X86ISelLowering.cpp revision 068317bfa37ec52ae25f3b2fa3194bea3e7c6027
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ParameterAttributes.h"
39using namespace llvm;
40
41X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42  : TargetLowering(TM) {
43  Subtarget = &TM.getSubtarget<X86Subtarget>();
44  X86ScalarSSEf64 = Subtarget->hasSSE2();
45  X86ScalarSSEf32 = Subtarget->hasSSE1();
46  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
47
48  RegInfo = TM.getRegisterInfo();
49
50  // Set up the TargetLowering object.
51
52  // X86 is weird, it always uses i8 for shift amounts and setcc results.
53  setShiftAmountType(MVT::i8);
54  setSetCCResultType(MVT::i8);
55  setSetCCResultContents(ZeroOrOneSetCCResult);
56  setSchedulingPreference(SchedulingForRegPressure);
57  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
58  setStackPointerRegisterToSaveRestore(X86StackPtr);
59
60  if (Subtarget->isTargetDarwin()) {
61    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
62    setUseUnderscoreSetJmp(false);
63    setUseUnderscoreLongJmp(false);
64  } else if (Subtarget->isTargetMingw()) {
65    // MS runtime is weird: it exports _setjmp, but longjmp!
66    setUseUnderscoreSetJmp(true);
67    setUseUnderscoreLongJmp(false);
68  } else {
69    setUseUnderscoreSetJmp(true);
70    setUseUnderscoreLongJmp(true);
71  }
72
73  // Set up the register classes.
74  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
75  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
76  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
77  if (Subtarget->is64Bit())
78    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
79
80  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
81
82  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
83  // operation.
84  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
85  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
86  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
87
88  if (Subtarget->is64Bit()) {
89    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
90    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
91  } else {
92    if (X86ScalarSSEf64)
93      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
94      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
95    else
96      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
97  }
98
99  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
100  // this operation.
101  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
102  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
103  // SSE has no i16 to fp conversion, only i32
104  if (X86ScalarSSEf32) {
105    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
106    // f32 and f64 cases are Legal, f80 case is not
107    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
108  } else {
109    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
110    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
111  }
112
113  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
114  // are Legal, f80 is custom lowered.
115  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
116  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
117
118  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
119  // this operation.
120  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
121  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
122
123  if (X86ScalarSSEf32) {
124    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
125    // f32 and f64 cases are Legal, f80 case is not
126    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
127  } else {
128    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
129    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
130  }
131
132  // Handle FP_TO_UINT by promoting the destination to a larger signed
133  // conversion.
134  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
135  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
136  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
137
138  if (Subtarget->is64Bit()) {
139    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
140    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
141  } else {
142    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
143      // Expand FP_TO_UINT into a select.
144      // FIXME: We would like to use a Custom expander here eventually to do
145      // the optimal thing for SSE vs. the default expansion in the legalizer.
146      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
147    else
148      // With SSE3 we can use fisttpll to convert to a signed i64.
149      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
150  }
151
152  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
153  if (!X86ScalarSSEf64) {
154    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
155    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
156  }
157
158  // Divide and remainder are lowered to use div or idiv in legalize in
159  // order to expose the intermediate computations to trivial CSE. This is
160  // most noticeable when both x/y and x%y are being computed; they can be
161  // done with a single div or idiv.
162  setOperationAction(ISD::SDIV            , MVT::i8    , Custom);
163  setOperationAction(ISD::UDIV            , MVT::i8    , Custom);
164  setOperationAction(ISD::SREM            , MVT::i8    , Custom);
165  setOperationAction(ISD::UREM            , MVT::i8    , Custom);
166  setOperationAction(ISD::SDIV            , MVT::i16   , Custom);
167  setOperationAction(ISD::UDIV            , MVT::i16   , Custom);
168  setOperationAction(ISD::SREM            , MVT::i16   , Custom);
169  setOperationAction(ISD::UREM            , MVT::i16   , Custom);
170  setOperationAction(ISD::SDIV            , MVT::i32   , Custom);
171  setOperationAction(ISD::UDIV            , MVT::i32   , Custom);
172  setOperationAction(ISD::SREM            , MVT::i32   , Custom);
173  setOperationAction(ISD::UREM            , MVT::i32   , Custom);
174  setOperationAction(ISD::SDIV            , MVT::i64   , Custom);
175  setOperationAction(ISD::UDIV            , MVT::i64   , Custom);
176  setOperationAction(ISD::SREM            , MVT::i64   , Custom);
177  setOperationAction(ISD::UREM            , MVT::i64   , Custom);
178
179  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
180  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
181  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
182  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
183  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
184  if (Subtarget->is64Bit())
185    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
186  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
187  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
188  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
189  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
190  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
191
192  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
193  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
194  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
195  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
196  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
197  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
198  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
199  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
200  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
201  if (Subtarget->is64Bit()) {
202    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
203    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
204    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
205  }
206
207  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
208  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
209
210  // These should be promoted to a larger select which is supported.
211  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
212  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
213  // X86 wants to expand cmov itself.
214  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
215  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
216  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
217  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
218  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
219  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
220  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
221  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
222  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
223  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
224  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
225  if (Subtarget->is64Bit()) {
226    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
227    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
228  }
229  // X86 ret instruction may pop stack.
230  setOperationAction(ISD::RET             , MVT::Other, Custom);
231  if (!Subtarget->is64Bit())
232    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
233
234  // Darwin ABI issue.
235  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
236  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
237  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
238  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
239  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
240  if (Subtarget->is64Bit()) {
241    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
242    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
243    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
244    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
245  }
246  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
247  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
248  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
249  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
250  // X86 wants to expand memset / memcpy itself.
251  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
252  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
253
254  // Use the default ISD::LOCATION expansion.
255  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
256  // FIXME - use subtarget debug flags
257  if (!Subtarget->isTargetDarwin() &&
258      !Subtarget->isTargetELF() &&
259      !Subtarget->isTargetCygMing())
260    setOperationAction(ISD::LABEL, MVT::Other, Expand);
261
262  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
263  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
264  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
265  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
266  if (Subtarget->is64Bit()) {
267    // FIXME: Verify
268    setExceptionPointerRegister(X86::RAX);
269    setExceptionSelectorRegister(X86::RDX);
270  } else {
271    setExceptionPointerRegister(X86::EAX);
272    setExceptionSelectorRegister(X86::EDX);
273  }
274  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
275
276  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
277
278  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
279  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
280  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
281  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
282  if (Subtarget->is64Bit())
283    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
284  else
285    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
286
287  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
288  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
289  if (Subtarget->is64Bit())
290    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
291  if (Subtarget->isTargetCygMing())
292    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
293  else
294    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
295
296  if (X86ScalarSSEf64) {
297    // f32 and f64 use SSE.
298    // Set up the FP register classes.
299    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
300    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
301
302    // Use ANDPD to simulate FABS.
303    setOperationAction(ISD::FABS , MVT::f64, Custom);
304    setOperationAction(ISD::FABS , MVT::f32, Custom);
305
306    // Use XORP to simulate FNEG.
307    setOperationAction(ISD::FNEG , MVT::f64, Custom);
308    setOperationAction(ISD::FNEG , MVT::f32, Custom);
309
310    // Use ANDPD and ORPD to simulate FCOPYSIGN.
311    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
312    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
313
314    // We don't support sin/cos/fmod
315    setOperationAction(ISD::FSIN , MVT::f64, Expand);
316    setOperationAction(ISD::FCOS , MVT::f64, Expand);
317    setOperationAction(ISD::FREM , MVT::f64, Expand);
318    setOperationAction(ISD::FSIN , MVT::f32, Expand);
319    setOperationAction(ISD::FCOS , MVT::f32, Expand);
320    setOperationAction(ISD::FREM , MVT::f32, Expand);
321
322    // Expand FP immediates into loads from the stack, except for the special
323    // cases we handle.
324    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
325    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
326    addLegalFPImmediate(APFloat(+0.0)); // xorpd
327    addLegalFPImmediate(APFloat(+0.0f)); // xorps
328
329    // Conversions to long double (in X87) go through memory.
330    setConvertAction(MVT::f32, MVT::f80, Expand);
331    setConvertAction(MVT::f64, MVT::f80, Expand);
332
333    // Conversions from long double (in X87) go through memory.
334    setConvertAction(MVT::f80, MVT::f32, Expand);
335    setConvertAction(MVT::f80, MVT::f64, Expand);
336  } else if (X86ScalarSSEf32) {
337    // Use SSE for f32, x87 for f64.
338    // Set up the FP register classes.
339    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
340    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
341
342    // Use ANDPS to simulate FABS.
343    setOperationAction(ISD::FABS , MVT::f32, Custom);
344
345    // Use XORP to simulate FNEG.
346    setOperationAction(ISD::FNEG , MVT::f32, Custom);
347
348    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
349
350    // Use ANDPS and ORPS to simulate FCOPYSIGN.
351    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
352    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
353
354    // We don't support sin/cos/fmod
355    setOperationAction(ISD::FSIN , MVT::f32, Expand);
356    setOperationAction(ISD::FCOS , MVT::f32, Expand);
357    setOperationAction(ISD::FREM , MVT::f32, Expand);
358
359    // Expand FP immediates into loads from the stack, except for the special
360    // cases we handle.
361    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
362    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
363    addLegalFPImmediate(APFloat(+0.0f)); // xorps
364    addLegalFPImmediate(APFloat(+0.0)); // FLD0
365    addLegalFPImmediate(APFloat(+1.0)); // FLD1
366    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
367    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
368
369    // SSE->x87 conversions go through memory.
370    setConvertAction(MVT::f32, MVT::f64, Expand);
371    setConvertAction(MVT::f32, MVT::f80, Expand);
372
373    // x87->SSE truncations need to go through memory.
374    setConvertAction(MVT::f80, MVT::f32, Expand);
375    setConvertAction(MVT::f64, MVT::f32, Expand);
376    // And x87->x87 truncations also.
377    setConvertAction(MVT::f80, MVT::f64, Expand);
378
379    if (!UnsafeFPMath) {
380      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
381      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
382    }
383  } else {
384    // f32 and f64 in x87.
385    // Set up the FP register classes.
386    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
387    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
388
389    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
390    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
391    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
392    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
393
394    // Floating truncations need to go through memory.
395    setConvertAction(MVT::f80, MVT::f32, Expand);
396    setConvertAction(MVT::f64, MVT::f32, Expand);
397    setConvertAction(MVT::f80, MVT::f64, Expand);
398
399    if (!UnsafeFPMath) {
400      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
401      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
402    }
403
404    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
405    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
406    addLegalFPImmediate(APFloat(+0.0)); // FLD0
407    addLegalFPImmediate(APFloat(+1.0)); // FLD1
408    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
409    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
410    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
411    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
412    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
413    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
414  }
415
416  // Long double always uses X87.
417  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
418  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
419  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
420  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
421  if (!UnsafeFPMath) {
422    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
423    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
424  }
425
426  // First set operation action for all vector types to expand. Then we
427  // will selectively turn on ones that can be effectively codegen'd.
428  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
429       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
430    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
431    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
432    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
433    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
434    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
435    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
436    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
437    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
438    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
439    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
440    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
441    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
442    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
443    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
444    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
445    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
446    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
447    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
448    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
449    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
450    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
451    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
452    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
453  }
454
455  if (Subtarget->hasMMX()) {
456    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
457    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
458    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
459    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
460
461    // FIXME: add MMX packed arithmetics
462
463    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
464    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
465    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
466    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
467
468    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
469    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
470    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
471
472    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
473    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
474
475    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
476    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
477    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
478    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
479    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
480    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
481    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
482
483    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
484    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
485    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
486    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
487    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
488    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
489    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
490
491    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
492    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
493    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
494    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
495    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
496    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
497    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
498
499    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
500    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
501    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
502    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
503    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
504    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
505    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
506
507    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
508    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
509    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
510    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
511
512    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
513    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
514    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
515    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
516
517    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
518    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
519    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
520    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
521  }
522
523  if (Subtarget->hasSSE1()) {
524    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
525
526    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
527    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
528    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
529    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
530    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
531    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
532    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
533    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
534    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
535    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
536    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
537  }
538
539  if (Subtarget->hasSSE2()) {
540    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
541    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
542    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
543    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
544    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
545
546    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
547    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
548    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
549    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
550    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
551    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
552    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
553    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
554    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
555    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
556    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
557    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
558    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
559    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
560    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
561
562    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
563    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
564    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
565    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
566    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
567    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
568
569    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
570    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
571      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
572      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
573      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
574    }
575    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
576    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
577    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
578    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
579    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
580    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
581
582    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
583    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
584      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
585      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
586      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
587      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
588      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
589      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
590      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
591      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
592      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
593      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
594    }
595
596    // Custom lower v2i64 and v2f64 selects.
597    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
598    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
599    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
600    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
601  }
602
603  // We want to custom lower some of our intrinsics.
604  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
605
606  // We have target-specific dag combine patterns for the following nodes:
607  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
608  setTargetDAGCombine(ISD::SELECT);
609
610  computeRegisterProperties();
611
612  // FIXME: These should be based on subtarget info. Plus, the values should
613  // be smaller when we are in optimizing for size mode.
614  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
615  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
616  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
617  allowUnalignedMemoryAccesses = true; // x86 supports it!
618}
619
620
621//===----------------------------------------------------------------------===//
622//               Return Value Calling Convention Implementation
623//===----------------------------------------------------------------------===//
624
625#include "X86GenCallingConv.inc"
626
627/// LowerRET - Lower an ISD::RET node.
628SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
629  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
630
631  SmallVector<CCValAssign, 16> RVLocs;
632  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
633  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
634  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
635  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
636
637
638  // If this is the first return lowered for this function, add the regs to the
639  // liveout set for the function.
640  if (DAG.getMachineFunction().liveout_empty()) {
641    for (unsigned i = 0; i != RVLocs.size(); ++i)
642      if (RVLocs[i].isRegLoc())
643        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
644  }
645
646  SDOperand Chain = Op.getOperand(0);
647  SDOperand Flag;
648
649  // Copy the result values into the output registers.
650  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
651      RVLocs[0].getLocReg() != X86::ST0) {
652    for (unsigned i = 0; i != RVLocs.size(); ++i) {
653      CCValAssign &VA = RVLocs[i];
654      assert(VA.isRegLoc() && "Can only return in registers!");
655      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
656                               Flag);
657      Flag = Chain.getValue(1);
658    }
659  } else {
660    // We need to handle a destination of ST0 specially, because it isn't really
661    // a register.
662    SDOperand Value = Op.getOperand(1);
663
664    // If this is an FP return with ScalarSSE, we need to move the value from
665    // an XMM register onto the fp-stack.
666    if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
667        (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
668      SDOperand MemLoc;
669
670      // If this is a load into a scalarsse value, don't store the loaded value
671      // back to the stack, only to reload it: just replace the scalar-sse load.
672      if (ISD::isNON_EXTLoad(Value.Val) &&
673          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
674        Chain  = Value.getOperand(0);
675        MemLoc = Value.getOperand(1);
676      } else {
677        // Spill the value to memory and reload it into top of stack.
678        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
679        MachineFunction &MF = DAG.getMachineFunction();
680        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
681        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
682        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
683      }
684      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
685      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
686      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
687      Chain = Value.getValue(1);
688    }
689
690    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
691    SDOperand Ops[] = { Chain, Value };
692    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
693    Flag = Chain.getValue(1);
694  }
695
696  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
697  if (Flag.Val)
698    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
699  else
700    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
701}
702
703
704/// LowerCallResult - Lower the result values of an ISD::CALL into the
705/// appropriate copies out of appropriate physical registers.  This assumes that
706/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
707/// being lowered.  The returns a SDNode with the same number of values as the
708/// ISD::CALL.
709SDNode *X86TargetLowering::
710LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
711                unsigned CallingConv, SelectionDAG &DAG) {
712
713  // Assign locations to each value returned by this call.
714  SmallVector<CCValAssign, 16> RVLocs;
715  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
716  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
717  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
718
719
720  SmallVector<SDOperand, 8> ResultVals;
721
722  // Copy all of the result registers out of their specified physreg.
723  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
724    for (unsigned i = 0; i != RVLocs.size(); ++i) {
725      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
726                                 RVLocs[i].getValVT(), InFlag).getValue(1);
727      InFlag = Chain.getValue(2);
728      ResultVals.push_back(Chain.getValue(0));
729    }
730  } else {
731    // Copies from the FP stack are special, as ST0 isn't a valid register
732    // before the fp stackifier runs.
733
734    // Copy ST0 into an RFP register with FP_GET_RESULT.
735    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
736    SDOperand GROps[] = { Chain, InFlag };
737    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
738    Chain  = RetVal.getValue(1);
739    InFlag = RetVal.getValue(2);
740
741    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
742    // an XMM register.
743    if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
744        (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
745      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
746      // shouldn't be necessary except that RFP cannot be live across
747      // multiple blocks. When stackifier is fixed, they can be uncoupled.
748      MachineFunction &MF = DAG.getMachineFunction();
749      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
750      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
751      SDOperand Ops[] = {
752        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
753      };
754      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
755      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
756      Chain = RetVal.getValue(1);
757    }
758    ResultVals.push_back(RetVal);
759  }
760
761  // Merge everything together with a MERGE_VALUES node.
762  ResultVals.push_back(Chain);
763  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
764                     &ResultVals[0], ResultVals.size()).Val;
765}
766
767
768//===----------------------------------------------------------------------===//
769//                C & StdCall Calling Convention implementation
770//===----------------------------------------------------------------------===//
771//  StdCall calling convention seems to be standard for many Windows' API
772//  routines and around. It differs from C calling convention just a little:
773//  callee should clean up the stack, not caller. Symbols should be also
774//  decorated in some fancy way :) It doesn't support any vector arguments.
775
776/// AddLiveIn - This helper function adds the specified physical register to the
777/// MachineFunction as a live in value.  It also creates a corresponding virtual
778/// register for it.
779static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
780                          const TargetRegisterClass *RC) {
781  assert(RC->contains(PReg) && "Not the correct regclass!");
782  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
783  MF.addLiveIn(PReg, VReg);
784  return VReg;
785}
786
787SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
788                                              const CCValAssign &VA,
789                                              MachineFrameInfo *MFI,
790                                              SDOperand Root, unsigned i) {
791  // Create the nodes corresponding to a load from this parameter slot.
792  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
793                                  VA.getLocMemOffset());
794  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
795
796  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
797
798  if (Flags & ISD::ParamFlags::ByVal)
799    return FIN;
800  else
801    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
802}
803
804SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
805                                               bool isStdCall) {
806  unsigned NumArgs = Op.Val->getNumValues() - 1;
807  MachineFunction &MF = DAG.getMachineFunction();
808  MachineFrameInfo *MFI = MF.getFrameInfo();
809  SDOperand Root = Op.getOperand(0);
810  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
811
812  // Assign locations to all of the incoming arguments.
813  SmallVector<CCValAssign, 16> ArgLocs;
814  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
815                 getTargetMachine(), ArgLocs);
816  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
817
818  SmallVector<SDOperand, 8> ArgValues;
819  unsigned LastVal = ~0U;
820  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
821    CCValAssign &VA = ArgLocs[i];
822    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
823    // places.
824    assert(VA.getValNo() != LastVal &&
825           "Don't support value assigned to multiple locs yet");
826    LastVal = VA.getValNo();
827
828    if (VA.isRegLoc()) {
829      MVT::ValueType RegVT = VA.getLocVT();
830      TargetRegisterClass *RC;
831      if (RegVT == MVT::i32)
832        RC = X86::GR32RegisterClass;
833      else {
834        assert(MVT::isVector(RegVT));
835        RC = X86::VR128RegisterClass;
836      }
837
838      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
839      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
840
841      // If this is an 8 or 16-bit value, it is really passed promoted to 32
842      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
843      // right size.
844      if (VA.getLocInfo() == CCValAssign::SExt)
845        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
846                               DAG.getValueType(VA.getValVT()));
847      else if (VA.getLocInfo() == CCValAssign::ZExt)
848        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
849                               DAG.getValueType(VA.getValVT()));
850
851      if (VA.getLocInfo() != CCValAssign::Full)
852        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
853
854      ArgValues.push_back(ArgValue);
855    } else {
856      assert(VA.isMemLoc());
857      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
858    }
859  }
860
861  unsigned StackSize = CCInfo.getNextStackOffset();
862
863  ArgValues.push_back(Root);
864
865  // If the function takes variable number of arguments, make a frame index for
866  // the start of the first vararg value... for expansion of llvm.va_start.
867  if (isVarArg)
868    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
869
870  if (isStdCall && !isVarArg) {
871    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
872    BytesCallerReserves = 0;
873  } else {
874    BytesToPopOnReturn  = 0; // Callee pops nothing.
875
876    // If this is an sret function, the return should pop the hidden pointer.
877    if (NumArgs &&
878        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
879         ISD::ParamFlags::StructReturn))
880      BytesToPopOnReturn = 4;
881
882    BytesCallerReserves = StackSize;
883  }
884
885  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
886
887  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
888  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
889
890  // Return the new list of results.
891  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
892                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
893}
894
895SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
896                                            unsigned CC) {
897  SDOperand Chain     = Op.getOperand(0);
898  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
899  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
900  SDOperand Callee    = Op.getOperand(4);
901  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
902
903  // Analyze operands of the call, assigning locations to each operand.
904  SmallVector<CCValAssign, 16> ArgLocs;
905  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
906  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
907
908  // Get a count of how many bytes are to be pushed on the stack.
909  unsigned NumBytes = CCInfo.getNextStackOffset();
910
911  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
912
913  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
914  SmallVector<SDOperand, 8> MemOpChains;
915
916  SDOperand StackPtr;
917
918  // Walk the register/memloc assignments, inserting copies/loads.
919  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
920    CCValAssign &VA = ArgLocs[i];
921    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
922
923    // Promote the value if needed.
924    switch (VA.getLocInfo()) {
925    default: assert(0 && "Unknown loc info!");
926    case CCValAssign::Full: break;
927    case CCValAssign::SExt:
928      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
929      break;
930    case CCValAssign::ZExt:
931      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
932      break;
933    case CCValAssign::AExt:
934      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
935      break;
936    }
937
938    if (VA.isRegLoc()) {
939      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
940    } else {
941      assert(VA.isMemLoc());
942      if (StackPtr.Val == 0)
943        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
944
945      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
946                                             Arg));
947    }
948  }
949
950  // If the first argument is an sret pointer, remember it.
951  bool isSRet = NumOps &&
952    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
953     ISD::ParamFlags::StructReturn);
954
955  if (!MemOpChains.empty())
956    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
957                        &MemOpChains[0], MemOpChains.size());
958
959  // Build a sequence of copy-to-reg nodes chained together with token chain
960  // and flag operands which copy the outgoing args into registers.
961  SDOperand InFlag;
962  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
963    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
964                             InFlag);
965    InFlag = Chain.getValue(1);
966  }
967
968  // ELF / PIC requires GOT in the EBX register before function calls via PLT
969  // GOT pointer.
970  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
971      Subtarget->isPICStyleGOT()) {
972    Chain = DAG.getCopyToReg(Chain, X86::EBX,
973                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
974                             InFlag);
975    InFlag = Chain.getValue(1);
976  }
977
978  // If the callee is a GlobalAddress node (quite common, every direct call is)
979  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
980  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
981    // We should use extra load for direct calls to dllimported functions in
982    // non-JIT mode.
983    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
984                                        getTargetMachine(), true))
985      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
986  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
987    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
988
989  // Returns a chain & a flag for retval copy to use.
990  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
991  SmallVector<SDOperand, 8> Ops;
992  Ops.push_back(Chain);
993  Ops.push_back(Callee);
994
995  // Add argument registers to the end of the list so that they are known live
996  // into the call.
997  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
998    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
999                                  RegsToPass[i].second.getValueType()));
1000
1001  // Add an implicit use GOT pointer in EBX.
1002  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1003      Subtarget->isPICStyleGOT())
1004    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1005
1006  if (InFlag.Val)
1007    Ops.push_back(InFlag);
1008
1009  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1010                      NodeTys, &Ops[0], Ops.size());
1011  InFlag = Chain.getValue(1);
1012
1013  // Create the CALLSEQ_END node.
1014  unsigned NumBytesForCalleeToPush = 0;
1015
1016  if (CC == CallingConv::X86_StdCall) {
1017    if (isVarArg)
1018      NumBytesForCalleeToPush = isSRet ? 4 : 0;
1019    else
1020      NumBytesForCalleeToPush = NumBytes;
1021  } else {
1022    // If this is is a call to a struct-return function, the callee
1023    // pops the hidden struct pointer, so we have to push it back.
1024    // This is common for Darwin/X86, Linux & Mingw32 targets.
1025    NumBytesForCalleeToPush = isSRet ? 4 : 0;
1026  }
1027
1028  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1029  Ops.clear();
1030  Ops.push_back(Chain);
1031  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1032  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1033  Ops.push_back(InFlag);
1034  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1035  InFlag = Chain.getValue(1);
1036
1037  // Handle result values, copying them out of physregs into vregs that we
1038  // return.
1039  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1040}
1041
1042
1043//===----------------------------------------------------------------------===//
1044//                   FastCall Calling Convention implementation
1045//===----------------------------------------------------------------------===//
1046//
1047// The X86 'fastcall' calling convention passes up to two integer arguments in
1048// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1049// and requires that the callee pop its arguments off the stack (allowing proper
1050// tail calls), and has the same return value conventions as C calling convs.
1051//
1052// This calling convention always arranges for the callee pop value to be 8n+4
1053// bytes, which is needed for tail recursion elimination and stack alignment
1054// reasons.
1055SDOperand
1056X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1057  MachineFunction &MF = DAG.getMachineFunction();
1058  MachineFrameInfo *MFI = MF.getFrameInfo();
1059  SDOperand Root = Op.getOperand(0);
1060  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1061
1062  // Assign locations to all of the incoming arguments.
1063  SmallVector<CCValAssign, 16> ArgLocs;
1064  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1065                 getTargetMachine(), ArgLocs);
1066  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1067
1068  SmallVector<SDOperand, 8> ArgValues;
1069  unsigned LastVal = ~0U;
1070  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1071    CCValAssign &VA = ArgLocs[i];
1072    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1073    // places.
1074    assert(VA.getValNo() != LastVal &&
1075           "Don't support value assigned to multiple locs yet");
1076    LastVal = VA.getValNo();
1077
1078    if (VA.isRegLoc()) {
1079      MVT::ValueType RegVT = VA.getLocVT();
1080      TargetRegisterClass *RC;
1081      if (RegVT == MVT::i32)
1082        RC = X86::GR32RegisterClass;
1083      else {
1084        assert(MVT::isVector(RegVT));
1085        RC = X86::VR128RegisterClass;
1086      }
1087
1088      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1089      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1090
1091      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1092      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1093      // right size.
1094      if (VA.getLocInfo() == CCValAssign::SExt)
1095        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1096                               DAG.getValueType(VA.getValVT()));
1097      else if (VA.getLocInfo() == CCValAssign::ZExt)
1098        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1099                               DAG.getValueType(VA.getValVT()));
1100
1101      if (VA.getLocInfo() != CCValAssign::Full)
1102        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1103
1104      ArgValues.push_back(ArgValue);
1105    } else {
1106      assert(VA.isMemLoc());
1107      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1108    }
1109  }
1110
1111  ArgValues.push_back(Root);
1112
1113  unsigned StackSize = CCInfo.getNextStackOffset();
1114
1115  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1116    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1117    // arguments and the arguments after the retaddr has been pushed are aligned.
1118    if ((StackSize & 7) == 0)
1119      StackSize += 4;
1120  }
1121
1122  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1123  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1124  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1125  BytesCallerReserves = 0;
1126
1127  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1128  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1129
1130  // Return the new list of results.
1131  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1132                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1133}
1134
1135SDOperand
1136X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1137                                    const SDOperand &StackPtr,
1138                                    const CCValAssign &VA,
1139                                    SDOperand Chain,
1140                                    SDOperand Arg) {
1141  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1142  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1143  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1144  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1145  if (Flags & ISD::ParamFlags::ByVal) {
1146    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1147                           ISD::ParamFlags::ByValAlignOffs);
1148
1149    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1150        ISD::ParamFlags::ByValSizeOffs;
1151
1152    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1153    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1154
1155    return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1156                       AlignNode);
1157  } else {
1158    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1159  }
1160}
1161
1162SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1163                                               unsigned CC) {
1164  SDOperand Chain     = Op.getOperand(0);
1165  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1166  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1167  SDOperand Callee    = Op.getOperand(4);
1168
1169  // Analyze operands of the call, assigning locations to each operand.
1170  SmallVector<CCValAssign, 16> ArgLocs;
1171  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1172  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1173
1174  // Get a count of how many bytes are to be pushed on the stack.
1175  unsigned NumBytes = CCInfo.getNextStackOffset();
1176
1177  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1178    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1179    // arguments and the arguments after the retaddr has been pushed are aligned.
1180    if ((NumBytes & 7) == 0)
1181      NumBytes += 4;
1182  }
1183
1184  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1185
1186  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1187  SmallVector<SDOperand, 8> MemOpChains;
1188
1189  SDOperand StackPtr;
1190
1191  // Walk the register/memloc assignments, inserting copies/loads.
1192  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1193    CCValAssign &VA = ArgLocs[i];
1194    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1195
1196    // Promote the value if needed.
1197    switch (VA.getLocInfo()) {
1198      default: assert(0 && "Unknown loc info!");
1199      case CCValAssign::Full: break;
1200      case CCValAssign::SExt:
1201        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1202        break;
1203      case CCValAssign::ZExt:
1204        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1205        break;
1206      case CCValAssign::AExt:
1207        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1208        break;
1209    }
1210
1211    if (VA.isRegLoc()) {
1212      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1213    } else {
1214      assert(VA.isMemLoc());
1215      if (StackPtr.Val == 0)
1216        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1217
1218      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1219                                             Arg));
1220    }
1221  }
1222
1223  if (!MemOpChains.empty())
1224    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1225                        &MemOpChains[0], MemOpChains.size());
1226
1227  // Build a sequence of copy-to-reg nodes chained together with token chain
1228  // and flag operands which copy the outgoing args into registers.
1229  SDOperand InFlag;
1230  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1231    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1232                             InFlag);
1233    InFlag = Chain.getValue(1);
1234  }
1235
1236  // If the callee is a GlobalAddress node (quite common, every direct call is)
1237  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1238  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1239    // We should use extra load for direct calls to dllimported functions in
1240    // non-JIT mode.
1241    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1242                                        getTargetMachine(), true))
1243      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1244  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1245    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1246
1247  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1248  // GOT pointer.
1249  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1250      Subtarget->isPICStyleGOT()) {
1251    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1252                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1253                             InFlag);
1254    InFlag = Chain.getValue(1);
1255  }
1256
1257  // Returns a chain & a flag for retval copy to use.
1258  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1259  SmallVector<SDOperand, 8> Ops;
1260  Ops.push_back(Chain);
1261  Ops.push_back(Callee);
1262
1263  // Add argument registers to the end of the list so that they are known live
1264  // into the call.
1265  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1266    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1267                                  RegsToPass[i].second.getValueType()));
1268
1269  // Add an implicit use GOT pointer in EBX.
1270  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1271      Subtarget->isPICStyleGOT())
1272    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1273
1274  if (InFlag.Val)
1275    Ops.push_back(InFlag);
1276
1277  // FIXME: Do not generate X86ISD::TAILCALL for now.
1278  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1279                      NodeTys, &Ops[0], Ops.size());
1280  InFlag = Chain.getValue(1);
1281
1282  // Returns a flag for retval copy to use.
1283  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1284  Ops.clear();
1285  Ops.push_back(Chain);
1286  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1287  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1288  Ops.push_back(InFlag);
1289  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1290  InFlag = Chain.getValue(1);
1291
1292  // Handle result values, copying them out of physregs into vregs that we
1293  // return.
1294  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1295}
1296
1297
1298//===----------------------------------------------------------------------===//
1299//                 X86-64 C Calling Convention implementation
1300//===----------------------------------------------------------------------===//
1301
1302SDOperand
1303X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1304  MachineFunction &MF = DAG.getMachineFunction();
1305  MachineFrameInfo *MFI = MF.getFrameInfo();
1306  SDOperand Root = Op.getOperand(0);
1307  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1308
1309  static const unsigned GPR64ArgRegs[] = {
1310    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1311  };
1312  static const unsigned XMMArgRegs[] = {
1313    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1314    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1315  };
1316
1317
1318  // Assign locations to all of the incoming arguments.
1319  SmallVector<CCValAssign, 16> ArgLocs;
1320  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1321                 getTargetMachine(), ArgLocs);
1322  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1323
1324  SmallVector<SDOperand, 8> ArgValues;
1325  unsigned LastVal = ~0U;
1326  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1327    CCValAssign &VA = ArgLocs[i];
1328    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1329    // places.
1330    assert(VA.getValNo() != LastVal &&
1331           "Don't support value assigned to multiple locs yet");
1332    LastVal = VA.getValNo();
1333
1334    if (VA.isRegLoc()) {
1335      MVT::ValueType RegVT = VA.getLocVT();
1336      TargetRegisterClass *RC;
1337      if (RegVT == MVT::i32)
1338        RC = X86::GR32RegisterClass;
1339      else if (RegVT == MVT::i64)
1340        RC = X86::GR64RegisterClass;
1341      else if (RegVT == MVT::f32)
1342        RC = X86::FR32RegisterClass;
1343      else if (RegVT == MVT::f64)
1344        RC = X86::FR64RegisterClass;
1345      else {
1346        assert(MVT::isVector(RegVT));
1347        if (MVT::getSizeInBits(RegVT) == 64) {
1348          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1349          RegVT = MVT::i64;
1350        } else
1351          RC = X86::VR128RegisterClass;
1352      }
1353
1354      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1355      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1356
1357      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1358      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1359      // right size.
1360      if (VA.getLocInfo() == CCValAssign::SExt)
1361        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1362                               DAG.getValueType(VA.getValVT()));
1363      else if (VA.getLocInfo() == CCValAssign::ZExt)
1364        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1365                               DAG.getValueType(VA.getValVT()));
1366
1367      if (VA.getLocInfo() != CCValAssign::Full)
1368        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1369
1370      // Handle MMX values passed in GPRs.
1371      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1372          MVT::getSizeInBits(RegVT) == 64)
1373        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1374
1375      ArgValues.push_back(ArgValue);
1376    } else {
1377      assert(VA.isMemLoc());
1378      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1379    }
1380  }
1381
1382  unsigned StackSize = CCInfo.getNextStackOffset();
1383
1384  // If the function takes variable number of arguments, make a frame index for
1385  // the start of the first vararg value... for expansion of llvm.va_start.
1386  if (isVarArg) {
1387    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1388    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1389
1390    // For X86-64, if there are vararg parameters that are passed via
1391    // registers, then we must store them to their spots on the stack so they
1392    // may be loaded by deferencing the result of va_next.
1393    VarArgsGPOffset = NumIntRegs * 8;
1394    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1395    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1396    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1397
1398    // Store the integer parameter registers.
1399    SmallVector<SDOperand, 8> MemOps;
1400    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1401    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1402                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1403    for (; NumIntRegs != 6; ++NumIntRegs) {
1404      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1405                                X86::GR64RegisterClass);
1406      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1407      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1408      MemOps.push_back(Store);
1409      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1410                        DAG.getConstant(8, getPointerTy()));
1411    }
1412
1413    // Now store the XMM (fp + vector) parameter registers.
1414    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1415                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1416    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1417      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1418                                X86::VR128RegisterClass);
1419      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1420      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1421      MemOps.push_back(Store);
1422      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1423                        DAG.getConstant(16, getPointerTy()));
1424    }
1425    if (!MemOps.empty())
1426        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1427                           &MemOps[0], MemOps.size());
1428  }
1429
1430  ArgValues.push_back(Root);
1431
1432  BytesToPopOnReturn = 0;  // Callee pops nothing.
1433  BytesCallerReserves = StackSize;
1434
1435  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1436  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1437
1438  // Return the new list of results.
1439  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1440                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1441}
1442
1443SDOperand
1444X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1445                                        unsigned CC) {
1446  SDOperand Chain     = Op.getOperand(0);
1447  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1448  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1449  SDOperand Callee    = Op.getOperand(4);
1450
1451  // Analyze operands of the call, assigning locations to each operand.
1452  SmallVector<CCValAssign, 16> ArgLocs;
1453  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1454  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1455
1456  // Get a count of how many bytes are to be pushed on the stack.
1457  unsigned NumBytes = CCInfo.getNextStackOffset();
1458  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1459
1460  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1461  SmallVector<SDOperand, 8> MemOpChains;
1462
1463  SDOperand StackPtr;
1464
1465  // Walk the register/memloc assignments, inserting copies/loads.
1466  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1467    CCValAssign &VA = ArgLocs[i];
1468    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1469
1470    // Promote the value if needed.
1471    switch (VA.getLocInfo()) {
1472    default: assert(0 && "Unknown loc info!");
1473    case CCValAssign::Full: break;
1474    case CCValAssign::SExt:
1475      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1476      break;
1477    case CCValAssign::ZExt:
1478      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1479      break;
1480    case CCValAssign::AExt:
1481      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1482      break;
1483    }
1484
1485    if (VA.isRegLoc()) {
1486      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1487    } else {
1488      assert(VA.isMemLoc());
1489      if (StackPtr.Val == 0)
1490        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1491
1492      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1493                                             Arg));
1494    }
1495  }
1496
1497  if (!MemOpChains.empty())
1498    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1499                        &MemOpChains[0], MemOpChains.size());
1500
1501  // Build a sequence of copy-to-reg nodes chained together with token chain
1502  // and flag operands which copy the outgoing args into registers.
1503  SDOperand InFlag;
1504  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1505    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1506                             InFlag);
1507    InFlag = Chain.getValue(1);
1508  }
1509
1510  if (isVarArg) {
1511    // From AMD64 ABI document:
1512    // For calls that may call functions that use varargs or stdargs
1513    // (prototype-less calls or calls to functions containing ellipsis (...) in
1514    // the declaration) %al is used as hidden argument to specify the number
1515    // of SSE registers used. The contents of %al do not need to match exactly
1516    // the number of registers, but must be an ubound on the number of SSE
1517    // registers used and is in the range 0 - 8 inclusive.
1518
1519    // Count the number of XMM registers allocated.
1520    static const unsigned XMMArgRegs[] = {
1521      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1522      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1523    };
1524    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1525
1526    Chain = DAG.getCopyToReg(Chain, X86::AL,
1527                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1528    InFlag = Chain.getValue(1);
1529  }
1530
1531  // If the callee is a GlobalAddress node (quite common, every direct call is)
1532  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1533  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1534    // We should use extra load for direct calls to dllimported functions in
1535    // non-JIT mode.
1536    if (getTargetMachine().getCodeModel() != CodeModel::Large
1537        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1538                                           getTargetMachine(), true))
1539      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1540  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1541    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1542      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1543
1544  // Returns a chain & a flag for retval copy to use.
1545  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1546  SmallVector<SDOperand, 8> Ops;
1547  Ops.push_back(Chain);
1548  Ops.push_back(Callee);
1549
1550  // Add argument registers to the end of the list so that they are known live
1551  // into the call.
1552  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1553    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1554                                  RegsToPass[i].second.getValueType()));
1555
1556  if (InFlag.Val)
1557    Ops.push_back(InFlag);
1558
1559  // FIXME: Do not generate X86ISD::TAILCALL for now.
1560  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1561                      NodeTys, &Ops[0], Ops.size());
1562  InFlag = Chain.getValue(1);
1563
1564  // Returns a flag for retval copy to use.
1565  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1566  Ops.clear();
1567  Ops.push_back(Chain);
1568  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1569  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1570  Ops.push_back(InFlag);
1571  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1572  InFlag = Chain.getValue(1);
1573
1574  // Handle result values, copying them out of physregs into vregs that we
1575  // return.
1576  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1577}
1578
1579
1580//===----------------------------------------------------------------------===//
1581//                           Other Lowering Hooks
1582//===----------------------------------------------------------------------===//
1583
1584
1585SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1586  MachineFunction &MF = DAG.getMachineFunction();
1587  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1588  int ReturnAddrIndex = FuncInfo->getRAIndex();
1589
1590  if (ReturnAddrIndex == 0) {
1591    // Set up a frame object for the return address.
1592    if (Subtarget->is64Bit())
1593      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1594    else
1595      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1596
1597    FuncInfo->setRAIndex(ReturnAddrIndex);
1598  }
1599
1600  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1601}
1602
1603
1604
1605/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1606/// specific condition code. It returns a false if it cannot do a direct
1607/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1608/// needed.
1609static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1610                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1611                           SelectionDAG &DAG) {
1612  X86CC = X86::COND_INVALID;
1613  if (!isFP) {
1614    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1615      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1616        // X > -1   -> X == 0, jump !sign.
1617        RHS = DAG.getConstant(0, RHS.getValueType());
1618        X86CC = X86::COND_NS;
1619        return true;
1620      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1621        // X < 0   -> X == 0, jump on sign.
1622        X86CC = X86::COND_S;
1623        return true;
1624      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1625        // X < 1   -> X <= 0
1626        RHS = DAG.getConstant(0, RHS.getValueType());
1627        X86CC = X86::COND_LE;
1628        return true;
1629      }
1630    }
1631
1632    switch (SetCCOpcode) {
1633    default: break;
1634    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1635    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1636    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1637    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1638    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1639    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1640    case ISD::SETULT: X86CC = X86::COND_B;  break;
1641    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1642    case ISD::SETULE: X86CC = X86::COND_BE; break;
1643    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1644    }
1645  } else {
1646    // On a floating point condition, the flags are set as follows:
1647    // ZF  PF  CF   op
1648    //  0 | 0 | 0 | X > Y
1649    //  0 | 0 | 1 | X < Y
1650    //  1 | 0 | 0 | X == Y
1651    //  1 | 1 | 1 | unordered
1652    bool Flip = false;
1653    switch (SetCCOpcode) {
1654    default: break;
1655    case ISD::SETUEQ:
1656    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1657    case ISD::SETOLT: Flip = true; // Fallthrough
1658    case ISD::SETOGT:
1659    case ISD::SETGT: X86CC = X86::COND_A;  break;
1660    case ISD::SETOLE: Flip = true; // Fallthrough
1661    case ISD::SETOGE:
1662    case ISD::SETGE: X86CC = X86::COND_AE; break;
1663    case ISD::SETUGT: Flip = true; // Fallthrough
1664    case ISD::SETULT:
1665    case ISD::SETLT: X86CC = X86::COND_B;  break;
1666    case ISD::SETUGE: Flip = true; // Fallthrough
1667    case ISD::SETULE:
1668    case ISD::SETLE: X86CC = X86::COND_BE; break;
1669    case ISD::SETONE:
1670    case ISD::SETNE: X86CC = X86::COND_NE; break;
1671    case ISD::SETUO: X86CC = X86::COND_P;  break;
1672    case ISD::SETO:  X86CC = X86::COND_NP; break;
1673    }
1674    if (Flip)
1675      std::swap(LHS, RHS);
1676  }
1677
1678  return X86CC != X86::COND_INVALID;
1679}
1680
1681/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1682/// code. Current x86 isa includes the following FP cmov instructions:
1683/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1684static bool hasFPCMov(unsigned X86CC) {
1685  switch (X86CC) {
1686  default:
1687    return false;
1688  case X86::COND_B:
1689  case X86::COND_BE:
1690  case X86::COND_E:
1691  case X86::COND_P:
1692  case X86::COND_A:
1693  case X86::COND_AE:
1694  case X86::COND_NE:
1695  case X86::COND_NP:
1696    return true;
1697  }
1698}
1699
1700/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1701/// true if Op is undef or if its value falls within the specified range (L, H].
1702static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1703  if (Op.getOpcode() == ISD::UNDEF)
1704    return true;
1705
1706  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1707  return (Val >= Low && Val < Hi);
1708}
1709
1710/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1711/// true if Op is undef or if its value equal to the specified value.
1712static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1713  if (Op.getOpcode() == ISD::UNDEF)
1714    return true;
1715  return cast<ConstantSDNode>(Op)->getValue() == Val;
1716}
1717
1718/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1719/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1720bool X86::isPSHUFDMask(SDNode *N) {
1721  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1722
1723  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1724    return false;
1725
1726  // Check if the value doesn't reference the second vector.
1727  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1728    SDOperand Arg = N->getOperand(i);
1729    if (Arg.getOpcode() == ISD::UNDEF) continue;
1730    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1731    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1732      return false;
1733  }
1734
1735  return true;
1736}
1737
1738/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1739/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1740bool X86::isPSHUFHWMask(SDNode *N) {
1741  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1742
1743  if (N->getNumOperands() != 8)
1744    return false;
1745
1746  // Lower quadword copied in order.
1747  for (unsigned i = 0; i != 4; ++i) {
1748    SDOperand Arg = N->getOperand(i);
1749    if (Arg.getOpcode() == ISD::UNDEF) continue;
1750    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1751    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1752      return false;
1753  }
1754
1755  // Upper quadword shuffled.
1756  for (unsigned i = 4; i != 8; ++i) {
1757    SDOperand Arg = N->getOperand(i);
1758    if (Arg.getOpcode() == ISD::UNDEF) continue;
1759    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1760    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1761    if (Val < 4 || Val > 7)
1762      return false;
1763  }
1764
1765  return true;
1766}
1767
1768/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1769/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1770bool X86::isPSHUFLWMask(SDNode *N) {
1771  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1772
1773  if (N->getNumOperands() != 8)
1774    return false;
1775
1776  // Upper quadword copied in order.
1777  for (unsigned i = 4; i != 8; ++i)
1778    if (!isUndefOrEqual(N->getOperand(i), i))
1779      return false;
1780
1781  // Lower quadword shuffled.
1782  for (unsigned i = 0; i != 4; ++i)
1783    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1784      return false;
1785
1786  return true;
1787}
1788
1789/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1790/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1791static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1792  if (NumElems != 2 && NumElems != 4) return false;
1793
1794  unsigned Half = NumElems / 2;
1795  for (unsigned i = 0; i < Half; ++i)
1796    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1797      return false;
1798  for (unsigned i = Half; i < NumElems; ++i)
1799    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1800      return false;
1801
1802  return true;
1803}
1804
1805bool X86::isSHUFPMask(SDNode *N) {
1806  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1807  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1808}
1809
1810/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1811/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1812/// half elements to come from vector 1 (which would equal the dest.) and
1813/// the upper half to come from vector 2.
1814static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1815  if (NumOps != 2 && NumOps != 4) return false;
1816
1817  unsigned Half = NumOps / 2;
1818  for (unsigned i = 0; i < Half; ++i)
1819    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1820      return false;
1821  for (unsigned i = Half; i < NumOps; ++i)
1822    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1823      return false;
1824  return true;
1825}
1826
1827static bool isCommutedSHUFP(SDNode *N) {
1828  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1829  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1830}
1831
1832/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1833/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1834bool X86::isMOVHLPSMask(SDNode *N) {
1835  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1836
1837  if (N->getNumOperands() != 4)
1838    return false;
1839
1840  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1841  return isUndefOrEqual(N->getOperand(0), 6) &&
1842         isUndefOrEqual(N->getOperand(1), 7) &&
1843         isUndefOrEqual(N->getOperand(2), 2) &&
1844         isUndefOrEqual(N->getOperand(3), 3);
1845}
1846
1847/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1848/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1849/// <2, 3, 2, 3>
1850bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1851  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1852
1853  if (N->getNumOperands() != 4)
1854    return false;
1855
1856  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1857  return isUndefOrEqual(N->getOperand(0), 2) &&
1858         isUndefOrEqual(N->getOperand(1), 3) &&
1859         isUndefOrEqual(N->getOperand(2), 2) &&
1860         isUndefOrEqual(N->getOperand(3), 3);
1861}
1862
1863/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1864/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1865bool X86::isMOVLPMask(SDNode *N) {
1866  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1867
1868  unsigned NumElems = N->getNumOperands();
1869  if (NumElems != 2 && NumElems != 4)
1870    return false;
1871
1872  for (unsigned i = 0; i < NumElems/2; ++i)
1873    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1874      return false;
1875
1876  for (unsigned i = NumElems/2; i < NumElems; ++i)
1877    if (!isUndefOrEqual(N->getOperand(i), i))
1878      return false;
1879
1880  return true;
1881}
1882
1883/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1884/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1885/// and MOVLHPS.
1886bool X86::isMOVHPMask(SDNode *N) {
1887  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1888
1889  unsigned NumElems = N->getNumOperands();
1890  if (NumElems != 2 && NumElems != 4)
1891    return false;
1892
1893  for (unsigned i = 0; i < NumElems/2; ++i)
1894    if (!isUndefOrEqual(N->getOperand(i), i))
1895      return false;
1896
1897  for (unsigned i = 0; i < NumElems/2; ++i) {
1898    SDOperand Arg = N->getOperand(i + NumElems/2);
1899    if (!isUndefOrEqual(Arg, i + NumElems))
1900      return false;
1901  }
1902
1903  return true;
1904}
1905
1906/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1907/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1908bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1909                         bool V2IsSplat = false) {
1910  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1911    return false;
1912
1913  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1914    SDOperand BitI  = Elts[i];
1915    SDOperand BitI1 = Elts[i+1];
1916    if (!isUndefOrEqual(BitI, j))
1917      return false;
1918    if (V2IsSplat) {
1919      if (isUndefOrEqual(BitI1, NumElts))
1920        return false;
1921    } else {
1922      if (!isUndefOrEqual(BitI1, j + NumElts))
1923        return false;
1924    }
1925  }
1926
1927  return true;
1928}
1929
1930bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1931  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1932  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1933}
1934
1935/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1936/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1937bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1938                         bool V2IsSplat = false) {
1939  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1940    return false;
1941
1942  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1943    SDOperand BitI  = Elts[i];
1944    SDOperand BitI1 = Elts[i+1];
1945    if (!isUndefOrEqual(BitI, j + NumElts/2))
1946      return false;
1947    if (V2IsSplat) {
1948      if (isUndefOrEqual(BitI1, NumElts))
1949        return false;
1950    } else {
1951      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1952        return false;
1953    }
1954  }
1955
1956  return true;
1957}
1958
1959bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1960  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1961  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1962}
1963
1964/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1965/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1966/// <0, 0, 1, 1>
1967bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1968  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1969
1970  unsigned NumElems = N->getNumOperands();
1971  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1972    return false;
1973
1974  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1975    SDOperand BitI  = N->getOperand(i);
1976    SDOperand BitI1 = N->getOperand(i+1);
1977
1978    if (!isUndefOrEqual(BitI, j))
1979      return false;
1980    if (!isUndefOrEqual(BitI1, j))
1981      return false;
1982  }
1983
1984  return true;
1985}
1986
1987/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1988/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1989/// <2, 2, 3, 3>
1990bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1991  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1992
1993  unsigned NumElems = N->getNumOperands();
1994  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1995    return false;
1996
1997  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1998    SDOperand BitI  = N->getOperand(i);
1999    SDOperand BitI1 = N->getOperand(i + 1);
2000
2001    if (!isUndefOrEqual(BitI, j))
2002      return false;
2003    if (!isUndefOrEqual(BitI1, j))
2004      return false;
2005  }
2006
2007  return true;
2008}
2009
2010/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2011/// specifies a shuffle of elements that is suitable for input to MOVSS,
2012/// MOVSD, and MOVD, i.e. setting the lowest element.
2013static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2014  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2015    return false;
2016
2017  if (!isUndefOrEqual(Elts[0], NumElts))
2018    return false;
2019
2020  for (unsigned i = 1; i < NumElts; ++i) {
2021    if (!isUndefOrEqual(Elts[i], i))
2022      return false;
2023  }
2024
2025  return true;
2026}
2027
2028bool X86::isMOVLMask(SDNode *N) {
2029  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2030  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2031}
2032
2033/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2034/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2035/// element of vector 2 and the other elements to come from vector 1 in order.
2036static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2037                           bool V2IsSplat = false,
2038                           bool V2IsUndef = false) {
2039  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2040    return false;
2041
2042  if (!isUndefOrEqual(Ops[0], 0))
2043    return false;
2044
2045  for (unsigned i = 1; i < NumOps; ++i) {
2046    SDOperand Arg = Ops[i];
2047    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2048          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2049          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2050      return false;
2051  }
2052
2053  return true;
2054}
2055
2056static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2057                           bool V2IsUndef = false) {
2058  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2059  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2060                        V2IsSplat, V2IsUndef);
2061}
2062
2063/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2064/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2065bool X86::isMOVSHDUPMask(SDNode *N) {
2066  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2067
2068  if (N->getNumOperands() != 4)
2069    return false;
2070
2071  // Expect 1, 1, 3, 3
2072  for (unsigned i = 0; i < 2; ++i) {
2073    SDOperand Arg = N->getOperand(i);
2074    if (Arg.getOpcode() == ISD::UNDEF) continue;
2075    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2076    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2077    if (Val != 1) return false;
2078  }
2079
2080  bool HasHi = false;
2081  for (unsigned i = 2; i < 4; ++i) {
2082    SDOperand Arg = N->getOperand(i);
2083    if (Arg.getOpcode() == ISD::UNDEF) continue;
2084    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2085    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2086    if (Val != 3) return false;
2087    HasHi = true;
2088  }
2089
2090  // Don't use movshdup if it can be done with a shufps.
2091  return HasHi;
2092}
2093
2094/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2095/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2096bool X86::isMOVSLDUPMask(SDNode *N) {
2097  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2098
2099  if (N->getNumOperands() != 4)
2100    return false;
2101
2102  // Expect 0, 0, 2, 2
2103  for (unsigned i = 0; i < 2; ++i) {
2104    SDOperand Arg = N->getOperand(i);
2105    if (Arg.getOpcode() == ISD::UNDEF) continue;
2106    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2107    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2108    if (Val != 0) return false;
2109  }
2110
2111  bool HasHi = false;
2112  for (unsigned i = 2; i < 4; ++i) {
2113    SDOperand Arg = N->getOperand(i);
2114    if (Arg.getOpcode() == ISD::UNDEF) continue;
2115    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2116    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2117    if (Val != 2) return false;
2118    HasHi = true;
2119  }
2120
2121  // Don't use movshdup if it can be done with a shufps.
2122  return HasHi;
2123}
2124
2125/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2126/// specifies a identity operation on the LHS or RHS.
2127static bool isIdentityMask(SDNode *N, bool RHS = false) {
2128  unsigned NumElems = N->getNumOperands();
2129  for (unsigned i = 0; i < NumElems; ++i)
2130    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2131      return false;
2132  return true;
2133}
2134
2135/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2136/// a splat of a single element.
2137static bool isSplatMask(SDNode *N) {
2138  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2139
2140  // This is a splat operation if each element of the permute is the same, and
2141  // if the value doesn't reference the second vector.
2142  unsigned NumElems = N->getNumOperands();
2143  SDOperand ElementBase;
2144  unsigned i = 0;
2145  for (; i != NumElems; ++i) {
2146    SDOperand Elt = N->getOperand(i);
2147    if (isa<ConstantSDNode>(Elt)) {
2148      ElementBase = Elt;
2149      break;
2150    }
2151  }
2152
2153  if (!ElementBase.Val)
2154    return false;
2155
2156  for (; i != NumElems; ++i) {
2157    SDOperand Arg = N->getOperand(i);
2158    if (Arg.getOpcode() == ISD::UNDEF) continue;
2159    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2160    if (Arg != ElementBase) return false;
2161  }
2162
2163  // Make sure it is a splat of the first vector operand.
2164  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2165}
2166
2167/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2168/// a splat of a single element and it's a 2 or 4 element mask.
2169bool X86::isSplatMask(SDNode *N) {
2170  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2171
2172  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2173  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2174    return false;
2175  return ::isSplatMask(N);
2176}
2177
2178/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2179/// specifies a splat of zero element.
2180bool X86::isSplatLoMask(SDNode *N) {
2181  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2182
2183  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2184    if (!isUndefOrEqual(N->getOperand(i), 0))
2185      return false;
2186  return true;
2187}
2188
2189/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2190/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2191/// instructions.
2192unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2193  unsigned NumOperands = N->getNumOperands();
2194  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2195  unsigned Mask = 0;
2196  for (unsigned i = 0; i < NumOperands; ++i) {
2197    unsigned Val = 0;
2198    SDOperand Arg = N->getOperand(NumOperands-i-1);
2199    if (Arg.getOpcode() != ISD::UNDEF)
2200      Val = cast<ConstantSDNode>(Arg)->getValue();
2201    if (Val >= NumOperands) Val -= NumOperands;
2202    Mask |= Val;
2203    if (i != NumOperands - 1)
2204      Mask <<= Shift;
2205  }
2206
2207  return Mask;
2208}
2209
2210/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2211/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2212/// instructions.
2213unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2214  unsigned Mask = 0;
2215  // 8 nodes, but we only care about the last 4.
2216  for (unsigned i = 7; i >= 4; --i) {
2217    unsigned Val = 0;
2218    SDOperand Arg = N->getOperand(i);
2219    if (Arg.getOpcode() != ISD::UNDEF)
2220      Val = cast<ConstantSDNode>(Arg)->getValue();
2221    Mask |= (Val - 4);
2222    if (i != 4)
2223      Mask <<= 2;
2224  }
2225
2226  return Mask;
2227}
2228
2229/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2230/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2231/// instructions.
2232unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2233  unsigned Mask = 0;
2234  // 8 nodes, but we only care about the first 4.
2235  for (int i = 3; i >= 0; --i) {
2236    unsigned Val = 0;
2237    SDOperand Arg = N->getOperand(i);
2238    if (Arg.getOpcode() != ISD::UNDEF)
2239      Val = cast<ConstantSDNode>(Arg)->getValue();
2240    Mask |= Val;
2241    if (i != 0)
2242      Mask <<= 2;
2243  }
2244
2245  return Mask;
2246}
2247
2248/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2249/// specifies a 8 element shuffle that can be broken into a pair of
2250/// PSHUFHW and PSHUFLW.
2251static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2252  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2253
2254  if (N->getNumOperands() != 8)
2255    return false;
2256
2257  // Lower quadword shuffled.
2258  for (unsigned i = 0; i != 4; ++i) {
2259    SDOperand Arg = N->getOperand(i);
2260    if (Arg.getOpcode() == ISD::UNDEF) continue;
2261    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2262    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2263    if (Val > 4)
2264      return false;
2265  }
2266
2267  // Upper quadword shuffled.
2268  for (unsigned i = 4; i != 8; ++i) {
2269    SDOperand Arg = N->getOperand(i);
2270    if (Arg.getOpcode() == ISD::UNDEF) continue;
2271    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2272    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2273    if (Val < 4 || Val > 7)
2274      return false;
2275  }
2276
2277  return true;
2278}
2279
2280/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2281/// values in ther permute mask.
2282static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2283                                      SDOperand &V2, SDOperand &Mask,
2284                                      SelectionDAG &DAG) {
2285  MVT::ValueType VT = Op.getValueType();
2286  MVT::ValueType MaskVT = Mask.getValueType();
2287  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2288  unsigned NumElems = Mask.getNumOperands();
2289  SmallVector<SDOperand, 8> MaskVec;
2290
2291  for (unsigned i = 0; i != NumElems; ++i) {
2292    SDOperand Arg = Mask.getOperand(i);
2293    if (Arg.getOpcode() == ISD::UNDEF) {
2294      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2295      continue;
2296    }
2297    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2298    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2299    if (Val < NumElems)
2300      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2301    else
2302      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2303  }
2304
2305  std::swap(V1, V2);
2306  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2307  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2308}
2309
2310/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2311/// match movhlps. The lower half elements should come from upper half of
2312/// V1 (and in order), and the upper half elements should come from the upper
2313/// half of V2 (and in order).
2314static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2315  unsigned NumElems = Mask->getNumOperands();
2316  if (NumElems != 4)
2317    return false;
2318  for (unsigned i = 0, e = 2; i != e; ++i)
2319    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2320      return false;
2321  for (unsigned i = 2; i != 4; ++i)
2322    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2323      return false;
2324  return true;
2325}
2326
2327/// isScalarLoadToVector - Returns true if the node is a scalar load that
2328/// is promoted to a vector.
2329static inline bool isScalarLoadToVector(SDNode *N) {
2330  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2331    N = N->getOperand(0).Val;
2332    return ISD::isNON_EXTLoad(N);
2333  }
2334  return false;
2335}
2336
2337/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2338/// match movlp{s|d}. The lower half elements should come from lower half of
2339/// V1 (and in order), and the upper half elements should come from the upper
2340/// half of V2 (and in order). And since V1 will become the source of the
2341/// MOVLP, it must be either a vector load or a scalar load to vector.
2342static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2343  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2344    return false;
2345  // Is V2 is a vector load, don't do this transformation. We will try to use
2346  // load folding shufps op.
2347  if (ISD::isNON_EXTLoad(V2))
2348    return false;
2349
2350  unsigned NumElems = Mask->getNumOperands();
2351  if (NumElems != 2 && NumElems != 4)
2352    return false;
2353  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2354    if (!isUndefOrEqual(Mask->getOperand(i), i))
2355      return false;
2356  for (unsigned i = NumElems/2; i != NumElems; ++i)
2357    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2358      return false;
2359  return true;
2360}
2361
2362/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2363/// all the same.
2364static bool isSplatVector(SDNode *N) {
2365  if (N->getOpcode() != ISD::BUILD_VECTOR)
2366    return false;
2367
2368  SDOperand SplatValue = N->getOperand(0);
2369  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2370    if (N->getOperand(i) != SplatValue)
2371      return false;
2372  return true;
2373}
2374
2375/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2376/// to an undef.
2377static bool isUndefShuffle(SDNode *N) {
2378  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2379    return false;
2380
2381  SDOperand V1 = N->getOperand(0);
2382  SDOperand V2 = N->getOperand(1);
2383  SDOperand Mask = N->getOperand(2);
2384  unsigned NumElems = Mask.getNumOperands();
2385  for (unsigned i = 0; i != NumElems; ++i) {
2386    SDOperand Arg = Mask.getOperand(i);
2387    if (Arg.getOpcode() != ISD::UNDEF) {
2388      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2389      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2390        return false;
2391      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2392        return false;
2393    }
2394  }
2395  return true;
2396}
2397
2398/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2399/// constant +0.0.
2400static inline bool isZeroNode(SDOperand Elt) {
2401  return ((isa<ConstantSDNode>(Elt) &&
2402           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2403          (isa<ConstantFPSDNode>(Elt) &&
2404           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2405}
2406
2407/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2408/// to an zero vector.
2409static bool isZeroShuffle(SDNode *N) {
2410  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2411    return false;
2412
2413  SDOperand V1 = N->getOperand(0);
2414  SDOperand V2 = N->getOperand(1);
2415  SDOperand Mask = N->getOperand(2);
2416  unsigned NumElems = Mask.getNumOperands();
2417  for (unsigned i = 0; i != NumElems; ++i) {
2418    SDOperand Arg = Mask.getOperand(i);
2419    if (Arg.getOpcode() != ISD::UNDEF) {
2420      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2421      if (Idx < NumElems) {
2422        unsigned Opc = V1.Val->getOpcode();
2423        if (Opc == ISD::UNDEF)
2424          continue;
2425        if (Opc != ISD::BUILD_VECTOR ||
2426            !isZeroNode(V1.Val->getOperand(Idx)))
2427          return false;
2428      } else if (Idx >= NumElems) {
2429        unsigned Opc = V2.Val->getOpcode();
2430        if (Opc == ISD::UNDEF)
2431          continue;
2432        if (Opc != ISD::BUILD_VECTOR ||
2433            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2434          return false;
2435      }
2436    }
2437  }
2438  return true;
2439}
2440
2441/// getZeroVector - Returns a vector of specified type with all zero elements.
2442///
2443static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2444  assert(MVT::isVector(VT) && "Expected a vector type");
2445  unsigned NumElems = MVT::getVectorNumElements(VT);
2446  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2447  bool isFP = MVT::isFloatingPoint(EVT);
2448  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2449  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2450  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2451}
2452
2453/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2454/// that point to V2 points to its first element.
2455static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2456  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2457
2458  bool Changed = false;
2459  SmallVector<SDOperand, 8> MaskVec;
2460  unsigned NumElems = Mask.getNumOperands();
2461  for (unsigned i = 0; i != NumElems; ++i) {
2462    SDOperand Arg = Mask.getOperand(i);
2463    if (Arg.getOpcode() != ISD::UNDEF) {
2464      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2465      if (Val > NumElems) {
2466        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2467        Changed = true;
2468      }
2469    }
2470    MaskVec.push_back(Arg);
2471  }
2472
2473  if (Changed)
2474    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2475                       &MaskVec[0], MaskVec.size());
2476  return Mask;
2477}
2478
2479/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2480/// operation of specified width.
2481static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2482  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2483  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2484
2485  SmallVector<SDOperand, 8> MaskVec;
2486  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2487  for (unsigned i = 1; i != NumElems; ++i)
2488    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2489  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2490}
2491
2492/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2493/// of specified width.
2494static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2495  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2496  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2497  SmallVector<SDOperand, 8> MaskVec;
2498  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2499    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2500    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2501  }
2502  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2503}
2504
2505/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2506/// of specified width.
2507static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2508  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2509  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2510  unsigned Half = NumElems/2;
2511  SmallVector<SDOperand, 8> MaskVec;
2512  for (unsigned i = 0; i != Half; ++i) {
2513    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2514    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2515  }
2516  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2517}
2518
2519/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2520///
2521static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2522  SDOperand V1 = Op.getOperand(0);
2523  SDOperand Mask = Op.getOperand(2);
2524  MVT::ValueType VT = Op.getValueType();
2525  unsigned NumElems = Mask.getNumOperands();
2526  Mask = getUnpacklMask(NumElems, DAG);
2527  while (NumElems != 4) {
2528    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2529    NumElems >>= 1;
2530  }
2531  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2532
2533  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2534  Mask = getZeroVector(MaskVT, DAG);
2535  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2536                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2537  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2538}
2539
2540/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2541/// vector of zero or undef vector.
2542static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2543                                             unsigned NumElems, unsigned Idx,
2544                                             bool isZero, SelectionDAG &DAG) {
2545  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2546  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2547  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2548  SDOperand Zero = DAG.getConstant(0, EVT);
2549  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2550  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2551  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2552                               &MaskVec[0], MaskVec.size());
2553  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2554}
2555
2556/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2557///
2558static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2559                                       unsigned NumNonZero, unsigned NumZero,
2560                                       SelectionDAG &DAG, TargetLowering &TLI) {
2561  if (NumNonZero > 8)
2562    return SDOperand();
2563
2564  SDOperand V(0, 0);
2565  bool First = true;
2566  for (unsigned i = 0; i < 16; ++i) {
2567    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2568    if (ThisIsNonZero && First) {
2569      if (NumZero)
2570        V = getZeroVector(MVT::v8i16, DAG);
2571      else
2572        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2573      First = false;
2574    }
2575
2576    if ((i & 1) != 0) {
2577      SDOperand ThisElt(0, 0), LastElt(0, 0);
2578      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2579      if (LastIsNonZero) {
2580        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2581      }
2582      if (ThisIsNonZero) {
2583        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2584        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2585                              ThisElt, DAG.getConstant(8, MVT::i8));
2586        if (LastIsNonZero)
2587          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2588      } else
2589        ThisElt = LastElt;
2590
2591      if (ThisElt.Val)
2592        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2593                        DAG.getConstant(i/2, TLI.getPointerTy()));
2594    }
2595  }
2596
2597  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2598}
2599
2600/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2601///
2602static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2603                                       unsigned NumNonZero, unsigned NumZero,
2604                                       SelectionDAG &DAG, TargetLowering &TLI) {
2605  if (NumNonZero > 4)
2606    return SDOperand();
2607
2608  SDOperand V(0, 0);
2609  bool First = true;
2610  for (unsigned i = 0; i < 8; ++i) {
2611    bool isNonZero = (NonZeros & (1 << i)) != 0;
2612    if (isNonZero) {
2613      if (First) {
2614        if (NumZero)
2615          V = getZeroVector(MVT::v8i16, DAG);
2616        else
2617          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2618        First = false;
2619      }
2620      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2621                      DAG.getConstant(i, TLI.getPointerTy()));
2622    }
2623  }
2624
2625  return V;
2626}
2627
2628SDOperand
2629X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2630  // All zero's are handled with pxor.
2631  if (ISD::isBuildVectorAllZeros(Op.Val))
2632    return Op;
2633
2634  // All one's are handled with pcmpeqd.
2635  if (ISD::isBuildVectorAllOnes(Op.Val))
2636    return Op;
2637
2638  MVT::ValueType VT = Op.getValueType();
2639  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2640  unsigned EVTBits = MVT::getSizeInBits(EVT);
2641
2642  unsigned NumElems = Op.getNumOperands();
2643  unsigned NumZero  = 0;
2644  unsigned NumNonZero = 0;
2645  unsigned NonZeros = 0;
2646  unsigned NumNonZeroImms = 0;
2647  std::set<SDOperand> Values;
2648  for (unsigned i = 0; i < NumElems; ++i) {
2649    SDOperand Elt = Op.getOperand(i);
2650    if (Elt.getOpcode() != ISD::UNDEF) {
2651      Values.insert(Elt);
2652      if (isZeroNode(Elt))
2653        NumZero++;
2654      else {
2655        NonZeros |= (1 << i);
2656        NumNonZero++;
2657        if (Elt.getOpcode() == ISD::Constant ||
2658            Elt.getOpcode() == ISD::ConstantFP)
2659          NumNonZeroImms++;
2660      }
2661    }
2662  }
2663
2664  if (NumNonZero == 0) {
2665    if (NumZero == 0)
2666      // All undef vector. Return an UNDEF.
2667      return DAG.getNode(ISD::UNDEF, VT);
2668    else
2669      // A mix of zero and undef. Return a zero vector.
2670      return getZeroVector(VT, DAG);
2671  }
2672
2673  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2674  if (Values.size() == 1)
2675    return SDOperand();
2676
2677  // Special case for single non-zero element.
2678  if (NumNonZero == 1) {
2679    unsigned Idx = CountTrailingZeros_32(NonZeros);
2680    SDOperand Item = Op.getOperand(Idx);
2681    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2682    if (Idx == 0)
2683      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2684      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2685                                         NumZero > 0, DAG);
2686
2687    if (EVTBits == 32) {
2688      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2689      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2690                                         DAG);
2691      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2692      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2693      SmallVector<SDOperand, 8> MaskVec;
2694      for (unsigned i = 0; i < NumElems; i++)
2695        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2696      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2697                                   &MaskVec[0], MaskVec.size());
2698      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2699                         DAG.getNode(ISD::UNDEF, VT), Mask);
2700    }
2701  }
2702
2703  // A vector full of immediates; various special cases are already
2704  // handled, so this is best done with a single constant-pool load.
2705  if (NumNonZero == NumNonZeroImms)
2706    return SDOperand();
2707
2708  // Let legalizer expand 2-wide build_vectors.
2709  if (EVTBits == 64)
2710    return SDOperand();
2711
2712  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2713  if (EVTBits == 8 && NumElems == 16) {
2714    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2715                                        *this);
2716    if (V.Val) return V;
2717  }
2718
2719  if (EVTBits == 16 && NumElems == 8) {
2720    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2721                                        *this);
2722    if (V.Val) return V;
2723  }
2724
2725  // If element VT is == 32 bits, turn it into a number of shuffles.
2726  SmallVector<SDOperand, 8> V;
2727  V.resize(NumElems);
2728  if (NumElems == 4 && NumZero > 0) {
2729    for (unsigned i = 0; i < 4; ++i) {
2730      bool isZero = !(NonZeros & (1 << i));
2731      if (isZero)
2732        V[i] = getZeroVector(VT, DAG);
2733      else
2734        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2735    }
2736
2737    for (unsigned i = 0; i < 2; ++i) {
2738      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2739        default: break;
2740        case 0:
2741          V[i] = V[i*2];  // Must be a zero vector.
2742          break;
2743        case 1:
2744          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2745                             getMOVLMask(NumElems, DAG));
2746          break;
2747        case 2:
2748          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2749                             getMOVLMask(NumElems, DAG));
2750          break;
2751        case 3:
2752          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2753                             getUnpacklMask(NumElems, DAG));
2754          break;
2755      }
2756    }
2757
2758    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2759    // clears the upper bits.
2760    // FIXME: we can do the same for v4f32 case when we know both parts of
2761    // the lower half come from scalar_to_vector (loadf32). We should do
2762    // that in post legalizer dag combiner with target specific hooks.
2763    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2764      return V[0];
2765    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2766    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2767    SmallVector<SDOperand, 8> MaskVec;
2768    bool Reverse = (NonZeros & 0x3) == 2;
2769    for (unsigned i = 0; i < 2; ++i)
2770      if (Reverse)
2771        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2772      else
2773        MaskVec.push_back(DAG.getConstant(i, EVT));
2774    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2775    for (unsigned i = 0; i < 2; ++i)
2776      if (Reverse)
2777        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2778      else
2779        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2780    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2781                                     &MaskVec[0], MaskVec.size());
2782    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2783  }
2784
2785  if (Values.size() > 2) {
2786    // Expand into a number of unpckl*.
2787    // e.g. for v4f32
2788    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2789    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2790    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2791    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2792    for (unsigned i = 0; i < NumElems; ++i)
2793      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2794    NumElems >>= 1;
2795    while (NumElems != 0) {
2796      for (unsigned i = 0; i < NumElems; ++i)
2797        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2798                           UnpckMask);
2799      NumElems >>= 1;
2800    }
2801    return V[0];
2802  }
2803
2804  return SDOperand();
2805}
2806
2807SDOperand
2808X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2809  SDOperand V1 = Op.getOperand(0);
2810  SDOperand V2 = Op.getOperand(1);
2811  SDOperand PermMask = Op.getOperand(2);
2812  MVT::ValueType VT = Op.getValueType();
2813  unsigned NumElems = PermMask.getNumOperands();
2814  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2815  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2816  bool V1IsSplat = false;
2817  bool V2IsSplat = false;
2818
2819  if (isUndefShuffle(Op.Val))
2820    return DAG.getNode(ISD::UNDEF, VT);
2821
2822  if (isZeroShuffle(Op.Val))
2823    return getZeroVector(VT, DAG);
2824
2825  if (isIdentityMask(PermMask.Val))
2826    return V1;
2827  else if (isIdentityMask(PermMask.Val, true))
2828    return V2;
2829
2830  if (isSplatMask(PermMask.Val)) {
2831    if (NumElems <= 4) return Op;
2832    // Promote it to a v4i32 splat.
2833    return PromoteSplat(Op, DAG);
2834  }
2835
2836  if (X86::isMOVLMask(PermMask.Val))
2837    return (V1IsUndef) ? V2 : Op;
2838
2839  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2840      X86::isMOVSLDUPMask(PermMask.Val) ||
2841      X86::isMOVHLPSMask(PermMask.Val) ||
2842      X86::isMOVHPMask(PermMask.Val) ||
2843      X86::isMOVLPMask(PermMask.Val))
2844    return Op;
2845
2846  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2847      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2848    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2849
2850  bool Commuted = false;
2851  V1IsSplat = isSplatVector(V1.Val);
2852  V2IsSplat = isSplatVector(V2.Val);
2853  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2854    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2855    std::swap(V1IsSplat, V2IsSplat);
2856    std::swap(V1IsUndef, V2IsUndef);
2857    Commuted = true;
2858  }
2859
2860  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2861    if (V2IsUndef) return V1;
2862    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2863    if (V2IsSplat) {
2864      // V2 is a splat, so the mask may be malformed. That is, it may point
2865      // to any V2 element. The instruction selectior won't like this. Get
2866      // a corrected mask and commute to form a proper MOVS{S|D}.
2867      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2868      if (NewMask.Val != PermMask.Val)
2869        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2870    }
2871    return Op;
2872  }
2873
2874  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2875      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2876      X86::isUNPCKLMask(PermMask.Val) ||
2877      X86::isUNPCKHMask(PermMask.Val))
2878    return Op;
2879
2880  if (V2IsSplat) {
2881    // Normalize mask so all entries that point to V2 points to its first
2882    // element then try to match unpck{h|l} again. If match, return a
2883    // new vector_shuffle with the corrected mask.
2884    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2885    if (NewMask.Val != PermMask.Val) {
2886      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2887        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2888        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2889      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2890        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2891        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2892      }
2893    }
2894  }
2895
2896  // Normalize the node to match x86 shuffle ops if needed
2897  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2898      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2899
2900  if (Commuted) {
2901    // Commute is back and try unpck* again.
2902    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2903    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2904        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2905        X86::isUNPCKLMask(PermMask.Val) ||
2906        X86::isUNPCKHMask(PermMask.Val))
2907      return Op;
2908  }
2909
2910  // If VT is integer, try PSHUF* first, then SHUFP*.
2911  if (MVT::isInteger(VT)) {
2912    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2913    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2914    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2915         X86::isPSHUFDMask(PermMask.Val)) ||
2916        X86::isPSHUFHWMask(PermMask.Val) ||
2917        X86::isPSHUFLWMask(PermMask.Val)) {
2918      if (V2.getOpcode() != ISD::UNDEF)
2919        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2920                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2921      return Op;
2922    }
2923
2924    if (X86::isSHUFPMask(PermMask.Val) &&
2925        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
2926      return Op;
2927
2928    // Handle v8i16 shuffle high / low shuffle node pair.
2929    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2930      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2931      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2932      SmallVector<SDOperand, 8> MaskVec;
2933      for (unsigned i = 0; i != 4; ++i)
2934        MaskVec.push_back(PermMask.getOperand(i));
2935      for (unsigned i = 4; i != 8; ++i)
2936        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2937      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2938                                   &MaskVec[0], MaskVec.size());
2939      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2940      MaskVec.clear();
2941      for (unsigned i = 0; i != 4; ++i)
2942        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2943      for (unsigned i = 4; i != 8; ++i)
2944        MaskVec.push_back(PermMask.getOperand(i));
2945      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2946      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2947    }
2948  } else {
2949    // Floating point cases in the other order.
2950    if (X86::isSHUFPMask(PermMask.Val))
2951      return Op;
2952    if (X86::isPSHUFDMask(PermMask.Val) ||
2953        X86::isPSHUFHWMask(PermMask.Val) ||
2954        X86::isPSHUFLWMask(PermMask.Val)) {
2955      if (V2.getOpcode() != ISD::UNDEF)
2956        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2957                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2958      return Op;
2959    }
2960  }
2961
2962  if (NumElems == 4 &&
2963      // Don't do this for MMX.
2964      MVT::getSizeInBits(VT) != 64) {
2965    MVT::ValueType MaskVT = PermMask.getValueType();
2966    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2967    SmallVector<std::pair<int, int>, 8> Locs;
2968    Locs.reserve(NumElems);
2969    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2970    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2971    unsigned NumHi = 0;
2972    unsigned NumLo = 0;
2973    // If no more than two elements come from either vector. This can be
2974    // implemented with two shuffles. First shuffle gather the elements.
2975    // The second shuffle, which takes the first shuffle as both of its
2976    // vector operands, put the elements into the right order.
2977    for (unsigned i = 0; i != NumElems; ++i) {
2978      SDOperand Elt = PermMask.getOperand(i);
2979      if (Elt.getOpcode() == ISD::UNDEF) {
2980        Locs[i] = std::make_pair(-1, -1);
2981      } else {
2982        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2983        if (Val < NumElems) {
2984          Locs[i] = std::make_pair(0, NumLo);
2985          Mask1[NumLo] = Elt;
2986          NumLo++;
2987        } else {
2988          Locs[i] = std::make_pair(1, NumHi);
2989          if (2+NumHi < NumElems)
2990            Mask1[2+NumHi] = Elt;
2991          NumHi++;
2992        }
2993      }
2994    }
2995    if (NumLo <= 2 && NumHi <= 2) {
2996      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2997                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2998                                   &Mask1[0], Mask1.size()));
2999      for (unsigned i = 0; i != NumElems; ++i) {
3000        if (Locs[i].first == -1)
3001          continue;
3002        else {
3003          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3004          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3005          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3006        }
3007      }
3008
3009      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3010                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3011                                     &Mask2[0], Mask2.size()));
3012    }
3013
3014    // Break it into (shuffle shuffle_hi, shuffle_lo).
3015    Locs.clear();
3016    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3017    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3018    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3019    unsigned MaskIdx = 0;
3020    unsigned LoIdx = 0;
3021    unsigned HiIdx = NumElems/2;
3022    for (unsigned i = 0; i != NumElems; ++i) {
3023      if (i == NumElems/2) {
3024        MaskPtr = &HiMask;
3025        MaskIdx = 1;
3026        LoIdx = 0;
3027        HiIdx = NumElems/2;
3028      }
3029      SDOperand Elt = PermMask.getOperand(i);
3030      if (Elt.getOpcode() == ISD::UNDEF) {
3031        Locs[i] = std::make_pair(-1, -1);
3032      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3033        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3034        (*MaskPtr)[LoIdx] = Elt;
3035        LoIdx++;
3036      } else {
3037        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3038        (*MaskPtr)[HiIdx] = Elt;
3039        HiIdx++;
3040      }
3041    }
3042
3043    SDOperand LoShuffle =
3044      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3045                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3046                              &LoMask[0], LoMask.size()));
3047    SDOperand HiShuffle =
3048      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3049                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3050                              &HiMask[0], HiMask.size()));
3051    SmallVector<SDOperand, 8> MaskOps;
3052    for (unsigned i = 0; i != NumElems; ++i) {
3053      if (Locs[i].first == -1) {
3054        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3055      } else {
3056        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3057        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3058      }
3059    }
3060    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3061                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3062                                   &MaskOps[0], MaskOps.size()));
3063  }
3064
3065  return SDOperand();
3066}
3067
3068SDOperand
3069X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3070  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3071    return SDOperand();
3072
3073  MVT::ValueType VT = Op.getValueType();
3074  // TODO: handle v16i8.
3075  if (MVT::getSizeInBits(VT) == 16) {
3076    // Transform it so it match pextrw which produces a 32-bit result.
3077    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3078    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3079                                    Op.getOperand(0), Op.getOperand(1));
3080    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3081                                    DAG.getValueType(VT));
3082    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3083  } else if (MVT::getSizeInBits(VT) == 32) {
3084    SDOperand Vec = Op.getOperand(0);
3085    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3086    if (Idx == 0)
3087      return Op;
3088    // SHUFPS the element to the lowest double word, then movss.
3089    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3090    SmallVector<SDOperand, 8> IdxVec;
3091    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3092    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3093    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3094    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3095    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3096                                 &IdxVec[0], IdxVec.size());
3097    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3098                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3099    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3100                       DAG.getConstant(0, getPointerTy()));
3101  } else if (MVT::getSizeInBits(VT) == 64) {
3102    SDOperand Vec = Op.getOperand(0);
3103    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3104    if (Idx == 0)
3105      return Op;
3106
3107    // UNPCKHPD the element to the lowest double word, then movsd.
3108    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3109    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3110    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3111    SmallVector<SDOperand, 8> IdxVec;
3112    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3113    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3114    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3115                                 &IdxVec[0], IdxVec.size());
3116    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3117                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3118    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3119                       DAG.getConstant(0, getPointerTy()));
3120  }
3121
3122  return SDOperand();
3123}
3124
3125SDOperand
3126X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3127  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3128  // as its second argument.
3129  MVT::ValueType VT = Op.getValueType();
3130  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3131  SDOperand N0 = Op.getOperand(0);
3132  SDOperand N1 = Op.getOperand(1);
3133  SDOperand N2 = Op.getOperand(2);
3134  if (MVT::getSizeInBits(BaseVT) == 16) {
3135    if (N1.getValueType() != MVT::i32)
3136      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3137    if (N2.getValueType() != MVT::i32)
3138      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3139    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3140  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3141    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3142    if (Idx == 0) {
3143      // Use a movss.
3144      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3145      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3146      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3147      SmallVector<SDOperand, 8> MaskVec;
3148      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3149      for (unsigned i = 1; i <= 3; ++i)
3150        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3151      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3152                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3153                                     &MaskVec[0], MaskVec.size()));
3154    } else {
3155      // Use two pinsrw instructions to insert a 32 bit value.
3156      Idx <<= 1;
3157      if (MVT::isFloatingPoint(N1.getValueType())) {
3158        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3159        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3160        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3161                         DAG.getConstant(0, getPointerTy()));
3162      }
3163      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3164      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3165                       DAG.getConstant(Idx, getPointerTy()));
3166      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3167      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3168                       DAG.getConstant(Idx+1, getPointerTy()));
3169      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3170    }
3171  }
3172
3173  return SDOperand();
3174}
3175
3176SDOperand
3177X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3178  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3179  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3180}
3181
3182// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3183// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3184// one of the above mentioned nodes. It has to be wrapped because otherwise
3185// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3186// be used to form addressing mode. These wrapped nodes will be selected
3187// into MOV32ri.
3188SDOperand
3189X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3190  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3191  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3192                                               getPointerTy(),
3193                                               CP->getAlignment());
3194  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3195  // With PIC, the address is actually $g + Offset.
3196  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3197      !Subtarget->isPICStyleRIPRel()) {
3198    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3199                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3200                         Result);
3201  }
3202
3203  return Result;
3204}
3205
3206SDOperand
3207X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3208  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3209  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3210  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3211  // With PIC, the address is actually $g + Offset.
3212  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3213      !Subtarget->isPICStyleRIPRel()) {
3214    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3215                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3216                         Result);
3217  }
3218
3219  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3220  // load the value at address GV, not the value of GV itself. This means that
3221  // the GlobalAddress must be in the base or index register of the address, not
3222  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3223  // The same applies for external symbols during PIC codegen
3224  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3225    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3226
3227  return Result;
3228}
3229
3230// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3231static SDOperand
3232LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3233                              const MVT::ValueType PtrVT) {
3234  SDOperand InFlag;
3235  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3236                                     DAG.getNode(X86ISD::GlobalBaseReg,
3237                                                 PtrVT), InFlag);
3238  InFlag = Chain.getValue(1);
3239
3240  // emit leal symbol@TLSGD(,%ebx,1), %eax
3241  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3242  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3243                                             GA->getValueType(0),
3244                                             GA->getOffset());
3245  SDOperand Ops[] = { Chain,  TGA, InFlag };
3246  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3247  InFlag = Result.getValue(2);
3248  Chain = Result.getValue(1);
3249
3250  // call ___tls_get_addr. This function receives its argument in
3251  // the register EAX.
3252  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3253  InFlag = Chain.getValue(1);
3254
3255  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3256  SDOperand Ops1[] = { Chain,
3257                      DAG.getTargetExternalSymbol("___tls_get_addr",
3258                                                  PtrVT),
3259                      DAG.getRegister(X86::EAX, PtrVT),
3260                      DAG.getRegister(X86::EBX, PtrVT),
3261                      InFlag };
3262  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3263  InFlag = Chain.getValue(1);
3264
3265  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3266}
3267
3268// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3269// "local exec" model.
3270static SDOperand
3271LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3272                         const MVT::ValueType PtrVT) {
3273  // Get the Thread Pointer
3274  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3275  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3276  // exec)
3277  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3278                                             GA->getValueType(0),
3279                                             GA->getOffset());
3280  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3281
3282  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3283    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3284
3285  // The address of the thread local variable is the add of the thread
3286  // pointer with the offset of the variable.
3287  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3288}
3289
3290SDOperand
3291X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3292  // TODO: implement the "local dynamic" model
3293  // TODO: implement the "initial exec"model for pic executables
3294  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3295         "TLS not implemented for non-ELF and 64-bit targets");
3296  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3297  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3298  // otherwise use the "Local Exec"TLS Model
3299  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3300    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3301  else
3302    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3303}
3304
3305SDOperand
3306X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3307  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3308  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3309  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3310  // With PIC, the address is actually $g + Offset.
3311  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3312      !Subtarget->isPICStyleRIPRel()) {
3313    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3314                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3315                         Result);
3316  }
3317
3318  return Result;
3319}
3320
3321SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3322  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3323  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3324  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3325  // With PIC, the address is actually $g + Offset.
3326  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3327      !Subtarget->isPICStyleRIPRel()) {
3328    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3329                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3330                         Result);
3331  }
3332
3333  return Result;
3334}
3335
3336SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3337    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3338           "Not an i64 shift!");
3339    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3340    SDOperand ShOpLo = Op.getOperand(0);
3341    SDOperand ShOpHi = Op.getOperand(1);
3342    SDOperand ShAmt  = Op.getOperand(2);
3343    SDOperand Tmp1 = isSRA ?
3344      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3345      DAG.getConstant(0, MVT::i32);
3346
3347    SDOperand Tmp2, Tmp3;
3348    if (Op.getOpcode() == ISD::SHL_PARTS) {
3349      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3350      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3351    } else {
3352      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3353      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3354    }
3355
3356    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3357    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3358                                    DAG.getConstant(32, MVT::i8));
3359    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3360    SDOperand Cond = NewCCModeling
3361      ? DAG.getNode(X86ISD::CMP_NEW, MVT::i32,
3362                    AndNode, DAG.getConstant(0, MVT::i8))
3363      : DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3364
3365    SDOperand Hi, Lo;
3366    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3367    unsigned Opc = NewCCModeling ? X86ISD::CMOV_NEW : X86ISD::CMOV;
3368    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3369    SmallVector<SDOperand, 4> Ops;
3370    if (Op.getOpcode() == ISD::SHL_PARTS) {
3371      Ops.push_back(Tmp2);
3372      Ops.push_back(Tmp3);
3373      Ops.push_back(CC);
3374      Ops.push_back(Cond);
3375      if (NewCCModeling)
3376        Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3377      else {
3378        Hi = DAG.getNode(Opc, VTs, 2, &Ops[0], Ops.size());
3379        Cond = Hi.getValue(1);
3380      }
3381
3382      Ops.clear();
3383      Ops.push_back(Tmp3);
3384      Ops.push_back(Tmp1);
3385      Ops.push_back(CC);
3386      Ops.push_back(Cond);
3387      if (NewCCModeling)
3388        Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3389      else
3390        Lo = DAG.getNode(Opc, VTs, 2, &Ops[0], Ops.size());
3391    } else {
3392      Ops.push_back(Tmp2);
3393      Ops.push_back(Tmp3);
3394      Ops.push_back(CC);
3395      Ops.push_back(Cond);
3396      if (NewCCModeling)
3397        Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3398      else {
3399        Lo = DAG.getNode(Opc, VTs, 2, &Ops[0], Ops.size());
3400        Cond = Lo.getValue(1);
3401      }
3402
3403      Ops.clear();
3404      Ops.push_back(Tmp3);
3405      Ops.push_back(Tmp1);
3406      Ops.push_back(CC);
3407      Ops.push_back(Cond);
3408      if (NewCCModeling)
3409        Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3410      else
3411        Hi = DAG.getNode(Opc, VTs, 2, &Ops[0], Ops.size());
3412    }
3413
3414    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3415    Ops.clear();
3416    Ops.push_back(Lo);
3417    Ops.push_back(Hi);
3418    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3419}
3420
3421SDOperand X86TargetLowering::LowerIntegerDivOrRem(SDOperand Op, SelectionDAG &DAG) {
3422  unsigned Opcode = Op.getOpcode();
3423  MVT::ValueType NVT = Op.getValueType();
3424  bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
3425  bool isDiv    = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
3426  unsigned Opc = isSigned ? X86ISD::IDIV : X86ISD::DIV;
3427
3428  SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3429  SDOperand DR = DAG.getNode(Opc, DAG.getVTList(NVT, NVT), Ops, 2);
3430
3431  if (isDiv)
3432    return DR;
3433
3434  return SDOperand(DR.Val, 1);
3435}
3436
3437SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3438  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3439         Op.getOperand(0).getValueType() >= MVT::i16 &&
3440         "Unknown SINT_TO_FP to lower!");
3441
3442  SDOperand Result;
3443  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3444  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3445  MachineFunction &MF = DAG.getMachineFunction();
3446  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3447  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3448  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3449                                 StackSlot, NULL, 0);
3450
3451  // These are really Legal; caller falls through into that case.
3452  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3453    return Result;
3454  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
3455    return Result;
3456  if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3457      Subtarget->is64Bit())
3458    return Result;
3459
3460  // Build the FILD
3461  SDVTList Tys;
3462  bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3463                (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
3464  if (useSSE)
3465    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3466  else
3467    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3468  SmallVector<SDOperand, 8> Ops;
3469  Ops.push_back(Chain);
3470  Ops.push_back(StackSlot);
3471  Ops.push_back(DAG.getValueType(SrcVT));
3472  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3473                       Tys, &Ops[0], Ops.size());
3474
3475  if (useSSE) {
3476    Chain = Result.getValue(1);
3477    SDOperand InFlag = Result.getValue(2);
3478
3479    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3480    // shouldn't be necessary except that RFP cannot be live across
3481    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3482    MachineFunction &MF = DAG.getMachineFunction();
3483    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3484    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3485    Tys = DAG.getVTList(MVT::Other);
3486    SmallVector<SDOperand, 8> Ops;
3487    Ops.push_back(Chain);
3488    Ops.push_back(Result);
3489    Ops.push_back(StackSlot);
3490    Ops.push_back(DAG.getValueType(Op.getValueType()));
3491    Ops.push_back(InFlag);
3492    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3493    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3494  }
3495
3496  return Result;
3497}
3498
3499SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3500  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3501         "Unknown FP_TO_SINT to lower!");
3502  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3503  // stack slot.
3504  SDOperand Result;
3505  MachineFunction &MF = DAG.getMachineFunction();
3506  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3507  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3508  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3509
3510  // These are really Legal.
3511  if (Op.getValueType() == MVT::i32 &&
3512      X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3513    return Result;
3514  if (Op.getValueType() == MVT::i32 &&
3515      X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
3516    return Result;
3517  if (Subtarget->is64Bit() &&
3518      Op.getValueType() == MVT::i64 &&
3519      Op.getOperand(0).getValueType() != MVT::f80)
3520    return Result;
3521
3522  unsigned Opc;
3523  switch (Op.getValueType()) {
3524    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3525    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3526    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3527    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3528  }
3529
3530  SDOperand Chain = DAG.getEntryNode();
3531  SDOperand Value = Op.getOperand(0);
3532  if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3533      (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
3534    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3535    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3536    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3537    SDOperand Ops[] = {
3538      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3539    };
3540    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3541    Chain = Value.getValue(1);
3542    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3543    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3544  }
3545
3546  // Build the FP_TO_INT*_IN_MEM
3547  SDOperand Ops[] = { Chain, Value, StackSlot };
3548  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3549
3550  // Load the result.
3551  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3552}
3553
3554SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3555  MVT::ValueType VT = Op.getValueType();
3556  MVT::ValueType EltVT = VT;
3557  if (MVT::isVector(VT))
3558    EltVT = MVT::getVectorElementType(VT);
3559  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3560  std::vector<Constant*> CV;
3561  if (EltVT == MVT::f64) {
3562    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
3563    CV.push_back(C);
3564    CV.push_back(C);
3565  } else {
3566    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
3567    CV.push_back(C);
3568    CV.push_back(C);
3569    CV.push_back(C);
3570    CV.push_back(C);
3571  }
3572  Constant *C = ConstantVector::get(CV);
3573  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3574  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3575                               false, 16);
3576  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3577}
3578
3579SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3580  MVT::ValueType VT = Op.getValueType();
3581  MVT::ValueType EltVT = VT;
3582  unsigned EltNum = 1;
3583  if (MVT::isVector(VT)) {
3584    EltVT = MVT::getVectorElementType(VT);
3585    EltNum = MVT::getVectorNumElements(VT);
3586  }
3587  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3588  std::vector<Constant*> CV;
3589  if (EltVT == MVT::f64) {
3590    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
3591    CV.push_back(C);
3592    CV.push_back(C);
3593  } else {
3594    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
3595    CV.push_back(C);
3596    CV.push_back(C);
3597    CV.push_back(C);
3598    CV.push_back(C);
3599  }
3600  Constant *C = ConstantVector::get(CV);
3601  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3602  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3603                               false, 16);
3604  if (MVT::isVector(VT)) {
3605    return DAG.getNode(ISD::BIT_CONVERT, VT,
3606                       DAG.getNode(ISD::XOR, MVT::v2i64,
3607                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3608                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3609  } else {
3610    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3611  }
3612}
3613
3614SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3615  SDOperand Op0 = Op.getOperand(0);
3616  SDOperand Op1 = Op.getOperand(1);
3617  MVT::ValueType VT = Op.getValueType();
3618  MVT::ValueType SrcVT = Op1.getValueType();
3619  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3620
3621  // If second operand is smaller, extend it first.
3622  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3623    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3624    SrcVT = VT;
3625    SrcTy = MVT::getTypeForValueType(SrcVT);
3626  }
3627
3628  // First get the sign bit of second operand.
3629  std::vector<Constant*> CV;
3630  if (SrcVT == MVT::f64) {
3631    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3632    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3633  } else {
3634    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3635    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3636    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3637    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3638  }
3639  Constant *C = ConstantVector::get(CV);
3640  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3641  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3642                                false, 16);
3643  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3644
3645  // Shift sign bit right or left if the two operands have different types.
3646  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3647    // Op0 is MVT::f32, Op1 is MVT::f64.
3648    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3649    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3650                          DAG.getConstant(32, MVT::i32));
3651    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3652    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3653                          DAG.getConstant(0, getPointerTy()));
3654  }
3655
3656  // Clear first operand sign bit.
3657  CV.clear();
3658  if (VT == MVT::f64) {
3659    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3660    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3661  } else {
3662    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3663    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3664    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3665    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3666  }
3667  C = ConstantVector::get(CV);
3668  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3669  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3670                                false, 16);
3671  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3672
3673  // Or the value with the sign bit.
3674  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3675}
3676
3677SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3678                                        SDOperand Chain) {
3679  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3680  SDOperand Cond;
3681  SDOperand Op0 = Op.getOperand(0);
3682  SDOperand Op1 = Op.getOperand(1);
3683  SDOperand CC = Op.getOperand(2);
3684  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3685  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3686  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3687  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3688  unsigned X86CC;
3689
3690  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3691                     Op0, Op1, DAG)) {
3692    SDOperand Ops1[] = { Chain, Op0, Op1 };
3693    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3694    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3695    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3696  }
3697
3698  assert(isFP && "Illegal integer SetCC!");
3699
3700  SDOperand COps[] = { Chain, Op0, Op1 };
3701  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3702
3703  switch (SetCCOpcode) {
3704  default: assert(false && "Illegal floating point SetCC!");
3705  case ISD::SETOEQ: {  // !PF & ZF
3706    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3707    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3708    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3709                         Tmp1.getValue(1) };
3710    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3711    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3712  }
3713  case ISD::SETUNE: {  // PF | !ZF
3714    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3715    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3716    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3717                         Tmp1.getValue(1) };
3718    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3719    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3720  }
3721  }
3722}
3723
3724SDOperand X86TargetLowering::LowerSETCC_New(SDOperand Op, SelectionDAG &DAG) {
3725  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3726  SDOperand Cond;
3727  SDOperand Op0 = Op.getOperand(0);
3728  SDOperand Op1 = Op.getOperand(1);
3729  SDOperand CC = Op.getOperand(2);
3730  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3731  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3732  unsigned X86CC;
3733
3734  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3735                     Op0, Op1, DAG)) {
3736    Cond = DAG.getNode(X86ISD::CMP_NEW, MVT::i32, Op0, Op1);
3737    return DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3738                       DAG.getConstant(X86CC, MVT::i8), Cond);
3739  }
3740
3741  assert(isFP && "Illegal integer SetCC!");
3742
3743  Cond = DAG.getNode(X86ISD::CMP_NEW, MVT::i32, Op0, Op1);
3744  switch (SetCCOpcode) {
3745  default: assert(false && "Illegal floating point SetCC!");
3746  case ISD::SETOEQ: {  // !PF & ZF
3747    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3748                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
3749    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3750                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
3751    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3752  }
3753  case ISD::SETUNE: {  // PF | !ZF
3754    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3755                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
3756    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3757                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
3758    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3759  }
3760  }
3761}
3762
3763
3764SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3765  bool addTest = true;
3766  SDOperand Chain = DAG.getEntryNode();
3767  SDOperand Cond  = Op.getOperand(0);
3768  SDOperand CC;
3769  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3770
3771  if (Cond.getOpcode() == ISD::SETCC)
3772    Cond = LowerSETCC(Cond, DAG, Chain);
3773
3774  if (Cond.getOpcode() == X86ISD::SETCC) {
3775    CC = Cond.getOperand(0);
3776
3777    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3778    // (since flag operand cannot be shared). Use it as the condition setting
3779    // operand in place of the X86ISD::SETCC.
3780    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3781    // to use a test instead of duplicating the X86ISD::CMP (for register
3782    // pressure reason)?
3783    SDOperand Cmp = Cond.getOperand(1);
3784    unsigned Opc = Cmp.getOpcode();
3785    bool IllegalFPCMov =
3786      ! ((X86ScalarSSEf32 && Op.getValueType()==MVT::f32) ||
3787         (X86ScalarSSEf64 && Op.getValueType()==MVT::f64)) &&
3788      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3789    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3790        !IllegalFPCMov) {
3791      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3792      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3793      addTest = false;
3794    }
3795  }
3796
3797  if (addTest) {
3798    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3799    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3800    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3801  }
3802
3803  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3804  SmallVector<SDOperand, 4> Ops;
3805  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3806  // condition is true.
3807  Ops.push_back(Op.getOperand(2));
3808  Ops.push_back(Op.getOperand(1));
3809  Ops.push_back(CC);
3810  Ops.push_back(Cond.getValue(1));
3811  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3812}
3813
3814SDOperand X86TargetLowering::LowerSELECT_New(SDOperand Op, SelectionDAG &DAG) {
3815  bool addTest = true;
3816  SDOperand Cond  = Op.getOperand(0);
3817  SDOperand CC;
3818
3819  if (Cond.getOpcode() == ISD::SETCC)
3820    Cond = LowerSETCC_New(Cond, DAG);
3821
3822  if (Cond.getOpcode() == X86ISD::SETCC_NEW) {
3823    CC = Cond.getOperand(0);
3824
3825    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3826    // (since flag operand cannot be shared). Use it as the condition setting
3827    // operand in place of the X86ISD::SETCC.
3828    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3829    // to use a test instead of duplicating the X86ISD::CMP (for register
3830    // pressure reason)?
3831    SDOperand Cmp = Cond.getOperand(1);
3832    unsigned Opc = Cmp.getOpcode();
3833    bool IllegalFPCMov =
3834      ! ((X86ScalarSSEf32 && Op.getValueType()==MVT::f32) ||
3835         (X86ScalarSSEf64 && Op.getValueType()==MVT::f64)) &&
3836      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3837    if ((Opc == X86ISD::CMP_NEW ||
3838         Opc == X86ISD::COMI_NEW ||
3839         Opc == X86ISD::UCOMI_NEW) &&
3840        !IllegalFPCMov) {
3841      Cond = DAG.getNode(Opc, MVT::i32, Cmp.getOperand(0), Cmp.getOperand(1));
3842      addTest = false;
3843    }
3844  }
3845
3846  if (addTest) {
3847    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3848    Cond = DAG.getNode(X86ISD::CMP_NEW, MVT::i32, Cond,
3849                       DAG.getConstant(0, MVT::i8));
3850  }
3851
3852  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
3853                                                    MVT::Flag);
3854  SmallVector<SDOperand, 4> Ops;
3855  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3856  // condition is true.
3857  Ops.push_back(Op.getOperand(2));
3858  Ops.push_back(Op.getOperand(1));
3859  Ops.push_back(CC);
3860  Ops.push_back(Cond);
3861  return DAG.getNode(X86ISD::CMOV_NEW, VTs, 2, &Ops[0], Ops.size());
3862}
3863
3864SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3865  bool addTest = true;
3866  SDOperand Chain = Op.getOperand(0);
3867  SDOperand Cond  = Op.getOperand(1);
3868  SDOperand Dest  = Op.getOperand(2);
3869  SDOperand CC;
3870  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3871
3872  if (Cond.getOpcode() == ISD::SETCC)
3873    Cond = LowerSETCC(Cond, DAG, Chain);
3874
3875  if (Cond.getOpcode() == X86ISD::SETCC) {
3876    CC = Cond.getOperand(0);
3877
3878    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3879    // (since flag operand cannot be shared). Use it as the condition setting
3880    // operand in place of the X86ISD::SETCC.
3881    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3882    // to use a test instead of duplicating the X86ISD::CMP (for register
3883    // pressure reason)?
3884    SDOperand Cmp = Cond.getOperand(1);
3885    unsigned Opc = Cmp.getOpcode();
3886    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3887      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3888      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3889      addTest = false;
3890    }
3891  }
3892
3893  if (addTest) {
3894    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3895    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3896    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3897  }
3898  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3899                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3900}
3901
3902SDOperand X86TargetLowering::LowerBRCOND_New(SDOperand Op, SelectionDAG &DAG) {
3903  bool addTest = true;
3904  SDOperand Chain = Op.getOperand(0);
3905  SDOperand Cond  = Op.getOperand(1);
3906  SDOperand Dest  = Op.getOperand(2);
3907  SDOperand CC;
3908
3909  if (Cond.getOpcode() == ISD::SETCC)
3910    Cond = LowerSETCC_New(Cond, DAG);
3911
3912  if (Cond.getOpcode() == X86ISD::SETCC_NEW) {
3913    CC = Cond.getOperand(0);
3914
3915    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3916    // (since flag operand cannot be shared). Use it as the condition setting
3917    // operand in place of the X86ISD::SETCC.
3918    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3919    // to use a test instead of duplicating the X86ISD::CMP (for register
3920    // pressure reason)?
3921    SDOperand Cmp = Cond.getOperand(1);
3922    unsigned Opc = Cmp.getOpcode();
3923    if (Opc == X86ISD::CMP_NEW ||
3924        Opc == X86ISD::COMI_NEW ||
3925        Opc == X86ISD::UCOMI_NEW) {
3926      Cond = DAG.getNode(Opc, MVT::i32, Cmp.getOperand(0), Cmp.getOperand(1));
3927      addTest = false;
3928    }
3929  }
3930
3931  if (addTest) {
3932    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3933    Cond= DAG.getNode(X86ISD::CMP_NEW, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
3934  }
3935  return DAG.getNode(X86ISD::BRCOND_NEW, Op.getValueType(),
3936                     Chain, Op.getOperand(2), CC, Cond);
3937}
3938
3939SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3940  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3941
3942  if (Subtarget->is64Bit())
3943    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3944  else
3945    switch (CallingConv) {
3946    default:
3947      assert(0 && "Unsupported calling convention");
3948    case CallingConv::Fast:
3949      // TODO: Implement fastcc
3950      // Falls through
3951    case CallingConv::C:
3952    case CallingConv::X86_StdCall:
3953      return LowerCCCCallTo(Op, DAG, CallingConv);
3954    case CallingConv::X86_FastCall:
3955      return LowerFastCCCallTo(Op, DAG, CallingConv);
3956    }
3957}
3958
3959
3960// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3961// Calls to _alloca is needed to probe the stack when allocating more than 4k
3962// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3963// that the guard pages used by the OS virtual memory manager are allocated in
3964// correct sequence.
3965SDOperand
3966X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3967                                           SelectionDAG &DAG) {
3968  assert(Subtarget->isTargetCygMing() &&
3969         "This should be used only on Cygwin/Mingw targets");
3970
3971  // Get the inputs.
3972  SDOperand Chain = Op.getOperand(0);
3973  SDOperand Size  = Op.getOperand(1);
3974  // FIXME: Ensure alignment here
3975
3976  SDOperand Flag;
3977
3978  MVT::ValueType IntPtr = getPointerTy();
3979  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3980
3981  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3982  Flag = Chain.getValue(1);
3983
3984  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3985  SDOperand Ops[] = { Chain,
3986                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
3987                      DAG.getRegister(X86::EAX, IntPtr),
3988                      Flag };
3989  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3990  Flag = Chain.getValue(1);
3991
3992  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3993
3994  std::vector<MVT::ValueType> Tys;
3995  Tys.push_back(SPTy);
3996  Tys.push_back(MVT::Other);
3997  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3998  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3999}
4000
4001SDOperand
4002X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4003  MachineFunction &MF = DAG.getMachineFunction();
4004  const Function* Fn = MF.getFunction();
4005  if (Fn->hasExternalLinkage() &&
4006      Subtarget->isTargetCygMing() &&
4007      Fn->getName() == "main")
4008    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4009
4010  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4011  if (Subtarget->is64Bit())
4012    return LowerX86_64CCCArguments(Op, DAG);
4013  else
4014    switch(CC) {
4015    default:
4016      assert(0 && "Unsupported calling convention");
4017    case CallingConv::Fast:
4018      // TODO: implement fastcc.
4019
4020      // Falls through
4021    case CallingConv::C:
4022      return LowerCCCArguments(Op, DAG);
4023    case CallingConv::X86_StdCall:
4024      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4025      return LowerCCCArguments(Op, DAG, true);
4026    case CallingConv::X86_FastCall:
4027      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4028      return LowerFastCCArguments(Op, DAG);
4029    }
4030}
4031
4032SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4033  SDOperand InFlag(0, 0);
4034  SDOperand Chain = Op.getOperand(0);
4035  unsigned Align =
4036    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4037  if (Align == 0) Align = 1;
4038
4039  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4040  // If not DWORD aligned or size is more than the threshold, call memset.
4041  // The libc version is likely to be faster for these cases. It can use the
4042  // address value and run time information about the CPU.
4043  if ((Align & 3) != 0 ||
4044      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
4045    MVT::ValueType IntPtr = getPointerTy();
4046    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4047    TargetLowering::ArgListTy Args;
4048    TargetLowering::ArgListEntry Entry;
4049    Entry.Node = Op.getOperand(1);
4050    Entry.Ty = IntPtrTy;
4051    Args.push_back(Entry);
4052    // Extend the unsigned i8 argument to be an int value for the call.
4053    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4054    Entry.Ty = IntPtrTy;
4055    Args.push_back(Entry);
4056    Entry.Node = Op.getOperand(3);
4057    Args.push_back(Entry);
4058    std::pair<SDOperand,SDOperand> CallResult =
4059      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4060                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4061    return CallResult.second;
4062  }
4063
4064  MVT::ValueType AVT;
4065  SDOperand Count;
4066  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4067  unsigned BytesLeft = 0;
4068  bool TwoRepStos = false;
4069  if (ValC) {
4070    unsigned ValReg;
4071    uint64_t Val = ValC->getValue() & 255;
4072
4073    // If the value is a constant, then we can potentially use larger sets.
4074    switch (Align & 3) {
4075      case 2:   // WORD aligned
4076        AVT = MVT::i16;
4077        ValReg = X86::AX;
4078        Val = (Val << 8) | Val;
4079        break;
4080      case 0:  // DWORD aligned
4081        AVT = MVT::i32;
4082        ValReg = X86::EAX;
4083        Val = (Val << 8)  | Val;
4084        Val = (Val << 16) | Val;
4085        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4086          AVT = MVT::i64;
4087          ValReg = X86::RAX;
4088          Val = (Val << 32) | Val;
4089        }
4090        break;
4091      default:  // Byte aligned
4092        AVT = MVT::i8;
4093        ValReg = X86::AL;
4094        Count = Op.getOperand(3);
4095        break;
4096    }
4097
4098    if (AVT > MVT::i8) {
4099      if (I) {
4100        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4101        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4102        BytesLeft = I->getValue() % UBytes;
4103      } else {
4104        assert(AVT >= MVT::i32 &&
4105               "Do not use rep;stos if not at least DWORD aligned");
4106        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4107                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4108        TwoRepStos = true;
4109      }
4110    }
4111
4112    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4113                              InFlag);
4114    InFlag = Chain.getValue(1);
4115  } else {
4116    AVT = MVT::i8;
4117    Count  = Op.getOperand(3);
4118    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4119    InFlag = Chain.getValue(1);
4120  }
4121
4122  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4123                            Count, InFlag);
4124  InFlag = Chain.getValue(1);
4125  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4126                            Op.getOperand(1), InFlag);
4127  InFlag = Chain.getValue(1);
4128
4129  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4130  SmallVector<SDOperand, 8> Ops;
4131  Ops.push_back(Chain);
4132  Ops.push_back(DAG.getValueType(AVT));
4133  Ops.push_back(InFlag);
4134  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4135
4136  if (TwoRepStos) {
4137    InFlag = Chain.getValue(1);
4138    Count = Op.getOperand(3);
4139    MVT::ValueType CVT = Count.getValueType();
4140    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4141                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4142    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4143                              Left, InFlag);
4144    InFlag = Chain.getValue(1);
4145    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4146    Ops.clear();
4147    Ops.push_back(Chain);
4148    Ops.push_back(DAG.getValueType(MVT::i8));
4149    Ops.push_back(InFlag);
4150    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4151  } else if (BytesLeft) {
4152    // Issue stores for the last 1 - 7 bytes.
4153    SDOperand Value;
4154    unsigned Val = ValC->getValue() & 255;
4155    unsigned Offset = I->getValue() - BytesLeft;
4156    SDOperand DstAddr = Op.getOperand(1);
4157    MVT::ValueType AddrVT = DstAddr.getValueType();
4158    if (BytesLeft >= 4) {
4159      Val = (Val << 8)  | Val;
4160      Val = (Val << 16) | Val;
4161      Value = DAG.getConstant(Val, MVT::i32);
4162      Chain = DAG.getStore(Chain, Value,
4163                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4164                                       DAG.getConstant(Offset, AddrVT)),
4165                           NULL, 0);
4166      BytesLeft -= 4;
4167      Offset += 4;
4168    }
4169    if (BytesLeft >= 2) {
4170      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4171      Chain = DAG.getStore(Chain, Value,
4172                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4173                                       DAG.getConstant(Offset, AddrVT)),
4174                           NULL, 0);
4175      BytesLeft -= 2;
4176      Offset += 2;
4177    }
4178    if (BytesLeft == 1) {
4179      Value = DAG.getConstant(Val, MVT::i8);
4180      Chain = DAG.getStore(Chain, Value,
4181                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4182                                       DAG.getConstant(Offset, AddrVT)),
4183                           NULL, 0);
4184    }
4185  }
4186
4187  return Chain;
4188}
4189
4190SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4191  SDOperand ChainOp = Op.getOperand(0);
4192  SDOperand DestOp = Op.getOperand(1);
4193  SDOperand SourceOp = Op.getOperand(2);
4194  SDOperand CountOp = Op.getOperand(3);
4195  SDOperand AlignOp = Op.getOperand(4);
4196  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
4197  if (Align == 0) Align = 1;
4198
4199  // The libc version is likely to be faster for the following cases. It can
4200  // use the address value and run time information about the CPU.
4201  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
4202
4203  // If not DWORD aligned, call memcpy.
4204  if ((Align & 3) != 0)
4205    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4206
4207  // If size is unknown, call memcpy.
4208  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4209  if (!I)
4210    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4211
4212  // If size is more than the threshold, call memcpy.
4213  unsigned Size = I->getValue();
4214  if (Size > Subtarget->getMinRepStrSizeThreshold())
4215    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4216
4217  return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4218}
4219
4220SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4221                                             SDOperand Dest,
4222                                             SDOperand Source,
4223                                             SDOperand Count,
4224                                             SelectionDAG &DAG) {
4225  MVT::ValueType IntPtr = getPointerTy();
4226  TargetLowering::ArgListTy Args;
4227  TargetLowering::ArgListEntry Entry;
4228  Entry.Ty = getTargetData()->getIntPtrType();
4229  Entry.Node = Dest; Args.push_back(Entry);
4230  Entry.Node = Source; Args.push_back(Entry);
4231  Entry.Node = Count; Args.push_back(Entry);
4232  std::pair<SDOperand,SDOperand> CallResult =
4233      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4234                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4235  return CallResult.second;
4236}
4237
4238SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4239                                               SDOperand Dest,
4240                                               SDOperand Source,
4241                                               unsigned Size,
4242                                               unsigned Align,
4243                                               SelectionDAG &DAG) {
4244  MVT::ValueType AVT;
4245  unsigned BytesLeft = 0;
4246  switch (Align & 3) {
4247    case 2:   // WORD aligned
4248      AVT = MVT::i16;
4249      break;
4250    case 0:  // DWORD aligned
4251      AVT = MVT::i32;
4252      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4253        AVT = MVT::i64;
4254      break;
4255    default:  // Byte aligned
4256      AVT = MVT::i8;
4257      break;
4258  }
4259
4260  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4261  SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4262  BytesLeft = Size % UBytes;
4263
4264  SDOperand InFlag(0, 0);
4265  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4266                            Count, InFlag);
4267  InFlag = Chain.getValue(1);
4268  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4269                            Dest, InFlag);
4270  InFlag = Chain.getValue(1);
4271  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4272                            Source, InFlag);
4273  InFlag = Chain.getValue(1);
4274
4275  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4276  SmallVector<SDOperand, 8> Ops;
4277  Ops.push_back(Chain);
4278  Ops.push_back(DAG.getValueType(AVT));
4279  Ops.push_back(InFlag);
4280  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4281
4282  if (BytesLeft) {
4283    // Issue loads and stores for the last 1 - 7 bytes.
4284    unsigned Offset = Size - BytesLeft;
4285    SDOperand DstAddr = Dest;
4286    MVT::ValueType DstVT = DstAddr.getValueType();
4287    SDOperand SrcAddr = Source;
4288    MVT::ValueType SrcVT = SrcAddr.getValueType();
4289    SDOperand Value;
4290    if (BytesLeft >= 4) {
4291      Value = DAG.getLoad(MVT::i32, Chain,
4292                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4293                                      DAG.getConstant(Offset, SrcVT)),
4294                          NULL, 0);
4295      Chain = Value.getValue(1);
4296      Chain = DAG.getStore(Chain, Value,
4297                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4298                                       DAG.getConstant(Offset, DstVT)),
4299                           NULL, 0);
4300      BytesLeft -= 4;
4301      Offset += 4;
4302    }
4303    if (BytesLeft >= 2) {
4304      Value = DAG.getLoad(MVT::i16, Chain,
4305                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4306                                      DAG.getConstant(Offset, SrcVT)),
4307                          NULL, 0);
4308      Chain = Value.getValue(1);
4309      Chain = DAG.getStore(Chain, Value,
4310                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4311                                       DAG.getConstant(Offset, DstVT)),
4312                           NULL, 0);
4313      BytesLeft -= 2;
4314      Offset += 2;
4315    }
4316
4317    if (BytesLeft == 1) {
4318      Value = DAG.getLoad(MVT::i8, Chain,
4319                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4320                                      DAG.getConstant(Offset, SrcVT)),
4321                          NULL, 0);
4322      Chain = Value.getValue(1);
4323      Chain = DAG.getStore(Chain, Value,
4324                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4325                                       DAG.getConstant(Offset, DstVT)),
4326                           NULL, 0);
4327    }
4328  }
4329
4330  return Chain;
4331}
4332
4333SDOperand
4334X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4335  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4336  SDOperand TheOp = Op.getOperand(0);
4337  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4338  if (Subtarget->is64Bit()) {
4339    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4340    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4341                                         MVT::i64, Copy1.getValue(2));
4342    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4343                                DAG.getConstant(32, MVT::i8));
4344    SDOperand Ops[] = {
4345      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4346    };
4347
4348    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4349    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4350  }
4351
4352  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4353  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4354                                       MVT::i32, Copy1.getValue(2));
4355  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4356  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4357  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4358}
4359
4360SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4361  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4362
4363  if (!Subtarget->is64Bit()) {
4364    // vastart just stores the address of the VarArgsFrameIndex slot into the
4365    // memory location argument.
4366    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4367    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4368                        SV->getOffset());
4369  }
4370
4371  // __va_list_tag:
4372  //   gp_offset         (0 - 6 * 8)
4373  //   fp_offset         (48 - 48 + 8 * 16)
4374  //   overflow_arg_area (point to parameters coming in memory).
4375  //   reg_save_area
4376  SmallVector<SDOperand, 8> MemOps;
4377  SDOperand FIN = Op.getOperand(1);
4378  // Store gp_offset
4379  SDOperand Store = DAG.getStore(Op.getOperand(0),
4380                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4381                                 FIN, SV->getValue(), SV->getOffset());
4382  MemOps.push_back(Store);
4383
4384  // Store fp_offset
4385  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4386                    DAG.getConstant(4, getPointerTy()));
4387  Store = DAG.getStore(Op.getOperand(0),
4388                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4389                       FIN, SV->getValue(), SV->getOffset());
4390  MemOps.push_back(Store);
4391
4392  // Store ptr to overflow_arg_area
4393  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4394                    DAG.getConstant(4, getPointerTy()));
4395  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4396  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4397                       SV->getOffset());
4398  MemOps.push_back(Store);
4399
4400  // Store ptr to reg_save_area.
4401  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4402                    DAG.getConstant(8, getPointerTy()));
4403  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4404  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4405                       SV->getOffset());
4406  MemOps.push_back(Store);
4407  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4408}
4409
4410SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4411  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4412  SDOperand Chain = Op.getOperand(0);
4413  SDOperand DstPtr = Op.getOperand(1);
4414  SDOperand SrcPtr = Op.getOperand(2);
4415  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4416  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4417
4418  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4419                       SrcSV->getValue(), SrcSV->getOffset());
4420  Chain = SrcPtr.getValue(1);
4421  for (unsigned i = 0; i < 3; ++i) {
4422    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4423                                SrcSV->getValue(), SrcSV->getOffset());
4424    Chain = Val.getValue(1);
4425    Chain = DAG.getStore(Chain, Val, DstPtr,
4426                         DstSV->getValue(), DstSV->getOffset());
4427    if (i == 2)
4428      break;
4429    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4430                         DAG.getConstant(8, getPointerTy()));
4431    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4432                         DAG.getConstant(8, getPointerTy()));
4433  }
4434  return Chain;
4435}
4436
4437SDOperand
4438X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4439  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4440  switch (IntNo) {
4441  default: return SDOperand();    // Don't custom lower most intrinsics.
4442    // Comparison intrinsics.
4443  case Intrinsic::x86_sse_comieq_ss:
4444  case Intrinsic::x86_sse_comilt_ss:
4445  case Intrinsic::x86_sse_comile_ss:
4446  case Intrinsic::x86_sse_comigt_ss:
4447  case Intrinsic::x86_sse_comige_ss:
4448  case Intrinsic::x86_sse_comineq_ss:
4449  case Intrinsic::x86_sse_ucomieq_ss:
4450  case Intrinsic::x86_sse_ucomilt_ss:
4451  case Intrinsic::x86_sse_ucomile_ss:
4452  case Intrinsic::x86_sse_ucomigt_ss:
4453  case Intrinsic::x86_sse_ucomige_ss:
4454  case Intrinsic::x86_sse_ucomineq_ss:
4455  case Intrinsic::x86_sse2_comieq_sd:
4456  case Intrinsic::x86_sse2_comilt_sd:
4457  case Intrinsic::x86_sse2_comile_sd:
4458  case Intrinsic::x86_sse2_comigt_sd:
4459  case Intrinsic::x86_sse2_comige_sd:
4460  case Intrinsic::x86_sse2_comineq_sd:
4461  case Intrinsic::x86_sse2_ucomieq_sd:
4462  case Intrinsic::x86_sse2_ucomilt_sd:
4463  case Intrinsic::x86_sse2_ucomile_sd:
4464  case Intrinsic::x86_sse2_ucomigt_sd:
4465  case Intrinsic::x86_sse2_ucomige_sd:
4466  case Intrinsic::x86_sse2_ucomineq_sd: {
4467    unsigned Opc = 0;
4468    ISD::CondCode CC = ISD::SETCC_INVALID;
4469    switch (IntNo) {
4470    default: break;
4471    case Intrinsic::x86_sse_comieq_ss:
4472    case Intrinsic::x86_sse2_comieq_sd:
4473      Opc = X86ISD::COMI;
4474      CC = ISD::SETEQ;
4475      break;
4476    case Intrinsic::x86_sse_comilt_ss:
4477    case Intrinsic::x86_sse2_comilt_sd:
4478      Opc = X86ISD::COMI;
4479      CC = ISD::SETLT;
4480      break;
4481    case Intrinsic::x86_sse_comile_ss:
4482    case Intrinsic::x86_sse2_comile_sd:
4483      Opc = X86ISD::COMI;
4484      CC = ISD::SETLE;
4485      break;
4486    case Intrinsic::x86_sse_comigt_ss:
4487    case Intrinsic::x86_sse2_comigt_sd:
4488      Opc = X86ISD::COMI;
4489      CC = ISD::SETGT;
4490      break;
4491    case Intrinsic::x86_sse_comige_ss:
4492    case Intrinsic::x86_sse2_comige_sd:
4493      Opc = X86ISD::COMI;
4494      CC = ISD::SETGE;
4495      break;
4496    case Intrinsic::x86_sse_comineq_ss:
4497    case Intrinsic::x86_sse2_comineq_sd:
4498      Opc = X86ISD::COMI;
4499      CC = ISD::SETNE;
4500      break;
4501    case Intrinsic::x86_sse_ucomieq_ss:
4502    case Intrinsic::x86_sse2_ucomieq_sd:
4503      Opc = X86ISD::UCOMI;
4504      CC = ISD::SETEQ;
4505      break;
4506    case Intrinsic::x86_sse_ucomilt_ss:
4507    case Intrinsic::x86_sse2_ucomilt_sd:
4508      Opc = X86ISD::UCOMI;
4509      CC = ISD::SETLT;
4510      break;
4511    case Intrinsic::x86_sse_ucomile_ss:
4512    case Intrinsic::x86_sse2_ucomile_sd:
4513      Opc = X86ISD::UCOMI;
4514      CC = ISD::SETLE;
4515      break;
4516    case Intrinsic::x86_sse_ucomigt_ss:
4517    case Intrinsic::x86_sse2_ucomigt_sd:
4518      Opc = X86ISD::UCOMI;
4519      CC = ISD::SETGT;
4520      break;
4521    case Intrinsic::x86_sse_ucomige_ss:
4522    case Intrinsic::x86_sse2_ucomige_sd:
4523      Opc = X86ISD::UCOMI;
4524      CC = ISD::SETGE;
4525      break;
4526    case Intrinsic::x86_sse_ucomineq_ss:
4527    case Intrinsic::x86_sse2_ucomineq_sd:
4528      Opc = X86ISD::UCOMI;
4529      CC = ISD::SETNE;
4530      break;
4531    }
4532
4533    unsigned X86CC;
4534    SDOperand LHS = Op.getOperand(1);
4535    SDOperand RHS = Op.getOperand(2);
4536    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4537
4538    if (NewCCModeling) {
4539      Opc = (Opc == X86ISD::UCOMI) ? X86ISD::UCOMI_NEW : X86ISD::COMI_NEW;
4540      SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4541      SDOperand SetCC = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
4542                                    DAG.getConstant(X86CC, MVT::i8), Cond);
4543      return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4544    } else {
4545      const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4546      SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4547      SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4548      VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4549      SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4550      SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4551      return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4552    }
4553  }
4554  }
4555}
4556
4557SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4558  // Depths > 0 not supported yet!
4559  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4560    return SDOperand();
4561
4562  // Just load the return address
4563  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4564  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4565}
4566
4567SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4568  // Depths > 0 not supported yet!
4569  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4570    return SDOperand();
4571
4572  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4573  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4574                     DAG.getConstant(4, getPointerTy()));
4575}
4576
4577SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4578                                                       SelectionDAG &DAG) {
4579  // Is not yet supported on x86-64
4580  if (Subtarget->is64Bit())
4581    return SDOperand();
4582
4583  return DAG.getConstant(8, getPointerTy());
4584}
4585
4586SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4587{
4588  assert(!Subtarget->is64Bit() &&
4589         "Lowering of eh_return builtin is not supported yet on x86-64");
4590
4591  MachineFunction &MF = DAG.getMachineFunction();
4592  SDOperand Chain     = Op.getOperand(0);
4593  SDOperand Offset    = Op.getOperand(1);
4594  SDOperand Handler   = Op.getOperand(2);
4595
4596  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4597                                    getPointerTy());
4598
4599  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4600                                    DAG.getConstant(-4UL, getPointerTy()));
4601  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4602  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4603  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4604  MF.addLiveOut(X86::ECX);
4605
4606  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4607                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4608}
4609
4610SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4611                                             SelectionDAG &DAG) {
4612  SDOperand Root = Op.getOperand(0);
4613  SDOperand Trmp = Op.getOperand(1); // trampoline
4614  SDOperand FPtr = Op.getOperand(2); // nested function
4615  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4616
4617  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4618
4619  if (Subtarget->is64Bit()) {
4620    return SDOperand(); // not yet supported
4621  } else {
4622    Function *Func = (Function *)
4623      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4624    unsigned CC = Func->getCallingConv();
4625    unsigned NestReg;
4626
4627    switch (CC) {
4628    default:
4629      assert(0 && "Unsupported calling convention");
4630    case CallingConv::C:
4631    case CallingConv::Fast:
4632    case CallingConv::X86_StdCall: {
4633      // Pass 'nest' parameter in ECX.
4634      // Must be kept in sync with X86CallingConv.td
4635      NestReg = X86::ECX;
4636
4637      // Check that ECX wasn't needed by an 'inreg' parameter.
4638      const FunctionType *FTy = Func->getFunctionType();
4639      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4640
4641      if (Attrs && !Func->isVarArg()) {
4642        unsigned InRegCount = 0;
4643        unsigned Idx = 1;
4644
4645        for (FunctionType::param_iterator I = FTy->param_begin(),
4646             E = FTy->param_end(); I != E; ++I, ++Idx)
4647          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4648            // FIXME: should only count parameters that are lowered to integers.
4649            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4650
4651        if (InRegCount > 2) {
4652          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4653          abort();
4654        }
4655      }
4656      break;
4657    }
4658    case CallingConv::X86_FastCall:
4659      // Pass 'nest' parameter in EAX.
4660      // Must be kept in sync with X86CallingConv.td
4661      NestReg = X86::EAX;
4662      break;
4663    }
4664
4665    const X86InstrInfo *TII =
4666      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4667
4668    SDOperand OutChains[4];
4669    SDOperand Addr, Disp;
4670
4671    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4672    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4673
4674    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4675    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4676    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4677                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4678
4679    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4680    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4681                                TrmpSV->getOffset() + 1, false, 1);
4682
4683    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4684    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4685    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4686                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4687
4688    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4689    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4690                                TrmpSV->getOffset() + 6, false, 1);
4691
4692    SDOperand Ops[] =
4693      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4694    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4695  }
4696}
4697
4698/// LowerOperation - Provide custom lowering hooks for some operations.
4699///
4700SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4701  switch (Op.getOpcode()) {
4702  default: assert(0 && "Should not custom lower this!");
4703  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4704  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4705  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4706  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4707  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4708  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4709  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4710  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4711  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4712  case ISD::SHL_PARTS:
4713  case ISD::SRA_PARTS:
4714  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4715  case ISD::SDIV:
4716  case ISD::UDIV:
4717  case ISD::SREM:
4718  case ISD::UREM:               return LowerIntegerDivOrRem(Op, DAG);
4719  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4720  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4721  case ISD::FABS:               return LowerFABS(Op, DAG);
4722  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4723  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4724  case ISD::SETCC:              return NewCCModeling
4725                                  ? LowerSETCC_New(Op, DAG)
4726                                  : LowerSETCC(Op, DAG, DAG.getEntryNode());
4727  case ISD::SELECT:             return NewCCModeling
4728                                  ? LowerSELECT_New(Op, DAG)
4729                                  : LowerSELECT(Op, DAG);
4730  case ISD::BRCOND:             return NewCCModeling
4731                                  ? LowerBRCOND_New(Op, DAG)
4732                                  : LowerBRCOND(Op, DAG);
4733  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4734  case ISD::CALL:               return LowerCALL(Op, DAG);
4735  case ISD::RET:                return LowerRET(Op, DAG);
4736  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4737  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4738  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4739  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4740  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4741  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4742  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4743  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4744  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4745  case ISD::FRAME_TO_ARGS_OFFSET:
4746                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4747  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4748  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
4749  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4750  }
4751  return SDOperand();
4752}
4753
4754const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4755  switch (Opcode) {
4756  default: return NULL;
4757  case X86ISD::SHLD:               return "X86ISD::SHLD";
4758  case X86ISD::SHRD:               return "X86ISD::SHRD";
4759  case X86ISD::FAND:               return "X86ISD::FAND";
4760  case X86ISD::FOR:                return "X86ISD::FOR";
4761  case X86ISD::FXOR:               return "X86ISD::FXOR";
4762  case X86ISD::FSRL:               return "X86ISD::FSRL";
4763  case X86ISD::FILD:               return "X86ISD::FILD";
4764  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4765  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4766  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4767  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4768  case X86ISD::FLD:                return "X86ISD::FLD";
4769  case X86ISD::FST:                return "X86ISD::FST";
4770  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4771  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4772  case X86ISD::CALL:               return "X86ISD::CALL";
4773  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4774  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4775  case X86ISD::CMP:                return "X86ISD::CMP";
4776  case X86ISD::CMP_NEW:            return "X86ISD::CMP_NEW";
4777  case X86ISD::COMI:               return "X86ISD::COMI";
4778  case X86ISD::COMI_NEW:           return "X86ISD::COMI_NEW";
4779  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4780  case X86ISD::UCOMI_NEW:          return "X86ISD::UCOMI_NEW";
4781  case X86ISD::SETCC:              return "X86ISD::SETCC";
4782  case X86ISD::SETCC_NEW:          return "X86ISD::SETCC_NEW";
4783  case X86ISD::CMOV:               return "X86ISD::CMOV";
4784  case X86ISD::CMOV_NEW:           return "X86ISD::CMOV_NEW";
4785  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4786  case X86ISD::BRCOND_NEW:         return "X86ISD::BRCOND_NEW";
4787  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4788  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4789  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4790  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4791  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4792  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4793  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4794  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4795  case X86ISD::FMAX:               return "X86ISD::FMAX";
4796  case X86ISD::FMIN:               return "X86ISD::FMIN";
4797  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
4798  case X86ISD::FRCP:               return "X86ISD::FRCP";
4799  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4800  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4801  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
4802  case X86ISD::DIV:                return "X86ISD::DIV";
4803  case X86ISD::IDIV:               return "X86ISD::IDIV";
4804  }
4805}
4806
4807// isLegalAddressingMode - Return true if the addressing mode represented
4808// by AM is legal for this target, for a load/store of the specified type.
4809bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4810                                              const Type *Ty) const {
4811  // X86 supports extremely general addressing modes.
4812
4813  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4814  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4815    return false;
4816
4817  if (AM.BaseGV) {
4818    // We can only fold this if we don't need an extra load.
4819    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4820      return false;
4821
4822    // X86-64 only supports addr of globals in small code model.
4823    if (Subtarget->is64Bit()) {
4824      if (getTargetMachine().getCodeModel() != CodeModel::Small)
4825        return false;
4826      // If lower 4G is not available, then we must use rip-relative addressing.
4827      if (AM.BaseOffs || AM.Scale > 1)
4828        return false;
4829    }
4830  }
4831
4832  switch (AM.Scale) {
4833  case 0:
4834  case 1:
4835  case 2:
4836  case 4:
4837  case 8:
4838    // These scales always work.
4839    break;
4840  case 3:
4841  case 5:
4842  case 9:
4843    // These scales are formed with basereg+scalereg.  Only accept if there is
4844    // no basereg yet.
4845    if (AM.HasBaseReg)
4846      return false;
4847    break;
4848  default:  // Other stuff never works.
4849    return false;
4850  }
4851
4852  return true;
4853}
4854
4855
4856/// isShuffleMaskLegal - Targets can use this to indicate that they only
4857/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4858/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4859/// are assumed to be legal.
4860bool
4861X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4862  // Only do shuffles on 128-bit vector types for now.
4863  if (MVT::getSizeInBits(VT) == 64) return false;
4864  return (Mask.Val->getNumOperands() <= 4 ||
4865          isIdentityMask(Mask.Val) ||
4866          isIdentityMask(Mask.Val, true) ||
4867          isSplatMask(Mask.Val)  ||
4868          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4869          X86::isUNPCKLMask(Mask.Val) ||
4870          X86::isUNPCKHMask(Mask.Val) ||
4871          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4872          X86::isUNPCKH_v_undef_Mask(Mask.Val));
4873}
4874
4875bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4876                                               MVT::ValueType EVT,
4877                                               SelectionDAG &DAG) const {
4878  unsigned NumElts = BVOps.size();
4879  // Only do shuffles on 128-bit vector types for now.
4880  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4881  if (NumElts == 2) return true;
4882  if (NumElts == 4) {
4883    return (isMOVLMask(&BVOps[0], 4)  ||
4884            isCommutedMOVL(&BVOps[0], 4, true) ||
4885            isSHUFPMask(&BVOps[0], 4) ||
4886            isCommutedSHUFP(&BVOps[0], 4));
4887  }
4888  return false;
4889}
4890
4891//===----------------------------------------------------------------------===//
4892//                           X86 Scheduler Hooks
4893//===----------------------------------------------------------------------===//
4894
4895MachineBasicBlock *
4896X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4897                                           MachineBasicBlock *BB) {
4898  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4899  switch (MI->getOpcode()) {
4900  default: assert(false && "Unexpected instr type to insert");
4901  case X86::CMOV_FR32:
4902  case X86::CMOV_FR64:
4903  case X86::CMOV_V4F32:
4904  case X86::CMOV_V2F64:
4905  case X86::CMOV_V2I64:
4906
4907  case X86::NEW_CMOV_FR32:
4908  case X86::NEW_CMOV_FR64:
4909  case X86::NEW_CMOV_V4F32:
4910  case X86::NEW_CMOV_V2F64:
4911  case X86::NEW_CMOV_V2I64: {
4912    // To "insert" a SELECT_CC instruction, we actually have to insert the
4913    // diamond control-flow pattern.  The incoming instruction knows the
4914    // destination vreg to set, the condition code register to branch on, the
4915    // true/false values to select between, and a branch opcode to use.
4916    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4917    ilist<MachineBasicBlock>::iterator It = BB;
4918    ++It;
4919
4920    //  thisMBB:
4921    //  ...
4922    //   TrueVal = ...
4923    //   cmpTY ccX, r1, r2
4924    //   bCC copy1MBB
4925    //   fallthrough --> copy0MBB
4926    MachineBasicBlock *thisMBB = BB;
4927    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4928    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4929    unsigned Opc =
4930      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4931    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4932    MachineFunction *F = BB->getParent();
4933    F->getBasicBlockList().insert(It, copy0MBB);
4934    F->getBasicBlockList().insert(It, sinkMBB);
4935    // Update machine-CFG edges by first adding all successors of the current
4936    // block to the new block which will contain the Phi node for the select.
4937    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4938        e = BB->succ_end(); i != e; ++i)
4939      sinkMBB->addSuccessor(*i);
4940    // Next, remove all successors of the current block, and add the true
4941    // and fallthrough blocks as its successors.
4942    while(!BB->succ_empty())
4943      BB->removeSuccessor(BB->succ_begin());
4944    BB->addSuccessor(copy0MBB);
4945    BB->addSuccessor(sinkMBB);
4946
4947    //  copy0MBB:
4948    //   %FalseValue = ...
4949    //   # fallthrough to sinkMBB
4950    BB = copy0MBB;
4951
4952    // Update machine-CFG edges
4953    BB->addSuccessor(sinkMBB);
4954
4955    //  sinkMBB:
4956    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4957    //  ...
4958    BB = sinkMBB;
4959    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4960      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4961      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4962
4963    delete MI;   // The pseudo instruction is gone now.
4964    return BB;
4965  }
4966
4967  case X86::FP32_TO_INT16_IN_MEM:
4968  case X86::FP32_TO_INT32_IN_MEM:
4969  case X86::FP32_TO_INT64_IN_MEM:
4970  case X86::FP64_TO_INT16_IN_MEM:
4971  case X86::FP64_TO_INT32_IN_MEM:
4972  case X86::FP64_TO_INT64_IN_MEM:
4973  case X86::FP80_TO_INT16_IN_MEM:
4974  case X86::FP80_TO_INT32_IN_MEM:
4975  case X86::FP80_TO_INT64_IN_MEM: {
4976    // Change the floating point control register to use "round towards zero"
4977    // mode when truncating to an integer value.
4978    MachineFunction *F = BB->getParent();
4979    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4980    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4981
4982    // Load the old value of the high byte of the control word...
4983    unsigned OldCW =
4984      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4985    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4986
4987    // Set the high part to be round to zero...
4988    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4989      .addImm(0xC7F);
4990
4991    // Reload the modified control word now...
4992    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4993
4994    // Restore the memory image of control word to original value
4995    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4996      .addReg(OldCW);
4997
4998    // Get the X86 opcode to use.
4999    unsigned Opc;
5000    switch (MI->getOpcode()) {
5001    default: assert(0 && "illegal opcode!");
5002    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5003    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5004    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5005    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5006    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5007    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5008    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5009    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5010    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5011    }
5012
5013    X86AddressMode AM;
5014    MachineOperand &Op = MI->getOperand(0);
5015    if (Op.isRegister()) {
5016      AM.BaseType = X86AddressMode::RegBase;
5017      AM.Base.Reg = Op.getReg();
5018    } else {
5019      AM.BaseType = X86AddressMode::FrameIndexBase;
5020      AM.Base.FrameIndex = Op.getFrameIndex();
5021    }
5022    Op = MI->getOperand(1);
5023    if (Op.isImmediate())
5024      AM.Scale = Op.getImm();
5025    Op = MI->getOperand(2);
5026    if (Op.isImmediate())
5027      AM.IndexReg = Op.getImm();
5028    Op = MI->getOperand(3);
5029    if (Op.isGlobalAddress()) {
5030      AM.GV = Op.getGlobal();
5031    } else {
5032      AM.Disp = Op.getImm();
5033    }
5034    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5035                      .addReg(MI->getOperand(4).getReg());
5036
5037    // Reload the original control word now.
5038    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5039
5040    delete MI;   // The pseudo instruction is gone now.
5041    return BB;
5042  }
5043  }
5044}
5045
5046//===----------------------------------------------------------------------===//
5047//                           X86 Optimization Hooks
5048//===----------------------------------------------------------------------===//
5049
5050void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5051                                                       uint64_t Mask,
5052                                                       uint64_t &KnownZero,
5053                                                       uint64_t &KnownOne,
5054                                                       const SelectionDAG &DAG,
5055                                                       unsigned Depth) const {
5056  unsigned Opc = Op.getOpcode();
5057  assert((Opc >= ISD::BUILTIN_OP_END ||
5058          Opc == ISD::INTRINSIC_WO_CHAIN ||
5059          Opc == ISD::INTRINSIC_W_CHAIN ||
5060          Opc == ISD::INTRINSIC_VOID) &&
5061         "Should use MaskedValueIsZero if you don't know whether Op"
5062         " is a target node!");
5063
5064  KnownZero = KnownOne = 0;   // Don't know anything.
5065  switch (Opc) {
5066  default: break;
5067  case X86ISD::SETCC:
5068  case X86ISD::SETCC_NEW:
5069    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5070    break;
5071  }
5072}
5073
5074/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5075/// element of the result of the vector shuffle.
5076static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5077  MVT::ValueType VT = N->getValueType(0);
5078  SDOperand PermMask = N->getOperand(2);
5079  unsigned NumElems = PermMask.getNumOperands();
5080  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5081  i %= NumElems;
5082  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5083    return (i == 0)
5084      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5085  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5086    SDOperand Idx = PermMask.getOperand(i);
5087    if (Idx.getOpcode() == ISD::UNDEF)
5088      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5089    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5090  }
5091  return SDOperand();
5092}
5093
5094/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5095/// node is a GlobalAddress + an offset.
5096static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5097  unsigned Opc = N->getOpcode();
5098  if (Opc == X86ISD::Wrapper) {
5099    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5100      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5101      return true;
5102    }
5103  } else if (Opc == ISD::ADD) {
5104    SDOperand N1 = N->getOperand(0);
5105    SDOperand N2 = N->getOperand(1);
5106    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5107      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5108      if (V) {
5109        Offset += V->getSignExtended();
5110        return true;
5111      }
5112    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5113      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5114      if (V) {
5115        Offset += V->getSignExtended();
5116        return true;
5117      }
5118    }
5119  }
5120  return false;
5121}
5122
5123/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5124/// + Dist * Size.
5125static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5126                              MachineFrameInfo *MFI) {
5127  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5128    return false;
5129
5130  SDOperand Loc = N->getOperand(1);
5131  SDOperand BaseLoc = Base->getOperand(1);
5132  if (Loc.getOpcode() == ISD::FrameIndex) {
5133    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5134      return false;
5135    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5136    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5137    int FS  = MFI->getObjectSize(FI);
5138    int BFS = MFI->getObjectSize(BFI);
5139    if (FS != BFS || FS != Size) return false;
5140    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5141  } else {
5142    GlobalValue *GV1 = NULL;
5143    GlobalValue *GV2 = NULL;
5144    int64_t Offset1 = 0;
5145    int64_t Offset2 = 0;
5146    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5147    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5148    if (isGA1 && isGA2 && GV1 == GV2)
5149      return Offset1 == (Offset2 + Dist*Size);
5150  }
5151
5152  return false;
5153}
5154
5155static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5156                              const X86Subtarget *Subtarget) {
5157  GlobalValue *GV;
5158  int64_t Offset;
5159  if (isGAPlusOffset(Base, GV, Offset))
5160    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5161  else {
5162    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5163    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
5164    if (BFI < 0)
5165      // Fixed objects do not specify alignment, however the offsets are known.
5166      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5167              (MFI->getObjectOffset(BFI) % 16) == 0);
5168    else
5169      return MFI->getObjectAlignment(BFI) >= 16;
5170  }
5171  return false;
5172}
5173
5174
5175/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5176/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5177/// if the load addresses are consecutive, non-overlapping, and in the right
5178/// order.
5179static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5180                                       const X86Subtarget *Subtarget) {
5181  MachineFunction &MF = DAG.getMachineFunction();
5182  MachineFrameInfo *MFI = MF.getFrameInfo();
5183  MVT::ValueType VT = N->getValueType(0);
5184  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5185  SDOperand PermMask = N->getOperand(2);
5186  int NumElems = (int)PermMask.getNumOperands();
5187  SDNode *Base = NULL;
5188  for (int i = 0; i < NumElems; ++i) {
5189    SDOperand Idx = PermMask.getOperand(i);
5190    if (Idx.getOpcode() == ISD::UNDEF) {
5191      if (!Base) return SDOperand();
5192    } else {
5193      SDOperand Arg =
5194        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5195      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5196        return SDOperand();
5197      if (!Base)
5198        Base = Arg.Val;
5199      else if (!isConsecutiveLoad(Arg.Val, Base,
5200                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5201        return SDOperand();
5202    }
5203  }
5204
5205  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5206  LoadSDNode *LD = cast<LoadSDNode>(Base);
5207  if (isAlign16) {
5208    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5209                       LD->getSrcValueOffset(), LD->isVolatile());
5210  } else {
5211    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5212                       LD->getSrcValueOffset(), LD->isVolatile(),
5213                       LD->getAlignment());
5214  }
5215}
5216
5217/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5218static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5219                                      const X86Subtarget *Subtarget) {
5220  SDOperand Cond = N->getOperand(0);
5221
5222  // If we have SSE[12] support, try to form min/max nodes.
5223  if (Subtarget->hasSSE2() &&
5224      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5225    if (Cond.getOpcode() == ISD::SETCC) {
5226      // Get the LHS/RHS of the select.
5227      SDOperand LHS = N->getOperand(1);
5228      SDOperand RHS = N->getOperand(2);
5229      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5230
5231      unsigned Opcode = 0;
5232      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5233        switch (CC) {
5234        default: break;
5235        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5236        case ISD::SETULE:
5237        case ISD::SETLE:
5238          if (!UnsafeFPMath) break;
5239          // FALL THROUGH.
5240        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5241        case ISD::SETLT:
5242          Opcode = X86ISD::FMIN;
5243          break;
5244
5245        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5246        case ISD::SETUGT:
5247        case ISD::SETGT:
5248          if (!UnsafeFPMath) break;
5249          // FALL THROUGH.
5250        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5251        case ISD::SETGE:
5252          Opcode = X86ISD::FMAX;
5253          break;
5254        }
5255      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5256        switch (CC) {
5257        default: break;
5258        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5259        case ISD::SETUGT:
5260        case ISD::SETGT:
5261          if (!UnsafeFPMath) break;
5262          // FALL THROUGH.
5263        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5264        case ISD::SETGE:
5265          Opcode = X86ISD::FMIN;
5266          break;
5267
5268        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5269        case ISD::SETULE:
5270        case ISD::SETLE:
5271          if (!UnsafeFPMath) break;
5272          // FALL THROUGH.
5273        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5274        case ISD::SETLT:
5275          Opcode = X86ISD::FMAX;
5276          break;
5277        }
5278      }
5279
5280      if (Opcode)
5281        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5282    }
5283
5284  }
5285
5286  return SDOperand();
5287}
5288
5289
5290SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5291                                               DAGCombinerInfo &DCI) const {
5292  SelectionDAG &DAG = DCI.DAG;
5293  switch (N->getOpcode()) {
5294  default: break;
5295  case ISD::VECTOR_SHUFFLE:
5296    return PerformShuffleCombine(N, DAG, Subtarget);
5297  case ISD::SELECT:
5298    return PerformSELECTCombine(N, DAG, Subtarget);
5299  }
5300
5301  return SDOperand();
5302}
5303
5304//===----------------------------------------------------------------------===//
5305//                           X86 Inline Assembly Support
5306//===----------------------------------------------------------------------===//
5307
5308/// getConstraintType - Given a constraint letter, return the type of
5309/// constraint it is for this target.
5310X86TargetLowering::ConstraintType
5311X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5312  if (Constraint.size() == 1) {
5313    switch (Constraint[0]) {
5314    case 'A':
5315    case 'r':
5316    case 'R':
5317    case 'l':
5318    case 'q':
5319    case 'Q':
5320    case 'x':
5321    case 'Y':
5322      return C_RegisterClass;
5323    default:
5324      break;
5325    }
5326  }
5327  return TargetLowering::getConstraintType(Constraint);
5328}
5329
5330/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5331/// vector.  If it is invalid, don't add anything to Ops.
5332void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5333                                                     char Constraint,
5334                                                     std::vector<SDOperand>&Ops,
5335                                                     SelectionDAG &DAG) {
5336  SDOperand Result(0, 0);
5337
5338  switch (Constraint) {
5339  default: break;
5340  case 'I':
5341    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5342      if (C->getValue() <= 31) {
5343        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5344        break;
5345      }
5346    }
5347    return;
5348  case 'N':
5349    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5350      if (C->getValue() <= 255) {
5351        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5352        break;
5353      }
5354    }
5355    return;
5356  case 'i': {
5357    // Literal immediates are always ok.
5358    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5359      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5360      break;
5361    }
5362
5363    // If we are in non-pic codegen mode, we allow the address of a global (with
5364    // an optional displacement) to be used with 'i'.
5365    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5366    int64_t Offset = 0;
5367
5368    // Match either (GA) or (GA+C)
5369    if (GA) {
5370      Offset = GA->getOffset();
5371    } else if (Op.getOpcode() == ISD::ADD) {
5372      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5373      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5374      if (C && GA) {
5375        Offset = GA->getOffset()+C->getValue();
5376      } else {
5377        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5378        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5379        if (C && GA)
5380          Offset = GA->getOffset()+C->getValue();
5381        else
5382          C = 0, GA = 0;
5383      }
5384    }
5385
5386    if (GA) {
5387      // If addressing this global requires a load (e.g. in PIC mode), we can't
5388      // match.
5389      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5390                                         false))
5391        return;
5392
5393      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5394                                      Offset);
5395      Result = Op;
5396      break;
5397    }
5398
5399    // Otherwise, not valid for this mode.
5400    return;
5401  }
5402  }
5403
5404  if (Result.Val) {
5405    Ops.push_back(Result);
5406    return;
5407  }
5408  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5409}
5410
5411std::vector<unsigned> X86TargetLowering::
5412getRegClassForInlineAsmConstraint(const std::string &Constraint,
5413                                  MVT::ValueType VT) const {
5414  if (Constraint.size() == 1) {
5415    // FIXME: not handling fp-stack yet!
5416    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5417    default: break;  // Unknown constraint letter
5418    case 'A':   // EAX/EDX
5419      if (VT == MVT::i32 || VT == MVT::i64)
5420        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5421      break;
5422    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5423    case 'Q':   // Q_REGS
5424      if (VT == MVT::i32)
5425        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5426      else if (VT == MVT::i16)
5427        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5428      else if (VT == MVT::i8)
5429        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5430        break;
5431    }
5432  }
5433
5434  return std::vector<unsigned>();
5435}
5436
5437std::pair<unsigned, const TargetRegisterClass*>
5438X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5439                                                MVT::ValueType VT) const {
5440  // First, see if this is a constraint that directly corresponds to an LLVM
5441  // register class.
5442  if (Constraint.size() == 1) {
5443    // GCC Constraint Letters
5444    switch (Constraint[0]) {
5445    default: break;
5446    case 'r':   // GENERAL_REGS
5447    case 'R':   // LEGACY_REGS
5448    case 'l':   // INDEX_REGS
5449      if (VT == MVT::i64 && Subtarget->is64Bit())
5450        return std::make_pair(0U, X86::GR64RegisterClass);
5451      if (VT == MVT::i32)
5452        return std::make_pair(0U, X86::GR32RegisterClass);
5453      else if (VT == MVT::i16)
5454        return std::make_pair(0U, X86::GR16RegisterClass);
5455      else if (VT == MVT::i8)
5456        return std::make_pair(0U, X86::GR8RegisterClass);
5457      break;
5458    case 'y':   // MMX_REGS if MMX allowed.
5459      if (!Subtarget->hasMMX()) break;
5460      return std::make_pair(0U, X86::VR64RegisterClass);
5461      break;
5462    case 'Y':   // SSE_REGS if SSE2 allowed
5463      if (!Subtarget->hasSSE2()) break;
5464      // FALL THROUGH.
5465    case 'x':   // SSE_REGS if SSE1 allowed
5466      if (!Subtarget->hasSSE1()) break;
5467
5468      switch (VT) {
5469      default: break;
5470      // Scalar SSE types.
5471      case MVT::f32:
5472      case MVT::i32:
5473        return std::make_pair(0U, X86::FR32RegisterClass);
5474      case MVT::f64:
5475      case MVT::i64:
5476        return std::make_pair(0U, X86::FR64RegisterClass);
5477      // Vector types.
5478      case MVT::v16i8:
5479      case MVT::v8i16:
5480      case MVT::v4i32:
5481      case MVT::v2i64:
5482      case MVT::v4f32:
5483      case MVT::v2f64:
5484        return std::make_pair(0U, X86::VR128RegisterClass);
5485      }
5486      break;
5487    }
5488  }
5489
5490  // Use the default implementation in TargetLowering to convert the register
5491  // constraint into a member of a register class.
5492  std::pair<unsigned, const TargetRegisterClass*> Res;
5493  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5494
5495  // Not found as a standard register?
5496  if (Res.second == 0) {
5497    // GCC calls "st(0)" just plain "st".
5498    if (StringsEqualNoCase("{st}", Constraint)) {
5499      Res.first = X86::ST0;
5500      Res.second = X86::RFP80RegisterClass;
5501    }
5502
5503    return Res;
5504  }
5505
5506  // Otherwise, check to see if this is a register class of the wrong value
5507  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5508  // turn into {ax},{dx}.
5509  if (Res.second->hasType(VT))
5510    return Res;   // Correct type already, nothing to do.
5511
5512  // All of the single-register GCC register classes map their values onto
5513  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5514  // really want an 8-bit or 32-bit register, map to the appropriate register
5515  // class and return the appropriate register.
5516  if (Res.second != X86::GR16RegisterClass)
5517    return Res;
5518
5519  if (VT == MVT::i8) {
5520    unsigned DestReg = 0;
5521    switch (Res.first) {
5522    default: break;
5523    case X86::AX: DestReg = X86::AL; break;
5524    case X86::DX: DestReg = X86::DL; break;
5525    case X86::CX: DestReg = X86::CL; break;
5526    case X86::BX: DestReg = X86::BL; break;
5527    }
5528    if (DestReg) {
5529      Res.first = DestReg;
5530      Res.second = Res.second = X86::GR8RegisterClass;
5531    }
5532  } else if (VT == MVT::i32) {
5533    unsigned DestReg = 0;
5534    switch (Res.first) {
5535    default: break;
5536    case X86::AX: DestReg = X86::EAX; break;
5537    case X86::DX: DestReg = X86::EDX; break;
5538    case X86::CX: DestReg = X86::ECX; break;
5539    case X86::BX: DestReg = X86::EBX; break;
5540    case X86::SI: DestReg = X86::ESI; break;
5541    case X86::DI: DestReg = X86::EDI; break;
5542    case X86::BP: DestReg = X86::EBP; break;
5543    case X86::SP: DestReg = X86::ESP; break;
5544    }
5545    if (DestReg) {
5546      Res.first = DestReg;
5547      Res.second = Res.second = X86::GR32RegisterClass;
5548    }
5549  } else if (VT == MVT::i64) {
5550    unsigned DestReg = 0;
5551    switch (Res.first) {
5552    default: break;
5553    case X86::AX: DestReg = X86::RAX; break;
5554    case X86::DX: DestReg = X86::RDX; break;
5555    case X86::CX: DestReg = X86::RCX; break;
5556    case X86::BX: DestReg = X86::RBX; break;
5557    case X86::SI: DestReg = X86::RSI; break;
5558    case X86::DI: DestReg = X86::RDI; break;
5559    case X86::BP: DestReg = X86::RBP; break;
5560    case X86::SP: DestReg = X86::RSP; break;
5561    }
5562    if (DestReg) {
5563      Res.first = DestReg;
5564      Res.second = Res.second = X86::GR64RegisterClass;
5565    }
5566  }
5567
5568  return Res;
5569}
5570