X86ISelLowering.cpp revision 0488fb649a56b7fc89a5814df5308813f9e5a85d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58static cl::opt<bool>
59DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
60
61// Forward declarations.
62static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63                       SDValue V2);
64
65static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
66
67  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
68
69  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
70    if (is64Bit) return new X8664_MachoTargetObjectFile();
71    return new TargetLoweringObjectFileMachO();
72  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
74    return new X8632_ELFTargetObjectFile(TM);
75  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
76    return new TargetLoweringObjectFileCOFF();
77  }
78  llvm_unreachable("unknown subtarget type");
79}
80
81X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
82  : TargetLowering(TM, createTLOF(TM)) {
83  Subtarget = &TM.getSubtarget<X86Subtarget>();
84  X86ScalarSSEf64 = Subtarget->hasSSE2();
85  X86ScalarSSEf32 = Subtarget->hasSSE1();
86  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
87
88  RegInfo = TM.getRegisterInfo();
89  TD = getTargetData();
90
91  // Set up the TargetLowering object.
92
93  // X86 is weird, it always uses i8 for shift amounts and setcc results.
94  setShiftAmountType(MVT::i8);
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setSchedulingPreference(Sched::RegPressure);
97  setStackPointerRegisterToSaveRestore(X86StackPtr);
98
99  if (Subtarget->isTargetDarwin()) {
100    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
101    setUseUnderscoreSetJmp(false);
102    setUseUnderscoreLongJmp(false);
103  } else if (Subtarget->isTargetMingw()) {
104    // MS runtime is weird: it exports _setjmp, but longjmp!
105    setUseUnderscoreSetJmp(true);
106    setUseUnderscoreLongJmp(false);
107  } else {
108    setUseUnderscoreSetJmp(true);
109    setUseUnderscoreLongJmp(true);
110  }
111
112  // Set up the register classes.
113  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
114  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
115  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
116  if (Subtarget->is64Bit())
117    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
118
119  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
120
121  // We don't accept any truncstore of integer registers.
122  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
124  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
125  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
126  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
127  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
128
129  // SETOEQ and SETUNE require checking two conditions.
130  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
132  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
135  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
136
137  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
138  // operation.
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
141  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
142
143  if (Subtarget->is64Bit()) {
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
145    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
146  } else if (!UseSoftFloat) {
147    // We have an algorithm for SSE2->double, and we turn this into a
148    // 64-bit FILD followed by conditional FADD for other targets.
149    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
150    // We have an algorithm for SSE2, and we turn this into a 64-bit
151    // FILD for other targets.
152    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
153  }
154
155  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
156  // this operation.
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
158  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
159
160  if (!UseSoftFloat) {
161    // SSE has no i16 to fp conversion, only i32
162    if (X86ScalarSSEf32) {
163      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
164      // f32 and f64 cases are Legal, f80 case is not
165      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
166    } else {
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
168      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
169    }
170  } else {
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
172    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
173  }
174
175  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
176  // are Legal, f80 is custom lowered.
177  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
178  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
179
180  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
181  // this operation.
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
183  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
184
185  if (X86ScalarSSEf32) {
186    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
187    // f32 and f64 cases are Legal, f80 case is not
188    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
189  } else {
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
191    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
192  }
193
194  // Handle FP_TO_UINT by promoting the destination to a larger signed
195  // conversion.
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
198  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
199
200  if (Subtarget->is64Bit()) {
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
202    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
203  } else if (!UseSoftFloat) {
204    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
205      // Expand FP_TO_UINT into a select.
206      // FIXME: We would like to use a Custom expander here eventually to do
207      // the optimal thing for SSE vs. the default expansion in the legalizer.
208      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
209    else
210      // With SSE3 we can use fisttpll to convert to a signed i64; without
211      // SSE, we're stuck with a fistpll.
212      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
213  }
214
215  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
216  if (!X86ScalarSSEf64) {
217    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
218    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
219    if (Subtarget->is64Bit()) {
220      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
221      // Without SSE, i64->f64 goes through memory.
222      setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
223    }
224  }
225
226  // Scalar integer divide and remainder are lowered to use operations that
227  // produce two results, to match the available instructions. This exposes
228  // the two-result form to trivial CSE, which is able to combine x/y and x%y
229  // into a single instruction.
230  //
231  // Scalar integer multiply-high is also lowered to use two-result
232  // operations, to match the available instructions. However, plain multiply
233  // (low) operations are left as Legal, as there are single-result
234  // instructions for this in x86. Using the two-result multiply instructions
235  // when both high and low results are needed must be arranged by dagcombine.
236  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
237  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
238  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
239  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
240  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
241  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
242  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
243  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
244  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
245  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
246  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
247  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
248  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
249  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
250  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
251  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
252  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
253  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
254  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
255  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
256  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
257  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
258  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
259  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
260
261  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
262  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
263  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
264  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
265  if (Subtarget->is64Bit())
266    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
267  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
268  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
270  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
271  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
272  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
274  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
275
276  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
277  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
278  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
279  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
280  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
281  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
282  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
283  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
284  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
285  if (Subtarget->is64Bit()) {
286    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
287    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
288    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
289  }
290
291  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
292  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
293
294  // These should be promoted to a larger select which is supported.
295  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
296  // X86 wants to expand cmov itself.
297  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
298  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
299  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
300  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
303  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
304  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
306  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
309  if (Subtarget->is64Bit()) {
310    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
311    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
312  }
313  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
314
315  // Darwin ABI issue.
316  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
317  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
318  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
319  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
320  if (Subtarget->is64Bit())
321    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
322  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
323  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
324  if (Subtarget->is64Bit()) {
325    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
326    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
327    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
328    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
329    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
330  }
331  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
332  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
333  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
334  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
335  if (Subtarget->is64Bit()) {
336    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
337    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
338    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
339  }
340
341  if (Subtarget->hasSSE1())
342    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
343
344  // We may not have a libcall for MEMBARRIER so we should lower this.
345  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
346
347  // On X86 and X86-64, atomic operations are lowered to locked instructions.
348  // Locked instructions, in turn, have implicit fence semantics (all memory
349  // operations are flushed before issuing the locked instruction, and they
350  // are not buffered), so we can fold away the common pattern of
351  // fence-atomic-fence.
352  setShouldFoldAtomicFences(true);
353
354  // Expand certain atomics
355  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
356  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
359
360  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
361  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
364
365  if (!Subtarget->is64Bit()) {
366    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
367    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
368    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
373  }
374
375  // FIXME - use subtarget debug flags
376  if (!Subtarget->isTargetDarwin() &&
377      !Subtarget->isTargetELF() &&
378      !Subtarget->isTargetCygMing()) {
379    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
380  }
381
382  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
383  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
386  if (Subtarget->is64Bit()) {
387    setExceptionPointerRegister(X86::RAX);
388    setExceptionSelectorRegister(X86::RDX);
389  } else {
390    setExceptionPointerRegister(X86::EAX);
391    setExceptionSelectorRegister(X86::EDX);
392  }
393  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
394  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
395
396  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
397
398  setOperationAction(ISD::TRAP, MVT::Other, Legal);
399
400  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
401  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
402  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
403  if (Subtarget->is64Bit()) {
404    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
405    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
406  } else {
407    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
408    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
409  }
410
411  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
412  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
413  if (Subtarget->is64Bit())
414    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
415  if (Subtarget->isTargetCygMing())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
417  else
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
419
420  if (!UseSoftFloat && X86ScalarSSEf64) {
421    // f32 and f64 use SSE.
422    // Set up the FP register classes.
423    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
424    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
425
426    // Use ANDPD to simulate FABS.
427    setOperationAction(ISD::FABS , MVT::f64, Custom);
428    setOperationAction(ISD::FABS , MVT::f32, Custom);
429
430    // Use XORP to simulate FNEG.
431    setOperationAction(ISD::FNEG , MVT::f64, Custom);
432    setOperationAction(ISD::FNEG , MVT::f32, Custom);
433
434    // Use ANDPD and ORPD to simulate FCOPYSIGN.
435    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
436    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
437
438    // We don't support sin/cos/fmod
439    setOperationAction(ISD::FSIN , MVT::f64, Expand);
440    setOperationAction(ISD::FCOS , MVT::f64, Expand);
441    setOperationAction(ISD::FSIN , MVT::f32, Expand);
442    setOperationAction(ISD::FCOS , MVT::f32, Expand);
443
444    // Expand FP immediates into loads from the stack, except for the special
445    // cases we handle.
446    addLegalFPImmediate(APFloat(+0.0)); // xorpd
447    addLegalFPImmediate(APFloat(+0.0f)); // xorps
448  } else if (!UseSoftFloat && X86ScalarSSEf32) {
449    // Use SSE for f32, x87 for f64.
450    // Set up the FP register classes.
451    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
452    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
453
454    // Use ANDPS to simulate FABS.
455    setOperationAction(ISD::FABS , MVT::f32, Custom);
456
457    // Use XORP to simulate FNEG.
458    setOperationAction(ISD::FNEG , MVT::f32, Custom);
459
460    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
461
462    // Use ANDPS and ORPS to simulate FCOPYSIGN.
463    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
464    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
465
466    // We don't support sin/cos/fmod
467    setOperationAction(ISD::FSIN , MVT::f32, Expand);
468    setOperationAction(ISD::FCOS , MVT::f32, Expand);
469
470    // Special cases we handle for FP constants.
471    addLegalFPImmediate(APFloat(+0.0f)); // xorps
472    addLegalFPImmediate(APFloat(+0.0)); // FLD0
473    addLegalFPImmediate(APFloat(+1.0)); // FLD1
474    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
475    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
476
477    if (!UnsafeFPMath) {
478      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
479      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
480    }
481  } else if (!UseSoftFloat) {
482    // f32 and f64 in x87.
483    // Set up the FP register classes.
484    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
485    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
486
487    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
488    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
489    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
490    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
491
492    if (!UnsafeFPMath) {
493      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
494      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
495    }
496    addLegalFPImmediate(APFloat(+0.0)); // FLD0
497    addLegalFPImmediate(APFloat(+1.0)); // FLD1
498    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
499    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
500    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
501    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
502    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
503    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
504  }
505
506  // Long double always uses X87.
507  if (!UseSoftFloat) {
508    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
509    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
510    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
511    {
512      bool ignored;
513      APFloat TmpFlt(+0.0);
514      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
515                     &ignored);
516      addLegalFPImmediate(TmpFlt);  // FLD0
517      TmpFlt.changeSign();
518      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
519      APFloat TmpFlt2(+1.0);
520      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
521                      &ignored);
522      addLegalFPImmediate(TmpFlt2);  // FLD1
523      TmpFlt2.changeSign();
524      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
525    }
526
527    if (!UnsafeFPMath) {
528      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
529      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
530    }
531  }
532
533  // Always use a library call for pow.
534  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
535  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
536  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
537
538  setOperationAction(ISD::FLOG, MVT::f80, Expand);
539  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
540  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
541  setOperationAction(ISD::FEXP, MVT::f80, Expand);
542  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
543
544  // First set operation action for all vector types to either promote
545  // (for widening) or expand (for scalarization). Then we will selectively
546  // turn on ones that can be effectively codegen'd.
547  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
548       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
549    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
564    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
565    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
598    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
603         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
604      setTruncStoreAction((MVT::SimpleValueType)VT,
605                          (MVT::SimpleValueType)InnerVT, Expand);
606    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
607    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
608    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
609  }
610
611  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
612  // with -msoft-float, disable use of MMX as well.
613  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
614    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass, false);
615    // No operations on x86mmx supported, everything uses intrinsics.
616  }
617
618  // MMX-sized vectors (other than x86mmx) are expected to be expanded
619  // into smaller operations.
620  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
621  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
622  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
623  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
624  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
625  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
626  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
627  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
628  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
629  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
630  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
631  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
632  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
633  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
634  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
635  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
636  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
637  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
638  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
639  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
640  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
641  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
642  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
643  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
644  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
645  setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Expand);
646  setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Expand);
647  setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Expand);
648  setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Expand);
649
650  if (!UseSoftFloat && Subtarget->hasSSE1()) {
651    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
652
653    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
654    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
655    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
656    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
657    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
658    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
659    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
661    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
662    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
663    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
664    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
665  }
666
667  if (!UseSoftFloat && Subtarget->hasSSE2()) {
668    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
669
670    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
671    // registers cannot be used even for integer operations.
672    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
673    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
674    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
675    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
676
677    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
678    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
679    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
680    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
681    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
682    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
683    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
684    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
685    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
686    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
687    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
688    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
689    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
690    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
691    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
692    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
693
694    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
695    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
696    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
697    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
698
699    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
700    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
701    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
702    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
703    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
704
705    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
706    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
707    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
708    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
709    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
710
711    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
712    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
713      EVT VT = (MVT::SimpleValueType)i;
714      // Do not attempt to custom lower non-power-of-2 vectors
715      if (!isPowerOf2_32(VT.getVectorNumElements()))
716        continue;
717      // Do not attempt to custom lower non-128-bit vectors
718      if (!VT.is128BitVector())
719        continue;
720      setOperationAction(ISD::BUILD_VECTOR,
721                         VT.getSimpleVT().SimpleTy, Custom);
722      setOperationAction(ISD::VECTOR_SHUFFLE,
723                         VT.getSimpleVT().SimpleTy, Custom);
724      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
725                         VT.getSimpleVT().SimpleTy, Custom);
726    }
727
728    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
729    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
730    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
731    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
732    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
733    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
734
735    if (Subtarget->is64Bit()) {
736      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
737      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
738    }
739
740    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
741    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
742      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
743      EVT VT = SVT;
744
745      // Do not attempt to promote non-128-bit vectors
746      if (!VT.is128BitVector())
747        continue;
748
749      setOperationAction(ISD::AND,    SVT, Promote);
750      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
751      setOperationAction(ISD::OR,     SVT, Promote);
752      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
753      setOperationAction(ISD::XOR,    SVT, Promote);
754      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
755      setOperationAction(ISD::LOAD,   SVT, Promote);
756      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
757      setOperationAction(ISD::SELECT, SVT, Promote);
758      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
759    }
760
761    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
762
763    // Custom lower v2i64 and v2f64 selects.
764    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
765    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
766    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
767    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
768
769    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
770    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
771  }
772
773  if (Subtarget->hasSSE41()) {
774    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
775    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
776    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
777    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
778    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
779    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
780    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
781    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
782    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
783    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
784
785    // FIXME: Do we need to handle scalar-to-vector here?
786    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
787
788    // Can turn SHL into an integer multiply.
789    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
790    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
791
792    // i8 and i16 vectors are custom , because the source register and source
793    // source memory operand types are not the same width.  f32 vectors are
794    // custom since the immediate controlling the insert encodes additional
795    // information.
796    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
797    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
798    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
799    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
800
801    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
802    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
803    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
804    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
805
806    if (Subtarget->is64Bit()) {
807      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
808      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
809    }
810  }
811
812  if (Subtarget->hasSSE42()) {
813    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
814  }
815
816  if (!UseSoftFloat && Subtarget->hasAVX()) {
817    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
818    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
819    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
820    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
821    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
822
823    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
824    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
825    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
826    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
827    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
828    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
829    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
830    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
831    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
832    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
833    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
834    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
835    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
836    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
837    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
838
839    // Operations to consider commented out -v16i16 v32i8
840    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
841    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
842    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
843    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
844    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
845    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
846    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
847    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
848    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
849    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
850    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
851    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
852    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
853    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
854
855    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
856    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
857    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
858    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
859
860    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
861    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
862    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
865
866    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
868    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
871    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
872
873#if 0
874    // Not sure we want to do this since there are no 256-bit integer
875    // operations in AVX
876
877    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
878    // This includes 256-bit vectors
879    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
880      EVT VT = (MVT::SimpleValueType)i;
881
882      // Do not attempt to custom lower non-power-of-2 vectors
883      if (!isPowerOf2_32(VT.getVectorNumElements()))
884        continue;
885
886      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
888      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
889    }
890
891    if (Subtarget->is64Bit()) {
892      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
893      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
894    }
895#endif
896
897#if 0
898    // Not sure we want to do this since there are no 256-bit integer
899    // operations in AVX
900
901    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
902    // Including 256-bit vectors
903    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
904      EVT VT = (MVT::SimpleValueType)i;
905
906      if (!VT.is256BitVector()) {
907        continue;
908      }
909      setOperationAction(ISD::AND,    VT, Promote);
910      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
911      setOperationAction(ISD::OR,     VT, Promote);
912      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
913      setOperationAction(ISD::XOR,    VT, Promote);
914      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
915      setOperationAction(ISD::LOAD,   VT, Promote);
916      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
917      setOperationAction(ISD::SELECT, VT, Promote);
918      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
919    }
920
921    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
922#endif
923  }
924
925  // We want to custom lower some of our intrinsics.
926  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
927
928  // Add/Sub/Mul with overflow operations are custom lowered.
929  setOperationAction(ISD::SADDO, MVT::i32, Custom);
930  setOperationAction(ISD::UADDO, MVT::i32, Custom);
931  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
932  setOperationAction(ISD::USUBO, MVT::i32, Custom);
933  setOperationAction(ISD::SMULO, MVT::i32, Custom);
934
935  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
936  // handle type legalization for these operations here.
937  //
938  // FIXME: We really should do custom legalization for addition and
939  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
940  // than generic legalization for 64-bit multiplication-with-overflow, though.
941  if (Subtarget->is64Bit()) {
942    setOperationAction(ISD::SADDO, MVT::i64, Custom);
943    setOperationAction(ISD::UADDO, MVT::i64, Custom);
944    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
945    setOperationAction(ISD::USUBO, MVT::i64, Custom);
946    setOperationAction(ISD::SMULO, MVT::i64, Custom);
947  }
948
949  if (!Subtarget->is64Bit()) {
950    // These libcalls are not available in 32-bit.
951    setLibcallName(RTLIB::SHL_I128, 0);
952    setLibcallName(RTLIB::SRL_I128, 0);
953    setLibcallName(RTLIB::SRA_I128, 0);
954  }
955
956  // We have target-specific dag combine patterns for the following nodes:
957  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
958  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
959  setTargetDAGCombine(ISD::BUILD_VECTOR);
960  setTargetDAGCombine(ISD::SELECT);
961  setTargetDAGCombine(ISD::SHL);
962  setTargetDAGCombine(ISD::SRA);
963  setTargetDAGCombine(ISD::SRL);
964  setTargetDAGCombine(ISD::OR);
965  setTargetDAGCombine(ISD::STORE);
966  setTargetDAGCombine(ISD::ZERO_EXTEND);
967  if (Subtarget->is64Bit())
968    setTargetDAGCombine(ISD::MUL);
969
970  computeRegisterProperties();
971
972  // FIXME: These should be based on subtarget info. Plus, the values should
973  // be smaller when we are in optimizing for size mode.
974  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
975  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
976  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
977  setPrefLoopAlignment(16);
978  benefitFromCodePlacementOpt = true;
979}
980
981
982MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
983  return MVT::i8;
984}
985
986
987/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
988/// the desired ByVal argument alignment.
989static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
990  if (MaxAlign == 16)
991    return;
992  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
993    if (VTy->getBitWidth() == 128)
994      MaxAlign = 16;
995  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
996    unsigned EltAlign = 0;
997    getMaxByValAlign(ATy->getElementType(), EltAlign);
998    if (EltAlign > MaxAlign)
999      MaxAlign = EltAlign;
1000  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1001    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1002      unsigned EltAlign = 0;
1003      getMaxByValAlign(STy->getElementType(i), EltAlign);
1004      if (EltAlign > MaxAlign)
1005        MaxAlign = EltAlign;
1006      if (MaxAlign == 16)
1007        break;
1008    }
1009  }
1010  return;
1011}
1012
1013/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1014/// function arguments in the caller parameter area. For X86, aggregates
1015/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1016/// are at 4-byte boundaries.
1017unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1018  if (Subtarget->is64Bit()) {
1019    // Max of 8 and alignment of type.
1020    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1021    if (TyAlign > 8)
1022      return TyAlign;
1023    return 8;
1024  }
1025
1026  unsigned Align = 4;
1027  if (Subtarget->hasSSE1())
1028    getMaxByValAlign(Ty, Align);
1029  return Align;
1030}
1031
1032/// getOptimalMemOpType - Returns the target specific optimal type for load
1033/// and store operations as a result of memset, memcpy, and memmove
1034/// lowering. If DstAlign is zero that means it's safe to destination
1035/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1036/// means there isn't a need to check it against alignment requirement,
1037/// probably because the source does not need to be loaded. If
1038/// 'NonScalarIntSafe' is true, that means it's safe to return a
1039/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1040/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1041/// constant so it does not need to be loaded.
1042/// It returns EVT::Other if the type should be determined using generic
1043/// target-independent logic.
1044EVT
1045X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1046                                       unsigned DstAlign, unsigned SrcAlign,
1047                                       bool NonScalarIntSafe,
1048                                       bool MemcpyStrSrc,
1049                                       MachineFunction &MF) const {
1050  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1051  // linux.  This is because the stack realignment code can't handle certain
1052  // cases like PR2962.  This should be removed when PR2962 is fixed.
1053  const Function *F = MF.getFunction();
1054  if (NonScalarIntSafe &&
1055      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1056    if (Size >= 16 &&
1057        (Subtarget->isUnalignedMemAccessFast() ||
1058         ((DstAlign == 0 || DstAlign >= 16) &&
1059          (SrcAlign == 0 || SrcAlign >= 16))) &&
1060        Subtarget->getStackAlignment() >= 16) {
1061      if (Subtarget->hasSSE2())
1062        return MVT::v4i32;
1063      if (Subtarget->hasSSE1())
1064        return MVT::v4f32;
1065    } else if (!MemcpyStrSrc && Size >= 8 &&
1066               !Subtarget->is64Bit() &&
1067               Subtarget->getStackAlignment() >= 8 &&
1068               Subtarget->hasSSE2()) {
1069      // Do not use f64 to lower memcpy if source is string constant. It's
1070      // better to use i32 to avoid the loads.
1071      return MVT::f64;
1072    }
1073  }
1074  if (Subtarget->is64Bit() && Size >= 8)
1075    return MVT::i64;
1076  return MVT::i32;
1077}
1078
1079/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1080/// current function.  The returned value is a member of the
1081/// MachineJumpTableInfo::JTEntryKind enum.
1082unsigned X86TargetLowering::getJumpTableEncoding() const {
1083  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1084  // symbol.
1085  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1086      Subtarget->isPICStyleGOT())
1087    return MachineJumpTableInfo::EK_Custom32;
1088
1089  // Otherwise, use the normal jump table encoding heuristics.
1090  return TargetLowering::getJumpTableEncoding();
1091}
1092
1093/// getPICBaseSymbol - Return the X86-32 PIC base.
1094MCSymbol *
1095X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1096                                    MCContext &Ctx) const {
1097  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1098  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1099                               Twine(MF->getFunctionNumber())+"$pb");
1100}
1101
1102
1103const MCExpr *
1104X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1105                                             const MachineBasicBlock *MBB,
1106                                             unsigned uid,MCContext &Ctx) const{
1107  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1108         Subtarget->isPICStyleGOT());
1109  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1110  // entries.
1111  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1112                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1113}
1114
1115/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1116/// jumptable.
1117SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1118                                                    SelectionDAG &DAG) const {
1119  if (!Subtarget->is64Bit())
1120    // This doesn't have DebugLoc associated with it, but is not really the
1121    // same as a Register.
1122    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1123  return Table;
1124}
1125
1126/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1127/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1128/// MCExpr.
1129const MCExpr *X86TargetLowering::
1130getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1131                             MCContext &Ctx) const {
1132  // X86-64 uses RIP relative addressing based on the jump table label.
1133  if (Subtarget->isPICStyleRIPRel())
1134    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1135
1136  // Otherwise, the reference is relative to the PIC base.
1137  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1138}
1139
1140/// getFunctionAlignment - Return the Log2 alignment of this function.
1141unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1142  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1143}
1144
1145std::pair<const TargetRegisterClass*, uint8_t>
1146X86TargetLowering::findRepresentativeClass(EVT VT) const{
1147  const TargetRegisterClass *RRC = 0;
1148  uint8_t Cost = 1;
1149  switch (VT.getSimpleVT().SimpleTy) {
1150  default:
1151    return TargetLowering::findRepresentativeClass(VT);
1152  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1153    RRC = (Subtarget->is64Bit()
1154           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1155    break;
1156  case MVT::x86mmx:
1157    RRC = X86::VR64RegisterClass;
1158    break;
1159  case MVT::f32: case MVT::f64:
1160  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1161  case MVT::v4f32: case MVT::v2f64:
1162  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1163  case MVT::v4f64:
1164    RRC = X86::VR128RegisterClass;
1165    break;
1166  }
1167  return std::make_pair(RRC, Cost);
1168}
1169
1170unsigned
1171X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1172                                       MachineFunction &MF) const {
1173  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1174  switch (RC->getID()) {
1175  default:
1176    return 0;
1177  case X86::GR32RegClassID:
1178    return 4 - FPDiff;
1179  case X86::GR64RegClassID:
1180    return 8 - FPDiff;
1181  case X86::VR128RegClassID:
1182    return Subtarget->is64Bit() ? 10 : 4;
1183  case X86::VR64RegClassID:
1184    return 4;
1185  }
1186}
1187
1188bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1189                                               unsigned &Offset) const {
1190  if (!Subtarget->isTargetLinux())
1191    return false;
1192
1193  if (Subtarget->is64Bit()) {
1194    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1195    Offset = 0x28;
1196    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1197      AddressSpace = 256;
1198    else
1199      AddressSpace = 257;
1200  } else {
1201    // %gs:0x14 on i386
1202    Offset = 0x14;
1203    AddressSpace = 256;
1204  }
1205  return true;
1206}
1207
1208
1209//===----------------------------------------------------------------------===//
1210//               Return Value Calling Convention Implementation
1211//===----------------------------------------------------------------------===//
1212
1213#include "X86GenCallingConv.inc"
1214
1215bool
1216X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1217                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1218                        LLVMContext &Context) const {
1219  SmallVector<CCValAssign, 16> RVLocs;
1220  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1221                 RVLocs, Context);
1222  return CCInfo.CheckReturn(Outs, RetCC_X86);
1223}
1224
1225SDValue
1226X86TargetLowering::LowerReturn(SDValue Chain,
1227                               CallingConv::ID CallConv, bool isVarArg,
1228                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1229                               const SmallVectorImpl<SDValue> &OutVals,
1230                               DebugLoc dl, SelectionDAG &DAG) const {
1231  MachineFunction &MF = DAG.getMachineFunction();
1232  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1233
1234  SmallVector<CCValAssign, 16> RVLocs;
1235  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1236                 RVLocs, *DAG.getContext());
1237  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1238
1239  // Add the regs to the liveout set for the function.
1240  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1241  for (unsigned i = 0; i != RVLocs.size(); ++i)
1242    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1243      MRI.addLiveOut(RVLocs[i].getLocReg());
1244
1245  SDValue Flag;
1246
1247  SmallVector<SDValue, 6> RetOps;
1248  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1249  // Operand #1 = Bytes To Pop
1250  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1251                   MVT::i16));
1252
1253  // Copy the result values into the output registers.
1254  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1255    CCValAssign &VA = RVLocs[i];
1256    assert(VA.isRegLoc() && "Can only return in registers!");
1257    SDValue ValToCopy = OutVals[i];
1258    EVT ValVT = ValToCopy.getValueType();
1259
1260    // If this is x86-64, and we disabled SSE, we can't return FP values,
1261    // or SSE or MMX vectors.
1262    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1263         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1264          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1265      report_fatal_error("SSE register return with SSE disabled");
1266    }
1267    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1268    // llvm-gcc has never done it right and no one has noticed, so this
1269    // should be OK for now.
1270    if (ValVT == MVT::f64 &&
1271        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1272      report_fatal_error("SSE2 register return with SSE2 disabled");
1273
1274    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1275    // the RET instruction and handled by the FP Stackifier.
1276    if (VA.getLocReg() == X86::ST0 ||
1277        VA.getLocReg() == X86::ST1) {
1278      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1279      // change the value to the FP stack register class.
1280      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1281        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1282      RetOps.push_back(ValToCopy);
1283      // Don't emit a copytoreg.
1284      continue;
1285    }
1286
1287    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1288    // which is returned in RAX / RDX.
1289    if (Subtarget->is64Bit()) {
1290      if (ValVT == MVT::x86mmx) {
1291        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1292          ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1293          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1294                                  ValToCopy);
1295          // If we don't have SSE2 available, convert to v4f32 so the generated
1296          // register is legal.
1297          if (!Subtarget->hasSSE2())
1298            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1299        }
1300      }
1301    }
1302
1303    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1304    Flag = Chain.getValue(1);
1305  }
1306
1307  // The x86-64 ABI for returning structs by value requires that we copy
1308  // the sret argument into %rax for the return. We saved the argument into
1309  // a virtual register in the entry block, so now we copy the value out
1310  // and into %rax.
1311  if (Subtarget->is64Bit() &&
1312      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1313    MachineFunction &MF = DAG.getMachineFunction();
1314    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1315    unsigned Reg = FuncInfo->getSRetReturnReg();
1316    assert(Reg &&
1317           "SRetReturnReg should have been set in LowerFormalArguments().");
1318    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1319
1320    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1321    Flag = Chain.getValue(1);
1322
1323    // RAX now acts like a return value.
1324    MRI.addLiveOut(X86::RAX);
1325  }
1326
1327  RetOps[0] = Chain;  // Update chain.
1328
1329  // Add the flag if we have it.
1330  if (Flag.getNode())
1331    RetOps.push_back(Flag);
1332
1333  return DAG.getNode(X86ISD::RET_FLAG, dl,
1334                     MVT::Other, &RetOps[0], RetOps.size());
1335}
1336
1337/// LowerCallResult - Lower the result values of a call into the
1338/// appropriate copies out of appropriate physical registers.
1339///
1340SDValue
1341X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1342                                   CallingConv::ID CallConv, bool isVarArg,
1343                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1344                                   DebugLoc dl, SelectionDAG &DAG,
1345                                   SmallVectorImpl<SDValue> &InVals) const {
1346
1347  // Assign locations to each value returned by this call.
1348  SmallVector<CCValAssign, 16> RVLocs;
1349  bool Is64Bit = Subtarget->is64Bit();
1350  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1351                 RVLocs, *DAG.getContext());
1352  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1353
1354  // Copy all of the result registers out of their specified physreg.
1355  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1356    CCValAssign &VA = RVLocs[i];
1357    EVT CopyVT = VA.getValVT();
1358
1359    // If this is x86-64, and we disabled SSE, we can't return FP values
1360    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1361        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1362      report_fatal_error("SSE register return with SSE disabled");
1363    }
1364
1365    SDValue Val;
1366
1367    // If this is a call to a function that returns an fp value on the floating
1368    // point stack, we must guarantee the the value is popped from the stack, so
1369    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1370    // if the return value is not used. We use the FpGET_ST0 instructions
1371    // instead.
1372    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1373      // If we prefer to use the value in xmm registers, copy it out as f80 and
1374      // use a truncate to move it from fp stack reg to xmm reg.
1375      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1376      bool isST0 = VA.getLocReg() == X86::ST0;
1377      unsigned Opc = 0;
1378      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1379      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1380      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1381      SDValue Ops[] = { Chain, InFlag };
1382      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1383                                         Ops, 2), 1);
1384      Val = Chain.getValue(0);
1385
1386      // Round the f80 to the right size, which also moves it to the appropriate
1387      // xmm register.
1388      if (CopyVT != VA.getValVT())
1389        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1390                          // This truncation won't change the value.
1391                          DAG.getIntPtrConstant(1));
1392    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1393      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1394      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1395        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1396                                   MVT::v2i64, InFlag).getValue(1);
1397        Val = Chain.getValue(0);
1398        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1399                          Val, DAG.getConstant(0, MVT::i64));
1400      } else {
1401        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1402                                   MVT::i64, InFlag).getValue(1);
1403        Val = Chain.getValue(0);
1404      }
1405      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1406    } else {
1407      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1408                                 CopyVT, InFlag).getValue(1);
1409      Val = Chain.getValue(0);
1410    }
1411    InFlag = Chain.getValue(2);
1412    InVals.push_back(Val);
1413  }
1414
1415  return Chain;
1416}
1417
1418
1419//===----------------------------------------------------------------------===//
1420//                C & StdCall & Fast Calling Convention implementation
1421//===----------------------------------------------------------------------===//
1422//  StdCall calling convention seems to be standard for many Windows' API
1423//  routines and around. It differs from C calling convention just a little:
1424//  callee should clean up the stack, not caller. Symbols should be also
1425//  decorated in some fancy way :) It doesn't support any vector arguments.
1426//  For info on fast calling convention see Fast Calling Convention (tail call)
1427//  implementation LowerX86_32FastCCCallTo.
1428
1429/// CallIsStructReturn - Determines whether a call uses struct return
1430/// semantics.
1431static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1432  if (Outs.empty())
1433    return false;
1434
1435  return Outs[0].Flags.isSRet();
1436}
1437
1438/// ArgsAreStructReturn - Determines whether a function uses struct
1439/// return semantics.
1440static bool
1441ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1442  if (Ins.empty())
1443    return false;
1444
1445  return Ins[0].Flags.isSRet();
1446}
1447
1448/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1449/// given CallingConvention value.
1450CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1451  if (Subtarget->is64Bit()) {
1452    if (CC == CallingConv::GHC)
1453      return CC_X86_64_GHC;
1454    else if (Subtarget->isTargetWin64())
1455      return CC_X86_Win64_C;
1456    else
1457      return CC_X86_64_C;
1458  }
1459
1460  if (CC == CallingConv::X86_FastCall)
1461    return CC_X86_32_FastCall;
1462  else if (CC == CallingConv::X86_ThisCall)
1463    return CC_X86_32_ThisCall;
1464  else if (CC == CallingConv::Fast)
1465    return CC_X86_32_FastCC;
1466  else if (CC == CallingConv::GHC)
1467    return CC_X86_32_GHC;
1468  else
1469    return CC_X86_32_C;
1470}
1471
1472/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1473/// by "Src" to address "Dst" with size and alignment information specified by
1474/// the specific parameter attribute. The copy will be passed as a byval
1475/// function parameter.
1476static SDValue
1477CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1478                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1479                          DebugLoc dl) {
1480  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1481
1482  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1483                       /*isVolatile*/false, /*AlwaysInline=*/true,
1484                       MachinePointerInfo(), MachinePointerInfo());
1485}
1486
1487/// IsTailCallConvention - Return true if the calling convention is one that
1488/// supports tail call optimization.
1489static bool IsTailCallConvention(CallingConv::ID CC) {
1490  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1491}
1492
1493/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1494/// a tailcall target by changing its ABI.
1495static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1496  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1497}
1498
1499SDValue
1500X86TargetLowering::LowerMemArgument(SDValue Chain,
1501                                    CallingConv::ID CallConv,
1502                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1503                                    DebugLoc dl, SelectionDAG &DAG,
1504                                    const CCValAssign &VA,
1505                                    MachineFrameInfo *MFI,
1506                                    unsigned i) const {
1507  // Create the nodes corresponding to a load from this parameter slot.
1508  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1509  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1510  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1511  EVT ValVT;
1512
1513  // If value is passed by pointer we have address passed instead of the value
1514  // itself.
1515  if (VA.getLocInfo() == CCValAssign::Indirect)
1516    ValVT = VA.getLocVT();
1517  else
1518    ValVT = VA.getValVT();
1519
1520  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1521  // changed with more analysis.
1522  // In case of tail call optimization mark all arguments mutable. Since they
1523  // could be overwritten by lowering of arguments in case of a tail call.
1524  if (Flags.isByVal()) {
1525    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1526                                    VA.getLocMemOffset(), isImmutable);
1527    return DAG.getFrameIndex(FI, getPointerTy());
1528  } else {
1529    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1530                                    VA.getLocMemOffset(), isImmutable);
1531    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1532    return DAG.getLoad(ValVT, dl, Chain, FIN,
1533                       MachinePointerInfo::getFixedStack(FI),
1534                       false, false, 0);
1535  }
1536}
1537
1538SDValue
1539X86TargetLowering::LowerFormalArguments(SDValue Chain,
1540                                        CallingConv::ID CallConv,
1541                                        bool isVarArg,
1542                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1543                                        DebugLoc dl,
1544                                        SelectionDAG &DAG,
1545                                        SmallVectorImpl<SDValue> &InVals)
1546                                          const {
1547  MachineFunction &MF = DAG.getMachineFunction();
1548  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1549
1550  const Function* Fn = MF.getFunction();
1551  if (Fn->hasExternalLinkage() &&
1552      Subtarget->isTargetCygMing() &&
1553      Fn->getName() == "main")
1554    FuncInfo->setForceFramePointer(true);
1555
1556  MachineFrameInfo *MFI = MF.getFrameInfo();
1557  bool Is64Bit = Subtarget->is64Bit();
1558  bool IsWin64 = Subtarget->isTargetWin64();
1559
1560  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1561         "Var args not supported with calling convention fastcc or ghc");
1562
1563  // Assign locations to all of the incoming arguments.
1564  SmallVector<CCValAssign, 16> ArgLocs;
1565  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1566                 ArgLocs, *DAG.getContext());
1567  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1568
1569  unsigned LastVal = ~0U;
1570  SDValue ArgValue;
1571  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1572    CCValAssign &VA = ArgLocs[i];
1573    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1574    // places.
1575    assert(VA.getValNo() != LastVal &&
1576           "Don't support value assigned to multiple locs yet");
1577    LastVal = VA.getValNo();
1578
1579    if (VA.isRegLoc()) {
1580      EVT RegVT = VA.getLocVT();
1581      TargetRegisterClass *RC = NULL;
1582      if (RegVT == MVT::i32)
1583        RC = X86::GR32RegisterClass;
1584      else if (Is64Bit && RegVT == MVT::i64)
1585        RC = X86::GR64RegisterClass;
1586      else if (RegVT == MVT::f32)
1587        RC = X86::FR32RegisterClass;
1588      else if (RegVT == MVT::f64)
1589        RC = X86::FR64RegisterClass;
1590      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1591        RC = X86::VR256RegisterClass;
1592      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1593        RC = X86::VR128RegisterClass;
1594      else if (RegVT == MVT::x86mmx)
1595        RC = X86::VR64RegisterClass;
1596      else
1597        llvm_unreachable("Unknown argument type!");
1598
1599      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1600      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1601
1602      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1603      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1604      // right size.
1605      if (VA.getLocInfo() == CCValAssign::SExt)
1606        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1607                               DAG.getValueType(VA.getValVT()));
1608      else if (VA.getLocInfo() == CCValAssign::ZExt)
1609        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1610                               DAG.getValueType(VA.getValVT()));
1611      else if (VA.getLocInfo() == CCValAssign::BCvt)
1612        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1613
1614      if (VA.isExtInLoc()) {
1615        // Handle MMX values passed in XMM regs.
1616        if (RegVT.isVector()) {
1617          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1618                                 ArgValue);
1619        } else
1620          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1621      }
1622    } else {
1623      assert(VA.isMemLoc());
1624      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1625    }
1626
1627    // If value is passed via pointer - do a load.
1628    if (VA.getLocInfo() == CCValAssign::Indirect)
1629      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1630                             MachinePointerInfo(), false, false, 0);
1631
1632    InVals.push_back(ArgValue);
1633  }
1634
1635  // The x86-64 ABI for returning structs by value requires that we copy
1636  // the sret argument into %rax for the return. Save the argument into
1637  // a virtual register so that we can access it from the return points.
1638  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1639    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1640    unsigned Reg = FuncInfo->getSRetReturnReg();
1641    if (!Reg) {
1642      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1643      FuncInfo->setSRetReturnReg(Reg);
1644    }
1645    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1646    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1647  }
1648
1649  unsigned StackSize = CCInfo.getNextStackOffset();
1650  // Align stack specially for tail calls.
1651  if (FuncIsMadeTailCallSafe(CallConv))
1652    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1653
1654  // If the function takes variable number of arguments, make a frame index for
1655  // the start of the first vararg value... for expansion of llvm.va_start.
1656  if (isVarArg) {
1657    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1658                    CallConv != CallingConv::X86_ThisCall)) {
1659      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1660    }
1661    if (Is64Bit) {
1662      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1663
1664      // FIXME: We should really autogenerate these arrays
1665      static const unsigned GPR64ArgRegsWin64[] = {
1666        X86::RCX, X86::RDX, X86::R8,  X86::R9
1667      };
1668      static const unsigned XMMArgRegsWin64[] = {
1669        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1670      };
1671      static const unsigned GPR64ArgRegs64Bit[] = {
1672        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1673      };
1674      static const unsigned XMMArgRegs64Bit[] = {
1675        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1676        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1677      };
1678      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1679
1680      if (IsWin64) {
1681        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1682        GPR64ArgRegs = GPR64ArgRegsWin64;
1683        XMMArgRegs = XMMArgRegsWin64;
1684      } else {
1685        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1686        GPR64ArgRegs = GPR64ArgRegs64Bit;
1687        XMMArgRegs = XMMArgRegs64Bit;
1688      }
1689      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1690                                                       TotalNumIntRegs);
1691      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1692                                                       TotalNumXMMRegs);
1693
1694      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1695      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1696             "SSE register cannot be used when SSE is disabled!");
1697      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1698             "SSE register cannot be used when SSE is disabled!");
1699      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1700        // Kernel mode asks for SSE to be disabled, so don't push them
1701        // on the stack.
1702        TotalNumXMMRegs = 0;
1703
1704      // For X86-64, if there are vararg parameters that are passed via
1705      // registers, then we must store them to their spots on the stack so they
1706      // may be loaded by deferencing the result of va_next.
1707      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1708      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1709      FuncInfo->setRegSaveFrameIndex(
1710        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1711                               false));
1712
1713      // Store the integer parameter registers.
1714      SmallVector<SDValue, 8> MemOps;
1715      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1716                                        getPointerTy());
1717      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1718      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1719        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1720                                  DAG.getIntPtrConstant(Offset));
1721        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1722                                     X86::GR64RegisterClass);
1723        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1724        SDValue Store =
1725          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1726                       MachinePointerInfo::getFixedStack(
1727                         FuncInfo->getRegSaveFrameIndex(), Offset),
1728                       false, false, 0);
1729        MemOps.push_back(Store);
1730        Offset += 8;
1731      }
1732
1733      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1734        // Now store the XMM (fp + vector) parameter registers.
1735        SmallVector<SDValue, 11> SaveXMMOps;
1736        SaveXMMOps.push_back(Chain);
1737
1738        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1739        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1740        SaveXMMOps.push_back(ALVal);
1741
1742        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1743                               FuncInfo->getRegSaveFrameIndex()));
1744        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1745                               FuncInfo->getVarArgsFPOffset()));
1746
1747        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1748          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1749                                       X86::VR128RegisterClass);
1750          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1751          SaveXMMOps.push_back(Val);
1752        }
1753        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1754                                     MVT::Other,
1755                                     &SaveXMMOps[0], SaveXMMOps.size()));
1756      }
1757
1758      if (!MemOps.empty())
1759        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1760                            &MemOps[0], MemOps.size());
1761    }
1762  }
1763
1764  // Some CCs need callee pop.
1765  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1766    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1767  } else {
1768    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1769    // If this is an sret function, the return should pop the hidden pointer.
1770    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1771      FuncInfo->setBytesToPopOnReturn(4);
1772  }
1773
1774  if (!Is64Bit) {
1775    // RegSaveFrameIndex is X86-64 only.
1776    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1777    if (CallConv == CallingConv::X86_FastCall ||
1778        CallConv == CallingConv::X86_ThisCall)
1779      // fastcc functions can't have varargs.
1780      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1781  }
1782
1783  return Chain;
1784}
1785
1786SDValue
1787X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1788                                    SDValue StackPtr, SDValue Arg,
1789                                    DebugLoc dl, SelectionDAG &DAG,
1790                                    const CCValAssign &VA,
1791                                    ISD::ArgFlagsTy Flags) const {
1792  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1793  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1794  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1795  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1796  if (Flags.isByVal())
1797    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1798
1799  return DAG.getStore(Chain, dl, Arg, PtrOff,
1800                      MachinePointerInfo::getStack(LocMemOffset),
1801                      false, false, 0);
1802}
1803
1804/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1805/// optimization is performed and it is required.
1806SDValue
1807X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1808                                           SDValue &OutRetAddr, SDValue Chain,
1809                                           bool IsTailCall, bool Is64Bit,
1810                                           int FPDiff, DebugLoc dl) const {
1811  // Adjust the Return address stack slot.
1812  EVT VT = getPointerTy();
1813  OutRetAddr = getReturnAddressFrameIndex(DAG);
1814
1815  // Load the "old" Return address.
1816  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1817                           false, false, 0);
1818  return SDValue(OutRetAddr.getNode(), 1);
1819}
1820
1821/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1822/// optimization is performed and it is required (FPDiff!=0).
1823static SDValue
1824EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1825                         SDValue Chain, SDValue RetAddrFrIdx,
1826                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1827  // Store the return address to the appropriate stack slot.
1828  if (!FPDiff) return Chain;
1829  // Calculate the new stack slot for the return address.
1830  int SlotSize = Is64Bit ? 8 : 4;
1831  int NewReturnAddrFI =
1832    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1833  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1834  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1835  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1836                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1837                       false, false, 0);
1838  return Chain;
1839}
1840
1841SDValue
1842X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1843                             CallingConv::ID CallConv, bool isVarArg,
1844                             bool &isTailCall,
1845                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1846                             const SmallVectorImpl<SDValue> &OutVals,
1847                             const SmallVectorImpl<ISD::InputArg> &Ins,
1848                             DebugLoc dl, SelectionDAG &DAG,
1849                             SmallVectorImpl<SDValue> &InVals) const {
1850  MachineFunction &MF = DAG.getMachineFunction();
1851  bool Is64Bit        = Subtarget->is64Bit();
1852  bool IsStructRet    = CallIsStructReturn(Outs);
1853  bool IsSibcall      = false;
1854
1855  if (isTailCall) {
1856    // Check if it's really possible to do a tail call.
1857    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1858                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1859                                                   Outs, OutVals, Ins, DAG);
1860
1861    // Sibcalls are automatically detected tailcalls which do not require
1862    // ABI changes.
1863    if (!GuaranteedTailCallOpt && isTailCall)
1864      IsSibcall = true;
1865
1866    if (isTailCall)
1867      ++NumTailCalls;
1868  }
1869
1870  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1871         "Var args not supported with calling convention fastcc or ghc");
1872
1873  // Analyze operands of the call, assigning locations to each operand.
1874  SmallVector<CCValAssign, 16> ArgLocs;
1875  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1876                 ArgLocs, *DAG.getContext());
1877  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1878
1879  // Get a count of how many bytes are to be pushed on the stack.
1880  unsigned NumBytes = CCInfo.getNextStackOffset();
1881  if (IsSibcall)
1882    // This is a sibcall. The memory operands are available in caller's
1883    // own caller's stack.
1884    NumBytes = 0;
1885  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1886    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1887
1888  int FPDiff = 0;
1889  if (isTailCall && !IsSibcall) {
1890    // Lower arguments at fp - stackoffset + fpdiff.
1891    unsigned NumBytesCallerPushed =
1892      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1893    FPDiff = NumBytesCallerPushed - NumBytes;
1894
1895    // Set the delta of movement of the returnaddr stackslot.
1896    // But only set if delta is greater than previous delta.
1897    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1898      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1899  }
1900
1901  if (!IsSibcall)
1902    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1903
1904  SDValue RetAddrFrIdx;
1905  // Load return adress for tail calls.
1906  if (isTailCall && FPDiff)
1907    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1908                                    Is64Bit, FPDiff, dl);
1909
1910  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1911  SmallVector<SDValue, 8> MemOpChains;
1912  SDValue StackPtr;
1913
1914  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1915  // of tail call optimization arguments are handle later.
1916  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1917    CCValAssign &VA = ArgLocs[i];
1918    EVT RegVT = VA.getLocVT();
1919    SDValue Arg = OutVals[i];
1920    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1921    bool isByVal = Flags.isByVal();
1922
1923    // Promote the value if needed.
1924    switch (VA.getLocInfo()) {
1925    default: llvm_unreachable("Unknown loc info!");
1926    case CCValAssign::Full: break;
1927    case CCValAssign::SExt:
1928      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1929      break;
1930    case CCValAssign::ZExt:
1931      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1932      break;
1933    case CCValAssign::AExt:
1934      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1935        // Special case: passing MMX values in XMM registers.
1936        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1937        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1938        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1939      } else
1940        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1941      break;
1942    case CCValAssign::BCvt:
1943      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1944      break;
1945    case CCValAssign::Indirect: {
1946      // Store the argument.
1947      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1948      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1949      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1950                           MachinePointerInfo::getFixedStack(FI),
1951                           false, false, 0);
1952      Arg = SpillSlot;
1953      break;
1954    }
1955    }
1956
1957    if (VA.isRegLoc()) {
1958      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1959      if (isVarArg && Subtarget->isTargetWin64()) {
1960        // Win64 ABI requires argument XMM reg to be copied to the corresponding
1961        // shadow reg if callee is a varargs function.
1962        unsigned ShadowReg = 0;
1963        switch (VA.getLocReg()) {
1964        case X86::XMM0: ShadowReg = X86::RCX; break;
1965        case X86::XMM1: ShadowReg = X86::RDX; break;
1966        case X86::XMM2: ShadowReg = X86::R8; break;
1967        case X86::XMM3: ShadowReg = X86::R9; break;
1968        }
1969        if (ShadowReg)
1970          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1971      }
1972    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1973      assert(VA.isMemLoc());
1974      if (StackPtr.getNode() == 0)
1975        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1976      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1977                                             dl, DAG, VA, Flags));
1978    }
1979  }
1980
1981  if (!MemOpChains.empty())
1982    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1983                        &MemOpChains[0], MemOpChains.size());
1984
1985  // Build a sequence of copy-to-reg nodes chained together with token chain
1986  // and flag operands which copy the outgoing args into registers.
1987  SDValue InFlag;
1988  // Tail call byval lowering might overwrite argument registers so in case of
1989  // tail call optimization the copies to registers are lowered later.
1990  if (!isTailCall)
1991    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1992      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1993                               RegsToPass[i].second, InFlag);
1994      InFlag = Chain.getValue(1);
1995    }
1996
1997  if (Subtarget->isPICStyleGOT()) {
1998    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1999    // GOT pointer.
2000    if (!isTailCall) {
2001      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2002                               DAG.getNode(X86ISD::GlobalBaseReg,
2003                                           DebugLoc(), getPointerTy()),
2004                               InFlag);
2005      InFlag = Chain.getValue(1);
2006    } else {
2007      // If we are tail calling and generating PIC/GOT style code load the
2008      // address of the callee into ECX. The value in ecx is used as target of
2009      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2010      // for tail calls on PIC/GOT architectures. Normally we would just put the
2011      // address of GOT into ebx and then call target@PLT. But for tail calls
2012      // ebx would be restored (since ebx is callee saved) before jumping to the
2013      // target@PLT.
2014
2015      // Note: The actual moving to ECX is done further down.
2016      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2017      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2018          !G->getGlobal()->hasProtectedVisibility())
2019        Callee = LowerGlobalAddress(Callee, DAG);
2020      else if (isa<ExternalSymbolSDNode>(Callee))
2021        Callee = LowerExternalSymbol(Callee, DAG);
2022    }
2023  }
2024
2025  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2026    // From AMD64 ABI document:
2027    // For calls that may call functions that use varargs or stdargs
2028    // (prototype-less calls or calls to functions containing ellipsis (...) in
2029    // the declaration) %al is used as hidden argument to specify the number
2030    // of SSE registers used. The contents of %al do not need to match exactly
2031    // the number of registers, but must be an ubound on the number of SSE
2032    // registers used and is in the range 0 - 8 inclusive.
2033
2034    // Count the number of XMM registers allocated.
2035    static const unsigned XMMArgRegs[] = {
2036      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2037      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2038    };
2039    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2040    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2041           && "SSE registers cannot be used when SSE is disabled");
2042
2043    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2044                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2045    InFlag = Chain.getValue(1);
2046  }
2047
2048
2049  // For tail calls lower the arguments to the 'real' stack slot.
2050  if (isTailCall) {
2051    // Force all the incoming stack arguments to be loaded from the stack
2052    // before any new outgoing arguments are stored to the stack, because the
2053    // outgoing stack slots may alias the incoming argument stack slots, and
2054    // the alias isn't otherwise explicit. This is slightly more conservative
2055    // than necessary, because it means that each store effectively depends
2056    // on every argument instead of just those arguments it would clobber.
2057    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2058
2059    SmallVector<SDValue, 8> MemOpChains2;
2060    SDValue FIN;
2061    int FI = 0;
2062    // Do not flag preceeding copytoreg stuff together with the following stuff.
2063    InFlag = SDValue();
2064    if (GuaranteedTailCallOpt) {
2065      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2066        CCValAssign &VA = ArgLocs[i];
2067        if (VA.isRegLoc())
2068          continue;
2069        assert(VA.isMemLoc());
2070        SDValue Arg = OutVals[i];
2071        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2072        // Create frame index.
2073        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2074        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2075        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2076        FIN = DAG.getFrameIndex(FI, getPointerTy());
2077
2078        if (Flags.isByVal()) {
2079          // Copy relative to framepointer.
2080          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2081          if (StackPtr.getNode() == 0)
2082            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2083                                          getPointerTy());
2084          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2085
2086          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2087                                                           ArgChain,
2088                                                           Flags, DAG, dl));
2089        } else {
2090          // Store relative to framepointer.
2091          MemOpChains2.push_back(
2092            DAG.getStore(ArgChain, dl, Arg, FIN,
2093                         MachinePointerInfo::getFixedStack(FI),
2094                         false, false, 0));
2095        }
2096      }
2097    }
2098
2099    if (!MemOpChains2.empty())
2100      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2101                          &MemOpChains2[0], MemOpChains2.size());
2102
2103    // Copy arguments to their registers.
2104    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2105      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2106                               RegsToPass[i].second, InFlag);
2107      InFlag = Chain.getValue(1);
2108    }
2109    InFlag =SDValue();
2110
2111    // Store the return address to the appropriate stack slot.
2112    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2113                                     FPDiff, dl);
2114  }
2115
2116  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2117    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2118    // In the 64-bit large code model, we have to make all calls
2119    // through a register, since the call instruction's 32-bit
2120    // pc-relative offset may not be large enough to hold the whole
2121    // address.
2122  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2123    // If the callee is a GlobalAddress node (quite common, every direct call
2124    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2125    // it.
2126
2127    // We should use extra load for direct calls to dllimported functions in
2128    // non-JIT mode.
2129    const GlobalValue *GV = G->getGlobal();
2130    if (!GV->hasDLLImportLinkage()) {
2131      unsigned char OpFlags = 0;
2132
2133      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2134      // external symbols most go through the PLT in PIC mode.  If the symbol
2135      // has hidden or protected visibility, or if it is static or local, then
2136      // we don't need to use the PLT - we can directly call it.
2137      if (Subtarget->isTargetELF() &&
2138          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2139          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2140        OpFlags = X86II::MO_PLT;
2141      } else if (Subtarget->isPICStyleStubAny() &&
2142                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2143                 Subtarget->getDarwinVers() < 9) {
2144        // PC-relative references to external symbols should go through $stub,
2145        // unless we're building with the leopard linker or later, which
2146        // automatically synthesizes these stubs.
2147        OpFlags = X86II::MO_DARWIN_STUB;
2148      }
2149
2150      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2151                                          G->getOffset(), OpFlags);
2152    }
2153  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2154    unsigned char OpFlags = 0;
2155
2156    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2157    // symbols should go through the PLT.
2158    if (Subtarget->isTargetELF() &&
2159        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2160      OpFlags = X86II::MO_PLT;
2161    } else if (Subtarget->isPICStyleStubAny() &&
2162               Subtarget->getDarwinVers() < 9) {
2163      // PC-relative references to external symbols should go through $stub,
2164      // unless we're building with the leopard linker or later, which
2165      // automatically synthesizes these stubs.
2166      OpFlags = X86II::MO_DARWIN_STUB;
2167    }
2168
2169    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2170                                         OpFlags);
2171  }
2172
2173  // Returns a chain & a flag for retval copy to use.
2174  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2175  SmallVector<SDValue, 8> Ops;
2176
2177  if (!IsSibcall && isTailCall) {
2178    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2179                           DAG.getIntPtrConstant(0, true), InFlag);
2180    InFlag = Chain.getValue(1);
2181  }
2182
2183  Ops.push_back(Chain);
2184  Ops.push_back(Callee);
2185
2186  if (isTailCall)
2187    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2188
2189  // Add argument registers to the end of the list so that they are known live
2190  // into the call.
2191  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2192    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2193                                  RegsToPass[i].second.getValueType()));
2194
2195  // Add an implicit use GOT pointer in EBX.
2196  if (!isTailCall && Subtarget->isPICStyleGOT())
2197    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2198
2199  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2200  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2201    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2202
2203  if (InFlag.getNode())
2204    Ops.push_back(InFlag);
2205
2206  if (isTailCall) {
2207    // We used to do:
2208    //// If this is the first return lowered for this function, add the regs
2209    //// to the liveout set for the function.
2210    // This isn't right, although it's probably harmless on x86; liveouts
2211    // should be computed from returns not tail calls.  Consider a void
2212    // function making a tail call to a function returning int.
2213    return DAG.getNode(X86ISD::TC_RETURN, dl,
2214                       NodeTys, &Ops[0], Ops.size());
2215  }
2216
2217  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2218  InFlag = Chain.getValue(1);
2219
2220  // Create the CALLSEQ_END node.
2221  unsigned NumBytesForCalleeToPush;
2222  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2223    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2224  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2225    // If this is a call to a struct-return function, the callee
2226    // pops the hidden struct pointer, so we have to push it back.
2227    // This is common for Darwin/X86, Linux & Mingw32 targets.
2228    NumBytesForCalleeToPush = 4;
2229  else
2230    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2231
2232  // Returns a flag for retval copy to use.
2233  if (!IsSibcall) {
2234    Chain = DAG.getCALLSEQ_END(Chain,
2235                               DAG.getIntPtrConstant(NumBytes, true),
2236                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2237                                                     true),
2238                               InFlag);
2239    InFlag = Chain.getValue(1);
2240  }
2241
2242  // Handle result values, copying them out of physregs into vregs that we
2243  // return.
2244  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2245                         Ins, dl, DAG, InVals);
2246}
2247
2248
2249//===----------------------------------------------------------------------===//
2250//                Fast Calling Convention (tail call) implementation
2251//===----------------------------------------------------------------------===//
2252
2253//  Like std call, callee cleans arguments, convention except that ECX is
2254//  reserved for storing the tail called function address. Only 2 registers are
2255//  free for argument passing (inreg). Tail call optimization is performed
2256//  provided:
2257//                * tailcallopt is enabled
2258//                * caller/callee are fastcc
2259//  On X86_64 architecture with GOT-style position independent code only local
2260//  (within module) calls are supported at the moment.
2261//  To keep the stack aligned according to platform abi the function
2262//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2263//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2264//  If a tail called function callee has more arguments than the caller the
2265//  caller needs to make sure that there is room to move the RETADDR to. This is
2266//  achieved by reserving an area the size of the argument delta right after the
2267//  original REtADDR, but before the saved framepointer or the spilled registers
2268//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2269//  stack layout:
2270//    arg1
2271//    arg2
2272//    RETADDR
2273//    [ new RETADDR
2274//      move area ]
2275//    (possible EBP)
2276//    ESI
2277//    EDI
2278//    local1 ..
2279
2280/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2281/// for a 16 byte align requirement.
2282unsigned
2283X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2284                                               SelectionDAG& DAG) const {
2285  MachineFunction &MF = DAG.getMachineFunction();
2286  const TargetMachine &TM = MF.getTarget();
2287  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2288  unsigned StackAlignment = TFI.getStackAlignment();
2289  uint64_t AlignMask = StackAlignment - 1;
2290  int64_t Offset = StackSize;
2291  uint64_t SlotSize = TD->getPointerSize();
2292  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2293    // Number smaller than 12 so just add the difference.
2294    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2295  } else {
2296    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2297    Offset = ((~AlignMask) & Offset) + StackAlignment +
2298      (StackAlignment-SlotSize);
2299  }
2300  return Offset;
2301}
2302
2303/// MatchingStackOffset - Return true if the given stack call argument is
2304/// already available in the same position (relatively) of the caller's
2305/// incoming argument stack.
2306static
2307bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2308                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2309                         const X86InstrInfo *TII) {
2310  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2311  int FI = INT_MAX;
2312  if (Arg.getOpcode() == ISD::CopyFromReg) {
2313    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2314    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2315      return false;
2316    MachineInstr *Def = MRI->getVRegDef(VR);
2317    if (!Def)
2318      return false;
2319    if (!Flags.isByVal()) {
2320      if (!TII->isLoadFromStackSlot(Def, FI))
2321        return false;
2322    } else {
2323      unsigned Opcode = Def->getOpcode();
2324      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2325          Def->getOperand(1).isFI()) {
2326        FI = Def->getOperand(1).getIndex();
2327        Bytes = Flags.getByValSize();
2328      } else
2329        return false;
2330    }
2331  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2332    if (Flags.isByVal())
2333      // ByVal argument is passed in as a pointer but it's now being
2334      // dereferenced. e.g.
2335      // define @foo(%struct.X* %A) {
2336      //   tail call @bar(%struct.X* byval %A)
2337      // }
2338      return false;
2339    SDValue Ptr = Ld->getBasePtr();
2340    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2341    if (!FINode)
2342      return false;
2343    FI = FINode->getIndex();
2344  } else
2345    return false;
2346
2347  assert(FI != INT_MAX);
2348  if (!MFI->isFixedObjectIndex(FI))
2349    return false;
2350  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2351}
2352
2353/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2354/// for tail call optimization. Targets which want to do tail call
2355/// optimization should implement this function.
2356bool
2357X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2358                                                     CallingConv::ID CalleeCC,
2359                                                     bool isVarArg,
2360                                                     bool isCalleeStructRet,
2361                                                     bool isCallerStructRet,
2362                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2363                                    const SmallVectorImpl<SDValue> &OutVals,
2364                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2365                                                     SelectionDAG& DAG) const {
2366  if (!IsTailCallConvention(CalleeCC) &&
2367      CalleeCC != CallingConv::C)
2368    return false;
2369
2370  // If -tailcallopt is specified, make fastcc functions tail-callable.
2371  const MachineFunction &MF = DAG.getMachineFunction();
2372  const Function *CallerF = DAG.getMachineFunction().getFunction();
2373  CallingConv::ID CallerCC = CallerF->getCallingConv();
2374  bool CCMatch = CallerCC == CalleeCC;
2375
2376  if (GuaranteedTailCallOpt) {
2377    if (IsTailCallConvention(CalleeCC) && CCMatch)
2378      return true;
2379    return false;
2380  }
2381
2382  // Look for obvious safe cases to perform tail call optimization that do not
2383  // require ABI changes. This is what gcc calls sibcall.
2384
2385  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2386  // emit a special epilogue.
2387  if (RegInfo->needsStackRealignment(MF))
2388    return false;
2389
2390  // Do not sibcall optimize vararg calls unless the call site is not passing
2391  // any arguments.
2392  if (isVarArg && !Outs.empty())
2393    return false;
2394
2395  // Also avoid sibcall optimization if either caller or callee uses struct
2396  // return semantics.
2397  if (isCalleeStructRet || isCallerStructRet)
2398    return false;
2399
2400  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2401  // Therefore if it's not used by the call it is not safe to optimize this into
2402  // a sibcall.
2403  bool Unused = false;
2404  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2405    if (!Ins[i].Used) {
2406      Unused = true;
2407      break;
2408    }
2409  }
2410  if (Unused) {
2411    SmallVector<CCValAssign, 16> RVLocs;
2412    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2413                   RVLocs, *DAG.getContext());
2414    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2415    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2416      CCValAssign &VA = RVLocs[i];
2417      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2418        return false;
2419    }
2420  }
2421
2422  // If the calling conventions do not match, then we'd better make sure the
2423  // results are returned in the same way as what the caller expects.
2424  if (!CCMatch) {
2425    SmallVector<CCValAssign, 16> RVLocs1;
2426    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2427                    RVLocs1, *DAG.getContext());
2428    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2429
2430    SmallVector<CCValAssign, 16> RVLocs2;
2431    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2432                    RVLocs2, *DAG.getContext());
2433    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2434
2435    if (RVLocs1.size() != RVLocs2.size())
2436      return false;
2437    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2438      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2439        return false;
2440      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2441        return false;
2442      if (RVLocs1[i].isRegLoc()) {
2443        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2444          return false;
2445      } else {
2446        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2447          return false;
2448      }
2449    }
2450  }
2451
2452  // If the callee takes no arguments then go on to check the results of the
2453  // call.
2454  if (!Outs.empty()) {
2455    // Check if stack adjustment is needed. For now, do not do this if any
2456    // argument is passed on the stack.
2457    SmallVector<CCValAssign, 16> ArgLocs;
2458    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2459                   ArgLocs, *DAG.getContext());
2460    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2461    if (CCInfo.getNextStackOffset()) {
2462      MachineFunction &MF = DAG.getMachineFunction();
2463      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2464        return false;
2465      if (Subtarget->isTargetWin64())
2466        // Win64 ABI has additional complications.
2467        return false;
2468
2469      // Check if the arguments are already laid out in the right way as
2470      // the caller's fixed stack objects.
2471      MachineFrameInfo *MFI = MF.getFrameInfo();
2472      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2473      const X86InstrInfo *TII =
2474        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2475      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2476        CCValAssign &VA = ArgLocs[i];
2477        SDValue Arg = OutVals[i];
2478        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2479        if (VA.getLocInfo() == CCValAssign::Indirect)
2480          return false;
2481        if (!VA.isRegLoc()) {
2482          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2483                                   MFI, MRI, TII))
2484            return false;
2485        }
2486      }
2487    }
2488
2489    // If the tailcall address may be in a register, then make sure it's
2490    // possible to register allocate for it. In 32-bit, the call address can
2491    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2492    // callee-saved registers are restored. These happen to be the same
2493    // registers used to pass 'inreg' arguments so watch out for those.
2494    if (!Subtarget->is64Bit() &&
2495        !isa<GlobalAddressSDNode>(Callee) &&
2496        !isa<ExternalSymbolSDNode>(Callee)) {
2497      unsigned NumInRegs = 0;
2498      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2499        CCValAssign &VA = ArgLocs[i];
2500        if (!VA.isRegLoc())
2501          continue;
2502        unsigned Reg = VA.getLocReg();
2503        switch (Reg) {
2504        default: break;
2505        case X86::EAX: case X86::EDX: case X86::ECX:
2506          if (++NumInRegs == 3)
2507            return false;
2508          break;
2509        }
2510      }
2511    }
2512  }
2513
2514  return true;
2515}
2516
2517FastISel *
2518X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2519  return X86::createFastISel(funcInfo);
2520}
2521
2522
2523//===----------------------------------------------------------------------===//
2524//                           Other Lowering Hooks
2525//===----------------------------------------------------------------------===//
2526
2527static bool MayFoldLoad(SDValue Op) {
2528  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2529}
2530
2531static bool MayFoldIntoStore(SDValue Op) {
2532  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2533}
2534
2535static bool isTargetShuffle(unsigned Opcode) {
2536  switch(Opcode) {
2537  default: return false;
2538  case X86ISD::PSHUFD:
2539  case X86ISD::PSHUFHW:
2540  case X86ISD::PSHUFLW:
2541  case X86ISD::SHUFPD:
2542  case X86ISD::PALIGN:
2543  case X86ISD::SHUFPS:
2544  case X86ISD::MOVLHPS:
2545  case X86ISD::MOVLHPD:
2546  case X86ISD::MOVHLPS:
2547  case X86ISD::MOVLPS:
2548  case X86ISD::MOVLPD:
2549  case X86ISD::MOVSHDUP:
2550  case X86ISD::MOVSLDUP:
2551  case X86ISD::MOVDDUP:
2552  case X86ISD::MOVSS:
2553  case X86ISD::MOVSD:
2554  case X86ISD::UNPCKLPS:
2555  case X86ISD::UNPCKLPD:
2556  case X86ISD::PUNPCKLWD:
2557  case X86ISD::PUNPCKLBW:
2558  case X86ISD::PUNPCKLDQ:
2559  case X86ISD::PUNPCKLQDQ:
2560  case X86ISD::UNPCKHPS:
2561  case X86ISD::UNPCKHPD:
2562  case X86ISD::PUNPCKHWD:
2563  case X86ISD::PUNPCKHBW:
2564  case X86ISD::PUNPCKHDQ:
2565  case X86ISD::PUNPCKHQDQ:
2566    return true;
2567  }
2568  return false;
2569}
2570
2571static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2572                                               SDValue V1, SelectionDAG &DAG) {
2573  switch(Opc) {
2574  default: llvm_unreachable("Unknown x86 shuffle node");
2575  case X86ISD::MOVSHDUP:
2576  case X86ISD::MOVSLDUP:
2577  case X86ISD::MOVDDUP:
2578    return DAG.getNode(Opc, dl, VT, V1);
2579  }
2580
2581  return SDValue();
2582}
2583
2584static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2585                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2586  switch(Opc) {
2587  default: llvm_unreachable("Unknown x86 shuffle node");
2588  case X86ISD::PSHUFD:
2589  case X86ISD::PSHUFHW:
2590  case X86ISD::PSHUFLW:
2591    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2592  }
2593
2594  return SDValue();
2595}
2596
2597static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2598               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2599  switch(Opc) {
2600  default: llvm_unreachable("Unknown x86 shuffle node");
2601  case X86ISD::PALIGN:
2602  case X86ISD::SHUFPD:
2603  case X86ISD::SHUFPS:
2604    return DAG.getNode(Opc, dl, VT, V1, V2,
2605                       DAG.getConstant(TargetMask, MVT::i8));
2606  }
2607  return SDValue();
2608}
2609
2610static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2611                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2612  switch(Opc) {
2613  default: llvm_unreachable("Unknown x86 shuffle node");
2614  case X86ISD::MOVLHPS:
2615  case X86ISD::MOVLHPD:
2616  case X86ISD::MOVHLPS:
2617  case X86ISD::MOVLPS:
2618  case X86ISD::MOVLPD:
2619  case X86ISD::MOVSS:
2620  case X86ISD::MOVSD:
2621  case X86ISD::UNPCKLPS:
2622  case X86ISD::UNPCKLPD:
2623  case X86ISD::PUNPCKLWD:
2624  case X86ISD::PUNPCKLBW:
2625  case X86ISD::PUNPCKLDQ:
2626  case X86ISD::PUNPCKLQDQ:
2627  case X86ISD::UNPCKHPS:
2628  case X86ISD::UNPCKHPD:
2629  case X86ISD::PUNPCKHWD:
2630  case X86ISD::PUNPCKHBW:
2631  case X86ISD::PUNPCKHDQ:
2632  case X86ISD::PUNPCKHQDQ:
2633    return DAG.getNode(Opc, dl, VT, V1, V2);
2634  }
2635  return SDValue();
2636}
2637
2638SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2639  MachineFunction &MF = DAG.getMachineFunction();
2640  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2641  int ReturnAddrIndex = FuncInfo->getRAIndex();
2642
2643  if (ReturnAddrIndex == 0) {
2644    // Set up a frame object for the return address.
2645    uint64_t SlotSize = TD->getPointerSize();
2646    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2647                                                           false);
2648    FuncInfo->setRAIndex(ReturnAddrIndex);
2649  }
2650
2651  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2652}
2653
2654
2655bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2656                                       bool hasSymbolicDisplacement) {
2657  // Offset should fit into 32 bit immediate field.
2658  if (!isInt<32>(Offset))
2659    return false;
2660
2661  // If we don't have a symbolic displacement - we don't have any extra
2662  // restrictions.
2663  if (!hasSymbolicDisplacement)
2664    return true;
2665
2666  // FIXME: Some tweaks might be needed for medium code model.
2667  if (M != CodeModel::Small && M != CodeModel::Kernel)
2668    return false;
2669
2670  // For small code model we assume that latest object is 16MB before end of 31
2671  // bits boundary. We may also accept pretty large negative constants knowing
2672  // that all objects are in the positive half of address space.
2673  if (M == CodeModel::Small && Offset < 16*1024*1024)
2674    return true;
2675
2676  // For kernel code model we know that all object resist in the negative half
2677  // of 32bits address space. We may not accept negative offsets, since they may
2678  // be just off and we may accept pretty large positive ones.
2679  if (M == CodeModel::Kernel && Offset > 0)
2680    return true;
2681
2682  return false;
2683}
2684
2685/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2686/// specific condition code, returning the condition code and the LHS/RHS of the
2687/// comparison to make.
2688static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2689                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2690  if (!isFP) {
2691    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2692      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2693        // X > -1   -> X == 0, jump !sign.
2694        RHS = DAG.getConstant(0, RHS.getValueType());
2695        return X86::COND_NS;
2696      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2697        // X < 0   -> X == 0, jump on sign.
2698        return X86::COND_S;
2699      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2700        // X < 1   -> X <= 0
2701        RHS = DAG.getConstant(0, RHS.getValueType());
2702        return X86::COND_LE;
2703      }
2704    }
2705
2706    switch (SetCCOpcode) {
2707    default: llvm_unreachable("Invalid integer condition!");
2708    case ISD::SETEQ:  return X86::COND_E;
2709    case ISD::SETGT:  return X86::COND_G;
2710    case ISD::SETGE:  return X86::COND_GE;
2711    case ISD::SETLT:  return X86::COND_L;
2712    case ISD::SETLE:  return X86::COND_LE;
2713    case ISD::SETNE:  return X86::COND_NE;
2714    case ISD::SETULT: return X86::COND_B;
2715    case ISD::SETUGT: return X86::COND_A;
2716    case ISD::SETULE: return X86::COND_BE;
2717    case ISD::SETUGE: return X86::COND_AE;
2718    }
2719  }
2720
2721  // First determine if it is required or is profitable to flip the operands.
2722
2723  // If LHS is a foldable load, but RHS is not, flip the condition.
2724  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2725      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2726    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2727    std::swap(LHS, RHS);
2728  }
2729
2730  switch (SetCCOpcode) {
2731  default: break;
2732  case ISD::SETOLT:
2733  case ISD::SETOLE:
2734  case ISD::SETUGT:
2735  case ISD::SETUGE:
2736    std::swap(LHS, RHS);
2737    break;
2738  }
2739
2740  // On a floating point condition, the flags are set as follows:
2741  // ZF  PF  CF   op
2742  //  0 | 0 | 0 | X > Y
2743  //  0 | 0 | 1 | X < Y
2744  //  1 | 0 | 0 | X == Y
2745  //  1 | 1 | 1 | unordered
2746  switch (SetCCOpcode) {
2747  default: llvm_unreachable("Condcode should be pre-legalized away");
2748  case ISD::SETUEQ:
2749  case ISD::SETEQ:   return X86::COND_E;
2750  case ISD::SETOLT:              // flipped
2751  case ISD::SETOGT:
2752  case ISD::SETGT:   return X86::COND_A;
2753  case ISD::SETOLE:              // flipped
2754  case ISD::SETOGE:
2755  case ISD::SETGE:   return X86::COND_AE;
2756  case ISD::SETUGT:              // flipped
2757  case ISD::SETULT:
2758  case ISD::SETLT:   return X86::COND_B;
2759  case ISD::SETUGE:              // flipped
2760  case ISD::SETULE:
2761  case ISD::SETLE:   return X86::COND_BE;
2762  case ISD::SETONE:
2763  case ISD::SETNE:   return X86::COND_NE;
2764  case ISD::SETUO:   return X86::COND_P;
2765  case ISD::SETO:    return X86::COND_NP;
2766  case ISD::SETOEQ:
2767  case ISD::SETUNE:  return X86::COND_INVALID;
2768  }
2769}
2770
2771/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2772/// code. Current x86 isa includes the following FP cmov instructions:
2773/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2774static bool hasFPCMov(unsigned X86CC) {
2775  switch (X86CC) {
2776  default:
2777    return false;
2778  case X86::COND_B:
2779  case X86::COND_BE:
2780  case X86::COND_E:
2781  case X86::COND_P:
2782  case X86::COND_A:
2783  case X86::COND_AE:
2784  case X86::COND_NE:
2785  case X86::COND_NP:
2786    return true;
2787  }
2788}
2789
2790/// isFPImmLegal - Returns true if the target can instruction select the
2791/// specified FP immediate natively. If false, the legalizer will
2792/// materialize the FP immediate as a load from a constant pool.
2793bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2794  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2795    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2796      return true;
2797  }
2798  return false;
2799}
2800
2801/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2802/// the specified range (L, H].
2803static bool isUndefOrInRange(int Val, int Low, int Hi) {
2804  return (Val < 0) || (Val >= Low && Val < Hi);
2805}
2806
2807/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2808/// specified value.
2809static bool isUndefOrEqual(int Val, int CmpVal) {
2810  if (Val < 0 || Val == CmpVal)
2811    return true;
2812  return false;
2813}
2814
2815/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2816/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2817/// the second operand.
2818static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2819  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2820    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2821  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2822    return (Mask[0] < 2 && Mask[1] < 2);
2823  return false;
2824}
2825
2826bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2827  SmallVector<int, 8> M;
2828  N->getMask(M);
2829  return ::isPSHUFDMask(M, N->getValueType(0));
2830}
2831
2832/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2833/// is suitable for input to PSHUFHW.
2834static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2835  if (VT != MVT::v8i16)
2836    return false;
2837
2838  // Lower quadword copied in order or undef.
2839  for (int i = 0; i != 4; ++i)
2840    if (Mask[i] >= 0 && Mask[i] != i)
2841      return false;
2842
2843  // Upper quadword shuffled.
2844  for (int i = 4; i != 8; ++i)
2845    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2846      return false;
2847
2848  return true;
2849}
2850
2851bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2852  SmallVector<int, 8> M;
2853  N->getMask(M);
2854  return ::isPSHUFHWMask(M, N->getValueType(0));
2855}
2856
2857/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2858/// is suitable for input to PSHUFLW.
2859static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2860  if (VT != MVT::v8i16)
2861    return false;
2862
2863  // Upper quadword copied in order.
2864  for (int i = 4; i != 8; ++i)
2865    if (Mask[i] >= 0 && Mask[i] != i)
2866      return false;
2867
2868  // Lower quadword shuffled.
2869  for (int i = 0; i != 4; ++i)
2870    if (Mask[i] >= 4)
2871      return false;
2872
2873  return true;
2874}
2875
2876bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2877  SmallVector<int, 8> M;
2878  N->getMask(M);
2879  return ::isPSHUFLWMask(M, N->getValueType(0));
2880}
2881
2882/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2883/// is suitable for input to PALIGNR.
2884static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2885                          bool hasSSSE3) {
2886  int i, e = VT.getVectorNumElements();
2887
2888  // Do not handle v2i64 / v2f64 shuffles with palignr.
2889  if (e < 4 || !hasSSSE3)
2890    return false;
2891
2892  for (i = 0; i != e; ++i)
2893    if (Mask[i] >= 0)
2894      break;
2895
2896  // All undef, not a palignr.
2897  if (i == e)
2898    return false;
2899
2900  // Determine if it's ok to perform a palignr with only the LHS, since we
2901  // don't have access to the actual shuffle elements to see if RHS is undef.
2902  bool Unary = Mask[i] < (int)e;
2903  bool NeedsUnary = false;
2904
2905  int s = Mask[i] - i;
2906
2907  // Check the rest of the elements to see if they are consecutive.
2908  for (++i; i != e; ++i) {
2909    int m = Mask[i];
2910    if (m < 0)
2911      continue;
2912
2913    Unary = Unary && (m < (int)e);
2914    NeedsUnary = NeedsUnary || (m < s);
2915
2916    if (NeedsUnary && !Unary)
2917      return false;
2918    if (Unary && m != ((s+i) & (e-1)))
2919      return false;
2920    if (!Unary && m != (s+i))
2921      return false;
2922  }
2923  return true;
2924}
2925
2926bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2927  SmallVector<int, 8> M;
2928  N->getMask(M);
2929  return ::isPALIGNRMask(M, N->getValueType(0), true);
2930}
2931
2932/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2933/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2934static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2935  int NumElems = VT.getVectorNumElements();
2936  if (NumElems != 2 && NumElems != 4)
2937    return false;
2938
2939  int Half = NumElems / 2;
2940  for (int i = 0; i < Half; ++i)
2941    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2942      return false;
2943  for (int i = Half; i < NumElems; ++i)
2944    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2945      return false;
2946
2947  return true;
2948}
2949
2950bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2951  SmallVector<int, 8> M;
2952  N->getMask(M);
2953  return ::isSHUFPMask(M, N->getValueType(0));
2954}
2955
2956/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2957/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2958/// half elements to come from vector 1 (which would equal the dest.) and
2959/// the upper half to come from vector 2.
2960static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2961  int NumElems = VT.getVectorNumElements();
2962
2963  if (NumElems != 2 && NumElems != 4)
2964    return false;
2965
2966  int Half = NumElems / 2;
2967  for (int i = 0; i < Half; ++i)
2968    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2969      return false;
2970  for (int i = Half; i < NumElems; ++i)
2971    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2972      return false;
2973  return true;
2974}
2975
2976static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2977  SmallVector<int, 8> M;
2978  N->getMask(M);
2979  return isCommutedSHUFPMask(M, N->getValueType(0));
2980}
2981
2982/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2983/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2984bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2985  if (N->getValueType(0).getVectorNumElements() != 4)
2986    return false;
2987
2988  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2989  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2990         isUndefOrEqual(N->getMaskElt(1), 7) &&
2991         isUndefOrEqual(N->getMaskElt(2), 2) &&
2992         isUndefOrEqual(N->getMaskElt(3), 3);
2993}
2994
2995/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2996/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2997/// <2, 3, 2, 3>
2998bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2999  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3000
3001  if (NumElems != 4)
3002    return false;
3003
3004  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3005  isUndefOrEqual(N->getMaskElt(1), 3) &&
3006  isUndefOrEqual(N->getMaskElt(2), 2) &&
3007  isUndefOrEqual(N->getMaskElt(3), 3);
3008}
3009
3010/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3011/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3012bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3013  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3014
3015  if (NumElems != 2 && NumElems != 4)
3016    return false;
3017
3018  for (unsigned i = 0; i < NumElems/2; ++i)
3019    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3020      return false;
3021
3022  for (unsigned i = NumElems/2; i < NumElems; ++i)
3023    if (!isUndefOrEqual(N->getMaskElt(i), i))
3024      return false;
3025
3026  return true;
3027}
3028
3029/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3030/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3031bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3032  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3033
3034  if (NumElems != 2 && NumElems != 4)
3035    return false;
3036
3037  for (unsigned i = 0; i < NumElems/2; ++i)
3038    if (!isUndefOrEqual(N->getMaskElt(i), i))
3039      return false;
3040
3041  for (unsigned i = 0; i < NumElems/2; ++i)
3042    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3043      return false;
3044
3045  return true;
3046}
3047
3048/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3049/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3050static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3051                         bool V2IsSplat = false) {
3052  int NumElts = VT.getVectorNumElements();
3053  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3054    return false;
3055
3056  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3057    int BitI  = Mask[i];
3058    int BitI1 = Mask[i+1];
3059    if (!isUndefOrEqual(BitI, j))
3060      return false;
3061    if (V2IsSplat) {
3062      if (!isUndefOrEqual(BitI1, NumElts))
3063        return false;
3064    } else {
3065      if (!isUndefOrEqual(BitI1, j + NumElts))
3066        return false;
3067    }
3068  }
3069  return true;
3070}
3071
3072bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3073  SmallVector<int, 8> M;
3074  N->getMask(M);
3075  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3076}
3077
3078/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3079/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3080static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3081                         bool V2IsSplat = false) {
3082  int NumElts = VT.getVectorNumElements();
3083  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3084    return false;
3085
3086  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3087    int BitI  = Mask[i];
3088    int BitI1 = Mask[i+1];
3089    if (!isUndefOrEqual(BitI, j + NumElts/2))
3090      return false;
3091    if (V2IsSplat) {
3092      if (isUndefOrEqual(BitI1, NumElts))
3093        return false;
3094    } else {
3095      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3096        return false;
3097    }
3098  }
3099  return true;
3100}
3101
3102bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3103  SmallVector<int, 8> M;
3104  N->getMask(M);
3105  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3106}
3107
3108/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3109/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3110/// <0, 0, 1, 1>
3111static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3112  int NumElems = VT.getVectorNumElements();
3113  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3114    return false;
3115
3116  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3117    int BitI  = Mask[i];
3118    int BitI1 = Mask[i+1];
3119    if (!isUndefOrEqual(BitI, j))
3120      return false;
3121    if (!isUndefOrEqual(BitI1, j))
3122      return false;
3123  }
3124  return true;
3125}
3126
3127bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3128  SmallVector<int, 8> M;
3129  N->getMask(M);
3130  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3131}
3132
3133/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3134/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3135/// <2, 2, 3, 3>
3136static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3137  int NumElems = VT.getVectorNumElements();
3138  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3139    return false;
3140
3141  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3142    int BitI  = Mask[i];
3143    int BitI1 = Mask[i+1];
3144    if (!isUndefOrEqual(BitI, j))
3145      return false;
3146    if (!isUndefOrEqual(BitI1, j))
3147      return false;
3148  }
3149  return true;
3150}
3151
3152bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3153  SmallVector<int, 8> M;
3154  N->getMask(M);
3155  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3156}
3157
3158/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3159/// specifies a shuffle of elements that is suitable for input to MOVSS,
3160/// MOVSD, and MOVD, i.e. setting the lowest element.
3161static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3162  if (VT.getVectorElementType().getSizeInBits() < 32)
3163    return false;
3164
3165  int NumElts = VT.getVectorNumElements();
3166
3167  if (!isUndefOrEqual(Mask[0], NumElts))
3168    return false;
3169
3170  for (int i = 1; i < NumElts; ++i)
3171    if (!isUndefOrEqual(Mask[i], i))
3172      return false;
3173
3174  return true;
3175}
3176
3177bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3178  SmallVector<int, 8> M;
3179  N->getMask(M);
3180  return ::isMOVLMask(M, N->getValueType(0));
3181}
3182
3183/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3184/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3185/// element of vector 2 and the other elements to come from vector 1 in order.
3186static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3187                               bool V2IsSplat = false, bool V2IsUndef = false) {
3188  int NumOps = VT.getVectorNumElements();
3189  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3190    return false;
3191
3192  if (!isUndefOrEqual(Mask[0], 0))
3193    return false;
3194
3195  for (int i = 1; i < NumOps; ++i)
3196    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3197          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3198          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3199      return false;
3200
3201  return true;
3202}
3203
3204static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3205                           bool V2IsUndef = false) {
3206  SmallVector<int, 8> M;
3207  N->getMask(M);
3208  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3209}
3210
3211/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3212/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3213bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3214  if (N->getValueType(0).getVectorNumElements() != 4)
3215    return false;
3216
3217  // Expect 1, 1, 3, 3
3218  for (unsigned i = 0; i < 2; ++i) {
3219    int Elt = N->getMaskElt(i);
3220    if (Elt >= 0 && Elt != 1)
3221      return false;
3222  }
3223
3224  bool HasHi = false;
3225  for (unsigned i = 2; i < 4; ++i) {
3226    int Elt = N->getMaskElt(i);
3227    if (Elt >= 0 && Elt != 3)
3228      return false;
3229    if (Elt == 3)
3230      HasHi = true;
3231  }
3232  // Don't use movshdup if it can be done with a shufps.
3233  // FIXME: verify that matching u, u, 3, 3 is what we want.
3234  return HasHi;
3235}
3236
3237/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3238/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3239bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3240  if (N->getValueType(0).getVectorNumElements() != 4)
3241    return false;
3242
3243  // Expect 0, 0, 2, 2
3244  for (unsigned i = 0; i < 2; ++i)
3245    if (N->getMaskElt(i) > 0)
3246      return false;
3247
3248  bool HasHi = false;
3249  for (unsigned i = 2; i < 4; ++i) {
3250    int Elt = N->getMaskElt(i);
3251    if (Elt >= 0 && Elt != 2)
3252      return false;
3253    if (Elt == 2)
3254      HasHi = true;
3255  }
3256  // Don't use movsldup if it can be done with a shufps.
3257  return HasHi;
3258}
3259
3260/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3261/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3262bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3263  int e = N->getValueType(0).getVectorNumElements() / 2;
3264
3265  for (int i = 0; i < e; ++i)
3266    if (!isUndefOrEqual(N->getMaskElt(i), i))
3267      return false;
3268  for (int i = 0; i < e; ++i)
3269    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3270      return false;
3271  return true;
3272}
3273
3274/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3275/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3276unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3277  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3278  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3279
3280  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3281  unsigned Mask = 0;
3282  for (int i = 0; i < NumOperands; ++i) {
3283    int Val = SVOp->getMaskElt(NumOperands-i-1);
3284    if (Val < 0) Val = 0;
3285    if (Val >= NumOperands) Val -= NumOperands;
3286    Mask |= Val;
3287    if (i != NumOperands - 1)
3288      Mask <<= Shift;
3289  }
3290  return Mask;
3291}
3292
3293/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3294/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3295unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3296  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3297  unsigned Mask = 0;
3298  // 8 nodes, but we only care about the last 4.
3299  for (unsigned i = 7; i >= 4; --i) {
3300    int Val = SVOp->getMaskElt(i);
3301    if (Val >= 0)
3302      Mask |= (Val - 4);
3303    if (i != 4)
3304      Mask <<= 2;
3305  }
3306  return Mask;
3307}
3308
3309/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3310/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3311unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3312  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3313  unsigned Mask = 0;
3314  // 8 nodes, but we only care about the first 4.
3315  for (int i = 3; i >= 0; --i) {
3316    int Val = SVOp->getMaskElt(i);
3317    if (Val >= 0)
3318      Mask |= Val;
3319    if (i != 0)
3320      Mask <<= 2;
3321  }
3322  return Mask;
3323}
3324
3325/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3326/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3327unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3328  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3329  EVT VVT = N->getValueType(0);
3330  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3331  int Val = 0;
3332
3333  unsigned i, e;
3334  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3335    Val = SVOp->getMaskElt(i);
3336    if (Val >= 0)
3337      break;
3338  }
3339  return (Val - i) * EltSize;
3340}
3341
3342/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3343/// constant +0.0.
3344bool X86::isZeroNode(SDValue Elt) {
3345  return ((isa<ConstantSDNode>(Elt) &&
3346           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3347          (isa<ConstantFPSDNode>(Elt) &&
3348           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3349}
3350
3351/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3352/// their permute mask.
3353static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3354                                    SelectionDAG &DAG) {
3355  EVT VT = SVOp->getValueType(0);
3356  unsigned NumElems = VT.getVectorNumElements();
3357  SmallVector<int, 8> MaskVec;
3358
3359  for (unsigned i = 0; i != NumElems; ++i) {
3360    int idx = SVOp->getMaskElt(i);
3361    if (idx < 0)
3362      MaskVec.push_back(idx);
3363    else if (idx < (int)NumElems)
3364      MaskVec.push_back(idx + NumElems);
3365    else
3366      MaskVec.push_back(idx - NumElems);
3367  }
3368  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3369                              SVOp->getOperand(0), &MaskVec[0]);
3370}
3371
3372/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3373/// the two vector operands have swapped position.
3374static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3375  unsigned NumElems = VT.getVectorNumElements();
3376  for (unsigned i = 0; i != NumElems; ++i) {
3377    int idx = Mask[i];
3378    if (idx < 0)
3379      continue;
3380    else if (idx < (int)NumElems)
3381      Mask[i] = idx + NumElems;
3382    else
3383      Mask[i] = idx - NumElems;
3384  }
3385}
3386
3387/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3388/// match movhlps. The lower half elements should come from upper half of
3389/// V1 (and in order), and the upper half elements should come from the upper
3390/// half of V2 (and in order).
3391static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3392  if (Op->getValueType(0).getVectorNumElements() != 4)
3393    return false;
3394  for (unsigned i = 0, e = 2; i != e; ++i)
3395    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3396      return false;
3397  for (unsigned i = 2; i != 4; ++i)
3398    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3399      return false;
3400  return true;
3401}
3402
3403/// isScalarLoadToVector - Returns true if the node is a scalar load that
3404/// is promoted to a vector. It also returns the LoadSDNode by reference if
3405/// required.
3406static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3407  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3408    return false;
3409  N = N->getOperand(0).getNode();
3410  if (!ISD::isNON_EXTLoad(N))
3411    return false;
3412  if (LD)
3413    *LD = cast<LoadSDNode>(N);
3414  return true;
3415}
3416
3417/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3418/// match movlp{s|d}. The lower half elements should come from lower half of
3419/// V1 (and in order), and the upper half elements should come from the upper
3420/// half of V2 (and in order). And since V1 will become the source of the
3421/// MOVLP, it must be either a vector load or a scalar load to vector.
3422static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3423                               ShuffleVectorSDNode *Op) {
3424  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3425    return false;
3426  // Is V2 is a vector load, don't do this transformation. We will try to use
3427  // load folding shufps op.
3428  if (ISD::isNON_EXTLoad(V2))
3429    return false;
3430
3431  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3432
3433  if (NumElems != 2 && NumElems != 4)
3434    return false;
3435  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3436    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3437      return false;
3438  for (unsigned i = NumElems/2; i != NumElems; ++i)
3439    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3440      return false;
3441  return true;
3442}
3443
3444/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3445/// all the same.
3446static bool isSplatVector(SDNode *N) {
3447  if (N->getOpcode() != ISD::BUILD_VECTOR)
3448    return false;
3449
3450  SDValue SplatValue = N->getOperand(0);
3451  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3452    if (N->getOperand(i) != SplatValue)
3453      return false;
3454  return true;
3455}
3456
3457/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3458/// to an zero vector.
3459/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3460static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3461  SDValue V1 = N->getOperand(0);
3462  SDValue V2 = N->getOperand(1);
3463  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3464  for (unsigned i = 0; i != NumElems; ++i) {
3465    int Idx = N->getMaskElt(i);
3466    if (Idx >= (int)NumElems) {
3467      unsigned Opc = V2.getOpcode();
3468      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3469        continue;
3470      if (Opc != ISD::BUILD_VECTOR ||
3471          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3472        return false;
3473    } else if (Idx >= 0) {
3474      unsigned Opc = V1.getOpcode();
3475      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3476        continue;
3477      if (Opc != ISD::BUILD_VECTOR ||
3478          !X86::isZeroNode(V1.getOperand(Idx)))
3479        return false;
3480    }
3481  }
3482  return true;
3483}
3484
3485/// getZeroVector - Returns a vector of specified type with all zero elements.
3486///
3487static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3488                             DebugLoc dl) {
3489  assert(VT.isVector() && "Expected a vector type");
3490
3491  // Always build SSE zero vectors as <4 x i32> bitcasted
3492  // to their dest type. This ensures they get CSE'd.
3493  SDValue Vec;
3494  if (VT.getSizeInBits() == 128) {  // SSE
3495    if (HasSSE2) {  // SSE2
3496      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3497      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3498    } else { // SSE1
3499      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3500      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3501    }
3502  } else if (VT.getSizeInBits() == 256) { // AVX
3503    // 256-bit logic and arithmetic instructions in AVX are
3504    // all floating-point, no support for integer ops. Default
3505    // to emitting fp zeroed vectors then.
3506    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3507    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3508    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3509  }
3510  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3511}
3512
3513/// getOnesVector - Returns a vector of specified type with all bits set.
3514///
3515static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3516  assert(VT.isVector() && "Expected a vector type");
3517
3518  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3519  // type.  This ensures they get CSE'd.
3520  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3521  SDValue Vec;
3522  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3523  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3524}
3525
3526
3527/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3528/// that point to V2 points to its first element.
3529static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3530  EVT VT = SVOp->getValueType(0);
3531  unsigned NumElems = VT.getVectorNumElements();
3532
3533  bool Changed = false;
3534  SmallVector<int, 8> MaskVec;
3535  SVOp->getMask(MaskVec);
3536
3537  for (unsigned i = 0; i != NumElems; ++i) {
3538    if (MaskVec[i] > (int)NumElems) {
3539      MaskVec[i] = NumElems;
3540      Changed = true;
3541    }
3542  }
3543  if (Changed)
3544    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3545                                SVOp->getOperand(1), &MaskVec[0]);
3546  return SDValue(SVOp, 0);
3547}
3548
3549/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3550/// operation of specified width.
3551static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3552                       SDValue V2) {
3553  unsigned NumElems = VT.getVectorNumElements();
3554  SmallVector<int, 8> Mask;
3555  Mask.push_back(NumElems);
3556  for (unsigned i = 1; i != NumElems; ++i)
3557    Mask.push_back(i);
3558  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3559}
3560
3561/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3562static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3563                          SDValue V2) {
3564  unsigned NumElems = VT.getVectorNumElements();
3565  SmallVector<int, 8> Mask;
3566  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3567    Mask.push_back(i);
3568    Mask.push_back(i + NumElems);
3569  }
3570  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3571}
3572
3573/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3574static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3575                          SDValue V2) {
3576  unsigned NumElems = VT.getVectorNumElements();
3577  unsigned Half = NumElems/2;
3578  SmallVector<int, 8> Mask;
3579  for (unsigned i = 0; i != Half; ++i) {
3580    Mask.push_back(i + Half);
3581    Mask.push_back(i + NumElems + Half);
3582  }
3583  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3584}
3585
3586/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3587static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3588  EVT PVT = MVT::v4f32;
3589  EVT VT = SV->getValueType(0);
3590  DebugLoc dl = SV->getDebugLoc();
3591  SDValue V1 = SV->getOperand(0);
3592  int NumElems = VT.getVectorNumElements();
3593  int EltNo = SV->getSplatIndex();
3594
3595  // unpack elements to the correct location
3596  while (NumElems > 4) {
3597    if (EltNo < NumElems/2) {
3598      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3599    } else {
3600      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3601      EltNo -= NumElems/2;
3602    }
3603    NumElems >>= 1;
3604  }
3605
3606  // Perform the splat.
3607  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3608  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3609  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3610  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3611}
3612
3613/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3614/// vector of zero or undef vector.  This produces a shuffle where the low
3615/// element of V2 is swizzled into the zero/undef vector, landing at element
3616/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3617static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3618                                             bool isZero, bool HasSSE2,
3619                                             SelectionDAG &DAG) {
3620  EVT VT = V2.getValueType();
3621  SDValue V1 = isZero
3622    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3623  unsigned NumElems = VT.getVectorNumElements();
3624  SmallVector<int, 16> MaskVec;
3625  for (unsigned i = 0; i != NumElems; ++i)
3626    // If this is the insertion idx, put the low elt of V2 here.
3627    MaskVec.push_back(i == Idx ? NumElems : i);
3628  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3629}
3630
3631/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3632/// element of the result of the vector shuffle.
3633SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3634                            unsigned Depth) {
3635  if (Depth == 6)
3636    return SDValue();  // Limit search depth.
3637
3638  SDValue V = SDValue(N, 0);
3639  EVT VT = V.getValueType();
3640  unsigned Opcode = V.getOpcode();
3641
3642  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3643  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3644    Index = SV->getMaskElt(Index);
3645
3646    if (Index < 0)
3647      return DAG.getUNDEF(VT.getVectorElementType());
3648
3649    int NumElems = VT.getVectorNumElements();
3650    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3651    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3652  }
3653
3654  // Recurse into target specific vector shuffles to find scalars.
3655  if (isTargetShuffle(Opcode)) {
3656    int NumElems = VT.getVectorNumElements();
3657    SmallVector<unsigned, 16> ShuffleMask;
3658    SDValue ImmN;
3659
3660    switch(Opcode) {
3661    case X86ISD::SHUFPS:
3662    case X86ISD::SHUFPD:
3663      ImmN = N->getOperand(N->getNumOperands()-1);
3664      DecodeSHUFPSMask(NumElems,
3665                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3666                       ShuffleMask);
3667      break;
3668    case X86ISD::PUNPCKHBW:
3669    case X86ISD::PUNPCKHWD:
3670    case X86ISD::PUNPCKHDQ:
3671    case X86ISD::PUNPCKHQDQ:
3672      DecodePUNPCKHMask(NumElems, ShuffleMask);
3673      break;
3674    case X86ISD::UNPCKHPS:
3675    case X86ISD::UNPCKHPD:
3676      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3677      break;
3678    case X86ISD::PUNPCKLBW:
3679    case X86ISD::PUNPCKLWD:
3680    case X86ISD::PUNPCKLDQ:
3681    case X86ISD::PUNPCKLQDQ:
3682      DecodePUNPCKLMask(NumElems, ShuffleMask);
3683      break;
3684    case X86ISD::UNPCKLPS:
3685    case X86ISD::UNPCKLPD:
3686      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3687      break;
3688    case X86ISD::MOVHLPS:
3689      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3690      break;
3691    case X86ISD::MOVLHPS:
3692      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3693      break;
3694    case X86ISD::PSHUFD:
3695      ImmN = N->getOperand(N->getNumOperands()-1);
3696      DecodePSHUFMask(NumElems,
3697                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3698                      ShuffleMask);
3699      break;
3700    case X86ISD::PSHUFHW:
3701      ImmN = N->getOperand(N->getNumOperands()-1);
3702      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3703                        ShuffleMask);
3704      break;
3705    case X86ISD::PSHUFLW:
3706      ImmN = N->getOperand(N->getNumOperands()-1);
3707      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3708                        ShuffleMask);
3709      break;
3710    case X86ISD::MOVSS:
3711    case X86ISD::MOVSD: {
3712      // The index 0 always comes from the first element of the second source,
3713      // this is why MOVSS and MOVSD are used in the first place. The other
3714      // elements come from the other positions of the first source vector.
3715      unsigned OpNum = (Index == 0) ? 1 : 0;
3716      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3717                                 Depth+1);
3718    }
3719    default:
3720      assert("not implemented for target shuffle node");
3721      return SDValue();
3722    }
3723
3724    Index = ShuffleMask[Index];
3725    if (Index < 0)
3726      return DAG.getUNDEF(VT.getVectorElementType());
3727
3728    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3729    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3730                               Depth+1);
3731  }
3732
3733  // Actual nodes that may contain scalar elements
3734  if (Opcode == ISD::BIT_CONVERT) {
3735    V = V.getOperand(0);
3736    EVT SrcVT = V.getValueType();
3737    unsigned NumElems = VT.getVectorNumElements();
3738
3739    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3740      return SDValue();
3741  }
3742
3743  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3744    return (Index == 0) ? V.getOperand(0)
3745                          : DAG.getUNDEF(VT.getVectorElementType());
3746
3747  if (V.getOpcode() == ISD::BUILD_VECTOR)
3748    return V.getOperand(Index);
3749
3750  return SDValue();
3751}
3752
3753/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3754/// shuffle operation which come from a consecutively from a zero. The
3755/// search can start in two diferent directions, from left or right.
3756static
3757unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3758                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3759  int i = 0;
3760
3761  while (i < NumElems) {
3762    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3763    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3764    if (!(Elt.getNode() &&
3765         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3766      break;
3767    ++i;
3768  }
3769
3770  return i;
3771}
3772
3773/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3774/// MaskE correspond consecutively to elements from one of the vector operands,
3775/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3776static
3777bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3778                              int OpIdx, int NumElems, unsigned &OpNum) {
3779  bool SeenV1 = false;
3780  bool SeenV2 = false;
3781
3782  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3783    int Idx = SVOp->getMaskElt(i);
3784    // Ignore undef indicies
3785    if (Idx < 0)
3786      continue;
3787
3788    if (Idx < NumElems)
3789      SeenV1 = true;
3790    else
3791      SeenV2 = true;
3792
3793    // Only accept consecutive elements from the same vector
3794    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3795      return false;
3796  }
3797
3798  OpNum = SeenV1 ? 0 : 1;
3799  return true;
3800}
3801
3802/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3803/// logical left shift of a vector.
3804static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3805                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3806  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3807  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3808              false /* check zeros from right */, DAG);
3809  unsigned OpSrc;
3810
3811  if (!NumZeros)
3812    return false;
3813
3814  // Considering the elements in the mask that are not consecutive zeros,
3815  // check if they consecutively come from only one of the source vectors.
3816  //
3817  //               V1 = {X, A, B, C}     0
3818  //                         \  \  \    /
3819  //   vector_shuffle V1, V2 <1, 2, 3, X>
3820  //
3821  if (!isShuffleMaskConsecutive(SVOp,
3822            0,                   // Mask Start Index
3823            NumElems-NumZeros-1, // Mask End Index
3824            NumZeros,            // Where to start looking in the src vector
3825            NumElems,            // Number of elements in vector
3826            OpSrc))              // Which source operand ?
3827    return false;
3828
3829  isLeft = false;
3830  ShAmt = NumZeros;
3831  ShVal = SVOp->getOperand(OpSrc);
3832  return true;
3833}
3834
3835/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3836/// logical left shift of a vector.
3837static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3838                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3839  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3840  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3841              true /* check zeros from left */, DAG);
3842  unsigned OpSrc;
3843
3844  if (!NumZeros)
3845    return false;
3846
3847  // Considering the elements in the mask that are not consecutive zeros,
3848  // check if they consecutively come from only one of the source vectors.
3849  //
3850  //                           0    { A, B, X, X } = V2
3851  //                          / \    /  /
3852  //   vector_shuffle V1, V2 <X, X, 4, 5>
3853  //
3854  if (!isShuffleMaskConsecutive(SVOp,
3855            NumZeros,     // Mask Start Index
3856            NumElems-1,   // Mask End Index
3857            0,            // Where to start looking in the src vector
3858            NumElems,     // Number of elements in vector
3859            OpSrc))       // Which source operand ?
3860    return false;
3861
3862  isLeft = true;
3863  ShAmt = NumZeros;
3864  ShVal = SVOp->getOperand(OpSrc);
3865  return true;
3866}
3867
3868/// isVectorShift - Returns true if the shuffle can be implemented as a
3869/// logical left or right shift of a vector.
3870static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3871                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3872  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3873      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3874    return true;
3875
3876  return false;
3877}
3878
3879/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3880///
3881static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3882                                       unsigned NumNonZero, unsigned NumZero,
3883                                       SelectionDAG &DAG,
3884                                       const TargetLowering &TLI) {
3885  if (NumNonZero > 8)
3886    return SDValue();
3887
3888  DebugLoc dl = Op.getDebugLoc();
3889  SDValue V(0, 0);
3890  bool First = true;
3891  for (unsigned i = 0; i < 16; ++i) {
3892    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3893    if (ThisIsNonZero && First) {
3894      if (NumZero)
3895        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3896      else
3897        V = DAG.getUNDEF(MVT::v8i16);
3898      First = false;
3899    }
3900
3901    if ((i & 1) != 0) {
3902      SDValue ThisElt(0, 0), LastElt(0, 0);
3903      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3904      if (LastIsNonZero) {
3905        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3906                              MVT::i16, Op.getOperand(i-1));
3907      }
3908      if (ThisIsNonZero) {
3909        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3910        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3911                              ThisElt, DAG.getConstant(8, MVT::i8));
3912        if (LastIsNonZero)
3913          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3914      } else
3915        ThisElt = LastElt;
3916
3917      if (ThisElt.getNode())
3918        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3919                        DAG.getIntPtrConstant(i/2));
3920    }
3921  }
3922
3923  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3924}
3925
3926/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3927///
3928static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3929                                     unsigned NumNonZero, unsigned NumZero,
3930                                     SelectionDAG &DAG,
3931                                     const TargetLowering &TLI) {
3932  if (NumNonZero > 4)
3933    return SDValue();
3934
3935  DebugLoc dl = Op.getDebugLoc();
3936  SDValue V(0, 0);
3937  bool First = true;
3938  for (unsigned i = 0; i < 8; ++i) {
3939    bool isNonZero = (NonZeros & (1 << i)) != 0;
3940    if (isNonZero) {
3941      if (First) {
3942        if (NumZero)
3943          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3944        else
3945          V = DAG.getUNDEF(MVT::v8i16);
3946        First = false;
3947      }
3948      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3949                      MVT::v8i16, V, Op.getOperand(i),
3950                      DAG.getIntPtrConstant(i));
3951    }
3952  }
3953
3954  return V;
3955}
3956
3957/// getVShift - Return a vector logical shift node.
3958///
3959static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3960                         unsigned NumBits, SelectionDAG &DAG,
3961                         const TargetLowering &TLI, DebugLoc dl) {
3962  EVT ShVT = MVT::v2i64;
3963  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3964  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3965  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3966                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3967                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3968}
3969
3970SDValue
3971X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3972                                          SelectionDAG &DAG) const {
3973
3974  // Check if the scalar load can be widened into a vector load. And if
3975  // the address is "base + cst" see if the cst can be "absorbed" into
3976  // the shuffle mask.
3977  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3978    SDValue Ptr = LD->getBasePtr();
3979    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3980      return SDValue();
3981    EVT PVT = LD->getValueType(0);
3982    if (PVT != MVT::i32 && PVT != MVT::f32)
3983      return SDValue();
3984
3985    int FI = -1;
3986    int64_t Offset = 0;
3987    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3988      FI = FINode->getIndex();
3989      Offset = 0;
3990    } else if (Ptr.getOpcode() == ISD::ADD &&
3991               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3992               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3993      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3994      Offset = Ptr.getConstantOperandVal(1);
3995      Ptr = Ptr.getOperand(0);
3996    } else {
3997      return SDValue();
3998    }
3999
4000    SDValue Chain = LD->getChain();
4001    // Make sure the stack object alignment is at least 16.
4002    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4003    if (DAG.InferPtrAlignment(Ptr) < 16) {
4004      if (MFI->isFixedObjectIndex(FI)) {
4005        // Can't change the alignment. FIXME: It's possible to compute
4006        // the exact stack offset and reference FI + adjust offset instead.
4007        // If someone *really* cares about this. That's the way to implement it.
4008        return SDValue();
4009      } else {
4010        MFI->setObjectAlignment(FI, 16);
4011      }
4012    }
4013
4014    // (Offset % 16) must be multiple of 4. Then address is then
4015    // Ptr + (Offset & ~15).
4016    if (Offset < 0)
4017      return SDValue();
4018    if ((Offset % 16) & 3)
4019      return SDValue();
4020    int64_t StartOffset = Offset & ~15;
4021    if (StartOffset)
4022      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4023                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4024
4025    int EltNo = (Offset - StartOffset) >> 2;
4026    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4027    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4028    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4029                             LD->getPointerInfo().getWithOffset(StartOffset),
4030                             false, false, 0);
4031    // Canonicalize it to a v4i32 shuffle.
4032    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
4033    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4034                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4035                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4036  }
4037
4038  return SDValue();
4039}
4040
4041/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4042/// vector of type 'VT', see if the elements can be replaced by a single large
4043/// load which has the same value as a build_vector whose operands are 'elts'.
4044///
4045/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4046///
4047/// FIXME: we'd also like to handle the case where the last elements are zero
4048/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4049/// There's even a handy isZeroNode for that purpose.
4050static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4051                                        DebugLoc &DL, SelectionDAG &DAG) {
4052  EVT EltVT = VT.getVectorElementType();
4053  unsigned NumElems = Elts.size();
4054
4055  LoadSDNode *LDBase = NULL;
4056  unsigned LastLoadedElt = -1U;
4057
4058  // For each element in the initializer, see if we've found a load or an undef.
4059  // If we don't find an initial load element, or later load elements are
4060  // non-consecutive, bail out.
4061  for (unsigned i = 0; i < NumElems; ++i) {
4062    SDValue Elt = Elts[i];
4063
4064    if (!Elt.getNode() ||
4065        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4066      return SDValue();
4067    if (!LDBase) {
4068      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4069        return SDValue();
4070      LDBase = cast<LoadSDNode>(Elt.getNode());
4071      LastLoadedElt = i;
4072      continue;
4073    }
4074    if (Elt.getOpcode() == ISD::UNDEF)
4075      continue;
4076
4077    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4078    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4079      return SDValue();
4080    LastLoadedElt = i;
4081  }
4082
4083  // If we have found an entire vector of loads and undefs, then return a large
4084  // load of the entire vector width starting at the base pointer.  If we found
4085  // consecutive loads for the low half, generate a vzext_load node.
4086  if (LastLoadedElt == NumElems - 1) {
4087    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4088      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4089                         LDBase->getPointerInfo(),
4090                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4091    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4092                       LDBase->getPointerInfo(),
4093                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4094                       LDBase->getAlignment());
4095  } else if (NumElems == 4 && LastLoadedElt == 1) {
4096    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4097    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4098    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4099                                              Ops, 2, MVT::i32,
4100                                              LDBase->getMemOperand());
4101    return DAG.getNode(ISD::BIT_CONVERT, DL, VT, ResNode);
4102  }
4103  return SDValue();
4104}
4105
4106SDValue
4107X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4108  DebugLoc dl = Op.getDebugLoc();
4109  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4110  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4111  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4112  // is present, so AllOnes is ignored.
4113  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4114      (Op.getValueType().getSizeInBits() != 256 &&
4115       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4116    // Canonicalize this to <4 x i32> (SSE) to
4117    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4118    // eliminated on x86-32 hosts.
4119    if (Op.getValueType() == MVT::v4i32)
4120      return Op;
4121
4122    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4123      return getOnesVector(Op.getValueType(), DAG, dl);
4124    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4125  }
4126
4127  EVT VT = Op.getValueType();
4128  EVT ExtVT = VT.getVectorElementType();
4129  unsigned EVTBits = ExtVT.getSizeInBits();
4130
4131  unsigned NumElems = Op.getNumOperands();
4132  unsigned NumZero  = 0;
4133  unsigned NumNonZero = 0;
4134  unsigned NonZeros = 0;
4135  bool IsAllConstants = true;
4136  SmallSet<SDValue, 8> Values;
4137  for (unsigned i = 0; i < NumElems; ++i) {
4138    SDValue Elt = Op.getOperand(i);
4139    if (Elt.getOpcode() == ISD::UNDEF)
4140      continue;
4141    Values.insert(Elt);
4142    if (Elt.getOpcode() != ISD::Constant &&
4143        Elt.getOpcode() != ISD::ConstantFP)
4144      IsAllConstants = false;
4145    if (X86::isZeroNode(Elt))
4146      NumZero++;
4147    else {
4148      NonZeros |= (1 << i);
4149      NumNonZero++;
4150    }
4151  }
4152
4153  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4154  if (NumNonZero == 0)
4155    return DAG.getUNDEF(VT);
4156
4157  // Special case for single non-zero, non-undef, element.
4158  if (NumNonZero == 1) {
4159    unsigned Idx = CountTrailingZeros_32(NonZeros);
4160    SDValue Item = Op.getOperand(Idx);
4161
4162    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4163    // the value are obviously zero, truncate the value to i32 and do the
4164    // insertion that way.  Only do this if the value is non-constant or if the
4165    // value is a constant being inserted into element 0.  It is cheaper to do
4166    // a constant pool load than it is to do a movd + shuffle.
4167    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4168        (!IsAllConstants || Idx == 0)) {
4169      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4170        // Handle SSE only.
4171        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4172        EVT VecVT = MVT::v4i32;
4173        unsigned VecElts = 4;
4174
4175        // Truncate the value (which may itself be a constant) to i32, and
4176        // convert it to a vector with movd (S2V+shuffle to zero extend).
4177        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4178        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4179        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4180                                           Subtarget->hasSSE2(), DAG);
4181
4182        // Now we have our 32-bit value zero extended in the low element of
4183        // a vector.  If Idx != 0, swizzle it into place.
4184        if (Idx != 0) {
4185          SmallVector<int, 4> Mask;
4186          Mask.push_back(Idx);
4187          for (unsigned i = 1; i != VecElts; ++i)
4188            Mask.push_back(i);
4189          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4190                                      DAG.getUNDEF(Item.getValueType()),
4191                                      &Mask[0]);
4192        }
4193        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4194      }
4195    }
4196
4197    // If we have a constant or non-constant insertion into the low element of
4198    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4199    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4200    // depending on what the source datatype is.
4201    if (Idx == 0) {
4202      if (NumZero == 0) {
4203        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4204      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4205          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4206        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4207        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4208        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4209                                           DAG);
4210      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4211        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4212        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4213        EVT MiddleVT = MVT::v4i32;
4214        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4215        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4216                                           Subtarget->hasSSE2(), DAG);
4217        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4218      }
4219    }
4220
4221    // Is it a vector logical left shift?
4222    if (NumElems == 2 && Idx == 1 &&
4223        X86::isZeroNode(Op.getOperand(0)) &&
4224        !X86::isZeroNode(Op.getOperand(1))) {
4225      unsigned NumBits = VT.getSizeInBits();
4226      return getVShift(true, VT,
4227                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4228                                   VT, Op.getOperand(1)),
4229                       NumBits/2, DAG, *this, dl);
4230    }
4231
4232    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4233      return SDValue();
4234
4235    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4236    // is a non-constant being inserted into an element other than the low one,
4237    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4238    // movd/movss) to move this into the low element, then shuffle it into
4239    // place.
4240    if (EVTBits == 32) {
4241      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4242
4243      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4244      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4245                                         Subtarget->hasSSE2(), DAG);
4246      SmallVector<int, 8> MaskVec;
4247      for (unsigned i = 0; i < NumElems; i++)
4248        MaskVec.push_back(i == Idx ? 0 : 1);
4249      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4250    }
4251  }
4252
4253  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4254  if (Values.size() == 1) {
4255    if (EVTBits == 32) {
4256      // Instead of a shuffle like this:
4257      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4258      // Check if it's possible to issue this instead.
4259      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4260      unsigned Idx = CountTrailingZeros_32(NonZeros);
4261      SDValue Item = Op.getOperand(Idx);
4262      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4263        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4264    }
4265    return SDValue();
4266  }
4267
4268  // A vector full of immediates; various special cases are already
4269  // handled, so this is best done with a single constant-pool load.
4270  if (IsAllConstants)
4271    return SDValue();
4272
4273  // Let legalizer expand 2-wide build_vectors.
4274  if (EVTBits == 64) {
4275    if (NumNonZero == 1) {
4276      // One half is zero or undef.
4277      unsigned Idx = CountTrailingZeros_32(NonZeros);
4278      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4279                                 Op.getOperand(Idx));
4280      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4281                                         Subtarget->hasSSE2(), DAG);
4282    }
4283    return SDValue();
4284  }
4285
4286  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4287  if (EVTBits == 8 && NumElems == 16) {
4288    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4289                                        *this);
4290    if (V.getNode()) return V;
4291  }
4292
4293  if (EVTBits == 16 && NumElems == 8) {
4294    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4295                                      *this);
4296    if (V.getNode()) return V;
4297  }
4298
4299  // If element VT is == 32 bits, turn it into a number of shuffles.
4300  SmallVector<SDValue, 8> V;
4301  V.resize(NumElems);
4302  if (NumElems == 4 && NumZero > 0) {
4303    for (unsigned i = 0; i < 4; ++i) {
4304      bool isZero = !(NonZeros & (1 << i));
4305      if (isZero)
4306        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4307      else
4308        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4309    }
4310
4311    for (unsigned i = 0; i < 2; ++i) {
4312      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4313        default: break;
4314        case 0:
4315          V[i] = V[i*2];  // Must be a zero vector.
4316          break;
4317        case 1:
4318          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4319          break;
4320        case 2:
4321          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4322          break;
4323        case 3:
4324          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4325          break;
4326      }
4327    }
4328
4329    SmallVector<int, 8> MaskVec;
4330    bool Reverse = (NonZeros & 0x3) == 2;
4331    for (unsigned i = 0; i < 2; ++i)
4332      MaskVec.push_back(Reverse ? 1-i : i);
4333    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4334    for (unsigned i = 0; i < 2; ++i)
4335      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4336    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4337  }
4338
4339  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4340    // Check for a build vector of consecutive loads.
4341    for (unsigned i = 0; i < NumElems; ++i)
4342      V[i] = Op.getOperand(i);
4343
4344    // Check for elements which are consecutive loads.
4345    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4346    if (LD.getNode())
4347      return LD;
4348
4349    // For SSE 4.1, use insertps to put the high elements into the low element.
4350    if (getSubtarget()->hasSSE41()) {
4351      SDValue Result;
4352      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4353        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4354      else
4355        Result = DAG.getUNDEF(VT);
4356
4357      for (unsigned i = 1; i < NumElems; ++i) {
4358        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4359        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4360                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4361      }
4362      return Result;
4363    }
4364
4365    // Otherwise, expand into a number of unpckl*, start by extending each of
4366    // our (non-undef) elements to the full vector width with the element in the
4367    // bottom slot of the vector (which generates no code for SSE).
4368    for (unsigned i = 0; i < NumElems; ++i) {
4369      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4370        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4371      else
4372        V[i] = DAG.getUNDEF(VT);
4373    }
4374
4375    // Next, we iteratively mix elements, e.g. for v4f32:
4376    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4377    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4378    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4379    unsigned EltStride = NumElems >> 1;
4380    while (EltStride != 0) {
4381      for (unsigned i = 0; i < EltStride; ++i) {
4382        // If V[i+EltStride] is undef and this is the first round of mixing,
4383        // then it is safe to just drop this shuffle: V[i] is already in the
4384        // right place, the one element (since it's the first round) being
4385        // inserted as undef can be dropped.  This isn't safe for successive
4386        // rounds because they will permute elements within both vectors.
4387        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4388            EltStride == NumElems/2)
4389          continue;
4390
4391        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4392      }
4393      EltStride >>= 1;
4394    }
4395    return V[0];
4396  }
4397  return SDValue();
4398}
4399
4400SDValue
4401X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4402  // We support concatenate two MMX registers and place them in a MMX
4403  // register.  This is better than doing a stack convert.
4404  DebugLoc dl = Op.getDebugLoc();
4405  EVT ResVT = Op.getValueType();
4406  assert(Op.getNumOperands() == 2);
4407  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4408         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4409  int Mask[2];
4410  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4411  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4412  InVec = Op.getOperand(1);
4413  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4414    unsigned NumElts = ResVT.getVectorNumElements();
4415    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4416    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4417                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4418  } else {
4419    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4420    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4421    Mask[0] = 0; Mask[1] = 2;
4422    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4423  }
4424  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4425}
4426
4427// v8i16 shuffles - Prefer shuffles in the following order:
4428// 1. [all]   pshuflw, pshufhw, optional move
4429// 2. [ssse3] 1 x pshufb
4430// 3. [ssse3] 2 x pshufb + 1 x por
4431// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4432SDValue
4433X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4434                                            SelectionDAG &DAG) const {
4435  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4436  SDValue V1 = SVOp->getOperand(0);
4437  SDValue V2 = SVOp->getOperand(1);
4438  DebugLoc dl = SVOp->getDebugLoc();
4439  SmallVector<int, 8> MaskVals;
4440
4441  // Determine if more than 1 of the words in each of the low and high quadwords
4442  // of the result come from the same quadword of one of the two inputs.  Undef
4443  // mask values count as coming from any quadword, for better codegen.
4444  SmallVector<unsigned, 4> LoQuad(4);
4445  SmallVector<unsigned, 4> HiQuad(4);
4446  BitVector InputQuads(4);
4447  for (unsigned i = 0; i < 8; ++i) {
4448    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4449    int EltIdx = SVOp->getMaskElt(i);
4450    MaskVals.push_back(EltIdx);
4451    if (EltIdx < 0) {
4452      ++Quad[0];
4453      ++Quad[1];
4454      ++Quad[2];
4455      ++Quad[3];
4456      continue;
4457    }
4458    ++Quad[EltIdx / 4];
4459    InputQuads.set(EltIdx / 4);
4460  }
4461
4462  int BestLoQuad = -1;
4463  unsigned MaxQuad = 1;
4464  for (unsigned i = 0; i < 4; ++i) {
4465    if (LoQuad[i] > MaxQuad) {
4466      BestLoQuad = i;
4467      MaxQuad = LoQuad[i];
4468    }
4469  }
4470
4471  int BestHiQuad = -1;
4472  MaxQuad = 1;
4473  for (unsigned i = 0; i < 4; ++i) {
4474    if (HiQuad[i] > MaxQuad) {
4475      BestHiQuad = i;
4476      MaxQuad = HiQuad[i];
4477    }
4478  }
4479
4480  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4481  // of the two input vectors, shuffle them into one input vector so only a
4482  // single pshufb instruction is necessary. If There are more than 2 input
4483  // quads, disable the next transformation since it does not help SSSE3.
4484  bool V1Used = InputQuads[0] || InputQuads[1];
4485  bool V2Used = InputQuads[2] || InputQuads[3];
4486  if (Subtarget->hasSSSE3()) {
4487    if (InputQuads.count() == 2 && V1Used && V2Used) {
4488      BestLoQuad = InputQuads.find_first();
4489      BestHiQuad = InputQuads.find_next(BestLoQuad);
4490    }
4491    if (InputQuads.count() > 2) {
4492      BestLoQuad = -1;
4493      BestHiQuad = -1;
4494    }
4495  }
4496
4497  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4498  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4499  // words from all 4 input quadwords.
4500  SDValue NewV;
4501  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4502    SmallVector<int, 8> MaskV;
4503    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4504    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4505    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4506                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4507                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4508    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4509
4510    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4511    // source words for the shuffle, to aid later transformations.
4512    bool AllWordsInNewV = true;
4513    bool InOrder[2] = { true, true };
4514    for (unsigned i = 0; i != 8; ++i) {
4515      int idx = MaskVals[i];
4516      if (idx != (int)i)
4517        InOrder[i/4] = false;
4518      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4519        continue;
4520      AllWordsInNewV = false;
4521      break;
4522    }
4523
4524    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4525    if (AllWordsInNewV) {
4526      for (int i = 0; i != 8; ++i) {
4527        int idx = MaskVals[i];
4528        if (idx < 0)
4529          continue;
4530        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4531        if ((idx != i) && idx < 4)
4532          pshufhw = false;
4533        if ((idx != i) && idx > 3)
4534          pshuflw = false;
4535      }
4536      V1 = NewV;
4537      V2Used = false;
4538      BestLoQuad = 0;
4539      BestHiQuad = 1;
4540    }
4541
4542    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4543    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4544    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4545      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4546      unsigned TargetMask = 0;
4547      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4548                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4549      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4550                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4551      V1 = NewV.getOperand(0);
4552      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4553    }
4554  }
4555
4556  // If we have SSSE3, and all words of the result are from 1 input vector,
4557  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4558  // is present, fall back to case 4.
4559  if (Subtarget->hasSSSE3()) {
4560    SmallVector<SDValue,16> pshufbMask;
4561
4562    // If we have elements from both input vectors, set the high bit of the
4563    // shuffle mask element to zero out elements that come from V2 in the V1
4564    // mask, and elements that come from V1 in the V2 mask, so that the two
4565    // results can be OR'd together.
4566    bool TwoInputs = V1Used && V2Used;
4567    for (unsigned i = 0; i != 8; ++i) {
4568      int EltIdx = MaskVals[i] * 2;
4569      if (TwoInputs && (EltIdx >= 16)) {
4570        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4571        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4572        continue;
4573      }
4574      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4575      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4576    }
4577    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4578    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4579                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4580                                 MVT::v16i8, &pshufbMask[0], 16));
4581    if (!TwoInputs)
4582      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4583
4584    // Calculate the shuffle mask for the second input, shuffle it, and
4585    // OR it with the first shuffled input.
4586    pshufbMask.clear();
4587    for (unsigned i = 0; i != 8; ++i) {
4588      int EltIdx = MaskVals[i] * 2;
4589      if (EltIdx < 16) {
4590        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4591        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4592        continue;
4593      }
4594      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4595      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4596    }
4597    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4598    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4599                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4600                                 MVT::v16i8, &pshufbMask[0], 16));
4601    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4602    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4603  }
4604
4605  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4606  // and update MaskVals with new element order.
4607  BitVector InOrder(8);
4608  if (BestLoQuad >= 0) {
4609    SmallVector<int, 8> MaskV;
4610    for (int i = 0; i != 4; ++i) {
4611      int idx = MaskVals[i];
4612      if (idx < 0) {
4613        MaskV.push_back(-1);
4614        InOrder.set(i);
4615      } else if ((idx / 4) == BestLoQuad) {
4616        MaskV.push_back(idx & 3);
4617        InOrder.set(i);
4618      } else {
4619        MaskV.push_back(-1);
4620      }
4621    }
4622    for (unsigned i = 4; i != 8; ++i)
4623      MaskV.push_back(i);
4624    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4625                                &MaskV[0]);
4626
4627    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4628      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4629                               NewV.getOperand(0),
4630                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4631                               DAG);
4632  }
4633
4634  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4635  // and update MaskVals with the new element order.
4636  if (BestHiQuad >= 0) {
4637    SmallVector<int, 8> MaskV;
4638    for (unsigned i = 0; i != 4; ++i)
4639      MaskV.push_back(i);
4640    for (unsigned i = 4; i != 8; ++i) {
4641      int idx = MaskVals[i];
4642      if (idx < 0) {
4643        MaskV.push_back(-1);
4644        InOrder.set(i);
4645      } else if ((idx / 4) == BestHiQuad) {
4646        MaskV.push_back((idx & 3) + 4);
4647        InOrder.set(i);
4648      } else {
4649        MaskV.push_back(-1);
4650      }
4651    }
4652    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4653                                &MaskV[0]);
4654
4655    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4656      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4657                              NewV.getOperand(0),
4658                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4659                              DAG);
4660  }
4661
4662  // In case BestHi & BestLo were both -1, which means each quadword has a word
4663  // from each of the four input quadwords, calculate the InOrder bitvector now
4664  // before falling through to the insert/extract cleanup.
4665  if (BestLoQuad == -1 && BestHiQuad == -1) {
4666    NewV = V1;
4667    for (int i = 0; i != 8; ++i)
4668      if (MaskVals[i] < 0 || MaskVals[i] == i)
4669        InOrder.set(i);
4670  }
4671
4672  // The other elements are put in the right place using pextrw and pinsrw.
4673  for (unsigned i = 0; i != 8; ++i) {
4674    if (InOrder[i])
4675      continue;
4676    int EltIdx = MaskVals[i];
4677    if (EltIdx < 0)
4678      continue;
4679    SDValue ExtOp = (EltIdx < 8)
4680    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4681                  DAG.getIntPtrConstant(EltIdx))
4682    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4683                  DAG.getIntPtrConstant(EltIdx - 8));
4684    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4685                       DAG.getIntPtrConstant(i));
4686  }
4687  return NewV;
4688}
4689
4690// v16i8 shuffles - Prefer shuffles in the following order:
4691// 1. [ssse3] 1 x pshufb
4692// 2. [ssse3] 2 x pshufb + 1 x por
4693// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4694static
4695SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4696                                 SelectionDAG &DAG,
4697                                 const X86TargetLowering &TLI) {
4698  SDValue V1 = SVOp->getOperand(0);
4699  SDValue V2 = SVOp->getOperand(1);
4700  DebugLoc dl = SVOp->getDebugLoc();
4701  SmallVector<int, 16> MaskVals;
4702  SVOp->getMask(MaskVals);
4703
4704  // If we have SSSE3, case 1 is generated when all result bytes come from
4705  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4706  // present, fall back to case 3.
4707  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4708  bool V1Only = true;
4709  bool V2Only = true;
4710  for (unsigned i = 0; i < 16; ++i) {
4711    int EltIdx = MaskVals[i];
4712    if (EltIdx < 0)
4713      continue;
4714    if (EltIdx < 16)
4715      V2Only = false;
4716    else
4717      V1Only = false;
4718  }
4719
4720  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4721  if (TLI.getSubtarget()->hasSSSE3()) {
4722    SmallVector<SDValue,16> pshufbMask;
4723
4724    // If all result elements are from one input vector, then only translate
4725    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4726    //
4727    // Otherwise, we have elements from both input vectors, and must zero out
4728    // elements that come from V2 in the first mask, and V1 in the second mask
4729    // so that we can OR them together.
4730    bool TwoInputs = !(V1Only || V2Only);
4731    for (unsigned i = 0; i != 16; ++i) {
4732      int EltIdx = MaskVals[i];
4733      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4734        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4735        continue;
4736      }
4737      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4738    }
4739    // If all the elements are from V2, assign it to V1 and return after
4740    // building the first pshufb.
4741    if (V2Only)
4742      V1 = V2;
4743    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4744                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4745                                 MVT::v16i8, &pshufbMask[0], 16));
4746    if (!TwoInputs)
4747      return V1;
4748
4749    // Calculate the shuffle mask for the second input, shuffle it, and
4750    // OR it with the first shuffled input.
4751    pshufbMask.clear();
4752    for (unsigned i = 0; i != 16; ++i) {
4753      int EltIdx = MaskVals[i];
4754      if (EltIdx < 16) {
4755        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4756        continue;
4757      }
4758      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4759    }
4760    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4761                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4762                                 MVT::v16i8, &pshufbMask[0], 16));
4763    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4764  }
4765
4766  // No SSSE3 - Calculate in place words and then fix all out of place words
4767  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4768  // the 16 different words that comprise the two doublequadword input vectors.
4769  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4770  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4771  SDValue NewV = V2Only ? V2 : V1;
4772  for (int i = 0; i != 8; ++i) {
4773    int Elt0 = MaskVals[i*2];
4774    int Elt1 = MaskVals[i*2+1];
4775
4776    // This word of the result is all undef, skip it.
4777    if (Elt0 < 0 && Elt1 < 0)
4778      continue;
4779
4780    // This word of the result is already in the correct place, skip it.
4781    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4782      continue;
4783    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4784      continue;
4785
4786    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4787    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4788    SDValue InsElt;
4789
4790    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4791    // using a single extract together, load it and store it.
4792    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4793      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4794                           DAG.getIntPtrConstant(Elt1 / 2));
4795      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4796                        DAG.getIntPtrConstant(i));
4797      continue;
4798    }
4799
4800    // If Elt1 is defined, extract it from the appropriate source.  If the
4801    // source byte is not also odd, shift the extracted word left 8 bits
4802    // otherwise clear the bottom 8 bits if we need to do an or.
4803    if (Elt1 >= 0) {
4804      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4805                           DAG.getIntPtrConstant(Elt1 / 2));
4806      if ((Elt1 & 1) == 0)
4807        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4808                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4809      else if (Elt0 >= 0)
4810        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4811                             DAG.getConstant(0xFF00, MVT::i16));
4812    }
4813    // If Elt0 is defined, extract it from the appropriate source.  If the
4814    // source byte is not also even, shift the extracted word right 8 bits. If
4815    // Elt1 was also defined, OR the extracted values together before
4816    // inserting them in the result.
4817    if (Elt0 >= 0) {
4818      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4819                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4820      if ((Elt0 & 1) != 0)
4821        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4822                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4823      else if (Elt1 >= 0)
4824        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4825                             DAG.getConstant(0x00FF, MVT::i16));
4826      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4827                         : InsElt0;
4828    }
4829    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4830                       DAG.getIntPtrConstant(i));
4831  }
4832  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4833}
4834
4835/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4836/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4837/// done when every pair / quad of shuffle mask elements point to elements in
4838/// the right sequence. e.g.
4839/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4840static
4841SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4842                                 SelectionDAG &DAG, DebugLoc dl) {
4843  EVT VT = SVOp->getValueType(0);
4844  SDValue V1 = SVOp->getOperand(0);
4845  SDValue V2 = SVOp->getOperand(1);
4846  unsigned NumElems = VT.getVectorNumElements();
4847  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4848  EVT NewVT;
4849  switch (VT.getSimpleVT().SimpleTy) {
4850  default: assert(false && "Unexpected!");
4851  case MVT::v4f32: NewVT = MVT::v2f64; break;
4852  case MVT::v4i32: NewVT = MVT::v2i64; break;
4853  case MVT::v8i16: NewVT = MVT::v4i32; break;
4854  case MVT::v16i8: NewVT = MVT::v4i32; break;
4855  }
4856
4857  int Scale = NumElems / NewWidth;
4858  SmallVector<int, 8> MaskVec;
4859  for (unsigned i = 0; i < NumElems; i += Scale) {
4860    int StartIdx = -1;
4861    for (int j = 0; j < Scale; ++j) {
4862      int EltIdx = SVOp->getMaskElt(i+j);
4863      if (EltIdx < 0)
4864        continue;
4865      if (StartIdx == -1)
4866        StartIdx = EltIdx - (EltIdx % Scale);
4867      if (EltIdx != StartIdx + j)
4868        return SDValue();
4869    }
4870    if (StartIdx == -1)
4871      MaskVec.push_back(-1);
4872    else
4873      MaskVec.push_back(StartIdx / Scale);
4874  }
4875
4876  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4877  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4878  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4879}
4880
4881/// getVZextMovL - Return a zero-extending vector move low node.
4882///
4883static SDValue getVZextMovL(EVT VT, EVT OpVT,
4884                            SDValue SrcOp, SelectionDAG &DAG,
4885                            const X86Subtarget *Subtarget, DebugLoc dl) {
4886  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4887    LoadSDNode *LD = NULL;
4888    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4889      LD = dyn_cast<LoadSDNode>(SrcOp);
4890    if (!LD) {
4891      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4892      // instead.
4893      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4894      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4895          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4896          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4897          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4898        // PR2108
4899        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4900        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4901                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4902                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4903                                                   OpVT,
4904                                                   SrcOp.getOperand(0)
4905                                                          .getOperand(0))));
4906      }
4907    }
4908  }
4909
4910  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4911                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4912                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4913                                             OpVT, SrcOp)));
4914}
4915
4916/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4917/// shuffles.
4918static SDValue
4919LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4920  SDValue V1 = SVOp->getOperand(0);
4921  SDValue V2 = SVOp->getOperand(1);
4922  DebugLoc dl = SVOp->getDebugLoc();
4923  EVT VT = SVOp->getValueType(0);
4924
4925  SmallVector<std::pair<int, int>, 8> Locs;
4926  Locs.resize(4);
4927  SmallVector<int, 8> Mask1(4U, -1);
4928  SmallVector<int, 8> PermMask;
4929  SVOp->getMask(PermMask);
4930
4931  unsigned NumHi = 0;
4932  unsigned NumLo = 0;
4933  for (unsigned i = 0; i != 4; ++i) {
4934    int Idx = PermMask[i];
4935    if (Idx < 0) {
4936      Locs[i] = std::make_pair(-1, -1);
4937    } else {
4938      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4939      if (Idx < 4) {
4940        Locs[i] = std::make_pair(0, NumLo);
4941        Mask1[NumLo] = Idx;
4942        NumLo++;
4943      } else {
4944        Locs[i] = std::make_pair(1, NumHi);
4945        if (2+NumHi < 4)
4946          Mask1[2+NumHi] = Idx;
4947        NumHi++;
4948      }
4949    }
4950  }
4951
4952  if (NumLo <= 2 && NumHi <= 2) {
4953    // If no more than two elements come from either vector. This can be
4954    // implemented with two shuffles. First shuffle gather the elements.
4955    // The second shuffle, which takes the first shuffle as both of its
4956    // vector operands, put the elements into the right order.
4957    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4958
4959    SmallVector<int, 8> Mask2(4U, -1);
4960
4961    for (unsigned i = 0; i != 4; ++i) {
4962      if (Locs[i].first == -1)
4963        continue;
4964      else {
4965        unsigned Idx = (i < 2) ? 0 : 4;
4966        Idx += Locs[i].first * 2 + Locs[i].second;
4967        Mask2[i] = Idx;
4968      }
4969    }
4970
4971    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4972  } else if (NumLo == 3 || NumHi == 3) {
4973    // Otherwise, we must have three elements from one vector, call it X, and
4974    // one element from the other, call it Y.  First, use a shufps to build an
4975    // intermediate vector with the one element from Y and the element from X
4976    // that will be in the same half in the final destination (the indexes don't
4977    // matter). Then, use a shufps to build the final vector, taking the half
4978    // containing the element from Y from the intermediate, and the other half
4979    // from X.
4980    if (NumHi == 3) {
4981      // Normalize it so the 3 elements come from V1.
4982      CommuteVectorShuffleMask(PermMask, VT);
4983      std::swap(V1, V2);
4984    }
4985
4986    // Find the element from V2.
4987    unsigned HiIndex;
4988    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4989      int Val = PermMask[HiIndex];
4990      if (Val < 0)
4991        continue;
4992      if (Val >= 4)
4993        break;
4994    }
4995
4996    Mask1[0] = PermMask[HiIndex];
4997    Mask1[1] = -1;
4998    Mask1[2] = PermMask[HiIndex^1];
4999    Mask1[3] = -1;
5000    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5001
5002    if (HiIndex >= 2) {
5003      Mask1[0] = PermMask[0];
5004      Mask1[1] = PermMask[1];
5005      Mask1[2] = HiIndex & 1 ? 6 : 4;
5006      Mask1[3] = HiIndex & 1 ? 4 : 6;
5007      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5008    } else {
5009      Mask1[0] = HiIndex & 1 ? 2 : 0;
5010      Mask1[1] = HiIndex & 1 ? 0 : 2;
5011      Mask1[2] = PermMask[2];
5012      Mask1[3] = PermMask[3];
5013      if (Mask1[2] >= 0)
5014        Mask1[2] += 4;
5015      if (Mask1[3] >= 0)
5016        Mask1[3] += 4;
5017      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5018    }
5019  }
5020
5021  // Break it into (shuffle shuffle_hi, shuffle_lo).
5022  Locs.clear();
5023  SmallVector<int,8> LoMask(4U, -1);
5024  SmallVector<int,8> HiMask(4U, -1);
5025
5026  SmallVector<int,8> *MaskPtr = &LoMask;
5027  unsigned MaskIdx = 0;
5028  unsigned LoIdx = 0;
5029  unsigned HiIdx = 2;
5030  for (unsigned i = 0; i != 4; ++i) {
5031    if (i == 2) {
5032      MaskPtr = &HiMask;
5033      MaskIdx = 1;
5034      LoIdx = 0;
5035      HiIdx = 2;
5036    }
5037    int Idx = PermMask[i];
5038    if (Idx < 0) {
5039      Locs[i] = std::make_pair(-1, -1);
5040    } else if (Idx < 4) {
5041      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5042      (*MaskPtr)[LoIdx] = Idx;
5043      LoIdx++;
5044    } else {
5045      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5046      (*MaskPtr)[HiIdx] = Idx;
5047      HiIdx++;
5048    }
5049  }
5050
5051  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5052  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5053  SmallVector<int, 8> MaskOps;
5054  for (unsigned i = 0; i != 4; ++i) {
5055    if (Locs[i].first == -1) {
5056      MaskOps.push_back(-1);
5057    } else {
5058      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5059      MaskOps.push_back(Idx);
5060    }
5061  }
5062  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5063}
5064
5065static bool MayFoldVectorLoad(SDValue V) {
5066  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5067    V = V.getOperand(0);
5068  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5069    V = V.getOperand(0);
5070  if (MayFoldLoad(V))
5071    return true;
5072  return false;
5073}
5074
5075// FIXME: the version above should always be used. Since there's
5076// a bug where several vector shuffles can't be folded because the
5077// DAG is not updated during lowering and a node claims to have two
5078// uses while it only has one, use this version, and let isel match
5079// another instruction if the load really happens to have more than
5080// one use. Remove this version after this bug get fixed.
5081static bool RelaxedMayFoldVectorLoad(SDValue V) {
5082  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5083    V = V.getOperand(0);
5084  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5085    V = V.getOperand(0);
5086  if (ISD::isNormalLoad(V.getNode()))
5087    return true;
5088  return false;
5089}
5090
5091/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5092/// a vector extract, and if both can be later optimized into a single load.
5093/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5094/// here because otherwise a target specific shuffle node is going to be
5095/// emitted for this shuffle, and the optimization not done.
5096/// FIXME: This is probably not the best approach, but fix the problem
5097/// until the right path is decided.
5098static
5099bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5100                                         const TargetLowering &TLI) {
5101  EVT VT = V.getValueType();
5102  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5103
5104  // Be sure that the vector shuffle is present in a pattern like this:
5105  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5106  if (!V.hasOneUse())
5107    return false;
5108
5109  SDNode *N = *V.getNode()->use_begin();
5110  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5111    return false;
5112
5113  SDValue EltNo = N->getOperand(1);
5114  if (!isa<ConstantSDNode>(EltNo))
5115    return false;
5116
5117  // If the bit convert changed the number of elements, it is unsafe
5118  // to examine the mask.
5119  bool HasShuffleIntoBitcast = false;
5120  if (V.getOpcode() == ISD::BIT_CONVERT) {
5121    EVT SrcVT = V.getOperand(0).getValueType();
5122    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5123      return false;
5124    V = V.getOperand(0);
5125    HasShuffleIntoBitcast = true;
5126  }
5127
5128  // Select the input vector, guarding against out of range extract vector.
5129  unsigned NumElems = VT.getVectorNumElements();
5130  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5131  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5132  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5133
5134  // Skip one more bit_convert if necessary
5135  if (V.getOpcode() == ISD::BIT_CONVERT)
5136    V = V.getOperand(0);
5137
5138  if (ISD::isNormalLoad(V.getNode())) {
5139    // Is the original load suitable?
5140    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5141
5142    // FIXME: avoid the multi-use bug that is preventing lots of
5143    // of foldings to be detected, this is still wrong of course, but
5144    // give the temporary desired behavior, and if it happens that
5145    // the load has real more uses, during isel it will not fold, and
5146    // will generate poor code.
5147    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5148      return false;
5149
5150    if (!HasShuffleIntoBitcast)
5151      return true;
5152
5153    // If there's a bitcast before the shuffle, check if the load type and
5154    // alignment is valid.
5155    unsigned Align = LN0->getAlignment();
5156    unsigned NewAlign =
5157      TLI.getTargetData()->getABITypeAlignment(
5158                                    VT.getTypeForEVT(*DAG.getContext()));
5159
5160    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5161      return false;
5162  }
5163
5164  return true;
5165}
5166
5167static
5168SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5169                        bool HasSSE2) {
5170  SDValue V1 = Op.getOperand(0);
5171  SDValue V2 = Op.getOperand(1);
5172  EVT VT = Op.getValueType();
5173
5174  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5175
5176  if (HasSSE2 && VT == MVT::v2f64)
5177    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5178
5179  // v4f32 or v4i32
5180  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5181}
5182
5183static
5184SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5185  SDValue V1 = Op.getOperand(0);
5186  SDValue V2 = Op.getOperand(1);
5187  EVT VT = Op.getValueType();
5188
5189  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5190         "unsupported shuffle type");
5191
5192  if (V2.getOpcode() == ISD::UNDEF)
5193    V2 = V1;
5194
5195  // v4i32 or v4f32
5196  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5197}
5198
5199static
5200SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5201  SDValue V1 = Op.getOperand(0);
5202  SDValue V2 = Op.getOperand(1);
5203  EVT VT = Op.getValueType();
5204  unsigned NumElems = VT.getVectorNumElements();
5205
5206  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5207  // operand of these instructions is only memory, so check if there's a
5208  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5209  // same masks.
5210  bool CanFoldLoad = false;
5211
5212  // Trivial case, when V2 comes from a load.
5213  if (MayFoldVectorLoad(V2))
5214    CanFoldLoad = true;
5215
5216  // When V1 is a load, it can be folded later into a store in isel, example:
5217  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5218  //    turns into:
5219  //  (MOVLPSmr addr:$src1, VR128:$src2)
5220  // So, recognize this potential and also use MOVLPS or MOVLPD
5221  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5222    CanFoldLoad = true;
5223
5224  if (CanFoldLoad) {
5225    if (HasSSE2 && NumElems == 2)
5226      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5227
5228    if (NumElems == 4)
5229      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5230  }
5231
5232  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5233  // movl and movlp will both match v2i64, but v2i64 is never matched by
5234  // movl earlier because we make it strict to avoid messing with the movlp load
5235  // folding logic (see the code above getMOVLP call). Match it here then,
5236  // this is horrible, but will stay like this until we move all shuffle
5237  // matching to x86 specific nodes. Note that for the 1st condition all
5238  // types are matched with movsd.
5239  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5240    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5241  else if (HasSSE2)
5242    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5243
5244
5245  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5246
5247  // Invert the operand order and use SHUFPS to match it.
5248  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5249                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5250}
5251
5252static inline unsigned getUNPCKLOpcode(EVT VT) {
5253  switch(VT.getSimpleVT().SimpleTy) {
5254  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5255  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5256  case MVT::v4f32: return X86ISD::UNPCKLPS;
5257  case MVT::v2f64: return X86ISD::UNPCKLPD;
5258  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5259  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5260  default:
5261    llvm_unreachable("Unknow type for unpckl");
5262  }
5263  return 0;
5264}
5265
5266static inline unsigned getUNPCKHOpcode(EVT VT) {
5267  switch(VT.getSimpleVT().SimpleTy) {
5268  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5269  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5270  case MVT::v4f32: return X86ISD::UNPCKHPS;
5271  case MVT::v2f64: return X86ISD::UNPCKHPD;
5272  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5273  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5274  default:
5275    llvm_unreachable("Unknow type for unpckh");
5276  }
5277  return 0;
5278}
5279
5280static
5281SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5282                               const TargetLowering &TLI,
5283                               const X86Subtarget *Subtarget) {
5284  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5285  EVT VT = Op.getValueType();
5286  DebugLoc dl = Op.getDebugLoc();
5287  SDValue V1 = Op.getOperand(0);
5288  SDValue V2 = Op.getOperand(1);
5289
5290  if (isZeroShuffle(SVOp))
5291    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5292
5293  // Handle splat operations
5294  if (SVOp->isSplat()) {
5295    // Special case, this is the only place now where it's
5296    // allowed to return a vector_shuffle operation without
5297    // using a target specific node, because *hopefully* it
5298    // will be optimized away by the dag combiner.
5299    if (VT.getVectorNumElements() <= 4 &&
5300        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5301      return Op;
5302
5303    // Handle splats by matching through known masks
5304    if (VT.getVectorNumElements() <= 4)
5305      return SDValue();
5306
5307    // Canonize all of the remaining to v4f32.
5308    return PromoteSplat(SVOp, DAG);
5309  }
5310
5311  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5312  // do it!
5313  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5314    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5315    if (NewOp.getNode())
5316      return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewOp);
5317  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5318    // FIXME: Figure out a cleaner way to do this.
5319    // Try to make use of movq to zero out the top part.
5320    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5321      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5322      if (NewOp.getNode()) {
5323        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5324          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5325                              DAG, Subtarget, dl);
5326      }
5327    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5328      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5329      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5330        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5331                            DAG, Subtarget, dl);
5332    }
5333  }
5334  return SDValue();
5335}
5336
5337SDValue
5338X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5339  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5340  SDValue V1 = Op.getOperand(0);
5341  SDValue V2 = Op.getOperand(1);
5342  EVT VT = Op.getValueType();
5343  DebugLoc dl = Op.getDebugLoc();
5344  unsigned NumElems = VT.getVectorNumElements();
5345  bool isMMX = VT.getSizeInBits() == 64;
5346  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5347  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5348  bool V1IsSplat = false;
5349  bool V2IsSplat = false;
5350  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5351  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5352  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5353  MachineFunction &MF = DAG.getMachineFunction();
5354  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5355
5356  // Shuffle operations on MMX not supported.
5357  if (isMMX)
5358    return Op;
5359
5360  // Vector shuffle lowering takes 3 steps:
5361  //
5362  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5363  //    narrowing and commutation of operands should be handled.
5364  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5365  //    shuffle nodes.
5366  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5367  //    so the shuffle can be broken into other shuffles and the legalizer can
5368  //    try the lowering again.
5369  //
5370  // The general ideia is that no vector_shuffle operation should be left to
5371  // be matched during isel, all of them must be converted to a target specific
5372  // node here.
5373
5374  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5375  // narrowing and commutation of operands should be handled. The actual code
5376  // doesn't include all of those, work in progress...
5377  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5378  if (NewOp.getNode())
5379    return NewOp;
5380
5381  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5382  // unpckh_undef). Only use pshufd if speed is more important than size.
5383  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5384    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5385      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5386  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5387    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5388      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5389
5390  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5391      RelaxedMayFoldVectorLoad(V1))
5392    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
5393
5394  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5395    return getMOVHighToLow(Op, dl, DAG);
5396
5397  // Use to match splats
5398  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5399      (VT == MVT::v2f64 || VT == MVT::v2i64))
5400    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5401
5402  if (X86::isPSHUFDMask(SVOp)) {
5403    // The actual implementation will match the mask in the if above and then
5404    // during isel it can match several different instructions, not only pshufd
5405    // as its name says, sad but true, emulate the behavior for now...
5406    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5407        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5408
5409    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5410
5411    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5412      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5413
5414    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5415      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5416                                  TargetMask, DAG);
5417
5418    if (VT == MVT::v4f32)
5419      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5420                                  TargetMask, DAG);
5421  }
5422
5423  // Check if this can be converted into a logical shift.
5424  bool isLeft = false;
5425  unsigned ShAmt = 0;
5426  SDValue ShVal;
5427  bool isShift = getSubtarget()->hasSSE2() &&
5428    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5429  if (isShift && ShVal.hasOneUse()) {
5430    // If the shifted value has multiple uses, it may be cheaper to use
5431    // v_set0 + movlhps or movhlps, etc.
5432    EVT EltVT = VT.getVectorElementType();
5433    ShAmt *= EltVT.getSizeInBits();
5434    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5435  }
5436
5437  if (X86::isMOVLMask(SVOp)) {
5438    if (V1IsUndef)
5439      return V2;
5440    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5441      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5442    if (!X86::isMOVLPMask(SVOp)) {
5443      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5444        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5445
5446      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5447        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5448    }
5449  }
5450
5451  // FIXME: fold these into legal mask.
5452  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5453    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5454
5455  if (X86::isMOVHLPSMask(SVOp))
5456    return getMOVHighToLow(Op, dl, DAG);
5457
5458  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5459    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5460
5461  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5462    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5463
5464  if (X86::isMOVLPMask(SVOp))
5465    return getMOVLP(Op, dl, DAG, HasSSE2);
5466
5467  if (ShouldXformToMOVHLPS(SVOp) ||
5468      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5469    return CommuteVectorShuffle(SVOp, DAG);
5470
5471  if (isShift) {
5472    // No better options. Use a vshl / vsrl.
5473    EVT EltVT = VT.getVectorElementType();
5474    ShAmt *= EltVT.getSizeInBits();
5475    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5476  }
5477
5478  bool Commuted = false;
5479  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5480  // 1,1,1,1 -> v8i16 though.
5481  V1IsSplat = isSplatVector(V1.getNode());
5482  V2IsSplat = isSplatVector(V2.getNode());
5483
5484  // Canonicalize the splat or undef, if present, to be on the RHS.
5485  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5486    Op = CommuteVectorShuffle(SVOp, DAG);
5487    SVOp = cast<ShuffleVectorSDNode>(Op);
5488    V1 = SVOp->getOperand(0);
5489    V2 = SVOp->getOperand(1);
5490    std::swap(V1IsSplat, V2IsSplat);
5491    std::swap(V1IsUndef, V2IsUndef);
5492    Commuted = true;
5493  }
5494
5495  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5496    // Shuffling low element of v1 into undef, just return v1.
5497    if (V2IsUndef)
5498      return V1;
5499    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5500    // the instruction selector will not match, so get a canonical MOVL with
5501    // swapped operands to undo the commute.
5502    return getMOVL(DAG, dl, VT, V2, V1);
5503  }
5504
5505  if (X86::isUNPCKLMask(SVOp))
5506    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5507
5508  if (X86::isUNPCKHMask(SVOp))
5509    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5510
5511  if (V2IsSplat) {
5512    // Normalize mask so all entries that point to V2 points to its first
5513    // element then try to match unpck{h|l} again. If match, return a
5514    // new vector_shuffle with the corrected mask.
5515    SDValue NewMask = NormalizeMask(SVOp, DAG);
5516    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5517    if (NSVOp != SVOp) {
5518      if (X86::isUNPCKLMask(NSVOp, true)) {
5519        return NewMask;
5520      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5521        return NewMask;
5522      }
5523    }
5524  }
5525
5526  if (Commuted) {
5527    // Commute is back and try unpck* again.
5528    // FIXME: this seems wrong.
5529    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5530    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5531
5532    if (X86::isUNPCKLMask(NewSVOp))
5533      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5534
5535    if (X86::isUNPCKHMask(NewSVOp))
5536      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5537  }
5538
5539  // Normalize the node to match x86 shuffle ops if needed
5540  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5541    return CommuteVectorShuffle(SVOp, DAG);
5542
5543  // The checks below are all present in isShuffleMaskLegal, but they are
5544  // inlined here right now to enable us to directly emit target specific
5545  // nodes, and remove one by one until they don't return Op anymore.
5546  SmallVector<int, 16> M;
5547  SVOp->getMask(M);
5548
5549  if (isPALIGNRMask(M, VT, HasSSSE3))
5550    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5551                                X86::getShufflePALIGNRImmediate(SVOp),
5552                                DAG);
5553
5554  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5555      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5556    if (VT == MVT::v2f64)
5557      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5558    if (VT == MVT::v2i64)
5559      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5560  }
5561
5562  if (isPSHUFHWMask(M, VT))
5563    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5564                                X86::getShufflePSHUFHWImmediate(SVOp),
5565                                DAG);
5566
5567  if (isPSHUFLWMask(M, VT))
5568    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5569                                X86::getShufflePSHUFLWImmediate(SVOp),
5570                                DAG);
5571
5572  if (isSHUFPMask(M, VT)) {
5573    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5574    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5575      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5576                                  TargetMask, DAG);
5577    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5578      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5579                                  TargetMask, DAG);
5580  }
5581
5582  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5583    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5584      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5585  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5586    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5587      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5588
5589  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5590  if (VT == MVT::v8i16) {
5591    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5592    if (NewOp.getNode())
5593      return NewOp;
5594  }
5595
5596  if (VT == MVT::v16i8) {
5597    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5598    if (NewOp.getNode())
5599      return NewOp;
5600  }
5601
5602  // Handle all 4 wide cases with a number of shuffles.
5603  if (NumElems == 4)
5604    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5605
5606  return SDValue();
5607}
5608
5609SDValue
5610X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5611                                                SelectionDAG &DAG) const {
5612  EVT VT = Op.getValueType();
5613  DebugLoc dl = Op.getDebugLoc();
5614  if (VT.getSizeInBits() == 8) {
5615    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5616                                    Op.getOperand(0), Op.getOperand(1));
5617    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5618                                    DAG.getValueType(VT));
5619    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5620  } else if (VT.getSizeInBits() == 16) {
5621    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5622    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5623    if (Idx == 0)
5624      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5625                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5626                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5627                                                 MVT::v4i32,
5628                                                 Op.getOperand(0)),
5629                                     Op.getOperand(1)));
5630    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5631                                    Op.getOperand(0), Op.getOperand(1));
5632    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5633                                    DAG.getValueType(VT));
5634    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5635  } else if (VT == MVT::f32) {
5636    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5637    // the result back to FR32 register. It's only worth matching if the
5638    // result has a single use which is a store or a bitcast to i32.  And in
5639    // the case of a store, it's not worth it if the index is a constant 0,
5640    // because a MOVSSmr can be used instead, which is smaller and faster.
5641    if (!Op.hasOneUse())
5642      return SDValue();
5643    SDNode *User = *Op.getNode()->use_begin();
5644    if ((User->getOpcode() != ISD::STORE ||
5645         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5646          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5647        (User->getOpcode() != ISD::BIT_CONVERT ||
5648         User->getValueType(0) != MVT::i32))
5649      return SDValue();
5650    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5651                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5652                                              Op.getOperand(0)),
5653                                              Op.getOperand(1));
5654    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5655  } else if (VT == MVT::i32) {
5656    // ExtractPS works with constant index.
5657    if (isa<ConstantSDNode>(Op.getOperand(1)))
5658      return Op;
5659  }
5660  return SDValue();
5661}
5662
5663
5664SDValue
5665X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5666                                           SelectionDAG &DAG) const {
5667  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5668    return SDValue();
5669
5670  if (Subtarget->hasSSE41()) {
5671    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5672    if (Res.getNode())
5673      return Res;
5674  }
5675
5676  EVT VT = Op.getValueType();
5677  DebugLoc dl = Op.getDebugLoc();
5678  // TODO: handle v16i8.
5679  if (VT.getSizeInBits() == 16) {
5680    SDValue Vec = Op.getOperand(0);
5681    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5682    if (Idx == 0)
5683      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5684                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5685                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5686                                                 MVT::v4i32, Vec),
5687                                     Op.getOperand(1)));
5688    // Transform it so it match pextrw which produces a 32-bit result.
5689    EVT EltVT = MVT::i32;
5690    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5691                                    Op.getOperand(0), Op.getOperand(1));
5692    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5693                                    DAG.getValueType(VT));
5694    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5695  } else if (VT.getSizeInBits() == 32) {
5696    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5697    if (Idx == 0)
5698      return Op;
5699
5700    // SHUFPS the element to the lowest double word, then movss.
5701    int Mask[4] = { Idx, -1, -1, -1 };
5702    EVT VVT = Op.getOperand(0).getValueType();
5703    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5704                                       DAG.getUNDEF(VVT), Mask);
5705    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5706                       DAG.getIntPtrConstant(0));
5707  } else if (VT.getSizeInBits() == 64) {
5708    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5709    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5710    //        to match extract_elt for f64.
5711    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5712    if (Idx == 0)
5713      return Op;
5714
5715    // UNPCKHPD the element to the lowest double word, then movsd.
5716    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5717    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5718    int Mask[2] = { 1, -1 };
5719    EVT VVT = Op.getOperand(0).getValueType();
5720    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5721                                       DAG.getUNDEF(VVT), Mask);
5722    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5723                       DAG.getIntPtrConstant(0));
5724  }
5725
5726  return SDValue();
5727}
5728
5729SDValue
5730X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5731                                               SelectionDAG &DAG) const {
5732  EVT VT = Op.getValueType();
5733  EVT EltVT = VT.getVectorElementType();
5734  DebugLoc dl = Op.getDebugLoc();
5735
5736  SDValue N0 = Op.getOperand(0);
5737  SDValue N1 = Op.getOperand(1);
5738  SDValue N2 = Op.getOperand(2);
5739
5740  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5741      isa<ConstantSDNode>(N2)) {
5742    unsigned Opc;
5743    if (VT == MVT::v8i16)
5744      Opc = X86ISD::PINSRW;
5745    else if (VT == MVT::v16i8)
5746      Opc = X86ISD::PINSRB;
5747    else
5748      Opc = X86ISD::PINSRB;
5749
5750    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5751    // argument.
5752    if (N1.getValueType() != MVT::i32)
5753      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5754    if (N2.getValueType() != MVT::i32)
5755      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5756    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5757  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5758    // Bits [7:6] of the constant are the source select.  This will always be
5759    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5760    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5761    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5762    // Bits [5:4] of the constant are the destination select.  This is the
5763    //  value of the incoming immediate.
5764    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5765    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5766    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5767    // Create this as a scalar to vector..
5768    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5769    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5770  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5771    // PINSR* works with constant index.
5772    return Op;
5773  }
5774  return SDValue();
5775}
5776
5777SDValue
5778X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5779  EVT VT = Op.getValueType();
5780  EVT EltVT = VT.getVectorElementType();
5781
5782  if (Subtarget->hasSSE41())
5783    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5784
5785  if (EltVT == MVT::i8)
5786    return SDValue();
5787
5788  DebugLoc dl = Op.getDebugLoc();
5789  SDValue N0 = Op.getOperand(0);
5790  SDValue N1 = Op.getOperand(1);
5791  SDValue N2 = Op.getOperand(2);
5792
5793  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5794    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5795    // as its second argument.
5796    if (N1.getValueType() != MVT::i32)
5797      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5798    if (N2.getValueType() != MVT::i32)
5799      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5800    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5801  }
5802  return SDValue();
5803}
5804
5805SDValue
5806X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5807  DebugLoc dl = Op.getDebugLoc();
5808
5809  if (Op.getValueType() == MVT::v1i64 &&
5810      Op.getOperand(0).getValueType() == MVT::i64)
5811    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5812
5813  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5814  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5815         "Expected an SSE type!");
5816  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5817                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5818}
5819
5820// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5821// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5822// one of the above mentioned nodes. It has to be wrapped because otherwise
5823// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5824// be used to form addressing mode. These wrapped nodes will be selected
5825// into MOV32ri.
5826SDValue
5827X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5828  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5829
5830  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5831  // global base reg.
5832  unsigned char OpFlag = 0;
5833  unsigned WrapperKind = X86ISD::Wrapper;
5834  CodeModel::Model M = getTargetMachine().getCodeModel();
5835
5836  if (Subtarget->isPICStyleRIPRel() &&
5837      (M == CodeModel::Small || M == CodeModel::Kernel))
5838    WrapperKind = X86ISD::WrapperRIP;
5839  else if (Subtarget->isPICStyleGOT())
5840    OpFlag = X86II::MO_GOTOFF;
5841  else if (Subtarget->isPICStyleStubPIC())
5842    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5843
5844  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5845                                             CP->getAlignment(),
5846                                             CP->getOffset(), OpFlag);
5847  DebugLoc DL = CP->getDebugLoc();
5848  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5849  // With PIC, the address is actually $g + Offset.
5850  if (OpFlag) {
5851    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5852                         DAG.getNode(X86ISD::GlobalBaseReg,
5853                                     DebugLoc(), getPointerTy()),
5854                         Result);
5855  }
5856
5857  return Result;
5858}
5859
5860SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5861  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5862
5863  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5864  // global base reg.
5865  unsigned char OpFlag = 0;
5866  unsigned WrapperKind = X86ISD::Wrapper;
5867  CodeModel::Model M = getTargetMachine().getCodeModel();
5868
5869  if (Subtarget->isPICStyleRIPRel() &&
5870      (M == CodeModel::Small || M == CodeModel::Kernel))
5871    WrapperKind = X86ISD::WrapperRIP;
5872  else if (Subtarget->isPICStyleGOT())
5873    OpFlag = X86II::MO_GOTOFF;
5874  else if (Subtarget->isPICStyleStubPIC())
5875    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5876
5877  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5878                                          OpFlag);
5879  DebugLoc DL = JT->getDebugLoc();
5880  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5881
5882  // With PIC, the address is actually $g + Offset.
5883  if (OpFlag) {
5884    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5885                         DAG.getNode(X86ISD::GlobalBaseReg,
5886                                     DebugLoc(), getPointerTy()),
5887                         Result);
5888  }
5889
5890  return Result;
5891}
5892
5893SDValue
5894X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5895  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5896
5897  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5898  // global base reg.
5899  unsigned char OpFlag = 0;
5900  unsigned WrapperKind = X86ISD::Wrapper;
5901  CodeModel::Model M = getTargetMachine().getCodeModel();
5902
5903  if (Subtarget->isPICStyleRIPRel() &&
5904      (M == CodeModel::Small || M == CodeModel::Kernel))
5905    WrapperKind = X86ISD::WrapperRIP;
5906  else if (Subtarget->isPICStyleGOT())
5907    OpFlag = X86II::MO_GOTOFF;
5908  else if (Subtarget->isPICStyleStubPIC())
5909    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5910
5911  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5912
5913  DebugLoc DL = Op.getDebugLoc();
5914  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5915
5916
5917  // With PIC, the address is actually $g + Offset.
5918  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5919      !Subtarget->is64Bit()) {
5920    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5921                         DAG.getNode(X86ISD::GlobalBaseReg,
5922                                     DebugLoc(), getPointerTy()),
5923                         Result);
5924  }
5925
5926  return Result;
5927}
5928
5929SDValue
5930X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5931  // Create the TargetBlockAddressAddress node.
5932  unsigned char OpFlags =
5933    Subtarget->ClassifyBlockAddressReference();
5934  CodeModel::Model M = getTargetMachine().getCodeModel();
5935  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5936  DebugLoc dl = Op.getDebugLoc();
5937  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5938                                       /*isTarget=*/true, OpFlags);
5939
5940  if (Subtarget->isPICStyleRIPRel() &&
5941      (M == CodeModel::Small || M == CodeModel::Kernel))
5942    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5943  else
5944    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5945
5946  // With PIC, the address is actually $g + Offset.
5947  if (isGlobalRelativeToPICBase(OpFlags)) {
5948    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5949                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5950                         Result);
5951  }
5952
5953  return Result;
5954}
5955
5956SDValue
5957X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5958                                      int64_t Offset,
5959                                      SelectionDAG &DAG) const {
5960  // Create the TargetGlobalAddress node, folding in the constant
5961  // offset if it is legal.
5962  unsigned char OpFlags =
5963    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5964  CodeModel::Model M = getTargetMachine().getCodeModel();
5965  SDValue Result;
5966  if (OpFlags == X86II::MO_NO_FLAG &&
5967      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5968    // A direct static reference to a global.
5969    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5970    Offset = 0;
5971  } else {
5972    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5973  }
5974
5975  if (Subtarget->isPICStyleRIPRel() &&
5976      (M == CodeModel::Small || M == CodeModel::Kernel))
5977    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5978  else
5979    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5980
5981  // With PIC, the address is actually $g + Offset.
5982  if (isGlobalRelativeToPICBase(OpFlags)) {
5983    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5984                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5985                         Result);
5986  }
5987
5988  // For globals that require a load from a stub to get the address, emit the
5989  // load.
5990  if (isGlobalStubReference(OpFlags))
5991    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5992                         MachinePointerInfo::getGOT(), false, false, 0);
5993
5994  // If there was a non-zero offset that we didn't fold, create an explicit
5995  // addition for it.
5996  if (Offset != 0)
5997    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5998                         DAG.getConstant(Offset, getPointerTy()));
5999
6000  return Result;
6001}
6002
6003SDValue
6004X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6005  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6006  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6007  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6008}
6009
6010static SDValue
6011GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6012           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6013           unsigned char OperandFlags) {
6014  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6015  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6016  DebugLoc dl = GA->getDebugLoc();
6017  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6018                                           GA->getValueType(0),
6019                                           GA->getOffset(),
6020                                           OperandFlags);
6021  if (InFlag) {
6022    SDValue Ops[] = { Chain,  TGA, *InFlag };
6023    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6024  } else {
6025    SDValue Ops[]  = { Chain, TGA };
6026    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6027  }
6028
6029  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6030  MFI->setAdjustsStack(true);
6031
6032  SDValue Flag = Chain.getValue(1);
6033  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6034}
6035
6036// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6037static SDValue
6038LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6039                                const EVT PtrVT) {
6040  SDValue InFlag;
6041  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6042  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6043                                     DAG.getNode(X86ISD::GlobalBaseReg,
6044                                                 DebugLoc(), PtrVT), InFlag);
6045  InFlag = Chain.getValue(1);
6046
6047  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6048}
6049
6050// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6051static SDValue
6052LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6053                                const EVT PtrVT) {
6054  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6055                    X86::RAX, X86II::MO_TLSGD);
6056}
6057
6058// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6059// "local exec" model.
6060static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6061                                   const EVT PtrVT, TLSModel::Model model,
6062                                   bool is64Bit) {
6063  DebugLoc dl = GA->getDebugLoc();
6064
6065  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6066  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6067                                                         is64Bit ? 257 : 256));
6068
6069  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6070                                      DAG.getIntPtrConstant(0),
6071                                      MachinePointerInfo(Ptr), false, false, 0);
6072
6073  unsigned char OperandFlags = 0;
6074  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6075  // initialexec.
6076  unsigned WrapperKind = X86ISD::Wrapper;
6077  if (model == TLSModel::LocalExec) {
6078    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6079  } else if (is64Bit) {
6080    assert(model == TLSModel::InitialExec);
6081    OperandFlags = X86II::MO_GOTTPOFF;
6082    WrapperKind = X86ISD::WrapperRIP;
6083  } else {
6084    assert(model == TLSModel::InitialExec);
6085    OperandFlags = X86II::MO_INDNTPOFF;
6086  }
6087
6088  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6089  // exec)
6090  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6091                                           GA->getValueType(0),
6092                                           GA->getOffset(), OperandFlags);
6093  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6094
6095  if (model == TLSModel::InitialExec)
6096    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6097                         MachinePointerInfo::getGOT(), false, false, 0);
6098
6099  // The address of the thread local variable is the add of the thread
6100  // pointer with the offset of the variable.
6101  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6102}
6103
6104SDValue
6105X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6106
6107  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6108  const GlobalValue *GV = GA->getGlobal();
6109
6110  if (Subtarget->isTargetELF()) {
6111    // TODO: implement the "local dynamic" model
6112    // TODO: implement the "initial exec"model for pic executables
6113
6114    // If GV is an alias then use the aliasee for determining
6115    // thread-localness.
6116    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6117      GV = GA->resolveAliasedGlobal(false);
6118
6119    TLSModel::Model model
6120      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6121
6122    switch (model) {
6123      case TLSModel::GeneralDynamic:
6124      case TLSModel::LocalDynamic: // not implemented
6125        if (Subtarget->is64Bit())
6126          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6127        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6128
6129      case TLSModel::InitialExec:
6130      case TLSModel::LocalExec:
6131        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6132                                   Subtarget->is64Bit());
6133    }
6134  } else if (Subtarget->isTargetDarwin()) {
6135    // Darwin only has one model of TLS.  Lower to that.
6136    unsigned char OpFlag = 0;
6137    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6138                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6139
6140    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6141    // global base reg.
6142    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6143                  !Subtarget->is64Bit();
6144    if (PIC32)
6145      OpFlag = X86II::MO_TLVP_PIC_BASE;
6146    else
6147      OpFlag = X86II::MO_TLVP;
6148    DebugLoc DL = Op.getDebugLoc();
6149    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6150                                                getPointerTy(),
6151                                                GA->getOffset(), OpFlag);
6152    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6153
6154    // With PIC32, the address is actually $g + Offset.
6155    if (PIC32)
6156      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6157                           DAG.getNode(X86ISD::GlobalBaseReg,
6158                                       DebugLoc(), getPointerTy()),
6159                           Offset);
6160
6161    // Lowering the machine isd will make sure everything is in the right
6162    // location.
6163    SDValue Args[] = { Offset };
6164    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
6165
6166    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6167    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6168    MFI->setAdjustsStack(true);
6169
6170    // And our return value (tls address) is in the standard call return value
6171    // location.
6172    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6173    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6174  }
6175
6176  assert(false &&
6177         "TLS not implemented for this target.");
6178
6179  llvm_unreachable("Unreachable");
6180  return SDValue();
6181}
6182
6183
6184/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6185/// take a 2 x i32 value to shift plus a shift amount.
6186SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6187  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6188  EVT VT = Op.getValueType();
6189  unsigned VTBits = VT.getSizeInBits();
6190  DebugLoc dl = Op.getDebugLoc();
6191  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6192  SDValue ShOpLo = Op.getOperand(0);
6193  SDValue ShOpHi = Op.getOperand(1);
6194  SDValue ShAmt  = Op.getOperand(2);
6195  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6196                                     DAG.getConstant(VTBits - 1, MVT::i8))
6197                       : DAG.getConstant(0, VT);
6198
6199  SDValue Tmp2, Tmp3;
6200  if (Op.getOpcode() == ISD::SHL_PARTS) {
6201    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6202    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6203  } else {
6204    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6205    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6206  }
6207
6208  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6209                                DAG.getConstant(VTBits, MVT::i8));
6210  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6211                             AndNode, DAG.getConstant(0, MVT::i8));
6212
6213  SDValue Hi, Lo;
6214  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6215  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6216  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6217
6218  if (Op.getOpcode() == ISD::SHL_PARTS) {
6219    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6220    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6221  } else {
6222    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6223    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6224  }
6225
6226  SDValue Ops[2] = { Lo, Hi };
6227  return DAG.getMergeValues(Ops, 2, dl);
6228}
6229
6230SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6231                                           SelectionDAG &DAG) const {
6232  EVT SrcVT = Op.getOperand(0).getValueType();
6233
6234  if (SrcVT.isVector())
6235    return SDValue();
6236
6237  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6238         "Unknown SINT_TO_FP to lower!");
6239
6240  // These are really Legal; return the operand so the caller accepts it as
6241  // Legal.
6242  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6243    return Op;
6244  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6245      Subtarget->is64Bit()) {
6246    return Op;
6247  }
6248
6249  DebugLoc dl = Op.getDebugLoc();
6250  unsigned Size = SrcVT.getSizeInBits()/8;
6251  MachineFunction &MF = DAG.getMachineFunction();
6252  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6253  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6254  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6255                               StackSlot,
6256                               MachinePointerInfo::getFixedStack(SSFI),
6257                               false, false, 0);
6258  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6259}
6260
6261SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6262                                     SDValue StackSlot,
6263                                     SelectionDAG &DAG) const {
6264  // Build the FILD
6265  DebugLoc DL = Op.getDebugLoc();
6266  SDVTList Tys;
6267  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6268  if (useSSE)
6269    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6270  else
6271    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6272
6273  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6274
6275  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6276  MachineMemOperand *MMO =
6277    DAG.getMachineFunction()
6278    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6279                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6280
6281  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6282  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6283                                           X86ISD::FILD, DL,
6284                                           Tys, Ops, array_lengthof(Ops),
6285                                           SrcVT, MMO);
6286
6287  if (useSSE) {
6288    Chain = Result.getValue(1);
6289    SDValue InFlag = Result.getValue(2);
6290
6291    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6292    // shouldn't be necessary except that RFP cannot be live across
6293    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6294    MachineFunction &MF = DAG.getMachineFunction();
6295    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6296    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6297    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6298    Tys = DAG.getVTList(MVT::Other);
6299    SDValue Ops[] = {
6300      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6301    };
6302    MachineMemOperand *MMO =
6303      DAG.getMachineFunction()
6304      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6305                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6306
6307    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6308                                    Ops, array_lengthof(Ops),
6309                                    Op.getValueType(), MMO);
6310    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6311                         MachinePointerInfo::getFixedStack(SSFI),
6312                         false, false, 0);
6313  }
6314
6315  return Result;
6316}
6317
6318// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6319SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6320                                               SelectionDAG &DAG) const {
6321  // This algorithm is not obvious. Here it is in C code, more or less:
6322  /*
6323    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6324      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6325      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6326
6327      // Copy ints to xmm registers.
6328      __m128i xh = _mm_cvtsi32_si128( hi );
6329      __m128i xl = _mm_cvtsi32_si128( lo );
6330
6331      // Combine into low half of a single xmm register.
6332      __m128i x = _mm_unpacklo_epi32( xh, xl );
6333      __m128d d;
6334      double sd;
6335
6336      // Merge in appropriate exponents to give the integer bits the right
6337      // magnitude.
6338      x = _mm_unpacklo_epi32( x, exp );
6339
6340      // Subtract away the biases to deal with the IEEE-754 double precision
6341      // implicit 1.
6342      d = _mm_sub_pd( (__m128d) x, bias );
6343
6344      // All conversions up to here are exact. The correctly rounded result is
6345      // calculated using the current rounding mode using the following
6346      // horizontal add.
6347      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6348      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6349                                // store doesn't really need to be here (except
6350                                // maybe to zero the other double)
6351      return sd;
6352    }
6353  */
6354
6355  DebugLoc dl = Op.getDebugLoc();
6356  LLVMContext *Context = DAG.getContext();
6357
6358  // Build some magic constants.
6359  std::vector<Constant*> CV0;
6360  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6361  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6362  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6363  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6364  Constant *C0 = ConstantVector::get(CV0);
6365  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6366
6367  std::vector<Constant*> CV1;
6368  CV1.push_back(
6369    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6370  CV1.push_back(
6371    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6372  Constant *C1 = ConstantVector::get(CV1);
6373  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6374
6375  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6376                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6377                                        Op.getOperand(0),
6378                                        DAG.getIntPtrConstant(1)));
6379  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6380                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6381                                        Op.getOperand(0),
6382                                        DAG.getIntPtrConstant(0)));
6383  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6384  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6385                              MachinePointerInfo::getConstantPool(),
6386                              false, false, 16);
6387  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6388  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6389  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6390                              MachinePointerInfo::getConstantPool(),
6391                              false, false, 16);
6392  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6393
6394  // Add the halves; easiest way is to swap them into another reg first.
6395  int ShufMask[2] = { 1, -1 };
6396  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6397                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6398  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6399  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6400                     DAG.getIntPtrConstant(0));
6401}
6402
6403// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6404SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6405                                               SelectionDAG &DAG) const {
6406  DebugLoc dl = Op.getDebugLoc();
6407  // FP constant to bias correct the final result.
6408  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6409                                   MVT::f64);
6410
6411  // Load the 32-bit value into an XMM register.
6412  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6413                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6414                                         Op.getOperand(0),
6415                                         DAG.getIntPtrConstant(0)));
6416
6417  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6418                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6419                     DAG.getIntPtrConstant(0));
6420
6421  // Or the load with the bias.
6422  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6423                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6424                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6425                                                   MVT::v2f64, Load)),
6426                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6427                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6428                                                   MVT::v2f64, Bias)));
6429  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6430                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6431                   DAG.getIntPtrConstant(0));
6432
6433  // Subtract the bias.
6434  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6435
6436  // Handle final rounding.
6437  EVT DestVT = Op.getValueType();
6438
6439  if (DestVT.bitsLT(MVT::f64)) {
6440    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6441                       DAG.getIntPtrConstant(0));
6442  } else if (DestVT.bitsGT(MVT::f64)) {
6443    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6444  }
6445
6446  // Handle final rounding.
6447  return Sub;
6448}
6449
6450SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6451                                           SelectionDAG &DAG) const {
6452  SDValue N0 = Op.getOperand(0);
6453  DebugLoc dl = Op.getDebugLoc();
6454
6455  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6456  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6457  // the optimization here.
6458  if (DAG.SignBitIsZero(N0))
6459    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6460
6461  EVT SrcVT = N0.getValueType();
6462  EVT DstVT = Op.getValueType();
6463  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6464    return LowerUINT_TO_FP_i64(Op, DAG);
6465  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6466    return LowerUINT_TO_FP_i32(Op, DAG);
6467
6468  // Make a 64-bit buffer, and use it to build an FILD.
6469  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6470  if (SrcVT == MVT::i32) {
6471    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6472    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6473                                     getPointerTy(), StackSlot, WordOff);
6474    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6475                                  StackSlot, MachinePointerInfo(),
6476                                  false, false, 0);
6477    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6478                                  OffsetSlot, MachinePointerInfo(),
6479                                  false, false, 0);
6480    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6481    return Fild;
6482  }
6483
6484  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6485  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6486                                StackSlot, MachinePointerInfo(),
6487                               false, false, 0);
6488  // For i64 source, we need to add the appropriate power of 2 if the input
6489  // was negative.  This is the same as the optimization in
6490  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6491  // we must be careful to do the computation in x87 extended precision, not
6492  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6493  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6494  MachineMemOperand *MMO =
6495    DAG.getMachineFunction()
6496    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6497                          MachineMemOperand::MOLoad, 8, 8);
6498
6499  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6500  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6501  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6502                                         MVT::i64, MMO);
6503
6504  APInt FF(32, 0x5F800000ULL);
6505
6506  // Check whether the sign bit is set.
6507  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6508                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6509                                 ISD::SETLT);
6510
6511  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6512  SDValue FudgePtr = DAG.getConstantPool(
6513                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6514                                         getPointerTy());
6515
6516  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6517  SDValue Zero = DAG.getIntPtrConstant(0);
6518  SDValue Four = DAG.getIntPtrConstant(4);
6519  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6520                               Zero, Four);
6521  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6522
6523  // Load the value out, extending it from f32 to f80.
6524  // FIXME: Avoid the extend by constructing the right constant pool?
6525  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6526                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6527                                 MVT::f32, false, false, 4);
6528  // Extend everything to 80 bits to force it to be done on x87.
6529  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6530  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6531}
6532
6533std::pair<SDValue,SDValue> X86TargetLowering::
6534FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6535  DebugLoc DL = Op.getDebugLoc();
6536
6537  EVT DstTy = Op.getValueType();
6538
6539  if (!IsSigned) {
6540    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6541    DstTy = MVT::i64;
6542  }
6543
6544  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6545         DstTy.getSimpleVT() >= MVT::i16 &&
6546         "Unknown FP_TO_SINT to lower!");
6547
6548  // These are really Legal.
6549  if (DstTy == MVT::i32 &&
6550      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6551    return std::make_pair(SDValue(), SDValue());
6552  if (Subtarget->is64Bit() &&
6553      DstTy == MVT::i64 &&
6554      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6555    return std::make_pair(SDValue(), SDValue());
6556
6557  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6558  // stack slot.
6559  MachineFunction &MF = DAG.getMachineFunction();
6560  unsigned MemSize = DstTy.getSizeInBits()/8;
6561  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6562  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6563
6564
6565
6566  unsigned Opc;
6567  switch (DstTy.getSimpleVT().SimpleTy) {
6568  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6569  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6570  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6571  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6572  }
6573
6574  SDValue Chain = DAG.getEntryNode();
6575  SDValue Value = Op.getOperand(0);
6576  EVT TheVT = Op.getOperand(0).getValueType();
6577  if (isScalarFPTypeInSSEReg(TheVT)) {
6578    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6579    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6580                         MachinePointerInfo::getFixedStack(SSFI),
6581                         false, false, 0);
6582    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6583    SDValue Ops[] = {
6584      Chain, StackSlot, DAG.getValueType(TheVT)
6585    };
6586
6587    MachineMemOperand *MMO =
6588      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6589                              MachineMemOperand::MOLoad, MemSize, MemSize);
6590    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6591                                    DstTy, MMO);
6592    Chain = Value.getValue(1);
6593    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6594    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6595  }
6596
6597  MachineMemOperand *MMO =
6598    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6599                            MachineMemOperand::MOStore, MemSize, MemSize);
6600
6601  // Build the FP_TO_INT*_IN_MEM
6602  SDValue Ops[] = { Chain, Value, StackSlot };
6603  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6604                                         Ops, 3, DstTy, MMO);
6605
6606  return std::make_pair(FIST, StackSlot);
6607}
6608
6609SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6610                                           SelectionDAG &DAG) const {
6611  if (Op.getValueType().isVector())
6612    return SDValue();
6613
6614  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6615  SDValue FIST = Vals.first, StackSlot = Vals.second;
6616  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6617  if (FIST.getNode() == 0) return Op;
6618
6619  // Load the result.
6620  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6621                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6622}
6623
6624SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6625                                           SelectionDAG &DAG) const {
6626  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6627  SDValue FIST = Vals.first, StackSlot = Vals.second;
6628  assert(FIST.getNode() && "Unexpected failure");
6629
6630  // Load the result.
6631  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6632                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6633}
6634
6635SDValue X86TargetLowering::LowerFABS(SDValue Op,
6636                                     SelectionDAG &DAG) const {
6637  LLVMContext *Context = DAG.getContext();
6638  DebugLoc dl = Op.getDebugLoc();
6639  EVT VT = Op.getValueType();
6640  EVT EltVT = VT;
6641  if (VT.isVector())
6642    EltVT = VT.getVectorElementType();
6643  std::vector<Constant*> CV;
6644  if (EltVT == MVT::f64) {
6645    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6646    CV.push_back(C);
6647    CV.push_back(C);
6648  } else {
6649    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6650    CV.push_back(C);
6651    CV.push_back(C);
6652    CV.push_back(C);
6653    CV.push_back(C);
6654  }
6655  Constant *C = ConstantVector::get(CV);
6656  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6657  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6658                             MachinePointerInfo::getConstantPool(),
6659                             false, false, 16);
6660  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6661}
6662
6663SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6664  LLVMContext *Context = DAG.getContext();
6665  DebugLoc dl = Op.getDebugLoc();
6666  EVT VT = Op.getValueType();
6667  EVT EltVT = VT;
6668  if (VT.isVector())
6669    EltVT = VT.getVectorElementType();
6670  std::vector<Constant*> CV;
6671  if (EltVT == MVT::f64) {
6672    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6673    CV.push_back(C);
6674    CV.push_back(C);
6675  } else {
6676    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6677    CV.push_back(C);
6678    CV.push_back(C);
6679    CV.push_back(C);
6680    CV.push_back(C);
6681  }
6682  Constant *C = ConstantVector::get(CV);
6683  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6684  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6685                             MachinePointerInfo::getConstantPool(),
6686                             false, false, 16);
6687  if (VT.isVector()) {
6688    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6689                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6690                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6691                                Op.getOperand(0)),
6692                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6693  } else {
6694    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6695  }
6696}
6697
6698SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6699  LLVMContext *Context = DAG.getContext();
6700  SDValue Op0 = Op.getOperand(0);
6701  SDValue Op1 = Op.getOperand(1);
6702  DebugLoc dl = Op.getDebugLoc();
6703  EVT VT = Op.getValueType();
6704  EVT SrcVT = Op1.getValueType();
6705
6706  // If second operand is smaller, extend it first.
6707  if (SrcVT.bitsLT(VT)) {
6708    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6709    SrcVT = VT;
6710  }
6711  // And if it is bigger, shrink it first.
6712  if (SrcVT.bitsGT(VT)) {
6713    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6714    SrcVT = VT;
6715  }
6716
6717  // At this point the operands and the result should have the same
6718  // type, and that won't be f80 since that is not custom lowered.
6719
6720  // First get the sign bit of second operand.
6721  std::vector<Constant*> CV;
6722  if (SrcVT == MVT::f64) {
6723    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6724    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6725  } else {
6726    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6727    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6728    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6729    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6730  }
6731  Constant *C = ConstantVector::get(CV);
6732  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6733  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6734                              MachinePointerInfo::getConstantPool(),
6735                              false, false, 16);
6736  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6737
6738  // Shift sign bit right or left if the two operands have different types.
6739  if (SrcVT.bitsGT(VT)) {
6740    // Op0 is MVT::f32, Op1 is MVT::f64.
6741    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6742    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6743                          DAG.getConstant(32, MVT::i32));
6744    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6745    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6746                          DAG.getIntPtrConstant(0));
6747  }
6748
6749  // Clear first operand sign bit.
6750  CV.clear();
6751  if (VT == MVT::f64) {
6752    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6753    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6754  } else {
6755    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6756    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6757    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6758    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6759  }
6760  C = ConstantVector::get(CV);
6761  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6762  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6763                              MachinePointerInfo::getConstantPool(),
6764                              false, false, 16);
6765  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6766
6767  // Or the value with the sign bit.
6768  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6769}
6770
6771/// Emit nodes that will be selected as "test Op0,Op0", or something
6772/// equivalent.
6773SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6774                                    SelectionDAG &DAG) const {
6775  DebugLoc dl = Op.getDebugLoc();
6776
6777  // CF and OF aren't always set the way we want. Determine which
6778  // of these we need.
6779  bool NeedCF = false;
6780  bool NeedOF = false;
6781  switch (X86CC) {
6782  default: break;
6783  case X86::COND_A: case X86::COND_AE:
6784  case X86::COND_B: case X86::COND_BE:
6785    NeedCF = true;
6786    break;
6787  case X86::COND_G: case X86::COND_GE:
6788  case X86::COND_L: case X86::COND_LE:
6789  case X86::COND_O: case X86::COND_NO:
6790    NeedOF = true;
6791    break;
6792  }
6793
6794  // See if we can use the EFLAGS value from the operand instead of
6795  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6796  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6797  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6798    // Emit a CMP with 0, which is the TEST pattern.
6799    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6800                       DAG.getConstant(0, Op.getValueType()));
6801
6802  unsigned Opcode = 0;
6803  unsigned NumOperands = 0;
6804  switch (Op.getNode()->getOpcode()) {
6805  case ISD::ADD:
6806    // Due to an isel shortcoming, be conservative if this add is likely to be
6807    // selected as part of a load-modify-store instruction. When the root node
6808    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6809    // uses of other nodes in the match, such as the ADD in this case. This
6810    // leads to the ADD being left around and reselected, with the result being
6811    // two adds in the output.  Alas, even if none our users are stores, that
6812    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6813    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6814    // climbing the DAG back to the root, and it doesn't seem to be worth the
6815    // effort.
6816    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6817           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6818      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6819        goto default_case;
6820
6821    if (ConstantSDNode *C =
6822        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6823      // An add of one will be selected as an INC.
6824      if (C->getAPIntValue() == 1) {
6825        Opcode = X86ISD::INC;
6826        NumOperands = 1;
6827        break;
6828      }
6829
6830      // An add of negative one (subtract of one) will be selected as a DEC.
6831      if (C->getAPIntValue().isAllOnesValue()) {
6832        Opcode = X86ISD::DEC;
6833        NumOperands = 1;
6834        break;
6835      }
6836    }
6837
6838    // Otherwise use a regular EFLAGS-setting add.
6839    Opcode = X86ISD::ADD;
6840    NumOperands = 2;
6841    break;
6842  case ISD::AND: {
6843    // If the primary and result isn't used, don't bother using X86ISD::AND,
6844    // because a TEST instruction will be better.
6845    bool NonFlagUse = false;
6846    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6847           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6848      SDNode *User = *UI;
6849      unsigned UOpNo = UI.getOperandNo();
6850      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6851        // Look pass truncate.
6852        UOpNo = User->use_begin().getOperandNo();
6853        User = *User->use_begin();
6854      }
6855
6856      if (User->getOpcode() != ISD::BRCOND &&
6857          User->getOpcode() != ISD::SETCC &&
6858          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6859        NonFlagUse = true;
6860        break;
6861      }
6862    }
6863
6864    if (!NonFlagUse)
6865      break;
6866  }
6867    // FALL THROUGH
6868  case ISD::SUB:
6869  case ISD::OR:
6870  case ISD::XOR:
6871    // Due to the ISEL shortcoming noted above, be conservative if this op is
6872    // likely to be selected as part of a load-modify-store instruction.
6873    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6874           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6875      if (UI->getOpcode() == ISD::STORE)
6876        goto default_case;
6877
6878    // Otherwise use a regular EFLAGS-setting instruction.
6879    switch (Op.getNode()->getOpcode()) {
6880    default: llvm_unreachable("unexpected operator!");
6881    case ISD::SUB: Opcode = X86ISD::SUB; break;
6882    case ISD::OR:  Opcode = X86ISD::OR;  break;
6883    case ISD::XOR: Opcode = X86ISD::XOR; break;
6884    case ISD::AND: Opcode = X86ISD::AND; break;
6885    }
6886
6887    NumOperands = 2;
6888    break;
6889  case X86ISD::ADD:
6890  case X86ISD::SUB:
6891  case X86ISD::INC:
6892  case X86ISD::DEC:
6893  case X86ISD::OR:
6894  case X86ISD::XOR:
6895  case X86ISD::AND:
6896    return SDValue(Op.getNode(), 1);
6897  default:
6898  default_case:
6899    break;
6900  }
6901
6902  if (Opcode == 0)
6903    // Emit a CMP with 0, which is the TEST pattern.
6904    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6905                       DAG.getConstant(0, Op.getValueType()));
6906
6907  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6908  SmallVector<SDValue, 4> Ops;
6909  for (unsigned i = 0; i != NumOperands; ++i)
6910    Ops.push_back(Op.getOperand(i));
6911
6912  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6913  DAG.ReplaceAllUsesWith(Op, New);
6914  return SDValue(New.getNode(), 1);
6915}
6916
6917/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6918/// equivalent.
6919SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6920                                   SelectionDAG &DAG) const {
6921  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6922    if (C->getAPIntValue() == 0)
6923      return EmitTest(Op0, X86CC, DAG);
6924
6925  DebugLoc dl = Op0.getDebugLoc();
6926  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6927}
6928
6929/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6930/// if it's possible.
6931SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6932                                     DebugLoc dl, SelectionDAG &DAG) const {
6933  SDValue Op0 = And.getOperand(0);
6934  SDValue Op1 = And.getOperand(1);
6935  if (Op0.getOpcode() == ISD::TRUNCATE)
6936    Op0 = Op0.getOperand(0);
6937  if (Op1.getOpcode() == ISD::TRUNCATE)
6938    Op1 = Op1.getOperand(0);
6939
6940  SDValue LHS, RHS;
6941  if (Op1.getOpcode() == ISD::SHL)
6942    std::swap(Op0, Op1);
6943  if (Op0.getOpcode() == ISD::SHL) {
6944    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6945      if (And00C->getZExtValue() == 1) {
6946        // If we looked past a truncate, check that it's only truncating away
6947        // known zeros.
6948        unsigned BitWidth = Op0.getValueSizeInBits();
6949        unsigned AndBitWidth = And.getValueSizeInBits();
6950        if (BitWidth > AndBitWidth) {
6951          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6952          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6953          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6954            return SDValue();
6955        }
6956        LHS = Op1;
6957        RHS = Op0.getOperand(1);
6958      }
6959  } else if (Op1.getOpcode() == ISD::Constant) {
6960    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6961    SDValue AndLHS = Op0;
6962    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6963      LHS = AndLHS.getOperand(0);
6964      RHS = AndLHS.getOperand(1);
6965    }
6966  }
6967
6968  if (LHS.getNode()) {
6969    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6970    // instruction.  Since the shift amount is in-range-or-undefined, we know
6971    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6972    // the encoding for the i16 version is larger than the i32 version.
6973    // Also promote i16 to i32 for performance / code size reason.
6974    if (LHS.getValueType() == MVT::i8 ||
6975        LHS.getValueType() == MVT::i16)
6976      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6977
6978    // If the operand types disagree, extend the shift amount to match.  Since
6979    // BT ignores high bits (like shifts) we can use anyextend.
6980    if (LHS.getValueType() != RHS.getValueType())
6981      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6982
6983    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6984    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6985    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6986                       DAG.getConstant(Cond, MVT::i8), BT);
6987  }
6988
6989  return SDValue();
6990}
6991
6992SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6993  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6994  SDValue Op0 = Op.getOperand(0);
6995  SDValue Op1 = Op.getOperand(1);
6996  DebugLoc dl = Op.getDebugLoc();
6997  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6998
6999  // Optimize to BT if possible.
7000  // Lower (X & (1 << N)) == 0 to BT(X, N).
7001  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7002  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7003  if (Op0.getOpcode() == ISD::AND &&
7004      Op0.hasOneUse() &&
7005      Op1.getOpcode() == ISD::Constant &&
7006      cast<ConstantSDNode>(Op1)->isNullValue() &&
7007      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7008    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7009    if (NewSetCC.getNode())
7010      return NewSetCC;
7011  }
7012
7013  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
7014  if (Op0.getOpcode() == X86ISD::SETCC &&
7015      Op1.getOpcode() == ISD::Constant &&
7016      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7017       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7018      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7019    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7020    bool Invert = (CC == ISD::SETNE) ^
7021      cast<ConstantSDNode>(Op1)->isNullValue();
7022    if (Invert)
7023      CCode = X86::GetOppositeBranchCondition(CCode);
7024    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7025                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7026  }
7027
7028  bool isFP = Op1.getValueType().isFloatingPoint();
7029  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7030  if (X86CC == X86::COND_INVALID)
7031    return SDValue();
7032
7033  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
7034
7035  // Use sbb x, x to materialize carry bit into a GPR.
7036  if (X86CC == X86::COND_B)
7037    return DAG.getNode(ISD::AND, dl, MVT::i8,
7038                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
7039                                   DAG.getConstant(X86CC, MVT::i8), Cond),
7040                       DAG.getConstant(1, MVT::i8));
7041
7042  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7043                     DAG.getConstant(X86CC, MVT::i8), Cond);
7044}
7045
7046SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7047  SDValue Cond;
7048  SDValue Op0 = Op.getOperand(0);
7049  SDValue Op1 = Op.getOperand(1);
7050  SDValue CC = Op.getOperand(2);
7051  EVT VT = Op.getValueType();
7052  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7053  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7054  DebugLoc dl = Op.getDebugLoc();
7055
7056  if (isFP) {
7057    unsigned SSECC = 8;
7058    EVT VT0 = Op0.getValueType();
7059    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7060    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7061    bool Swap = false;
7062
7063    switch (SetCCOpcode) {
7064    default: break;
7065    case ISD::SETOEQ:
7066    case ISD::SETEQ:  SSECC = 0; break;
7067    case ISD::SETOGT:
7068    case ISD::SETGT: Swap = true; // Fallthrough
7069    case ISD::SETLT:
7070    case ISD::SETOLT: SSECC = 1; break;
7071    case ISD::SETOGE:
7072    case ISD::SETGE: Swap = true; // Fallthrough
7073    case ISD::SETLE:
7074    case ISD::SETOLE: SSECC = 2; break;
7075    case ISD::SETUO:  SSECC = 3; break;
7076    case ISD::SETUNE:
7077    case ISD::SETNE:  SSECC = 4; break;
7078    case ISD::SETULE: Swap = true;
7079    case ISD::SETUGE: SSECC = 5; break;
7080    case ISD::SETULT: Swap = true;
7081    case ISD::SETUGT: SSECC = 6; break;
7082    case ISD::SETO:   SSECC = 7; break;
7083    }
7084    if (Swap)
7085      std::swap(Op0, Op1);
7086
7087    // In the two special cases we can't handle, emit two comparisons.
7088    if (SSECC == 8) {
7089      if (SetCCOpcode == ISD::SETUEQ) {
7090        SDValue UNORD, EQ;
7091        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7092        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7093        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7094      }
7095      else if (SetCCOpcode == ISD::SETONE) {
7096        SDValue ORD, NEQ;
7097        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7098        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7099        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7100      }
7101      llvm_unreachable("Illegal FP comparison");
7102    }
7103    // Handle all other FP comparisons here.
7104    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7105  }
7106
7107  // We are handling one of the integer comparisons here.  Since SSE only has
7108  // GT and EQ comparisons for integer, swapping operands and multiple
7109  // operations may be required for some comparisons.
7110  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7111  bool Swap = false, Invert = false, FlipSigns = false;
7112
7113  switch (VT.getSimpleVT().SimpleTy) {
7114  default: break;
7115  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7116  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7117  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7118  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7119  }
7120
7121  switch (SetCCOpcode) {
7122  default: break;
7123  case ISD::SETNE:  Invert = true;
7124  case ISD::SETEQ:  Opc = EQOpc; break;
7125  case ISD::SETLT:  Swap = true;
7126  case ISD::SETGT:  Opc = GTOpc; break;
7127  case ISD::SETGE:  Swap = true;
7128  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7129  case ISD::SETULT: Swap = true;
7130  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7131  case ISD::SETUGE: Swap = true;
7132  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7133  }
7134  if (Swap)
7135    std::swap(Op0, Op1);
7136
7137  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7138  // bits of the inputs before performing those operations.
7139  if (FlipSigns) {
7140    EVT EltVT = VT.getVectorElementType();
7141    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7142                                      EltVT);
7143    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7144    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7145                                    SignBits.size());
7146    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7147    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7148  }
7149
7150  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7151
7152  // If the logical-not of the result is required, perform that now.
7153  if (Invert)
7154    Result = DAG.getNOT(dl, Result, VT);
7155
7156  return Result;
7157}
7158
7159// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7160static bool isX86LogicalCmp(SDValue Op) {
7161  unsigned Opc = Op.getNode()->getOpcode();
7162  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7163    return true;
7164  if (Op.getResNo() == 1 &&
7165      (Opc == X86ISD::ADD ||
7166       Opc == X86ISD::SUB ||
7167       Opc == X86ISD::SMUL ||
7168       Opc == X86ISD::UMUL ||
7169       Opc == X86ISD::INC ||
7170       Opc == X86ISD::DEC ||
7171       Opc == X86ISD::OR ||
7172       Opc == X86ISD::XOR ||
7173       Opc == X86ISD::AND))
7174    return true;
7175
7176  return false;
7177}
7178
7179SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7180  bool addTest = true;
7181  SDValue Cond  = Op.getOperand(0);
7182  DebugLoc dl = Op.getDebugLoc();
7183  SDValue CC;
7184
7185  if (Cond.getOpcode() == ISD::SETCC) {
7186    SDValue NewCond = LowerSETCC(Cond, DAG);
7187    if (NewCond.getNode())
7188      Cond = NewCond;
7189  }
7190
7191  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
7192  SDValue Op1 = Op.getOperand(1);
7193  SDValue Op2 = Op.getOperand(2);
7194  if (Cond.getOpcode() == X86ISD::SETCC &&
7195      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
7196    SDValue Cmp = Cond.getOperand(1);
7197    if (Cmp.getOpcode() == X86ISD::CMP) {
7198      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
7199      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7200      ConstantSDNode *RHSC =
7201        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
7202      if (N1C && N1C->isAllOnesValue() &&
7203          N2C && N2C->isNullValue() &&
7204          RHSC && RHSC->isNullValue()) {
7205        SDValue CmpOp0 = Cmp.getOperand(0);
7206        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7207                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7208        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
7209                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7210      }
7211    }
7212  }
7213
7214  // Look pass (and (setcc_carry (cmp ...)), 1).
7215  if (Cond.getOpcode() == ISD::AND &&
7216      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7217    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7218    if (C && C->getAPIntValue() == 1)
7219      Cond = Cond.getOperand(0);
7220  }
7221
7222  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7223  // setting operand in place of the X86ISD::SETCC.
7224  if (Cond.getOpcode() == X86ISD::SETCC ||
7225      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7226    CC = Cond.getOperand(0);
7227
7228    SDValue Cmp = Cond.getOperand(1);
7229    unsigned Opc = Cmp.getOpcode();
7230    EVT VT = Op.getValueType();
7231
7232    bool IllegalFPCMov = false;
7233    if (VT.isFloatingPoint() && !VT.isVector() &&
7234        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7235      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7236
7237    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7238        Opc == X86ISD::BT) { // FIXME
7239      Cond = Cmp;
7240      addTest = false;
7241    }
7242  }
7243
7244  if (addTest) {
7245    // Look pass the truncate.
7246    if (Cond.getOpcode() == ISD::TRUNCATE)
7247      Cond = Cond.getOperand(0);
7248
7249    // We know the result of AND is compared against zero. Try to match
7250    // it to BT.
7251    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7252      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7253      if (NewSetCC.getNode()) {
7254        CC = NewSetCC.getOperand(0);
7255        Cond = NewSetCC.getOperand(1);
7256        addTest = false;
7257      }
7258    }
7259  }
7260
7261  if (addTest) {
7262    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7263    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7264  }
7265
7266  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7267  // condition is true.
7268  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7269  SDValue Ops[] = { Op2, Op1, CC, Cond };
7270  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
7271}
7272
7273// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7274// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7275// from the AND / OR.
7276static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7277  Opc = Op.getOpcode();
7278  if (Opc != ISD::OR && Opc != ISD::AND)
7279    return false;
7280  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7281          Op.getOperand(0).hasOneUse() &&
7282          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7283          Op.getOperand(1).hasOneUse());
7284}
7285
7286// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7287// 1 and that the SETCC node has a single use.
7288static bool isXor1OfSetCC(SDValue Op) {
7289  if (Op.getOpcode() != ISD::XOR)
7290    return false;
7291  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7292  if (N1C && N1C->getAPIntValue() == 1) {
7293    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7294      Op.getOperand(0).hasOneUse();
7295  }
7296  return false;
7297}
7298
7299SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7300  bool addTest = true;
7301  SDValue Chain = Op.getOperand(0);
7302  SDValue Cond  = Op.getOperand(1);
7303  SDValue Dest  = Op.getOperand(2);
7304  DebugLoc dl = Op.getDebugLoc();
7305  SDValue CC;
7306
7307  if (Cond.getOpcode() == ISD::SETCC) {
7308    SDValue NewCond = LowerSETCC(Cond, DAG);
7309    if (NewCond.getNode())
7310      Cond = NewCond;
7311  }
7312#if 0
7313  // FIXME: LowerXALUO doesn't handle these!!
7314  else if (Cond.getOpcode() == X86ISD::ADD  ||
7315           Cond.getOpcode() == X86ISD::SUB  ||
7316           Cond.getOpcode() == X86ISD::SMUL ||
7317           Cond.getOpcode() == X86ISD::UMUL)
7318    Cond = LowerXALUO(Cond, DAG);
7319#endif
7320
7321  // Look pass (and (setcc_carry (cmp ...)), 1).
7322  if (Cond.getOpcode() == ISD::AND &&
7323      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7324    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7325    if (C && C->getAPIntValue() == 1)
7326      Cond = Cond.getOperand(0);
7327  }
7328
7329  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7330  // setting operand in place of the X86ISD::SETCC.
7331  if (Cond.getOpcode() == X86ISD::SETCC ||
7332      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7333    CC = Cond.getOperand(0);
7334
7335    SDValue Cmp = Cond.getOperand(1);
7336    unsigned Opc = Cmp.getOpcode();
7337    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7338    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7339      Cond = Cmp;
7340      addTest = false;
7341    } else {
7342      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7343      default: break;
7344      case X86::COND_O:
7345      case X86::COND_B:
7346        // These can only come from an arithmetic instruction with overflow,
7347        // e.g. SADDO, UADDO.
7348        Cond = Cond.getNode()->getOperand(1);
7349        addTest = false;
7350        break;
7351      }
7352    }
7353  } else {
7354    unsigned CondOpc;
7355    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7356      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7357      if (CondOpc == ISD::OR) {
7358        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7359        // two branches instead of an explicit OR instruction with a
7360        // separate test.
7361        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7362            isX86LogicalCmp(Cmp)) {
7363          CC = Cond.getOperand(0).getOperand(0);
7364          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7365                              Chain, Dest, CC, Cmp);
7366          CC = Cond.getOperand(1).getOperand(0);
7367          Cond = Cmp;
7368          addTest = false;
7369        }
7370      } else { // ISD::AND
7371        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7372        // two branches instead of an explicit AND instruction with a
7373        // separate test. However, we only do this if this block doesn't
7374        // have a fall-through edge, because this requires an explicit
7375        // jmp when the condition is false.
7376        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7377            isX86LogicalCmp(Cmp) &&
7378            Op.getNode()->hasOneUse()) {
7379          X86::CondCode CCode =
7380            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7381          CCode = X86::GetOppositeBranchCondition(CCode);
7382          CC = DAG.getConstant(CCode, MVT::i8);
7383          SDNode *User = *Op.getNode()->use_begin();
7384          // Look for an unconditional branch following this conditional branch.
7385          // We need this because we need to reverse the successors in order
7386          // to implement FCMP_OEQ.
7387          if (User->getOpcode() == ISD::BR) {
7388            SDValue FalseBB = User->getOperand(1);
7389            SDNode *NewBR =
7390              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7391            assert(NewBR == User);
7392            (void)NewBR;
7393            Dest = FalseBB;
7394
7395            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7396                                Chain, Dest, CC, Cmp);
7397            X86::CondCode CCode =
7398              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7399            CCode = X86::GetOppositeBranchCondition(CCode);
7400            CC = DAG.getConstant(CCode, MVT::i8);
7401            Cond = Cmp;
7402            addTest = false;
7403          }
7404        }
7405      }
7406    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7407      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7408      // It should be transformed during dag combiner except when the condition
7409      // is set by a arithmetics with overflow node.
7410      X86::CondCode CCode =
7411        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7412      CCode = X86::GetOppositeBranchCondition(CCode);
7413      CC = DAG.getConstant(CCode, MVT::i8);
7414      Cond = Cond.getOperand(0).getOperand(1);
7415      addTest = false;
7416    }
7417  }
7418
7419  if (addTest) {
7420    // Look pass the truncate.
7421    if (Cond.getOpcode() == ISD::TRUNCATE)
7422      Cond = Cond.getOperand(0);
7423
7424    // We know the result of AND is compared against zero. Try to match
7425    // it to BT.
7426    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7427      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7428      if (NewSetCC.getNode()) {
7429        CC = NewSetCC.getOperand(0);
7430        Cond = NewSetCC.getOperand(1);
7431        addTest = false;
7432      }
7433    }
7434  }
7435
7436  if (addTest) {
7437    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7438    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7439  }
7440  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7441                     Chain, Dest, CC, Cond);
7442}
7443
7444
7445// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7446// Calls to _alloca is needed to probe the stack when allocating more than 4k
7447// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7448// that the guard pages used by the OS virtual memory manager are allocated in
7449// correct sequence.
7450SDValue
7451X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7452                                           SelectionDAG &DAG) const {
7453  assert(Subtarget->isTargetCygMing() &&
7454         "This should be used only on Cygwin/Mingw targets");
7455  DebugLoc dl = Op.getDebugLoc();
7456
7457  // Get the inputs.
7458  SDValue Chain = Op.getOperand(0);
7459  SDValue Size  = Op.getOperand(1);
7460  // FIXME: Ensure alignment here
7461
7462  SDValue Flag;
7463
7464  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7465
7466  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7467  Flag = Chain.getValue(1);
7468
7469  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7470
7471  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
7472  Flag = Chain.getValue(1);
7473
7474  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7475
7476  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7477  return DAG.getMergeValues(Ops1, 2, dl);
7478}
7479
7480SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7481  MachineFunction &MF = DAG.getMachineFunction();
7482  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7483
7484  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7485  DebugLoc DL = Op.getDebugLoc();
7486
7487  if (!Subtarget->is64Bit()) {
7488    // vastart just stores the address of the VarArgsFrameIndex slot into the
7489    // memory location argument.
7490    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7491                                   getPointerTy());
7492    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7493                        MachinePointerInfo(SV), false, false, 0);
7494  }
7495
7496  // __va_list_tag:
7497  //   gp_offset         (0 - 6 * 8)
7498  //   fp_offset         (48 - 48 + 8 * 16)
7499  //   overflow_arg_area (point to parameters coming in memory).
7500  //   reg_save_area
7501  SmallVector<SDValue, 8> MemOps;
7502  SDValue FIN = Op.getOperand(1);
7503  // Store gp_offset
7504  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7505                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7506                                               MVT::i32),
7507                               FIN, MachinePointerInfo(SV), false, false, 0);
7508  MemOps.push_back(Store);
7509
7510  // Store fp_offset
7511  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7512                    FIN, DAG.getIntPtrConstant(4));
7513  Store = DAG.getStore(Op.getOperand(0), DL,
7514                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7515                                       MVT::i32),
7516                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7517  MemOps.push_back(Store);
7518
7519  // Store ptr to overflow_arg_area
7520  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7521                    FIN, DAG.getIntPtrConstant(4));
7522  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7523                                    getPointerTy());
7524  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7525                       MachinePointerInfo(SV, 8),
7526                       false, false, 0);
7527  MemOps.push_back(Store);
7528
7529  // Store ptr to reg_save_area.
7530  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7531                    FIN, DAG.getIntPtrConstant(8));
7532  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7533                                    getPointerTy());
7534  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7535                       MachinePointerInfo(SV, 16), false, false, 0);
7536  MemOps.push_back(Store);
7537  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7538                     &MemOps[0], MemOps.size());
7539}
7540
7541SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7542  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7543  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
7544
7545  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
7546  return SDValue();
7547}
7548
7549SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7550  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7551  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7552  SDValue Chain = Op.getOperand(0);
7553  SDValue DstPtr = Op.getOperand(1);
7554  SDValue SrcPtr = Op.getOperand(2);
7555  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7556  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7557  DebugLoc DL = Op.getDebugLoc();
7558
7559  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7560                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7561                       false,
7562                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7563}
7564
7565SDValue
7566X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7567  DebugLoc dl = Op.getDebugLoc();
7568  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7569  switch (IntNo) {
7570  default: return SDValue();    // Don't custom lower most intrinsics.
7571  // Comparison intrinsics.
7572  case Intrinsic::x86_sse_comieq_ss:
7573  case Intrinsic::x86_sse_comilt_ss:
7574  case Intrinsic::x86_sse_comile_ss:
7575  case Intrinsic::x86_sse_comigt_ss:
7576  case Intrinsic::x86_sse_comige_ss:
7577  case Intrinsic::x86_sse_comineq_ss:
7578  case Intrinsic::x86_sse_ucomieq_ss:
7579  case Intrinsic::x86_sse_ucomilt_ss:
7580  case Intrinsic::x86_sse_ucomile_ss:
7581  case Intrinsic::x86_sse_ucomigt_ss:
7582  case Intrinsic::x86_sse_ucomige_ss:
7583  case Intrinsic::x86_sse_ucomineq_ss:
7584  case Intrinsic::x86_sse2_comieq_sd:
7585  case Intrinsic::x86_sse2_comilt_sd:
7586  case Intrinsic::x86_sse2_comile_sd:
7587  case Intrinsic::x86_sse2_comigt_sd:
7588  case Intrinsic::x86_sse2_comige_sd:
7589  case Intrinsic::x86_sse2_comineq_sd:
7590  case Intrinsic::x86_sse2_ucomieq_sd:
7591  case Intrinsic::x86_sse2_ucomilt_sd:
7592  case Intrinsic::x86_sse2_ucomile_sd:
7593  case Intrinsic::x86_sse2_ucomigt_sd:
7594  case Intrinsic::x86_sse2_ucomige_sd:
7595  case Intrinsic::x86_sse2_ucomineq_sd: {
7596    unsigned Opc = 0;
7597    ISD::CondCode CC = ISD::SETCC_INVALID;
7598    switch (IntNo) {
7599    default: break;
7600    case Intrinsic::x86_sse_comieq_ss:
7601    case Intrinsic::x86_sse2_comieq_sd:
7602      Opc = X86ISD::COMI;
7603      CC = ISD::SETEQ;
7604      break;
7605    case Intrinsic::x86_sse_comilt_ss:
7606    case Intrinsic::x86_sse2_comilt_sd:
7607      Opc = X86ISD::COMI;
7608      CC = ISD::SETLT;
7609      break;
7610    case Intrinsic::x86_sse_comile_ss:
7611    case Intrinsic::x86_sse2_comile_sd:
7612      Opc = X86ISD::COMI;
7613      CC = ISD::SETLE;
7614      break;
7615    case Intrinsic::x86_sse_comigt_ss:
7616    case Intrinsic::x86_sse2_comigt_sd:
7617      Opc = X86ISD::COMI;
7618      CC = ISD::SETGT;
7619      break;
7620    case Intrinsic::x86_sse_comige_ss:
7621    case Intrinsic::x86_sse2_comige_sd:
7622      Opc = X86ISD::COMI;
7623      CC = ISD::SETGE;
7624      break;
7625    case Intrinsic::x86_sse_comineq_ss:
7626    case Intrinsic::x86_sse2_comineq_sd:
7627      Opc = X86ISD::COMI;
7628      CC = ISD::SETNE;
7629      break;
7630    case Intrinsic::x86_sse_ucomieq_ss:
7631    case Intrinsic::x86_sse2_ucomieq_sd:
7632      Opc = X86ISD::UCOMI;
7633      CC = ISD::SETEQ;
7634      break;
7635    case Intrinsic::x86_sse_ucomilt_ss:
7636    case Intrinsic::x86_sse2_ucomilt_sd:
7637      Opc = X86ISD::UCOMI;
7638      CC = ISD::SETLT;
7639      break;
7640    case Intrinsic::x86_sse_ucomile_ss:
7641    case Intrinsic::x86_sse2_ucomile_sd:
7642      Opc = X86ISD::UCOMI;
7643      CC = ISD::SETLE;
7644      break;
7645    case Intrinsic::x86_sse_ucomigt_ss:
7646    case Intrinsic::x86_sse2_ucomigt_sd:
7647      Opc = X86ISD::UCOMI;
7648      CC = ISD::SETGT;
7649      break;
7650    case Intrinsic::x86_sse_ucomige_ss:
7651    case Intrinsic::x86_sse2_ucomige_sd:
7652      Opc = X86ISD::UCOMI;
7653      CC = ISD::SETGE;
7654      break;
7655    case Intrinsic::x86_sse_ucomineq_ss:
7656    case Intrinsic::x86_sse2_ucomineq_sd:
7657      Opc = X86ISD::UCOMI;
7658      CC = ISD::SETNE;
7659      break;
7660    }
7661
7662    SDValue LHS = Op.getOperand(1);
7663    SDValue RHS = Op.getOperand(2);
7664    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7665    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7666    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7667    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7668                                DAG.getConstant(X86CC, MVT::i8), Cond);
7669    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7670  }
7671  // ptest and testp intrinsics. The intrinsic these come from are designed to
7672  // return an integer value, not just an instruction so lower it to the ptest
7673  // or testp pattern and a setcc for the result.
7674  case Intrinsic::x86_sse41_ptestz:
7675  case Intrinsic::x86_sse41_ptestc:
7676  case Intrinsic::x86_sse41_ptestnzc:
7677  case Intrinsic::x86_avx_ptestz_256:
7678  case Intrinsic::x86_avx_ptestc_256:
7679  case Intrinsic::x86_avx_ptestnzc_256:
7680  case Intrinsic::x86_avx_vtestz_ps:
7681  case Intrinsic::x86_avx_vtestc_ps:
7682  case Intrinsic::x86_avx_vtestnzc_ps:
7683  case Intrinsic::x86_avx_vtestz_pd:
7684  case Intrinsic::x86_avx_vtestc_pd:
7685  case Intrinsic::x86_avx_vtestnzc_pd:
7686  case Intrinsic::x86_avx_vtestz_ps_256:
7687  case Intrinsic::x86_avx_vtestc_ps_256:
7688  case Intrinsic::x86_avx_vtestnzc_ps_256:
7689  case Intrinsic::x86_avx_vtestz_pd_256:
7690  case Intrinsic::x86_avx_vtestc_pd_256:
7691  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7692    bool IsTestPacked = false;
7693    unsigned X86CC = 0;
7694    switch (IntNo) {
7695    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7696    case Intrinsic::x86_avx_vtestz_ps:
7697    case Intrinsic::x86_avx_vtestz_pd:
7698    case Intrinsic::x86_avx_vtestz_ps_256:
7699    case Intrinsic::x86_avx_vtestz_pd_256:
7700      IsTestPacked = true; // Fallthrough
7701    case Intrinsic::x86_sse41_ptestz:
7702    case Intrinsic::x86_avx_ptestz_256:
7703      // ZF = 1
7704      X86CC = X86::COND_E;
7705      break;
7706    case Intrinsic::x86_avx_vtestc_ps:
7707    case Intrinsic::x86_avx_vtestc_pd:
7708    case Intrinsic::x86_avx_vtestc_ps_256:
7709    case Intrinsic::x86_avx_vtestc_pd_256:
7710      IsTestPacked = true; // Fallthrough
7711    case Intrinsic::x86_sse41_ptestc:
7712    case Intrinsic::x86_avx_ptestc_256:
7713      // CF = 1
7714      X86CC = X86::COND_B;
7715      break;
7716    case Intrinsic::x86_avx_vtestnzc_ps:
7717    case Intrinsic::x86_avx_vtestnzc_pd:
7718    case Intrinsic::x86_avx_vtestnzc_ps_256:
7719    case Intrinsic::x86_avx_vtestnzc_pd_256:
7720      IsTestPacked = true; // Fallthrough
7721    case Intrinsic::x86_sse41_ptestnzc:
7722    case Intrinsic::x86_avx_ptestnzc_256:
7723      // ZF and CF = 0
7724      X86CC = X86::COND_A;
7725      break;
7726    }
7727
7728    SDValue LHS = Op.getOperand(1);
7729    SDValue RHS = Op.getOperand(2);
7730    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7731    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7732    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7733    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7734    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7735  }
7736
7737  // Fix vector shift instructions where the last operand is a non-immediate
7738  // i32 value.
7739  case Intrinsic::x86_sse2_pslli_w:
7740  case Intrinsic::x86_sse2_pslli_d:
7741  case Intrinsic::x86_sse2_pslli_q:
7742  case Intrinsic::x86_sse2_psrli_w:
7743  case Intrinsic::x86_sse2_psrli_d:
7744  case Intrinsic::x86_sse2_psrli_q:
7745  case Intrinsic::x86_sse2_psrai_w:
7746  case Intrinsic::x86_sse2_psrai_d:
7747  case Intrinsic::x86_mmx_pslli_w:
7748  case Intrinsic::x86_mmx_pslli_d:
7749  case Intrinsic::x86_mmx_pslli_q:
7750  case Intrinsic::x86_mmx_psrli_w:
7751  case Intrinsic::x86_mmx_psrli_d:
7752  case Intrinsic::x86_mmx_psrli_q:
7753  case Intrinsic::x86_mmx_psrai_w:
7754  case Intrinsic::x86_mmx_psrai_d: {
7755    SDValue ShAmt = Op.getOperand(2);
7756    if (isa<ConstantSDNode>(ShAmt))
7757      return SDValue();
7758
7759    unsigned NewIntNo = 0;
7760    EVT ShAmtVT = MVT::v4i32;
7761    switch (IntNo) {
7762    case Intrinsic::x86_sse2_pslli_w:
7763      NewIntNo = Intrinsic::x86_sse2_psll_w;
7764      break;
7765    case Intrinsic::x86_sse2_pslli_d:
7766      NewIntNo = Intrinsic::x86_sse2_psll_d;
7767      break;
7768    case Intrinsic::x86_sse2_pslli_q:
7769      NewIntNo = Intrinsic::x86_sse2_psll_q;
7770      break;
7771    case Intrinsic::x86_sse2_psrli_w:
7772      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7773      break;
7774    case Intrinsic::x86_sse2_psrli_d:
7775      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7776      break;
7777    case Intrinsic::x86_sse2_psrli_q:
7778      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7779      break;
7780    case Intrinsic::x86_sse2_psrai_w:
7781      NewIntNo = Intrinsic::x86_sse2_psra_w;
7782      break;
7783    case Intrinsic::x86_sse2_psrai_d:
7784      NewIntNo = Intrinsic::x86_sse2_psra_d;
7785      break;
7786    default: {
7787      ShAmtVT = MVT::v2i32;
7788      switch (IntNo) {
7789      case Intrinsic::x86_mmx_pslli_w:
7790        NewIntNo = Intrinsic::x86_mmx_psll_w;
7791        break;
7792      case Intrinsic::x86_mmx_pslli_d:
7793        NewIntNo = Intrinsic::x86_mmx_psll_d;
7794        break;
7795      case Intrinsic::x86_mmx_pslli_q:
7796        NewIntNo = Intrinsic::x86_mmx_psll_q;
7797        break;
7798      case Intrinsic::x86_mmx_psrli_w:
7799        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7800        break;
7801      case Intrinsic::x86_mmx_psrli_d:
7802        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7803        break;
7804      case Intrinsic::x86_mmx_psrli_q:
7805        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7806        break;
7807      case Intrinsic::x86_mmx_psrai_w:
7808        NewIntNo = Intrinsic::x86_mmx_psra_w;
7809        break;
7810      case Intrinsic::x86_mmx_psrai_d:
7811        NewIntNo = Intrinsic::x86_mmx_psra_d;
7812        break;
7813      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7814      }
7815      break;
7816    }
7817    }
7818
7819    // The vector shift intrinsics with scalars uses 32b shift amounts but
7820    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7821    // to be zero.
7822    SDValue ShOps[4];
7823    ShOps[0] = ShAmt;
7824    ShOps[1] = DAG.getConstant(0, MVT::i32);
7825    if (ShAmtVT == MVT::v4i32) {
7826      ShOps[2] = DAG.getUNDEF(MVT::i32);
7827      ShOps[3] = DAG.getUNDEF(MVT::i32);
7828      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7829    } else {
7830      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7831// FIXME this must be lowered to get rid of the invalid type.
7832    }
7833
7834    EVT VT = Op.getValueType();
7835    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7836    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7837                       DAG.getConstant(NewIntNo, MVT::i32),
7838                       Op.getOperand(1), ShAmt);
7839  }
7840  }
7841}
7842
7843SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7844                                           SelectionDAG &DAG) const {
7845  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7846  MFI->setReturnAddressIsTaken(true);
7847
7848  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7849  DebugLoc dl = Op.getDebugLoc();
7850
7851  if (Depth > 0) {
7852    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7853    SDValue Offset =
7854      DAG.getConstant(TD->getPointerSize(),
7855                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7856    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7857                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7858                                   FrameAddr, Offset),
7859                       MachinePointerInfo(), false, false, 0);
7860  }
7861
7862  // Just load the return address.
7863  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7864  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7865                     RetAddrFI, MachinePointerInfo(), false, false, 0);
7866}
7867
7868SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7869  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7870  MFI->setFrameAddressIsTaken(true);
7871
7872  EVT VT = Op.getValueType();
7873  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7874  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7875  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7876  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7877  while (Depth--)
7878    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
7879                            MachinePointerInfo(),
7880                            false, false, 0);
7881  return FrameAddr;
7882}
7883
7884SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7885                                                     SelectionDAG &DAG) const {
7886  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7887}
7888
7889SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7890  MachineFunction &MF = DAG.getMachineFunction();
7891  SDValue Chain     = Op.getOperand(0);
7892  SDValue Offset    = Op.getOperand(1);
7893  SDValue Handler   = Op.getOperand(2);
7894  DebugLoc dl       = Op.getDebugLoc();
7895
7896  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7897                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7898                                     getPointerTy());
7899  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7900
7901  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7902                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7903  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7904  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
7905                       false, false, 0);
7906  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7907  MF.getRegInfo().addLiveOut(StoreAddrReg);
7908
7909  return DAG.getNode(X86ISD::EH_RETURN, dl,
7910                     MVT::Other,
7911                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7912}
7913
7914SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7915                                             SelectionDAG &DAG) const {
7916  SDValue Root = Op.getOperand(0);
7917  SDValue Trmp = Op.getOperand(1); // trampoline
7918  SDValue FPtr = Op.getOperand(2); // nested function
7919  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7920  DebugLoc dl  = Op.getDebugLoc();
7921
7922  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7923
7924  if (Subtarget->is64Bit()) {
7925    SDValue OutChains[6];
7926
7927    // Large code-model.
7928    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7929    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7930
7931    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7932    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7933
7934    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7935
7936    // Load the pointer to the nested function into R11.
7937    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7938    SDValue Addr = Trmp;
7939    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7940                                Addr, MachinePointerInfo(TrmpAddr),
7941                                false, false, 0);
7942
7943    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7944                       DAG.getConstant(2, MVT::i64));
7945    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
7946                                MachinePointerInfo(TrmpAddr, 2),
7947                                false, false, 2);
7948
7949    // Load the 'nest' parameter value into R10.
7950    // R10 is specified in X86CallingConv.td
7951    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7952    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7953                       DAG.getConstant(10, MVT::i64));
7954    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7955                                Addr, MachinePointerInfo(TrmpAddr, 10),
7956                                false, false, 0);
7957
7958    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7959                       DAG.getConstant(12, MVT::i64));
7960    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
7961                                MachinePointerInfo(TrmpAddr, 12),
7962                                false, false, 2);
7963
7964    // Jump to the nested function.
7965    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7966    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7967                       DAG.getConstant(20, MVT::i64));
7968    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7969                                Addr, MachinePointerInfo(TrmpAddr, 20),
7970                                false, false, 0);
7971
7972    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7973    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7974                       DAG.getConstant(22, MVT::i64));
7975    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7976                                MachinePointerInfo(TrmpAddr, 22),
7977                                false, false, 0);
7978
7979    SDValue Ops[] =
7980      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7981    return DAG.getMergeValues(Ops, 2, dl);
7982  } else {
7983    const Function *Func =
7984      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7985    CallingConv::ID CC = Func->getCallingConv();
7986    unsigned NestReg;
7987
7988    switch (CC) {
7989    default:
7990      llvm_unreachable("Unsupported calling convention");
7991    case CallingConv::C:
7992    case CallingConv::X86_StdCall: {
7993      // Pass 'nest' parameter in ECX.
7994      // Must be kept in sync with X86CallingConv.td
7995      NestReg = X86::ECX;
7996
7997      // Check that ECX wasn't needed by an 'inreg' parameter.
7998      const FunctionType *FTy = Func->getFunctionType();
7999      const AttrListPtr &Attrs = Func->getAttributes();
8000
8001      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8002        unsigned InRegCount = 0;
8003        unsigned Idx = 1;
8004
8005        for (FunctionType::param_iterator I = FTy->param_begin(),
8006             E = FTy->param_end(); I != E; ++I, ++Idx)
8007          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8008            // FIXME: should only count parameters that are lowered to integers.
8009            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8010
8011        if (InRegCount > 2) {
8012          report_fatal_error("Nest register in use - reduce number of inreg"
8013                             " parameters!");
8014        }
8015      }
8016      break;
8017    }
8018    case CallingConv::X86_FastCall:
8019    case CallingConv::X86_ThisCall:
8020    case CallingConv::Fast:
8021      // Pass 'nest' parameter in EAX.
8022      // Must be kept in sync with X86CallingConv.td
8023      NestReg = X86::EAX;
8024      break;
8025    }
8026
8027    SDValue OutChains[4];
8028    SDValue Addr, Disp;
8029
8030    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8031                       DAG.getConstant(10, MVT::i32));
8032    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8033
8034    // This is storing the opcode for MOV32ri.
8035    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8036    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8037    OutChains[0] = DAG.getStore(Root, dl,
8038                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8039                                Trmp, MachinePointerInfo(TrmpAddr),
8040                                false, false, 0);
8041
8042    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8043                       DAG.getConstant(1, MVT::i32));
8044    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8045                                MachinePointerInfo(TrmpAddr, 1),
8046                                false, false, 1);
8047
8048    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8049    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8050                       DAG.getConstant(5, MVT::i32));
8051    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8052                                MachinePointerInfo(TrmpAddr, 5),
8053                                false, false, 1);
8054
8055    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8056                       DAG.getConstant(6, MVT::i32));
8057    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8058                                MachinePointerInfo(TrmpAddr, 6),
8059                                false, false, 1);
8060
8061    SDValue Ops[] =
8062      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8063    return DAG.getMergeValues(Ops, 2, dl);
8064  }
8065}
8066
8067SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8068                                            SelectionDAG &DAG) const {
8069  /*
8070   The rounding mode is in bits 11:10 of FPSR, and has the following
8071   settings:
8072     00 Round to nearest
8073     01 Round to -inf
8074     10 Round to +inf
8075     11 Round to 0
8076
8077  FLT_ROUNDS, on the other hand, expects the following:
8078    -1 Undefined
8079     0 Round to 0
8080     1 Round to nearest
8081     2 Round to +inf
8082     3 Round to -inf
8083
8084  To perform the conversion, we do:
8085    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8086  */
8087
8088  MachineFunction &MF = DAG.getMachineFunction();
8089  const TargetMachine &TM = MF.getTarget();
8090  const TargetFrameInfo &TFI = *TM.getFrameInfo();
8091  unsigned StackAlignment = TFI.getStackAlignment();
8092  EVT VT = Op.getValueType();
8093  DebugLoc DL = Op.getDebugLoc();
8094
8095  // Save FP Control Word to stack slot
8096  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8097  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8098
8099
8100  MachineMemOperand *MMO =
8101   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8102                           MachineMemOperand::MOStore, 2, 2);
8103
8104  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8105  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8106                                          DAG.getVTList(MVT::Other),
8107                                          Ops, 2, MVT::i16, MMO);
8108
8109  // Load FP Control Word from stack slot
8110  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8111                            MachinePointerInfo(), false, false, 0);
8112
8113  // Transform as necessary
8114  SDValue CWD1 =
8115    DAG.getNode(ISD::SRL, DL, MVT::i16,
8116                DAG.getNode(ISD::AND, DL, MVT::i16,
8117                            CWD, DAG.getConstant(0x800, MVT::i16)),
8118                DAG.getConstant(11, MVT::i8));
8119  SDValue CWD2 =
8120    DAG.getNode(ISD::SRL, DL, MVT::i16,
8121                DAG.getNode(ISD::AND, DL, MVT::i16,
8122                            CWD, DAG.getConstant(0x400, MVT::i16)),
8123                DAG.getConstant(9, MVT::i8));
8124
8125  SDValue RetVal =
8126    DAG.getNode(ISD::AND, DL, MVT::i16,
8127                DAG.getNode(ISD::ADD, DL, MVT::i16,
8128                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8129                            DAG.getConstant(1, MVT::i16)),
8130                DAG.getConstant(3, MVT::i16));
8131
8132
8133  return DAG.getNode((VT.getSizeInBits() < 16 ?
8134                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8135}
8136
8137SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8138  EVT VT = Op.getValueType();
8139  EVT OpVT = VT;
8140  unsigned NumBits = VT.getSizeInBits();
8141  DebugLoc dl = Op.getDebugLoc();
8142
8143  Op = Op.getOperand(0);
8144  if (VT == MVT::i8) {
8145    // Zero extend to i32 since there is not an i8 bsr.
8146    OpVT = MVT::i32;
8147    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8148  }
8149
8150  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8151  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8152  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8153
8154  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8155  SDValue Ops[] = {
8156    Op,
8157    DAG.getConstant(NumBits+NumBits-1, OpVT),
8158    DAG.getConstant(X86::COND_E, MVT::i8),
8159    Op.getValue(1)
8160  };
8161  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8162
8163  // Finally xor with NumBits-1.
8164  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8165
8166  if (VT == MVT::i8)
8167    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8168  return Op;
8169}
8170
8171SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8172  EVT VT = Op.getValueType();
8173  EVT OpVT = VT;
8174  unsigned NumBits = VT.getSizeInBits();
8175  DebugLoc dl = Op.getDebugLoc();
8176
8177  Op = Op.getOperand(0);
8178  if (VT == MVT::i8) {
8179    OpVT = MVT::i32;
8180    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8181  }
8182
8183  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8184  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8185  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8186
8187  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8188  SDValue Ops[] = {
8189    Op,
8190    DAG.getConstant(NumBits, OpVT),
8191    DAG.getConstant(X86::COND_E, MVT::i8),
8192    Op.getValue(1)
8193  };
8194  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8195
8196  if (VT == MVT::i8)
8197    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8198  return Op;
8199}
8200
8201SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8202  EVT VT = Op.getValueType();
8203  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8204  DebugLoc dl = Op.getDebugLoc();
8205
8206  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8207  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8208  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8209  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8210  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8211  //
8212  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8213  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8214  //  return AloBlo + AloBhi + AhiBlo;
8215
8216  SDValue A = Op.getOperand(0);
8217  SDValue B = Op.getOperand(1);
8218
8219  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8220                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8221                       A, DAG.getConstant(32, MVT::i32));
8222  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8223                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8224                       B, DAG.getConstant(32, MVT::i32));
8225  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8226                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8227                       A, B);
8228  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8229                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8230                       A, Bhi);
8231  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8232                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8233                       Ahi, B);
8234  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8235                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8236                       AloBhi, DAG.getConstant(32, MVT::i32));
8237  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8238                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8239                       AhiBlo, DAG.getConstant(32, MVT::i32));
8240  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8241  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8242  return Res;
8243}
8244
8245SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8246  EVT VT = Op.getValueType();
8247  DebugLoc dl = Op.getDebugLoc();
8248  SDValue R = Op.getOperand(0);
8249
8250  LLVMContext *Context = DAG.getContext();
8251
8252  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8253
8254  if (VT == MVT::v4i32) {
8255    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8256                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8257                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8258
8259    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8260
8261    std::vector<Constant*> CV(4, CI);
8262    Constant *C = ConstantVector::get(CV);
8263    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8264    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8265                                 MachinePointerInfo::getConstantPool(),
8266                                 false, false, 16);
8267
8268    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8269    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
8270    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8271    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8272  }
8273  if (VT == MVT::v16i8) {
8274    // a = a << 5;
8275    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8276                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8277                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8278
8279    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8280    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8281
8282    std::vector<Constant*> CVM1(16, CM1);
8283    std::vector<Constant*> CVM2(16, CM2);
8284    Constant *C = ConstantVector::get(CVM1);
8285    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8286    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8287                            MachinePointerInfo::getConstantPool(),
8288                            false, false, 16);
8289
8290    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8291    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8292    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8293                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8294                    DAG.getConstant(4, MVT::i32));
8295    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8296                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8297                    R, M, Op);
8298    // a += a
8299    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8300
8301    C = ConstantVector::get(CVM2);
8302    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8303    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8304                    MachinePointerInfo::getConstantPool(),
8305                    false, false, 16);
8306
8307    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8308    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8309    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8310                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8311                    DAG.getConstant(2, MVT::i32));
8312    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8313                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8314                    R, M, Op);
8315    // a += a
8316    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8317
8318    // return pblendv(r, r+r, a);
8319    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8320                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8321                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8322    return R;
8323  }
8324  return SDValue();
8325}
8326
8327SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8328  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8329  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8330  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8331  // has only one use.
8332  SDNode *N = Op.getNode();
8333  SDValue LHS = N->getOperand(0);
8334  SDValue RHS = N->getOperand(1);
8335  unsigned BaseOp = 0;
8336  unsigned Cond = 0;
8337  DebugLoc dl = Op.getDebugLoc();
8338
8339  switch (Op.getOpcode()) {
8340  default: llvm_unreachable("Unknown ovf instruction!");
8341  case ISD::SADDO:
8342    // A subtract of one will be selected as a INC. Note that INC doesn't
8343    // set CF, so we can't do this for UADDO.
8344    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8345      if (C->getAPIntValue() == 1) {
8346        BaseOp = X86ISD::INC;
8347        Cond = X86::COND_O;
8348        break;
8349      }
8350    BaseOp = X86ISD::ADD;
8351    Cond = X86::COND_O;
8352    break;
8353  case ISD::UADDO:
8354    BaseOp = X86ISD::ADD;
8355    Cond = X86::COND_B;
8356    break;
8357  case ISD::SSUBO:
8358    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8359    // set CF, so we can't do this for USUBO.
8360    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8361      if (C->getAPIntValue() == 1) {
8362        BaseOp = X86ISD::DEC;
8363        Cond = X86::COND_O;
8364        break;
8365      }
8366    BaseOp = X86ISD::SUB;
8367    Cond = X86::COND_O;
8368    break;
8369  case ISD::USUBO:
8370    BaseOp = X86ISD::SUB;
8371    Cond = X86::COND_B;
8372    break;
8373  case ISD::SMULO:
8374    BaseOp = X86ISD::SMUL;
8375    Cond = X86::COND_O;
8376    break;
8377  case ISD::UMULO:
8378    BaseOp = X86ISD::UMUL;
8379    Cond = X86::COND_B;
8380    break;
8381  }
8382
8383  // Also sets EFLAGS.
8384  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8385  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8386
8387  SDValue SetCC =
8388    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8389                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8390
8391  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8392  return Sum;
8393}
8394
8395SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8396  DebugLoc dl = Op.getDebugLoc();
8397
8398  if (!Subtarget->hasSSE2()) {
8399    SDValue Chain = Op.getOperand(0);
8400    SDValue Zero = DAG.getConstant(0,
8401                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8402    SDValue Ops[] = {
8403      DAG.getRegister(X86::ESP, MVT::i32), // Base
8404      DAG.getTargetConstant(1, MVT::i8),   // Scale
8405      DAG.getRegister(0, MVT::i32),        // Index
8406      DAG.getTargetConstant(0, MVT::i32),  // Disp
8407      DAG.getRegister(0, MVT::i32),        // Segment.
8408      Zero,
8409      Chain
8410    };
8411    SDNode *Res =
8412      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8413                          array_lengthof(Ops));
8414    return SDValue(Res, 0);
8415  }
8416
8417  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8418  if (!isDev)
8419    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8420
8421  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8422  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8423  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8424  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8425
8426  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8427  if (!Op1 && !Op2 && !Op3 && Op4)
8428    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8429
8430  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8431  if (Op1 && !Op2 && !Op3 && !Op4)
8432    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8433
8434  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8435  //           (MFENCE)>;
8436  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8437}
8438
8439SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8440  EVT T = Op.getValueType();
8441  DebugLoc DL = Op.getDebugLoc();
8442  unsigned Reg = 0;
8443  unsigned size = 0;
8444  switch(T.getSimpleVT().SimpleTy) {
8445  default:
8446    assert(false && "Invalid value type!");
8447  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8448  case MVT::i16: Reg = X86::AX;  size = 2; break;
8449  case MVT::i32: Reg = X86::EAX; size = 4; break;
8450  case MVT::i64:
8451    assert(Subtarget->is64Bit() && "Node not type legal!");
8452    Reg = X86::RAX; size = 8;
8453    break;
8454  }
8455  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8456                                    Op.getOperand(2), SDValue());
8457  SDValue Ops[] = { cpIn.getValue(0),
8458                    Op.getOperand(1),
8459                    Op.getOperand(3),
8460                    DAG.getTargetConstant(size, MVT::i8),
8461                    cpIn.getValue(1) };
8462  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8463  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8464  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8465                                           Ops, 5, T, MMO);
8466  SDValue cpOut =
8467    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8468  return cpOut;
8469}
8470
8471SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8472                                                 SelectionDAG &DAG) const {
8473  assert(Subtarget->is64Bit() && "Result not type legalized?");
8474  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8475  SDValue TheChain = Op.getOperand(0);
8476  DebugLoc dl = Op.getDebugLoc();
8477  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8478  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8479  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8480                                   rax.getValue(2));
8481  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8482                            DAG.getConstant(32, MVT::i8));
8483  SDValue Ops[] = {
8484    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8485    rdx.getValue(1)
8486  };
8487  return DAG.getMergeValues(Ops, 2, dl);
8488}
8489
8490SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8491                                            SelectionDAG &DAG) const {
8492  EVT SrcVT = Op.getOperand(0).getValueType();
8493  EVT DstVT = Op.getValueType();
8494  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8495          Subtarget->hasMMX() && !DisableMMX) &&
8496         "Unexpected custom BIT_CONVERT");
8497  assert((DstVT == MVT::i64 ||
8498          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8499         "Unexpected custom BIT_CONVERT");
8500  // i64 <=> MMX conversions are Legal.
8501  if (SrcVT==MVT::i64 && DstVT.isVector())
8502    return Op;
8503  if (DstVT==MVT::i64 && SrcVT.isVector())
8504    return Op;
8505  // MMX <=> MMX conversions are Legal.
8506  if (SrcVT.isVector() && DstVT.isVector())
8507    return Op;
8508  // All other conversions need to be expanded.
8509  return SDValue();
8510}
8511SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8512  SDNode *Node = Op.getNode();
8513  DebugLoc dl = Node->getDebugLoc();
8514  EVT T = Node->getValueType(0);
8515  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8516                              DAG.getConstant(0, T), Node->getOperand(2));
8517  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8518                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8519                       Node->getOperand(0),
8520                       Node->getOperand(1), negOp,
8521                       cast<AtomicSDNode>(Node)->getSrcValue(),
8522                       cast<AtomicSDNode>(Node)->getAlignment());
8523}
8524
8525/// LowerOperation - Provide custom lowering hooks for some operations.
8526///
8527SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8528  switch (Op.getOpcode()) {
8529  default: llvm_unreachable("Should not custom lower this!");
8530  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8531  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8532  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8533  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8534  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8535  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8536  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8537  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8538  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8539  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8540  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8541  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8542  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8543  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8544  case ISD::SHL_PARTS:
8545  case ISD::SRA_PARTS:
8546  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8547  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8548  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8549  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8550  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8551  case ISD::FABS:               return LowerFABS(Op, DAG);
8552  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8553  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8554  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8555  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8556  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8557  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8558  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8559  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8560  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8561  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8562  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8563  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8564  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8565  case ISD::FRAME_TO_ARGS_OFFSET:
8566                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8567  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8568  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8569  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8570  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8571  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8572  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8573  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8574  case ISD::SHL:                return LowerSHL(Op, DAG);
8575  case ISD::SADDO:
8576  case ISD::UADDO:
8577  case ISD::SSUBO:
8578  case ISD::USUBO:
8579  case ISD::SMULO:
8580  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8581  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8582  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
8583  }
8584}
8585
8586void X86TargetLowering::
8587ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8588                        SelectionDAG &DAG, unsigned NewOp) const {
8589  EVT T = Node->getValueType(0);
8590  DebugLoc dl = Node->getDebugLoc();
8591  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8592
8593  SDValue Chain = Node->getOperand(0);
8594  SDValue In1 = Node->getOperand(1);
8595  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8596                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8597  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8598                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8599  SDValue Ops[] = { Chain, In1, In2L, In2H };
8600  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8601  SDValue Result =
8602    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8603                            cast<MemSDNode>(Node)->getMemOperand());
8604  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8605  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8606  Results.push_back(Result.getValue(2));
8607}
8608
8609/// ReplaceNodeResults - Replace a node with an illegal result type
8610/// with a new node built out of custom code.
8611void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8612                                           SmallVectorImpl<SDValue>&Results,
8613                                           SelectionDAG &DAG) const {
8614  DebugLoc dl = N->getDebugLoc();
8615  switch (N->getOpcode()) {
8616  default:
8617    assert(false && "Do not know how to custom type legalize this operation!");
8618    return;
8619  case ISD::FP_TO_SINT: {
8620    std::pair<SDValue,SDValue> Vals =
8621        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8622    SDValue FIST = Vals.first, StackSlot = Vals.second;
8623    if (FIST.getNode() != 0) {
8624      EVT VT = N->getValueType(0);
8625      // Return a load from the stack slot.
8626      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8627                                    MachinePointerInfo(), false, false, 0));
8628    }
8629    return;
8630  }
8631  case ISD::READCYCLECOUNTER: {
8632    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8633    SDValue TheChain = N->getOperand(0);
8634    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8635    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8636                                     rd.getValue(1));
8637    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8638                                     eax.getValue(2));
8639    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8640    SDValue Ops[] = { eax, edx };
8641    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8642    Results.push_back(edx.getValue(1));
8643    return;
8644  }
8645  case ISD::ATOMIC_CMP_SWAP: {
8646    EVT T = N->getValueType(0);
8647    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8648    SDValue cpInL, cpInH;
8649    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8650                        DAG.getConstant(0, MVT::i32));
8651    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8652                        DAG.getConstant(1, MVT::i32));
8653    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8654    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8655                             cpInL.getValue(1));
8656    SDValue swapInL, swapInH;
8657    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8658                          DAG.getConstant(0, MVT::i32));
8659    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8660                          DAG.getConstant(1, MVT::i32));
8661    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8662                               cpInH.getValue(1));
8663    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8664                               swapInL.getValue(1));
8665    SDValue Ops[] = { swapInH.getValue(0),
8666                      N->getOperand(1),
8667                      swapInH.getValue(1) };
8668    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8669    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
8670    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8671                                        MVT::i32, Result.getValue(1));
8672    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8673                                        MVT::i32, cpOutL.getValue(2));
8674    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8675    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8676    Results.push_back(cpOutH.getValue(1));
8677    return;
8678  }
8679  case ISD::ATOMIC_LOAD_ADD:
8680    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8681    return;
8682  case ISD::ATOMIC_LOAD_AND:
8683    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8684    return;
8685  case ISD::ATOMIC_LOAD_NAND:
8686    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8687    return;
8688  case ISD::ATOMIC_LOAD_OR:
8689    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8690    return;
8691  case ISD::ATOMIC_LOAD_SUB:
8692    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8693    return;
8694  case ISD::ATOMIC_LOAD_XOR:
8695    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8696    return;
8697  case ISD::ATOMIC_SWAP:
8698    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8699    return;
8700  }
8701}
8702
8703const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8704  switch (Opcode) {
8705  default: return NULL;
8706  case X86ISD::BSF:                return "X86ISD::BSF";
8707  case X86ISD::BSR:                return "X86ISD::BSR";
8708  case X86ISD::SHLD:               return "X86ISD::SHLD";
8709  case X86ISD::SHRD:               return "X86ISD::SHRD";
8710  case X86ISD::FAND:               return "X86ISD::FAND";
8711  case X86ISD::FOR:                return "X86ISD::FOR";
8712  case X86ISD::FXOR:               return "X86ISD::FXOR";
8713  case X86ISD::FSRL:               return "X86ISD::FSRL";
8714  case X86ISD::FILD:               return "X86ISD::FILD";
8715  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8716  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8717  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8718  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8719  case X86ISD::FLD:                return "X86ISD::FLD";
8720  case X86ISD::FST:                return "X86ISD::FST";
8721  case X86ISD::CALL:               return "X86ISD::CALL";
8722  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8723  case X86ISD::BT:                 return "X86ISD::BT";
8724  case X86ISD::CMP:                return "X86ISD::CMP";
8725  case X86ISD::COMI:               return "X86ISD::COMI";
8726  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8727  case X86ISD::SETCC:              return "X86ISD::SETCC";
8728  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8729  case X86ISD::CMOV:               return "X86ISD::CMOV";
8730  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8731  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8732  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8733  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8734  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8735  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8736  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8737  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8738  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8739  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8740  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8741  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8742  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8743  case X86ISD::FMAX:               return "X86ISD::FMAX";
8744  case X86ISD::FMIN:               return "X86ISD::FMIN";
8745  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8746  case X86ISD::FRCP:               return "X86ISD::FRCP";
8747  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8748  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8749  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8750  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8751  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8752  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8753  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8754  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8755  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8756  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8757  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8758  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8759  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8760  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8761  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8762  case X86ISD::VSHL:               return "X86ISD::VSHL";
8763  case X86ISD::VSRL:               return "X86ISD::VSRL";
8764  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8765  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8766  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8767  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8768  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8769  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8770  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8771  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8772  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8773  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8774  case X86ISD::ADD:                return "X86ISD::ADD";
8775  case X86ISD::SUB:                return "X86ISD::SUB";
8776  case X86ISD::SMUL:               return "X86ISD::SMUL";
8777  case X86ISD::UMUL:               return "X86ISD::UMUL";
8778  case X86ISD::INC:                return "X86ISD::INC";
8779  case X86ISD::DEC:                return "X86ISD::DEC";
8780  case X86ISD::OR:                 return "X86ISD::OR";
8781  case X86ISD::XOR:                return "X86ISD::XOR";
8782  case X86ISD::AND:                return "X86ISD::AND";
8783  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8784  case X86ISD::PTEST:              return "X86ISD::PTEST";
8785  case X86ISD::TESTP:              return "X86ISD::TESTP";
8786  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8787  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8788  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8789  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8790  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8791  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8792  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8793  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8794  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8795  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8796  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8797  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8798  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8799  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8800  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8801  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8802  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8803  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8804  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8805  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8806  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8807  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8808  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8809  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8810  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8811  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8812  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8813  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8814  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8815  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8816  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8817  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8818  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8819  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8820  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8821  }
8822}
8823
8824// isLegalAddressingMode - Return true if the addressing mode represented
8825// by AM is legal for this target, for a load/store of the specified type.
8826bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8827                                              const Type *Ty) const {
8828  // X86 supports extremely general addressing modes.
8829  CodeModel::Model M = getTargetMachine().getCodeModel();
8830  Reloc::Model R = getTargetMachine().getRelocationModel();
8831
8832  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8833  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8834    return false;
8835
8836  if (AM.BaseGV) {
8837    unsigned GVFlags =
8838      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8839
8840    // If a reference to this global requires an extra load, we can't fold it.
8841    if (isGlobalStubReference(GVFlags))
8842      return false;
8843
8844    // If BaseGV requires a register for the PIC base, we cannot also have a
8845    // BaseReg specified.
8846    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8847      return false;
8848
8849    // If lower 4G is not available, then we must use rip-relative addressing.
8850    if ((M != CodeModel::Small || R != Reloc::Static) &&
8851        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8852      return false;
8853  }
8854
8855  switch (AM.Scale) {
8856  case 0:
8857  case 1:
8858  case 2:
8859  case 4:
8860  case 8:
8861    // These scales always work.
8862    break;
8863  case 3:
8864  case 5:
8865  case 9:
8866    // These scales are formed with basereg+scalereg.  Only accept if there is
8867    // no basereg yet.
8868    if (AM.HasBaseReg)
8869      return false;
8870    break;
8871  default:  // Other stuff never works.
8872    return false;
8873  }
8874
8875  return true;
8876}
8877
8878
8879bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8880  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8881    return false;
8882  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8883  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8884  if (NumBits1 <= NumBits2)
8885    return false;
8886  return true;
8887}
8888
8889bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8890  if (!VT1.isInteger() || !VT2.isInteger())
8891    return false;
8892  unsigned NumBits1 = VT1.getSizeInBits();
8893  unsigned NumBits2 = VT2.getSizeInBits();
8894  if (NumBits1 <= NumBits2)
8895    return false;
8896  return true;
8897}
8898
8899bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8900  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8901  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8902}
8903
8904bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8905  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8906  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8907}
8908
8909bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8910  // i16 instructions are longer (0x66 prefix) and potentially slower.
8911  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8912}
8913
8914/// isShuffleMaskLegal - Targets can use this to indicate that they only
8915/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8916/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8917/// are assumed to be legal.
8918bool
8919X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8920                                      EVT VT) const {
8921  // Very little shuffling can be done for 64-bit vectors right now.
8922  if (VT.getSizeInBits() == 64)
8923    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8924
8925  // FIXME: pshufb, blends, shifts.
8926  return (VT.getVectorNumElements() == 2 ||
8927          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8928          isMOVLMask(M, VT) ||
8929          isSHUFPMask(M, VT) ||
8930          isPSHUFDMask(M, VT) ||
8931          isPSHUFHWMask(M, VT) ||
8932          isPSHUFLWMask(M, VT) ||
8933          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8934          isUNPCKLMask(M, VT) ||
8935          isUNPCKHMask(M, VT) ||
8936          isUNPCKL_v_undef_Mask(M, VT) ||
8937          isUNPCKH_v_undef_Mask(M, VT));
8938}
8939
8940bool
8941X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8942                                          EVT VT) const {
8943  unsigned NumElts = VT.getVectorNumElements();
8944  // FIXME: This collection of masks seems suspect.
8945  if (NumElts == 2)
8946    return true;
8947  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8948    return (isMOVLMask(Mask, VT)  ||
8949            isCommutedMOVLMask(Mask, VT, true) ||
8950            isSHUFPMask(Mask, VT) ||
8951            isCommutedSHUFPMask(Mask, VT));
8952  }
8953  return false;
8954}
8955
8956//===----------------------------------------------------------------------===//
8957//                           X86 Scheduler Hooks
8958//===----------------------------------------------------------------------===//
8959
8960// private utility function
8961MachineBasicBlock *
8962X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8963                                                       MachineBasicBlock *MBB,
8964                                                       unsigned regOpc,
8965                                                       unsigned immOpc,
8966                                                       unsigned LoadOpc,
8967                                                       unsigned CXchgOpc,
8968                                                       unsigned notOpc,
8969                                                       unsigned EAXreg,
8970                                                       TargetRegisterClass *RC,
8971                                                       bool invSrc) const {
8972  // For the atomic bitwise operator, we generate
8973  //   thisMBB:
8974  //   newMBB:
8975  //     ld  t1 = [bitinstr.addr]
8976  //     op  t2 = t1, [bitinstr.val]
8977  //     mov EAX = t1
8978  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8979  //     bz  newMBB
8980  //     fallthrough -->nextMBB
8981  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8982  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8983  MachineFunction::iterator MBBIter = MBB;
8984  ++MBBIter;
8985
8986  /// First build the CFG
8987  MachineFunction *F = MBB->getParent();
8988  MachineBasicBlock *thisMBB = MBB;
8989  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8990  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8991  F->insert(MBBIter, newMBB);
8992  F->insert(MBBIter, nextMBB);
8993
8994  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8995  nextMBB->splice(nextMBB->begin(), thisMBB,
8996                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8997                  thisMBB->end());
8998  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8999
9000  // Update thisMBB to fall through to newMBB
9001  thisMBB->addSuccessor(newMBB);
9002
9003  // newMBB jumps to itself and fall through to nextMBB
9004  newMBB->addSuccessor(nextMBB);
9005  newMBB->addSuccessor(newMBB);
9006
9007  // Insert instructions into newMBB based on incoming instruction
9008  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9009         "unexpected number of operands");
9010  DebugLoc dl = bInstr->getDebugLoc();
9011  MachineOperand& destOper = bInstr->getOperand(0);
9012  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9013  int numArgs = bInstr->getNumOperands() - 1;
9014  for (int i=0; i < numArgs; ++i)
9015    argOpers[i] = &bInstr->getOperand(i+1);
9016
9017  // x86 address has 4 operands: base, index, scale, and displacement
9018  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9019  int valArgIndx = lastAddrIndx + 1;
9020
9021  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9022  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9023  for (int i=0; i <= lastAddrIndx; ++i)
9024    (*MIB).addOperand(*argOpers[i]);
9025
9026  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9027  if (invSrc) {
9028    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9029  }
9030  else
9031    tt = t1;
9032
9033  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9034  assert((argOpers[valArgIndx]->isReg() ||
9035          argOpers[valArgIndx]->isImm()) &&
9036         "invalid operand");
9037  if (argOpers[valArgIndx]->isReg())
9038    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9039  else
9040    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9041  MIB.addReg(tt);
9042  (*MIB).addOperand(*argOpers[valArgIndx]);
9043
9044  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9045  MIB.addReg(t1);
9046
9047  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9048  for (int i=0; i <= lastAddrIndx; ++i)
9049    (*MIB).addOperand(*argOpers[i]);
9050  MIB.addReg(t2);
9051  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9052  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9053                    bInstr->memoperands_end());
9054
9055  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9056  MIB.addReg(EAXreg);
9057
9058  // insert branch
9059  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9060
9061  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9062  return nextMBB;
9063}
9064
9065// private utility function:  64 bit atomics on 32 bit host.
9066MachineBasicBlock *
9067X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9068                                                       MachineBasicBlock *MBB,
9069                                                       unsigned regOpcL,
9070                                                       unsigned regOpcH,
9071                                                       unsigned immOpcL,
9072                                                       unsigned immOpcH,
9073                                                       bool invSrc) const {
9074  // For the atomic bitwise operator, we generate
9075  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9076  //     ld t1,t2 = [bitinstr.addr]
9077  //   newMBB:
9078  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9079  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9080  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9081  //     mov ECX, EBX <- t5, t6
9082  //     mov EAX, EDX <- t1, t2
9083  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9084  //     mov t3, t4 <- EAX, EDX
9085  //     bz  newMBB
9086  //     result in out1, out2
9087  //     fallthrough -->nextMBB
9088
9089  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9090  const unsigned LoadOpc = X86::MOV32rm;
9091  const unsigned NotOpc = X86::NOT32r;
9092  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9093  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9094  MachineFunction::iterator MBBIter = MBB;
9095  ++MBBIter;
9096
9097  /// First build the CFG
9098  MachineFunction *F = MBB->getParent();
9099  MachineBasicBlock *thisMBB = MBB;
9100  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9101  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9102  F->insert(MBBIter, newMBB);
9103  F->insert(MBBIter, nextMBB);
9104
9105  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9106  nextMBB->splice(nextMBB->begin(), thisMBB,
9107                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9108                  thisMBB->end());
9109  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9110
9111  // Update thisMBB to fall through to newMBB
9112  thisMBB->addSuccessor(newMBB);
9113
9114  // newMBB jumps to itself and fall through to nextMBB
9115  newMBB->addSuccessor(nextMBB);
9116  newMBB->addSuccessor(newMBB);
9117
9118  DebugLoc dl = bInstr->getDebugLoc();
9119  // Insert instructions into newMBB based on incoming instruction
9120  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9121  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9122         "unexpected number of operands");
9123  MachineOperand& dest1Oper = bInstr->getOperand(0);
9124  MachineOperand& dest2Oper = bInstr->getOperand(1);
9125  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9126  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9127    argOpers[i] = &bInstr->getOperand(i+2);
9128
9129    // We use some of the operands multiple times, so conservatively just
9130    // clear any kill flags that might be present.
9131    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9132      argOpers[i]->setIsKill(false);
9133  }
9134
9135  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9136  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9137
9138  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9139  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9140  for (int i=0; i <= lastAddrIndx; ++i)
9141    (*MIB).addOperand(*argOpers[i]);
9142  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9143  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9144  // add 4 to displacement.
9145  for (int i=0; i <= lastAddrIndx-2; ++i)
9146    (*MIB).addOperand(*argOpers[i]);
9147  MachineOperand newOp3 = *(argOpers[3]);
9148  if (newOp3.isImm())
9149    newOp3.setImm(newOp3.getImm()+4);
9150  else
9151    newOp3.setOffset(newOp3.getOffset()+4);
9152  (*MIB).addOperand(newOp3);
9153  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9154
9155  // t3/4 are defined later, at the bottom of the loop
9156  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9157  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9158  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9159    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9160  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9161    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9162
9163  // The subsequent operations should be using the destination registers of
9164  //the PHI instructions.
9165  if (invSrc) {
9166    t1 = F->getRegInfo().createVirtualRegister(RC);
9167    t2 = F->getRegInfo().createVirtualRegister(RC);
9168    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9169    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9170  } else {
9171    t1 = dest1Oper.getReg();
9172    t2 = dest2Oper.getReg();
9173  }
9174
9175  int valArgIndx = lastAddrIndx + 1;
9176  assert((argOpers[valArgIndx]->isReg() ||
9177          argOpers[valArgIndx]->isImm()) &&
9178         "invalid operand");
9179  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9180  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9181  if (argOpers[valArgIndx]->isReg())
9182    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9183  else
9184    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9185  if (regOpcL != X86::MOV32rr)
9186    MIB.addReg(t1);
9187  (*MIB).addOperand(*argOpers[valArgIndx]);
9188  assert(argOpers[valArgIndx + 1]->isReg() ==
9189         argOpers[valArgIndx]->isReg());
9190  assert(argOpers[valArgIndx + 1]->isImm() ==
9191         argOpers[valArgIndx]->isImm());
9192  if (argOpers[valArgIndx + 1]->isReg())
9193    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9194  else
9195    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9196  if (regOpcH != X86::MOV32rr)
9197    MIB.addReg(t2);
9198  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9199
9200  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9201  MIB.addReg(t1);
9202  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9203  MIB.addReg(t2);
9204
9205  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9206  MIB.addReg(t5);
9207  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9208  MIB.addReg(t6);
9209
9210  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9211  for (int i=0; i <= lastAddrIndx; ++i)
9212    (*MIB).addOperand(*argOpers[i]);
9213
9214  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9215  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9216                    bInstr->memoperands_end());
9217
9218  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9219  MIB.addReg(X86::EAX);
9220  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9221  MIB.addReg(X86::EDX);
9222
9223  // insert branch
9224  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9225
9226  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9227  return nextMBB;
9228}
9229
9230// private utility function
9231MachineBasicBlock *
9232X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9233                                                      MachineBasicBlock *MBB,
9234                                                      unsigned cmovOpc) const {
9235  // For the atomic min/max operator, we generate
9236  //   thisMBB:
9237  //   newMBB:
9238  //     ld t1 = [min/max.addr]
9239  //     mov t2 = [min/max.val]
9240  //     cmp  t1, t2
9241  //     cmov[cond] t2 = t1
9242  //     mov EAX = t1
9243  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9244  //     bz   newMBB
9245  //     fallthrough -->nextMBB
9246  //
9247  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9248  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9249  MachineFunction::iterator MBBIter = MBB;
9250  ++MBBIter;
9251
9252  /// First build the CFG
9253  MachineFunction *F = MBB->getParent();
9254  MachineBasicBlock *thisMBB = MBB;
9255  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9256  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9257  F->insert(MBBIter, newMBB);
9258  F->insert(MBBIter, nextMBB);
9259
9260  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9261  nextMBB->splice(nextMBB->begin(), thisMBB,
9262                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9263                  thisMBB->end());
9264  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9265
9266  // Update thisMBB to fall through to newMBB
9267  thisMBB->addSuccessor(newMBB);
9268
9269  // newMBB jumps to newMBB and fall through to nextMBB
9270  newMBB->addSuccessor(nextMBB);
9271  newMBB->addSuccessor(newMBB);
9272
9273  DebugLoc dl = mInstr->getDebugLoc();
9274  // Insert instructions into newMBB based on incoming instruction
9275  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9276         "unexpected number of operands");
9277  MachineOperand& destOper = mInstr->getOperand(0);
9278  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9279  int numArgs = mInstr->getNumOperands() - 1;
9280  for (int i=0; i < numArgs; ++i)
9281    argOpers[i] = &mInstr->getOperand(i+1);
9282
9283  // x86 address has 4 operands: base, index, scale, and displacement
9284  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9285  int valArgIndx = lastAddrIndx + 1;
9286
9287  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9288  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9289  for (int i=0; i <= lastAddrIndx; ++i)
9290    (*MIB).addOperand(*argOpers[i]);
9291
9292  // We only support register and immediate values
9293  assert((argOpers[valArgIndx]->isReg() ||
9294          argOpers[valArgIndx]->isImm()) &&
9295         "invalid operand");
9296
9297  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9298  if (argOpers[valArgIndx]->isReg())
9299    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9300  else
9301    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9302  (*MIB).addOperand(*argOpers[valArgIndx]);
9303
9304  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9305  MIB.addReg(t1);
9306
9307  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9308  MIB.addReg(t1);
9309  MIB.addReg(t2);
9310
9311  // Generate movc
9312  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9313  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9314  MIB.addReg(t2);
9315  MIB.addReg(t1);
9316
9317  // Cmp and exchange if none has modified the memory location
9318  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9319  for (int i=0; i <= lastAddrIndx; ++i)
9320    (*MIB).addOperand(*argOpers[i]);
9321  MIB.addReg(t3);
9322  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9323  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9324                    mInstr->memoperands_end());
9325
9326  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9327  MIB.addReg(X86::EAX);
9328
9329  // insert branch
9330  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9331
9332  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9333  return nextMBB;
9334}
9335
9336// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9337// or XMM0_V32I8 in AVX all of this code can be replaced with that
9338// in the .td file.
9339MachineBasicBlock *
9340X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9341                            unsigned numArgs, bool memArg) const {
9342
9343  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9344         "Target must have SSE4.2 or AVX features enabled");
9345
9346  DebugLoc dl = MI->getDebugLoc();
9347  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9348
9349  unsigned Opc;
9350
9351  if (!Subtarget->hasAVX()) {
9352    if (memArg)
9353      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9354    else
9355      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9356  } else {
9357    if (memArg)
9358      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9359    else
9360      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9361  }
9362
9363  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9364
9365  for (unsigned i = 0; i < numArgs; ++i) {
9366    MachineOperand &Op = MI->getOperand(i+1);
9367
9368    if (!(Op.isReg() && Op.isImplicit()))
9369      MIB.addOperand(Op);
9370  }
9371
9372  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9373    .addReg(X86::XMM0);
9374
9375  MI->eraseFromParent();
9376
9377  return BB;
9378}
9379
9380MachineBasicBlock *
9381X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9382                                                 MachineInstr *MI,
9383                                                 MachineBasicBlock *MBB) const {
9384  // Emit code to save XMM registers to the stack. The ABI says that the
9385  // number of registers to save is given in %al, so it's theoretically
9386  // possible to do an indirect jump trick to avoid saving all of them,
9387  // however this code takes a simpler approach and just executes all
9388  // of the stores if %al is non-zero. It's less code, and it's probably
9389  // easier on the hardware branch predictor, and stores aren't all that
9390  // expensive anyway.
9391
9392  // Create the new basic blocks. One block contains all the XMM stores,
9393  // and one block is the final destination regardless of whether any
9394  // stores were performed.
9395  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9396  MachineFunction *F = MBB->getParent();
9397  MachineFunction::iterator MBBIter = MBB;
9398  ++MBBIter;
9399  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9400  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9401  F->insert(MBBIter, XMMSaveMBB);
9402  F->insert(MBBIter, EndMBB);
9403
9404  // Transfer the remainder of MBB and its successor edges to EndMBB.
9405  EndMBB->splice(EndMBB->begin(), MBB,
9406                 llvm::next(MachineBasicBlock::iterator(MI)),
9407                 MBB->end());
9408  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9409
9410  // The original block will now fall through to the XMM save block.
9411  MBB->addSuccessor(XMMSaveMBB);
9412  // The XMMSaveMBB will fall through to the end block.
9413  XMMSaveMBB->addSuccessor(EndMBB);
9414
9415  // Now add the instructions.
9416  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9417  DebugLoc DL = MI->getDebugLoc();
9418
9419  unsigned CountReg = MI->getOperand(0).getReg();
9420  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9421  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9422
9423  if (!Subtarget->isTargetWin64()) {
9424    // If %al is 0, branch around the XMM save block.
9425    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9426    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9427    MBB->addSuccessor(EndMBB);
9428  }
9429
9430  // In the XMM save block, save all the XMM argument registers.
9431  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9432    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9433    MachineMemOperand *MMO =
9434      F->getMachineMemOperand(
9435          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9436        MachineMemOperand::MOStore,
9437        /*Size=*/16, /*Align=*/16);
9438    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9439      .addFrameIndex(RegSaveFrameIndex)
9440      .addImm(/*Scale=*/1)
9441      .addReg(/*IndexReg=*/0)
9442      .addImm(/*Disp=*/Offset)
9443      .addReg(/*Segment=*/0)
9444      .addReg(MI->getOperand(i).getReg())
9445      .addMemOperand(MMO);
9446  }
9447
9448  MI->eraseFromParent();   // The pseudo instruction is gone now.
9449
9450  return EndMBB;
9451}
9452
9453MachineBasicBlock *
9454X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9455                                     MachineBasicBlock *BB) const {
9456  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9457  DebugLoc DL = MI->getDebugLoc();
9458
9459  // To "insert" a SELECT_CC instruction, we actually have to insert the
9460  // diamond control-flow pattern.  The incoming instruction knows the
9461  // destination vreg to set, the condition code register to branch on, the
9462  // true/false values to select between, and a branch opcode to use.
9463  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9464  MachineFunction::iterator It = BB;
9465  ++It;
9466
9467  //  thisMBB:
9468  //  ...
9469  //   TrueVal = ...
9470  //   cmpTY ccX, r1, r2
9471  //   bCC copy1MBB
9472  //   fallthrough --> copy0MBB
9473  MachineBasicBlock *thisMBB = BB;
9474  MachineFunction *F = BB->getParent();
9475  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9476  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9477  F->insert(It, copy0MBB);
9478  F->insert(It, sinkMBB);
9479
9480  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9481  // live into the sink and copy blocks.
9482  const MachineFunction *MF = BB->getParent();
9483  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9484  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9485
9486  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9487    const MachineOperand &MO = MI->getOperand(I);
9488    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9489    unsigned Reg = MO.getReg();
9490    if (Reg != X86::EFLAGS) continue;
9491    copy0MBB->addLiveIn(Reg);
9492    sinkMBB->addLiveIn(Reg);
9493  }
9494
9495  // Transfer the remainder of BB and its successor edges to sinkMBB.
9496  sinkMBB->splice(sinkMBB->begin(), BB,
9497                  llvm::next(MachineBasicBlock::iterator(MI)),
9498                  BB->end());
9499  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9500
9501  // Add the true and fallthrough blocks as its successors.
9502  BB->addSuccessor(copy0MBB);
9503  BB->addSuccessor(sinkMBB);
9504
9505  // Create the conditional branch instruction.
9506  unsigned Opc =
9507    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9508  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9509
9510  //  copy0MBB:
9511  //   %FalseValue = ...
9512  //   # fallthrough to sinkMBB
9513  copy0MBB->addSuccessor(sinkMBB);
9514
9515  //  sinkMBB:
9516  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9517  //  ...
9518  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9519          TII->get(X86::PHI), MI->getOperand(0).getReg())
9520    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9521    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9522
9523  MI->eraseFromParent();   // The pseudo instruction is gone now.
9524  return sinkMBB;
9525}
9526
9527MachineBasicBlock *
9528X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
9529                                          MachineBasicBlock *BB) const {
9530  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9531  DebugLoc DL = MI->getDebugLoc();
9532
9533  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9534  // non-trivial part is impdef of ESP.
9535  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9536  // mingw-w64.
9537
9538  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9539    .addExternalSymbol("_alloca")
9540    .addReg(X86::EAX, RegState::Implicit)
9541    .addReg(X86::ESP, RegState::Implicit)
9542    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9543    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9544    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9545
9546  MI->eraseFromParent();   // The pseudo instruction is gone now.
9547  return BB;
9548}
9549
9550MachineBasicBlock *
9551X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9552                                      MachineBasicBlock *BB) const {
9553  // This is pretty easy.  We're taking the value that we received from
9554  // our load from the relocation, sticking it in either RDI (x86-64)
9555  // or EAX and doing an indirect call.  The return value will then
9556  // be in the normal return register.
9557  const X86InstrInfo *TII
9558    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9559  DebugLoc DL = MI->getDebugLoc();
9560  MachineFunction *F = BB->getParent();
9561
9562  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
9563  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9564
9565  if (Subtarget->is64Bit()) {
9566    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9567                                      TII->get(X86::MOV64rm), X86::RDI)
9568    .addReg(X86::RIP)
9569    .addImm(0).addReg(0)
9570    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9571                      MI->getOperand(3).getTargetFlags())
9572    .addReg(0);
9573    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
9574    addDirectMem(MIB, X86::RDI);
9575  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9576    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9577                                      TII->get(X86::MOV32rm), X86::EAX)
9578    .addReg(0)
9579    .addImm(0).addReg(0)
9580    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9581                      MI->getOperand(3).getTargetFlags())
9582    .addReg(0);
9583    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9584    addDirectMem(MIB, X86::EAX);
9585  } else {
9586    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9587                                      TII->get(X86::MOV32rm), X86::EAX)
9588    .addReg(TII->getGlobalBaseReg(F))
9589    .addImm(0).addReg(0)
9590    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9591                      MI->getOperand(3).getTargetFlags())
9592    .addReg(0);
9593    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9594    addDirectMem(MIB, X86::EAX);
9595  }
9596
9597  MI->eraseFromParent(); // The pseudo instruction is gone now.
9598  return BB;
9599}
9600
9601MachineBasicBlock *
9602X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9603                                               MachineBasicBlock *BB) const {
9604  switch (MI->getOpcode()) {
9605  default: assert(false && "Unexpected instr type to insert");
9606  case X86::MINGW_ALLOCA:
9607    return EmitLoweredMingwAlloca(MI, BB);
9608  case X86::TLSCall_32:
9609  case X86::TLSCall_64:
9610    return EmitLoweredTLSCall(MI, BB);
9611  case X86::CMOV_GR8:
9612  case X86::CMOV_FR32:
9613  case X86::CMOV_FR64:
9614  case X86::CMOV_V4F32:
9615  case X86::CMOV_V2F64:
9616  case X86::CMOV_V2I64:
9617  case X86::CMOV_GR16:
9618  case X86::CMOV_GR32:
9619  case X86::CMOV_RFP32:
9620  case X86::CMOV_RFP64:
9621  case X86::CMOV_RFP80:
9622    return EmitLoweredSelect(MI, BB);
9623
9624  case X86::FP32_TO_INT16_IN_MEM:
9625  case X86::FP32_TO_INT32_IN_MEM:
9626  case X86::FP32_TO_INT64_IN_MEM:
9627  case X86::FP64_TO_INT16_IN_MEM:
9628  case X86::FP64_TO_INT32_IN_MEM:
9629  case X86::FP64_TO_INT64_IN_MEM:
9630  case X86::FP80_TO_INT16_IN_MEM:
9631  case X86::FP80_TO_INT32_IN_MEM:
9632  case X86::FP80_TO_INT64_IN_MEM: {
9633    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9634    DebugLoc DL = MI->getDebugLoc();
9635
9636    // Change the floating point control register to use "round towards zero"
9637    // mode when truncating to an integer value.
9638    MachineFunction *F = BB->getParent();
9639    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9640    addFrameReference(BuildMI(*BB, MI, DL,
9641                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9642
9643    // Load the old value of the high byte of the control word...
9644    unsigned OldCW =
9645      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9646    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9647                      CWFrameIdx);
9648
9649    // Set the high part to be round to zero...
9650    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9651      .addImm(0xC7F);
9652
9653    // Reload the modified control word now...
9654    addFrameReference(BuildMI(*BB, MI, DL,
9655                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9656
9657    // Restore the memory image of control word to original value
9658    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9659      .addReg(OldCW);
9660
9661    // Get the X86 opcode to use.
9662    unsigned Opc;
9663    switch (MI->getOpcode()) {
9664    default: llvm_unreachable("illegal opcode!");
9665    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9666    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9667    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9668    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9669    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9670    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9671    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9672    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9673    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9674    }
9675
9676    X86AddressMode AM;
9677    MachineOperand &Op = MI->getOperand(0);
9678    if (Op.isReg()) {
9679      AM.BaseType = X86AddressMode::RegBase;
9680      AM.Base.Reg = Op.getReg();
9681    } else {
9682      AM.BaseType = X86AddressMode::FrameIndexBase;
9683      AM.Base.FrameIndex = Op.getIndex();
9684    }
9685    Op = MI->getOperand(1);
9686    if (Op.isImm())
9687      AM.Scale = Op.getImm();
9688    Op = MI->getOperand(2);
9689    if (Op.isImm())
9690      AM.IndexReg = Op.getImm();
9691    Op = MI->getOperand(3);
9692    if (Op.isGlobal()) {
9693      AM.GV = Op.getGlobal();
9694    } else {
9695      AM.Disp = Op.getImm();
9696    }
9697    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9698                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9699
9700    // Reload the original control word now.
9701    addFrameReference(BuildMI(*BB, MI, DL,
9702                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9703
9704    MI->eraseFromParent();   // The pseudo instruction is gone now.
9705    return BB;
9706  }
9707    // String/text processing lowering.
9708  case X86::PCMPISTRM128REG:
9709  case X86::VPCMPISTRM128REG:
9710    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9711  case X86::PCMPISTRM128MEM:
9712  case X86::VPCMPISTRM128MEM:
9713    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9714  case X86::PCMPESTRM128REG:
9715  case X86::VPCMPESTRM128REG:
9716    return EmitPCMP(MI, BB, 5, false /* in mem */);
9717  case X86::PCMPESTRM128MEM:
9718  case X86::VPCMPESTRM128MEM:
9719    return EmitPCMP(MI, BB, 5, true /* in mem */);
9720
9721    // Atomic Lowering.
9722  case X86::ATOMAND32:
9723    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9724                                               X86::AND32ri, X86::MOV32rm,
9725                                               X86::LCMPXCHG32,
9726                                               X86::NOT32r, X86::EAX,
9727                                               X86::GR32RegisterClass);
9728  case X86::ATOMOR32:
9729    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9730                                               X86::OR32ri, X86::MOV32rm,
9731                                               X86::LCMPXCHG32,
9732                                               X86::NOT32r, X86::EAX,
9733                                               X86::GR32RegisterClass);
9734  case X86::ATOMXOR32:
9735    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9736                                               X86::XOR32ri, X86::MOV32rm,
9737                                               X86::LCMPXCHG32,
9738                                               X86::NOT32r, X86::EAX,
9739                                               X86::GR32RegisterClass);
9740  case X86::ATOMNAND32:
9741    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9742                                               X86::AND32ri, X86::MOV32rm,
9743                                               X86::LCMPXCHG32,
9744                                               X86::NOT32r, X86::EAX,
9745                                               X86::GR32RegisterClass, true);
9746  case X86::ATOMMIN32:
9747    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9748  case X86::ATOMMAX32:
9749    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9750  case X86::ATOMUMIN32:
9751    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9752  case X86::ATOMUMAX32:
9753    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9754
9755  case X86::ATOMAND16:
9756    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9757                                               X86::AND16ri, X86::MOV16rm,
9758                                               X86::LCMPXCHG16,
9759                                               X86::NOT16r, X86::AX,
9760                                               X86::GR16RegisterClass);
9761  case X86::ATOMOR16:
9762    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9763                                               X86::OR16ri, X86::MOV16rm,
9764                                               X86::LCMPXCHG16,
9765                                               X86::NOT16r, X86::AX,
9766                                               X86::GR16RegisterClass);
9767  case X86::ATOMXOR16:
9768    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9769                                               X86::XOR16ri, X86::MOV16rm,
9770                                               X86::LCMPXCHG16,
9771                                               X86::NOT16r, X86::AX,
9772                                               X86::GR16RegisterClass);
9773  case X86::ATOMNAND16:
9774    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9775                                               X86::AND16ri, X86::MOV16rm,
9776                                               X86::LCMPXCHG16,
9777                                               X86::NOT16r, X86::AX,
9778                                               X86::GR16RegisterClass, true);
9779  case X86::ATOMMIN16:
9780    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9781  case X86::ATOMMAX16:
9782    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9783  case X86::ATOMUMIN16:
9784    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9785  case X86::ATOMUMAX16:
9786    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9787
9788  case X86::ATOMAND8:
9789    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9790                                               X86::AND8ri, X86::MOV8rm,
9791                                               X86::LCMPXCHG8,
9792                                               X86::NOT8r, X86::AL,
9793                                               X86::GR8RegisterClass);
9794  case X86::ATOMOR8:
9795    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9796                                               X86::OR8ri, X86::MOV8rm,
9797                                               X86::LCMPXCHG8,
9798                                               X86::NOT8r, X86::AL,
9799                                               X86::GR8RegisterClass);
9800  case X86::ATOMXOR8:
9801    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9802                                               X86::XOR8ri, X86::MOV8rm,
9803                                               X86::LCMPXCHG8,
9804                                               X86::NOT8r, X86::AL,
9805                                               X86::GR8RegisterClass);
9806  case X86::ATOMNAND8:
9807    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9808                                               X86::AND8ri, X86::MOV8rm,
9809                                               X86::LCMPXCHG8,
9810                                               X86::NOT8r, X86::AL,
9811                                               X86::GR8RegisterClass, true);
9812  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9813  // This group is for 64-bit host.
9814  case X86::ATOMAND64:
9815    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9816                                               X86::AND64ri32, X86::MOV64rm,
9817                                               X86::LCMPXCHG64,
9818                                               X86::NOT64r, X86::RAX,
9819                                               X86::GR64RegisterClass);
9820  case X86::ATOMOR64:
9821    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9822                                               X86::OR64ri32, X86::MOV64rm,
9823                                               X86::LCMPXCHG64,
9824                                               X86::NOT64r, X86::RAX,
9825                                               X86::GR64RegisterClass);
9826  case X86::ATOMXOR64:
9827    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9828                                               X86::XOR64ri32, X86::MOV64rm,
9829                                               X86::LCMPXCHG64,
9830                                               X86::NOT64r, X86::RAX,
9831                                               X86::GR64RegisterClass);
9832  case X86::ATOMNAND64:
9833    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9834                                               X86::AND64ri32, X86::MOV64rm,
9835                                               X86::LCMPXCHG64,
9836                                               X86::NOT64r, X86::RAX,
9837                                               X86::GR64RegisterClass, true);
9838  case X86::ATOMMIN64:
9839    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9840  case X86::ATOMMAX64:
9841    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9842  case X86::ATOMUMIN64:
9843    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9844  case X86::ATOMUMAX64:
9845    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9846
9847  // This group does 64-bit operations on a 32-bit host.
9848  case X86::ATOMAND6432:
9849    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9850                                               X86::AND32rr, X86::AND32rr,
9851                                               X86::AND32ri, X86::AND32ri,
9852                                               false);
9853  case X86::ATOMOR6432:
9854    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9855                                               X86::OR32rr, X86::OR32rr,
9856                                               X86::OR32ri, X86::OR32ri,
9857                                               false);
9858  case X86::ATOMXOR6432:
9859    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9860                                               X86::XOR32rr, X86::XOR32rr,
9861                                               X86::XOR32ri, X86::XOR32ri,
9862                                               false);
9863  case X86::ATOMNAND6432:
9864    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9865                                               X86::AND32rr, X86::AND32rr,
9866                                               X86::AND32ri, X86::AND32ri,
9867                                               true);
9868  case X86::ATOMADD6432:
9869    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9870                                               X86::ADD32rr, X86::ADC32rr,
9871                                               X86::ADD32ri, X86::ADC32ri,
9872                                               false);
9873  case X86::ATOMSUB6432:
9874    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9875                                               X86::SUB32rr, X86::SBB32rr,
9876                                               X86::SUB32ri, X86::SBB32ri,
9877                                               false);
9878  case X86::ATOMSWAP6432:
9879    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9880                                               X86::MOV32rr, X86::MOV32rr,
9881                                               X86::MOV32ri, X86::MOV32ri,
9882                                               false);
9883  case X86::VASTART_SAVE_XMM_REGS:
9884    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9885  }
9886}
9887
9888//===----------------------------------------------------------------------===//
9889//                           X86 Optimization Hooks
9890//===----------------------------------------------------------------------===//
9891
9892void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9893                                                       const APInt &Mask,
9894                                                       APInt &KnownZero,
9895                                                       APInt &KnownOne,
9896                                                       const SelectionDAG &DAG,
9897                                                       unsigned Depth) const {
9898  unsigned Opc = Op.getOpcode();
9899  assert((Opc >= ISD::BUILTIN_OP_END ||
9900          Opc == ISD::INTRINSIC_WO_CHAIN ||
9901          Opc == ISD::INTRINSIC_W_CHAIN ||
9902          Opc == ISD::INTRINSIC_VOID) &&
9903         "Should use MaskedValueIsZero if you don't know whether Op"
9904         " is a target node!");
9905
9906  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9907  switch (Opc) {
9908  default: break;
9909  case X86ISD::ADD:
9910  case X86ISD::SUB:
9911  case X86ISD::SMUL:
9912  case X86ISD::UMUL:
9913  case X86ISD::INC:
9914  case X86ISD::DEC:
9915  case X86ISD::OR:
9916  case X86ISD::XOR:
9917  case X86ISD::AND:
9918    // These nodes' second result is a boolean.
9919    if (Op.getResNo() == 0)
9920      break;
9921    // Fallthrough
9922  case X86ISD::SETCC:
9923    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9924                                       Mask.getBitWidth() - 1);
9925    break;
9926  }
9927}
9928
9929unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
9930                                                         unsigned Depth) const {
9931  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
9932  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
9933    return Op.getValueType().getScalarType().getSizeInBits();
9934
9935  // Fallback case.
9936  return 1;
9937}
9938
9939/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9940/// node is a GlobalAddress + offset.
9941bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9942                                       const GlobalValue* &GA,
9943                                       int64_t &Offset) const {
9944  if (N->getOpcode() == X86ISD::Wrapper) {
9945    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9946      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9947      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9948      return true;
9949    }
9950  }
9951  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9952}
9953
9954/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9955/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9956/// if the load addresses are consecutive, non-overlapping, and in the right
9957/// order.
9958static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9959                                     const TargetLowering &TLI) {
9960  DebugLoc dl = N->getDebugLoc();
9961  EVT VT = N->getValueType(0);
9962
9963  if (VT.getSizeInBits() != 128)
9964    return SDValue();
9965
9966  SmallVector<SDValue, 16> Elts;
9967  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9968    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
9969
9970  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9971}
9972
9973/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
9974/// generation and convert it from being a bunch of shuffles and extracts
9975/// to a simple store and scalar loads to extract the elements.
9976static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9977                                                const TargetLowering &TLI) {
9978  SDValue InputVector = N->getOperand(0);
9979
9980  // Only operate on vectors of 4 elements, where the alternative shuffling
9981  // gets to be more expensive.
9982  if (InputVector.getValueType() != MVT::v4i32)
9983    return SDValue();
9984
9985  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9986  // single use which is a sign-extend or zero-extend, and all elements are
9987  // used.
9988  SmallVector<SDNode *, 4> Uses;
9989  unsigned ExtractedElements = 0;
9990  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9991       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9992    if (UI.getUse().getResNo() != InputVector.getResNo())
9993      return SDValue();
9994
9995    SDNode *Extract = *UI;
9996    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9997      return SDValue();
9998
9999    if (Extract->getValueType(0) != MVT::i32)
10000      return SDValue();
10001    if (!Extract->hasOneUse())
10002      return SDValue();
10003    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10004        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10005      return SDValue();
10006    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10007      return SDValue();
10008
10009    // Record which element was extracted.
10010    ExtractedElements |=
10011      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10012
10013    Uses.push_back(Extract);
10014  }
10015
10016  // If not all the elements were used, this may not be worthwhile.
10017  if (ExtractedElements != 15)
10018    return SDValue();
10019
10020  // Ok, we've now decided to do the transformation.
10021  DebugLoc dl = InputVector.getDebugLoc();
10022
10023  // Store the value to a temporary stack slot.
10024  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10025  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10026                            MachinePointerInfo(), false, false, 0);
10027
10028  // Replace each use (extract) with a load of the appropriate element.
10029  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10030       UE = Uses.end(); UI != UE; ++UI) {
10031    SDNode *Extract = *UI;
10032
10033    // Compute the element's address.
10034    SDValue Idx = Extract->getOperand(1);
10035    unsigned EltSize =
10036        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10037    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10038    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10039
10040    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10041                                     StackPtr, OffsetVal);
10042
10043    // Load the scalar.
10044    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10045                                     ScalarAddr, MachinePointerInfo(),
10046                                     false, false, 0);
10047
10048    // Replace the exact with the load.
10049    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10050  }
10051
10052  // The replacement was made in place; don't return anything.
10053  return SDValue();
10054}
10055
10056/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10057static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10058                                    const X86Subtarget *Subtarget) {
10059  DebugLoc DL = N->getDebugLoc();
10060  SDValue Cond = N->getOperand(0);
10061  // Get the LHS/RHS of the select.
10062  SDValue LHS = N->getOperand(1);
10063  SDValue RHS = N->getOperand(2);
10064
10065  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10066  // instructions match the semantics of the common C idiom x<y?x:y but not
10067  // x<=y?x:y, because of how they handle negative zero (which can be
10068  // ignored in unsafe-math mode).
10069  if (Subtarget->hasSSE2() &&
10070      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10071      Cond.getOpcode() == ISD::SETCC) {
10072    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10073
10074    unsigned Opcode = 0;
10075    // Check for x CC y ? x : y.
10076    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10077        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10078      switch (CC) {
10079      default: break;
10080      case ISD::SETULT:
10081        // Converting this to a min would handle NaNs incorrectly, and swapping
10082        // the operands would cause it to handle comparisons between positive
10083        // and negative zero incorrectly.
10084        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10085          if (!UnsafeFPMath &&
10086              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10087            break;
10088          std::swap(LHS, RHS);
10089        }
10090        Opcode = X86ISD::FMIN;
10091        break;
10092      case ISD::SETOLE:
10093        // Converting this to a min would handle comparisons between positive
10094        // and negative zero incorrectly.
10095        if (!UnsafeFPMath &&
10096            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10097          break;
10098        Opcode = X86ISD::FMIN;
10099        break;
10100      case ISD::SETULE:
10101        // Converting this to a min would handle both negative zeros and NaNs
10102        // incorrectly, but we can swap the operands to fix both.
10103        std::swap(LHS, RHS);
10104      case ISD::SETOLT:
10105      case ISD::SETLT:
10106      case ISD::SETLE:
10107        Opcode = X86ISD::FMIN;
10108        break;
10109
10110      case ISD::SETOGE:
10111        // Converting this to a max would handle comparisons between positive
10112        // and negative zero incorrectly.
10113        if (!UnsafeFPMath &&
10114            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10115          break;
10116        Opcode = X86ISD::FMAX;
10117        break;
10118      case ISD::SETUGT:
10119        // Converting this to a max would handle NaNs incorrectly, and swapping
10120        // the operands would cause it to handle comparisons between positive
10121        // and negative zero incorrectly.
10122        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10123          if (!UnsafeFPMath &&
10124              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10125            break;
10126          std::swap(LHS, RHS);
10127        }
10128        Opcode = X86ISD::FMAX;
10129        break;
10130      case ISD::SETUGE:
10131        // Converting this to a max would handle both negative zeros and NaNs
10132        // incorrectly, but we can swap the operands to fix both.
10133        std::swap(LHS, RHS);
10134      case ISD::SETOGT:
10135      case ISD::SETGT:
10136      case ISD::SETGE:
10137        Opcode = X86ISD::FMAX;
10138        break;
10139      }
10140    // Check for x CC y ? y : x -- a min/max with reversed arms.
10141    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10142               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10143      switch (CC) {
10144      default: break;
10145      case ISD::SETOGE:
10146        // Converting this to a min would handle comparisons between positive
10147        // and negative zero incorrectly, and swapping the operands would
10148        // cause it to handle NaNs incorrectly.
10149        if (!UnsafeFPMath &&
10150            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10151          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10152            break;
10153          std::swap(LHS, RHS);
10154        }
10155        Opcode = X86ISD::FMIN;
10156        break;
10157      case ISD::SETUGT:
10158        // Converting this to a min would handle NaNs incorrectly.
10159        if (!UnsafeFPMath &&
10160            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10161          break;
10162        Opcode = X86ISD::FMIN;
10163        break;
10164      case ISD::SETUGE:
10165        // Converting this to a min would handle both negative zeros and NaNs
10166        // incorrectly, but we can swap the operands to fix both.
10167        std::swap(LHS, RHS);
10168      case ISD::SETOGT:
10169      case ISD::SETGT:
10170      case ISD::SETGE:
10171        Opcode = X86ISD::FMIN;
10172        break;
10173
10174      case ISD::SETULT:
10175        // Converting this to a max would handle NaNs incorrectly.
10176        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10177          break;
10178        Opcode = X86ISD::FMAX;
10179        break;
10180      case ISD::SETOLE:
10181        // Converting this to a max would handle comparisons between positive
10182        // and negative zero incorrectly, and swapping the operands would
10183        // cause it to handle NaNs incorrectly.
10184        if (!UnsafeFPMath &&
10185            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10186          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10187            break;
10188          std::swap(LHS, RHS);
10189        }
10190        Opcode = X86ISD::FMAX;
10191        break;
10192      case ISD::SETULE:
10193        // Converting this to a max would handle both negative zeros and NaNs
10194        // incorrectly, but we can swap the operands to fix both.
10195        std::swap(LHS, RHS);
10196      case ISD::SETOLT:
10197      case ISD::SETLT:
10198      case ISD::SETLE:
10199        Opcode = X86ISD::FMAX;
10200        break;
10201      }
10202    }
10203
10204    if (Opcode)
10205      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10206  }
10207
10208  // If this is a select between two integer constants, try to do some
10209  // optimizations.
10210  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10211    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10212      // Don't do this for crazy integer types.
10213      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10214        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10215        // so that TrueC (the true value) is larger than FalseC.
10216        bool NeedsCondInvert = false;
10217
10218        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10219            // Efficiently invertible.
10220            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10221             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10222              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10223          NeedsCondInvert = true;
10224          std::swap(TrueC, FalseC);
10225        }
10226
10227        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10228        if (FalseC->getAPIntValue() == 0 &&
10229            TrueC->getAPIntValue().isPowerOf2()) {
10230          if (NeedsCondInvert) // Invert the condition if needed.
10231            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10232                               DAG.getConstant(1, Cond.getValueType()));
10233
10234          // Zero extend the condition if needed.
10235          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10236
10237          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10238          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10239                             DAG.getConstant(ShAmt, MVT::i8));
10240        }
10241
10242        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10243        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10244          if (NeedsCondInvert) // Invert the condition if needed.
10245            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10246                               DAG.getConstant(1, Cond.getValueType()));
10247
10248          // Zero extend the condition if needed.
10249          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10250                             FalseC->getValueType(0), Cond);
10251          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10252                             SDValue(FalseC, 0));
10253        }
10254
10255        // Optimize cases that will turn into an LEA instruction.  This requires
10256        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10257        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10258          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10259          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10260
10261          bool isFastMultiplier = false;
10262          if (Diff < 10) {
10263            switch ((unsigned char)Diff) {
10264              default: break;
10265              case 1:  // result = add base, cond
10266              case 2:  // result = lea base(    , cond*2)
10267              case 3:  // result = lea base(cond, cond*2)
10268              case 4:  // result = lea base(    , cond*4)
10269              case 5:  // result = lea base(cond, cond*4)
10270              case 8:  // result = lea base(    , cond*8)
10271              case 9:  // result = lea base(cond, cond*8)
10272                isFastMultiplier = true;
10273                break;
10274            }
10275          }
10276
10277          if (isFastMultiplier) {
10278            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10279            if (NeedsCondInvert) // Invert the condition if needed.
10280              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10281                                 DAG.getConstant(1, Cond.getValueType()));
10282
10283            // Zero extend the condition if needed.
10284            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10285                               Cond);
10286            // Scale the condition by the difference.
10287            if (Diff != 1)
10288              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10289                                 DAG.getConstant(Diff, Cond.getValueType()));
10290
10291            // Add the base if non-zero.
10292            if (FalseC->getAPIntValue() != 0)
10293              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10294                                 SDValue(FalseC, 0));
10295            return Cond;
10296          }
10297        }
10298      }
10299  }
10300
10301  return SDValue();
10302}
10303
10304/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10305static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10306                                  TargetLowering::DAGCombinerInfo &DCI) {
10307  DebugLoc DL = N->getDebugLoc();
10308
10309  // If the flag operand isn't dead, don't touch this CMOV.
10310  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10311    return SDValue();
10312
10313  // If this is a select between two integer constants, try to do some
10314  // optimizations.  Note that the operands are ordered the opposite of SELECT
10315  // operands.
10316  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10317    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10318      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10319      // larger than FalseC (the false value).
10320      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10321
10322      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10323        CC = X86::GetOppositeBranchCondition(CC);
10324        std::swap(TrueC, FalseC);
10325      }
10326
10327      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10328      // This is efficient for any integer data type (including i8/i16) and
10329      // shift amount.
10330      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10331        SDValue Cond = N->getOperand(3);
10332        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10333                           DAG.getConstant(CC, MVT::i8), Cond);
10334
10335        // Zero extend the condition if needed.
10336        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10337
10338        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10339        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10340                           DAG.getConstant(ShAmt, MVT::i8));
10341        if (N->getNumValues() == 2)  // Dead flag value?
10342          return DCI.CombineTo(N, Cond, SDValue());
10343        return Cond;
10344      }
10345
10346      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10347      // for any integer data type, including i8/i16.
10348      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10349        SDValue Cond = N->getOperand(3);
10350        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10351                           DAG.getConstant(CC, MVT::i8), Cond);
10352
10353        // Zero extend the condition if needed.
10354        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10355                           FalseC->getValueType(0), Cond);
10356        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10357                           SDValue(FalseC, 0));
10358
10359        if (N->getNumValues() == 2)  // Dead flag value?
10360          return DCI.CombineTo(N, Cond, SDValue());
10361        return Cond;
10362      }
10363
10364      // Optimize cases that will turn into an LEA instruction.  This requires
10365      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10366      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10367        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10368        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10369
10370        bool isFastMultiplier = false;
10371        if (Diff < 10) {
10372          switch ((unsigned char)Diff) {
10373          default: break;
10374          case 1:  // result = add base, cond
10375          case 2:  // result = lea base(    , cond*2)
10376          case 3:  // result = lea base(cond, cond*2)
10377          case 4:  // result = lea base(    , cond*4)
10378          case 5:  // result = lea base(cond, cond*4)
10379          case 8:  // result = lea base(    , cond*8)
10380          case 9:  // result = lea base(cond, cond*8)
10381            isFastMultiplier = true;
10382            break;
10383          }
10384        }
10385
10386        if (isFastMultiplier) {
10387          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10388          SDValue Cond = N->getOperand(3);
10389          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10390                             DAG.getConstant(CC, MVT::i8), Cond);
10391          // Zero extend the condition if needed.
10392          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10393                             Cond);
10394          // Scale the condition by the difference.
10395          if (Diff != 1)
10396            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10397                               DAG.getConstant(Diff, Cond.getValueType()));
10398
10399          // Add the base if non-zero.
10400          if (FalseC->getAPIntValue() != 0)
10401            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10402                               SDValue(FalseC, 0));
10403          if (N->getNumValues() == 2)  // Dead flag value?
10404            return DCI.CombineTo(N, Cond, SDValue());
10405          return Cond;
10406        }
10407      }
10408    }
10409  }
10410  return SDValue();
10411}
10412
10413
10414/// PerformMulCombine - Optimize a single multiply with constant into two
10415/// in order to implement it with two cheaper instructions, e.g.
10416/// LEA + SHL, LEA + LEA.
10417static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10418                                 TargetLowering::DAGCombinerInfo &DCI) {
10419  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10420    return SDValue();
10421
10422  EVT VT = N->getValueType(0);
10423  if (VT != MVT::i64)
10424    return SDValue();
10425
10426  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10427  if (!C)
10428    return SDValue();
10429  uint64_t MulAmt = C->getZExtValue();
10430  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10431    return SDValue();
10432
10433  uint64_t MulAmt1 = 0;
10434  uint64_t MulAmt2 = 0;
10435  if ((MulAmt % 9) == 0) {
10436    MulAmt1 = 9;
10437    MulAmt2 = MulAmt / 9;
10438  } else if ((MulAmt % 5) == 0) {
10439    MulAmt1 = 5;
10440    MulAmt2 = MulAmt / 5;
10441  } else if ((MulAmt % 3) == 0) {
10442    MulAmt1 = 3;
10443    MulAmt2 = MulAmt / 3;
10444  }
10445  if (MulAmt2 &&
10446      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10447    DebugLoc DL = N->getDebugLoc();
10448
10449    if (isPowerOf2_64(MulAmt2) &&
10450        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10451      // If second multiplifer is pow2, issue it first. We want the multiply by
10452      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10453      // is an add.
10454      std::swap(MulAmt1, MulAmt2);
10455
10456    SDValue NewMul;
10457    if (isPowerOf2_64(MulAmt1))
10458      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10459                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10460    else
10461      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10462                           DAG.getConstant(MulAmt1, VT));
10463
10464    if (isPowerOf2_64(MulAmt2))
10465      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10466                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10467    else
10468      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10469                           DAG.getConstant(MulAmt2, VT));
10470
10471    // Do not add new nodes to DAG combiner worklist.
10472    DCI.CombineTo(N, NewMul, false);
10473  }
10474  return SDValue();
10475}
10476
10477static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10478  SDValue N0 = N->getOperand(0);
10479  SDValue N1 = N->getOperand(1);
10480  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10481  EVT VT = N0.getValueType();
10482
10483  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10484  // since the result of setcc_c is all zero's or all ones.
10485  if (N1C && N0.getOpcode() == ISD::AND &&
10486      N0.getOperand(1).getOpcode() == ISD::Constant) {
10487    SDValue N00 = N0.getOperand(0);
10488    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10489        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10490          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10491         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10492      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10493      APInt ShAmt = N1C->getAPIntValue();
10494      Mask = Mask.shl(ShAmt);
10495      if (Mask != 0)
10496        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10497                           N00, DAG.getConstant(Mask, VT));
10498    }
10499  }
10500
10501  return SDValue();
10502}
10503
10504/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10505///                       when possible.
10506static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10507                                   const X86Subtarget *Subtarget) {
10508  EVT VT = N->getValueType(0);
10509  if (!VT.isVector() && VT.isInteger() &&
10510      N->getOpcode() == ISD::SHL)
10511    return PerformSHLCombine(N, DAG);
10512
10513  // On X86 with SSE2 support, we can transform this to a vector shift if
10514  // all elements are shifted by the same amount.  We can't do this in legalize
10515  // because the a constant vector is typically transformed to a constant pool
10516  // so we have no knowledge of the shift amount.
10517  if (!Subtarget->hasSSE2())
10518    return SDValue();
10519
10520  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10521    return SDValue();
10522
10523  SDValue ShAmtOp = N->getOperand(1);
10524  EVT EltVT = VT.getVectorElementType();
10525  DebugLoc DL = N->getDebugLoc();
10526  SDValue BaseShAmt = SDValue();
10527  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10528    unsigned NumElts = VT.getVectorNumElements();
10529    unsigned i = 0;
10530    for (; i != NumElts; ++i) {
10531      SDValue Arg = ShAmtOp.getOperand(i);
10532      if (Arg.getOpcode() == ISD::UNDEF) continue;
10533      BaseShAmt = Arg;
10534      break;
10535    }
10536    for (; i != NumElts; ++i) {
10537      SDValue Arg = ShAmtOp.getOperand(i);
10538      if (Arg.getOpcode() == ISD::UNDEF) continue;
10539      if (Arg != BaseShAmt) {
10540        return SDValue();
10541      }
10542    }
10543  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10544             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10545    SDValue InVec = ShAmtOp.getOperand(0);
10546    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10547      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10548      unsigned i = 0;
10549      for (; i != NumElts; ++i) {
10550        SDValue Arg = InVec.getOperand(i);
10551        if (Arg.getOpcode() == ISD::UNDEF) continue;
10552        BaseShAmt = Arg;
10553        break;
10554      }
10555    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10556       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10557         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10558         if (C->getZExtValue() == SplatIdx)
10559           BaseShAmt = InVec.getOperand(1);
10560       }
10561    }
10562    if (BaseShAmt.getNode() == 0)
10563      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10564                              DAG.getIntPtrConstant(0));
10565  } else
10566    return SDValue();
10567
10568  // The shift amount is an i32.
10569  if (EltVT.bitsGT(MVT::i32))
10570    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10571  else if (EltVT.bitsLT(MVT::i32))
10572    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10573
10574  // The shift amount is identical so we can do a vector shift.
10575  SDValue  ValOp = N->getOperand(0);
10576  switch (N->getOpcode()) {
10577  default:
10578    llvm_unreachable("Unknown shift opcode!");
10579    break;
10580  case ISD::SHL:
10581    if (VT == MVT::v2i64)
10582      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10583                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10584                         ValOp, BaseShAmt);
10585    if (VT == MVT::v4i32)
10586      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10587                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10588                         ValOp, BaseShAmt);
10589    if (VT == MVT::v8i16)
10590      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10591                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10592                         ValOp, BaseShAmt);
10593    break;
10594  case ISD::SRA:
10595    if (VT == MVT::v4i32)
10596      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10597                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10598                         ValOp, BaseShAmt);
10599    if (VT == MVT::v8i16)
10600      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10601                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10602                         ValOp, BaseShAmt);
10603    break;
10604  case ISD::SRL:
10605    if (VT == MVT::v2i64)
10606      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10607                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10608                         ValOp, BaseShAmt);
10609    if (VT == MVT::v4i32)
10610      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10611                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10612                         ValOp, BaseShAmt);
10613    if (VT ==  MVT::v8i16)
10614      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10615                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10616                         ValOp, BaseShAmt);
10617    break;
10618  }
10619  return SDValue();
10620}
10621
10622static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10623                                TargetLowering::DAGCombinerInfo &DCI,
10624                                const X86Subtarget *Subtarget) {
10625  if (DCI.isBeforeLegalizeOps())
10626    return SDValue();
10627
10628  EVT VT = N->getValueType(0);
10629  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10630    return SDValue();
10631
10632  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10633  SDValue N0 = N->getOperand(0);
10634  SDValue N1 = N->getOperand(1);
10635  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10636    std::swap(N0, N1);
10637  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10638    return SDValue();
10639  if (!N0.hasOneUse() || !N1.hasOneUse())
10640    return SDValue();
10641
10642  SDValue ShAmt0 = N0.getOperand(1);
10643  if (ShAmt0.getValueType() != MVT::i8)
10644    return SDValue();
10645  SDValue ShAmt1 = N1.getOperand(1);
10646  if (ShAmt1.getValueType() != MVT::i8)
10647    return SDValue();
10648  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10649    ShAmt0 = ShAmt0.getOperand(0);
10650  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10651    ShAmt1 = ShAmt1.getOperand(0);
10652
10653  DebugLoc DL = N->getDebugLoc();
10654  unsigned Opc = X86ISD::SHLD;
10655  SDValue Op0 = N0.getOperand(0);
10656  SDValue Op1 = N1.getOperand(0);
10657  if (ShAmt0.getOpcode() == ISD::SUB) {
10658    Opc = X86ISD::SHRD;
10659    std::swap(Op0, Op1);
10660    std::swap(ShAmt0, ShAmt1);
10661  }
10662
10663  unsigned Bits = VT.getSizeInBits();
10664  if (ShAmt1.getOpcode() == ISD::SUB) {
10665    SDValue Sum = ShAmt1.getOperand(0);
10666    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10667      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10668      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10669        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10670      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10671        return DAG.getNode(Opc, DL, VT,
10672                           Op0, Op1,
10673                           DAG.getNode(ISD::TRUNCATE, DL,
10674                                       MVT::i8, ShAmt0));
10675    }
10676  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
10677    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
10678    if (ShAmt0C &&
10679        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
10680      return DAG.getNode(Opc, DL, VT,
10681                         N0.getOperand(0), N1.getOperand(0),
10682                         DAG.getNode(ISD::TRUNCATE, DL,
10683                                       MVT::i8, ShAmt0));
10684  }
10685
10686  return SDValue();
10687}
10688
10689/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
10690static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
10691                                   const X86Subtarget *Subtarget) {
10692  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10693  // the FP state in cases where an emms may be missing.
10694  // A preferable solution to the general problem is to figure out the right
10695  // places to insert EMMS.  This qualifies as a quick hack.
10696
10697  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10698  StoreSDNode *St = cast<StoreSDNode>(N);
10699  EVT VT = St->getValue().getValueType();
10700  if (VT.getSizeInBits() != 64)
10701    return SDValue();
10702
10703  const Function *F = DAG.getMachineFunction().getFunction();
10704  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10705  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10706    && Subtarget->hasSSE2();
10707  if ((VT.isVector() ||
10708       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10709      isa<LoadSDNode>(St->getValue()) &&
10710      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10711      St->getChain().hasOneUse() && !St->isVolatile()) {
10712    SDNode* LdVal = St->getValue().getNode();
10713    LoadSDNode *Ld = 0;
10714    int TokenFactorIndex = -1;
10715    SmallVector<SDValue, 8> Ops;
10716    SDNode* ChainVal = St->getChain().getNode();
10717    // Must be a store of a load.  We currently handle two cases:  the load
10718    // is a direct child, and it's under an intervening TokenFactor.  It is
10719    // possible to dig deeper under nested TokenFactors.
10720    if (ChainVal == LdVal)
10721      Ld = cast<LoadSDNode>(St->getChain());
10722    else if (St->getValue().hasOneUse() &&
10723             ChainVal->getOpcode() == ISD::TokenFactor) {
10724      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10725        if (ChainVal->getOperand(i).getNode() == LdVal) {
10726          TokenFactorIndex = i;
10727          Ld = cast<LoadSDNode>(St->getValue());
10728        } else
10729          Ops.push_back(ChainVal->getOperand(i));
10730      }
10731    }
10732
10733    if (!Ld || !ISD::isNormalLoad(Ld))
10734      return SDValue();
10735
10736    // If this is not the MMX case, i.e. we are just turning i64 load/store
10737    // into f64 load/store, avoid the transformation if there are multiple
10738    // uses of the loaded value.
10739    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10740      return SDValue();
10741
10742    DebugLoc LdDL = Ld->getDebugLoc();
10743    DebugLoc StDL = N->getDebugLoc();
10744    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10745    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10746    // pair instead.
10747    if (Subtarget->is64Bit() || F64IsLegal) {
10748      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10749      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
10750                                  Ld->getPointerInfo(), Ld->isVolatile(),
10751                                  Ld->isNonTemporal(), Ld->getAlignment());
10752      SDValue NewChain = NewLd.getValue(1);
10753      if (TokenFactorIndex != -1) {
10754        Ops.push_back(NewChain);
10755        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10756                               Ops.size());
10757      }
10758      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10759                          St->getPointerInfo(),
10760                          St->isVolatile(), St->isNonTemporal(),
10761                          St->getAlignment());
10762    }
10763
10764    // Otherwise, lower to two pairs of 32-bit loads / stores.
10765    SDValue LoAddr = Ld->getBasePtr();
10766    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10767                                 DAG.getConstant(4, MVT::i32));
10768
10769    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10770                               Ld->getPointerInfo(),
10771                               Ld->isVolatile(), Ld->isNonTemporal(),
10772                               Ld->getAlignment());
10773    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10774                               Ld->getPointerInfo().getWithOffset(4),
10775                               Ld->isVolatile(), Ld->isNonTemporal(),
10776                               MinAlign(Ld->getAlignment(), 4));
10777
10778    SDValue NewChain = LoLd.getValue(1);
10779    if (TokenFactorIndex != -1) {
10780      Ops.push_back(LoLd);
10781      Ops.push_back(HiLd);
10782      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10783                             Ops.size());
10784    }
10785
10786    LoAddr = St->getBasePtr();
10787    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10788                         DAG.getConstant(4, MVT::i32));
10789
10790    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10791                                St->getPointerInfo(),
10792                                St->isVolatile(), St->isNonTemporal(),
10793                                St->getAlignment());
10794    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10795                                St->getPointerInfo().getWithOffset(4),
10796                                St->isVolatile(),
10797                                St->isNonTemporal(),
10798                                MinAlign(St->getAlignment(), 4));
10799    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10800  }
10801  return SDValue();
10802}
10803
10804/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10805/// X86ISD::FXOR nodes.
10806static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10807  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10808  // F[X]OR(0.0, x) -> x
10809  // F[X]OR(x, 0.0) -> x
10810  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10811    if (C->getValueAPF().isPosZero())
10812      return N->getOperand(1);
10813  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10814    if (C->getValueAPF().isPosZero())
10815      return N->getOperand(0);
10816  return SDValue();
10817}
10818
10819/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10820static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10821  // FAND(0.0, x) -> 0.0
10822  // FAND(x, 0.0) -> 0.0
10823  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10824    if (C->getValueAPF().isPosZero())
10825      return N->getOperand(0);
10826  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10827    if (C->getValueAPF().isPosZero())
10828      return N->getOperand(1);
10829  return SDValue();
10830}
10831
10832static SDValue PerformBTCombine(SDNode *N,
10833                                SelectionDAG &DAG,
10834                                TargetLowering::DAGCombinerInfo &DCI) {
10835  // BT ignores high bits in the bit index operand.
10836  SDValue Op1 = N->getOperand(1);
10837  if (Op1.hasOneUse()) {
10838    unsigned BitWidth = Op1.getValueSizeInBits();
10839    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10840    APInt KnownZero, KnownOne;
10841    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10842                                          !DCI.isBeforeLegalizeOps());
10843    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10844    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10845        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10846      DCI.CommitTargetLoweringOpt(TLO);
10847  }
10848  return SDValue();
10849}
10850
10851static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10852  SDValue Op = N->getOperand(0);
10853  if (Op.getOpcode() == ISD::BIT_CONVERT)
10854    Op = Op.getOperand(0);
10855  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10856  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10857      VT.getVectorElementType().getSizeInBits() ==
10858      OpVT.getVectorElementType().getSizeInBits()) {
10859    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10860  }
10861  return SDValue();
10862}
10863
10864static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10865  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10866  //           (and (i32 x86isd::setcc_carry), 1)
10867  // This eliminates the zext. This transformation is necessary because
10868  // ISD::SETCC is always legalized to i8.
10869  DebugLoc dl = N->getDebugLoc();
10870  SDValue N0 = N->getOperand(0);
10871  EVT VT = N->getValueType(0);
10872  if (N0.getOpcode() == ISD::AND &&
10873      N0.hasOneUse() &&
10874      N0.getOperand(0).hasOneUse()) {
10875    SDValue N00 = N0.getOperand(0);
10876    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10877      return SDValue();
10878    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10879    if (!C || C->getZExtValue() != 1)
10880      return SDValue();
10881    return DAG.getNode(ISD::AND, dl, VT,
10882                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10883                                   N00.getOperand(0), N00.getOperand(1)),
10884                       DAG.getConstant(1, VT));
10885  }
10886
10887  return SDValue();
10888}
10889
10890SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10891                                             DAGCombinerInfo &DCI) const {
10892  SelectionDAG &DAG = DCI.DAG;
10893  switch (N->getOpcode()) {
10894  default: break;
10895  case ISD::EXTRACT_VECTOR_ELT:
10896                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10897  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10898  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10899  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10900  case ISD::SHL:
10901  case ISD::SRA:
10902  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10903  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10904  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10905  case X86ISD::FXOR:
10906  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10907  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10908  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10909  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10910  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10911  case X86ISD::SHUFPS:      // Handle all target specific shuffles
10912  case X86ISD::SHUFPD:
10913  case X86ISD::PALIGN:
10914  case X86ISD::PUNPCKHBW:
10915  case X86ISD::PUNPCKHWD:
10916  case X86ISD::PUNPCKHDQ:
10917  case X86ISD::PUNPCKHQDQ:
10918  case X86ISD::UNPCKHPS:
10919  case X86ISD::UNPCKHPD:
10920  case X86ISD::PUNPCKLBW:
10921  case X86ISD::PUNPCKLWD:
10922  case X86ISD::PUNPCKLDQ:
10923  case X86ISD::PUNPCKLQDQ:
10924  case X86ISD::UNPCKLPS:
10925  case X86ISD::UNPCKLPD:
10926  case X86ISD::MOVHLPS:
10927  case X86ISD::MOVLHPS:
10928  case X86ISD::PSHUFD:
10929  case X86ISD::PSHUFHW:
10930  case X86ISD::PSHUFLW:
10931  case X86ISD::MOVSS:
10932  case X86ISD::MOVSD:
10933  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10934  }
10935
10936  return SDValue();
10937}
10938
10939/// isTypeDesirableForOp - Return true if the target has native support for
10940/// the specified value type and it is 'desirable' to use the type for the
10941/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10942/// instruction encodings are longer and some i16 instructions are slow.
10943bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10944  if (!isTypeLegal(VT))
10945    return false;
10946  if (VT != MVT::i16)
10947    return true;
10948
10949  switch (Opc) {
10950  default:
10951    return true;
10952  case ISD::LOAD:
10953  case ISD::SIGN_EXTEND:
10954  case ISD::ZERO_EXTEND:
10955  case ISD::ANY_EXTEND:
10956  case ISD::SHL:
10957  case ISD::SRL:
10958  case ISD::SUB:
10959  case ISD::ADD:
10960  case ISD::MUL:
10961  case ISD::AND:
10962  case ISD::OR:
10963  case ISD::XOR:
10964    return false;
10965  }
10966}
10967
10968/// IsDesirableToPromoteOp - This method query the target whether it is
10969/// beneficial for dag combiner to promote the specified node. If true, it
10970/// should return the desired promotion type by reference.
10971bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10972  EVT VT = Op.getValueType();
10973  if (VT != MVT::i16)
10974    return false;
10975
10976  bool Promote = false;
10977  bool Commute = false;
10978  switch (Op.getOpcode()) {
10979  default: break;
10980  case ISD::LOAD: {
10981    LoadSDNode *LD = cast<LoadSDNode>(Op);
10982    // If the non-extending load has a single use and it's not live out, then it
10983    // might be folded.
10984    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10985                                                     Op.hasOneUse()*/) {
10986      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10987             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10988        // The only case where we'd want to promote LOAD (rather then it being
10989        // promoted as an operand is when it's only use is liveout.
10990        if (UI->getOpcode() != ISD::CopyToReg)
10991          return false;
10992      }
10993    }
10994    Promote = true;
10995    break;
10996  }
10997  case ISD::SIGN_EXTEND:
10998  case ISD::ZERO_EXTEND:
10999  case ISD::ANY_EXTEND:
11000    Promote = true;
11001    break;
11002  case ISD::SHL:
11003  case ISD::SRL: {
11004    SDValue N0 = Op.getOperand(0);
11005    // Look out for (store (shl (load), x)).
11006    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11007      return false;
11008    Promote = true;
11009    break;
11010  }
11011  case ISD::ADD:
11012  case ISD::MUL:
11013  case ISD::AND:
11014  case ISD::OR:
11015  case ISD::XOR:
11016    Commute = true;
11017    // fallthrough
11018  case ISD::SUB: {
11019    SDValue N0 = Op.getOperand(0);
11020    SDValue N1 = Op.getOperand(1);
11021    if (!Commute && MayFoldLoad(N1))
11022      return false;
11023    // Avoid disabling potential load folding opportunities.
11024    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11025      return false;
11026    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11027      return false;
11028    Promote = true;
11029  }
11030  }
11031
11032  PVT = MVT::i32;
11033  return Promote;
11034}
11035
11036//===----------------------------------------------------------------------===//
11037//                           X86 Inline Assembly Support
11038//===----------------------------------------------------------------------===//
11039
11040static bool LowerToBSwap(CallInst *CI) {
11041  // FIXME: this should verify that we are targetting a 486 or better.  If not,
11042  // we will turn this bswap into something that will be lowered to logical ops
11043  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
11044  // so don't worry about this.
11045
11046  // Verify this is a simple bswap.
11047  if (CI->getNumArgOperands() != 1 ||
11048      CI->getType() != CI->getArgOperand(0)->getType() ||
11049      !CI->getType()->isIntegerTy())
11050    return false;
11051
11052  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11053  if (!Ty || Ty->getBitWidth() % 16 != 0)
11054    return false;
11055
11056  // Okay, we can do this xform, do so now.
11057  const Type *Tys[] = { Ty };
11058  Module *M = CI->getParent()->getParent()->getParent();
11059  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11060
11061  Value *Op = CI->getArgOperand(0);
11062  Op = CallInst::Create(Int, Op, CI->getName(), CI);
11063
11064  CI->replaceAllUsesWith(Op);
11065  CI->eraseFromParent();
11066  return true;
11067}
11068
11069bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11070  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11071  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
11072
11073  std::string AsmStr = IA->getAsmString();
11074
11075  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11076  SmallVector<StringRef, 4> AsmPieces;
11077  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
11078
11079  switch (AsmPieces.size()) {
11080  default: return false;
11081  case 1:
11082    AsmStr = AsmPieces[0];
11083    AsmPieces.clear();
11084    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
11085
11086    // bswap $0
11087    if (AsmPieces.size() == 2 &&
11088        (AsmPieces[0] == "bswap" ||
11089         AsmPieces[0] == "bswapq" ||
11090         AsmPieces[0] == "bswapl") &&
11091        (AsmPieces[1] == "$0" ||
11092         AsmPieces[1] == "${0:q}")) {
11093      // No need to check constraints, nothing other than the equivalent of
11094      // "=r,0" would be valid here.
11095      return LowerToBSwap(CI);
11096    }
11097    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
11098    if (CI->getType()->isIntegerTy(16) &&
11099        AsmPieces.size() == 3 &&
11100        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11101        AsmPieces[1] == "$$8," &&
11102        AsmPieces[2] == "${0:w}" &&
11103        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11104      AsmPieces.clear();
11105      const std::string &Constraints = IA->getConstraintString();
11106      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11107      std::sort(AsmPieces.begin(), AsmPieces.end());
11108      if (AsmPieces.size() == 4 &&
11109          AsmPieces[0] == "~{cc}" &&
11110          AsmPieces[1] == "~{dirflag}" &&
11111          AsmPieces[2] == "~{flags}" &&
11112          AsmPieces[3] == "~{fpsr}") {
11113        return LowerToBSwap(CI);
11114      }
11115    }
11116    break;
11117  case 3:
11118    if (CI->getType()->isIntegerTy(64) &&
11119        Constraints.size() >= 2 &&
11120        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11121        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11122      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11123      SmallVector<StringRef, 4> Words;
11124      SplitString(AsmPieces[0], Words, " \t");
11125      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11126        Words.clear();
11127        SplitString(AsmPieces[1], Words, " \t");
11128        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11129          Words.clear();
11130          SplitString(AsmPieces[2], Words, " \t,");
11131          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11132              Words[2] == "%edx") {
11133            return LowerToBSwap(CI);
11134          }
11135        }
11136      }
11137    }
11138    break;
11139  }
11140  return false;
11141}
11142
11143
11144
11145/// getConstraintType - Given a constraint letter, return the type of
11146/// constraint it is for this target.
11147X86TargetLowering::ConstraintType
11148X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11149  if (Constraint.size() == 1) {
11150    switch (Constraint[0]) {
11151    case 'A':
11152      return C_Register;
11153    case 'f':
11154    case 'r':
11155    case 'R':
11156    case 'l':
11157    case 'q':
11158    case 'Q':
11159    case 'x':
11160    case 'y':
11161    case 'Y':
11162      return C_RegisterClass;
11163    case 'e':
11164    case 'Z':
11165      return C_Other;
11166    default:
11167      break;
11168    }
11169  }
11170  return TargetLowering::getConstraintType(Constraint);
11171}
11172
11173/// Examine constraint type and operand type and determine a weight value,
11174/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
11175/// This object must already have been set up with the operand type
11176/// and the current alternative constraint selected.
11177int X86TargetLowering::getSingleConstraintMatchWeight(
11178    AsmOperandInfo &info, const char *constraint) const {
11179  int weight = -1;
11180  Value *CallOperandVal = info.CallOperandVal;
11181    // If we don't have a value, we can't do a match,
11182    // but allow it at the lowest weight.
11183  if (CallOperandVal == NULL)
11184    return 0;
11185  // Look at the constraint type.
11186  switch (*constraint) {
11187  default:
11188    return TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11189    break;
11190  case 'I':
11191    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11192      if (C->getZExtValue() <= 31)
11193        weight = 3;
11194    }
11195    break;
11196  // etc.
11197  }
11198  return weight;
11199}
11200
11201/// LowerXConstraint - try to replace an X constraint, which matches anything,
11202/// with another that has more specific requirements based on the type of the
11203/// corresponding operand.
11204const char *X86TargetLowering::
11205LowerXConstraint(EVT ConstraintVT) const {
11206  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11207  // 'f' like normal targets.
11208  if (ConstraintVT.isFloatingPoint()) {
11209    if (Subtarget->hasSSE2())
11210      return "Y";
11211    if (Subtarget->hasSSE1())
11212      return "x";
11213  }
11214
11215  return TargetLowering::LowerXConstraint(ConstraintVT);
11216}
11217
11218/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11219/// vector.  If it is invalid, don't add anything to Ops.
11220void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11221                                                     char Constraint,
11222                                                     std::vector<SDValue>&Ops,
11223                                                     SelectionDAG &DAG) const {
11224  SDValue Result(0, 0);
11225
11226  switch (Constraint) {
11227  default: break;
11228  case 'I':
11229    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11230      if (C->getZExtValue() <= 31) {
11231        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11232        break;
11233      }
11234    }
11235    return;
11236  case 'J':
11237    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11238      if (C->getZExtValue() <= 63) {
11239        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11240        break;
11241      }
11242    }
11243    return;
11244  case 'K':
11245    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11246      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11247        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11248        break;
11249      }
11250    }
11251    return;
11252  case 'N':
11253    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11254      if (C->getZExtValue() <= 255) {
11255        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11256        break;
11257      }
11258    }
11259    return;
11260  case 'e': {
11261    // 32-bit signed value
11262    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11263      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11264                                           C->getSExtValue())) {
11265        // Widen to 64 bits here to get it sign extended.
11266        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11267        break;
11268      }
11269    // FIXME gcc accepts some relocatable values here too, but only in certain
11270    // memory models; it's complicated.
11271    }
11272    return;
11273  }
11274  case 'Z': {
11275    // 32-bit unsigned value
11276    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11277      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11278                                           C->getZExtValue())) {
11279        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11280        break;
11281      }
11282    }
11283    // FIXME gcc accepts some relocatable values here too, but only in certain
11284    // memory models; it's complicated.
11285    return;
11286  }
11287  case 'i': {
11288    // Literal immediates are always ok.
11289    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11290      // Widen to 64 bits here to get it sign extended.
11291      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11292      break;
11293    }
11294
11295    // In any sort of PIC mode addresses need to be computed at runtime by
11296    // adding in a register or some sort of table lookup.  These can't
11297    // be used as immediates.
11298    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11299      return;
11300
11301    // If we are in non-pic codegen mode, we allow the address of a global (with
11302    // an optional displacement) to be used with 'i'.
11303    GlobalAddressSDNode *GA = 0;
11304    int64_t Offset = 0;
11305
11306    // Match either (GA), (GA+C), (GA+C1+C2), etc.
11307    while (1) {
11308      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11309        Offset += GA->getOffset();
11310        break;
11311      } else if (Op.getOpcode() == ISD::ADD) {
11312        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11313          Offset += C->getZExtValue();
11314          Op = Op.getOperand(0);
11315          continue;
11316        }
11317      } else if (Op.getOpcode() == ISD::SUB) {
11318        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11319          Offset += -C->getZExtValue();
11320          Op = Op.getOperand(0);
11321          continue;
11322        }
11323      }
11324
11325      // Otherwise, this isn't something we can handle, reject it.
11326      return;
11327    }
11328
11329    const GlobalValue *GV = GA->getGlobal();
11330    // If we require an extra load to get this address, as in PIC mode, we
11331    // can't accept it.
11332    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11333                                                        getTargetMachine())))
11334      return;
11335
11336    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11337                                        GA->getValueType(0), Offset);
11338    break;
11339  }
11340  }
11341
11342  if (Result.getNode()) {
11343    Ops.push_back(Result);
11344    return;
11345  }
11346  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11347}
11348
11349std::vector<unsigned> X86TargetLowering::
11350getRegClassForInlineAsmConstraint(const std::string &Constraint,
11351                                  EVT VT) const {
11352  if (Constraint.size() == 1) {
11353    // FIXME: not handling fp-stack yet!
11354    switch (Constraint[0]) {      // GCC X86 Constraint Letters
11355    default: break;  // Unknown constraint letter
11356    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11357      if (Subtarget->is64Bit()) {
11358        if (VT == MVT::i32)
11359          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11360                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11361                                       X86::R10D,X86::R11D,X86::R12D,
11362                                       X86::R13D,X86::R14D,X86::R15D,
11363                                       X86::EBP, X86::ESP, 0);
11364        else if (VT == MVT::i16)
11365          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
11366                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
11367                                       X86::R10W,X86::R11W,X86::R12W,
11368                                       X86::R13W,X86::R14W,X86::R15W,
11369                                       X86::BP,  X86::SP, 0);
11370        else if (VT == MVT::i8)
11371          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
11372                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11373                                       X86::R10B,X86::R11B,X86::R12B,
11374                                       X86::R13B,X86::R14B,X86::R15B,
11375                                       X86::BPL, X86::SPL, 0);
11376
11377        else if (VT == MVT::i64)
11378          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11379                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
11380                                       X86::R10, X86::R11, X86::R12,
11381                                       X86::R13, X86::R14, X86::R15,
11382                                       X86::RBP, X86::RSP, 0);
11383
11384        break;
11385      }
11386      // 32-bit fallthrough
11387    case 'Q':   // Q_REGS
11388      if (VT == MVT::i32)
11389        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11390      else if (VT == MVT::i16)
11391        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11392      else if (VT == MVT::i8)
11393        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11394      else if (VT == MVT::i64)
11395        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11396      break;
11397    }
11398  }
11399
11400  return std::vector<unsigned>();
11401}
11402
11403std::pair<unsigned, const TargetRegisterClass*>
11404X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11405                                                EVT VT) const {
11406  // First, see if this is a constraint that directly corresponds to an LLVM
11407  // register class.
11408  if (Constraint.size() == 1) {
11409    // GCC Constraint Letters
11410    switch (Constraint[0]) {
11411    default: break;
11412    case 'r':   // GENERAL_REGS
11413    case 'l':   // INDEX_REGS
11414      if (VT == MVT::i8)
11415        return std::make_pair(0U, X86::GR8RegisterClass);
11416      if (VT == MVT::i16)
11417        return std::make_pair(0U, X86::GR16RegisterClass);
11418      if (VT == MVT::i32 || !Subtarget->is64Bit())
11419        return std::make_pair(0U, X86::GR32RegisterClass);
11420      return std::make_pair(0U, X86::GR64RegisterClass);
11421    case 'R':   // LEGACY_REGS
11422      if (VT == MVT::i8)
11423        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11424      if (VT == MVT::i16)
11425        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11426      if (VT == MVT::i32 || !Subtarget->is64Bit())
11427        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11428      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11429    case 'f':  // FP Stack registers.
11430      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11431      // value to the correct fpstack register class.
11432      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11433        return std::make_pair(0U, X86::RFP32RegisterClass);
11434      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11435        return std::make_pair(0U, X86::RFP64RegisterClass);
11436      return std::make_pair(0U, X86::RFP80RegisterClass);
11437    case 'y':   // MMX_REGS if MMX allowed.
11438      if (!Subtarget->hasMMX()) break;
11439      return std::make_pair(0U, X86::VR64RegisterClass);
11440    case 'Y':   // SSE_REGS if SSE2 allowed
11441      if (!Subtarget->hasSSE2()) break;
11442      // FALL THROUGH.
11443    case 'x':   // SSE_REGS if SSE1 allowed
11444      if (!Subtarget->hasSSE1()) break;
11445
11446      switch (VT.getSimpleVT().SimpleTy) {
11447      default: break;
11448      // Scalar SSE types.
11449      case MVT::f32:
11450      case MVT::i32:
11451        return std::make_pair(0U, X86::FR32RegisterClass);
11452      case MVT::f64:
11453      case MVT::i64:
11454        return std::make_pair(0U, X86::FR64RegisterClass);
11455      // Vector types.
11456      case MVT::v16i8:
11457      case MVT::v8i16:
11458      case MVT::v4i32:
11459      case MVT::v2i64:
11460      case MVT::v4f32:
11461      case MVT::v2f64:
11462        return std::make_pair(0U, X86::VR128RegisterClass);
11463      }
11464      break;
11465    }
11466  }
11467
11468  // Use the default implementation in TargetLowering to convert the register
11469  // constraint into a member of a register class.
11470  std::pair<unsigned, const TargetRegisterClass*> Res;
11471  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11472
11473  // Not found as a standard register?
11474  if (Res.second == 0) {
11475    // Map st(0) -> st(7) -> ST0
11476    if (Constraint.size() == 7 && Constraint[0] == '{' &&
11477        tolower(Constraint[1]) == 's' &&
11478        tolower(Constraint[2]) == 't' &&
11479        Constraint[3] == '(' &&
11480        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11481        Constraint[5] == ')' &&
11482        Constraint[6] == '}') {
11483
11484      Res.first = X86::ST0+Constraint[4]-'0';
11485      Res.second = X86::RFP80RegisterClass;
11486      return Res;
11487    }
11488
11489    // GCC allows "st(0)" to be called just plain "st".
11490    if (StringRef("{st}").equals_lower(Constraint)) {
11491      Res.first = X86::ST0;
11492      Res.second = X86::RFP80RegisterClass;
11493      return Res;
11494    }
11495
11496    // flags -> EFLAGS
11497    if (StringRef("{flags}").equals_lower(Constraint)) {
11498      Res.first = X86::EFLAGS;
11499      Res.second = X86::CCRRegisterClass;
11500      return Res;
11501    }
11502
11503    // 'A' means EAX + EDX.
11504    if (Constraint == "A") {
11505      Res.first = X86::EAX;
11506      Res.second = X86::GR32_ADRegisterClass;
11507      return Res;
11508    }
11509    return Res;
11510  }
11511
11512  // Otherwise, check to see if this is a register class of the wrong value
11513  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11514  // turn into {ax},{dx}.
11515  if (Res.second->hasType(VT))
11516    return Res;   // Correct type already, nothing to do.
11517
11518  // All of the single-register GCC register classes map their values onto
11519  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
11520  // really want an 8-bit or 32-bit register, map to the appropriate register
11521  // class and return the appropriate register.
11522  if (Res.second == X86::GR16RegisterClass) {
11523    if (VT == MVT::i8) {
11524      unsigned DestReg = 0;
11525      switch (Res.first) {
11526      default: break;
11527      case X86::AX: DestReg = X86::AL; break;
11528      case X86::DX: DestReg = X86::DL; break;
11529      case X86::CX: DestReg = X86::CL; break;
11530      case X86::BX: DestReg = X86::BL; break;
11531      }
11532      if (DestReg) {
11533        Res.first = DestReg;
11534        Res.second = X86::GR8RegisterClass;
11535      }
11536    } else if (VT == MVT::i32) {
11537      unsigned DestReg = 0;
11538      switch (Res.first) {
11539      default: break;
11540      case X86::AX: DestReg = X86::EAX; break;
11541      case X86::DX: DestReg = X86::EDX; break;
11542      case X86::CX: DestReg = X86::ECX; break;
11543      case X86::BX: DestReg = X86::EBX; break;
11544      case X86::SI: DestReg = X86::ESI; break;
11545      case X86::DI: DestReg = X86::EDI; break;
11546      case X86::BP: DestReg = X86::EBP; break;
11547      case X86::SP: DestReg = X86::ESP; break;
11548      }
11549      if (DestReg) {
11550        Res.first = DestReg;
11551        Res.second = X86::GR32RegisterClass;
11552      }
11553    } else if (VT == MVT::i64) {
11554      unsigned DestReg = 0;
11555      switch (Res.first) {
11556      default: break;
11557      case X86::AX: DestReg = X86::RAX; break;
11558      case X86::DX: DestReg = X86::RDX; break;
11559      case X86::CX: DestReg = X86::RCX; break;
11560      case X86::BX: DestReg = X86::RBX; break;
11561      case X86::SI: DestReg = X86::RSI; break;
11562      case X86::DI: DestReg = X86::RDI; break;
11563      case X86::BP: DestReg = X86::RBP; break;
11564      case X86::SP: DestReg = X86::RSP; break;
11565      }
11566      if (DestReg) {
11567        Res.first = DestReg;
11568        Res.second = X86::GR64RegisterClass;
11569      }
11570    }
11571  } else if (Res.second == X86::FR32RegisterClass ||
11572             Res.second == X86::FR64RegisterClass ||
11573             Res.second == X86::VR128RegisterClass) {
11574    // Handle references to XMM physical registers that got mapped into the
11575    // wrong class.  This can happen with constraints like {xmm0} where the
11576    // target independent register mapper will just pick the first match it can
11577    // find, ignoring the required type.
11578    if (VT == MVT::f32)
11579      Res.second = X86::FR32RegisterClass;
11580    else if (VT == MVT::f64)
11581      Res.second = X86::FR64RegisterClass;
11582    else if (X86::VR128RegisterClass->hasType(VT))
11583      Res.second = X86::VR128RegisterClass;
11584  }
11585
11586  return Res;
11587}
11588