SVOp->getValueType(0);
14759  unsigned NumElems = VT.getVectorNumElements();
14760
14761  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14762  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
14763    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14764        SVOp->getMaskElt(j) >= 0)
14765      return false;
14766
14767  return true;
14768}
14769
14770/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
14771static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
14772                                        TargetLowering::DAGCombinerInfo &DCI,
14773                                        const X86Subtarget* Subtarget) {
14774  DebugLoc dl = N->getDebugLoc();
14775  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
14776  SDValue V1 = SVOp->getOperand(0);
14777  SDValue V2 = SVOp->getOperand(1);
14778  EVT VT = SVOp->getValueType(0);
14779  unsigned NumElems = VT.getVectorNumElements();
14780
14781  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
14782      V2.getOpcode() == ISD::CONCAT_VECTORS) {
14783    //
14784    //                   0,0,0,...
14785    //                      |
14786    //    V      UNDEF    BUILD_VECTOR    UNDEF
14787    //     \      /           \           /
14788    //  CONCAT_VECTOR         CONCAT_VECTOR
14789    //         \                  /
14790    //          \                /
14791    //          RESULT: V + zero extended
14792    //
14793    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
14794        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
14795        V1.getOperand(1).getOpcode() != ISD::UNDEF)
14796      return SDValue();
14797
14798    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
14799      return SDValue();
14800
14801    // To match the shuffle mask, the first half of the mask should
14802    // be exactly the first vector, and all the rest a splat with the
14803    // first element of the second one.
14804    for (unsigned i = 0; i != NumElems/2; ++i)
14805      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
14806          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
14807        return SDValue();
14808
14809    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
14810    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
14811      if (Ld->hasNUsesOfValue(1, 0)) {
14812        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
14813        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
14814        SDValue ResNode =
14815          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
14816                                  Ld->getMemoryVT(),
14817                                  Ld->getPointerInfo(),
14818                                  Ld->getAlignment(),
14819                                  false/*isVolatile*/, true/*ReadMem*/,
14820                                  false/*WriteMem*/);
14821
14822        // Make sure the newly-created LOAD is in the same position as Ld in
14823        // terms of dependency. We create a TokenFactor for Ld and ResNode,
14824        // and update uses of Ld's output chain to use the TokenFactor.
14825        if (Ld->hasAnyUseOfValue(1)) {
14826          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14827                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
14828          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
14829          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
14830                                 SDValue(ResNode.getNode(), 1));
14831        }
14832
14833        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
14834      }
14835    }
14836
14837    // Emit a zeroed vector and insert the desired subvector on its
14838    // first half.
14839    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
14840    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
14841    return DCI.CombineTo(N, InsV);
14842  }
14843
14844  //===--------------------------------------------------------------------===//
14845  // Combine some shuffles into subvector extracts and inserts:
14846  //
14847
14848  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14849  if (isShuffleHigh128VectorInsertLow(SVOp)) {
14850    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
14851    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
14852    return DCI.CombineTo(N, InsV);
14853  }
14854
14855  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14856  if (isShuffleLow128VectorInsertHigh(SVOp)) {
14857    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
14858    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
14859    return DCI.CombineTo(N, InsV);
14860  }
14861
14862  return SDValue();
14863}
14864
14865/// PerformShuffleCombine - Performs several different shuffle combines.
14866static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
14867                                     TargetLowering::DAGCombinerInfo &DCI,
14868                                     const X86Subtarget *Subtarget) {
14869  DebugLoc dl = N->getDebugLoc();
14870  EVT VT = N->getValueType(0);
14871
14872  // Don't create instructions with illegal types after legalize types has run.
14873  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14874  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
14875    return SDValue();
14876
14877  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
14878  if (Subtarget->hasFp256() && VT.is256BitVector() &&
14879      N->getOpcode() == ISD::VECTOR_SHUFFLE)
14880    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
14881
14882  // Only handle 128 wide vector from here on.
14883  if (!VT.is128BitVector())
14884    return SDValue();
14885
14886  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
14887  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
14888  // consecutive, non-overlapping, and in the right order.
14889  SmallVector<SDValue, 16> Elts;
14890  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
14891    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
14892
14893  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
14894}
14895
14896/// PerformTruncateCombine - Converts truncate operation to
14897/// a sequence of vector shuffle operations.
14898/// It is possible when we truncate 256-bit vector to 128-bit vector
14899static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
14900                                      TargetLowering::DAGCombinerInfo &DCI,
14901                                      const X86Subtarget *Subtarget)  {
14902  return SDValue();
14903}
14904
14905/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14906/// specific shuffle of a load can be folded into a single element load.
14907/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14908/// shuffles have been customed lowered so we need to handle those here.
14909static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14910                                         TargetLowering::DAGCombinerInfo &DCI) {
14911  if (DCI.isBeforeLegalizeOps())
14912    return SDValue();
14913
14914  SDValue InVec = N->getOperand(0);
14915  SDValue EltNo = N->getOperand(1);
14916
14917  if (!isa<ConstantSDNode>(EltNo))
14918    return SDValue();
14919
14920  EVT VT = InVec.getValueType();
14921
14922  bool HasShuffleIntoBitcast = false;
14923  if (InVec.getOpcode() == ISD::BITCAST) {
14924    // Don't duplicate a load with other uses.
14925    if (!InVec.hasOneUse())
14926      return SDValue();
14927    EVT BCVT = InVec.getOperand(0).getValueType();
14928    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14929      return SDValue();
14930    InVec = InVec.getOperand(0);
14931    HasShuffleIntoBitcast = true;
14932  }
14933
14934  if (!isTargetShuffle(InVec.getOpcode()))
14935    return SDValue();
14936
14937  // Don't duplicate a load with other uses.
14938  if (!InVec.hasOneUse())
14939    return SDValue();
14940
14941  SmallVector<int, 16> ShuffleMask;
14942  bool UnaryShuffle;
14943  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14944                            UnaryShuffle))
14945    return SDValue();
14946
14947  // Select the input vector, guarding against out of range extract vector.
14948  unsigned NumElems = VT.getVectorNumElements();
14949  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14950  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14951  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14952                                         : InVec.getOperand(1);
14953
14954  // If inputs to shuffle are the same for both ops, then allow 2 uses
14955  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14956
14957  if (LdNode.getOpcode() == ISD::BITCAST) {
14958    // Don't duplicate a load with other uses.
14959    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14960      return SDValue();
14961
14962    AllowedUses = 1; // only allow 1 load use if we have a bitcast
14963    LdNode = LdNode.getOperand(0);
14964  }
14965
14966  if (!ISD::isNormalLoad(LdNode.getNode()))
14967    return SDValue();
14968
14969  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
14970
14971  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
14972    return SDValue();
14973
14974  if (HasShuffleIntoBitcast) {
14975    // If there's a bitcast before the shuffle, check if the load type and
14976    // alignment is valid.
14977    unsigned Align = LN0->getAlignment();
14978    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14979    unsigned NewAlign = TLI.getDataLayout()->
14980      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
14981
14982    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
14983      return SDValue();
14984  }
14985
14986  // All checks match so transform back to vector_shuffle so that DAG combiner
14987  // can finish the job
14988  DebugLoc dl = N->getDebugLoc();
14989
14990  // Create shuffle node taking into account the case that its a unary shuffle
14991  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
14992  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
14993                                 InVec.getOperand(0), Shuffle,
14994                                 &ShuffleMask[0]);
14995  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
14996  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
14997                     EltNo);
14998}
14999
15000/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
15001/// generation and convert it from being a bunch of shuffles and extracts
15002/// to a simple store and scalar loads to extract the elements.
15003static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
15004                                         TargetLowering::DAGCombinerInfo &DCI) {
15005  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
15006  if (NewOp.getNode())
15007    return NewOp;
15008
15009  SDValue InputVector = N->getOperand(0);
15010  // Detect whether we are trying to convert from mmx to i32 and the bitcast
15011  // from mmx to v2i32 has a single usage.
15012  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
15013      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
15014      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
15015    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
15016                       N->getValueType(0),
15017                       InputVector.getNode()->getOperand(0));
15018
15019  // Only operate on vectors of 4 elements, where the alternative shuffling
15020  // gets to be more expensive.
15021  if (InputVector.getValueType() != MVT::v4i32)
15022    return SDValue();
15023
15024  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
15025  // single use which is a sign-extend or zero-extend, and all elements are
15026  // used.
15027  SmallVector<SDNode *, 4> Uses;
15028  unsigned ExtractedElements = 0;
15029  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
15030       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
15031    if (UI.getUse().getResNo() != InputVector.getResNo())
15032      return SDValue();
15033
15034    SDNode *Extract = *UI;
15035    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
15036      return SDValue();
15037
15038    if (Extract->getValueType(0) != MVT::i32)
15039      return SDValue();
15040    if (!Extract->hasOneUse())
15041      return SDValue();
15042    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
15043        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
15044      return SDValue();
15045    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
15046      return SDValue();
15047
15048    // Record which element was extracted.
15049    ExtractedElements |=
15050      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
15051
15052    Uses.push_back(Extract);
15053  }
15054
15055  // If not all the elements were used, this may not be worthwhile.
15056  if (ExtractedElements != 15)
15057    return SDValue();
15058
15059  // Ok, we've now decided to do the transformation.
15060  DebugLoc dl = InputVector.getDebugLoc();
15061
15062  // Store the value to a temporary stack slot.
15063  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
15064  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
15065                            MachinePointerInfo(), false, false, 0);
15066
15067  // Replace each use (extract) with a load of the appropriate element.
15068  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
15069       UE = Uses.end(); UI != UE; ++UI) {
15070    SDNode *Extract = *UI;
15071
15072    // cOMpute the element's address.
15073    SDValue Idx = Extract->getOperand(1);
15074    unsigned EltSize =
15075        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
15076    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
15077    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15078    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
15079
15080    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
15081                                     StackPtr, OffsetVal);
15082
15083    // Load the scalar.
15084    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
15085                                     ScalarAddr, MachinePointerInfo(),
15086                                     false, false, false, 0);
15087
15088    // Replace the exact with the load.
15089    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
15090  }
15091
15092  // The replacement was made in place; don't return anything.
15093  return SDValue();
15094}
15095
15096/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
15097static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
15098                                   SDValue RHS, SelectionDAG &DAG,
15099                                   const X86Subtarget *Subtarget) {
15100  if (!VT.isVector())
15101    return 0;
15102
15103  switch (VT.getSimpleVT().SimpleTy) {
15104  default: return 0;
15105  case MVT::v32i8:
15106  case MVT::v16i16:
15107  case MVT::v8i32:
15108    if (!Subtarget->hasAVX2())
15109      return 0;
15110  case MVT::v16i8:
15111  case MVT::v8i16:
15112  case MVT::v4i32:
15113    if (!Subtarget->hasSSE2())
15114      return 0;
15115  }
15116
15117  // SSE2 has only a small subset of the operations.
15118  bool hasUnsigned = Subtarget->hasSSE41() ||
15119                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
15120  bool hasSigned = Subtarget->hasSSE41() ||
15121                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
15122
15123  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15124
15125  // Check for x CC y ? x : y.
15126  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15127      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15128    switch (CC) {
15129    default: break;
15130    case ISD::SETULT:
15131    case ISD::SETULE:
15132      return hasUnsigned ? X86ISD::UMIN : 0;
15133    case ISD::SETUGT:
15134    case ISD::SETUGE:
15135      return hasUnsigned ? X86ISD::UMAX : 0;
15136    case ISD::SETLT:
15137    case ISD::SETLE:
15138      return hasSigned ? X86ISD::SMIN : 0;
15139    case ISD::SETGT:
15140    case ISD::SETGE:
15141      return hasSigned ? X86ISD::SMAX : 0;
15142    }
15143  // Check for x CC y ? y : x -- a min/max with reversed arms.
15144  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15145             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15146    switch (CC) {
15147    default: break;
15148    case ISD::SETULT:
15149    case ISD::SETULE:
15150      return hasUnsigned ? X86ISD::UMAX : 0;
15151    case ISD::SETUGT:
15152    case ISD::SETUGE:
15153      return hasUnsigned ? X86ISD::UMIN : 0;
15154    case ISD::SETLT:
15155    case ISD::SETLE:
15156      return hasSigned ? X86ISD::SMAX : 0;
15157    case ISD::SETGT:
15158    case ISD::SETGE:
15159      return hasSigned ? X86ISD::SMIN : 0;
15160    }
15161  }
15162
15163  return 0;
15164}
15165
15166/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
15167/// nodes.
15168static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
15169                                    TargetLowering::DAGCombinerInfo &DCI,
15170                                    const X86Subtarget *Subtarget) {
15171  DebugLoc DL = N->getDebugLoc();
15172  SDValue Cond = N->getOperand(0);
15173  // Get the LHS/RHS of the select.
15174  SDValue LHS = N->getOperand(1);
15175  SDValue RHS = N->getOperand(2);
15176  EVT VT = LHS.getValueType();
15177
15178  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
15179  // instructions match the semantics of the common C idiom x<y?x:y but not
15180  // x<=y?x:y, because of how they handle negative zero (which can be
15181  // ignored in unsafe-math mode).
15182  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
15183      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
15184      (Subtarget->hasSSE2() ||
15185       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
15186    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15187
15188    unsigned Opcode = 0;
15189    // Check for x CC y ? x : y.
15190    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15191        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15192      switch (CC) {
15193      default: break;
15194      case ISD::SETULT:
15195        // Converting this to a min would handle NaNs incorrectly, and swapping
15196        // the operands would cause it to handle comparisons between positive
15197        // and negative zero incorrectly.
15198        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15199          if (!DAG.getTarget().Options.UnsafeFPMath &&
15200              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15201            break;
15202          std::swap(LHS, RHS);
15203        }
15204        Opcode = X86ISD::FMIN;
15205        break;
15206      case ISD::SETOLE:
15207        // Converting this to a min would handle comparisons between positive
15208        // and negative zero incorrectly.
15209        if (!DAG.getTarget().Options.UnsafeFPMath &&
15210            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15211          break;
15212        Opcode = X86ISD::FMIN;
15213        break;
15214      case ISD::SETULE:
15215        // Converting this to a min would handle both negative zeros and NaNs
15216        // incorrectly, but we can swap the operands to fix both.
15217        std::swap(LHS, RHS);
15218      case ISD::SETOLT:
15219      case ISD::SETLT:
15220      case ISD::SETLE:
15221        Opcode = X86ISD::FMIN;
15222        break;
15223
15224      case ISD::SETOGE:
15225        // Converting this to a max would handle comparisons between positive
15226        // and negative zero incorrectly.
15227        if (!DAG.getTarget().Options.UnsafeFPMath &&
15228            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15229          break;
15230        Opcode = X86ISD::FMAX;
15231        break;
15232      case ISD::SETUGT:
15233        // Converting this to a max would handle NaNs incorrectly, and swapping
15234        // the operands would cause it to handle comparisons between positive
15235        // and negative zero incorrectly.
15236        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15237          if (!DAG.getTarget().Options.UnsafeFPMath &&
15238              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15239            break;
15240          std::swap(LHS, RHS);
15241        }
15242        Opcode = X86ISD::FMAX;
15243        break;
15244      case ISD::SETUGE:
15245        // Converting this to a max would handle both negative zeros and NaNs
15246        // incorrectly, but we can swap the operands to fix both.
15247        std::swap(LHS, RHS);
15248      case ISD::SETOGT:
15249      case ISD::SETGT:
15250      case ISD::SETGE:
15251        Opcode = X86ISD::FMAX;
15252        break;
15253      }
15254    // Check for x CC y ? y : x -- a min/max with reversed arms.
15255    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15256               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15257      switch (CC) {
15258      default: break;
15259      case ISD::SETOGE:
15260        // Converting this to a min would handle comparisons between positive
15261        // and negative zero incorrectly, and swapping the operands would
15262        // cause it to handle NaNs incorrectly.
15263        if (!DAG.getTarget().Options.UnsafeFPMath &&
15264            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15265          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15266            break;
15267          std::swap(LHS, RHS);
15268        }
15269        Opcode = X86ISD::FMIN;
15270        break;
15271      case ISD::SETUGT:
15272        // Converting this to a min would handle NaNs incorrectly.
15273        if (!DAG.getTarget().Options.UnsafeFPMath &&
15274            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15275          break;
15276        Opcode = X86ISD::FMIN;
15277        break;
15278      case ISD::SETUGE:
15279        // Converting this to a min would handle both negative zeros and NaNs
15280        // incorrectly, but we can swap the operands to fix both.
15281        std::swap(LHS, RHS);
15282      case ISD::SETOGT:
15283      case ISD::SETGT:
15284      case ISD::SETGE:
15285        Opcode = X86ISD::FMIN;
15286        break;
15287
15288      case ISD::SETULT:
15289        // Converting this to a max would handle NaNs incorrectly.
15290        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15291          break;
15292        Opcode = X86ISD::FMAX;
15293        break;
15294      case ISD::SETOLE:
15295        // Converting this to a max would handle comparisons between positive
15296        // and negative zero incorrectly, and swapping the operands would
15297        // cause it to handle NaNs incorrectly.
15298        if (!DAG.getTarget().Options.UnsafeFPMath &&
15299            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15300          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15301            break;
15302          std::swap(LHS, RHS);
15303        }
15304        Opcode = X86ISD::FMAX;
15305        break;
15306      case ISD::SETULE:
15307        // Converting this to a max would handle both negative zeros and NaNs
15308        // incorrectly, but we can swap the operands to fix both.
15309        std::swap(LHS, RHS);
15310      case ISD::SETOLT:
15311      case ISD::SETLT:
15312      case ISD::SETLE:
15313        Opcode = X86ISD::FMAX;
15314        break;
15315      }
15316    }
15317
15318    if (Opcode)
15319      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15320  }
15321
15322  // If this is a select between two integer constants, try to do some
15323  // optimizations.
15324  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15325    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15326      // Don't do this for crazy integer types.
15327      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15328        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15329        // so that TrueC (the true value) is larger than FalseC.
15330        bool NeedsCondInvert = false;
15331
15332        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15333            // Efficiently invertible.
15334            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15335             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15336              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15337          NeedsCondInvert = true;
15338          std::swap(TrueC, FalseC);
15339        }
15340
15341        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15342        if (FalseC->getAPIntValue() == 0 &&
15343            TrueC->getAPIntValue().isPowerOf2()) {
15344          if (NeedsCondInvert) // Invert the condition if needed.
15345            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15346                               DAG.getConstant(1, Cond.getValueType()));
15347
15348          // Zero extend the condition if needed.
15349          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15350
15351          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15352          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15353                             DAG.getConstant(ShAmt, MVT::i8));
15354        }
15355
15356        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15357        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15358          if (NeedsCondInvert) // Invert the condition if needed.
15359            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15360                               DAG.getConstant(1, Cond.getValueType()));
15361
15362          // Zero extend the condition if needed.
15363          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15364                             FalseC->getValueType(0), Cond);
15365          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15366                             SDValue(FalseC, 0));
15367        }
15368
15369        // Optimize cases that will turn into an LEA instruction.  This requires
15370        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15371        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15372          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15373          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15374
15375          bool isFastMultiplier = false;
15376          if (Diff < 10) {
15377            switch ((unsigned char)Diff) {
15378              default: break;
15379              case 1:  // result = add base, cond
15380              case 2:  // result = lea base(    , cond*2)
15381              case 3:  // result = lea base(cond, cond*2)
15382              case 4:  // result = lea base(    , cond*4)
15383              case 5:  // result = lea base(cond, cond*4)
15384              case 8:  // result = lea base(    , cond*8)
15385              case 9:  // result = lea base(cond, cond*8)
15386                isFastMultiplier = true;
15387                break;
15388            }
15389          }
15390
15391          if (isFastMultiplier) {
15392            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15393            if (NeedsCondInvert) // Invert the condition if needed.
15394              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15395                                 DAG.getConstant(1, Cond.getValueType()));
15396
15397            // Zero extend the condition if needed.
15398            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15399                               Cond);
15400            // Scale the condition by the difference.
15401            if (Diff != 1)
15402              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15403                                 DAG.getConstant(Diff, Cond.getValueType()));
15404
15405            // Add the base if non-zero.
15406            if (FalseC->getAPIntValue() != 0)
15407              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15408                                 SDValue(FalseC, 0));
15409            return Cond;
15410          }
15411        }
15412      }
15413  }
15414
15415  // Canonicalize max and min:
15416  // (x > y) ? x : y -> (x >= y) ? x : y
15417  // (x < y) ? x : y -> (x <= y) ? x : y
15418  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15419  // the need for an extra compare
15420  // against zero. e.g.
15421  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15422  // subl   %esi, %edi
15423  // testl  %edi, %edi
15424  // movl   $0, %eax
15425  // cmovgl %edi, %eax
15426  // =>
15427  // xorl   %eax, %eax
15428  // subl   %esi, $edi
15429  // cmovsl %eax, %edi
15430  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15431      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15432      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15433    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15434    switch (CC) {
15435    default: break;
15436    case ISD::SETLT:
15437    case ISD::SETGT: {
15438      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15439      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
15440                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15441      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15442    }
15443    }
15444  }
15445
15446  // Match VSELECTs into subs with unsigned saturation.
15447  if (!DCI.isBeforeLegalize() &&
15448      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15449      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15450      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15451       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15452    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15453
15454    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15455    // left side invert the predicate to simplify logic below.
15456    SDValue Other;
15457    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15458      Other = RHS;
15459      CC = ISD::getSetCCInverse(CC, true);
15460    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15461      Other = LHS;
15462    }
15463
15464    if (Other.getNode() && Other->getNumOperands() == 2 &&
15465        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15466      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15467      SDValue CondRHS = Cond->getOperand(1);
15468
15469      // Look for a general sub with unsigned saturation first.
15470      // x >= y ? x-y : 0 --> subus x, y
15471      // x >  y ? x-y : 0 --> subus x, y
15472      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15473          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15474        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15475
15476      // If the RHS is a constant we have to reverse the const canonicalization.
15477      // x > C-1 ? x+-C : 0 --> subus x, C
15478      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15479          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15480        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15481        if (CondRHS.getConstantOperandVal(0) == -A-1)
15482          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15483                             DAG.getConstant(-A, VT));
15484      }
15485
15486      // Another special case: If C was a sign bit, the sub has been
15487      // canonicalized into a xor.
15488      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15489      //        it's safe to decanonicalize the xor?
15490      // x s< 0 ? x^C : 0 --> subus x, C
15491      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15492          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15493          isSplatVector(OpRHS.getNode())) {
15494        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15495        if (A.isSignBit())
15496          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15497      }
15498    }
15499  }
15500
15501  // Try to match a min/max vector operation.
15502  if (!DCI.isBeforeLegalize() &&
15503      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15504    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15505      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15506
15507  // If we know that this node is legal then we know that it is going to be
15508  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15509  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15510  // to simplify previous instructions.
15511  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15512  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15513      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15514    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15515
15516    // Don't optimize vector selects that map to mask-registers.
15517    if (BitWidth == 1)
15518      return SDValue();
15519
15520    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15521    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15522
15523    APInt KnownZero, KnownOne;
15524    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15525                                          DCI.isBeforeLegalizeOps());
15526    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15527        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15528      DCI.CommitTargetLoweringOpt(TLO);
15529  }
15530
15531  return SDValue();
15532}
15533
15534// Check whether a boolean test is testing a boolean value generated by
15535// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15536// code.
15537//
15538// Simplify the following patterns:
15539// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15540// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15541// to (Op EFLAGS Cond)
15542//
15543// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15544// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15545// to (Op EFLAGS !Cond)
15546//
15547// where Op could be BRCOND or CMOV.
15548//
15549static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15550  // Quit if not CMP and SUB with its value result used.
15551  if (Cmp.getOpcode() != X86ISD::CMP &&
15552      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15553      return SDValue();
15554
15555  // Quit if not used as a boolean value.
15556  if (CC != X86::COND_E && CC != X86::COND_NE)
15557    return SDValue();
15558
15559  // Check CMP operands. One of them should be 0 or 1 and the other should be
15560  // an SetCC or extended from it.
15561  SDValue Op1 = Cmp.getOperand(0);
15562  SDValue Op2 = Cmp.getOperand(1);
15563
15564  SDValue SetCC;
15565  const ConstantSDNode* C = 0;
15566  bool needOppositeCond = (CC == X86::COND_E);
15567
15568  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15569    SetCC = Op2;
15570  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15571    SetCC = Op1;
15572  else // Quit if all operands are not constants.
15573    return SDValue();
15574
15575  if (C->getZExtValue() == 1)
15576    needOppositeCond = !needOppositeCond;
15577  else if (C->getZExtValue() != 0)
15578    // Quit if the constant is neither 0 or 1.
15579    return SDValue();
15580
15581  // Skip 'zext' node.
15582  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
15583    SetCC = SetCC.getOperand(0);
15584
15585  switch (SetCC.getOpcode()) {
15586  case X86ISD::SETCC:
15587    // Set the condition code or opposite one if necessary.
15588    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
15589    if (needOppositeCond)
15590      CC = X86::GetOppositeBranchCondition(CC);
15591    return SetCC.getOperand(1);
15592  case X86ISD::CMOV: {
15593    // Check whether false/true value has canonical one, i.e. 0 or 1.
15594    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
15595    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
15596    // Quit if true value is not a constant.
15597    if (!TVal)
15598      return SDValue();
15599    // Quit if false value is not a constant.
15600    if (!FVal) {
15601      // A special case for rdrand, where 0 is set if false cond is found.
15602      SDValue Op = SetCC.getOperand(0);
15603      if (Op.getOpcode() != X86ISD::RDRAND)
15604        return SDValue();
15605    }
15606    // Quit if false value is not the constant 0 or 1.
15607    bool FValIsFalse = true;
15608    if (FVal && FVal->getZExtValue() != 0) {
15609      if (FVal->getZExtValue() != 1)
15610        return SDValue();
15611      // If FVal is 1, opposite cond is needed.
15612      needOppositeCond = !needOppositeCond;
15613      FValIsFalse = false;
15614    }
15615    // Quit if TVal is not the constant opposite of FVal.
15616    if (FValIsFalse && TVal->getZExtValue() != 1)
15617      return SDValue();
15618    if (!FValIsFalse && TVal->getZExtValue() != 0)
15619      return SDValue();
15620    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15621    if (needOppositeCond)
15622      CC = X86::GetOppositeBranchCondition(CC);
15623    return SetCC.getOperand(3);
15624  }
15625  }
15626
15627  return SDValue();
15628}
15629
15630/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15631static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15632                                  TargetLowering::DAGCombinerInfo &DCI,
15633                                  const X86Subtarget *Subtarget) {
15634  DebugLoc DL = N->getDebugLoc();
15635
15636  // If the flag operand isn't dead, don't touch this CMOV.
15637  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15638    return SDValue();
15639
15640  SDValue FalseOp = N->getOperand(0);
15641  SDValue TrueOp = N->getOperand(1);
15642  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15643  SDValue Cond = N->getOperand(3);
15644
15645  if (CC == X86::COND_E || CC == X86::COND_NE) {
15646    switch (Cond.getOpcode()) {
15647    default: break;
15648    case X86ISD::BSR:
15649    case X86ISD::BSF:
15650      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
15651      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
15652        return (CC == X86::COND_E) ? FalseOp : TrueOp;
15653    }
15654  }
15655
15656  SDValue Flags;
15657
15658  Flags = checkBoolTestSetCCCombine(Cond, CC);
15659  if (Flags.getNode() &&
15660      // Extra check as FCMOV only supports a subset of X86 cond.
15661      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
15662    SDValue Ops[] = { FalseOp, TrueOp,
15663                      DAG.getConstant(CC, MVT::i8), Flags };
15664    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
15665                       Ops, array_lengthof(Ops));
15666  }
15667
15668  // If this is a select between two integer constants, try to do some
15669  // optimizations.  Note that the operands are ordered the opposite of SELECT
15670  // operands.
15671  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
15672    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
15673      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
15674      // larger than FalseC (the false value).
15675      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
15676        CC = X86::GetOppositeBranchCondition(CC);
15677        std::swap(TrueC, FalseC);
15678        std::swap(TrueOp, FalseOp);
15679      }
15680
15681      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
15682      // This is efficient for any integer data type (including i8/i16) and
15683      // shift amount.
15684      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
15685        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15686                           DAG.getConstant(CC, MVT::i8), Cond);
15687
15688        // Zero extend the condition if needed.
15689        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
15690
15691        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15692        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
15693                           DAG.getConstant(ShAmt, MVT::i8));
15694        if (N->getNumValues() == 2)  // Dead flag value?
15695          return DCI.CombineTo(N, Cond, SDValue());
15696        return Cond;
15697      }
15698
15699      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
15700      // for any integer data type, including i8/i16.
15701      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15702        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15703                           DAG.getConstant(CC, MVT::i8), Cond);
15704
15705        // Zero extend the condition if needed.
15706        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15707                           FalseC->getValueType(0), Cond);
15708        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15709                           SDValue(FalseC, 0));
15710
15711        if (N->getNumValues() == 2)  // Dead flag value?
15712          return DCI.CombineTo(N, Cond, SDValue());
15713        return Cond;
15714      }
15715
15716      // Optimize cases that will turn into an LEA instruction.  This requires
15717      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15718      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15719        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15720        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15721
15722        bool isFastMultiplier = false;
15723        if (Diff < 10) {
15724          switch ((unsigned char)Diff) {
15725          default: break;
15726          case 1:  // result = add base, cond
15727          case 2:  // result = lea base(    , cond*2)
15728          case 3:  // result = lea base(cond, cond*2)
15729          case 4:  // result = lea base(    , cond*4)
15730          case 5:  // result = lea base(cond, cond*4)
15731          case 8:  // result = lea base(    , cond*8)
15732          case 9:  // result = lea base(cond, cond*8)
15733            isFastMultiplier = true;
15734            break;
15735          }
15736        }
15737
15738        if (isFastMultiplier) {
15739          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15740          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15741                             DAG.getConstant(CC, MVT::i8), Cond);
15742          // Zero extend the condition if needed.
15743          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15744                             Cond);
15745          // Scale the condition by the difference.
15746          if (Diff != 1)
15747            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15748                               DAG.getConstant(Diff, Cond.getValueType()));
15749
15750          // Add the base if non-zero.
15751          if (FalseC->getAPIntValue() != 0)
15752            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15753                               SDValue(FalseC, 0));
15754          if (N->getNumValues() == 2)  // Dead flag value?
15755            return DCI.CombineTo(N, Cond, SDValue());
15756          return Cond;
15757        }
15758      }
15759    }
15760  }
15761
15762  // Handle these cases:
15763  //   (select (x != c), e, c) -> select (x != c), e, x),
15764  //   (select (x == c), c, e) -> select (x == c), x, e)
15765  // where the c is an integer constant, and the "select" is the combination
15766  // of CMOV and CMP.
15767  //
15768  // The rationale for this change is that the conditional-move from a constant
15769  // needs two instructions, however, conditional-move from a register needs
15770  // only one instruction.
15771  //
15772  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
15773  //  some instruction-combining opportunities. This opt needs to be
15774  //  postponed as late as possible.
15775  //
15776  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
15777    // the DCI.xxxx conditions are provided to postpone the optimization as
15778    // late as possible.
15779
15780    ConstantSDNode *CmpAgainst = 0;
15781    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
15782        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
15783        !isa<ConstantSDNode>(Cond.getOperand(0))) {
15784
15785      if (CC == X86::COND_NE &&
15786          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
15787        CC = X86::GetOppositeBranchCondition(CC);
15788        std::swap(TrueOp, FalseOp);
15789      }
15790
15791      if (CC == X86::COND_E &&
15792          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
15793        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
15794                          DAG.getConstant(CC, MVT::i8), Cond };
15795        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
15796                           array_lengthof(Ops));
15797      }
15798    }
15799  }
15800
15801  return SDValue();
15802}
15803
15804/// PerformMulCombine - Optimize a single multiply with constant into two
15805/// in order to implement it with two cheaper instructions, e.g.
15806/// LEA + SHL, LEA + LEA.
15807static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
15808                                 TargetLowering::DAGCombinerInfo &DCI) {
15809  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15810    return SDValue();
15811
15812  EVT VT = N->getValueType(0);
15813  if (VT != MVT::i64)
15814    return SDValue();
15815
15816  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15817  if (!C)
15818    return SDValue();
15819  uint64_t MulAmt = C->getZExtValue();
15820  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
15821    return SDValue();
15822
15823  uint64_t MulAmt1 = 0;
15824  uint64_t MulAmt2 = 0;
15825  if ((MulAmt % 9) == 0) {
15826    MulAmt1 = 9;
15827    MulAmt2 = MulAmt / 9;
15828  } else if ((MulAmt % 5) == 0) {
15829    MulAmt1 = 5;
15830    MulAmt2 = MulAmt / 5;
15831  } else if ((MulAmt % 3) == 0) {
15832    MulAmt1 = 3;
15833    MulAmt2 = MulAmt / 3;
15834  }
15835  if (MulAmt2 &&
15836      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
15837    DebugLoc DL = N->getDebugLoc();
15838
15839    if (isPowerOf2_64(MulAmt2) &&
15840        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
15841      // If second multiplifer is pow2, issue it first. We want the multiply by
15842      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
15843      // is an add.
15844      std::swap(MulAmt1, MulAmt2);
15845
15846    SDValue NewMul;
15847    if (isPowerOf2_64(MulAmt1))
15848      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15849                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
15850    else
15851      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
15852                           DAG.getConstant(MulAmt1, VT));
15853
15854    if (isPowerOf2_64(MulAmt2))
15855      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
15856                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
15857    else
15858      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
15859                           DAG.getConstant(MulAmt2, VT));
15860
15861    // Do not add new nodes to DAG combiner worklist.
15862    DCI.CombineTo(N, NewMul, false);
15863  }
15864  return SDValue();
15865}
15866
15867static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
15868  SDValue N0 = N->getOperand(0);
15869  SDValue N1 = N->getOperand(1);
15870  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
15871  EVT VT = N0.getValueType();
15872
15873  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
15874  // since the result of setcc_c is all zero's or all ones.
15875  if (VT.isInteger() && !VT.isVector() &&
15876      N1C && N0.getOpcode() == ISD::AND &&
15877      N0.getOperand(1).getOpcode() == ISD::Constant) {
15878    SDValue N00 = N0.getOperand(0);
15879    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
15880        ((N00.getOpcode() == ISD::ANY_EXTEND ||
15881          N00.getOpcode() == ISD::ZERO_EXTEND) &&
15882         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
15883      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
15884      APInt ShAmt = N1C->getAPIntValue();
15885      Mask = Mask.shl(ShAmt);
15886      if (Mask != 0)
15887        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
15888                           N00, DAG.getConstant(Mask, VT));
15889    }
15890  }
15891
15892  // Hardware support for vector shifts is sparse which makes us scalarize the
15893  // vector operations in many cases. Also, on sandybridge ADD is faster than
15894  // shl.
15895  // (shl V, 1) -> add V,V
15896  if (isSplatVector(N1.getNode())) {
15897    assert(N0.getValueType().isVector() && "Invalid vector shift type");
15898    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
15899    // We shift all of the values by one. In many cases we do not have
15900    // hardware support for this operation. This is better expressed as an ADD
15901    // of two values.
15902    if (N1C && (1 == N1C->getZExtValue())) {
15903      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
15904    }
15905  }
15906
15907  return SDValue();
15908}
15909
15910/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
15911///                       when possible.
15912static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
15913                                   TargetLowering::DAGCombinerInfo &DCI,
15914                                   const X86Subtarget *Subtarget) {
15915  EVT VT = N->getValueType(0);
15916  if (N->getOpcode() == ISD::SHL) {
15917    SDValue V = PerformSHLCombine(N, DAG);
15918    if (V.getNode()) return V;
15919  }
15920
15921  // On X86 with SSE2 support, we can transform this to a vector shift if
15922  // all elements are shifted by the same amount.  We can't do this in legalize
15923  // because the a constant vector is typically transformed to a constant pool
15924  // so we have no knowledge of the shift amount.
15925  if (!Subtarget->hasSSE2())
15926    return SDValue();
15927
15928  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
15929      (!Subtarget->hasInt256() ||
15930       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
15931    return SDValue();
15932
15933  SDValue ShAmtOp = N->getOperand(1);
15934  EVT EltVT = VT.getVectorElementType();
15935  DebugLoc DL = N->getDebugLoc();
15936  SDValue BaseShAmt = SDValue();
15937  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
15938    unsigned NumElts = VT.getVectorNumElements();
15939    unsigned i = 0;
15940    for (; i != NumElts; ++i) {
15941      SDValue Arg = ShAmtOp.getOperand(i);
15942      if (Arg.getOpcode() == ISD::UNDEF) continue;
15943      BaseShAmt = Arg;
15944      break;
15945    }
15946    // Handle the case where the build_vector is all undef
15947    // FIXME: Should DAG allow this?
15948    if (i == NumElts)
15949      return SDValue();
15950
15951    for (; i != NumElts; ++i) {
15952      SDValue Arg = ShAmtOp.getOperand(i);
15953      if (Arg.getOpcode() == ISD::UNDEF) continue;
15954      if (Arg != BaseShAmt) {
15955        return SDValue();
15956      }
15957    }
15958  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
15959             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
15960    SDValue InVec = ShAmtOp.getOperand(0);
15961    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
15962      unsigned NumElts = InVec.getValueType().getVectorNumElements();
15963      unsigned i = 0;
15964      for (; i != NumElts; ++i) {
15965        SDValue Arg = InVec.getOperand(i);
15966        if (Arg.getOpcode() == ISD::UNDEF) continue;
15967        BaseShAmt = Arg;
15968        break;
15969      }
15970    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15971       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
15972         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
15973         if (C->getZExtValue() == SplatIdx)
15974           BaseShAmt = InVec.getOperand(1);
15975       }
15976    }
15977    if (BaseShAmt.getNode() == 0) {
15978      // Don't create instructions with illegal types after legalize
15979      // types has run.
15980      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
15981          !DCI.isBeforeLegalize())
15982        return SDValue();
15983
15984      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
15985                              DAG.getIntPtrConstant(0));
15986    }
15987  } else
15988    return SDValue();
15989
15990  // The shift amount is an i32.
15991  if (EltVT.bitsGT(MVT::i32))
15992    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
15993  else if (EltVT.bitsLT(MVT::i32))
15994    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
15995
15996  // The shift amount is identical so we can do a vector shift.
15997  SDValue  ValOp = N->getOperand(0);
15998  switch (N->getOpcode()) {
15999  default:
16000    llvm_unreachable("Unknown shift opcode!");
16001  case ISD::SHL:
16002    switch (VT.getSimpleVT().SimpleTy) {
16003    default: return SDValue();
16004    case MVT::v2i64:
16005    case MVT::v4i32:
16006    case MVT::v8i16:
16007    case MVT::v4i64:
16008    case MVT::v8i32:
16009    case MVT::v16i16:
16010      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
16011    }
16012  case ISD::SRA:
16013    switch (VT.getSimpleVT().SimpleTy) {
16014    default: return SDValue();
16015    case MVT::v4i32:
16016    case MVT::v8i16:
16017    case MVT::v8i32:
16018    case MVT::v16i16:
16019      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
16020    }
16021  case ISD::SRL:
16022    switch (VT.getSimpleVT().SimpleTy) {
16023    default: return SDValue();
16024    case MVT::v2i64:
16025    case MVT::v4i32:
16026    case MVT::v8i16:
16027    case MVT::v4i64:
16028    case MVT::v8i32:
16029    case MVT::v16i16:
16030      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
16031    }
16032  }
16033}
16034
16035// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
16036// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
16037// and friends.  Likewise for OR -> CMPNEQSS.
16038static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
16039                            TargetLowering::DAGCombinerInfo &DCI,
16040                            const X86Subtarget *Subtarget) {
16041  unsigned opcode;
16042
16043  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
16044  // we're requiring SSE2 for both.
16045  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
16046    SDValue N0 = N->getOperand(0);
16047    SDValue N1 = N->getOperand(1);
16048    SDValue CMP0 = N0->getOperand(1);
16049    SDValue CMP1 = N1->getOperand(1);
16050    DebugLoc DL = N->getDebugLoc();
16051
16052    // The SETCCs should both refer to the same CMP.
16053    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
16054      return SDValue();
16055
16056    SDValue CMP00 = CMP0->getOperand(0);
16057    SDValue CMP01 = CMP0->getOperand(1);
16058    EVT     VT    = CMP00.getValueType();
16059
16060    if (VT == MVT::f32 || VT == MVT::f64) {
16061      bool ExpectingFlags = false;
16062      // Check for any users that want flags:
16063      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
16064           !ExpectingFlags && UI != UE; ++UI)
16065        switch (UI->getOpcode()) {
16066        default:
16067        case ISD::BR_CC:
16068        case ISD::BRCOND:
16069        case ISD::SELECT:
16070          ExpectingFlags = true;
16071          break;
16072        case ISD::CopyToReg:
16073        case ISD::SIGN_EXTEND:
16074        case ISD::ZERO_EXTEND:
16075        case ISD::ANY_EXTEND:
16076          break;
16077        }
16078
16079      if (!ExpectingFlags) {
16080        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
16081        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
16082
16083        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
16084          X86::CondCode tmp = cc0;
16085          cc0 = cc1;
16086          cc1 = tmp;
16087        }
16088
16089        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
16090            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
16091          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
16092          X86ISD::NodeType NTOperator = is64BitFP ?
16093            X86ISD::FSETCCsd : X86ISD::FSETCCss;
16094          // FIXME: need symbolic constants for these magic numbers.
16095          // See X86ATTInstPrinter.cpp:printSSECC().
16096          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
16097          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
16098                                              DAG.getConstant(x86cc, MVT::i8));
16099          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
16100                                              OnesOrZeroesF);
16101          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
16102                                      DAG.getConstant(1, MVT::i32));
16103          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
16104          return OneBitOfTruth;
16105        }
16106      }
16107    }
16108  }
16109  return SDValue();
16110}
16111
16112/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
16113/// so it can be folded inside ANDNP.
16114static bool CanFoldXORWithAllOnes(const SDNode *N) {
16115  EVT VT = N->getValueType(0);
16116
16117  // Match direct AllOnes for 128 and 256-bit vectors
16118  if (ISD::isBuildVectorAllOnes(N))
16119    return true;
16120
16121  // Look through a bit convert.
16122  if (N->getOpcode() == ISD::BITCAST)
16123    N = N->getOperand(0).getNode();
16124
16125  // Sometimes the operand may come from a insert_subvector building a 256-bit
16126  // allones vector
16127  if (VT.is256BitVector() &&
16128      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
16129    SDValue V1 = N->getOperand(0);
16130    SDValue V2 = N->getOperand(1);
16131
16132    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
16133        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
16134        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
16135        ISD::isBuildVectorAllOnes(V2.getNode()))
16136      return true;
16137  }
16138
16139  return false;
16140}
16141
16142// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
16143// register. In most cases we actually compare or select YMM-sized registers
16144// and mixing the two types creates horrible code. This method optimizes
16145// some of the transition sequences.
16146static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
16147                                 TargetLowering::DAGCombinerInfo &DCI,
16148                                 const X86Subtarget *Subtarget) {
16149  EVT VT = N->getValueType(0);
16150  if (!VT.is256BitVector())
16151    return SDValue();
16152
16153  assert((N->getOpcode() == ISD::ANY_EXTEND ||
16154          N->getOpcode() == ISD::ZERO_EXTEND ||
16155          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
16156
16157  SDValue Narrow = N->getOperand(0);
16158  EVT NarrowVT = Narrow->getValueType(0);
16159  if (!NarrowVT.is128BitVector())
16160    return SDValue();
16161
16162  if (Narrow->getOpcode() != ISD::XOR &&
16163      Narrow->getOpcode() != ISD::AND &&
16164      Narrow->getOpcode() != ISD::OR)
16165    return SDValue();
16166
16167  SDValue N0  = Narrow->getOperand(0);
16168  SDValue N1  = Narrow->getOperand(1);
16169  DebugLoc DL = Narrow->getDebugLoc();
16170
16171  // The Left side has to be a trunc.
16172  if (N0.getOpcode() != ISD::TRUNCATE)
16173    return SDValue();
16174
16175  // The type of the truncated inputs.
16176  EVT WideVT = N0->getOperand(0)->getValueType(0);
16177  if (WideVT != VT)
16178    return SDValue();
16179
16180  // The right side has to be a 'trunc' or a constant vector.
16181  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
16182  bool RHSConst = (isSplatVector(N1.getNode()) &&
16183                   isa<ConstantSDNode>(N1->getOperand(0)));
16184  if (!RHSTrunc && !RHSConst)
16185    return SDValue();
16186
16187  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16188
16189  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16190    return SDValue();
16191
16192  // Set N0 and N1 to hold the inputs to the new wide operation.
16193  N0 = N0->getOperand(0);
16194  if (RHSConst) {
16195    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16196                     N1->getOperand(0));
16197    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16198    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16199  } else if (RHSTrunc) {
16200    N1 = N1->getOperand(0);
16201  }
16202
16203  // Generate the wide operation.
16204  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16205  unsigned Opcode = N->getOpcode();
16206  switch (Opcode) {
16207  case ISD::ANY_EXTEND:
16208    return Op;
16209  case ISD::ZERO_EXTEND: {
16210    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16211    APInt Mask = APInt::getAllOnesValue(InBits);
16212    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16213    return DAG.getNode(ISD::AND, DL, VT,
16214                       Op, DAG.getConstant(Mask, VT));
16215  }
16216  case ISD::SIGN_EXTEND:
16217    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16218                       Op, DAG.getValueType(NarrowVT));
16219  default:
16220    llvm_unreachable("Unexpected opcode");
16221  }
16222}
16223
16224static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16225                                 TargetLowering::DAGCombinerInfo &DCI,
16226                                 const X86Subtarget *Subtarget) {
16227  EVT VT = N->getValueType(0);
16228  if (DCI.isBeforeLegalizeOps())
16229    return SDValue();
16230
16231  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16232  if (R.getNode())
16233    return R;
16234
16235  // Create BLSI, and BLSR instructions
16236  // BLSI is X & (-X)
16237  // BLSR is X & (X-1)
16238  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16239    SDValue N0 = N->getOperand(0);
16240    SDValue N1 = N->getOperand(1);
16241    DebugLoc DL = N->getDebugLoc();
16242
16243    // Check LHS for neg
16244    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16245        isZero(N0.getOperand(0)))
16246      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16247
16248    // Check RHS for neg
16249    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16250        isZero(N1.getOperand(0)))
16251      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16252
16253    // Check LHS for X-1
16254    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16255        isAllOnes(N0.getOperand(1)))
16256      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16257
16258    // Check RHS for X-1
16259    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16260        isAllOnes(N1.getOperand(1)))
16261      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16262
16263    return SDValue();
16264  }
16265
16266  // Want to form ANDNP nodes:
16267  // 1) In the hopes of then easily combining them with OR and AND nodes
16268  //    to form PBLEND/PSIGN.
16269  // 2) To match ANDN packed intrinsics
16270  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16271    return SDValue();
16272
16273  SDValue N0 = N->getOperand(0);
16274  SDValue N1 = N->getOperand(1);
16275  DebugLoc DL = N->getDebugLoc();
16276
16277  // Check LHS for vnot
16278  if (N0.getOpcode() == ISD::XOR &&
16279      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16280      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16281    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16282
16283  // Check RHS for vnot
16284  if (N1.getOpcode() == ISD::XOR &&
16285      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16286      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16287    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16288
16289  return SDValue();
16290}
16291
16292static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16293                                TargetLowering::DAGCombinerInfo &DCI,
16294                                const X86Subtarget *Subtarget) {
16295  EVT VT = N->getValueType(0);
16296  if (DCI.isBeforeLegalizeOps())
16297    return SDValue();
16298
16299  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16300  if (R.getNode())
16301    return R;
16302
16303  SDValue N0 = N->getOperand(0);
16304  SDValue N1 = N->getOperand(1);
16305
16306  // look for psign/blend
16307  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16308    if (!Subtarget->hasSSSE3() ||
16309        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16310      return SDValue();
16311
16312    // Canonicalize pandn to RHS
16313    if (N0.getOpcode() == X86ISD::ANDNP)
16314      std::swap(N0, N1);
16315    // or (and (m, y), (pandn m, x))
16316    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16317      SDValue Mask = N1.getOperand(0);
16318      SDValue X    = N1.getOperand(1);
16319      SDValue Y;
16320      if (N0.getOperand(0) == Mask)
16321        Y = N0.getOperand(1);
16322      if (N0.getOperand(1) == Mask)
16323        Y = N0.getOperand(0);
16324
16325      // Check to see if the mask appeared in both the AND and ANDNP and
16326      if (!Y.getNode())
16327        return SDValue();
16328
16329      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16330      // Look through mask bitcast.
16331      if (Mask.getOpcode() == ISD::BITCAST)
16332        Mask = Mask.getOperand(0);
16333      if (X.getOpcode() == ISD::BITCAST)
16334        X = X.getOperand(0);
16335      if (Y.getOpcode() == ISD::BITCAST)
16336        Y = Y.getOperand(0);
16337
16338      EVT MaskVT = Mask.getValueType();
16339
16340      // Validate that the Mask operand is a vector sra node.
16341      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16342      // there is no psrai.b
16343      if (Mask.getOpcode() != X86ISD::VSRAI)
16344        return SDValue();
16345
16346      // Check that the SRA is all signbits.
16347      SDValue SraC = Mask.getOperand(1);
16348      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16349      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16350      if ((SraAmt + 1) != EltBits)
16351        return SDValue();
16352
16353      DebugLoc DL = N->getDebugLoc();
16354
16355      // Now we know we at least have a plendvb with the mask val.  See if
16356      // we can form a psignb/w/d.
16357      // psign = x.type == y.type == mask.type && y = sub(0, x);
16358      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16359          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16360          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16361        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16362               "Unsupported VT for PSIGN");
16363        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
16364        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16365      }
16366      // PBLENDVB only available on SSE 4.1
16367      if (!Subtarget->hasSSE41())
16368        return SDValue();
16369
16370      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16371
16372      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16373      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16374      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16375      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16376      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16377    }
16378  }
16379
16380  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16381    return SDValue();
16382
16383  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16384  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16385    std::swap(N0, N1);
16386  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16387    return SDValue();
16388  if (!N0.hasOneUse() || !N1.hasOneUse())
16389    return SDValue();
16390
16391  SDValue ShAmt0 = N0.getOperand(1);
16392  if (ShAmt0.getValueType() != MVT::i8)
16393    return SDValue();
16394  SDValue ShAmt1 = N1.getOperand(1);
16395  if (ShAmt1.getValueType() != MVT::i8)
16396    return SDValue();
16397  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16398    ShAmt0 = ShAmt0.getOperand(0);
16399  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16400    ShAmt1 = ShAmt1.getOperand(0);
16401
16402  DebugLoc DL = N->getDebugLoc();
16403  unsigned Opc = X86ISD::SHLD;
16404  SDValue Op0 = N0.getOperand(0);
16405  SDValue Op1 = N1.getOperand(0);
16406  if (ShAmt0.getOpcode() == ISD::SUB) {
16407    Opc = X86ISD::SHRD;
16408    std::swap(Op0, Op1);
16409    std::swap(ShAmt0, ShAmt1);
16410  }
16411
16412  unsigned Bits = VT.getSizeInBits();
16413  if (ShAmt1.getOpcode() == ISD::SUB) {
16414    SDValue Sum = ShAmt1.getOperand(0);
16415    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16416      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16417      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16418        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16419      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16420        return DAG.getNode(Opc, DL, VT,
16421                           Op0, Op1,
16422                           DAG.getNode(ISD::TRUNCATE, DL,
16423                                       MVT::i8, ShAmt0));
16424    }
16425  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16426    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16427    if (ShAmt0C &&
16428        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16429      return DAG.getNode(Opc, DL, VT,
16430                         N0.getOperand(0), N1.getOperand(0),
16431                         DAG.getNode(ISD::TRUNCATE, DL,
16432                                       MVT::i8, ShAmt0));
16433  }
16434
16435  return SDValue();
16436}
16437
16438// Generate NEG and CMOV for integer abs.
16439static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16440  EVT VT = N->getValueType(0);
16441
16442  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16443  // 8-bit integer abs to NEG and CMOV.
16444  if (VT.isInteger() && VT.getSizeInBits() == 8)
16445    return SDValue();
16446
16447  SDValue N0 = N->getOperand(0);
16448  SDValue N1 = N->getOperand(1);
16449  DebugLoc DL = N->getDebugLoc();
16450
16451  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16452  // and change it to SUB and CMOV.
16453  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16454      N0.getOpcode() == ISD::ADD &&
16455      N0.getOperand(1) == N1 &&
16456      N1.getOpcode() == ISD::SRA &&
16457      N1.getOperand(0) == N0.getOperand(0))
16458    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16459      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16460        // Generate SUB & CMOV.
16461        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16462                                  DAG.getConstant(0, VT), N0.getOperand(0));
16463
16464        SDValue Ops[] = { N0.getOperand(0), Neg,
16465                          DAG.getConstant(X86::COND_GE, MVT::i8),
16466                          SDValue(Neg.getNode(), 1) };
16467        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16468                           Ops, array_lengthof(Ops));
16469      }
16470  return SDValue();
16471}
16472
16473// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16474static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16475                                 TargetLowering::DAGCombinerInfo &DCI,
16476                                 const X86Subtarget *Subtarget) {
16477  EVT VT = N->getValueType(0);
16478  if (DCI.isBeforeLegalizeOps())
16479    return SDValue();
16480
16481  if (Subtarget->hasCMov()) {
16482    SDValue RV = performIntegerAbsCombine(N, DAG);
16483    if (RV.getNode())
16484      return RV;
16485  }
16486
16487  // Try forming BMI if it is available.
16488  if (!Subtarget->hasBMI())
16489    return SDValue();
16490
16491  if (VT != MVT::i32 && VT != MVT::i64)
16492    return SDValue();
16493
16494  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16495
16496  // Create BLSMSK instructions by finding X ^ (X-1)
16497  SDValue N0 = N->getOperand(0);
16498  SDValue N1 = N->getOperand(1);
16499  DebugLoc DL = N->getDebugLoc();
16500
16501  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16502      isAllOnes(N0.getOperand(1)))
16503    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16504
16505  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16506      isAllOnes(N1.getOperand(1)))
16507    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16508
16509  return SDValue();
16510}
16511
16512/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16513static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16514                                  TargetLowering::DAGCombinerInfo &DCI,
16515                                  const X86Subtarget *Subtarget) {
16516  LoadSDNode *Ld = cast<LoadSDNode>(N);
16517  EVT RegVT = Ld->getValueType(0);
16518  EVT MemVT = Ld->getMemoryVT();
16519  DebugLoc dl = Ld->getDebugLoc();
16520  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16521  unsigned RegSz = RegVT.getSizeInBits();
16522
16523  ISD::LoadExtType Ext = Ld->getExtensionType();
16524  unsigned Alignment = Ld->getAlignment();
16525  bool IsAligned = Alignment == 0 || Alignment == MemVT.getSizeInBits()/8;
16526
16527  // On Sandybridge unaligned 256bit loads are inefficient.
16528  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
16529      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
16530    unsigned NumElems = RegVT.getVectorNumElements();
16531    if (NumElems < 2)
16532      return SDValue();
16533
16534    SDValue Ptr = Ld->getBasePtr();
16535    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
16536
16537    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16538                                  NumElems/2);
16539    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16540                                Ld->getPointerInfo(), Ld->isVolatile(),
16541                                Ld->isNonTemporal(), Ld->isInvariant(),
16542                                Alignment);
16543    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16544    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16545                                Ld->getPointerInfo(), Ld->isVolatile(),
16546                                Ld->isNonTemporal(), Ld->isInvariant(),
16547                                std::max(Alignment/2U, 1U));
16548    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16549                             Load1.getValue(1),
16550                             Load2.getValue(1));
16551
16552    SDValue NewVec = DAG.getUNDEF(RegVT);
16553    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
16554    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
16555    return DCI.CombineTo(N, NewVec, TF, true);
16556  }
16557
16558  // If this is a vector EXT Load then attempt to optimize it using a
16559  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16560  // expansion is still better than scalar code.
16561  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16562  // emit a shuffle and a arithmetic shift.
16563  // TODO: It is possible to support ZExt by zeroing the undef values
16564  // during the shuffle phase or after the shuffle.
16565  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16566      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16567    assert(MemVT != RegVT && "Cannot extend to the same type");
16568    assert(MemVT.isVector() && "Must load a vector from memory");
16569
16570    unsigned NumElems = RegVT.getVectorNumElements();
16571    unsigned MemSz = MemVT.getSizeInBits();
16572    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16573
16574    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16575      return SDValue();
16576
16577    // All sizes must be a power of two.
16578    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16579      return SDValue();
16580
16581    // Attempt to load the original value using scalar loads.
16582    // Find the largest scalar type that divides the total loaded size.
16583    MVT SclrLoadTy = MVT::i8;
16584    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16585         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16586      MVT Tp = (MVT::SimpleValueType)tp;
16587      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16588        SclrLoadTy = Tp;
16589      }
16590    }
16591
16592    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16593    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16594        (64 <= MemSz))
16595      SclrLoadTy = MVT::f64;
16596
16597    // Calculate the number of scalar loads that we need to perform
16598    // in order to load our vector from memory.
16599    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16600    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16601      return SDValue();
16602
16603    unsigned loadRegZize = RegSz;
16604    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16605      loadRegZize /= 2;
16606
16607    // Represent our vector as a sequence of elements which are the
16608    // largest scalar that we can load.
16609    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16610      loadRegZize/SclrLoadTy.getSizeInBits());
16611
16612    // Represent the data using the same element type that is stored in
16613    // memory. In practice, we ''widen'' MemVT.
16614    EVT WideVecVT =
16615          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16616                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16617
16618    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16619      "Invalid vector type");
16620
16621    // We can't shuffle using an illegal type.
16622    if (!TLI.isTypeLegal(WideVecVT))
16623      return SDValue();
16624
16625    SmallVector<SDValue, 8> Chains;
16626    SDValue Ptr = Ld->getBasePtr();
16627    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16628                                        TLI.getPointerTy());
16629    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16630
16631    for (unsigned i = 0; i < NumLoads; ++i) {
16632      // Perform a single load.
16633      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16634                                       Ptr, Ld->getPointerInfo(),
16635                                       Ld->isVolatile(), Ld->isNonTemporal(),
16636                                       Ld->isInvariant(), Ld->getAlignment());
16637      Chains.push_back(ScalarLoad.getValue(1));
16638      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
16639      // another round of DAGCombining.
16640      if (i == 0)
16641        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
16642      else
16643        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
16644                          ScalarLoad, DAG.getIntPtrConstant(i));
16645
16646      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16647    }
16648
16649    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16650                               Chains.size());
16651
16652    // Bitcast the loaded value to a vector of the original element type, in
16653    // the size of the target vector type.
16654    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
16655    unsigned SizeRatio = RegSz/MemSz;
16656
16657    if (Ext == ISD::SEXTLOAD) {
16658      // If we have SSE4.1 we can directly emit a VSEXT node.
16659      if (Subtarget->hasSSE41()) {
16660        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
16661        return DCI.CombineTo(N, Sext, TF, true);
16662      }
16663
16664      // Otherwise we'll shuffle the small elements in the high bits of the
16665      // larger type and perform an arithmetic shift. If the shift is not legal
16666      // it's better to scalarize.
16667      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
16668        return SDValue();
16669
16670      // Redistribute the loaded elements into the different locations.
16671      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16672      for (unsigned i = 0; i != NumElems; ++i)
16673        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
16674
16675      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16676                                           DAG.getUNDEF(WideVecVT),
16677                                           &ShuffleVec[0]);
16678
16679      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16680
16681      // Build the arithmetic shift.
16682      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
16683                     MemVT.getVectorElementType().getSizeInBits();
16684      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
16685                          DAG.getConstant(Amt, RegVT));
16686
16687      return DCI.CombineTo(N, Shuff, TF, true);
16688    }
16689
16690    // Redistribute the loaded elements into the different locations.
16691    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16692    for (unsigned i = 0; i != NumElems; ++i)
16693      ShuffleVec[i*SizeRatio] = i;
16694
16695    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16696                                         DAG.getUNDEF(WideVecVT),
16697                                         &ShuffleVec[0]);
16698
16699    // Bitcast to the requested type.
16700    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16701    // Replace the original load with the new sequence
16702    // and return the new chain.
16703    return DCI.CombineTo(N, Shuff, TF, true);
16704  }
16705
16706  return SDValue();
16707}
16708
16709/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
16710static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
16711                                   const X86Subtarget *Subtarget) {
16712  StoreSDNode *St = cast<StoreSDNode>(N);
16713  EVT VT = St->getValue().getValueType();
16714  EVT StVT = St->getMemoryVT();
16715  DebugLoc dl = St->getDebugLoc();
16716  SDValue StoredVal = St->getOperand(1);
16717  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16718  unsigned Alignment = St->getAlignment();
16719  bool IsAligned = Alignment == 0 || Alignment == VT.getSizeInBits()/8;
16720
16721  // If we are saving a concatenation of two XMM registers, perform two stores.
16722  // On Sandy Bridge, 256-bit memory operations are executed by two
16723  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
16724  // memory  operation.
16725  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
16726      StVT == VT && !IsAligned) {
16727    unsigned NumElems = VT.getVectorNumElements();
16728    if (NumElems < 2)
16729      return SDValue();
16730
16731    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
16732    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
16733
16734    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
16735    SDValue Ptr0 = St->getBasePtr();
16736    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
16737
16738    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
16739                                St->getPointerInfo(), St->isVolatile(),
16740                                St->isNonTemporal(), Alignment);
16741    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
16742                                St->getPointerInfo(), St->isVolatile(),
16743                                St->isNonTemporal(),
16744                                std::max(Alignment/2U, 1U));
16745    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
16746  }
16747
16748  // Optimize trunc store (of multiple scalars) to shuffle and store.
16749  // First, pack all of the elements in one place. Next, store to memory
16750  // in fewer chunks.
16751  if (St->isTruncatingStore() && VT.isVector()) {
16752    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16753    unsigned NumElems = VT.getVectorNumElements();
16754    assert(StVT != VT && "Cannot truncate to the same type");
16755    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
16756    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
16757
16758    // From, To sizes and ElemCount must be pow of two
16759    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
16760    // We are going to use the original vector elt for storing.
16761    // Accumulated smaller vector elements must be a multiple of the store size.
16762    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
16763
16764    unsigned SizeRatio  = FromSz / ToSz;
16765
16766    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
16767
16768    // Create a type on which we perform the shuffle
16769    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
16770            StVT.getScalarType(), NumElems*SizeRatio);
16771
16772    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16773
16774    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
16775    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16776    for (unsigned i = 0; i != NumElems; ++i)
16777      ShuffleVec[i] = i * SizeRatio;
16778
16779    // Can't shuffle using an illegal type.
16780    if (!TLI.isTypeLegal(WideVecVT))
16781      return SDValue();
16782
16783    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
16784                                         DAG.getUNDEF(WideVecVT),
16785                                         &ShuffleVec[0]);
16786    // At this point all of the data is stored at the bottom of the
16787    // register. We now need to save it to mem.
16788
16789    // Find the largest store unit
16790    MVT StoreType = MVT::i8;
16791    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16792         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16793      MVT Tp = (MVT::SimpleValueType)tp;
16794      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
16795        StoreType = Tp;
16796    }
16797
16798    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16799    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
16800        (64 <= NumElems * ToSz))
16801      StoreType = MVT::f64;
16802
16803    // Bitcast the original vector into a vector of store-size units
16804    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
16805            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
16806    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16807    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
16808    SmallVector<SDValue, 8> Chains;
16809    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
16810                                        TLI.getPointerTy());
16811    SDValue Ptr = St->getBasePtr();
16812
16813    // Perform one or more big stores into memory.
16814    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
16815      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16816                                   StoreType, ShuffWide,
16817                                   DAG.getIntPtrConstant(i));
16818      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
16819                                St->getPointerInfo(), St->isVolatile(),
16820                                St->isNonTemporal(), St->getAlignment());
16821      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16822      Chains.push_back(Ch);
16823    }
16824
16825    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16826                               Chains.size());
16827  }
16828
16829  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
16830  // the FP state in cases where an emms may be missing.
16831  // A preferable solution to the general problem is to figure out the right
16832  // places to insert EMMS.  This qualifies as a quick hack.
16833
16834  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
16835  if (VT.getSizeInBits() != 64)
16836    return SDValue();
16837
16838  const Function *F = DAG.getMachineFunction().getFunction();
16839  bool NoImplicitFloatOps = F->getAttributes().
16840    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
16841  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
16842                     && Subtarget->hasSSE2();
16843  if ((VT.isVector() ||
16844       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
16845      isa<LoadSDNode>(St->getValue()) &&
16846      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
16847      St->getChain().hasOneUse() && !St->isVolatile()) {
16848    SDNode* LdVal = St->getValue().getNode();
16849    LoadSDNode *Ld = 0;
16850    int TokenFactorIndex = -1;
16851    SmallVector<SDValue, 8> Ops;
16852    SDNode* ChainVal = St->getChain().getNode();
16853    // Must be a store of a load.  We currently handle two cases:  the load
16854    // is a direct child, and it's under an intervening TokenFactor.  It is
16855    // possible to dig deeper under nested TokenFactors.
16856    if (ChainVal == LdVal)
16857      Ld = cast<LoadSDNode>(St->getChain());
16858    else if (St->getValue().hasOneUse() &&
16859             ChainVal->getOpcode() == ISD::TokenFactor) {
16860      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
16861        if (ChainVal->getOperand(i).getNode() == LdVal) {
16862          TokenFactorIndex = i;
16863          Ld = cast<LoadSDNode>(St->getValue());
16864        } else
16865          Ops.push_back(ChainVal->getOperand(i));
16866      }
16867    }
16868
16869    if (!Ld || !ISD::isNormalLoad(Ld))
16870      return SDValue();
16871
16872    // If this is not the MMX case, i.e. we are just turning i64 load/store
16873    // into f64 load/store, avoid the transformation if there are multiple
16874    // uses of the loaded value.
16875    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
16876      return SDValue();
16877
16878    DebugLoc LdDL = Ld->getDebugLoc();
16879    DebugLoc StDL = N->getDebugLoc();
16880    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
16881    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
16882    // pair instead.
16883    if (Subtarget->is64Bit() || F64IsLegal) {
16884      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
16885      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
16886                                  Ld->getPointerInfo(), Ld->isVolatile(),
16887                                  Ld->isNonTemporal(), Ld->isInvariant(),
16888                                  Ld->getAlignment());
16889      SDValue NewChain = NewLd.getValue(1);
16890      if (TokenFactorIndex != -1) {
16891        Ops.push_back(NewChain);
16892        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16893                               Ops.size());
16894      }
16895      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
16896                          St->getPointerInfo(),
16897                          St->isVolatile(), St->isNonTemporal(),
16898                          St->getAlignment());
16899    }
16900
16901    // Otherwise, lower to two pairs of 32-bit loads / stores.
16902    SDValue LoAddr = Ld->getBasePtr();
16903    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
16904                                 DAG.getConstant(4, MVT::i32));
16905
16906    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
16907                               Ld->getPointerInfo(),
16908                               Ld->isVolatile(), Ld->isNonTemporal(),
16909                               Ld->isInvariant(), Ld->getAlignment());
16910    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
16911                               Ld->getPointerInfo().getWithOffset(4),
16912                               Ld->isVolatile(), Ld->isNonTemporal(),
16913                               Ld->isInvariant(),
16914                               MinAlign(Ld->getAlignment(), 4));
16915
16916    SDValue NewChain = LoLd.getValue(1);
16917    if (TokenFactorIndex != -1) {
16918      Ops.push_back(LoLd);
16919      Ops.push_back(HiLd);
16920      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16921                             Ops.size());
16922    }
16923
16924    LoAddr = St->getBasePtr();
16925    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
16926                         DAG.getConstant(4, MVT::i32));
16927
16928    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
16929                                St->getPointerInfo(),
16930                                St->isVolatile(), St->isNonTemporal(),
16931                                St->getAlignment());
16932    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
16933                                St->getPointerInfo().getWithOffset(4),
16934                                St->isVolatile(),
16935                                St->isNonTemporal(),
16936                                MinAlign(St->getAlignment(), 4));
16937    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
16938  }
16939  return SDValue();
16940}
16941
16942/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
16943/// and return the operands for the horizontal operation in LHS and RHS.  A
16944/// horizontal operation performs the binary operation on successive elements
16945/// of its first operand, then on successive elements of its second operand,
16946/// returning the resulting values in a vector.  For example, if
16947///   A = < float a0, float a1, float a2, float a3 >
16948/// and
16949///   B = < float b0, float b1, float b2, float b3 >
16950/// then the result of doing a horizontal operation on A and B is
16951///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
16952/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
16953/// A horizontal-op B, for some already available A and B, and if so then LHS is
16954/// set to A, RHS to B, and the routine returns 'true'.
16955/// Note that the binary operation should have the property that if one of the
16956/// operands is UNDEF then the result is UNDEF.
16957static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
16958  // Look for the following pattern: if
16959  //   A = < float a0, float a1, float a2, float a3 >
16960  //   B = < float b0, float b1, float b2, float b3 >
16961  // and
16962  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
16963  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
16964  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
16965  // which is A horizontal-op B.
16966
16967  // At least one of the operands should be a vector shuffle.
16968  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
16969      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
16970    return false;
16971
16972  EVT VT = LHS.getValueType();
16973
16974  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16975         "Unsupported vector type for horizontal add/sub");
16976
16977  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
16978  // operate independently on 128-bit lanes.
16979  unsigned NumElts = VT.getVectorNumElements();
16980  unsigned NumLanes = VT.getSizeInBits()/128;
16981  unsigned NumLaneElts = NumElts / NumLanes;
16982  assert((NumLaneElts % 2 == 0) &&
16983         "Vector type should have an even number of elements in each lane");
16984  unsigned HalfLaneElts = NumLaneElts/2;
16985
16986  // View LHS in the form
16987  //   LHS = VECTOR_SHUFFLE A, B, LMask
16988  // If LHS is not a shuffle then pretend it is the shuffle
16989  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
16990  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
16991  // type VT.
16992  SDValue A, B;
16993  SmallVector<int, 16> LMask(NumElts);
16994  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16995    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
16996      A = LHS.getOperand(0);
16997    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
16998      B = LHS.getOperand(1);
16999    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
17000    std::copy(Mask.begin(), Mask.end(), LMask.begin());
17001  } else {
17002    if (LHS.getOpcode() != ISD::UNDEF)
17003      A = LHS;
17004    for (unsigned i = 0; i != NumElts; ++i)
17005      LMask[i] = i;
17006  }
17007
17008  // Likewise, view RHS in the form
17009  //   RHS = VECTOR_SHUFFLE C, D, RMask
17010  SDValue C, D;
17011  SmallVector<int, 16> RMask(NumElts);
17012  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17013    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
17014      C = RHS.getOperand(0);
17015    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
17016      D = RHS.getOperand(1);
17017    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
17018    std::copy(Mask.begin(), Mask.end(), RMask.begin());
17019  } else {
17020    if (RHS.getOpcode() != ISD::UNDEF)
17021      C = RHS;
17022    for (unsigned i = 0; i != NumElts; ++i)
17023      RMask[i] = i;
17024  }
17025
17026  // Check that the shuffles are both shuffling the same vectors.
17027  if (!(A == C && B == D) && !(A == D && B == C))
17028    return false;
17029
17030  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
17031  if (!A.getNode() && !B.getNode())
17032    return false;
17033
17034  // If A and B occur in reverse order in RHS, then "swap" them (which means
17035  // rewriting the mask).
17036  if (A != C)
17037    CommuteVectorShuffleMask(RMask, NumElts);
17038
17039  // At this point LHS and RHS are equivalent to
17040  //   LHS = VECTOR_SHUFFLE A, B, LMask
17041  //   RHS = VECTOR_SHUFFLE A, B, RMask
17042  // Check that the masks correspond to performing a horizontal operation.
17043  for (unsigned i = 0; i != NumElts; ++i) {
17044    int LIdx = LMask[i], RIdx = RMask[i];
17045
17046    // Ignore any UNDEF components.
17047    if (LIdx < 0 || RIdx < 0 ||
17048        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
17049        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
17050      continue;
17051
17052    // Check that successive elements are being operated on.  If not, this is
17053    // not a horizontal operation.
17054    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
17055    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
17056    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
17057    if (!(LIdx == Index && RIdx == Index + 1) &&
17058        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
17059      return false;
17060  }
17061
17062  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
17063  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
17064  return true;
17065}
17066
17067/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
17068static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17069                                  const X86Subtarget *Subtarget) {
17070  EVT VT = N->getValueType(0);
17071  SDValue LHS = N->getOperand(0);
17072  SDValue RHS = N->getOperand(1);
17073
17074  // Try to synthesize horizontal adds from adds of shuffles.
17075  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17076       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17077      isHorizontalBinOp(LHS, RHS, true))
17078    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
17079  return SDValue();
17080}
17081
17082/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
17083static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
17084                                  const X86Subtarget *Subtarget) {
17085  EVT VT = N->getValueType(0);
17086  SDValue LHS = N->getOperand(0);
17087  SDValue RHS = N->getOperand(1);
17088
17089  // Try to synthesize horizontal subs from subs of shuffles.
17090  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17091       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17092      isHorizontalBinOp(LHS, RHS, false))
17093    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
17094  return SDValue();
17095}
17096
17097/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
17098/// X86ISD::FXOR nodes.
17099static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
17100  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
17101  // F[X]OR(0.0, x) -> x
17102  // F[X]OR(x, 0.0) -> x
17103  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17104    if (C->getValueAPF().isPosZero())
17105      return N->getOperand(1);
17106  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17107    if (C->getValueAPF().isPosZero())
17108      return N->getOperand(0);
17109  return SDValue();
17110}
17111
17112/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
17113/// X86ISD::FMAX nodes.
17114static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
17115  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
17116
17117  // Only perform optimizations if UnsafeMath is used.
17118  if (!DAG.getTarget().Options.UnsafeFPMath)
17119    return SDValue();
17120
17121  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
17122  // into FMINC and FMAXC, which are Commutative operations.
17123  unsigned NewOp = 0;
17124  switch (N->getOpcode()) {
17125    default: llvm_unreachable("unknown opcode");
17126    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
17127    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
17128  }
17129
17130  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
17131                     N->getOperand(0), N->getOperand(1));
17132}
17133
17134/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
17135static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
17136  // FAND(0.0, x) -> 0.0
17137  // FAND(x, 0.0) -> 0.0
17138  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17139    if (C->getValueAPF().isPosZero())
17140      return N->getOperand(0);
17141  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17142    if (C->getValueAPF().isPosZero())
17143      return N->getOperand(1);
17144  return SDValue();
17145}
17146
17147static SDValue PerformBTCombine(SDNode *N,
17148                                SelectionDAG &DAG,
17149                                TargetLowering::DAGCombinerInfo &DCI) {
17150  // BT ignores high bits in the bit index operand.
17151  SDValue Op1 = N->getOperand(1);
17152  if (Op1.hasOneUse()) {
17153    unsigned BitWidth = Op1.getValueSizeInBits();
17154    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
17155    APInt KnownZero, KnownOne;
17156    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
17157                                          !DCI.isBeforeLegalizeOps());
17158    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17159    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
17160        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
17161      DCI.CommitTargetLoweringOpt(TLO);
17162  }
17163  return SDValue();
17164}
17165
17166static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
17167  SDValue Op = N->getOperand(0);
17168  if (Op.getOpcode() == ISD::BITCAST)
17169    Op = Op.getOperand(0);
17170  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
17171  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
17172      VT.getVectorElementType().getSizeInBits() ==
17173      OpVT.getVectorElementType().getSizeInBits()) {
17174    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
17175  }
17176  return SDValue();
17177}
17178
17179static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
17180                                               const X86Subtarget *Subtarget) {
17181  EVT VT = N->getValueType(0);
17182  if (!VT.isVector())
17183    return SDValue();
17184
17185  SDValue N0 = N->getOperand(0);
17186  SDValue N1 = N->getOperand(1);
17187  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
17188  DebugLoc dl = N->getDebugLoc();
17189
17190  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
17191  // both SSE and AVX2 since there is no sign-extended shift right
17192  // operation on a vector with 64-bit elements.
17193  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
17194  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
17195  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
17196      N0.getOpcode() == ISD::SIGN_EXTEND)) {
17197    SDValue N00 = N0.getOperand(0);
17198
17199    // EXTLOAD has a better solution on AVX2,
17200    // it may be replaced with X86ISD::VSEXT node.
17201    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
17202      if (!ISD::isNormalLoad(N00.getNode()))
17203        return SDValue();
17204
17205    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
17206        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
17207                                  N00, N1);
17208      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
17209    }
17210  }
17211  return SDValue();
17212}
17213
17214static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
17215                                  TargetLowering::DAGCombinerInfo &DCI,
17216                                  const X86Subtarget *Subtarget) {
17217  if (!DCI.isBeforeLegalizeOps())
17218    return SDValue();
17219
17220  if (!Subtarget->hasFp256())
17221    return SDValue();
17222
17223  EVT VT = N->getValueType(0);
17224  if (VT.isVector() && VT.getSizeInBits() == 256) {
17225    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17226    if (R.getNode())
17227      return R;
17228  }
17229
17230  return SDValue();
17231}
17232
17233static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17234                                 const X86Subtarget* Subtarget) {
17235  DebugLoc dl = N->getDebugLoc();
17236  EVT VT = N->getValueType(0);
17237
17238  // Let legalize expand this if it isn't a legal type yet.
17239  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17240    return SDValue();
17241
17242  EVT ScalarVT = VT.getScalarType();
17243  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17244      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17245    return SDValue();
17246
17247  SDValue A = N->getOperand(0);
17248  SDValue B = N->getOperand(1);
17249  SDValue C = N->getOperand(2);
17250
17251  bool NegA = (A.getOpcode() == ISD::FNEG);
17252  bool NegB = (B.getOpcode() == ISD::FNEG);
17253  bool NegC = (C.getOpcode() == ISD::FNEG);
17254
17255  // Negative multiplication when NegA xor NegB
17256  bool NegMul = (NegA != NegB);
17257  if (NegA)
17258    A = A.getOperand(0);
17259  if (NegB)
17260    B = B.getOperand(0);
17261  if (NegC)
17262    C = C.getOperand(0);
17263
17264  unsigned Opcode;
17265  if (!NegMul)
17266    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17267  else
17268    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17269
17270  return DAG.getNode(Opcode, dl, VT, A, B, C);
17271}
17272
17273static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17274                                  TargetLowering::DAGCombinerInfo &DCI,
17275                                  const X86Subtarget *Subtarget) {
17276  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17277  //           (and (i32 x86isd::setcc_carry), 1)
17278  // This eliminates the zext. This transformation is necessary because
17279  // ISD::SETCC is always legalized to i8.
17280  DebugLoc dl = N->getDebugLoc();
17281  SDValue N0 = N->getOperand(0);
17282  EVT VT = N->getValueType(0);
17283
17284  if (N0.getOpcode() == ISD::AND &&
17285      N0.hasOneUse() &&
17286      N0.getOperand(0).hasOneUse()) {
17287    SDValue N00 = N0.getOperand(0);
17288    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17289      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17290      if (!C || C->getZExtValue() != 1)
17291        return SDValue();
17292      return DAG.getNode(ISD::AND, dl, VT,
17293                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17294                                     N00.getOperand(0), N00.getOperand(1)),
17295                         DAG.getConstant(1, VT));
17296    }
17297  }
17298
17299  if (VT.is256BitVector()) {
17300    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17301    if (R.getNode())
17302      return R;
17303  }
17304
17305  return SDValue();
17306}
17307
17308// Optimize x == -y --> x+y == 0
17309//          x != -y --> x+y != 0
17310static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17311  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17312  SDValue LHS = N->getOperand(0);
17313  SDValue RHS = N->getOperand(1);
17314
17315  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17316    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17317      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17318        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17319                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17320        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17321                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17322      }
17323  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17324    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17325      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17326        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17327                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17328        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17329                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17330      }
17331  return SDValue();
17332}
17333
17334// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17335// as "sbb reg,reg", since it can be extended without zext and produces
17336// an all-ones bit which is more useful than 0/1 in some cases.
17337static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17338  return DAG.getNode(ISD::AND, DL, MVT::i8,
17339                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17340                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17341                     DAG.getConstant(1, MVT::i8));
17342}
17343
17344// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17345static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17346                                   TargetLowering::DAGCombinerInfo &DCI,
17347                                   const X86Subtarget *Subtarget) {
17348  DebugLoc DL = N->getDebugLoc();
17349  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17350  SDValue EFLAGS = N->getOperand(1);
17351
17352  if (CC == X86::COND_A) {
17353    // Try to convert COND_A into COND_B in an attempt to facilitate
17354    // materializing "setb reg".
17355    //
17356    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17357    // cannot take an immediate as its first operand.
17358    //
17359    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17360        EFLAGS.getValueType().isInteger() &&
17361        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17362      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
17363                                   EFLAGS.getNode()->getVTList(),
17364                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17365      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17366      return MaterializeSETB(DL, NewEFLAGS, DAG);
17367    }
17368  }
17369
17370  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17371  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17372  // cases.
17373  if (CC == X86::COND_B)
17374    return MaterializeSETB(DL, EFLAGS, DAG);
17375
17376  SDValue Flags;
17377
17378  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17379  if (Flags.getNode()) {
17380    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17381    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17382  }
17383
17384  return SDValue();
17385}
17386
17387// Optimize branch condition evaluation.
17388//
17389static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17390                                    TargetLowering::DAGCombinerInfo &DCI,
17391                                    const X86Subtarget *Subtarget) {
17392  DebugLoc DL = N->getDebugLoc();
17393  SDValue Chain = N->getOperand(0);
17394  SDValue Dest = N->getOperand(1);
17395  SDValue EFLAGS = N->getOperand(3);
17396  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17397
17398  SDValue Flags;
17399
17400  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17401  if (Flags.getNode()) {
17402    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17403    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17404                       Flags);
17405  }
17406
17407  return SDValue();
17408}
17409
17410static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17411                                        const X86TargetLowering *XTLI) {
17412  SDValue Op0 = N->getOperand(0);
17413  EVT InVT = Op0->getValueType(0);
17414
17415  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17416  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17417    DebugLoc dl = N->getDebugLoc();
17418    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17419    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17420    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17421  }
17422
17423  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17424  // a 32-bit target where SSE doesn't support i64->FP operations.
17425  if (Op0.getOpcode() == ISD::LOAD) {
17426    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17427    EVT VT = Ld->getValueType(0);
17428    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17429        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17430        !XTLI->getSubtarget()->is64Bit() &&
17431        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17432      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17433                                          Ld->getChain(), Op0, DAG);
17434      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17435      return FILDChain;
17436    }
17437  }
17438  return SDValue();
17439}
17440
17441// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17442static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17443                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17444  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17445  // the result is either zero or one (depending on the input carry bit).
17446  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17447  if (X86::isZeroNode(N->getOperand(0)) &&
17448      X86::isZeroNode(N->getOperand(1)) &&
17449      // We don't have a good way to replace an EFLAGS use, so only do this when
17450      // dead right now.
17451      SDValue(N, 1).use_empty()) {
17452    DebugLoc DL = N->getDebugLoc();
17453    EVT VT = N->getValueType(0);
17454    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17455    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17456                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17457                                           DAG.getConstant(X86::COND_B,MVT::i8),
17458                                           N->getOperand(2)),
17459                               DAG.getConstant(1, VT));
17460    return DCI.CombineTo(N, Res1, CarryOut);
17461  }
17462
17463  return SDValue();
17464}
17465
17466// fold (add Y, (sete  X, 0)) -> adc  0, Y
17467//      (add Y, (setne X, 0)) -> sbb -1, Y
17468//      (sub (sete  X, 0), Y) -> sbb  0, Y
17469//      (sub (setne X, 0), Y) -> adc -1, Y
17470static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17471  DebugLoc DL = N->getDebugLoc();
17472
17473  // Look through ZExts.
17474  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17475  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17476    return SDValue();
17477
17478  SDValue SetCC = Ext.getOperand(0);
17479  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17480    return SDValue();
17481
17482  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17483  if (CC != X86::COND_E && CC != X86::COND_NE)
17484    return SDValue();
17485
17486  SDValue Cmp = SetCC.getOperand(1);
17487  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17488      !X86::isZeroNode(Cmp.getOperand(1)) ||
17489      !Cmp.getOperand(0).getValueType().isInteger())
17490    return SDValue();
17491
17492  SDValue CmpOp0 = Cmp.getOperand(0);
17493  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17494                               DAG.getConstant(1, CmpOp0.getValueType()));
17495
17496  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17497  if (CC == X86::COND_NE)
17498    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17499                       DL, OtherVal.getValueType(), OtherVal,
17500                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17501  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17502                     DL, OtherVal.getValueType(), OtherVal,
17503                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17504}
17505
17506/// PerformADDCombine - Do target-specific dag combines on integer adds.
17507static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17508                                 const X86Subtarget *Subtarget) {
17509  EVT VT = N->getValueType(0);
17510  SDValue Op0 = N->getOperand(0);
17511  SDValue Op1 = N->getOperand(1);
17512
17513  // Try to synthesize horizontal adds from adds of shuffles.
17514  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17515       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17516      isHorizontalBinOp(Op0, Op1, true))
17517    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
17518
17519  return OptimizeConditionalInDecrement(N, DAG);
17520}
17521
17522static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17523                                 const X86Subtarget *Subtarget) {
17524  SDValue Op0 = N->getOperand(0);
17525  SDValue Op1 = N->getOperand(1);
17526
17527  // X86 can't encode an immediate LHS of a sub. See if we can push the
17528  // negation into a preceding instruction.
17529  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17530    // If the RHS of the sub is a XOR with one use and a constant, invert the
17531    // immediate. Then add one to the LHS of the sub so we can turn
17532    // X-Y -> X+~Y+1, saving one register.
17533    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17534        isa<ConstantSDNode>(Op1.getOperand(1))) {
17535      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17536      EVT VT = Op0.getValueType();
17537      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
17538                                   Op1.getOperand(0),
17539                                   DAG.getConstant(~XorC, VT));
17540      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
17541                         DAG.getConstant(C->getAPIntValue()+1, VT));
17542    }
17543  }
17544
17545  // Try to synthesize horizontal adds from adds of shuffles.
17546  EVT VT = N->getValueType(0);
17547  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17548       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17549      isHorizontalBinOp(Op0, Op1, true))
17550    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
17551
17552  return OptimizeConditionalInDecrement(N, DAG);
17553}
17554
17555/// performVZEXTCombine - Performs build vector combines
17556static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17557                                        TargetLowering::DAGCombinerInfo &DCI,
17558                                        const X86Subtarget *Subtarget) {
17559  // (vzext (bitcast (vzext (x)) -> (vzext x)
17560  SDValue In = N->getOperand(0);
17561  while (In.getOpcode() == ISD::BITCAST)
17562    In = In.getOperand(0);
17563
17564  if (In.getOpcode() != X86ISD::VZEXT)
17565    return SDValue();
17566
17567  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0),
17568                     In.getOperand(0));
17569}
17570
17571SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17572                                             DAGCombinerInfo &DCI) const {
17573  SelectionDAG &DAG = DCI.DAG;
17574  switch (N->getOpcode()) {
17575  default: break;
17576  case ISD::EXTRACT_VECTOR_ELT:
17577    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17578  case ISD::VSELECT:
17579  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17580  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17581  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17582  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17583  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17584  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17585  case ISD::SHL:
17586  case ISD::SRA:
17587  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17588  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17589  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17590  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17591  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17592  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17593  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17594  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17595  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17596  case X86ISD::FXOR:
17597  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17598  case X86ISD::FMIN:
17599  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17600  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17601  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17602  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17603  case ISD::ANY_EXTEND:
17604  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17605  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17606  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
17607  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17608  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17609  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17610  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17611  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17612  case X86ISD::SHUFP:       // Handle all target specific shuffles
17613  case X86ISD::PALIGNR:
17614  case X86ISD::UNPCKH:
17615  case X86ISD::UNPCKL:
17616  case X86ISD::MOVHLPS:
17617  case X86ISD::MOVLHPS:
17618  case X86ISD::PSHUFD:
17619  case X86ISD::PSHUFHW:
17620  case X86ISD::PSHUFLW:
17621  case X86ISD::MOVSS:
17622  case X86ISD::MOVSD:
17623  case X86ISD::VPERMILP:
17624  case X86ISD::VPERM2X128:
17625  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17626  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17627  }
17628
17629  return SDValue();
17630}
17631
17632/// isTypeDesirableForOp - Return true if the target has native support for
17633/// the specified value type and it is 'desirable' to use the type for the
17634/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17635/// instruction encodings are longer and some i16 instructions are slow.
17636bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
17637  if (!isTypeLegal(VT))
17638    return false;
17639  if (VT != MVT::i16)
17640    return true;
17641
17642  switch (Opc) {
17643  default:
17644    return true;
17645  case ISD::LOAD:
17646  case ISD::SIGN_EXTEND:
17647  case ISD::ZERO_EXTEND:
17648  case ISD::ANY_EXTEND:
17649  case ISD::SHL:
17650  case ISD::SRL:
17651  case ISD::SUB:
17652  case ISD::ADD:
17653  case ISD::MUL:
17654  case ISD::AND:
17655  case ISD::OR:
17656  case ISD::XOR:
17657    return false;
17658  }
17659}
17660
17661/// IsDesirableToPromoteOp - This method query the target whether it is
17662/// beneficial for dag combiner to promote the specified node. If true, it
17663/// should return the desired promotion type by reference.
17664bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
17665  EVT VT = Op.getValueType();
17666  if (VT != MVT::i16)
17667    return false;
17668
17669  bool Promote = false;
17670  bool Commute = false;
17671  switch (Op.getOpcode()) {
17672  default: break;
17673  case ISD::LOAD: {
17674    LoadSDNode *LD = cast<LoadSDNode>(Op);
17675    // If the non-extending load has a single use and it's not live out, then it
17676    // might be folded.
17677    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
17678                                                     Op.hasOneUse()*/) {
17679      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
17680             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
17681        // The only case where we'd want to promote LOAD (rather then it being
17682        // promoted as an operand is when it's only use is liveout.
17683        if (UI->getOpcode() != ISD::CopyToReg)
17684          return false;
17685      }
17686    }
17687    Promote = true;
17688    break;
17689  }
17690  case ISD::SIGN_EXTEND:
17691  case ISD::ZERO_EXTEND:
17692  case ISD::ANY_EXTEND:
17693    Promote = true;
17694    break;
17695  case ISD::SHL:
17696  case ISD::SRL: {
17697    SDValue N0 = Op.getOperand(0);
17698    // Look out for (store (shl (load), x)).
17699    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
17700      return false;
17701    Promote = true;
17702    break;
17703  }
17704  case ISD::ADD:
17705  case ISD::MUL:
17706  case ISD::AND:
17707  case ISD::OR:
17708  case ISD::XOR:
17709    Commute = true;
17710    // fallthrough
17711  case ISD::SUB: {
17712    SDValue N0 = Op.getOperand(0);
17713    SDValue N1 = Op.getOperand(1);
17714    if (!Commute && MayFoldLoad(N1))
17715      return false;
17716    // Avoid disabling potential load folding opportunities.
17717    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
17718      return false;
17719    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
17720      return false;
17721    Promote = true;
17722  }
17723  }
17724
17725  PVT = MVT::i32;
17726  return Promote;
17727}
17728
17729//===----------------------------------------------------------------------===//
17730//                           X86 Inline Assembly Support
17731//===----------------------------------------------------------------------===//
17732
17733namespace {
17734  // Helper to match a string separated by whitespace.
17735  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17736    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17737
17738    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17739      StringRef piece(*args[i]);
17740      if (!s.startswith(piece)) // Check if the piece matches.
17741        return false;
17742
17743      s = s.substr(piece.size());
17744      StringRef::size_type pos = s.find_first_not_of(" \t");
17745      if (pos == 0) // We matched a prefix.
17746        return false;
17747
17748      s = s.substr(pos);
17749    }
17750
17751    return s.empty();
17752  }
17753  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
17754}
17755
17756bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
17757  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
17758
17759  std::string AsmStr = IA->getAsmString();
17760
17761  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17762  if (!Ty || Ty->getBitWidth() % 16 != 0)
17763    return false;
17764
17765  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
17766  SmallVector<StringRef, 4> AsmPieces;
17767  SplitString(AsmStr, AsmPieces, ";\n");
17768
17769  switch (AsmPieces.size()) {
17770  default: return false;
17771  case 1:
17772    // FIXME: this should verify that we are targeting a 486 or better.  If not,
17773    // we will turn this bswap into something that will be lowered to logical
17774    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
17775    // lower so don't worry about this.
17776    // bswap $0
17777    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
17778        matchAsm(AsmPieces[0], "bswapl", "$0") ||
17779        matchAsm(AsmPieces[0], "bswapq", "$0") ||
17780        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
17781        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
17782        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
17783      // No need to check constraints, nothing other than the equivalent of
17784      // "=r,0" would be valid here.
17785      return IntrinsicLowering::LowerToByteSwap(CI);
17786    }
17787
17788    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
17789    if (CI->getType()->isIntegerTy(16) &&
17790        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17791        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
17792         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
17793      AsmPieces.clear();
17794      const std::string &ConstraintsStr = IA->getConstraintString();
17795      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17796      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
17797      if (AsmPieces.size() == 4 &&
17798          AsmPieces[0] == "~{cc}" &&
17799          AsmPieces[1] == "~{dirflag}" &&
17800          AsmPieces[2] == "~{flags}" &&
17801          AsmPieces[3] == "~{fpsr}")
17802      return IntrinsicLowering::LowerToByteSwap(CI);
17803    }
17804    break;
17805  case 3:
17806    if (CI->getType()->isIntegerTy(32) &&
17807        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17808        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
17809        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
17810        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
17811      AsmPieces.clear();
17812      const std::string &ConstraintsStr = IA->getConstraintString();
17813      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17814      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
17815      if (AsmPieces.size() == 4 &&
17816          AsmPieces[0] == "~{cc}" &&
17817          AsmPieces[1] == "~{dirflag}" &&
17818          AsmPieces[2] == "~{flags}" &&
17819          AsmPieces[3] == "~{fpsr}")
17820        return IntrinsicLowering::LowerToByteSwap(CI);
17821    }
17822
17823    if (CI->getType()->isIntegerTy(64)) {
17824      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
17825      if (Constraints.size() >= 2 &&
17826          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
17827          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
17828        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
17829        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
17830            matchAsm(AsmPieces[1], "bswap", "%edx") &&
17831            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
17832          return IntrinsicLowering::LowerToByteSwap(CI);
17833      }
17834    }
17835    break;
17836  }
17837  return false;
17838}
17839
17840/// getConstraintType - Given a constraint letter, return the type of
17841/// constraint it is for this target.
17842X86TargetLowering::ConstraintType
17843X86TargetLowering::getConstraintType(const std::string &Constraint) const {
17844  if (Constraint.size() == 1) {
17845    switch (Constraint[0]) {
17846    case 'R':
17847    case 'q':
17848    case 'Q':
17849    case 'f':
17850    case 't':
17851    case 'u':
17852    case 'y':
17853    case 'x':
17854    case 'Y':
17855    case 'l':
17856      return C_RegisterClass;
17857    case 'a':
17858    case 'b':
17859    case 'c':
17860    case 'd':
17861    case 'S':
17862    case 'D':
17863    case 'A':
17864      return C_Register;
17865    case 'I':
17866    case 'J':
17867    case 'K':
17868    case 'L':
17869    case 'M':
17870    case 'N':
17871    case 'G':
17872    case 'C':
17873    case 'e':
17874    case 'Z':
17875      return C_Other;
17876    default:
17877      break;
17878    }
17879  }
17880  return TargetLowering::getConstraintType(Constraint);
17881}
17882
17883/// Examine constraint type and operand type and determine a weight value.
17884/// This object must already have been set up with the operand type
17885/// and the current alternative constraint selected.
17886TargetLowering::ConstraintWeight
17887  X86TargetLowering::getSingleConstraintMatchWeight(
17888    AsmOperandInfo &info, const char *constraint) const {
17889  ConstraintWeight weight = CW_Invalid;
17890  Value *CallOperandVal = info.CallOperandVal;
17891    // If we don't have a value, we can't do a match,
17892    // but allow it at the lowest weight.
17893  if (CallOperandVal == NULL)
17894    return CW_Default;
17895  Type *type = CallOperandVal->getType();
17896  // Look at the constraint type.
17897  switch (*constraint) {
17898  default:
17899    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17900  case 'R':
17901  case 'q':
17902  case 'Q':
17903  case 'a':
17904  case 'b':
17905  case 'c':
17906  case 'd':
17907  case 'S':
17908  case 'D':
17909  case 'A':
17910    if (CallOperandVal->getType()->isIntegerTy())
17911      weight = CW_SpecificReg;
17912    break;
17913  case 'f':
17914  case 't':
17915  case 'u':
17916    if (type->isFloatingPointTy())
17917      weight = CW_SpecificReg;
17918    break;
17919  case 'y':
17920    if (type->isX86_MMXTy() && Subtarget->hasMMX())
17921      weight = CW_SpecificReg;
17922    break;
17923  case 'x':
17924  case 'Y':
17925    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
17926        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
17927      weight = CW_Register;
17928    break;
17929  case 'I':
17930    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
17931      if (C->getZExtValue() <= 31)
17932        weight = CW_Constant;
17933    }
17934    break;
17935  case 'J':
17936    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17937      if (C->getZExtValue() <= 63)
17938        weight = CW_Constant;
17939    }
17940    break;
17941  case 'K':
17942    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17943      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
17944        weight = CW_Constant;
17945    }
17946    break;
17947  case 'L':
17948    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17949      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
17950        weight = CW_Constant;
17951    }
17952    break;
17953  case 'M':
17954    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17955      if (C->getZExtValue() <= 3)
17956        weight = CW_Constant;
17957    }
17958    break;
17959  case 'N':
17960    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17961      if (C->getZExtValue() <= 0xff)
17962        weight = CW_Constant;
17963    }
17964    break;
17965  case 'G':
17966  case 'C':
17967    if (dyn_cast<ConstantFP>(CallOperandVal)) {
17968      weight = CW_Constant;
17969    }
17970    break;
17971  case 'e':
17972    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17973      if ((C->getSExtValue() >= -0x80000000LL) &&
17974          (C->getSExtValue() <= 0x7fffffffLL))
17975        weight = CW_Constant;
17976    }
17977    break;
17978  case 'Z':
17979    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17980      if (C->getZExtValue() <= 0xffffffff)
17981        weight = CW_Constant;
17982    }
17983    break;
17984  }
17985  return weight;
17986}
17987
17988/// LowerXConstraint - try to replace an X constraint, which matches anything,
17989/// with another that has more specific requirements based on the type of the
17990/// corresponding operand.
17991const char *X86TargetLowering::
17992LowerXConstraint(EVT ConstraintVT) const {
17993  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
17994  // 'f' like normal targets.
17995  if (ConstraintVT.isFloatingPoint()) {
17996    if (Subtarget->hasSSE2())
17997      return "Y";
17998    if (Subtarget->hasSSE1())
17999      return "x";
18000  }
18001
18002  return TargetLowering::LowerXConstraint(ConstraintVT);
18003}
18004
18005/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
18006/// vector.  If it is invalid, don't add anything to Ops.
18007void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
18008                                                     std::string &Constraint,
18009                                                     std::vector<SDValue>&Ops,
18010                                                     SelectionDAG &DAG) const {
18011  SDValue Result(0, 0);
18012
18013  // Only support length 1 constraints for now.
18014  if (Constraint.length() > 1) return;
18015
18016  char ConstraintLetter = Constraint[0];
18017  switch (ConstraintLetter) {
18018  default: break;
18019  case 'I':
18020    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18021      if (C->getZExtValue() <= 31) {
18022        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18023        break;
18024      }
18025    }
18026    return;
18027  case 'J':
18028    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18029      if (C->getZExtValue() <= 63) {
18030        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18031        break;
18032      }
18033    }
18034    return;
18035  case 'K':
18036    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18037      if (isInt<8>(C->getSExtValue())) {
18038        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18039        break;
18040      }
18041    }
18042    return;
18043  case 'N':
18044    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18045      if (C->getZExtValue() <= 255) {
18046        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18047        break;
18048      }
18049    }
18050    return;
18051  case 'e': {
18052    // 32-bit signed value
18053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18054      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18055                                           C->getSExtValue())) {
18056        // Widen to 64 bits here to get it sign extended.
18057        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
18058        break;
18059      }
18060    // FIXME gcc accepts some relocatable values here too, but only in certain
18061    // memory models; it's complicated.
18062    }
18063    return;
18064  }
18065  case 'Z': {
18066    // 32-bit unsigned value
18067    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18068      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18069                                           C->getZExtValue())) {
18070        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18071        break;
18072      }
18073    }
18074    // FIXME gcc accepts some relocatable values here too, but only in certain
18075    // memory models; it's complicated.
18076    return;
18077  }
18078  case 'i': {
18079    // Literal immediates are always ok.
18080    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
18081      // Widen to 64 bits here to get it sign extended.
18082      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
18083      break;
18084    }
18085
18086    // In any sort of PIC mode addresses need to be computed at runtime by
18087    // adding in a register or some sort of table lookup.  These can't
18088    // be used as immediates.
18089    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
18090      return;
18091
18092    // If we are in non-pic codegen mode, we allow the address of a global (with
18093    // an optional displacement) to be used with 'i'.
18094    GlobalAddressSDNode *GA = 0;
18095    int64_t Offset = 0;
18096
18097    // Match either (GA), (GA+C), (GA+C1+C2), etc.
18098    while (1) {
18099      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
18100        Offset += GA->getOffset();
18101        break;
18102      } else if (Op.getOpcode() == ISD::ADD) {
18103        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18104          Offset += C->getZExtValue();
18105          Op = Op.getOperand(0);
18106          continue;
18107        }
18108      } else if (Op.getOpcode() == ISD::SUB) {
18109        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18110          Offset += -C->getZExtValue();
18111          Op = Op.getOperand(0);
18112          continue;
18113        }
18114      }
18115
18116      // Otherwise, this isn't something we can handle, reject it.
18117      return;
18118    }
18119
18120    const GlobalValue *GV = GA->getGlobal();
18121    // If we require an extra load to get this address, as in PIC mode, we
18122    // can't accept it.
18123    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
18124                                                        getTargetMachine())))
18125      return;
18126
18127    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
18128                                        GA->getValueType(0), Offset);
18129    break;
18130  }
18131  }
18132
18133  if (Result.getNode()) {
18134    Ops.push_back(Result);
18135    return;
18136  }
18137  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
18138}
18139
18140std::pair<unsigned, const TargetRegisterClass*>
18141X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
18142                                                EVT VT) const {
18143  // First, see if this is a constraint that directly corresponds to an LLVM
18144  // register class.
18145  if (Constraint.size() == 1) {
18146    // GCC Constraint Letters
18147    switch (Constraint[0]) {
18148    default: break;
18149      // TODO: Slight differences here in allocation order and leaving
18150      // RIP in the class. Do they matter any more here than they do
18151      // in the normal allocation?
18152    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
18153      if (Subtarget->is64Bit()) {
18154        if (VT == MVT::i32 || VT == MVT::f32)
18155          return std::make_pair(0U, &X86::GR32RegClass);
18156        if (VT == MVT::i16)
18157          return std::make_pair(0U, &X86::GR16RegClass);
18158        if (VT == MVT::i8 || VT == MVT::i1)
18159          return std::make_pair(0U, &X86::GR8RegClass);
18160        if (VT == MVT::i64 || VT == MVT::f64)
18161          return std::make_pair(0U, &X86::GR64RegClass);
18162        break;
18163      }
18164      // 32-bit fallthrough
18165    case 'Q':   // Q_REGS
18166      if (VT == MVT::i32 || VT == MVT::f32)
18167        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
18168      if (VT == MVT::i16)
18169        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
18170      if (VT == MVT::i8 || VT == MVT::i1)
18171        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
18172      if (VT == MVT::i64)
18173        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
18174      break;
18175    case 'r':   // GENERAL_REGS
18176    case 'l':   // INDEX_REGS
18177      if (VT == MVT::i8 || VT == MVT::i1)
18178        return std::make_pair(0U, &X86::GR8RegClass);
18179      if (VT == MVT::i16)
18180        return std::make_pair(0U, &X86::GR16RegClass);
18181      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
18182        return std::make_pair(0U, &X86::GR32RegClass);
18183      return std::make_pair(0U, &X86::GR64RegClass);
18184    case 'R':   // LEGACY_REGS
18185      if (VT == MVT::i8 || VT == MVT::i1)
18186        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
18187      if (VT == MVT::i16)
18188        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
18189      if (VT == MVT::i32 || !Subtarget->is64Bit())
18190        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
18191      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
18192    case 'f':  // FP Stack registers.
18193      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
18194      // value to the correct fpstack register class.
18195      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
18196        return std::make_pair(0U, &X86::RFP32RegClass);
18197      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
18198        return std::make_pair(0U, &X86::RFP64RegClass);
18199      return std::make_pair(0U, &X86::RFP80RegClass);
18200    case 'y':   // MMX_REGS if MMX allowed.
18201      if (!Subtarget->hasMMX()) break;
18202      return std::make_pair(0U, &X86::VR64RegClass);
18203    case 'Y':   // SSE_REGS if SSE2 allowed
18204      if (!Subtarget->hasSSE2()) break;
18205      // FALL THROUGH.
18206    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
18207      if (!Subtarget->hasSSE1()) break;
18208
18209      switch (VT.getSimpleVT().SimpleTy) {
18210      default: break;
18211      // Scalar SSE types.
18212      case MVT::f32:
18213      case MVT::i32:
18214        return std::make_pair(0U, &X86::FR32RegClass);
18215      case MVT::f64:
18216      case MVT::i64:
18217        return std::make_pair(0U, &X86::FR64RegClass);
18218      // Vector types.
18219      case MVT::v16i8:
18220      case MVT::v8i16:
18221      case MVT::v4i32:
18222      case MVT::v2i64:
18223      case MVT::v4f32:
18224      case MVT::v2f64:
18225        return std::make_pair(0U, &X86::VR128RegClass);
18226      // AVX types.
18227      case MVT::v32i8:
18228      case MVT::v16i16:
18229      case MVT::v8i32:
18230      case MVT::v4i64:
18231      case MVT::v8f32:
18232      case MVT::v4f64:
18233        return std::make_pair(0U, &X86::VR256RegClass);
18234      }
18235      break;
18236    }
18237  }
18238
18239  // Use the default implementation in TargetLowering to convert the register
18240  // constraint into a member of a register class.
18241  std::pair<unsigned, const TargetRegisterClass*> Res;
18242  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18243
18244  // Not found as a standard register?
18245  if (Res.second == 0) {
18246    // Map st(0) -> st(7) -> ST0
18247    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18248        tolower(Constraint[1]) == 's' &&
18249        tolower(Constraint[2]) == 't' &&
18250        Constraint[3] == '(' &&
18251        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18252        Constraint[5] == ')' &&
18253        Constraint[6] == '}') {
18254
18255      Res.first = X86::ST0+Constraint[4]-'0';
18256      Res.second = &X86::RFP80RegClass;
18257      return Res;
18258    }
18259
18260    // GCC allows "st(0)" to be called just plain "st".
18261    if (StringRef("{st}").equals_lower(Constraint)) {
18262      Res.first = X86::ST0;
18263      Res.second = &X86::RFP80RegClass;
18264      return Res;
18265    }
18266
18267    // flags -> EFLAGS
18268    if (StringRef("{flags}").equals_lower(Constraint)) {
18269      Res.first = X86::EFLAGS;
18270      Res.second = &X86::CCRRegClass;
18271      return Res;
18272    }
18273
18274    // 'A' means EAX + EDX.
18275    if (Constraint == "A") {
18276      Res.first = X86::EAX;
18277      Res.second = &X86::GR32_ADRegClass;
18278      return Res;
18279    }
18280    return Res;
18281  }
18282
18283  // Otherwise, check to see if this is a register class of the wrong value
18284  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18285  // turn into {ax},{dx}.
18286  if (Res.second->hasType(VT))
18287    return Res;   // Correct type already, nothing to do.
18288
18289  // All of the single-register GCC register classes map their values onto
18290  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18291  // really want an 8-bit or 32-bit register, map to the appropriate register
18292  // class and return the appropriate register.
18293  if (Res.second == &X86::GR16RegClass) {
18294    if (VT == MVT::i8 || VT == MVT::i1) {
18295      unsigned DestReg = 0;
18296      switch (Res.first) {
18297      default: break;
18298      case X86::AX: DestReg = X86::AL; break;
18299      case X86::DX: DestReg = X86::DL; break;
18300      case X86::CX: DestReg = X86::CL; break;
18301      case X86::BX: DestReg = X86::BL; break;
18302      }
18303      if (DestReg) {
18304        Res.first = DestReg;
18305        Res.second = &X86::GR8RegClass;
18306      }
18307    } else if (VT == MVT::i32 || VT == MVT::f32) {
18308      unsigned DestReg = 0;
18309      switch (Res.first) {
18310      default: break;
18311      case X86::AX: DestReg = X86::EAX; break;
18312      case X86::DX: DestReg = X86::EDX; break;
18313      case X86::CX: DestReg = X86::ECX; break;
18314      case X86::BX: DestReg = X86::EBX; break;
18315      case X86::SI: DestReg = X86::ESI; break;
18316      case X86::DI: DestReg = X86::EDI; break;
18317      case X86::BP: DestReg = X86::EBP; break;
18318      case X86::SP: DestReg = X86::ESP; break;
18319      }
18320      if (DestReg) {
18321        Res.first = DestReg;
18322        Res.second = &X86::GR32RegClass;
18323      }
18324    } else if (VT == MVT::i64 || VT == MVT::f64) {
18325      unsigned DestReg = 0;
18326      switch (Res.first) {
18327      default: break;
18328      case X86::AX: DestReg = X86::RAX; break;
18329      case X86::DX: DestReg = X86::RDX; break;
18330      case X86::CX: DestReg = X86::RCX; break;
18331      case X86::BX: DestReg = X86::RBX; break;
18332      case X86::SI: DestReg = X86::RSI; break;
18333      case X86::DI: DestReg = X86::RDI; break;
18334      case X86::BP: DestReg = X86::RBP; break;
18335      case X86::SP: DestReg = X86::RSP; break;
18336      }
18337      if (DestReg) {
18338        Res.first = DestReg;
18339        Res.second = &X86::GR64RegClass;
18340      }
18341    }
18342  } else if (Res.second == &X86::FR32RegClass ||
18343             Res.second == &X86::FR64RegClass ||
18344             Res.second == &X86::VR128RegClass) {
18345    // Handle references to XMM physical registers that got mapped into the
18346    // wrong class.  This can happen with constraints like {xmm0} where the
18347    // target independent register mapper will just pick the first match it can
18348    // find, ignoring the required type.
18349
18350    if (VT == MVT::f32 || VT == MVT::i32)
18351      Res.second = &X86::FR32RegClass;
18352    else if (VT == MVT::f64 || VT == MVT::i64)
18353      Res.second = &X86::FR64RegClass;
18354    else if (X86::VR128RegClass.hasType(VT))
18355      Res.second = &X86::VR128RegClass;
18356    else if (X86::VR256RegClass.hasType(VT))
18357      Res.second = &X86::VR256RegClass;
18358  }
18359
18360  return Res;
18361}
18362