X86ISelLowering.cpp revision 06cc324b9da1dc8fb7360a560343c28f5e7a940a
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static SDValue Insert128BitVector(SDValue Result,
63                                  SDValue Vec,
64                                  SDValue Idx,
65                                  SelectionDAG &DAG,
66                                  DebugLoc dl);
67
68static SDValue Extract128BitVector(SDValue Vec,
69                                   SDValue Idx,
70                                   SelectionDAG &DAG,
71                                   DebugLoc dl);
72
73static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
74
75
76/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
77/// sets things up to match to an AVX VEXTRACTF128 instruction or a
78/// simple subregister reference.  Idx is an index in the 128 bits we
79/// want.  It need not be aligned to a 128-bit bounday.  That makes
80/// lowering EXTRACT_VECTOR_ELT operations easier.
81static SDValue Extract128BitVector(SDValue Vec,
82                                   SDValue Idx,
83                                   SelectionDAG &DAG,
84                                   DebugLoc dl) {
85  EVT VT = Vec.getValueType();
86  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
87
88  EVT ElVT = VT.getVectorElementType();
89
90  int Factor = VT.getSizeInBits() / 128;
91
92  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
93                                  ElVT,
94                                  VT.getVectorNumElements() / Factor);
95
96  // Extract from UNDEF is UNDEF.
97  if (Vec.getOpcode() == ISD::UNDEF)
98    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
99
100  if (isa<ConstantSDNode>(Idx)) {
101    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
102
103    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
104    // we can match to VEXTRACTF128.
105    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
106
107    // This is the index of the first element of the 128-bit chunk
108    // we want.
109    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
110                                 * ElemsPerChunk);
111
112    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
113
114    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
115                                 VecIdx);
116
117    return Result;
118  }
119
120  return SDValue();
121}
122
123/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
124/// sets things up to match to an AVX VINSERTF128 instruction or a
125/// simple superregister reference.  Idx is an index in the 128 bits
126/// we want.  It need not be aligned to a 128-bit bounday.  That makes
127/// lowering INSERT_VECTOR_ELT operations easier.
128static SDValue Insert128BitVector(SDValue Result,
129                                  SDValue Vec,
130                                  SDValue Idx,
131                                  SelectionDAG &DAG,
132                                  DebugLoc dl) {
133  if (isa<ConstantSDNode>(Idx)) {
134    EVT VT = Vec.getValueType();
135    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
136
137    EVT ElVT = VT.getVectorElementType();
138
139    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
140
141    EVT ResultVT = Result.getValueType();
142
143    // Insert the relevant 128 bits.
144    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
145
146    // This is the index of the first element of the 128-bit chunk
147    // we want.
148    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
149                                 * ElemsPerChunk);
150
151    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
152
153    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
154                         VecIdx);
155    return Result;
156  }
157
158  return SDValue();
159}
160
161/// Given two vectors, concat them.
162static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
163  DebugLoc dl = Lower.getDebugLoc();
164
165  assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
166
167  EVT VT = EVT::getVectorVT(*DAG.getContext(),
168                            Lower.getValueType().getVectorElementType(),
169                            Lower.getValueType().getVectorNumElements() * 2);
170
171  // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
172  assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
173
174  // Insert the upper subvector.
175  SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
176                                   DAG.getConstant(
177                                     // This is half the length of the result
178                                     // vector.  Start inserting the upper 128
179                                     // bits here.
180                                     Lower.getValueType().getVectorNumElements(),
181                                     MVT::i32),
182                                   DAG, dl);
183
184  // Insert the lower subvector.
185  Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
186  return Vec;
187}
188
189static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
190  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
191  bool is64Bit = Subtarget->is64Bit();
192
193  if (Subtarget->isTargetEnvMacho()) {
194    if (is64Bit)
195      return new X8664_MachoTargetObjectFile();
196    return new TargetLoweringObjectFileMachO();
197  }
198
199  if (Subtarget->isTargetELF()) {
200    if (is64Bit)
201      return new X8664_ELFTargetObjectFile(TM);
202    return new X8632_ELFTargetObjectFile(TM);
203  }
204  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
205    return new TargetLoweringObjectFileCOFF();
206  llvm_unreachable("unknown subtarget type");
207}
208
209X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
210  : TargetLowering(TM, createTLOF(TM)) {
211  Subtarget = &TM.getSubtarget<X86Subtarget>();
212  X86ScalarSSEf64 = Subtarget->hasXMMInt();
213  X86ScalarSSEf32 = Subtarget->hasXMM();
214  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
215
216  RegInfo = TM.getRegisterInfo();
217  TD = getTargetData();
218
219  // Set up the TargetLowering object.
220  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
221
222  // X86 is weird, it always uses i8 for shift amounts and setcc results.
223  setBooleanContents(ZeroOrOneBooleanContent);
224
225  // For 64-bit since we have so many registers use the ILP scheduler, for
226  // 32-bit code use the register pressure specific scheduling.
227  if (Subtarget->is64Bit())
228    setSchedulingPreference(Sched::ILP);
229  else
230    setSchedulingPreference(Sched::RegPressure);
231  setStackPointerRegisterToSaveRestore(X86StackPtr);
232
233  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
234    // Setup Windows compiler runtime calls.
235    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
236    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
237    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
238    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
239    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
240    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
241    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
242    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
243  }
244
245  if (Subtarget->isTargetDarwin()) {
246    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
247    setUseUnderscoreSetJmp(false);
248    setUseUnderscoreLongJmp(false);
249  } else if (Subtarget->isTargetMingw()) {
250    // MS runtime is weird: it exports _setjmp, but longjmp!
251    setUseUnderscoreSetJmp(true);
252    setUseUnderscoreLongJmp(false);
253  } else {
254    setUseUnderscoreSetJmp(true);
255    setUseUnderscoreLongJmp(true);
256  }
257
258  // Set up the register classes.
259  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
260  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
261  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
262  if (Subtarget->is64Bit())
263    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
264
265  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
266
267  // We don't accept any truncstore of integer registers.
268  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
269  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
270  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
271  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
272  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
273  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
274
275  // SETOEQ and SETUNE require checking two conditions.
276  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
277  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
278  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
279  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
280  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
281  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
282
283  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
284  // operation.
285  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
286  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
287  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
288
289  if (Subtarget->is64Bit()) {
290    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
291    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
292  } else if (!UseSoftFloat) {
293    // We have an algorithm for SSE2->double, and we turn this into a
294    // 64-bit FILD followed by conditional FADD for other targets.
295    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
296    // We have an algorithm for SSE2, and we turn this into a 64-bit
297    // FILD for other targets.
298    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
299  }
300
301  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
302  // this operation.
303  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
304  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
305
306  if (!UseSoftFloat) {
307    // SSE has no i16 to fp conversion, only i32
308    if (X86ScalarSSEf32) {
309      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
310      // f32 and f64 cases are Legal, f80 case is not
311      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
312    } else {
313      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
314      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
315    }
316  } else {
317    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
318    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
319  }
320
321  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
322  // are Legal, f80 is custom lowered.
323  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
324  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
325
326  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
327  // this operation.
328  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
329  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
330
331  if (X86ScalarSSEf32) {
332    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
333    // f32 and f64 cases are Legal, f80 case is not
334    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
335  } else {
336    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
337    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
338  }
339
340  // Handle FP_TO_UINT by promoting the destination to a larger signed
341  // conversion.
342  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
343  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
344  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
345
346  if (Subtarget->is64Bit()) {
347    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
348    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
349  } else if (!UseSoftFloat) {
350    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
351      // Expand FP_TO_UINT into a select.
352      // FIXME: We would like to use a Custom expander here eventually to do
353      // the optimal thing for SSE vs. the default expansion in the legalizer.
354      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
355    else
356      // With SSE3 we can use fisttpll to convert to a signed i64; without
357      // SSE, we're stuck with a fistpll.
358      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
359  }
360
361  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
362  if (!X86ScalarSSEf64) {
363    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
364    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
365    if (Subtarget->is64Bit()) {
366      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
367      // Without SSE, i64->f64 goes through memory.
368      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
369    }
370  }
371
372  // Scalar integer divide and remainder are lowered to use operations that
373  // produce two results, to match the available instructions. This exposes
374  // the two-result form to trivial CSE, which is able to combine x/y and x%y
375  // into a single instruction.
376  //
377  // Scalar integer multiply-high is also lowered to use two-result
378  // operations, to match the available instructions. However, plain multiply
379  // (low) operations are left as Legal, as there are single-result
380  // instructions for this in x86. Using the two-result multiply instructions
381  // when both high and low results are needed must be arranged by dagcombine.
382  for (unsigned i = 0, e = 4; i != e; ++i) {
383    MVT VT = IntVTs[i];
384    setOperationAction(ISD::MULHS, VT, Expand);
385    setOperationAction(ISD::MULHU, VT, Expand);
386    setOperationAction(ISD::SDIV, VT, Expand);
387    setOperationAction(ISD::UDIV, VT, Expand);
388    setOperationAction(ISD::SREM, VT, Expand);
389    setOperationAction(ISD::UREM, VT, Expand);
390
391    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
392    setOperationAction(ISD::ADDC, VT, Custom);
393    setOperationAction(ISD::ADDE, VT, Custom);
394    setOperationAction(ISD::SUBC, VT, Custom);
395    setOperationAction(ISD::SUBE, VT, Custom);
396  }
397
398  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
399  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
400  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
401  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
402  if (Subtarget->is64Bit())
403    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
404  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
405  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
406  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
407  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
408  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
409  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
410  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
411  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
412
413  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
414  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
415  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
416  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
417  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
418  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
419  if (Subtarget->is64Bit()) {
420    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
421    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
422  }
423
424  if (Subtarget->hasPOPCNT()) {
425    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
426  } else {
427    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
428    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
429    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
430    if (Subtarget->is64Bit())
431      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
432  }
433
434  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
435  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
436
437  // These should be promoted to a larger select which is supported.
438  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
439  // X86 wants to expand cmov itself.
440  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
441  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
452  if (Subtarget->is64Bit()) {
453    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
454    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
455  }
456  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
457
458  // Darwin ABI issue.
459  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
460  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
461  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
462  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
463  if (Subtarget->is64Bit())
464    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
465  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
466  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
467  if (Subtarget->is64Bit()) {
468    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
469    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
470    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
471    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
472    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
473  }
474  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
475  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
476  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
477  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
478  if (Subtarget->is64Bit()) {
479    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
480    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
481    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
482  }
483
484  if (Subtarget->hasXMM())
485    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
486
487  // We may not have a libcall for MEMBARRIER so we should lower this.
488  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
489
490  // On X86 and X86-64, atomic operations are lowered to locked instructions.
491  // Locked instructions, in turn, have implicit fence semantics (all memory
492  // operations are flushed before issuing the locked instruction, and they
493  // are not buffered), so we can fold away the common pattern of
494  // fence-atomic-fence.
495  setShouldFoldAtomicFences(true);
496
497  // Expand certain atomics
498  for (unsigned i = 0, e = 4; i != e; ++i) {
499    MVT VT = IntVTs[i];
500    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
502  }
503
504  if (!Subtarget->is64Bit()) {
505    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
512  }
513
514  // FIXME - use subtarget debug flags
515  if (!Subtarget->isTargetDarwin() &&
516      !Subtarget->isTargetELF() &&
517      !Subtarget->isTargetCygMing()) {
518    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
519  }
520
521  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
522  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
523  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
524  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
525  if (Subtarget->is64Bit()) {
526    setExceptionPointerRegister(X86::RAX);
527    setExceptionSelectorRegister(X86::RDX);
528  } else {
529    setExceptionPointerRegister(X86::EAX);
530    setExceptionSelectorRegister(X86::EDX);
531  }
532  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
533  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
534
535  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
536
537  setOperationAction(ISD::TRAP, MVT::Other, Legal);
538
539  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
540  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
541  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
542  if (Subtarget->is64Bit()) {
543    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
544    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
545  } else {
546    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
547    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
548  }
549
550  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
551  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
552  if (Subtarget->is64Bit())
553    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
554  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
555    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
556  else
557    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
558
559  if (!UseSoftFloat && X86ScalarSSEf64) {
560    // f32 and f64 use SSE.
561    // Set up the FP register classes.
562    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
563    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
564
565    // Use ANDPD to simulate FABS.
566    setOperationAction(ISD::FABS , MVT::f64, Custom);
567    setOperationAction(ISD::FABS , MVT::f32, Custom);
568
569    // Use XORP to simulate FNEG.
570    setOperationAction(ISD::FNEG , MVT::f64, Custom);
571    setOperationAction(ISD::FNEG , MVT::f32, Custom);
572
573    // Use ANDPD and ORPD to simulate FCOPYSIGN.
574    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
575    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
576
577    // We don't support sin/cos/fmod
578    setOperationAction(ISD::FSIN , MVT::f64, Expand);
579    setOperationAction(ISD::FCOS , MVT::f64, Expand);
580    setOperationAction(ISD::FSIN , MVT::f32, Expand);
581    setOperationAction(ISD::FCOS , MVT::f32, Expand);
582
583    // Expand FP immediates into loads from the stack, except for the special
584    // cases we handle.
585    addLegalFPImmediate(APFloat(+0.0)); // xorpd
586    addLegalFPImmediate(APFloat(+0.0f)); // xorps
587  } else if (!UseSoftFloat && X86ScalarSSEf32) {
588    // Use SSE for f32, x87 for f64.
589    // Set up the FP register classes.
590    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592
593    // Use ANDPS to simulate FABS.
594    setOperationAction(ISD::FABS , MVT::f32, Custom);
595
596    // Use XORP to simulate FNEG.
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
600
601    // Use ANDPS and ORPS to simulate FCOPYSIGN.
602    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
603    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
604
605    // We don't support sin/cos/fmod
606    setOperationAction(ISD::FSIN , MVT::f32, Expand);
607    setOperationAction(ISD::FCOS , MVT::f32, Expand);
608
609    // Special cases we handle for FP constants.
610    addLegalFPImmediate(APFloat(+0.0f)); // xorps
611    addLegalFPImmediate(APFloat(+0.0)); // FLD0
612    addLegalFPImmediate(APFloat(+1.0)); // FLD1
613    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
614    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
615
616    if (!UnsafeFPMath) {
617      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
618      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
619    }
620  } else if (!UseSoftFloat) {
621    // f32 and f64 in x87.
622    // Set up the FP register classes.
623    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
624    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
625
626    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
627    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
628    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
629    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
630
631    if (!UnsafeFPMath) {
632      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
633      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
634    }
635    addLegalFPImmediate(APFloat(+0.0)); // FLD0
636    addLegalFPImmediate(APFloat(+1.0)); // FLD1
637    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
638    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
639    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
640    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
641    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
642    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
643  }
644
645  // Long double always uses X87.
646  if (!UseSoftFloat) {
647    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
648    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
649    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
650    {
651      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
652      addLegalFPImmediate(TmpFlt);  // FLD0
653      TmpFlt.changeSign();
654      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
655
656      bool ignored;
657      APFloat TmpFlt2(+1.0);
658      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
659                      &ignored);
660      addLegalFPImmediate(TmpFlt2);  // FLD1
661      TmpFlt2.changeSign();
662      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
663    }
664
665    if (!UnsafeFPMath) {
666      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
667      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
668    }
669  }
670
671  // Always use a library call for pow.
672  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
673  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
674  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
675
676  setOperationAction(ISD::FLOG, MVT::f80, Expand);
677  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
678  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
679  setOperationAction(ISD::FEXP, MVT::f80, Expand);
680  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
681
682  // First set operation action for all vector types to either promote
683  // (for widening) or expand (for scalarization). Then we will selectively
684  // turn on ones that can be effectively codegen'd.
685  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
686       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
687    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
702    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
704    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
705    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
737    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
741    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
742         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
743      setTruncStoreAction((MVT::SimpleValueType)VT,
744                          (MVT::SimpleValueType)InnerVT, Expand);
745    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
747    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
748  }
749
750  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
751  // with -msoft-float, disable use of MMX as well.
752  if (!UseSoftFloat && Subtarget->hasMMX()) {
753    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
754    // No operations on x86mmx supported, everything uses intrinsics.
755  }
756
757  // MMX-sized vectors (other than x86mmx) are expected to be expanded
758  // into smaller operations.
759  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
760  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
761  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
762  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
763  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
764  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
765  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
766  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
767  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
768  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
769  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
770  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
771  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
772  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
773  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
774  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
775  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
778  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
779  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
780  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
781  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
782  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
783  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
784  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
787  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
788
789  if (!UseSoftFloat && Subtarget->hasXMM()) {
790    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
791
792    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
793    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
796    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
797    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
798    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
799    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
800    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
801    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
802    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
803    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
804  }
805
806  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
807    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
808
809    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
810    // registers cannot be used even for integer operations.
811    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
812    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
814    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
815
816    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
817    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
818    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
819    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
820    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
821    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
822    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
823    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
824    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
825    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
826    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
827    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
830    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
831    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
832
833    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
834    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
835    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
836    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
837
838    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
839    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843
844    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
848    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
849
850    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
852      EVT VT = (MVT::SimpleValueType)i;
853      // Do not attempt to custom lower non-power-of-2 vectors
854      if (!isPowerOf2_32(VT.getVectorNumElements()))
855        continue;
856      // Do not attempt to custom lower non-128-bit vectors
857      if (!VT.is128BitVector())
858        continue;
859      setOperationAction(ISD::BUILD_VECTOR,
860                         VT.getSimpleVT().SimpleTy, Custom);
861      setOperationAction(ISD::VECTOR_SHUFFLE,
862                         VT.getSimpleVT().SimpleTy, Custom);
863      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
864                         VT.getSimpleVT().SimpleTy, Custom);
865    }
866
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
868    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
870    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
871    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
872    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
873
874    if (Subtarget->is64Bit()) {
875      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
876      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
877    }
878
879    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
880    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
881      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
882      EVT VT = SVT;
883
884      // Do not attempt to promote non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887
888      setOperationAction(ISD::AND,    SVT, Promote);
889      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
890      setOperationAction(ISD::OR,     SVT, Promote);
891      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
892      setOperationAction(ISD::XOR,    SVT, Promote);
893      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
894      setOperationAction(ISD::LOAD,   SVT, Promote);
895      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
896      setOperationAction(ISD::SELECT, SVT, Promote);
897      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
898    }
899
900    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
901
902    // Custom lower v2i64 and v2f64 selects.
903    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
904    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
905    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
906    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
907
908    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
909    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
910  }
911
912  if (Subtarget->hasSSE41()) {
913    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
914    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
915    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
916    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
917    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
918    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
919    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
920    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
921    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
922    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
923
924    // FIXME: Do we need to handle scalar-to-vector here?
925    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
926
927    // Can turn SHL into an integer multiply.
928    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
929    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
930    setOperationAction(ISD::SRL,                MVT::v4i32, Legal);
931
932    // i8 and i16 vectors are custom , because the source register and source
933    // source memory operand types are not the same width.  f32 vectors are
934    // custom since the immediate controlling the insert encodes additional
935    // information.
936    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
937    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
938    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
939    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
940
941    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
942    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
943    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
944    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
945
946    if (Subtarget->is64Bit()) {
947      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
948      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
949    }
950  }
951
952  if (Subtarget->hasSSE42())
953    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
954
955  if (!UseSoftFloat && Subtarget->hasAVX()) {
956    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
957    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
958    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
959    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
960    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
961
962    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
963    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
964    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
965    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
966
967    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
968    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
969    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
970    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
971    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
972    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
973
974    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
975    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
976    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
977    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
978    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
979    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
980
981    // Custom lower build_vector, vector_shuffle, scalar_to_vector,
982    // insert_vector_elt extract_subvector and extract_vector_elt for
983    // 256-bit types.
984    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
985         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
986         ++i) {
987      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
988      // Do not attempt to custom lower non-256-bit vectors
989      if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
990          || (MVT(VT).getSizeInBits() < 256))
991        continue;
992      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
993      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
994      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
995      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
996      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
997    }
998    // Custom-lower insert_subvector and extract_subvector based on
999    // the result type.
1000    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1001         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1002         ++i) {
1003      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
1004      // Do not attempt to custom lower non-256-bit vectors
1005      if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
1006        continue;
1007
1008      if (MVT(VT).getSizeInBits() == 128) {
1009        setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom);
1010      }
1011      else if (MVT(VT).getSizeInBits() == 256) {
1012        setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom);
1013      }
1014    }
1015
1016    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1017    // Don't promote loads because we need them for VPERM vector index versions.
1018
1019    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1020         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1021         VT++) {
1022      if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
1023          || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
1024        continue;
1025      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
1026      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64);
1027      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
1028      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64);
1029      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
1030      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64);
1031      //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
1032      //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64);
1033      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
1034      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
1035    }
1036  }
1037
1038  // We want to custom lower some of our intrinsics.
1039  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1040
1041
1042  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1043  // handle type legalization for these operations here.
1044  //
1045  // FIXME: We really should do custom legalization for addition and
1046  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1047  // than generic legalization for 64-bit multiplication-with-overflow, though.
1048  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1049    // Add/Sub/Mul with overflow operations are custom lowered.
1050    MVT VT = IntVTs[i];
1051    setOperationAction(ISD::SADDO, VT, Custom);
1052    setOperationAction(ISD::UADDO, VT, Custom);
1053    setOperationAction(ISD::SSUBO, VT, Custom);
1054    setOperationAction(ISD::USUBO, VT, Custom);
1055    setOperationAction(ISD::SMULO, VT, Custom);
1056    setOperationAction(ISD::UMULO, VT, Custom);
1057  }
1058
1059  // There are no 8-bit 3-address imul/mul instructions
1060  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1061  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1062
1063  if (!Subtarget->is64Bit()) {
1064    // These libcalls are not available in 32-bit.
1065    setLibcallName(RTLIB::SHL_I128, 0);
1066    setLibcallName(RTLIB::SRL_I128, 0);
1067    setLibcallName(RTLIB::SRA_I128, 0);
1068  }
1069
1070  // We have target-specific dag combine patterns for the following nodes:
1071  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1072  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1073  setTargetDAGCombine(ISD::BUILD_VECTOR);
1074  setTargetDAGCombine(ISD::SELECT);
1075  setTargetDAGCombine(ISD::SHL);
1076  setTargetDAGCombine(ISD::SRA);
1077  setTargetDAGCombine(ISD::SRL);
1078  setTargetDAGCombine(ISD::OR);
1079  setTargetDAGCombine(ISD::AND);
1080  setTargetDAGCombine(ISD::ADD);
1081  setTargetDAGCombine(ISD::SUB);
1082  setTargetDAGCombine(ISD::STORE);
1083  setTargetDAGCombine(ISD::ZERO_EXTEND);
1084  if (Subtarget->is64Bit())
1085    setTargetDAGCombine(ISD::MUL);
1086
1087  computeRegisterProperties();
1088
1089  // On Darwin, -Os means optimize for size without hurting performance,
1090  // do not reduce the limit.
1091  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1092  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1093  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1094  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1095  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1096  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1097  setPrefLoopAlignment(16);
1098  benefitFromCodePlacementOpt = true;
1099}
1100
1101
1102MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1103  return MVT::i8;
1104}
1105
1106
1107/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1108/// the desired ByVal argument alignment.
1109static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1110  if (MaxAlign == 16)
1111    return;
1112  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1113    if (VTy->getBitWidth() == 128)
1114      MaxAlign = 16;
1115  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1116    unsigned EltAlign = 0;
1117    getMaxByValAlign(ATy->getElementType(), EltAlign);
1118    if (EltAlign > MaxAlign)
1119      MaxAlign = EltAlign;
1120  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1121    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1122      unsigned EltAlign = 0;
1123      getMaxByValAlign(STy->getElementType(i), EltAlign);
1124      if (EltAlign > MaxAlign)
1125        MaxAlign = EltAlign;
1126      if (MaxAlign == 16)
1127        break;
1128    }
1129  }
1130  return;
1131}
1132
1133/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1134/// function arguments in the caller parameter area. For X86, aggregates
1135/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1136/// are at 4-byte boundaries.
1137unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1138  if (Subtarget->is64Bit()) {
1139    // Max of 8 and alignment of type.
1140    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1141    if (TyAlign > 8)
1142      return TyAlign;
1143    return 8;
1144  }
1145
1146  unsigned Align = 4;
1147  if (Subtarget->hasXMM())
1148    getMaxByValAlign(Ty, Align);
1149  return Align;
1150}
1151
1152/// getOptimalMemOpType - Returns the target specific optimal type for load
1153/// and store operations as a result of memset, memcpy, and memmove
1154/// lowering. If DstAlign is zero that means it's safe to destination
1155/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1156/// means there isn't a need to check it against alignment requirement,
1157/// probably because the source does not need to be loaded. If
1158/// 'NonScalarIntSafe' is true, that means it's safe to return a
1159/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1160/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1161/// constant so it does not need to be loaded.
1162/// It returns EVT::Other if the type should be determined using generic
1163/// target-independent logic.
1164EVT
1165X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1166                                       unsigned DstAlign, unsigned SrcAlign,
1167                                       bool NonScalarIntSafe,
1168                                       bool MemcpyStrSrc,
1169                                       MachineFunction &MF) const {
1170  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1171  // linux.  This is because the stack realignment code can't handle certain
1172  // cases like PR2962.  This should be removed when PR2962 is fixed.
1173  const Function *F = MF.getFunction();
1174  if (NonScalarIntSafe &&
1175      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1176    if (Size >= 16 &&
1177        (Subtarget->isUnalignedMemAccessFast() ||
1178         ((DstAlign == 0 || DstAlign >= 16) &&
1179          (SrcAlign == 0 || SrcAlign >= 16))) &&
1180        Subtarget->getStackAlignment() >= 16) {
1181      if (Subtarget->hasSSE2())
1182        return MVT::v4i32;
1183      if (Subtarget->hasSSE1())
1184        return MVT::v4f32;
1185    } else if (!MemcpyStrSrc && Size >= 8 &&
1186               !Subtarget->is64Bit() &&
1187               Subtarget->getStackAlignment() >= 8 &&
1188               Subtarget->hasXMMInt()) {
1189      // Do not use f64 to lower memcpy if source is string constant. It's
1190      // better to use i32 to avoid the loads.
1191      return MVT::f64;
1192    }
1193  }
1194  if (Subtarget->is64Bit() && Size >= 8)
1195    return MVT::i64;
1196  return MVT::i32;
1197}
1198
1199/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1200/// current function.  The returned value is a member of the
1201/// MachineJumpTableInfo::JTEntryKind enum.
1202unsigned X86TargetLowering::getJumpTableEncoding() const {
1203  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1204  // symbol.
1205  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1206      Subtarget->isPICStyleGOT())
1207    return MachineJumpTableInfo::EK_Custom32;
1208
1209  // Otherwise, use the normal jump table encoding heuristics.
1210  return TargetLowering::getJumpTableEncoding();
1211}
1212
1213const MCExpr *
1214X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1215                                             const MachineBasicBlock *MBB,
1216                                             unsigned uid,MCContext &Ctx) const{
1217  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1218         Subtarget->isPICStyleGOT());
1219  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1220  // entries.
1221  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1222                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1223}
1224
1225/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1226/// jumptable.
1227SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1228                                                    SelectionDAG &DAG) const {
1229  if (!Subtarget->is64Bit())
1230    // This doesn't have DebugLoc associated with it, but is not really the
1231    // same as a Register.
1232    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1233  return Table;
1234}
1235
1236/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1237/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1238/// MCExpr.
1239const MCExpr *X86TargetLowering::
1240getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1241                             MCContext &Ctx) const {
1242  // X86-64 uses RIP relative addressing based on the jump table label.
1243  if (Subtarget->isPICStyleRIPRel())
1244    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1245
1246  // Otherwise, the reference is relative to the PIC base.
1247  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1248}
1249
1250/// getFunctionAlignment - Return the Log2 alignment of this function.
1251unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1252  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1253}
1254
1255// FIXME: Why this routine is here? Move to RegInfo!
1256std::pair<const TargetRegisterClass*, uint8_t>
1257X86TargetLowering::findRepresentativeClass(EVT VT) const{
1258  const TargetRegisterClass *RRC = 0;
1259  uint8_t Cost = 1;
1260  switch (VT.getSimpleVT().SimpleTy) {
1261  default:
1262    return TargetLowering::findRepresentativeClass(VT);
1263  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1264    RRC = (Subtarget->is64Bit()
1265           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1266    break;
1267  case MVT::x86mmx:
1268    RRC = X86::VR64RegisterClass;
1269    break;
1270  case MVT::f32: case MVT::f64:
1271  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1272  case MVT::v4f32: case MVT::v2f64:
1273  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1274  case MVT::v4f64:
1275    RRC = X86::VR128RegisterClass;
1276    break;
1277  }
1278  return std::make_pair(RRC, Cost);
1279}
1280
1281bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1282                                               unsigned &Offset) const {
1283  if (!Subtarget->isTargetLinux())
1284    return false;
1285
1286  if (Subtarget->is64Bit()) {
1287    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1288    Offset = 0x28;
1289    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1290      AddressSpace = 256;
1291    else
1292      AddressSpace = 257;
1293  } else {
1294    // %gs:0x14 on i386
1295    Offset = 0x14;
1296    AddressSpace = 256;
1297  }
1298  return true;
1299}
1300
1301
1302//===----------------------------------------------------------------------===//
1303//               Return Value Calling Convention Implementation
1304//===----------------------------------------------------------------------===//
1305
1306#include "X86GenCallingConv.inc"
1307
1308bool
1309X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1310                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1311                        LLVMContext &Context) const {
1312  SmallVector<CCValAssign, 16> RVLocs;
1313  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1314                 RVLocs, Context);
1315  return CCInfo.CheckReturn(Outs, RetCC_X86);
1316}
1317
1318SDValue
1319X86TargetLowering::LowerReturn(SDValue Chain,
1320                               CallingConv::ID CallConv, bool isVarArg,
1321                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1322                               const SmallVectorImpl<SDValue> &OutVals,
1323                               DebugLoc dl, SelectionDAG &DAG) const {
1324  MachineFunction &MF = DAG.getMachineFunction();
1325  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1326
1327  SmallVector<CCValAssign, 16> RVLocs;
1328  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1329                 RVLocs, *DAG.getContext());
1330  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1331
1332  // Add the regs to the liveout set for the function.
1333  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1334  for (unsigned i = 0; i != RVLocs.size(); ++i)
1335    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1336      MRI.addLiveOut(RVLocs[i].getLocReg());
1337
1338  SDValue Flag;
1339
1340  SmallVector<SDValue, 6> RetOps;
1341  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1342  // Operand #1 = Bytes To Pop
1343  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1344                   MVT::i16));
1345
1346  // Copy the result values into the output registers.
1347  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1348    CCValAssign &VA = RVLocs[i];
1349    assert(VA.isRegLoc() && "Can only return in registers!");
1350    SDValue ValToCopy = OutVals[i];
1351    EVT ValVT = ValToCopy.getValueType();
1352
1353    // If this is x86-64, and we disabled SSE, we can't return FP values,
1354    // or SSE or MMX vectors.
1355    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1356         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1357          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1358      report_fatal_error("SSE register return with SSE disabled");
1359    }
1360    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1361    // llvm-gcc has never done it right and no one has noticed, so this
1362    // should be OK for now.
1363    if (ValVT == MVT::f64 &&
1364        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1365      report_fatal_error("SSE2 register return with SSE2 disabled");
1366
1367    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1368    // the RET instruction and handled by the FP Stackifier.
1369    if (VA.getLocReg() == X86::ST0 ||
1370        VA.getLocReg() == X86::ST1) {
1371      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1372      // change the value to the FP stack register class.
1373      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1374        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1375      RetOps.push_back(ValToCopy);
1376      // Don't emit a copytoreg.
1377      continue;
1378    }
1379
1380    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1381    // which is returned in RAX / RDX.
1382    if (Subtarget->is64Bit()) {
1383      if (ValVT == MVT::x86mmx) {
1384        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1385          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1386          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1387                                  ValToCopy);
1388          // If we don't have SSE2 available, convert to v4f32 so the generated
1389          // register is legal.
1390          if (!Subtarget->hasSSE2())
1391            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1392        }
1393      }
1394    }
1395
1396    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1397    Flag = Chain.getValue(1);
1398  }
1399
1400  // The x86-64 ABI for returning structs by value requires that we copy
1401  // the sret argument into %rax for the return. We saved the argument into
1402  // a virtual register in the entry block, so now we copy the value out
1403  // and into %rax.
1404  if (Subtarget->is64Bit() &&
1405      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1406    MachineFunction &MF = DAG.getMachineFunction();
1407    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1408    unsigned Reg = FuncInfo->getSRetReturnReg();
1409    assert(Reg &&
1410           "SRetReturnReg should have been set in LowerFormalArguments().");
1411    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1412
1413    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1414    Flag = Chain.getValue(1);
1415
1416    // RAX now acts like a return value.
1417    MRI.addLiveOut(X86::RAX);
1418  }
1419
1420  RetOps[0] = Chain;  // Update chain.
1421
1422  // Add the flag if we have it.
1423  if (Flag.getNode())
1424    RetOps.push_back(Flag);
1425
1426  return DAG.getNode(X86ISD::RET_FLAG, dl,
1427                     MVT::Other, &RetOps[0], RetOps.size());
1428}
1429
1430bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1431  if (N->getNumValues() != 1)
1432    return false;
1433  if (!N->hasNUsesOfValue(1, 0))
1434    return false;
1435
1436  SDNode *Copy = *N->use_begin();
1437  if (Copy->getOpcode() != ISD::CopyToReg &&
1438      Copy->getOpcode() != ISD::FP_EXTEND)
1439    return false;
1440
1441  bool HasRet = false;
1442  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1443       UI != UE; ++UI) {
1444    if (UI->getOpcode() != X86ISD::RET_FLAG)
1445      return false;
1446    HasRet = true;
1447  }
1448
1449  return HasRet;
1450}
1451
1452EVT
1453X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1454                                            ISD::NodeType ExtendKind) const {
1455  MVT ReturnMVT;
1456  // TODO: Is this also valid on 32-bit?
1457  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1458    ReturnMVT = MVT::i8;
1459  else
1460    ReturnMVT = MVT::i32;
1461
1462  EVT MinVT = getRegisterType(Context, ReturnMVT);
1463  return VT.bitsLT(MinVT) ? MinVT : VT;
1464}
1465
1466/// LowerCallResult - Lower the result values of a call into the
1467/// appropriate copies out of appropriate physical registers.
1468///
1469SDValue
1470X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1471                                   CallingConv::ID CallConv, bool isVarArg,
1472                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1473                                   DebugLoc dl, SelectionDAG &DAG,
1474                                   SmallVectorImpl<SDValue> &InVals) const {
1475
1476  // Assign locations to each value returned by this call.
1477  SmallVector<CCValAssign, 16> RVLocs;
1478  bool Is64Bit = Subtarget->is64Bit();
1479  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1482
1483  // Copy all of the result registers out of their specified physreg.
1484  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1485    CCValAssign &VA = RVLocs[i];
1486    EVT CopyVT = VA.getValVT();
1487
1488    // If this is x86-64, and we disabled SSE, we can't return FP values
1489    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1490        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1491      report_fatal_error("SSE register return with SSE disabled");
1492    }
1493
1494    SDValue Val;
1495
1496    // If this is a call to a function that returns an fp value on the floating
1497    // point stack, we must guarantee the the value is popped from the stack, so
1498    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1499    // if the return value is not used. We use the FpGET_ST0 instructions
1500    // instead.
1501    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1502      // If we prefer to use the value in xmm registers, copy it out as f80 and
1503      // use a truncate to move it from fp stack reg to xmm reg.
1504      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1505      bool isST0 = VA.getLocReg() == X86::ST0;
1506      unsigned Opc = 0;
1507      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1508      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1509      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1510      SDValue Ops[] = { Chain, InFlag };
1511      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1512                                         Ops, 2), 1);
1513      Val = Chain.getValue(0);
1514
1515      // Round the f80 to the right size, which also moves it to the appropriate
1516      // xmm register.
1517      if (CopyVT != VA.getValVT())
1518        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1519                          // This truncation won't change the value.
1520                          DAG.getIntPtrConstant(1));
1521    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1522      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1523      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1524        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1525                                   MVT::v2i64, InFlag).getValue(1);
1526        Val = Chain.getValue(0);
1527        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1528                          Val, DAG.getConstant(0, MVT::i64));
1529      } else {
1530        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1531                                   MVT::i64, InFlag).getValue(1);
1532        Val = Chain.getValue(0);
1533      }
1534      Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1535    } else {
1536      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1537                                 CopyVT, InFlag).getValue(1);
1538      Val = Chain.getValue(0);
1539    }
1540    InFlag = Chain.getValue(2);
1541    InVals.push_back(Val);
1542  }
1543
1544  return Chain;
1545}
1546
1547
1548//===----------------------------------------------------------------------===//
1549//                C & StdCall & Fast Calling Convention implementation
1550//===----------------------------------------------------------------------===//
1551//  StdCall calling convention seems to be standard for many Windows' API
1552//  routines and around. It differs from C calling convention just a little:
1553//  callee should clean up the stack, not caller. Symbols should be also
1554//  decorated in some fancy way :) It doesn't support any vector arguments.
1555//  For info on fast calling convention see Fast Calling Convention (tail call)
1556//  implementation LowerX86_32FastCCCallTo.
1557
1558/// CallIsStructReturn - Determines whether a call uses struct return
1559/// semantics.
1560static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1561  if (Outs.empty())
1562    return false;
1563
1564  return Outs[0].Flags.isSRet();
1565}
1566
1567/// ArgsAreStructReturn - Determines whether a function uses struct
1568/// return semantics.
1569static bool
1570ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1571  if (Ins.empty())
1572    return false;
1573
1574  return Ins[0].Flags.isSRet();
1575}
1576
1577/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1578/// by "Src" to address "Dst" with size and alignment information specified by
1579/// the specific parameter attribute. The copy will be passed as a byval
1580/// function parameter.
1581static SDValue
1582CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1583                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1584                          DebugLoc dl) {
1585  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1586
1587  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1588                       /*isVolatile*/false, /*AlwaysInline=*/true,
1589                       MachinePointerInfo(), MachinePointerInfo());
1590}
1591
1592/// IsTailCallConvention - Return true if the calling convention is one that
1593/// supports tail call optimization.
1594static bool IsTailCallConvention(CallingConv::ID CC) {
1595  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1596}
1597
1598/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1599/// a tailcall target by changing its ABI.
1600static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1601  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1602}
1603
1604SDValue
1605X86TargetLowering::LowerMemArgument(SDValue Chain,
1606                                    CallingConv::ID CallConv,
1607                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1608                                    DebugLoc dl, SelectionDAG &DAG,
1609                                    const CCValAssign &VA,
1610                                    MachineFrameInfo *MFI,
1611                                    unsigned i) const {
1612  // Create the nodes corresponding to a load from this parameter slot.
1613  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1614  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1615  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1616  EVT ValVT;
1617
1618  // If value is passed by pointer we have address passed instead of the value
1619  // itself.
1620  if (VA.getLocInfo() == CCValAssign::Indirect)
1621    ValVT = VA.getLocVT();
1622  else
1623    ValVT = VA.getValVT();
1624
1625  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1626  // changed with more analysis.
1627  // In case of tail call optimization mark all arguments mutable. Since they
1628  // could be overwritten by lowering of arguments in case of a tail call.
1629  if (Flags.isByVal()) {
1630    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1631                                    VA.getLocMemOffset(), isImmutable);
1632    return DAG.getFrameIndex(FI, getPointerTy());
1633  } else {
1634    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1635                                    VA.getLocMemOffset(), isImmutable);
1636    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1637    return DAG.getLoad(ValVT, dl, Chain, FIN,
1638                       MachinePointerInfo::getFixedStack(FI),
1639                       false, false, 0);
1640  }
1641}
1642
1643SDValue
1644X86TargetLowering::LowerFormalArguments(SDValue Chain,
1645                                        CallingConv::ID CallConv,
1646                                        bool isVarArg,
1647                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1648                                        DebugLoc dl,
1649                                        SelectionDAG &DAG,
1650                                        SmallVectorImpl<SDValue> &InVals)
1651                                          const {
1652  MachineFunction &MF = DAG.getMachineFunction();
1653  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1654
1655  const Function* Fn = MF.getFunction();
1656  if (Fn->hasExternalLinkage() &&
1657      Subtarget->isTargetCygMing() &&
1658      Fn->getName() == "main")
1659    FuncInfo->setForceFramePointer(true);
1660
1661  MachineFrameInfo *MFI = MF.getFrameInfo();
1662  bool Is64Bit = Subtarget->is64Bit();
1663  bool IsWin64 = Subtarget->isTargetWin64();
1664
1665  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1666         "Var args not supported with calling convention fastcc or ghc");
1667
1668  // Assign locations to all of the incoming arguments.
1669  SmallVector<CCValAssign, 16> ArgLocs;
1670  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1671                 ArgLocs, *DAG.getContext());
1672
1673  // Allocate shadow area for Win64
1674  if (IsWin64) {
1675    CCInfo.AllocateStack(32, 8);
1676  }
1677
1678  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1679
1680  unsigned LastVal = ~0U;
1681  SDValue ArgValue;
1682  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1683    CCValAssign &VA = ArgLocs[i];
1684    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1685    // places.
1686    assert(VA.getValNo() != LastVal &&
1687           "Don't support value assigned to multiple locs yet");
1688    LastVal = VA.getValNo();
1689
1690    if (VA.isRegLoc()) {
1691      EVT RegVT = VA.getLocVT();
1692      TargetRegisterClass *RC = NULL;
1693      if (RegVT == MVT::i32)
1694        RC = X86::GR32RegisterClass;
1695      else if (Is64Bit && RegVT == MVT::i64)
1696        RC = X86::GR64RegisterClass;
1697      else if (RegVT == MVT::f32)
1698        RC = X86::FR32RegisterClass;
1699      else if (RegVT == MVT::f64)
1700        RC = X86::FR64RegisterClass;
1701      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1702        RC = X86::VR256RegisterClass;
1703      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1704        RC = X86::VR128RegisterClass;
1705      else if (RegVT == MVT::x86mmx)
1706        RC = X86::VR64RegisterClass;
1707      else
1708        llvm_unreachable("Unknown argument type!");
1709
1710      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1711      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1712
1713      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1714      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1715      // right size.
1716      if (VA.getLocInfo() == CCValAssign::SExt)
1717        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1718                               DAG.getValueType(VA.getValVT()));
1719      else if (VA.getLocInfo() == CCValAssign::ZExt)
1720        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1721                               DAG.getValueType(VA.getValVT()));
1722      else if (VA.getLocInfo() == CCValAssign::BCvt)
1723        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1724
1725      if (VA.isExtInLoc()) {
1726        // Handle MMX values passed in XMM regs.
1727        if (RegVT.isVector()) {
1728          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1729                                 ArgValue);
1730        } else
1731          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1732      }
1733    } else {
1734      assert(VA.isMemLoc());
1735      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1736    }
1737
1738    // If value is passed via pointer - do a load.
1739    if (VA.getLocInfo() == CCValAssign::Indirect)
1740      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1741                             MachinePointerInfo(), false, false, 0);
1742
1743    InVals.push_back(ArgValue);
1744  }
1745
1746  // The x86-64 ABI for returning structs by value requires that we copy
1747  // the sret argument into %rax for the return. Save the argument into
1748  // a virtual register so that we can access it from the return points.
1749  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1750    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1751    unsigned Reg = FuncInfo->getSRetReturnReg();
1752    if (!Reg) {
1753      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1754      FuncInfo->setSRetReturnReg(Reg);
1755    }
1756    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1757    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1758  }
1759
1760  unsigned StackSize = CCInfo.getNextStackOffset();
1761  // Align stack specially for tail calls.
1762  if (FuncIsMadeTailCallSafe(CallConv))
1763    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1764
1765  // If the function takes variable number of arguments, make a frame index for
1766  // the start of the first vararg value... for expansion of llvm.va_start.
1767  if (isVarArg) {
1768    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1769                    CallConv != CallingConv::X86_ThisCall)) {
1770      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1771    }
1772    if (Is64Bit) {
1773      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1774
1775      // FIXME: We should really autogenerate these arrays
1776      static const unsigned GPR64ArgRegsWin64[] = {
1777        X86::RCX, X86::RDX, X86::R8,  X86::R9
1778      };
1779      static const unsigned GPR64ArgRegs64Bit[] = {
1780        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1781      };
1782      static const unsigned XMMArgRegs64Bit[] = {
1783        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1784        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1785      };
1786      const unsigned *GPR64ArgRegs;
1787      unsigned NumXMMRegs = 0;
1788
1789      if (IsWin64) {
1790        // The XMM registers which might contain var arg parameters are shadowed
1791        // in their paired GPR.  So we only need to save the GPR to their home
1792        // slots.
1793        TotalNumIntRegs = 4;
1794        GPR64ArgRegs = GPR64ArgRegsWin64;
1795      } else {
1796        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1797        GPR64ArgRegs = GPR64ArgRegs64Bit;
1798
1799        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1800      }
1801      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1802                                                       TotalNumIntRegs);
1803
1804      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1805      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1806             "SSE register cannot be used when SSE is disabled!");
1807      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1808             "SSE register cannot be used when SSE is disabled!");
1809      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1810        // Kernel mode asks for SSE to be disabled, so don't push them
1811        // on the stack.
1812        TotalNumXMMRegs = 0;
1813
1814      if (IsWin64) {
1815        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1816        // Get to the caller-allocated home save location.  Add 8 to account
1817        // for the return address.
1818        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1819        FuncInfo->setRegSaveFrameIndex(
1820          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1821        // Fixup to set vararg frame on shadow area (4 x i64).
1822        if (NumIntRegs < 4)
1823          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1824      } else {
1825        // For X86-64, if there are vararg parameters that are passed via
1826        // registers, then we must store them to their spots on the stack so they
1827        // may be loaded by deferencing the result of va_next.
1828        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1829        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1830        FuncInfo->setRegSaveFrameIndex(
1831          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1832                               false));
1833      }
1834
1835      // Store the integer parameter registers.
1836      SmallVector<SDValue, 8> MemOps;
1837      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1838                                        getPointerTy());
1839      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1840      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1841        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1842                                  DAG.getIntPtrConstant(Offset));
1843        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1844                                     X86::GR64RegisterClass);
1845        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1846        SDValue Store =
1847          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1848                       MachinePointerInfo::getFixedStack(
1849                         FuncInfo->getRegSaveFrameIndex(), Offset),
1850                       false, false, 0);
1851        MemOps.push_back(Store);
1852        Offset += 8;
1853      }
1854
1855      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1856        // Now store the XMM (fp + vector) parameter registers.
1857        SmallVector<SDValue, 11> SaveXMMOps;
1858        SaveXMMOps.push_back(Chain);
1859
1860        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1861        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1862        SaveXMMOps.push_back(ALVal);
1863
1864        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1865                               FuncInfo->getRegSaveFrameIndex()));
1866        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1867                               FuncInfo->getVarArgsFPOffset()));
1868
1869        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1870          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1871                                       X86::VR128RegisterClass);
1872          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1873          SaveXMMOps.push_back(Val);
1874        }
1875        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1876                                     MVT::Other,
1877                                     &SaveXMMOps[0], SaveXMMOps.size()));
1878      }
1879
1880      if (!MemOps.empty())
1881        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1882                            &MemOps[0], MemOps.size());
1883    }
1884  }
1885
1886  // Some CCs need callee pop.
1887  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1888    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1889  } else {
1890    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1891    // If this is an sret function, the return should pop the hidden pointer.
1892    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1893      FuncInfo->setBytesToPopOnReturn(4);
1894  }
1895
1896  if (!Is64Bit) {
1897    // RegSaveFrameIndex is X86-64 only.
1898    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1899    if (CallConv == CallingConv::X86_FastCall ||
1900        CallConv == CallingConv::X86_ThisCall)
1901      // fastcc functions can't have varargs.
1902      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1903  }
1904
1905  return Chain;
1906}
1907
1908SDValue
1909X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1910                                    SDValue StackPtr, SDValue Arg,
1911                                    DebugLoc dl, SelectionDAG &DAG,
1912                                    const CCValAssign &VA,
1913                                    ISD::ArgFlagsTy Flags) const {
1914  unsigned LocMemOffset = VA.getLocMemOffset();
1915  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1916  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1917  if (Flags.isByVal())
1918    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1919
1920  return DAG.getStore(Chain, dl, Arg, PtrOff,
1921                      MachinePointerInfo::getStack(LocMemOffset),
1922                      false, false, 0);
1923}
1924
1925/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1926/// optimization is performed and it is required.
1927SDValue
1928X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1929                                           SDValue &OutRetAddr, SDValue Chain,
1930                                           bool IsTailCall, bool Is64Bit,
1931                                           int FPDiff, DebugLoc dl) const {
1932  // Adjust the Return address stack slot.
1933  EVT VT = getPointerTy();
1934  OutRetAddr = getReturnAddressFrameIndex(DAG);
1935
1936  // Load the "old" Return address.
1937  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1938                           false, false, 0);
1939  return SDValue(OutRetAddr.getNode(), 1);
1940}
1941
1942/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1943/// optimization is performed and it is required (FPDiff!=0).
1944static SDValue
1945EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1946                         SDValue Chain, SDValue RetAddrFrIdx,
1947                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1948  // Store the return address to the appropriate stack slot.
1949  if (!FPDiff) return Chain;
1950  // Calculate the new stack slot for the return address.
1951  int SlotSize = Is64Bit ? 8 : 4;
1952  int NewReturnAddrFI =
1953    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1954  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1955  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1956  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1957                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1958                       false, false, 0);
1959  return Chain;
1960}
1961
1962SDValue
1963X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1964                             CallingConv::ID CallConv, bool isVarArg,
1965                             bool &isTailCall,
1966                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1967                             const SmallVectorImpl<SDValue> &OutVals,
1968                             const SmallVectorImpl<ISD::InputArg> &Ins,
1969                             DebugLoc dl, SelectionDAG &DAG,
1970                             SmallVectorImpl<SDValue> &InVals) const {
1971  MachineFunction &MF = DAG.getMachineFunction();
1972  bool Is64Bit        = Subtarget->is64Bit();
1973  bool IsWin64        = Subtarget->isTargetWin64();
1974  bool IsStructRet    = CallIsStructReturn(Outs);
1975  bool IsSibcall      = false;
1976
1977  if (isTailCall) {
1978    // Check if it's really possible to do a tail call.
1979    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1980                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1981                                                   Outs, OutVals, Ins, DAG);
1982
1983    // Sibcalls are automatically detected tailcalls which do not require
1984    // ABI changes.
1985    if (!GuaranteedTailCallOpt && isTailCall)
1986      IsSibcall = true;
1987
1988    if (isTailCall)
1989      ++NumTailCalls;
1990  }
1991
1992  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1993         "Var args not supported with calling convention fastcc or ghc");
1994
1995  // Analyze operands of the call, assigning locations to each operand.
1996  SmallVector<CCValAssign, 16> ArgLocs;
1997  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1998                 ArgLocs, *DAG.getContext());
1999
2000  // Allocate shadow area for Win64
2001  if (IsWin64) {
2002    CCInfo.AllocateStack(32, 8);
2003  }
2004
2005  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2006
2007  // Get a count of how many bytes are to be pushed on the stack.
2008  unsigned NumBytes = CCInfo.getNextStackOffset();
2009  if (IsSibcall)
2010    // This is a sibcall. The memory operands are available in caller's
2011    // own caller's stack.
2012    NumBytes = 0;
2013  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2014    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2015
2016  int FPDiff = 0;
2017  if (isTailCall && !IsSibcall) {
2018    // Lower arguments at fp - stackoffset + fpdiff.
2019    unsigned NumBytesCallerPushed =
2020      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2021    FPDiff = NumBytesCallerPushed - NumBytes;
2022
2023    // Set the delta of movement of the returnaddr stackslot.
2024    // But only set if delta is greater than previous delta.
2025    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2026      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2027  }
2028
2029  if (!IsSibcall)
2030    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2031
2032  SDValue RetAddrFrIdx;
2033  // Load return adress for tail calls.
2034  if (isTailCall && FPDiff)
2035    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2036                                    Is64Bit, FPDiff, dl);
2037
2038  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2039  SmallVector<SDValue, 8> MemOpChains;
2040  SDValue StackPtr;
2041
2042  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2043  // of tail call optimization arguments are handle later.
2044  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2045    CCValAssign &VA = ArgLocs[i];
2046    EVT RegVT = VA.getLocVT();
2047    SDValue Arg = OutVals[i];
2048    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2049    bool isByVal = Flags.isByVal();
2050
2051    // Promote the value if needed.
2052    switch (VA.getLocInfo()) {
2053    default: llvm_unreachable("Unknown loc info!");
2054    case CCValAssign::Full: break;
2055    case CCValAssign::SExt:
2056      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2057      break;
2058    case CCValAssign::ZExt:
2059      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2060      break;
2061    case CCValAssign::AExt:
2062      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2063        // Special case: passing MMX values in XMM registers.
2064        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2065        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2066        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2067      } else
2068        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2069      break;
2070    case CCValAssign::BCvt:
2071      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2072      break;
2073    case CCValAssign::Indirect: {
2074      // Store the argument.
2075      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2076      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2077      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2078                           MachinePointerInfo::getFixedStack(FI),
2079                           false, false, 0);
2080      Arg = SpillSlot;
2081      break;
2082    }
2083    }
2084
2085    if (VA.isRegLoc()) {
2086      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2087      if (isVarArg && IsWin64) {
2088        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2089        // shadow reg if callee is a varargs function.
2090        unsigned ShadowReg = 0;
2091        switch (VA.getLocReg()) {
2092        case X86::XMM0: ShadowReg = X86::RCX; break;
2093        case X86::XMM1: ShadowReg = X86::RDX; break;
2094        case X86::XMM2: ShadowReg = X86::R8; break;
2095        case X86::XMM3: ShadowReg = X86::R9; break;
2096        }
2097        if (ShadowReg)
2098          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2099      }
2100    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2101      assert(VA.isMemLoc());
2102      if (StackPtr.getNode() == 0)
2103        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2104      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2105                                             dl, DAG, VA, Flags));
2106    }
2107  }
2108
2109  if (!MemOpChains.empty())
2110    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2111                        &MemOpChains[0], MemOpChains.size());
2112
2113  // Build a sequence of copy-to-reg nodes chained together with token chain
2114  // and flag operands which copy the outgoing args into registers.
2115  SDValue InFlag;
2116  // Tail call byval lowering might overwrite argument registers so in case of
2117  // tail call optimization the copies to registers are lowered later.
2118  if (!isTailCall)
2119    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2120      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2121                               RegsToPass[i].second, InFlag);
2122      InFlag = Chain.getValue(1);
2123    }
2124
2125  if (Subtarget->isPICStyleGOT()) {
2126    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2127    // GOT pointer.
2128    if (!isTailCall) {
2129      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2130                               DAG.getNode(X86ISD::GlobalBaseReg,
2131                                           DebugLoc(), getPointerTy()),
2132                               InFlag);
2133      InFlag = Chain.getValue(1);
2134    } else {
2135      // If we are tail calling and generating PIC/GOT style code load the
2136      // address of the callee into ECX. The value in ecx is used as target of
2137      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2138      // for tail calls on PIC/GOT architectures. Normally we would just put the
2139      // address of GOT into ebx and then call target@PLT. But for tail calls
2140      // ebx would be restored (since ebx is callee saved) before jumping to the
2141      // target@PLT.
2142
2143      // Note: The actual moving to ECX is done further down.
2144      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2145      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2146          !G->getGlobal()->hasProtectedVisibility())
2147        Callee = LowerGlobalAddress(Callee, DAG);
2148      else if (isa<ExternalSymbolSDNode>(Callee))
2149        Callee = LowerExternalSymbol(Callee, DAG);
2150    }
2151  }
2152
2153  if (Is64Bit && isVarArg && !IsWin64) {
2154    // From AMD64 ABI document:
2155    // For calls that may call functions that use varargs or stdargs
2156    // (prototype-less calls or calls to functions containing ellipsis (...) in
2157    // the declaration) %al is used as hidden argument to specify the number
2158    // of SSE registers used. The contents of %al do not need to match exactly
2159    // the number of registers, but must be an ubound on the number of SSE
2160    // registers used and is in the range 0 - 8 inclusive.
2161
2162    // Count the number of XMM registers allocated.
2163    static const unsigned XMMArgRegs[] = {
2164      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2165      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2166    };
2167    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2168    assert((Subtarget->hasXMM() || !NumXMMRegs)
2169           && "SSE registers cannot be used when SSE is disabled");
2170
2171    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2172                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2173    InFlag = Chain.getValue(1);
2174  }
2175
2176
2177  // For tail calls lower the arguments to the 'real' stack slot.
2178  if (isTailCall) {
2179    // Force all the incoming stack arguments to be loaded from the stack
2180    // before any new outgoing arguments are stored to the stack, because the
2181    // outgoing stack slots may alias the incoming argument stack slots, and
2182    // the alias isn't otherwise explicit. This is slightly more conservative
2183    // than necessary, because it means that each store effectively depends
2184    // on every argument instead of just those arguments it would clobber.
2185    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2186
2187    SmallVector<SDValue, 8> MemOpChains2;
2188    SDValue FIN;
2189    int FI = 0;
2190    // Do not flag preceeding copytoreg stuff together with the following stuff.
2191    InFlag = SDValue();
2192    if (GuaranteedTailCallOpt) {
2193      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2194        CCValAssign &VA = ArgLocs[i];
2195        if (VA.isRegLoc())
2196          continue;
2197        assert(VA.isMemLoc());
2198        SDValue Arg = OutVals[i];
2199        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2200        // Create frame index.
2201        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2202        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2203        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2204        FIN = DAG.getFrameIndex(FI, getPointerTy());
2205
2206        if (Flags.isByVal()) {
2207          // Copy relative to framepointer.
2208          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2209          if (StackPtr.getNode() == 0)
2210            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2211                                          getPointerTy());
2212          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2213
2214          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2215                                                           ArgChain,
2216                                                           Flags, DAG, dl));
2217        } else {
2218          // Store relative to framepointer.
2219          MemOpChains2.push_back(
2220            DAG.getStore(ArgChain, dl, Arg, FIN,
2221                         MachinePointerInfo::getFixedStack(FI),
2222                         false, false, 0));
2223        }
2224      }
2225    }
2226
2227    if (!MemOpChains2.empty())
2228      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2229                          &MemOpChains2[0], MemOpChains2.size());
2230
2231    // Copy arguments to their registers.
2232    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2233      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2234                               RegsToPass[i].second, InFlag);
2235      InFlag = Chain.getValue(1);
2236    }
2237    InFlag =SDValue();
2238
2239    // Store the return address to the appropriate stack slot.
2240    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2241                                     FPDiff, dl);
2242  }
2243
2244  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2245    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2246    // In the 64-bit large code model, we have to make all calls
2247    // through a register, since the call instruction's 32-bit
2248    // pc-relative offset may not be large enough to hold the whole
2249    // address.
2250  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2251    // If the callee is a GlobalAddress node (quite common, every direct call
2252    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2253    // it.
2254
2255    // We should use extra load for direct calls to dllimported functions in
2256    // non-JIT mode.
2257    const GlobalValue *GV = G->getGlobal();
2258    if (!GV->hasDLLImportLinkage()) {
2259      unsigned char OpFlags = 0;
2260
2261      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2262      // external symbols most go through the PLT in PIC mode.  If the symbol
2263      // has hidden or protected visibility, or if it is static or local, then
2264      // we don't need to use the PLT - we can directly call it.
2265      if (Subtarget->isTargetELF() &&
2266          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2267          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2268        OpFlags = X86II::MO_PLT;
2269      } else if (Subtarget->isPICStyleStubAny() &&
2270                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2271                 Subtarget->getDarwinVers() < 9) {
2272        // PC-relative references to external symbols should go through $stub,
2273        // unless we're building with the leopard linker or later, which
2274        // automatically synthesizes these stubs.
2275        OpFlags = X86II::MO_DARWIN_STUB;
2276      }
2277
2278      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2279                                          G->getOffset(), OpFlags);
2280    }
2281  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2282    unsigned char OpFlags = 0;
2283
2284    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2285    // external symbols should go through the PLT.
2286    if (Subtarget->isTargetELF() &&
2287        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2288      OpFlags = X86II::MO_PLT;
2289    } else if (Subtarget->isPICStyleStubAny() &&
2290               Subtarget->getDarwinVers() < 9) {
2291      // PC-relative references to external symbols should go through $stub,
2292      // unless we're building with the leopard linker or later, which
2293      // automatically synthesizes these stubs.
2294      OpFlags = X86II::MO_DARWIN_STUB;
2295    }
2296
2297    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2298                                         OpFlags);
2299  }
2300
2301  // Returns a chain & a flag for retval copy to use.
2302  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2303  SmallVector<SDValue, 8> Ops;
2304
2305  if (!IsSibcall && isTailCall) {
2306    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2307                           DAG.getIntPtrConstant(0, true), InFlag);
2308    InFlag = Chain.getValue(1);
2309  }
2310
2311  Ops.push_back(Chain);
2312  Ops.push_back(Callee);
2313
2314  if (isTailCall)
2315    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2316
2317  // Add argument registers to the end of the list so that they are known live
2318  // into the call.
2319  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2320    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2321                                  RegsToPass[i].second.getValueType()));
2322
2323  // Add an implicit use GOT pointer in EBX.
2324  if (!isTailCall && Subtarget->isPICStyleGOT())
2325    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2326
2327  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2328  if (Is64Bit && isVarArg && !IsWin64)
2329    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2330
2331  if (InFlag.getNode())
2332    Ops.push_back(InFlag);
2333
2334  if (isTailCall) {
2335    // We used to do:
2336    //// If this is the first return lowered for this function, add the regs
2337    //// to the liveout set for the function.
2338    // This isn't right, although it's probably harmless on x86; liveouts
2339    // should be computed from returns not tail calls.  Consider a void
2340    // function making a tail call to a function returning int.
2341    return DAG.getNode(X86ISD::TC_RETURN, dl,
2342                       NodeTys, &Ops[0], Ops.size());
2343  }
2344
2345  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2346  InFlag = Chain.getValue(1);
2347
2348  // Create the CALLSEQ_END node.
2349  unsigned NumBytesForCalleeToPush;
2350  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2351    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2352  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2353    // If this is a call to a struct-return function, the callee
2354    // pops the hidden struct pointer, so we have to push it back.
2355    // This is common for Darwin/X86, Linux & Mingw32 targets.
2356    NumBytesForCalleeToPush = 4;
2357  else
2358    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2359
2360  // Returns a flag for retval copy to use.
2361  if (!IsSibcall) {
2362    Chain = DAG.getCALLSEQ_END(Chain,
2363                               DAG.getIntPtrConstant(NumBytes, true),
2364                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2365                                                     true),
2366                               InFlag);
2367    InFlag = Chain.getValue(1);
2368  }
2369
2370  // Handle result values, copying them out of physregs into vregs that we
2371  // return.
2372  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2373                         Ins, dl, DAG, InVals);
2374}
2375
2376
2377//===----------------------------------------------------------------------===//
2378//                Fast Calling Convention (tail call) implementation
2379//===----------------------------------------------------------------------===//
2380
2381//  Like std call, callee cleans arguments, convention except that ECX is
2382//  reserved for storing the tail called function address. Only 2 registers are
2383//  free for argument passing (inreg). Tail call optimization is performed
2384//  provided:
2385//                * tailcallopt is enabled
2386//                * caller/callee are fastcc
2387//  On X86_64 architecture with GOT-style position independent code only local
2388//  (within module) calls are supported at the moment.
2389//  To keep the stack aligned according to platform abi the function
2390//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2391//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2392//  If a tail called function callee has more arguments than the caller the
2393//  caller needs to make sure that there is room to move the RETADDR to. This is
2394//  achieved by reserving an area the size of the argument delta right after the
2395//  original REtADDR, but before the saved framepointer or the spilled registers
2396//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2397//  stack layout:
2398//    arg1
2399//    arg2
2400//    RETADDR
2401//    [ new RETADDR
2402//      move area ]
2403//    (possible EBP)
2404//    ESI
2405//    EDI
2406//    local1 ..
2407
2408/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2409/// for a 16 byte align requirement.
2410unsigned
2411X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2412                                               SelectionDAG& DAG) const {
2413  MachineFunction &MF = DAG.getMachineFunction();
2414  const TargetMachine &TM = MF.getTarget();
2415  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2416  unsigned StackAlignment = TFI.getStackAlignment();
2417  uint64_t AlignMask = StackAlignment - 1;
2418  int64_t Offset = StackSize;
2419  uint64_t SlotSize = TD->getPointerSize();
2420  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2421    // Number smaller than 12 so just add the difference.
2422    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2423  } else {
2424    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2425    Offset = ((~AlignMask) & Offset) + StackAlignment +
2426      (StackAlignment-SlotSize);
2427  }
2428  return Offset;
2429}
2430
2431/// MatchingStackOffset - Return true if the given stack call argument is
2432/// already available in the same position (relatively) of the caller's
2433/// incoming argument stack.
2434static
2435bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2436                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2437                         const X86InstrInfo *TII) {
2438  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2439  int FI = INT_MAX;
2440  if (Arg.getOpcode() == ISD::CopyFromReg) {
2441    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2442    if (!TargetRegisterInfo::isVirtualRegister(VR))
2443      return false;
2444    MachineInstr *Def = MRI->getVRegDef(VR);
2445    if (!Def)
2446      return false;
2447    if (!Flags.isByVal()) {
2448      if (!TII->isLoadFromStackSlot(Def, FI))
2449        return false;
2450    } else {
2451      unsigned Opcode = Def->getOpcode();
2452      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2453          Def->getOperand(1).isFI()) {
2454        FI = Def->getOperand(1).getIndex();
2455        Bytes = Flags.getByValSize();
2456      } else
2457        return false;
2458    }
2459  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2460    if (Flags.isByVal())
2461      // ByVal argument is passed in as a pointer but it's now being
2462      // dereferenced. e.g.
2463      // define @foo(%struct.X* %A) {
2464      //   tail call @bar(%struct.X* byval %A)
2465      // }
2466      return false;
2467    SDValue Ptr = Ld->getBasePtr();
2468    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2469    if (!FINode)
2470      return false;
2471    FI = FINode->getIndex();
2472  } else
2473    return false;
2474
2475  assert(FI != INT_MAX);
2476  if (!MFI->isFixedObjectIndex(FI))
2477    return false;
2478  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2479}
2480
2481/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2482/// for tail call optimization. Targets which want to do tail call
2483/// optimization should implement this function.
2484bool
2485X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2486                                                     CallingConv::ID CalleeCC,
2487                                                     bool isVarArg,
2488                                                     bool isCalleeStructRet,
2489                                                     bool isCallerStructRet,
2490                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2491                                    const SmallVectorImpl<SDValue> &OutVals,
2492                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2493                                                     SelectionDAG& DAG) const {
2494  if (!IsTailCallConvention(CalleeCC) &&
2495      CalleeCC != CallingConv::C)
2496    return false;
2497
2498  // If -tailcallopt is specified, make fastcc functions tail-callable.
2499  const MachineFunction &MF = DAG.getMachineFunction();
2500  const Function *CallerF = DAG.getMachineFunction().getFunction();
2501  CallingConv::ID CallerCC = CallerF->getCallingConv();
2502  bool CCMatch = CallerCC == CalleeCC;
2503
2504  if (GuaranteedTailCallOpt) {
2505    if (IsTailCallConvention(CalleeCC) && CCMatch)
2506      return true;
2507    return false;
2508  }
2509
2510  // Look for obvious safe cases to perform tail call optimization that do not
2511  // require ABI changes. This is what gcc calls sibcall.
2512
2513  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2514  // emit a special epilogue.
2515  if (RegInfo->needsStackRealignment(MF))
2516    return false;
2517
2518  // Do not sibcall optimize vararg calls unless the call site is not passing
2519  // any arguments.
2520  if (isVarArg && !Outs.empty())
2521    return false;
2522
2523  // Also avoid sibcall optimization if either caller or callee uses struct
2524  // return semantics.
2525  if (isCalleeStructRet || isCallerStructRet)
2526    return false;
2527
2528  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2529  // Therefore if it's not used by the call it is not safe to optimize this into
2530  // a sibcall.
2531  bool Unused = false;
2532  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2533    if (!Ins[i].Used) {
2534      Unused = true;
2535      break;
2536    }
2537  }
2538  if (Unused) {
2539    SmallVector<CCValAssign, 16> RVLocs;
2540    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2541                   RVLocs, *DAG.getContext());
2542    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2543    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2544      CCValAssign &VA = RVLocs[i];
2545      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2546        return false;
2547    }
2548  }
2549
2550  // If the calling conventions do not match, then we'd better make sure the
2551  // results are returned in the same way as what the caller expects.
2552  if (!CCMatch) {
2553    SmallVector<CCValAssign, 16> RVLocs1;
2554    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2555                    RVLocs1, *DAG.getContext());
2556    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2557
2558    SmallVector<CCValAssign, 16> RVLocs2;
2559    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2560                    RVLocs2, *DAG.getContext());
2561    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2562
2563    if (RVLocs1.size() != RVLocs2.size())
2564      return false;
2565    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2566      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2567        return false;
2568      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2569        return false;
2570      if (RVLocs1[i].isRegLoc()) {
2571        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2572          return false;
2573      } else {
2574        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2575          return false;
2576      }
2577    }
2578  }
2579
2580  // If the callee takes no arguments then go on to check the results of the
2581  // call.
2582  if (!Outs.empty()) {
2583    // Check if stack adjustment is needed. For now, do not do this if any
2584    // argument is passed on the stack.
2585    SmallVector<CCValAssign, 16> ArgLocs;
2586    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2587                   ArgLocs, *DAG.getContext());
2588
2589    // Allocate shadow area for Win64
2590    if (Subtarget->isTargetWin64()) {
2591      CCInfo.AllocateStack(32, 8);
2592    }
2593
2594    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2595    if (CCInfo.getNextStackOffset()) {
2596      MachineFunction &MF = DAG.getMachineFunction();
2597      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2598        return false;
2599
2600      // Check if the arguments are already laid out in the right way as
2601      // the caller's fixed stack objects.
2602      MachineFrameInfo *MFI = MF.getFrameInfo();
2603      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2604      const X86InstrInfo *TII =
2605        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2606      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2607        CCValAssign &VA = ArgLocs[i];
2608        SDValue Arg = OutVals[i];
2609        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2610        if (VA.getLocInfo() == CCValAssign::Indirect)
2611          return false;
2612        if (!VA.isRegLoc()) {
2613          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2614                                   MFI, MRI, TII))
2615            return false;
2616        }
2617      }
2618    }
2619
2620    // If the tailcall address may be in a register, then make sure it's
2621    // possible to register allocate for it. In 32-bit, the call address can
2622    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2623    // callee-saved registers are restored. These happen to be the same
2624    // registers used to pass 'inreg' arguments so watch out for those.
2625    if (!Subtarget->is64Bit() &&
2626        !isa<GlobalAddressSDNode>(Callee) &&
2627        !isa<ExternalSymbolSDNode>(Callee)) {
2628      unsigned NumInRegs = 0;
2629      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2630        CCValAssign &VA = ArgLocs[i];
2631        if (!VA.isRegLoc())
2632          continue;
2633        unsigned Reg = VA.getLocReg();
2634        switch (Reg) {
2635        default: break;
2636        case X86::EAX: case X86::EDX: case X86::ECX:
2637          if (++NumInRegs == 3)
2638            return false;
2639          break;
2640        }
2641      }
2642    }
2643  }
2644
2645  // An stdcall caller is expected to clean up its arguments; the callee
2646  // isn't going to do that.
2647  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2648    return false;
2649
2650  return true;
2651}
2652
2653FastISel *
2654X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2655  return X86::createFastISel(funcInfo);
2656}
2657
2658
2659//===----------------------------------------------------------------------===//
2660//                           Other Lowering Hooks
2661//===----------------------------------------------------------------------===//
2662
2663static bool MayFoldLoad(SDValue Op) {
2664  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2665}
2666
2667static bool MayFoldIntoStore(SDValue Op) {
2668  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2669}
2670
2671static bool isTargetShuffle(unsigned Opcode) {
2672  switch(Opcode) {
2673  default: return false;
2674  case X86ISD::PSHUFD:
2675  case X86ISD::PSHUFHW:
2676  case X86ISD::PSHUFLW:
2677  case X86ISD::SHUFPD:
2678  case X86ISD::PALIGN:
2679  case X86ISD::SHUFPS:
2680  case X86ISD::MOVLHPS:
2681  case X86ISD::MOVLHPD:
2682  case X86ISD::MOVHLPS:
2683  case X86ISD::MOVLPS:
2684  case X86ISD::MOVLPD:
2685  case X86ISD::MOVSHDUP:
2686  case X86ISD::MOVSLDUP:
2687  case X86ISD::MOVDDUP:
2688  case X86ISD::MOVSS:
2689  case X86ISD::MOVSD:
2690  case X86ISD::UNPCKLPS:
2691  case X86ISD::UNPCKLPD:
2692  case X86ISD::VUNPCKLPS:
2693  case X86ISD::VUNPCKLPD:
2694  case X86ISD::VUNPCKLPSY:
2695  case X86ISD::VUNPCKLPDY:
2696  case X86ISD::PUNPCKLWD:
2697  case X86ISD::PUNPCKLBW:
2698  case X86ISD::PUNPCKLDQ:
2699  case X86ISD::PUNPCKLQDQ:
2700  case X86ISD::UNPCKHPS:
2701  case X86ISD::UNPCKHPD:
2702  case X86ISD::PUNPCKHWD:
2703  case X86ISD::PUNPCKHBW:
2704  case X86ISD::PUNPCKHDQ:
2705  case X86ISD::PUNPCKHQDQ:
2706    return true;
2707  }
2708  return false;
2709}
2710
2711static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2712                                               SDValue V1, SelectionDAG &DAG) {
2713  switch(Opc) {
2714  default: llvm_unreachable("Unknown x86 shuffle node");
2715  case X86ISD::MOVSHDUP:
2716  case X86ISD::MOVSLDUP:
2717  case X86ISD::MOVDDUP:
2718    return DAG.getNode(Opc, dl, VT, V1);
2719  }
2720
2721  return SDValue();
2722}
2723
2724static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2725                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2726  switch(Opc) {
2727  default: llvm_unreachable("Unknown x86 shuffle node");
2728  case X86ISD::PSHUFD:
2729  case X86ISD::PSHUFHW:
2730  case X86ISD::PSHUFLW:
2731    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2732  }
2733
2734  return SDValue();
2735}
2736
2737static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2738               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2739  switch(Opc) {
2740  default: llvm_unreachable("Unknown x86 shuffle node");
2741  case X86ISD::PALIGN:
2742  case X86ISD::SHUFPD:
2743  case X86ISD::SHUFPS:
2744    return DAG.getNode(Opc, dl, VT, V1, V2,
2745                       DAG.getConstant(TargetMask, MVT::i8));
2746  }
2747  return SDValue();
2748}
2749
2750static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2751                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2752  switch(Opc) {
2753  default: llvm_unreachable("Unknown x86 shuffle node");
2754  case X86ISD::MOVLHPS:
2755  case X86ISD::MOVLHPD:
2756  case X86ISD::MOVHLPS:
2757  case X86ISD::MOVLPS:
2758  case X86ISD::MOVLPD:
2759  case X86ISD::MOVSS:
2760  case X86ISD::MOVSD:
2761  case X86ISD::UNPCKLPS:
2762  case X86ISD::UNPCKLPD:
2763  case X86ISD::VUNPCKLPS:
2764  case X86ISD::VUNPCKLPD:
2765  case X86ISD::VUNPCKLPSY:
2766  case X86ISD::VUNPCKLPDY:
2767  case X86ISD::PUNPCKLWD:
2768  case X86ISD::PUNPCKLBW:
2769  case X86ISD::PUNPCKLDQ:
2770  case X86ISD::PUNPCKLQDQ:
2771  case X86ISD::UNPCKHPS:
2772  case X86ISD::UNPCKHPD:
2773  case X86ISD::PUNPCKHWD:
2774  case X86ISD::PUNPCKHBW:
2775  case X86ISD::PUNPCKHDQ:
2776  case X86ISD::PUNPCKHQDQ:
2777    return DAG.getNode(Opc, dl, VT, V1, V2);
2778  }
2779  return SDValue();
2780}
2781
2782SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2783  MachineFunction &MF = DAG.getMachineFunction();
2784  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2785  int ReturnAddrIndex = FuncInfo->getRAIndex();
2786
2787  if (ReturnAddrIndex == 0) {
2788    // Set up a frame object for the return address.
2789    uint64_t SlotSize = TD->getPointerSize();
2790    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2791                                                           false);
2792    FuncInfo->setRAIndex(ReturnAddrIndex);
2793  }
2794
2795  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2796}
2797
2798
2799bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2800                                       bool hasSymbolicDisplacement) {
2801  // Offset should fit into 32 bit immediate field.
2802  if (!isInt<32>(Offset))
2803    return false;
2804
2805  // If we don't have a symbolic displacement - we don't have any extra
2806  // restrictions.
2807  if (!hasSymbolicDisplacement)
2808    return true;
2809
2810  // FIXME: Some tweaks might be needed for medium code model.
2811  if (M != CodeModel::Small && M != CodeModel::Kernel)
2812    return false;
2813
2814  // For small code model we assume that latest object is 16MB before end of 31
2815  // bits boundary. We may also accept pretty large negative constants knowing
2816  // that all objects are in the positive half of address space.
2817  if (M == CodeModel::Small && Offset < 16*1024*1024)
2818    return true;
2819
2820  // For kernel code model we know that all object resist in the negative half
2821  // of 32bits address space. We may not accept negative offsets, since they may
2822  // be just off and we may accept pretty large positive ones.
2823  if (M == CodeModel::Kernel && Offset > 0)
2824    return true;
2825
2826  return false;
2827}
2828
2829/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2830/// specific condition code, returning the condition code and the LHS/RHS of the
2831/// comparison to make.
2832static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2833                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2834  if (!isFP) {
2835    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2836      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2837        // X > -1   -> X == 0, jump !sign.
2838        RHS = DAG.getConstant(0, RHS.getValueType());
2839        return X86::COND_NS;
2840      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2841        // X < 0   -> X == 0, jump on sign.
2842        return X86::COND_S;
2843      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2844        // X < 1   -> X <= 0
2845        RHS = DAG.getConstant(0, RHS.getValueType());
2846        return X86::COND_LE;
2847      }
2848    }
2849
2850    switch (SetCCOpcode) {
2851    default: llvm_unreachable("Invalid integer condition!");
2852    case ISD::SETEQ:  return X86::COND_E;
2853    case ISD::SETGT:  return X86::COND_G;
2854    case ISD::SETGE:  return X86::COND_GE;
2855    case ISD::SETLT:  return X86::COND_L;
2856    case ISD::SETLE:  return X86::COND_LE;
2857    case ISD::SETNE:  return X86::COND_NE;
2858    case ISD::SETULT: return X86::COND_B;
2859    case ISD::SETUGT: return X86::COND_A;
2860    case ISD::SETULE: return X86::COND_BE;
2861    case ISD::SETUGE: return X86::COND_AE;
2862    }
2863  }
2864
2865  // First determine if it is required or is profitable to flip the operands.
2866
2867  // If LHS is a foldable load, but RHS is not, flip the condition.
2868  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2869      !ISD::isNON_EXTLoad(RHS.getNode())) {
2870    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2871    std::swap(LHS, RHS);
2872  }
2873
2874  switch (SetCCOpcode) {
2875  default: break;
2876  case ISD::SETOLT:
2877  case ISD::SETOLE:
2878  case ISD::SETUGT:
2879  case ISD::SETUGE:
2880    std::swap(LHS, RHS);
2881    break;
2882  }
2883
2884  // On a floating point condition, the flags are set as follows:
2885  // ZF  PF  CF   op
2886  //  0 | 0 | 0 | X > Y
2887  //  0 | 0 | 1 | X < Y
2888  //  1 | 0 | 0 | X == Y
2889  //  1 | 1 | 1 | unordered
2890  switch (SetCCOpcode) {
2891  default: llvm_unreachable("Condcode should be pre-legalized away");
2892  case ISD::SETUEQ:
2893  case ISD::SETEQ:   return X86::COND_E;
2894  case ISD::SETOLT:              // flipped
2895  case ISD::SETOGT:
2896  case ISD::SETGT:   return X86::COND_A;
2897  case ISD::SETOLE:              // flipped
2898  case ISD::SETOGE:
2899  case ISD::SETGE:   return X86::COND_AE;
2900  case ISD::SETUGT:              // flipped
2901  case ISD::SETULT:
2902  case ISD::SETLT:   return X86::COND_B;
2903  case ISD::SETUGE:              // flipped
2904  case ISD::SETULE:
2905  case ISD::SETLE:   return X86::COND_BE;
2906  case ISD::SETONE:
2907  case ISD::SETNE:   return X86::COND_NE;
2908  case ISD::SETUO:   return X86::COND_P;
2909  case ISD::SETO:    return X86::COND_NP;
2910  case ISD::SETOEQ:
2911  case ISD::SETUNE:  return X86::COND_INVALID;
2912  }
2913}
2914
2915/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2916/// code. Current x86 isa includes the following FP cmov instructions:
2917/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2918static bool hasFPCMov(unsigned X86CC) {
2919  switch (X86CC) {
2920  default:
2921    return false;
2922  case X86::COND_B:
2923  case X86::COND_BE:
2924  case X86::COND_E:
2925  case X86::COND_P:
2926  case X86::COND_A:
2927  case X86::COND_AE:
2928  case X86::COND_NE:
2929  case X86::COND_NP:
2930    return true;
2931  }
2932}
2933
2934/// isFPImmLegal - Returns true if the target can instruction select the
2935/// specified FP immediate natively. If false, the legalizer will
2936/// materialize the FP immediate as a load from a constant pool.
2937bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2938  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2939    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2940      return true;
2941  }
2942  return false;
2943}
2944
2945/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2946/// the specified range (L, H].
2947static bool isUndefOrInRange(int Val, int Low, int Hi) {
2948  return (Val < 0) || (Val >= Low && Val < Hi);
2949}
2950
2951/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2952/// specified value.
2953static bool isUndefOrEqual(int Val, int CmpVal) {
2954  if (Val < 0 || Val == CmpVal)
2955    return true;
2956  return false;
2957}
2958
2959/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2960/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2961/// the second operand.
2962static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2963  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2964    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2965  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2966    return (Mask[0] < 2 && Mask[1] < 2);
2967  return false;
2968}
2969
2970bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2971  SmallVector<int, 8> M;
2972  N->getMask(M);
2973  return ::isPSHUFDMask(M, N->getValueType(0));
2974}
2975
2976/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2977/// is suitable for input to PSHUFHW.
2978static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2979  if (VT != MVT::v8i16)
2980    return false;
2981
2982  // Lower quadword copied in order or undef.
2983  for (int i = 0; i != 4; ++i)
2984    if (Mask[i] >= 0 && Mask[i] != i)
2985      return false;
2986
2987  // Upper quadword shuffled.
2988  for (int i = 4; i != 8; ++i)
2989    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2990      return false;
2991
2992  return true;
2993}
2994
2995bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2996  SmallVector<int, 8> M;
2997  N->getMask(M);
2998  return ::isPSHUFHWMask(M, N->getValueType(0));
2999}
3000
3001/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3002/// is suitable for input to PSHUFLW.
3003static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3004  if (VT != MVT::v8i16)
3005    return false;
3006
3007  // Upper quadword copied in order.
3008  for (int i = 4; i != 8; ++i)
3009    if (Mask[i] >= 0 && Mask[i] != i)
3010      return false;
3011
3012  // Lower quadword shuffled.
3013  for (int i = 0; i != 4; ++i)
3014    if (Mask[i] >= 4)
3015      return false;
3016
3017  return true;
3018}
3019
3020bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3021  SmallVector<int, 8> M;
3022  N->getMask(M);
3023  return ::isPSHUFLWMask(M, N->getValueType(0));
3024}
3025
3026/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3027/// is suitable for input to PALIGNR.
3028static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3029                          bool hasSSSE3) {
3030  int i, e = VT.getVectorNumElements();
3031
3032  // Do not handle v2i64 / v2f64 shuffles with palignr.
3033  if (e < 4 || !hasSSSE3)
3034    return false;
3035
3036  for (i = 0; i != e; ++i)
3037    if (Mask[i] >= 0)
3038      break;
3039
3040  // All undef, not a palignr.
3041  if (i == e)
3042    return false;
3043
3044  // Determine if it's ok to perform a palignr with only the LHS, since we
3045  // don't have access to the actual shuffle elements to see if RHS is undef.
3046  bool Unary = Mask[i] < (int)e;
3047  bool NeedsUnary = false;
3048
3049  int s = Mask[i] - i;
3050
3051  // Check the rest of the elements to see if they are consecutive.
3052  for (++i; i != e; ++i) {
3053    int m = Mask[i];
3054    if (m < 0)
3055      continue;
3056
3057    Unary = Unary && (m < (int)e);
3058    NeedsUnary = NeedsUnary || (m < s);
3059
3060    if (NeedsUnary && !Unary)
3061      return false;
3062    if (Unary && m != ((s+i) & (e-1)))
3063      return false;
3064    if (!Unary && m != (s+i))
3065      return false;
3066  }
3067  return true;
3068}
3069
3070bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3071  SmallVector<int, 8> M;
3072  N->getMask(M);
3073  return ::isPALIGNRMask(M, N->getValueType(0), true);
3074}
3075
3076/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3077/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3078static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3079  int NumElems = VT.getVectorNumElements();
3080  if (NumElems != 2 && NumElems != 4)
3081    return false;
3082
3083  int Half = NumElems / 2;
3084  for (int i = 0; i < Half; ++i)
3085    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3086      return false;
3087  for (int i = Half; i < NumElems; ++i)
3088    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3089      return false;
3090
3091  return true;
3092}
3093
3094bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3095  SmallVector<int, 8> M;
3096  N->getMask(M);
3097  return ::isSHUFPMask(M, N->getValueType(0));
3098}
3099
3100/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3101/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3102/// half elements to come from vector 1 (which would equal the dest.) and
3103/// the upper half to come from vector 2.
3104static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3105  int NumElems = VT.getVectorNumElements();
3106
3107  if (NumElems != 2 && NumElems != 4)
3108    return false;
3109
3110  int Half = NumElems / 2;
3111  for (int i = 0; i < Half; ++i)
3112    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3113      return false;
3114  for (int i = Half; i < NumElems; ++i)
3115    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3116      return false;
3117  return true;
3118}
3119
3120static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3121  SmallVector<int, 8> M;
3122  N->getMask(M);
3123  return isCommutedSHUFPMask(M, N->getValueType(0));
3124}
3125
3126/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3127/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3128bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3129  if (N->getValueType(0).getVectorNumElements() != 4)
3130    return false;
3131
3132  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3133  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3134         isUndefOrEqual(N->getMaskElt(1), 7) &&
3135         isUndefOrEqual(N->getMaskElt(2), 2) &&
3136         isUndefOrEqual(N->getMaskElt(3), 3);
3137}
3138
3139/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3140/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3141/// <2, 3, 2, 3>
3142bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3143  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3144
3145  if (NumElems != 4)
3146    return false;
3147
3148  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3149  isUndefOrEqual(N->getMaskElt(1), 3) &&
3150  isUndefOrEqual(N->getMaskElt(2), 2) &&
3151  isUndefOrEqual(N->getMaskElt(3), 3);
3152}
3153
3154/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3155/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3156bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3157  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3158
3159  if (NumElems != 2 && NumElems != 4)
3160    return false;
3161
3162  for (unsigned i = 0; i < NumElems/2; ++i)
3163    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3164      return false;
3165
3166  for (unsigned i = NumElems/2; i < NumElems; ++i)
3167    if (!isUndefOrEqual(N->getMaskElt(i), i))
3168      return false;
3169
3170  return true;
3171}
3172
3173/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3174/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3175bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3176  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3177
3178  if ((NumElems != 2 && NumElems != 4)
3179      || N->getValueType(0).getSizeInBits() > 128)
3180    return false;
3181
3182  for (unsigned i = 0; i < NumElems/2; ++i)
3183    if (!isUndefOrEqual(N->getMaskElt(i), i))
3184      return false;
3185
3186  for (unsigned i = 0; i < NumElems/2; ++i)
3187    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3188      return false;
3189
3190  return true;
3191}
3192
3193/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3194/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3195static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3196                         bool V2IsSplat = false) {
3197  int NumElts = VT.getVectorNumElements();
3198  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3199    return false;
3200
3201  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3202  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3203  // sections.
3204  unsigned NumSections = VT.getSizeInBits() / 128;
3205  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3206  unsigned NumSectionElts = NumElts / NumSections;
3207
3208  unsigned Start = 0;
3209  unsigned End = NumSectionElts;
3210  for (unsigned s = 0; s < NumSections; ++s) {
3211    for (unsigned i = Start, j = s * NumSectionElts;
3212         i != End;
3213         i += 2, ++j) {
3214      int BitI  = Mask[i];
3215      int BitI1 = Mask[i+1];
3216      if (!isUndefOrEqual(BitI, j))
3217        return false;
3218      if (V2IsSplat) {
3219        if (!isUndefOrEqual(BitI1, NumElts))
3220          return false;
3221      } else {
3222        if (!isUndefOrEqual(BitI1, j + NumElts))
3223          return false;
3224      }
3225    }
3226    // Process the next 128 bits.
3227    Start += NumSectionElts;
3228    End += NumSectionElts;
3229  }
3230
3231  return true;
3232}
3233
3234bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3235  SmallVector<int, 8> M;
3236  N->getMask(M);
3237  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3238}
3239
3240/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3241/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3242static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3243                         bool V2IsSplat = false) {
3244  int NumElts = VT.getVectorNumElements();
3245  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3246    return false;
3247
3248  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3249    int BitI  = Mask[i];
3250    int BitI1 = Mask[i+1];
3251    if (!isUndefOrEqual(BitI, j + NumElts/2))
3252      return false;
3253    if (V2IsSplat) {
3254      if (isUndefOrEqual(BitI1, NumElts))
3255        return false;
3256    } else {
3257      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3258        return false;
3259    }
3260  }
3261  return true;
3262}
3263
3264bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3265  SmallVector<int, 8> M;
3266  N->getMask(M);
3267  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3268}
3269
3270/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3271/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3272/// <0, 0, 1, 1>
3273static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3274  int NumElems = VT.getVectorNumElements();
3275  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3276    return false;
3277
3278  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3279  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3280  // sections.
3281  unsigned NumSections = VT.getSizeInBits() / 128;
3282  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3283  unsigned NumSectionElts = NumElems / NumSections;
3284
3285  for (unsigned s = 0; s < NumSections; ++s) {
3286    for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
3287         i != NumSectionElts * (s + 1);
3288         i += 2, ++j) {
3289      int BitI  = Mask[i];
3290      int BitI1 = Mask[i+1];
3291
3292      if (!isUndefOrEqual(BitI, j))
3293        return false;
3294      if (!isUndefOrEqual(BitI1, j))
3295        return false;
3296    }
3297  }
3298
3299  return true;
3300}
3301
3302bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3303  SmallVector<int, 8> M;
3304  N->getMask(M);
3305  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3306}
3307
3308/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3309/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3310/// <2, 2, 3, 3>
3311static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3312  int NumElems = VT.getVectorNumElements();
3313  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3314    return false;
3315
3316  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3317    int BitI  = Mask[i];
3318    int BitI1 = Mask[i+1];
3319    if (!isUndefOrEqual(BitI, j))
3320      return false;
3321    if (!isUndefOrEqual(BitI1, j))
3322      return false;
3323  }
3324  return true;
3325}
3326
3327bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3328  SmallVector<int, 8> M;
3329  N->getMask(M);
3330  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3331}
3332
3333/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3334/// specifies a shuffle of elements that is suitable for input to MOVSS,
3335/// MOVSD, and MOVD, i.e. setting the lowest element.
3336static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3337  if (VT.getVectorElementType().getSizeInBits() < 32)
3338    return false;
3339
3340  int NumElts = VT.getVectorNumElements();
3341
3342  if (!isUndefOrEqual(Mask[0], NumElts))
3343    return false;
3344
3345  for (int i = 1; i < NumElts; ++i)
3346    if (!isUndefOrEqual(Mask[i], i))
3347      return false;
3348
3349  return true;
3350}
3351
3352bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3353  SmallVector<int, 8> M;
3354  N->getMask(M);
3355  return ::isMOVLMask(M, N->getValueType(0));
3356}
3357
3358/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3359/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3360/// element of vector 2 and the other elements to come from vector 1 in order.
3361static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3362                               bool V2IsSplat = false, bool V2IsUndef = false) {
3363  int NumOps = VT.getVectorNumElements();
3364  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3365    return false;
3366
3367  if (!isUndefOrEqual(Mask[0], 0))
3368    return false;
3369
3370  for (int i = 1; i < NumOps; ++i)
3371    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3372          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3373          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3374      return false;
3375
3376  return true;
3377}
3378
3379static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3380                           bool V2IsUndef = false) {
3381  SmallVector<int, 8> M;
3382  N->getMask(M);
3383  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3384}
3385
3386/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3387/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3388bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3389  if (N->getValueType(0).getVectorNumElements() != 4)
3390    return false;
3391
3392  // Expect 1, 1, 3, 3
3393  for (unsigned i = 0; i < 2; ++i) {
3394    int Elt = N->getMaskElt(i);
3395    if (Elt >= 0 && Elt != 1)
3396      return false;
3397  }
3398
3399  bool HasHi = false;
3400  for (unsigned i = 2; i < 4; ++i) {
3401    int Elt = N->getMaskElt(i);
3402    if (Elt >= 0 && Elt != 3)
3403      return false;
3404    if (Elt == 3)
3405      HasHi = true;
3406  }
3407  // Don't use movshdup if it can be done with a shufps.
3408  // FIXME: verify that matching u, u, 3, 3 is what we want.
3409  return HasHi;
3410}
3411
3412/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3413/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3414bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3415  if (N->getValueType(0).getVectorNumElements() != 4)
3416    return false;
3417
3418  // Expect 0, 0, 2, 2
3419  for (unsigned i = 0; i < 2; ++i)
3420    if (N->getMaskElt(i) > 0)
3421      return false;
3422
3423  bool HasHi = false;
3424  for (unsigned i = 2; i < 4; ++i) {
3425    int Elt = N->getMaskElt(i);
3426    if (Elt >= 0 && Elt != 2)
3427      return false;
3428    if (Elt == 2)
3429      HasHi = true;
3430  }
3431  // Don't use movsldup if it can be done with a shufps.
3432  return HasHi;
3433}
3434
3435/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3436/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3437bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3438  int e = N->getValueType(0).getVectorNumElements() / 2;
3439
3440  for (int i = 0; i < e; ++i)
3441    if (!isUndefOrEqual(N->getMaskElt(i), i))
3442      return false;
3443  for (int i = 0; i < e; ++i)
3444    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3445      return false;
3446  return true;
3447}
3448
3449/// isVEXTRACTF128Index - Return true if the specified
3450/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3451/// suitable for input to VEXTRACTF128.
3452bool X86::isVEXTRACTF128Index(SDNode *N) {
3453  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3454    return false;
3455
3456  // The index should be aligned on a 128-bit boundary.
3457  uint64_t Index =
3458    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3459
3460  unsigned VL = N->getValueType(0).getVectorNumElements();
3461  unsigned VBits = N->getValueType(0).getSizeInBits();
3462  unsigned ElSize = VBits / VL;
3463  bool Result = (Index * ElSize) % 128 == 0;
3464
3465  return Result;
3466}
3467
3468/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3469/// operand specifies a subvector insert that is suitable for input to
3470/// VINSERTF128.
3471bool X86::isVINSERTF128Index(SDNode *N) {
3472  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3473    return false;
3474
3475  // The index should be aligned on a 128-bit boundary.
3476  uint64_t Index =
3477    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3478
3479  unsigned VL = N->getValueType(0).getVectorNumElements();
3480  unsigned VBits = N->getValueType(0).getSizeInBits();
3481  unsigned ElSize = VBits / VL;
3482  bool Result = (Index * ElSize) % 128 == 0;
3483
3484  return Result;
3485}
3486
3487/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3488/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3489unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3490  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3491  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3492
3493  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3494  unsigned Mask = 0;
3495  for (int i = 0; i < NumOperands; ++i) {
3496    int Val = SVOp->getMaskElt(NumOperands-i-1);
3497    if (Val < 0) Val = 0;
3498    if (Val >= NumOperands) Val -= NumOperands;
3499    Mask |= Val;
3500    if (i != NumOperands - 1)
3501      Mask <<= Shift;
3502  }
3503  return Mask;
3504}
3505
3506/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3507/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3508unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3509  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3510  unsigned Mask = 0;
3511  // 8 nodes, but we only care about the last 4.
3512  for (unsigned i = 7; i >= 4; --i) {
3513    int Val = SVOp->getMaskElt(i);
3514    if (Val >= 0)
3515      Mask |= (Val - 4);
3516    if (i != 4)
3517      Mask <<= 2;
3518  }
3519  return Mask;
3520}
3521
3522/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3523/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3524unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3525  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3526  unsigned Mask = 0;
3527  // 8 nodes, but we only care about the first 4.
3528  for (int i = 3; i >= 0; --i) {
3529    int Val = SVOp->getMaskElt(i);
3530    if (Val >= 0)
3531      Mask |= Val;
3532    if (i != 0)
3533      Mask <<= 2;
3534  }
3535  return Mask;
3536}
3537
3538/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3539/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3540unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3541  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3542  EVT VVT = N->getValueType(0);
3543  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3544  int Val = 0;
3545
3546  unsigned i, e;
3547  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3548    Val = SVOp->getMaskElt(i);
3549    if (Val >= 0)
3550      break;
3551  }
3552  return (Val - i) * EltSize;
3553}
3554
3555/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3556/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3557/// instructions.
3558unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3559  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3560    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3561
3562  uint64_t Index =
3563    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3564
3565  EVT VecVT = N->getOperand(0).getValueType();
3566  EVT ElVT = VecVT.getVectorElementType();
3567
3568  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3569
3570  return Index / NumElemsPerChunk;
3571}
3572
3573/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3574/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3575/// instructions.
3576unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3577  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3578    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3579
3580  uint64_t Index =
3581    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3582
3583  EVT VecVT = N->getValueType(0);
3584  EVT ElVT = VecVT.getVectorElementType();
3585
3586  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3587
3588  return Index / NumElemsPerChunk;
3589}
3590
3591/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3592/// constant +0.0.
3593bool X86::isZeroNode(SDValue Elt) {
3594  return ((isa<ConstantSDNode>(Elt) &&
3595           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3596          (isa<ConstantFPSDNode>(Elt) &&
3597           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3598}
3599
3600/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3601/// their permute mask.
3602static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3603                                    SelectionDAG &DAG) {
3604  EVT VT = SVOp->getValueType(0);
3605  unsigned NumElems = VT.getVectorNumElements();
3606  SmallVector<int, 8> MaskVec;
3607
3608  for (unsigned i = 0; i != NumElems; ++i) {
3609    int idx = SVOp->getMaskElt(i);
3610    if (idx < 0)
3611      MaskVec.push_back(idx);
3612    else if (idx < (int)NumElems)
3613      MaskVec.push_back(idx + NumElems);
3614    else
3615      MaskVec.push_back(idx - NumElems);
3616  }
3617  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3618                              SVOp->getOperand(0), &MaskVec[0]);
3619}
3620
3621/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3622/// the two vector operands have swapped position.
3623static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3624  unsigned NumElems = VT.getVectorNumElements();
3625  for (unsigned i = 0; i != NumElems; ++i) {
3626    int idx = Mask[i];
3627    if (idx < 0)
3628      continue;
3629    else if (idx < (int)NumElems)
3630      Mask[i] = idx + NumElems;
3631    else
3632      Mask[i] = idx - NumElems;
3633  }
3634}
3635
3636/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3637/// match movhlps. The lower half elements should come from upper half of
3638/// V1 (and in order), and the upper half elements should come from the upper
3639/// half of V2 (and in order).
3640static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3641  if (Op->getValueType(0).getVectorNumElements() != 4)
3642    return false;
3643  for (unsigned i = 0, e = 2; i != e; ++i)
3644    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3645      return false;
3646  for (unsigned i = 2; i != 4; ++i)
3647    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3648      return false;
3649  return true;
3650}
3651
3652/// isScalarLoadToVector - Returns true if the node is a scalar load that
3653/// is promoted to a vector. It also returns the LoadSDNode by reference if
3654/// required.
3655static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3656  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3657    return false;
3658  N = N->getOperand(0).getNode();
3659  if (!ISD::isNON_EXTLoad(N))
3660    return false;
3661  if (LD)
3662    *LD = cast<LoadSDNode>(N);
3663  return true;
3664}
3665
3666/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3667/// match movlp{s|d}. The lower half elements should come from lower half of
3668/// V1 (and in order), and the upper half elements should come from the upper
3669/// half of V2 (and in order). And since V1 will become the source of the
3670/// MOVLP, it must be either a vector load or a scalar load to vector.
3671static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3672                               ShuffleVectorSDNode *Op) {
3673  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3674    return false;
3675  // Is V2 is a vector load, don't do this transformation. We will try to use
3676  // load folding shufps op.
3677  if (ISD::isNON_EXTLoad(V2))
3678    return false;
3679
3680  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3681
3682  if (NumElems != 2 && NumElems != 4)
3683    return false;
3684  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3685    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3686      return false;
3687  for (unsigned i = NumElems/2; i != NumElems; ++i)
3688    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3689      return false;
3690  return true;
3691}
3692
3693/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3694/// all the same.
3695static bool isSplatVector(SDNode *N) {
3696  if (N->getOpcode() != ISD::BUILD_VECTOR)
3697    return false;
3698
3699  SDValue SplatValue = N->getOperand(0);
3700  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3701    if (N->getOperand(i) != SplatValue)
3702      return false;
3703  return true;
3704}
3705
3706/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3707/// to an zero vector.
3708/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3709static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3710  SDValue V1 = N->getOperand(0);
3711  SDValue V2 = N->getOperand(1);
3712  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3713  for (unsigned i = 0; i != NumElems; ++i) {
3714    int Idx = N->getMaskElt(i);
3715    if (Idx >= (int)NumElems) {
3716      unsigned Opc = V2.getOpcode();
3717      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3718        continue;
3719      if (Opc != ISD::BUILD_VECTOR ||
3720          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3721        return false;
3722    } else if (Idx >= 0) {
3723      unsigned Opc = V1.getOpcode();
3724      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3725        continue;
3726      if (Opc != ISD::BUILD_VECTOR ||
3727          !X86::isZeroNode(V1.getOperand(Idx)))
3728        return false;
3729    }
3730  }
3731  return true;
3732}
3733
3734/// getZeroVector - Returns a vector of specified type with all zero elements.
3735///
3736static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3737                             DebugLoc dl) {
3738  assert(VT.isVector() && "Expected a vector type");
3739
3740  // Always build SSE zero vectors as <4 x i32> bitcasted
3741  // to their dest type. This ensures they get CSE'd.
3742  SDValue Vec;
3743  if (VT.getSizeInBits() == 128) {  // SSE
3744    if (HasSSE2) {  // SSE2
3745      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3746      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3747    } else { // SSE1
3748      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3749      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3750    }
3751  } else if (VT.getSizeInBits() == 256) { // AVX
3752    // 256-bit logic and arithmetic instructions in AVX are
3753    // all floating-point, no support for integer ops. Default
3754    // to emitting fp zeroed vectors then.
3755    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3756    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3757    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3758  }
3759  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3760}
3761
3762/// getOnesVector - Returns a vector of specified type with all bits set.
3763///
3764static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3765  assert(VT.isVector() && "Expected a vector type");
3766
3767  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3768  // type.  This ensures they get CSE'd.
3769  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3770  SDValue Vec;
3771  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3772  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3773}
3774
3775
3776/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3777/// that point to V2 points to its first element.
3778static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3779  EVT VT = SVOp->getValueType(0);
3780  unsigned NumElems = VT.getVectorNumElements();
3781
3782  bool Changed = false;
3783  SmallVector<int, 8> MaskVec;
3784  SVOp->getMask(MaskVec);
3785
3786  for (unsigned i = 0; i != NumElems; ++i) {
3787    if (MaskVec[i] > (int)NumElems) {
3788      MaskVec[i] = NumElems;
3789      Changed = true;
3790    }
3791  }
3792  if (Changed)
3793    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3794                                SVOp->getOperand(1), &MaskVec[0]);
3795  return SDValue(SVOp, 0);
3796}
3797
3798/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3799/// operation of specified width.
3800static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3801                       SDValue V2) {
3802  unsigned NumElems = VT.getVectorNumElements();
3803  SmallVector<int, 8> Mask;
3804  Mask.push_back(NumElems);
3805  for (unsigned i = 1; i != NumElems; ++i)
3806    Mask.push_back(i);
3807  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3808}
3809
3810/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3811static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3812                          SDValue V2) {
3813  unsigned NumElems = VT.getVectorNumElements();
3814  SmallVector<int, 8> Mask;
3815  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3816    Mask.push_back(i);
3817    Mask.push_back(i + NumElems);
3818  }
3819  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3820}
3821
3822/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3823static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3824                          SDValue V2) {
3825  unsigned NumElems = VT.getVectorNumElements();
3826  unsigned Half = NumElems/2;
3827  SmallVector<int, 8> Mask;
3828  for (unsigned i = 0; i != Half; ++i) {
3829    Mask.push_back(i + Half);
3830    Mask.push_back(i + NumElems + Half);
3831  }
3832  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3833}
3834
3835/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3836static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3837  EVT PVT = MVT::v4f32;
3838  EVT VT = SV->getValueType(0);
3839  DebugLoc dl = SV->getDebugLoc();
3840  SDValue V1 = SV->getOperand(0);
3841  int NumElems = VT.getVectorNumElements();
3842  int EltNo = SV->getSplatIndex();
3843
3844  // unpack elements to the correct location
3845  while (NumElems > 4) {
3846    if (EltNo < NumElems/2) {
3847      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3848    } else {
3849      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3850      EltNo -= NumElems/2;
3851    }
3852    NumElems >>= 1;
3853  }
3854
3855  // Perform the splat.
3856  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3857  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3858  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3859  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3860}
3861
3862/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3863/// vector of zero or undef vector.  This produces a shuffle where the low
3864/// element of V2 is swizzled into the zero/undef vector, landing at element
3865/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3866static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3867                                             bool isZero, bool HasSSE2,
3868                                             SelectionDAG &DAG) {
3869  EVT VT = V2.getValueType();
3870  SDValue V1 = isZero
3871    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3872  unsigned NumElems = VT.getVectorNumElements();
3873  SmallVector<int, 16> MaskVec;
3874  for (unsigned i = 0; i != NumElems; ++i)
3875    // If this is the insertion idx, put the low elt of V2 here.
3876    MaskVec.push_back(i == Idx ? NumElems : i);
3877  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3878}
3879
3880/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3881/// element of the result of the vector shuffle.
3882SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3883                            unsigned Depth) {
3884  if (Depth == 6)
3885    return SDValue();  // Limit search depth.
3886
3887  SDValue V = SDValue(N, 0);
3888  EVT VT = V.getValueType();
3889  unsigned Opcode = V.getOpcode();
3890
3891  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3892  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3893    Index = SV->getMaskElt(Index);
3894
3895    if (Index < 0)
3896      return DAG.getUNDEF(VT.getVectorElementType());
3897
3898    int NumElems = VT.getVectorNumElements();
3899    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3900    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3901  }
3902
3903  // Recurse into target specific vector shuffles to find scalars.
3904  if (isTargetShuffle(Opcode)) {
3905    int NumElems = VT.getVectorNumElements();
3906    SmallVector<unsigned, 16> ShuffleMask;
3907    SDValue ImmN;
3908
3909    switch(Opcode) {
3910    case X86ISD::SHUFPS:
3911    case X86ISD::SHUFPD:
3912      ImmN = N->getOperand(N->getNumOperands()-1);
3913      DecodeSHUFPSMask(NumElems,
3914                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3915                       ShuffleMask);
3916      break;
3917    case X86ISD::PUNPCKHBW:
3918    case X86ISD::PUNPCKHWD:
3919    case X86ISD::PUNPCKHDQ:
3920    case X86ISD::PUNPCKHQDQ:
3921      DecodePUNPCKHMask(NumElems, ShuffleMask);
3922      break;
3923    case X86ISD::UNPCKHPS:
3924    case X86ISD::UNPCKHPD:
3925      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3926      break;
3927    case X86ISD::PUNPCKLBW:
3928    case X86ISD::PUNPCKLWD:
3929    case X86ISD::PUNPCKLDQ:
3930    case X86ISD::PUNPCKLQDQ:
3931      DecodePUNPCKLMask(VT, ShuffleMask);
3932      break;
3933    case X86ISD::UNPCKLPS:
3934    case X86ISD::UNPCKLPD:
3935    case X86ISD::VUNPCKLPS:
3936    case X86ISD::VUNPCKLPD:
3937    case X86ISD::VUNPCKLPSY:
3938    case X86ISD::VUNPCKLPDY:
3939      DecodeUNPCKLPMask(VT, ShuffleMask);
3940      break;
3941    case X86ISD::MOVHLPS:
3942      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3943      break;
3944    case X86ISD::MOVLHPS:
3945      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3946      break;
3947    case X86ISD::PSHUFD:
3948      ImmN = N->getOperand(N->getNumOperands()-1);
3949      DecodePSHUFMask(NumElems,
3950                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3951                      ShuffleMask);
3952      break;
3953    case X86ISD::PSHUFHW:
3954      ImmN = N->getOperand(N->getNumOperands()-1);
3955      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3956                        ShuffleMask);
3957      break;
3958    case X86ISD::PSHUFLW:
3959      ImmN = N->getOperand(N->getNumOperands()-1);
3960      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3961                        ShuffleMask);
3962      break;
3963    case X86ISD::MOVSS:
3964    case X86ISD::MOVSD: {
3965      // The index 0 always comes from the first element of the second source,
3966      // this is why MOVSS and MOVSD are used in the first place. The other
3967      // elements come from the other positions of the first source vector.
3968      unsigned OpNum = (Index == 0) ? 1 : 0;
3969      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3970                                 Depth+1);
3971    }
3972    default:
3973      assert("not implemented for target shuffle node");
3974      return SDValue();
3975    }
3976
3977    Index = ShuffleMask[Index];
3978    if (Index < 0)
3979      return DAG.getUNDEF(VT.getVectorElementType());
3980
3981    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3982    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3983                               Depth+1);
3984  }
3985
3986  // Actual nodes that may contain scalar elements
3987  if (Opcode == ISD::BITCAST) {
3988    V = V.getOperand(0);
3989    EVT SrcVT = V.getValueType();
3990    unsigned NumElems = VT.getVectorNumElements();
3991
3992    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3993      return SDValue();
3994  }
3995
3996  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3997    return (Index == 0) ? V.getOperand(0)
3998                          : DAG.getUNDEF(VT.getVectorElementType());
3999
4000  if (V.getOpcode() == ISD::BUILD_VECTOR)
4001    return V.getOperand(Index);
4002
4003  return SDValue();
4004}
4005
4006/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4007/// shuffle operation which come from a consecutively from a zero. The
4008/// search can start in two diferent directions, from left or right.
4009static
4010unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4011                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4012  int i = 0;
4013
4014  while (i < NumElems) {
4015    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4016    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4017    if (!(Elt.getNode() &&
4018         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4019      break;
4020    ++i;
4021  }
4022
4023  return i;
4024}
4025
4026/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4027/// MaskE correspond consecutively to elements from one of the vector operands,
4028/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4029static
4030bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4031                              int OpIdx, int NumElems, unsigned &OpNum) {
4032  bool SeenV1 = false;
4033  bool SeenV2 = false;
4034
4035  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4036    int Idx = SVOp->getMaskElt(i);
4037    // Ignore undef indicies
4038    if (Idx < 0)
4039      continue;
4040
4041    if (Idx < NumElems)
4042      SeenV1 = true;
4043    else
4044      SeenV2 = true;
4045
4046    // Only accept consecutive elements from the same vector
4047    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4048      return false;
4049  }
4050
4051  OpNum = SeenV1 ? 0 : 1;
4052  return true;
4053}
4054
4055/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4056/// logical left shift of a vector.
4057static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4058                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4059  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4060  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4061              false /* check zeros from right */, DAG);
4062  unsigned OpSrc;
4063
4064  if (!NumZeros)
4065    return false;
4066
4067  // Considering the elements in the mask that are not consecutive zeros,
4068  // check if they consecutively come from only one of the source vectors.
4069  //
4070  //               V1 = {X, A, B, C}     0
4071  //                         \  \  \    /
4072  //   vector_shuffle V1, V2 <1, 2, 3, X>
4073  //
4074  if (!isShuffleMaskConsecutive(SVOp,
4075            0,                   // Mask Start Index
4076            NumElems-NumZeros-1, // Mask End Index
4077            NumZeros,            // Where to start looking in the src vector
4078            NumElems,            // Number of elements in vector
4079            OpSrc))              // Which source operand ?
4080    return false;
4081
4082  isLeft = false;
4083  ShAmt = NumZeros;
4084  ShVal = SVOp->getOperand(OpSrc);
4085  return true;
4086}
4087
4088/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4089/// logical left shift of a vector.
4090static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4091                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4092  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4093  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4094              true /* check zeros from left */, DAG);
4095  unsigned OpSrc;
4096
4097  if (!NumZeros)
4098    return false;
4099
4100  // Considering the elements in the mask that are not consecutive zeros,
4101  // check if they consecutively come from only one of the source vectors.
4102  //
4103  //                           0    { A, B, X, X } = V2
4104  //                          / \    /  /
4105  //   vector_shuffle V1, V2 <X, X, 4, 5>
4106  //
4107  if (!isShuffleMaskConsecutive(SVOp,
4108            NumZeros,     // Mask Start Index
4109            NumElems-1,   // Mask End Index
4110            0,            // Where to start looking in the src vector
4111            NumElems,     // Number of elements in vector
4112            OpSrc))       // Which source operand ?
4113    return false;
4114
4115  isLeft = true;
4116  ShAmt = NumZeros;
4117  ShVal = SVOp->getOperand(OpSrc);
4118  return true;
4119}
4120
4121/// isVectorShift - Returns true if the shuffle can be implemented as a
4122/// logical left or right shift of a vector.
4123static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4124                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4125  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4126      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4127    return true;
4128
4129  return false;
4130}
4131
4132/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4133///
4134static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4135                                       unsigned NumNonZero, unsigned NumZero,
4136                                       SelectionDAG &DAG,
4137                                       const TargetLowering &TLI) {
4138  if (NumNonZero > 8)
4139    return SDValue();
4140
4141  DebugLoc dl = Op.getDebugLoc();
4142  SDValue V(0, 0);
4143  bool First = true;
4144  for (unsigned i = 0; i < 16; ++i) {
4145    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4146    if (ThisIsNonZero && First) {
4147      if (NumZero)
4148        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4149      else
4150        V = DAG.getUNDEF(MVT::v8i16);
4151      First = false;
4152    }
4153
4154    if ((i & 1) != 0) {
4155      SDValue ThisElt(0, 0), LastElt(0, 0);
4156      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4157      if (LastIsNonZero) {
4158        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4159                              MVT::i16, Op.getOperand(i-1));
4160      }
4161      if (ThisIsNonZero) {
4162        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4163        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4164                              ThisElt, DAG.getConstant(8, MVT::i8));
4165        if (LastIsNonZero)
4166          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4167      } else
4168        ThisElt = LastElt;
4169
4170      if (ThisElt.getNode())
4171        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4172                        DAG.getIntPtrConstant(i/2));
4173    }
4174  }
4175
4176  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4177}
4178
4179/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4180///
4181static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4182                                     unsigned NumNonZero, unsigned NumZero,
4183                                     SelectionDAG &DAG,
4184                                     const TargetLowering &TLI) {
4185  if (NumNonZero > 4)
4186    return SDValue();
4187
4188  DebugLoc dl = Op.getDebugLoc();
4189  SDValue V(0, 0);
4190  bool First = true;
4191  for (unsigned i = 0; i < 8; ++i) {
4192    bool isNonZero = (NonZeros & (1 << i)) != 0;
4193    if (isNonZero) {
4194      if (First) {
4195        if (NumZero)
4196          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4197        else
4198          V = DAG.getUNDEF(MVT::v8i16);
4199        First = false;
4200      }
4201      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4202                      MVT::v8i16, V, Op.getOperand(i),
4203                      DAG.getIntPtrConstant(i));
4204    }
4205  }
4206
4207  return V;
4208}
4209
4210/// getVShift - Return a vector logical shift node.
4211///
4212static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4213                         unsigned NumBits, SelectionDAG &DAG,
4214                         const TargetLowering &TLI, DebugLoc dl) {
4215  EVT ShVT = MVT::v2i64;
4216  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4217  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4218  return DAG.getNode(ISD::BITCAST, dl, VT,
4219                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4220                             DAG.getConstant(NumBits,
4221                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4222}
4223
4224SDValue
4225X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4226                                          SelectionDAG &DAG) const {
4227
4228  // Check if the scalar load can be widened into a vector load. And if
4229  // the address is "base + cst" see if the cst can be "absorbed" into
4230  // the shuffle mask.
4231  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4232    SDValue Ptr = LD->getBasePtr();
4233    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4234      return SDValue();
4235    EVT PVT = LD->getValueType(0);
4236    if (PVT != MVT::i32 && PVT != MVT::f32)
4237      return SDValue();
4238
4239    int FI = -1;
4240    int64_t Offset = 0;
4241    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4242      FI = FINode->getIndex();
4243      Offset = 0;
4244    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4245               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4246      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4247      Offset = Ptr.getConstantOperandVal(1);
4248      Ptr = Ptr.getOperand(0);
4249    } else {
4250      return SDValue();
4251    }
4252
4253    SDValue Chain = LD->getChain();
4254    // Make sure the stack object alignment is at least 16.
4255    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4256    if (DAG.InferPtrAlignment(Ptr) < 16) {
4257      if (MFI->isFixedObjectIndex(FI)) {
4258        // Can't change the alignment. FIXME: It's possible to compute
4259        // the exact stack offset and reference FI + adjust offset instead.
4260        // If someone *really* cares about this. That's the way to implement it.
4261        return SDValue();
4262      } else {
4263        MFI->setObjectAlignment(FI, 16);
4264      }
4265    }
4266
4267    // (Offset % 16) must be multiple of 4. Then address is then
4268    // Ptr + (Offset & ~15).
4269    if (Offset < 0)
4270      return SDValue();
4271    if ((Offset % 16) & 3)
4272      return SDValue();
4273    int64_t StartOffset = Offset & ~15;
4274    if (StartOffset)
4275      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4276                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4277
4278    int EltNo = (Offset - StartOffset) >> 2;
4279    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4280    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4281    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4282                             LD->getPointerInfo().getWithOffset(StartOffset),
4283                             false, false, 0);
4284    // Canonicalize it to a v4i32 shuffle.
4285    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4286    return DAG.getNode(ISD::BITCAST, dl, VT,
4287                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4288                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4289  }
4290
4291  return SDValue();
4292}
4293
4294/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4295/// vector of type 'VT', see if the elements can be replaced by a single large
4296/// load which has the same value as a build_vector whose operands are 'elts'.
4297///
4298/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4299///
4300/// FIXME: we'd also like to handle the case where the last elements are zero
4301/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4302/// There's even a handy isZeroNode for that purpose.
4303static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4304                                        DebugLoc &DL, SelectionDAG &DAG) {
4305  EVT EltVT = VT.getVectorElementType();
4306  unsigned NumElems = Elts.size();
4307
4308  LoadSDNode *LDBase = NULL;
4309  unsigned LastLoadedElt = -1U;
4310
4311  // For each element in the initializer, see if we've found a load or an undef.
4312  // If we don't find an initial load element, or later load elements are
4313  // non-consecutive, bail out.
4314  for (unsigned i = 0; i < NumElems; ++i) {
4315    SDValue Elt = Elts[i];
4316
4317    if (!Elt.getNode() ||
4318        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4319      return SDValue();
4320    if (!LDBase) {
4321      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4322        return SDValue();
4323      LDBase = cast<LoadSDNode>(Elt.getNode());
4324      LastLoadedElt = i;
4325      continue;
4326    }
4327    if (Elt.getOpcode() == ISD::UNDEF)
4328      continue;
4329
4330    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4331    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4332      return SDValue();
4333    LastLoadedElt = i;
4334  }
4335
4336  // If we have found an entire vector of loads and undefs, then return a large
4337  // load of the entire vector width starting at the base pointer.  If we found
4338  // consecutive loads for the low half, generate a vzext_load node.
4339  if (LastLoadedElt == NumElems - 1) {
4340    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4341      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4342                         LDBase->getPointerInfo(),
4343                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4344    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4345                       LDBase->getPointerInfo(),
4346                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4347                       LDBase->getAlignment());
4348  } else if (NumElems == 4 && LastLoadedElt == 1) {
4349    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4350    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4351    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4352                                              Ops, 2, MVT::i32,
4353                                              LDBase->getMemOperand());
4354    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4355  }
4356  return SDValue();
4357}
4358
4359SDValue
4360X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4361  DebugLoc dl = Op.getDebugLoc();
4362
4363  EVT VT = Op.getValueType();
4364  EVT ExtVT = VT.getVectorElementType();
4365
4366  unsigned NumElems = Op.getNumOperands();
4367
4368  // For AVX-length vectors, build the individual 128-bit pieces and
4369  // use shuffles to put them in place.
4370  if (VT.getSizeInBits() > 256 &&
4371      Subtarget->hasAVX() &&
4372      !ISD::isBuildVectorAllZeros(Op.getNode())) {
4373    SmallVector<SDValue, 8> V;
4374    V.resize(NumElems);
4375    for (unsigned i = 0; i < NumElems; ++i) {
4376      V[i] = Op.getOperand(i);
4377    }
4378
4379    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4380
4381    // Build the lower subvector.
4382    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4383    // Build the upper subvector.
4384    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4385                                NumElems/2);
4386
4387    return ConcatVectors(Lower, Upper, DAG);
4388  }
4389
4390  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4391  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4392  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4393  // is present, so AllOnes is ignored.
4394  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4395      (Op.getValueType().getSizeInBits() != 256 &&
4396       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4397    // Canonicalize this to <4 x i32> (SSE) to
4398    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4399    // eliminated on x86-32 hosts.
4400    if (Op.getValueType() == MVT::v4i32)
4401      return Op;
4402
4403    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4404      return getOnesVector(Op.getValueType(), DAG, dl);
4405    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4406  }
4407
4408  unsigned EVTBits = ExtVT.getSizeInBits();
4409
4410  unsigned NumZero  = 0;
4411  unsigned NumNonZero = 0;
4412  unsigned NonZeros = 0;
4413  bool IsAllConstants = true;
4414  SmallSet<SDValue, 8> Values;
4415  for (unsigned i = 0; i < NumElems; ++i) {
4416    SDValue Elt = Op.getOperand(i);
4417    if (Elt.getOpcode() == ISD::UNDEF)
4418      continue;
4419    Values.insert(Elt);
4420    if (Elt.getOpcode() != ISD::Constant &&
4421        Elt.getOpcode() != ISD::ConstantFP)
4422      IsAllConstants = false;
4423    if (X86::isZeroNode(Elt))
4424      NumZero++;
4425    else {
4426      NonZeros |= (1 << i);
4427      NumNonZero++;
4428    }
4429  }
4430
4431  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4432  if (NumNonZero == 0)
4433    return DAG.getUNDEF(VT);
4434
4435  // Special case for single non-zero, non-undef, element.
4436  if (NumNonZero == 1) {
4437    unsigned Idx = CountTrailingZeros_32(NonZeros);
4438    SDValue Item = Op.getOperand(Idx);
4439
4440    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4441    // the value are obviously zero, truncate the value to i32 and do the
4442    // insertion that way.  Only do this if the value is non-constant or if the
4443    // value is a constant being inserted into element 0.  It is cheaper to do
4444    // a constant pool load than it is to do a movd + shuffle.
4445    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4446        (!IsAllConstants || Idx == 0)) {
4447      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4448        // Handle SSE only.
4449        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4450        EVT VecVT = MVT::v4i32;
4451        unsigned VecElts = 4;
4452
4453        // Truncate the value (which may itself be a constant) to i32, and
4454        // convert it to a vector with movd (S2V+shuffle to zero extend).
4455        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4456        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4457        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4458                                           Subtarget->hasSSE2(), DAG);
4459
4460        // Now we have our 32-bit value zero extended in the low element of
4461        // a vector.  If Idx != 0, swizzle it into place.
4462        if (Idx != 0) {
4463          SmallVector<int, 4> Mask;
4464          Mask.push_back(Idx);
4465          for (unsigned i = 1; i != VecElts; ++i)
4466            Mask.push_back(i);
4467          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4468                                      DAG.getUNDEF(Item.getValueType()),
4469                                      &Mask[0]);
4470        }
4471        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4472      }
4473    }
4474
4475    // If we have a constant or non-constant insertion into the low element of
4476    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4477    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4478    // depending on what the source datatype is.
4479    if (Idx == 0) {
4480      if (NumZero == 0) {
4481        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4482      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4483          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4484        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4485        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4486        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4487                                           DAG);
4488      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4489        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4490        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4491        EVT MiddleVT = MVT::v4i32;
4492        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4493        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4494                                           Subtarget->hasSSE2(), DAG);
4495        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4496      }
4497    }
4498
4499    // Is it a vector logical left shift?
4500    if (NumElems == 2 && Idx == 1 &&
4501        X86::isZeroNode(Op.getOperand(0)) &&
4502        !X86::isZeroNode(Op.getOperand(1))) {
4503      unsigned NumBits = VT.getSizeInBits();
4504      return getVShift(true, VT,
4505                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4506                                   VT, Op.getOperand(1)),
4507                       NumBits/2, DAG, *this, dl);
4508    }
4509
4510    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4511      return SDValue();
4512
4513    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4514    // is a non-constant being inserted into an element other than the low one,
4515    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4516    // movd/movss) to move this into the low element, then shuffle it into
4517    // place.
4518    if (EVTBits == 32) {
4519      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4520
4521      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4522      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4523                                         Subtarget->hasSSE2(), DAG);
4524      SmallVector<int, 8> MaskVec;
4525      for (unsigned i = 0; i < NumElems; i++)
4526        MaskVec.push_back(i == Idx ? 0 : 1);
4527      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4528    }
4529  }
4530
4531  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4532  if (Values.size() == 1) {
4533    if (EVTBits == 32) {
4534      // Instead of a shuffle like this:
4535      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4536      // Check if it's possible to issue this instead.
4537      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4538      unsigned Idx = CountTrailingZeros_32(NonZeros);
4539      SDValue Item = Op.getOperand(Idx);
4540      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4541        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4542    }
4543    return SDValue();
4544  }
4545
4546  // A vector full of immediates; various special cases are already
4547  // handled, so this is best done with a single constant-pool load.
4548  if (IsAllConstants)
4549    return SDValue();
4550
4551  // Let legalizer expand 2-wide build_vectors.
4552  if (EVTBits == 64) {
4553    if (NumNonZero == 1) {
4554      // One half is zero or undef.
4555      unsigned Idx = CountTrailingZeros_32(NonZeros);
4556      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4557                                 Op.getOperand(Idx));
4558      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4559                                         Subtarget->hasSSE2(), DAG);
4560    }
4561    return SDValue();
4562  }
4563
4564  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4565  if (EVTBits == 8 && NumElems == 16) {
4566    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4567                                        *this);
4568    if (V.getNode()) return V;
4569  }
4570
4571  if (EVTBits == 16 && NumElems == 8) {
4572    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4573                                      *this);
4574    if (V.getNode()) return V;
4575  }
4576
4577  // If element VT is == 32 bits, turn it into a number of shuffles.
4578  SmallVector<SDValue, 8> V;
4579  V.resize(NumElems);
4580  if (NumElems == 4 && NumZero > 0) {
4581    for (unsigned i = 0; i < 4; ++i) {
4582      bool isZero = !(NonZeros & (1 << i));
4583      if (isZero)
4584        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4585      else
4586        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4587    }
4588
4589    for (unsigned i = 0; i < 2; ++i) {
4590      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4591        default: break;
4592        case 0:
4593          V[i] = V[i*2];  // Must be a zero vector.
4594          break;
4595        case 1:
4596          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4597          break;
4598        case 2:
4599          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4600          break;
4601        case 3:
4602          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4603          break;
4604      }
4605    }
4606
4607    SmallVector<int, 8> MaskVec;
4608    bool Reverse = (NonZeros & 0x3) == 2;
4609    for (unsigned i = 0; i < 2; ++i)
4610      MaskVec.push_back(Reverse ? 1-i : i);
4611    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4612    for (unsigned i = 0; i < 2; ++i)
4613      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4614    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4615  }
4616
4617  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4618    // Check for a build vector of consecutive loads.
4619    for (unsigned i = 0; i < NumElems; ++i)
4620      V[i] = Op.getOperand(i);
4621
4622    // Check for elements which are consecutive loads.
4623    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4624    if (LD.getNode())
4625      return LD;
4626
4627    // For SSE 4.1, use insertps to put the high elements into the low element.
4628    if (getSubtarget()->hasSSE41()) {
4629      SDValue Result;
4630      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4631        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4632      else
4633        Result = DAG.getUNDEF(VT);
4634
4635      for (unsigned i = 1; i < NumElems; ++i) {
4636        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4637        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4638                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4639      }
4640      return Result;
4641    }
4642
4643    // Otherwise, expand into a number of unpckl*, start by extending each of
4644    // our (non-undef) elements to the full vector width with the element in the
4645    // bottom slot of the vector (which generates no code for SSE).
4646    for (unsigned i = 0; i < NumElems; ++i) {
4647      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4648        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4649      else
4650        V[i] = DAG.getUNDEF(VT);
4651    }
4652
4653    // Next, we iteratively mix elements, e.g. for v4f32:
4654    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4655    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4656    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4657    unsigned EltStride = NumElems >> 1;
4658    while (EltStride != 0) {
4659      for (unsigned i = 0; i < EltStride; ++i) {
4660        // If V[i+EltStride] is undef and this is the first round of mixing,
4661        // then it is safe to just drop this shuffle: V[i] is already in the
4662        // right place, the one element (since it's the first round) being
4663        // inserted as undef can be dropped.  This isn't safe for successive
4664        // rounds because they will permute elements within both vectors.
4665        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4666            EltStride == NumElems/2)
4667          continue;
4668
4669        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4670      }
4671      EltStride >>= 1;
4672    }
4673    return V[0];
4674  }
4675  return SDValue();
4676}
4677
4678SDValue
4679X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4680  // We support concatenate two MMX registers and place them in a MMX
4681  // register.  This is better than doing a stack convert.
4682  DebugLoc dl = Op.getDebugLoc();
4683  EVT ResVT = Op.getValueType();
4684  assert(Op.getNumOperands() == 2);
4685  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4686         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4687  int Mask[2];
4688  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4689  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4690  InVec = Op.getOperand(1);
4691  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4692    unsigned NumElts = ResVT.getVectorNumElements();
4693    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4694    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4695                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4696  } else {
4697    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4698    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4699    Mask[0] = 0; Mask[1] = 2;
4700    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4701  }
4702  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4703}
4704
4705// v8i16 shuffles - Prefer shuffles in the following order:
4706// 1. [all]   pshuflw, pshufhw, optional move
4707// 2. [ssse3] 1 x pshufb
4708// 3. [ssse3] 2 x pshufb + 1 x por
4709// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4710SDValue
4711X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4712                                            SelectionDAG &DAG) const {
4713  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4714  SDValue V1 = SVOp->getOperand(0);
4715  SDValue V2 = SVOp->getOperand(1);
4716  DebugLoc dl = SVOp->getDebugLoc();
4717  SmallVector<int, 8> MaskVals;
4718
4719  // Determine if more than 1 of the words in each of the low and high quadwords
4720  // of the result come from the same quadword of one of the two inputs.  Undef
4721  // mask values count as coming from any quadword, for better codegen.
4722  SmallVector<unsigned, 4> LoQuad(4);
4723  SmallVector<unsigned, 4> HiQuad(4);
4724  BitVector InputQuads(4);
4725  for (unsigned i = 0; i < 8; ++i) {
4726    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4727    int EltIdx = SVOp->getMaskElt(i);
4728    MaskVals.push_back(EltIdx);
4729    if (EltIdx < 0) {
4730      ++Quad[0];
4731      ++Quad[1];
4732      ++Quad[2];
4733      ++Quad[3];
4734      continue;
4735    }
4736    ++Quad[EltIdx / 4];
4737    InputQuads.set(EltIdx / 4);
4738  }
4739
4740  int BestLoQuad = -1;
4741  unsigned MaxQuad = 1;
4742  for (unsigned i = 0; i < 4; ++i) {
4743    if (LoQuad[i] > MaxQuad) {
4744      BestLoQuad = i;
4745      MaxQuad = LoQuad[i];
4746    }
4747  }
4748
4749  int BestHiQuad = -1;
4750  MaxQuad = 1;
4751  for (unsigned i = 0; i < 4; ++i) {
4752    if (HiQuad[i] > MaxQuad) {
4753      BestHiQuad = i;
4754      MaxQuad = HiQuad[i];
4755    }
4756  }
4757
4758  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4759  // of the two input vectors, shuffle them into one input vector so only a
4760  // single pshufb instruction is necessary. If There are more than 2 input
4761  // quads, disable the next transformation since it does not help SSSE3.
4762  bool V1Used = InputQuads[0] || InputQuads[1];
4763  bool V2Used = InputQuads[2] || InputQuads[3];
4764  if (Subtarget->hasSSSE3()) {
4765    if (InputQuads.count() == 2 && V1Used && V2Used) {
4766      BestLoQuad = InputQuads.find_first();
4767      BestHiQuad = InputQuads.find_next(BestLoQuad);
4768    }
4769    if (InputQuads.count() > 2) {
4770      BestLoQuad = -1;
4771      BestHiQuad = -1;
4772    }
4773  }
4774
4775  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4776  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4777  // words from all 4 input quadwords.
4778  SDValue NewV;
4779  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4780    SmallVector<int, 8> MaskV;
4781    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4782    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4783    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4784                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4785                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4786    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4787
4788    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4789    // source words for the shuffle, to aid later transformations.
4790    bool AllWordsInNewV = true;
4791    bool InOrder[2] = { true, true };
4792    for (unsigned i = 0; i != 8; ++i) {
4793      int idx = MaskVals[i];
4794      if (idx != (int)i)
4795        InOrder[i/4] = false;
4796      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4797        continue;
4798      AllWordsInNewV = false;
4799      break;
4800    }
4801
4802    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4803    if (AllWordsInNewV) {
4804      for (int i = 0; i != 8; ++i) {
4805        int idx = MaskVals[i];
4806        if (idx < 0)
4807          continue;
4808        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4809        if ((idx != i) && idx < 4)
4810          pshufhw = false;
4811        if ((idx != i) && idx > 3)
4812          pshuflw = false;
4813      }
4814      V1 = NewV;
4815      V2Used = false;
4816      BestLoQuad = 0;
4817      BestHiQuad = 1;
4818    }
4819
4820    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4821    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4822    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4823      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4824      unsigned TargetMask = 0;
4825      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4826                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4827      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4828                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4829      V1 = NewV.getOperand(0);
4830      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4831    }
4832  }
4833
4834  // If we have SSSE3, and all words of the result are from 1 input vector,
4835  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4836  // is present, fall back to case 4.
4837  if (Subtarget->hasSSSE3()) {
4838    SmallVector<SDValue,16> pshufbMask;
4839
4840    // If we have elements from both input vectors, set the high bit of the
4841    // shuffle mask element to zero out elements that come from V2 in the V1
4842    // mask, and elements that come from V1 in the V2 mask, so that the two
4843    // results can be OR'd together.
4844    bool TwoInputs = V1Used && V2Used;
4845    for (unsigned i = 0; i != 8; ++i) {
4846      int EltIdx = MaskVals[i] * 2;
4847      if (TwoInputs && (EltIdx >= 16)) {
4848        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4849        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4850        continue;
4851      }
4852      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4853      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4854    }
4855    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4856    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4857                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4858                                 MVT::v16i8, &pshufbMask[0], 16));
4859    if (!TwoInputs)
4860      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4861
4862    // Calculate the shuffle mask for the second input, shuffle it, and
4863    // OR it with the first shuffled input.
4864    pshufbMask.clear();
4865    for (unsigned i = 0; i != 8; ++i) {
4866      int EltIdx = MaskVals[i] * 2;
4867      if (EltIdx < 16) {
4868        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4869        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4870        continue;
4871      }
4872      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4873      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4874    }
4875    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4876    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4877                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4878                                 MVT::v16i8, &pshufbMask[0], 16));
4879    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4880    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4881  }
4882
4883  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4884  // and update MaskVals with new element order.
4885  BitVector InOrder(8);
4886  if (BestLoQuad >= 0) {
4887    SmallVector<int, 8> MaskV;
4888    for (int i = 0; i != 4; ++i) {
4889      int idx = MaskVals[i];
4890      if (idx < 0) {
4891        MaskV.push_back(-1);
4892        InOrder.set(i);
4893      } else if ((idx / 4) == BestLoQuad) {
4894        MaskV.push_back(idx & 3);
4895        InOrder.set(i);
4896      } else {
4897        MaskV.push_back(-1);
4898      }
4899    }
4900    for (unsigned i = 4; i != 8; ++i)
4901      MaskV.push_back(i);
4902    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4903                                &MaskV[0]);
4904
4905    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4906      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4907                               NewV.getOperand(0),
4908                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4909                               DAG);
4910  }
4911
4912  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4913  // and update MaskVals with the new element order.
4914  if (BestHiQuad >= 0) {
4915    SmallVector<int, 8> MaskV;
4916    for (unsigned i = 0; i != 4; ++i)
4917      MaskV.push_back(i);
4918    for (unsigned i = 4; i != 8; ++i) {
4919      int idx = MaskVals[i];
4920      if (idx < 0) {
4921        MaskV.push_back(-1);
4922        InOrder.set(i);
4923      } else if ((idx / 4) == BestHiQuad) {
4924        MaskV.push_back((idx & 3) + 4);
4925        InOrder.set(i);
4926      } else {
4927        MaskV.push_back(-1);
4928      }
4929    }
4930    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4931                                &MaskV[0]);
4932
4933    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4934      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4935                              NewV.getOperand(0),
4936                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4937                              DAG);
4938  }
4939
4940  // In case BestHi & BestLo were both -1, which means each quadword has a word
4941  // from each of the four input quadwords, calculate the InOrder bitvector now
4942  // before falling through to the insert/extract cleanup.
4943  if (BestLoQuad == -1 && BestHiQuad == -1) {
4944    NewV = V1;
4945    for (int i = 0; i != 8; ++i)
4946      if (MaskVals[i] < 0 || MaskVals[i] == i)
4947        InOrder.set(i);
4948  }
4949
4950  // The other elements are put in the right place using pextrw and pinsrw.
4951  for (unsigned i = 0; i != 8; ++i) {
4952    if (InOrder[i])
4953      continue;
4954    int EltIdx = MaskVals[i];
4955    if (EltIdx < 0)
4956      continue;
4957    SDValue ExtOp = (EltIdx < 8)
4958    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4959                  DAG.getIntPtrConstant(EltIdx))
4960    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4961                  DAG.getIntPtrConstant(EltIdx - 8));
4962    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4963                       DAG.getIntPtrConstant(i));
4964  }
4965  return NewV;
4966}
4967
4968// v16i8 shuffles - Prefer shuffles in the following order:
4969// 1. [ssse3] 1 x pshufb
4970// 2. [ssse3] 2 x pshufb + 1 x por
4971// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4972static
4973SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4974                                 SelectionDAG &DAG,
4975                                 const X86TargetLowering &TLI) {
4976  SDValue V1 = SVOp->getOperand(0);
4977  SDValue V2 = SVOp->getOperand(1);
4978  DebugLoc dl = SVOp->getDebugLoc();
4979  SmallVector<int, 16> MaskVals;
4980  SVOp->getMask(MaskVals);
4981
4982  // If we have SSSE3, case 1 is generated when all result bytes come from
4983  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4984  // present, fall back to case 3.
4985  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4986  bool V1Only = true;
4987  bool V2Only = true;
4988  for (unsigned i = 0; i < 16; ++i) {
4989    int EltIdx = MaskVals[i];
4990    if (EltIdx < 0)
4991      continue;
4992    if (EltIdx < 16)
4993      V2Only = false;
4994    else
4995      V1Only = false;
4996  }
4997
4998  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4999  if (TLI.getSubtarget()->hasSSSE3()) {
5000    SmallVector<SDValue,16> pshufbMask;
5001
5002    // If all result elements are from one input vector, then only translate
5003    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5004    //
5005    // Otherwise, we have elements from both input vectors, and must zero out
5006    // elements that come from V2 in the first mask, and V1 in the second mask
5007    // so that we can OR them together.
5008    bool TwoInputs = !(V1Only || V2Only);
5009    for (unsigned i = 0; i != 16; ++i) {
5010      int EltIdx = MaskVals[i];
5011      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5012        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5013        continue;
5014      }
5015      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5016    }
5017    // If all the elements are from V2, assign it to V1 and return after
5018    // building the first pshufb.
5019    if (V2Only)
5020      V1 = V2;
5021    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5022                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5023                                 MVT::v16i8, &pshufbMask[0], 16));
5024    if (!TwoInputs)
5025      return V1;
5026
5027    // Calculate the shuffle mask for the second input, shuffle it, and
5028    // OR it with the first shuffled input.
5029    pshufbMask.clear();
5030    for (unsigned i = 0; i != 16; ++i) {
5031      int EltIdx = MaskVals[i];
5032      if (EltIdx < 16) {
5033        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5034        continue;
5035      }
5036      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5037    }
5038    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5039                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5040                                 MVT::v16i8, &pshufbMask[0], 16));
5041    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5042  }
5043
5044  // No SSSE3 - Calculate in place words and then fix all out of place words
5045  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5046  // the 16 different words that comprise the two doublequadword input vectors.
5047  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5048  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5049  SDValue NewV = V2Only ? V2 : V1;
5050  for (int i = 0; i != 8; ++i) {
5051    int Elt0 = MaskVals[i*2];
5052    int Elt1 = MaskVals[i*2+1];
5053
5054    // This word of the result is all undef, skip it.
5055    if (Elt0 < 0 && Elt1 < 0)
5056      continue;
5057
5058    // This word of the result is already in the correct place, skip it.
5059    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5060      continue;
5061    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5062      continue;
5063
5064    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5065    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5066    SDValue InsElt;
5067
5068    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5069    // using a single extract together, load it and store it.
5070    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5071      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5072                           DAG.getIntPtrConstant(Elt1 / 2));
5073      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5074                        DAG.getIntPtrConstant(i));
5075      continue;
5076    }
5077
5078    // If Elt1 is defined, extract it from the appropriate source.  If the
5079    // source byte is not also odd, shift the extracted word left 8 bits
5080    // otherwise clear the bottom 8 bits if we need to do an or.
5081    if (Elt1 >= 0) {
5082      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5083                           DAG.getIntPtrConstant(Elt1 / 2));
5084      if ((Elt1 & 1) == 0)
5085        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5086                             DAG.getConstant(8,
5087                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5088      else if (Elt0 >= 0)
5089        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5090                             DAG.getConstant(0xFF00, MVT::i16));
5091    }
5092    // If Elt0 is defined, extract it from the appropriate source.  If the
5093    // source byte is not also even, shift the extracted word right 8 bits. If
5094    // Elt1 was also defined, OR the extracted values together before
5095    // inserting them in the result.
5096    if (Elt0 >= 0) {
5097      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5098                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5099      if ((Elt0 & 1) != 0)
5100        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5101                              DAG.getConstant(8,
5102                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5103      else if (Elt1 >= 0)
5104        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5105                             DAG.getConstant(0x00FF, MVT::i16));
5106      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5107                         : InsElt0;
5108    }
5109    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5110                       DAG.getIntPtrConstant(i));
5111  }
5112  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5113}
5114
5115/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5116/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5117/// done when every pair / quad of shuffle mask elements point to elements in
5118/// the right sequence. e.g.
5119/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5120static
5121SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5122                                 SelectionDAG &DAG, DebugLoc dl) {
5123  EVT VT = SVOp->getValueType(0);
5124  SDValue V1 = SVOp->getOperand(0);
5125  SDValue V2 = SVOp->getOperand(1);
5126  unsigned NumElems = VT.getVectorNumElements();
5127  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5128  EVT NewVT;
5129  switch (VT.getSimpleVT().SimpleTy) {
5130  default: assert(false && "Unexpected!");
5131  case MVT::v4f32: NewVT = MVT::v2f64; break;
5132  case MVT::v4i32: NewVT = MVT::v2i64; break;
5133  case MVT::v8i16: NewVT = MVT::v4i32; break;
5134  case MVT::v16i8: NewVT = MVT::v4i32; break;
5135  }
5136
5137  int Scale = NumElems / NewWidth;
5138  SmallVector<int, 8> MaskVec;
5139  for (unsigned i = 0; i < NumElems; i += Scale) {
5140    int StartIdx = -1;
5141    for (int j = 0; j < Scale; ++j) {
5142      int EltIdx = SVOp->getMaskElt(i+j);
5143      if (EltIdx < 0)
5144        continue;
5145      if (StartIdx == -1)
5146        StartIdx = EltIdx - (EltIdx % Scale);
5147      if (EltIdx != StartIdx + j)
5148        return SDValue();
5149    }
5150    if (StartIdx == -1)
5151      MaskVec.push_back(-1);
5152    else
5153      MaskVec.push_back(StartIdx / Scale);
5154  }
5155
5156  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5157  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5158  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5159}
5160
5161/// getVZextMovL - Return a zero-extending vector move low node.
5162///
5163static SDValue getVZextMovL(EVT VT, EVT OpVT,
5164                            SDValue SrcOp, SelectionDAG &DAG,
5165                            const X86Subtarget *Subtarget, DebugLoc dl) {
5166  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5167    LoadSDNode *LD = NULL;
5168    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5169      LD = dyn_cast<LoadSDNode>(SrcOp);
5170    if (!LD) {
5171      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5172      // instead.
5173      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5174      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5175          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5176          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5177          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5178        // PR2108
5179        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5180        return DAG.getNode(ISD::BITCAST, dl, VT,
5181                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5182                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5183                                                   OpVT,
5184                                                   SrcOp.getOperand(0)
5185                                                          .getOperand(0))));
5186      }
5187    }
5188  }
5189
5190  return DAG.getNode(ISD::BITCAST, dl, VT,
5191                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5192                                 DAG.getNode(ISD::BITCAST, dl,
5193                                             OpVT, SrcOp)));
5194}
5195
5196/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
5197/// shuffles.
5198static SDValue
5199LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5200  SDValue V1 = SVOp->getOperand(0);
5201  SDValue V2 = SVOp->getOperand(1);
5202  DebugLoc dl = SVOp->getDebugLoc();
5203  EVT VT = SVOp->getValueType(0);
5204
5205  SmallVector<std::pair<int, int>, 8> Locs;
5206  Locs.resize(4);
5207  SmallVector<int, 8> Mask1(4U, -1);
5208  SmallVector<int, 8> PermMask;
5209  SVOp->getMask(PermMask);
5210
5211  unsigned NumHi = 0;
5212  unsigned NumLo = 0;
5213  for (unsigned i = 0; i != 4; ++i) {
5214    int Idx = PermMask[i];
5215    if (Idx < 0) {
5216      Locs[i] = std::make_pair(-1, -1);
5217    } else {
5218      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5219      if (Idx < 4) {
5220        Locs[i] = std::make_pair(0, NumLo);
5221        Mask1[NumLo] = Idx;
5222        NumLo++;
5223      } else {
5224        Locs[i] = std::make_pair(1, NumHi);
5225        if (2+NumHi < 4)
5226          Mask1[2+NumHi] = Idx;
5227        NumHi++;
5228      }
5229    }
5230  }
5231
5232  if (NumLo <= 2 && NumHi <= 2) {
5233    // If no more than two elements come from either vector. This can be
5234    // implemented with two shuffles. First shuffle gather the elements.
5235    // The second shuffle, which takes the first shuffle as both of its
5236    // vector operands, put the elements into the right order.
5237    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5238
5239    SmallVector<int, 8> Mask2(4U, -1);
5240
5241    for (unsigned i = 0; i != 4; ++i) {
5242      if (Locs[i].first == -1)
5243        continue;
5244      else {
5245        unsigned Idx = (i < 2) ? 0 : 4;
5246        Idx += Locs[i].first * 2 + Locs[i].second;
5247        Mask2[i] = Idx;
5248      }
5249    }
5250
5251    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5252  } else if (NumLo == 3 || NumHi == 3) {
5253    // Otherwise, we must have three elements from one vector, call it X, and
5254    // one element from the other, call it Y.  First, use a shufps to build an
5255    // intermediate vector with the one element from Y and the element from X
5256    // that will be in the same half in the final destination (the indexes don't
5257    // matter). Then, use a shufps to build the final vector, taking the half
5258    // containing the element from Y from the intermediate, and the other half
5259    // from X.
5260    if (NumHi == 3) {
5261      // Normalize it so the 3 elements come from V1.
5262      CommuteVectorShuffleMask(PermMask, VT);
5263      std::swap(V1, V2);
5264    }
5265
5266    // Find the element from V2.
5267    unsigned HiIndex;
5268    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5269      int Val = PermMask[HiIndex];
5270      if (Val < 0)
5271        continue;
5272      if (Val >= 4)
5273        break;
5274    }
5275
5276    Mask1[0] = PermMask[HiIndex];
5277    Mask1[1] = -1;
5278    Mask1[2] = PermMask[HiIndex^1];
5279    Mask1[3] = -1;
5280    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5281
5282    if (HiIndex >= 2) {
5283      Mask1[0] = PermMask[0];
5284      Mask1[1] = PermMask[1];
5285      Mask1[2] = HiIndex & 1 ? 6 : 4;
5286      Mask1[3] = HiIndex & 1 ? 4 : 6;
5287      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5288    } else {
5289      Mask1[0] = HiIndex & 1 ? 2 : 0;
5290      Mask1[1] = HiIndex & 1 ? 0 : 2;
5291      Mask1[2] = PermMask[2];
5292      Mask1[3] = PermMask[3];
5293      if (Mask1[2] >= 0)
5294        Mask1[2] += 4;
5295      if (Mask1[3] >= 0)
5296        Mask1[3] += 4;
5297      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5298    }
5299  }
5300
5301  // Break it into (shuffle shuffle_hi, shuffle_lo).
5302  Locs.clear();
5303  Locs.resize(4);
5304  SmallVector<int,8> LoMask(4U, -1);
5305  SmallVector<int,8> HiMask(4U, -1);
5306
5307  SmallVector<int,8> *MaskPtr = &LoMask;
5308  unsigned MaskIdx = 0;
5309  unsigned LoIdx = 0;
5310  unsigned HiIdx = 2;
5311  for (unsigned i = 0; i != 4; ++i) {
5312    if (i == 2) {
5313      MaskPtr = &HiMask;
5314      MaskIdx = 1;
5315      LoIdx = 0;
5316      HiIdx = 2;
5317    }
5318    int Idx = PermMask[i];
5319    if (Idx < 0) {
5320      Locs[i] = std::make_pair(-1, -1);
5321    } else if (Idx < 4) {
5322      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5323      (*MaskPtr)[LoIdx] = Idx;
5324      LoIdx++;
5325    } else {
5326      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5327      (*MaskPtr)[HiIdx] = Idx;
5328      HiIdx++;
5329    }
5330  }
5331
5332  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5333  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5334  SmallVector<int, 8> MaskOps;
5335  for (unsigned i = 0; i != 4; ++i) {
5336    if (Locs[i].first == -1) {
5337      MaskOps.push_back(-1);
5338    } else {
5339      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5340      MaskOps.push_back(Idx);
5341    }
5342  }
5343  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5344}
5345
5346static bool MayFoldVectorLoad(SDValue V) {
5347  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5348    V = V.getOperand(0);
5349  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5350    V = V.getOperand(0);
5351  if (MayFoldLoad(V))
5352    return true;
5353  return false;
5354}
5355
5356// FIXME: the version above should always be used. Since there's
5357// a bug where several vector shuffles can't be folded because the
5358// DAG is not updated during lowering and a node claims to have two
5359// uses while it only has one, use this version, and let isel match
5360// another instruction if the load really happens to have more than
5361// one use. Remove this version after this bug get fixed.
5362// rdar://8434668, PR8156
5363static bool RelaxedMayFoldVectorLoad(SDValue V) {
5364  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5365    V = V.getOperand(0);
5366  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5367    V = V.getOperand(0);
5368  if (ISD::isNormalLoad(V.getNode()))
5369    return true;
5370  return false;
5371}
5372
5373/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5374/// a vector extract, and if both can be later optimized into a single load.
5375/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5376/// here because otherwise a target specific shuffle node is going to be
5377/// emitted for this shuffle, and the optimization not done.
5378/// FIXME: This is probably not the best approach, but fix the problem
5379/// until the right path is decided.
5380static
5381bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5382                                         const TargetLowering &TLI) {
5383  EVT VT = V.getValueType();
5384  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5385
5386  // Be sure that the vector shuffle is present in a pattern like this:
5387  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5388  if (!V.hasOneUse())
5389    return false;
5390
5391  SDNode *N = *V.getNode()->use_begin();
5392  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5393    return false;
5394
5395  SDValue EltNo = N->getOperand(1);
5396  if (!isa<ConstantSDNode>(EltNo))
5397    return false;
5398
5399  // If the bit convert changed the number of elements, it is unsafe
5400  // to examine the mask.
5401  bool HasShuffleIntoBitcast = false;
5402  if (V.getOpcode() == ISD::BITCAST) {
5403    EVT SrcVT = V.getOperand(0).getValueType();
5404    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5405      return false;
5406    V = V.getOperand(0);
5407    HasShuffleIntoBitcast = true;
5408  }
5409
5410  // Select the input vector, guarding against out of range extract vector.
5411  unsigned NumElems = VT.getVectorNumElements();
5412  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5413  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5414  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5415
5416  // Skip one more bit_convert if necessary
5417  if (V.getOpcode() == ISD::BITCAST)
5418    V = V.getOperand(0);
5419
5420  if (ISD::isNormalLoad(V.getNode())) {
5421    // Is the original load suitable?
5422    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5423
5424    // FIXME: avoid the multi-use bug that is preventing lots of
5425    // of foldings to be detected, this is still wrong of course, but
5426    // give the temporary desired behavior, and if it happens that
5427    // the load has real more uses, during isel it will not fold, and
5428    // will generate poor code.
5429    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5430      return false;
5431
5432    if (!HasShuffleIntoBitcast)
5433      return true;
5434
5435    // If there's a bitcast before the shuffle, check if the load type and
5436    // alignment is valid.
5437    unsigned Align = LN0->getAlignment();
5438    unsigned NewAlign =
5439      TLI.getTargetData()->getABITypeAlignment(
5440                                    VT.getTypeForEVT(*DAG.getContext()));
5441
5442    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5443      return false;
5444  }
5445
5446  return true;
5447}
5448
5449static
5450SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5451  EVT VT = Op.getValueType();
5452
5453  // Canonizalize to v2f64.
5454  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5455  return DAG.getNode(ISD::BITCAST, dl, VT,
5456                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5457                                          V1, DAG));
5458}
5459
5460static
5461SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5462                        bool HasSSE2) {
5463  SDValue V1 = Op.getOperand(0);
5464  SDValue V2 = Op.getOperand(1);
5465  EVT VT = Op.getValueType();
5466
5467  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5468
5469  if (HasSSE2 && VT == MVT::v2f64)
5470    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5471
5472  // v4f32 or v4i32
5473  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5474}
5475
5476static
5477SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5478  SDValue V1 = Op.getOperand(0);
5479  SDValue V2 = Op.getOperand(1);
5480  EVT VT = Op.getValueType();
5481
5482  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5483         "unsupported shuffle type");
5484
5485  if (V2.getOpcode() == ISD::UNDEF)
5486    V2 = V1;
5487
5488  // v4i32 or v4f32
5489  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5490}
5491
5492static
5493SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5494  SDValue V1 = Op.getOperand(0);
5495  SDValue V2 = Op.getOperand(1);
5496  EVT VT = Op.getValueType();
5497  unsigned NumElems = VT.getVectorNumElements();
5498
5499  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5500  // operand of these instructions is only memory, so check if there's a
5501  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5502  // same masks.
5503  bool CanFoldLoad = false;
5504
5505  // Trivial case, when V2 comes from a load.
5506  if (MayFoldVectorLoad(V2))
5507    CanFoldLoad = true;
5508
5509  // When V1 is a load, it can be folded later into a store in isel, example:
5510  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5511  //    turns into:
5512  //  (MOVLPSmr addr:$src1, VR128:$src2)
5513  // So, recognize this potential and also use MOVLPS or MOVLPD
5514  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5515    CanFoldLoad = true;
5516
5517  // Both of them can't be memory operations though.
5518  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5519    CanFoldLoad = false;
5520
5521  if (CanFoldLoad) {
5522    if (HasSSE2 && NumElems == 2)
5523      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5524
5525    if (NumElems == 4)
5526      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5527  }
5528
5529  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5530  // movl and movlp will both match v2i64, but v2i64 is never matched by
5531  // movl earlier because we make it strict to avoid messing with the movlp load
5532  // folding logic (see the code above getMOVLP call). Match it here then,
5533  // this is horrible, but will stay like this until we move all shuffle
5534  // matching to x86 specific nodes. Note that for the 1st condition all
5535  // types are matched with movsd.
5536  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5537    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5538  else if (HasSSE2)
5539    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5540
5541
5542  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5543
5544  // Invert the operand order and use SHUFPS to match it.
5545  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5546                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5547}
5548
5549static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
5550  switch(VT.getSimpleVT().SimpleTy) {
5551  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5552  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5553  case MVT::v4f32:
5554    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
5555  case MVT::v2f64:
5556    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5557  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5558  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5559  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5560  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5561  default:
5562    llvm_unreachable("Unknown type for unpckl");
5563  }
5564  return 0;
5565}
5566
5567static inline unsigned getUNPCKHOpcode(EVT VT) {
5568  switch(VT.getSimpleVT().SimpleTy) {
5569  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5570  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5571  case MVT::v4f32: return X86ISD::UNPCKHPS;
5572  case MVT::v2f64: return X86ISD::UNPCKHPD;
5573  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5574  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5575  default:
5576    llvm_unreachable("Unknown type for unpckh");
5577  }
5578  return 0;
5579}
5580
5581static
5582SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5583                               const TargetLowering &TLI,
5584                               const X86Subtarget *Subtarget) {
5585  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5586  EVT VT = Op.getValueType();
5587  DebugLoc dl = Op.getDebugLoc();
5588  SDValue V1 = Op.getOperand(0);
5589  SDValue V2 = Op.getOperand(1);
5590
5591  if (isZeroShuffle(SVOp))
5592    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5593
5594  // Handle splat operations
5595  if (SVOp->isSplat()) {
5596    // Special case, this is the only place now where it's
5597    // allowed to return a vector_shuffle operation without
5598    // using a target specific node, because *hopefully* it
5599    // will be optimized away by the dag combiner.
5600    if (VT.getVectorNumElements() <= 4 &&
5601        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5602      return Op;
5603
5604    // Handle splats by matching through known masks
5605    if (VT.getVectorNumElements() <= 4)
5606      return SDValue();
5607
5608    // Canonicalize all of the remaining to v4f32.
5609    return PromoteSplat(SVOp, DAG);
5610  }
5611
5612  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5613  // do it!
5614  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5615    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5616    if (NewOp.getNode())
5617      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5618  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5619    // FIXME: Figure out a cleaner way to do this.
5620    // Try to make use of movq to zero out the top part.
5621    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5622      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5623      if (NewOp.getNode()) {
5624        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5625          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5626                              DAG, Subtarget, dl);
5627      }
5628    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5629      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5630      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5631        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5632                            DAG, Subtarget, dl);
5633    }
5634  }
5635  return SDValue();
5636}
5637
5638SDValue
5639X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5640  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5641  SDValue V1 = Op.getOperand(0);
5642  SDValue V2 = Op.getOperand(1);
5643  EVT VT = Op.getValueType();
5644  DebugLoc dl = Op.getDebugLoc();
5645  unsigned NumElems = VT.getVectorNumElements();
5646  bool isMMX = VT.getSizeInBits() == 64;
5647  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5648  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5649  bool V1IsSplat = false;
5650  bool V2IsSplat = false;
5651  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5652  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5653  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5654  MachineFunction &MF = DAG.getMachineFunction();
5655  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5656
5657  // Shuffle operations on MMX not supported.
5658  if (isMMX)
5659    return Op;
5660
5661  // Vector shuffle lowering takes 3 steps:
5662  //
5663  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5664  //    narrowing and commutation of operands should be handled.
5665  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5666  //    shuffle nodes.
5667  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5668  //    so the shuffle can be broken into other shuffles and the legalizer can
5669  //    try the lowering again.
5670  //
5671  // The general ideia is that no vector_shuffle operation should be left to
5672  // be matched during isel, all of them must be converted to a target specific
5673  // node here.
5674
5675  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5676  // narrowing and commutation of operands should be handled. The actual code
5677  // doesn't include all of those, work in progress...
5678  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5679  if (NewOp.getNode())
5680    return NewOp;
5681
5682  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5683  // unpckh_undef). Only use pshufd if speed is more important than size.
5684  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5685    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5686      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
5687  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5688    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5689      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5690
5691  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5692      RelaxedMayFoldVectorLoad(V1))
5693    return getMOVDDup(Op, dl, V1, DAG);
5694
5695  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5696    return getMOVHighToLow(Op, dl, DAG);
5697
5698  // Use to match splats
5699  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5700      (VT == MVT::v2f64 || VT == MVT::v2i64))
5701    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5702
5703  if (X86::isPSHUFDMask(SVOp)) {
5704    // The actual implementation will match the mask in the if above and then
5705    // during isel it can match several different instructions, not only pshufd
5706    // as its name says, sad but true, emulate the behavior for now...
5707    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5708        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5709
5710    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5711
5712    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5713      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5714
5715    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5716      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5717                                  TargetMask, DAG);
5718
5719    if (VT == MVT::v4f32)
5720      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5721                                  TargetMask, DAG);
5722  }
5723
5724  // Check if this can be converted into a logical shift.
5725  bool isLeft = false;
5726  unsigned ShAmt = 0;
5727  SDValue ShVal;
5728  bool isShift = getSubtarget()->hasSSE2() &&
5729    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5730  if (isShift && ShVal.hasOneUse()) {
5731    // If the shifted value has multiple uses, it may be cheaper to use
5732    // v_set0 + movlhps or movhlps, etc.
5733    EVT EltVT = VT.getVectorElementType();
5734    ShAmt *= EltVT.getSizeInBits();
5735    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5736  }
5737
5738  if (X86::isMOVLMask(SVOp)) {
5739    if (V1IsUndef)
5740      return V2;
5741    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5742      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5743    if (!X86::isMOVLPMask(SVOp)) {
5744      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5745        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5746
5747      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5748        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5749    }
5750  }
5751
5752  // FIXME: fold these into legal mask.
5753  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5754    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5755
5756  if (X86::isMOVHLPSMask(SVOp))
5757    return getMOVHighToLow(Op, dl, DAG);
5758
5759  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5760    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5761
5762  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5763    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5764
5765  if (X86::isMOVLPMask(SVOp))
5766    return getMOVLP(Op, dl, DAG, HasSSE2);
5767
5768  if (ShouldXformToMOVHLPS(SVOp) ||
5769      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5770    return CommuteVectorShuffle(SVOp, DAG);
5771
5772  if (isShift) {
5773    // No better options. Use a vshl / vsrl.
5774    EVT EltVT = VT.getVectorElementType();
5775    ShAmt *= EltVT.getSizeInBits();
5776    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5777  }
5778
5779  bool Commuted = false;
5780  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5781  // 1,1,1,1 -> v8i16 though.
5782  V1IsSplat = isSplatVector(V1.getNode());
5783  V2IsSplat = isSplatVector(V2.getNode());
5784
5785  // Canonicalize the splat or undef, if present, to be on the RHS.
5786  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5787    Op = CommuteVectorShuffle(SVOp, DAG);
5788    SVOp = cast<ShuffleVectorSDNode>(Op);
5789    V1 = SVOp->getOperand(0);
5790    V2 = SVOp->getOperand(1);
5791    std::swap(V1IsSplat, V2IsSplat);
5792    std::swap(V1IsUndef, V2IsUndef);
5793    Commuted = true;
5794  }
5795
5796  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5797    // Shuffling low element of v1 into undef, just return v1.
5798    if (V2IsUndef)
5799      return V1;
5800    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5801    // the instruction selector will not match, so get a canonical MOVL with
5802    // swapped operands to undo the commute.
5803    return getMOVL(DAG, dl, VT, V2, V1);
5804  }
5805
5806  if (X86::isUNPCKLMask(SVOp))
5807    return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5808                                dl, VT, V1, V2, DAG);
5809
5810  if (X86::isUNPCKHMask(SVOp))
5811    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5812
5813  if (V2IsSplat) {
5814    // Normalize mask so all entries that point to V2 points to its first
5815    // element then try to match unpck{h|l} again. If match, return a
5816    // new vector_shuffle with the corrected mask.
5817    SDValue NewMask = NormalizeMask(SVOp, DAG);
5818    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5819    if (NSVOp != SVOp) {
5820      if (X86::isUNPCKLMask(NSVOp, true)) {
5821        return NewMask;
5822      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5823        return NewMask;
5824      }
5825    }
5826  }
5827
5828  if (Commuted) {
5829    // Commute is back and try unpck* again.
5830    // FIXME: this seems wrong.
5831    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5832    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5833
5834    if (X86::isUNPCKLMask(NewSVOp))
5835      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5836                                  dl, VT, V2, V1, DAG);
5837
5838    if (X86::isUNPCKHMask(NewSVOp))
5839      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5840  }
5841
5842  // Normalize the node to match x86 shuffle ops if needed
5843  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5844    return CommuteVectorShuffle(SVOp, DAG);
5845
5846  // The checks below are all present in isShuffleMaskLegal, but they are
5847  // inlined here right now to enable us to directly emit target specific
5848  // nodes, and remove one by one until they don't return Op anymore.
5849  SmallVector<int, 16> M;
5850  SVOp->getMask(M);
5851
5852  if (isPALIGNRMask(M, VT, HasSSSE3))
5853    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5854                                X86::getShufflePALIGNRImmediate(SVOp),
5855                                DAG);
5856
5857  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5858      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5859    if (VT == MVT::v2f64) {
5860      X86ISD::NodeType Opcode =
5861        getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5862      return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
5863    }
5864    if (VT == MVT::v2i64)
5865      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5866  }
5867
5868  if (isPSHUFHWMask(M, VT))
5869    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5870                                X86::getShufflePSHUFHWImmediate(SVOp),
5871                                DAG);
5872
5873  if (isPSHUFLWMask(M, VT))
5874    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5875                                X86::getShufflePSHUFLWImmediate(SVOp),
5876                                DAG);
5877
5878  if (isSHUFPMask(M, VT)) {
5879    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5880    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5881      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5882                                  TargetMask, DAG);
5883    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5884      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5885                                  TargetMask, DAG);
5886  }
5887
5888  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5889    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5890      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5891                                  dl, VT, V1, V1, DAG);
5892  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5893    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5894      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5895
5896  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5897  if (VT == MVT::v8i16) {
5898    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5899    if (NewOp.getNode())
5900      return NewOp;
5901  }
5902
5903  if (VT == MVT::v16i8) {
5904    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5905    if (NewOp.getNode())
5906      return NewOp;
5907  }
5908
5909  // Handle all 4 wide cases with a number of shuffles.
5910  if (NumElems == 4)
5911    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5912
5913  return SDValue();
5914}
5915
5916SDValue
5917X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5918                                                SelectionDAG &DAG) const {
5919  EVT VT = Op.getValueType();
5920  DebugLoc dl = Op.getDebugLoc();
5921  if (VT.getSizeInBits() == 8) {
5922    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5923                                    Op.getOperand(0), Op.getOperand(1));
5924    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5925                                    DAG.getValueType(VT));
5926    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5927  } else if (VT.getSizeInBits() == 16) {
5928    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5929    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5930    if (Idx == 0)
5931      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5932                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5933                                     DAG.getNode(ISD::BITCAST, dl,
5934                                                 MVT::v4i32,
5935                                                 Op.getOperand(0)),
5936                                     Op.getOperand(1)));
5937    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5938                                    Op.getOperand(0), Op.getOperand(1));
5939    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5940                                    DAG.getValueType(VT));
5941    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5942  } else if (VT == MVT::f32) {
5943    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5944    // the result back to FR32 register. It's only worth matching if the
5945    // result has a single use which is a store or a bitcast to i32.  And in
5946    // the case of a store, it's not worth it if the index is a constant 0,
5947    // because a MOVSSmr can be used instead, which is smaller and faster.
5948    if (!Op.hasOneUse())
5949      return SDValue();
5950    SDNode *User = *Op.getNode()->use_begin();
5951    if ((User->getOpcode() != ISD::STORE ||
5952         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5953          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5954        (User->getOpcode() != ISD::BITCAST ||
5955         User->getValueType(0) != MVT::i32))
5956      return SDValue();
5957    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5958                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5959                                              Op.getOperand(0)),
5960                                              Op.getOperand(1));
5961    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5962  } else if (VT == MVT::i32) {
5963    // ExtractPS works with constant index.
5964    if (isa<ConstantSDNode>(Op.getOperand(1)))
5965      return Op;
5966  }
5967  return SDValue();
5968}
5969
5970
5971SDValue
5972X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5973                                           SelectionDAG &DAG) const {
5974  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5975    return SDValue();
5976
5977  SDValue Vec = Op.getOperand(0);
5978  EVT VecVT = Vec.getValueType();
5979
5980  // If this is a 256-bit vector result, first extract the 128-bit
5981  // vector and then extract from the 128-bit vector.
5982  if (VecVT.getSizeInBits() > 128) {
5983    DebugLoc dl = Op.getNode()->getDebugLoc();
5984    unsigned NumElems = VecVT.getVectorNumElements();
5985    SDValue Idx = Op.getOperand(1);
5986
5987    if (!isa<ConstantSDNode>(Idx))
5988      return SDValue();
5989
5990    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
5991    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5992
5993    // Get the 128-bit vector.
5994    bool Upper = IdxVal >= ExtractNumElems;
5995    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
5996
5997    // Extract from it.
5998    SDValue ScaledIdx = Idx;
5999    if (Upper)
6000      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6001                              DAG.getConstant(ExtractNumElems,
6002                                              Idx.getValueType()));
6003    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6004                       ScaledIdx);
6005  }
6006
6007  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6008
6009  if (Subtarget->hasSSE41()) {
6010    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6011    if (Res.getNode())
6012      return Res;
6013  }
6014
6015  EVT VT = Op.getValueType();
6016  DebugLoc dl = Op.getDebugLoc();
6017  // TODO: handle v16i8.
6018  if (VT.getSizeInBits() == 16) {
6019    SDValue Vec = Op.getOperand(0);
6020    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6021    if (Idx == 0)
6022      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6023                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6024                                     DAG.getNode(ISD::BITCAST, dl,
6025                                                 MVT::v4i32, Vec),
6026                                     Op.getOperand(1)));
6027    // Transform it so it match pextrw which produces a 32-bit result.
6028    EVT EltVT = MVT::i32;
6029    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6030                                    Op.getOperand(0), Op.getOperand(1));
6031    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6032                                    DAG.getValueType(VT));
6033    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6034  } else if (VT.getSizeInBits() == 32) {
6035    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6036    if (Idx == 0)
6037      return Op;
6038
6039    // SHUFPS the element to the lowest double word, then movss.
6040    int Mask[4] = { Idx, -1, -1, -1 };
6041    EVT VVT = Op.getOperand(0).getValueType();
6042    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6043                                       DAG.getUNDEF(VVT), Mask);
6044    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6045                       DAG.getIntPtrConstant(0));
6046  } else if (VT.getSizeInBits() == 64) {
6047    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6048    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6049    //        to match extract_elt for f64.
6050    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6051    if (Idx == 0)
6052      return Op;
6053
6054    // UNPCKHPD the element to the lowest double word, then movsd.
6055    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6056    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6057    int Mask[2] = { 1, -1 };
6058    EVT VVT = Op.getOperand(0).getValueType();
6059    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6060                                       DAG.getUNDEF(VVT), Mask);
6061    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6062                       DAG.getIntPtrConstant(0));
6063  }
6064
6065  return SDValue();
6066}
6067
6068SDValue
6069X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6070                                               SelectionDAG &DAG) const {
6071  EVT VT = Op.getValueType();
6072  EVT EltVT = VT.getVectorElementType();
6073  DebugLoc dl = Op.getDebugLoc();
6074
6075  SDValue N0 = Op.getOperand(0);
6076  SDValue N1 = Op.getOperand(1);
6077  SDValue N2 = Op.getOperand(2);
6078
6079  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6080      isa<ConstantSDNode>(N2)) {
6081    unsigned Opc;
6082    if (VT == MVT::v8i16)
6083      Opc = X86ISD::PINSRW;
6084    else if (VT == MVT::v16i8)
6085      Opc = X86ISD::PINSRB;
6086    else
6087      Opc = X86ISD::PINSRB;
6088
6089    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6090    // argument.
6091    if (N1.getValueType() != MVT::i32)
6092      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6093    if (N2.getValueType() != MVT::i32)
6094      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6095    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6096  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6097    // Bits [7:6] of the constant are the source select.  This will always be
6098    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6099    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6100    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6101    // Bits [5:4] of the constant are the destination select.  This is the
6102    //  value of the incoming immediate.
6103    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6104    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6105    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6106    // Create this as a scalar to vector..
6107    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6108    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6109  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6110    // PINSR* works with constant index.
6111    return Op;
6112  }
6113  return SDValue();
6114}
6115
6116SDValue
6117X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6118  EVT VT = Op.getValueType();
6119  EVT EltVT = VT.getVectorElementType();
6120
6121  DebugLoc dl = Op.getDebugLoc();
6122  SDValue N0 = Op.getOperand(0);
6123  SDValue N1 = Op.getOperand(1);
6124  SDValue N2 = Op.getOperand(2);
6125
6126  // If this is a 256-bit vector result, first insert into a 128-bit
6127  // vector and then insert into the 256-bit vector.
6128  if (VT.getSizeInBits() > 128) {
6129    if (!isa<ConstantSDNode>(N2))
6130      return SDValue();
6131
6132    // Get the 128-bit vector.
6133    unsigned NumElems = VT.getVectorNumElements();
6134    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6135    bool Upper = IdxVal >= NumElems / 2;
6136
6137    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6138
6139    // Insert into it.
6140    SDValue ScaledN2 = N2;
6141    if (Upper)
6142      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6143                             DAG.getConstant(NumElems /
6144                                             (VT.getSizeInBits() / 128),
6145                                             N2.getValueType()));
6146    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6147                     N1, ScaledN2);
6148
6149    // Insert the 128-bit vector
6150    // FIXME: Why UNDEF?
6151    return Insert128BitVector(N0, Op, N2, DAG, dl);
6152  }
6153
6154  if (Subtarget->hasSSE41())
6155    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6156
6157  if (EltVT == MVT::i8)
6158    return SDValue();
6159
6160  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6161    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6162    // as its second argument.
6163    if (N1.getValueType() != MVT::i32)
6164      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6165    if (N2.getValueType() != MVT::i32)
6166      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6167    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6168  }
6169  return SDValue();
6170}
6171
6172SDValue
6173X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6174  LLVMContext *Context = DAG.getContext();
6175  DebugLoc dl = Op.getDebugLoc();
6176  EVT OpVT = Op.getValueType();
6177
6178  // If this is a 256-bit vector result, first insert into a 128-bit
6179  // vector and then insert into the 256-bit vector.
6180  if (OpVT.getSizeInBits() > 128) {
6181    // Insert into a 128-bit vector.
6182    EVT VT128 = EVT::getVectorVT(*Context,
6183                                 OpVT.getVectorElementType(),
6184                                 OpVT.getVectorNumElements() / 2);
6185
6186    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6187
6188    // Insert the 128-bit vector.
6189    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6190                              DAG.getConstant(0, MVT::i32),
6191                              DAG, dl);
6192  }
6193
6194  if (Op.getValueType() == MVT::v1i64 &&
6195      Op.getOperand(0).getValueType() == MVT::i64)
6196    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6197
6198  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6199  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6200         "Expected an SSE type!");
6201  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6202                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6203}
6204
6205// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6206// a simple subregister reference or explicit instructions to grab
6207// upper bits of a vector.
6208SDValue
6209X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6210  if (Subtarget->hasAVX()) {
6211    DebugLoc dl = Op.getNode()->getDebugLoc();
6212    SDValue Vec = Op.getNode()->getOperand(0);
6213    SDValue Idx = Op.getNode()->getOperand(1);
6214
6215    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6216        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6217        return Extract128BitVector(Vec, Idx, DAG, dl);
6218    }
6219  }
6220  return SDValue();
6221}
6222
6223// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6224// simple superregister reference or explicit instructions to insert
6225// the upper bits of a vector.
6226SDValue
6227X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6228  if (Subtarget->hasAVX()) {
6229    DebugLoc dl = Op.getNode()->getDebugLoc();
6230    SDValue Vec = Op.getNode()->getOperand(0);
6231    SDValue SubVec = Op.getNode()->getOperand(1);
6232    SDValue Idx = Op.getNode()->getOperand(2);
6233
6234    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6235        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6236      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6237    }
6238  }
6239  return SDValue();
6240}
6241
6242// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6243// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6244// one of the above mentioned nodes. It has to be wrapped because otherwise
6245// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6246// be used to form addressing mode. These wrapped nodes will be selected
6247// into MOV32ri.
6248SDValue
6249X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6250  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6251
6252  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6253  // global base reg.
6254  unsigned char OpFlag = 0;
6255  unsigned WrapperKind = X86ISD::Wrapper;
6256  CodeModel::Model M = getTargetMachine().getCodeModel();
6257
6258  if (Subtarget->isPICStyleRIPRel() &&
6259      (M == CodeModel::Small || M == CodeModel::Kernel))
6260    WrapperKind = X86ISD::WrapperRIP;
6261  else if (Subtarget->isPICStyleGOT())
6262    OpFlag = X86II::MO_GOTOFF;
6263  else if (Subtarget->isPICStyleStubPIC())
6264    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6265
6266  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6267                                             CP->getAlignment(),
6268                                             CP->getOffset(), OpFlag);
6269  DebugLoc DL = CP->getDebugLoc();
6270  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6271  // With PIC, the address is actually $g + Offset.
6272  if (OpFlag) {
6273    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6274                         DAG.getNode(X86ISD::GlobalBaseReg,
6275                                     DebugLoc(), getPointerTy()),
6276                         Result);
6277  }
6278
6279  return Result;
6280}
6281
6282SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6283  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6284
6285  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6286  // global base reg.
6287  unsigned char OpFlag = 0;
6288  unsigned WrapperKind = X86ISD::Wrapper;
6289  CodeModel::Model M = getTargetMachine().getCodeModel();
6290
6291  if (Subtarget->isPICStyleRIPRel() &&
6292      (M == CodeModel::Small || M == CodeModel::Kernel))
6293    WrapperKind = X86ISD::WrapperRIP;
6294  else if (Subtarget->isPICStyleGOT())
6295    OpFlag = X86II::MO_GOTOFF;
6296  else if (Subtarget->isPICStyleStubPIC())
6297    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6298
6299  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6300                                          OpFlag);
6301  DebugLoc DL = JT->getDebugLoc();
6302  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6303
6304  // With PIC, the address is actually $g + Offset.
6305  if (OpFlag)
6306    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6307                         DAG.getNode(X86ISD::GlobalBaseReg,
6308                                     DebugLoc(), getPointerTy()),
6309                         Result);
6310
6311  return Result;
6312}
6313
6314SDValue
6315X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6316  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6317
6318  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6319  // global base reg.
6320  unsigned char OpFlag = 0;
6321  unsigned WrapperKind = X86ISD::Wrapper;
6322  CodeModel::Model M = getTargetMachine().getCodeModel();
6323
6324  if (Subtarget->isPICStyleRIPRel() &&
6325      (M == CodeModel::Small || M == CodeModel::Kernel))
6326    WrapperKind = X86ISD::WrapperRIP;
6327  else if (Subtarget->isPICStyleGOT())
6328    OpFlag = X86II::MO_GOTOFF;
6329  else if (Subtarget->isPICStyleStubPIC())
6330    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6331
6332  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6333
6334  DebugLoc DL = Op.getDebugLoc();
6335  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6336
6337
6338  // With PIC, the address is actually $g + Offset.
6339  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6340      !Subtarget->is64Bit()) {
6341    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6342                         DAG.getNode(X86ISD::GlobalBaseReg,
6343                                     DebugLoc(), getPointerTy()),
6344                         Result);
6345  }
6346
6347  return Result;
6348}
6349
6350SDValue
6351X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6352  // Create the TargetBlockAddressAddress node.
6353  unsigned char OpFlags =
6354    Subtarget->ClassifyBlockAddressReference();
6355  CodeModel::Model M = getTargetMachine().getCodeModel();
6356  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6357  DebugLoc dl = Op.getDebugLoc();
6358  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6359                                       /*isTarget=*/true, OpFlags);
6360
6361  if (Subtarget->isPICStyleRIPRel() &&
6362      (M == CodeModel::Small || M == CodeModel::Kernel))
6363    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6364  else
6365    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6366
6367  // With PIC, the address is actually $g + Offset.
6368  if (isGlobalRelativeToPICBase(OpFlags)) {
6369    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6370                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6371                         Result);
6372  }
6373
6374  return Result;
6375}
6376
6377SDValue
6378X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6379                                      int64_t Offset,
6380                                      SelectionDAG &DAG) const {
6381  // Create the TargetGlobalAddress node, folding in the constant
6382  // offset if it is legal.
6383  unsigned char OpFlags =
6384    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6385  CodeModel::Model M = getTargetMachine().getCodeModel();
6386  SDValue Result;
6387  if (OpFlags == X86II::MO_NO_FLAG &&
6388      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6389    // A direct static reference to a global.
6390    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6391    Offset = 0;
6392  } else {
6393    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6394  }
6395
6396  if (Subtarget->isPICStyleRIPRel() &&
6397      (M == CodeModel::Small || M == CodeModel::Kernel))
6398    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6399  else
6400    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6401
6402  // With PIC, the address is actually $g + Offset.
6403  if (isGlobalRelativeToPICBase(OpFlags)) {
6404    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6405                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6406                         Result);
6407  }
6408
6409  // For globals that require a load from a stub to get the address, emit the
6410  // load.
6411  if (isGlobalStubReference(OpFlags))
6412    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6413                         MachinePointerInfo::getGOT(), false, false, 0);
6414
6415  // If there was a non-zero offset that we didn't fold, create an explicit
6416  // addition for it.
6417  if (Offset != 0)
6418    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6419                         DAG.getConstant(Offset, getPointerTy()));
6420
6421  return Result;
6422}
6423
6424SDValue
6425X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6426  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6427  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6428  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6429}
6430
6431static SDValue
6432GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6433           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6434           unsigned char OperandFlags) {
6435  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6436  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6437  DebugLoc dl = GA->getDebugLoc();
6438  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6439                                           GA->getValueType(0),
6440                                           GA->getOffset(),
6441                                           OperandFlags);
6442  if (InFlag) {
6443    SDValue Ops[] = { Chain,  TGA, *InFlag };
6444    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6445  } else {
6446    SDValue Ops[]  = { Chain, TGA };
6447    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6448  }
6449
6450  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6451  MFI->setAdjustsStack(true);
6452
6453  SDValue Flag = Chain.getValue(1);
6454  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6455}
6456
6457// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6458static SDValue
6459LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6460                                const EVT PtrVT) {
6461  SDValue InFlag;
6462  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6463  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6464                                     DAG.getNode(X86ISD::GlobalBaseReg,
6465                                                 DebugLoc(), PtrVT), InFlag);
6466  InFlag = Chain.getValue(1);
6467
6468  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6469}
6470
6471// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6472static SDValue
6473LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6474                                const EVT PtrVT) {
6475  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6476                    X86::RAX, X86II::MO_TLSGD);
6477}
6478
6479// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6480// "local exec" model.
6481static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6482                                   const EVT PtrVT, TLSModel::Model model,
6483                                   bool is64Bit) {
6484  DebugLoc dl = GA->getDebugLoc();
6485
6486  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6487  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6488                                                         is64Bit ? 257 : 256));
6489
6490  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6491                                      DAG.getIntPtrConstant(0),
6492                                      MachinePointerInfo(Ptr), false, false, 0);
6493
6494  unsigned char OperandFlags = 0;
6495  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6496  // initialexec.
6497  unsigned WrapperKind = X86ISD::Wrapper;
6498  if (model == TLSModel::LocalExec) {
6499    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6500  } else if (is64Bit) {
6501    assert(model == TLSModel::InitialExec);
6502    OperandFlags = X86II::MO_GOTTPOFF;
6503    WrapperKind = X86ISD::WrapperRIP;
6504  } else {
6505    assert(model == TLSModel::InitialExec);
6506    OperandFlags = X86II::MO_INDNTPOFF;
6507  }
6508
6509  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6510  // exec)
6511  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6512                                           GA->getValueType(0),
6513                                           GA->getOffset(), OperandFlags);
6514  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6515
6516  if (model == TLSModel::InitialExec)
6517    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6518                         MachinePointerInfo::getGOT(), false, false, 0);
6519
6520  // The address of the thread local variable is the add of the thread
6521  // pointer with the offset of the variable.
6522  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6523}
6524
6525SDValue
6526X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6527
6528  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6529  const GlobalValue *GV = GA->getGlobal();
6530
6531  if (Subtarget->isTargetELF()) {
6532    // TODO: implement the "local dynamic" model
6533    // TODO: implement the "initial exec"model for pic executables
6534
6535    // If GV is an alias then use the aliasee for determining
6536    // thread-localness.
6537    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6538      GV = GA->resolveAliasedGlobal(false);
6539
6540    TLSModel::Model model
6541      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6542
6543    switch (model) {
6544      case TLSModel::GeneralDynamic:
6545      case TLSModel::LocalDynamic: // not implemented
6546        if (Subtarget->is64Bit())
6547          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6548        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6549
6550      case TLSModel::InitialExec:
6551      case TLSModel::LocalExec:
6552        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6553                                   Subtarget->is64Bit());
6554    }
6555  } else if (Subtarget->isTargetDarwin()) {
6556    // Darwin only has one model of TLS.  Lower to that.
6557    unsigned char OpFlag = 0;
6558    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6559                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6560
6561    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6562    // global base reg.
6563    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6564                  !Subtarget->is64Bit();
6565    if (PIC32)
6566      OpFlag = X86II::MO_TLVP_PIC_BASE;
6567    else
6568      OpFlag = X86II::MO_TLVP;
6569    DebugLoc DL = Op.getDebugLoc();
6570    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6571                                                GA->getValueType(0),
6572                                                GA->getOffset(), OpFlag);
6573    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6574
6575    // With PIC32, the address is actually $g + Offset.
6576    if (PIC32)
6577      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6578                           DAG.getNode(X86ISD::GlobalBaseReg,
6579                                       DebugLoc(), getPointerTy()),
6580                           Offset);
6581
6582    // Lowering the machine isd will make sure everything is in the right
6583    // location.
6584    SDValue Chain = DAG.getEntryNode();
6585    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6586    SDValue Args[] = { Chain, Offset };
6587    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6588
6589    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6590    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6591    MFI->setAdjustsStack(true);
6592
6593    // And our return value (tls address) is in the standard call return value
6594    // location.
6595    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6596    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6597  }
6598
6599  assert(false &&
6600         "TLS not implemented for this target.");
6601
6602  llvm_unreachable("Unreachable");
6603  return SDValue();
6604}
6605
6606
6607/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6608/// take a 2 x i32 value to shift plus a shift amount.
6609SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6610  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6611  EVT VT = Op.getValueType();
6612  unsigned VTBits = VT.getSizeInBits();
6613  DebugLoc dl = Op.getDebugLoc();
6614  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6615  SDValue ShOpLo = Op.getOperand(0);
6616  SDValue ShOpHi = Op.getOperand(1);
6617  SDValue ShAmt  = Op.getOperand(2);
6618  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6619                                     DAG.getConstant(VTBits - 1, MVT::i8))
6620                       : DAG.getConstant(0, VT);
6621
6622  SDValue Tmp2, Tmp3;
6623  if (Op.getOpcode() == ISD::SHL_PARTS) {
6624    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6625    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6626  } else {
6627    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6628    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6629  }
6630
6631  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6632                                DAG.getConstant(VTBits, MVT::i8));
6633  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6634                             AndNode, DAG.getConstant(0, MVT::i8));
6635
6636  SDValue Hi, Lo;
6637  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6638  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6639  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6640
6641  if (Op.getOpcode() == ISD::SHL_PARTS) {
6642    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6643    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6644  } else {
6645    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6646    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6647  }
6648
6649  SDValue Ops[2] = { Lo, Hi };
6650  return DAG.getMergeValues(Ops, 2, dl);
6651}
6652
6653SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6654                                           SelectionDAG &DAG) const {
6655  EVT SrcVT = Op.getOperand(0).getValueType();
6656
6657  if (SrcVT.isVector())
6658    return SDValue();
6659
6660  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6661         "Unknown SINT_TO_FP to lower!");
6662
6663  // These are really Legal; return the operand so the caller accepts it as
6664  // Legal.
6665  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6666    return Op;
6667  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6668      Subtarget->is64Bit()) {
6669    return Op;
6670  }
6671
6672  DebugLoc dl = Op.getDebugLoc();
6673  unsigned Size = SrcVT.getSizeInBits()/8;
6674  MachineFunction &MF = DAG.getMachineFunction();
6675  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6676  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6677  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6678                               StackSlot,
6679                               MachinePointerInfo::getFixedStack(SSFI),
6680                               false, false, 0);
6681  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6682}
6683
6684SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6685                                     SDValue StackSlot,
6686                                     SelectionDAG &DAG) const {
6687  // Build the FILD
6688  DebugLoc DL = Op.getDebugLoc();
6689  SDVTList Tys;
6690  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6691  if (useSSE)
6692    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6693  else
6694    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6695
6696  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6697
6698  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6699  MachineMemOperand *MMO =
6700    DAG.getMachineFunction()
6701    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6702                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6703
6704  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6705  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6706                                           X86ISD::FILD, DL,
6707                                           Tys, Ops, array_lengthof(Ops),
6708                                           SrcVT, MMO);
6709
6710  if (useSSE) {
6711    Chain = Result.getValue(1);
6712    SDValue InFlag = Result.getValue(2);
6713
6714    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6715    // shouldn't be necessary except that RFP cannot be live across
6716    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6717    MachineFunction &MF = DAG.getMachineFunction();
6718    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6719    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6720    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6721    Tys = DAG.getVTList(MVT::Other);
6722    SDValue Ops[] = {
6723      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6724    };
6725    MachineMemOperand *MMO =
6726      DAG.getMachineFunction()
6727      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6728                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6729
6730    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6731                                    Ops, array_lengthof(Ops),
6732                                    Op.getValueType(), MMO);
6733    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6734                         MachinePointerInfo::getFixedStack(SSFI),
6735                         false, false, 0);
6736  }
6737
6738  return Result;
6739}
6740
6741// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6742SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6743                                               SelectionDAG &DAG) const {
6744  // This algorithm is not obvious. Here it is in C code, more or less:
6745  /*
6746    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6747      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6748      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6749
6750      // Copy ints to xmm registers.
6751      __m128i xh = _mm_cvtsi32_si128( hi );
6752      __m128i xl = _mm_cvtsi32_si128( lo );
6753
6754      // Combine into low half of a single xmm register.
6755      __m128i x = _mm_unpacklo_epi32( xh, xl );
6756      __m128d d;
6757      double sd;
6758
6759      // Merge in appropriate exponents to give the integer bits the right
6760      // magnitude.
6761      x = _mm_unpacklo_epi32( x, exp );
6762
6763      // Subtract away the biases to deal with the IEEE-754 double precision
6764      // implicit 1.
6765      d = _mm_sub_pd( (__m128d) x, bias );
6766
6767      // All conversions up to here are exact. The correctly rounded result is
6768      // calculated using the current rounding mode using the following
6769      // horizontal add.
6770      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6771      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6772                                // store doesn't really need to be here (except
6773                                // maybe to zero the other double)
6774      return sd;
6775    }
6776  */
6777
6778  DebugLoc dl = Op.getDebugLoc();
6779  LLVMContext *Context = DAG.getContext();
6780
6781  // Build some magic constants.
6782  std::vector<Constant*> CV0;
6783  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6784  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6785  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6786  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6787  Constant *C0 = ConstantVector::get(CV0);
6788  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6789
6790  std::vector<Constant*> CV1;
6791  CV1.push_back(
6792    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6793  CV1.push_back(
6794    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6795  Constant *C1 = ConstantVector::get(CV1);
6796  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6797
6798  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6799                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6800                                        Op.getOperand(0),
6801                                        DAG.getIntPtrConstant(1)));
6802  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6803                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6804                                        Op.getOperand(0),
6805                                        DAG.getIntPtrConstant(0)));
6806  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6807  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6808                              MachinePointerInfo::getConstantPool(),
6809                              false, false, 16);
6810  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6811  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6812  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6813                              MachinePointerInfo::getConstantPool(),
6814                              false, false, 16);
6815  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6816
6817  // Add the halves; easiest way is to swap them into another reg first.
6818  int ShufMask[2] = { 1, -1 };
6819  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6820                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6821  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6822  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6823                     DAG.getIntPtrConstant(0));
6824}
6825
6826// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6827SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6828                                               SelectionDAG &DAG) const {
6829  DebugLoc dl = Op.getDebugLoc();
6830  // FP constant to bias correct the final result.
6831  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6832                                   MVT::f64);
6833
6834  // Load the 32-bit value into an XMM register.
6835  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6836                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6837                                         Op.getOperand(0),
6838                                         DAG.getIntPtrConstant(0)));
6839
6840  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6841                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6842                     DAG.getIntPtrConstant(0));
6843
6844  // Or the load with the bias.
6845  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6846                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6847                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6848                                                   MVT::v2f64, Load)),
6849                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6850                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6851                                                   MVT::v2f64, Bias)));
6852  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6853                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6854                   DAG.getIntPtrConstant(0));
6855
6856  // Subtract the bias.
6857  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6858
6859  // Handle final rounding.
6860  EVT DestVT = Op.getValueType();
6861
6862  if (DestVT.bitsLT(MVT::f64)) {
6863    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6864                       DAG.getIntPtrConstant(0));
6865  } else if (DestVT.bitsGT(MVT::f64)) {
6866    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6867  }
6868
6869  // Handle final rounding.
6870  return Sub;
6871}
6872
6873SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6874                                           SelectionDAG &DAG) const {
6875  SDValue N0 = Op.getOperand(0);
6876  DebugLoc dl = Op.getDebugLoc();
6877
6878  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6879  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6880  // the optimization here.
6881  if (DAG.SignBitIsZero(N0))
6882    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6883
6884  EVT SrcVT = N0.getValueType();
6885  EVT DstVT = Op.getValueType();
6886  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6887    return LowerUINT_TO_FP_i64(Op, DAG);
6888  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6889    return LowerUINT_TO_FP_i32(Op, DAG);
6890
6891  // Make a 64-bit buffer, and use it to build an FILD.
6892  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6893  if (SrcVT == MVT::i32) {
6894    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6895    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6896                                     getPointerTy(), StackSlot, WordOff);
6897    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6898                                  StackSlot, MachinePointerInfo(),
6899                                  false, false, 0);
6900    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6901                                  OffsetSlot, MachinePointerInfo(),
6902                                  false, false, 0);
6903    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6904    return Fild;
6905  }
6906
6907  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6908  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6909                                StackSlot, MachinePointerInfo(),
6910                               false, false, 0);
6911  // For i64 source, we need to add the appropriate power of 2 if the input
6912  // was negative.  This is the same as the optimization in
6913  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6914  // we must be careful to do the computation in x87 extended precision, not
6915  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6916  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6917  MachineMemOperand *MMO =
6918    DAG.getMachineFunction()
6919    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6920                          MachineMemOperand::MOLoad, 8, 8);
6921
6922  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6923  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6924  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6925                                         MVT::i64, MMO);
6926
6927  APInt FF(32, 0x5F800000ULL);
6928
6929  // Check whether the sign bit is set.
6930  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6931                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6932                                 ISD::SETLT);
6933
6934  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6935  SDValue FudgePtr = DAG.getConstantPool(
6936                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6937                                         getPointerTy());
6938
6939  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6940  SDValue Zero = DAG.getIntPtrConstant(0);
6941  SDValue Four = DAG.getIntPtrConstant(4);
6942  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6943                               Zero, Four);
6944  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6945
6946  // Load the value out, extending it from f32 to f80.
6947  // FIXME: Avoid the extend by constructing the right constant pool?
6948  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
6949                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6950                                 MVT::f32, false, false, 4);
6951  // Extend everything to 80 bits to force it to be done on x87.
6952  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6953  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6954}
6955
6956std::pair<SDValue,SDValue> X86TargetLowering::
6957FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6958  DebugLoc DL = Op.getDebugLoc();
6959
6960  EVT DstTy = Op.getValueType();
6961
6962  if (!IsSigned) {
6963    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6964    DstTy = MVT::i64;
6965  }
6966
6967  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6968         DstTy.getSimpleVT() >= MVT::i16 &&
6969         "Unknown FP_TO_SINT to lower!");
6970
6971  // These are really Legal.
6972  if (DstTy == MVT::i32 &&
6973      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6974    return std::make_pair(SDValue(), SDValue());
6975  if (Subtarget->is64Bit() &&
6976      DstTy == MVT::i64 &&
6977      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6978    return std::make_pair(SDValue(), SDValue());
6979
6980  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6981  // stack slot.
6982  MachineFunction &MF = DAG.getMachineFunction();
6983  unsigned MemSize = DstTy.getSizeInBits()/8;
6984  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6985  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6986
6987
6988
6989  unsigned Opc;
6990  switch (DstTy.getSimpleVT().SimpleTy) {
6991  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6992  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6993  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6994  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6995  }
6996
6997  SDValue Chain = DAG.getEntryNode();
6998  SDValue Value = Op.getOperand(0);
6999  EVT TheVT = Op.getOperand(0).getValueType();
7000  if (isScalarFPTypeInSSEReg(TheVT)) {
7001    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7002    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7003                         MachinePointerInfo::getFixedStack(SSFI),
7004                         false, false, 0);
7005    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7006    SDValue Ops[] = {
7007      Chain, StackSlot, DAG.getValueType(TheVT)
7008    };
7009
7010    MachineMemOperand *MMO =
7011      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7012                              MachineMemOperand::MOLoad, MemSize, MemSize);
7013    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7014                                    DstTy, MMO);
7015    Chain = Value.getValue(1);
7016    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7017    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7018  }
7019
7020  MachineMemOperand *MMO =
7021    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7022                            MachineMemOperand::MOStore, MemSize, MemSize);
7023
7024  // Build the FP_TO_INT*_IN_MEM
7025  SDValue Ops[] = { Chain, Value, StackSlot };
7026  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7027                                         Ops, 3, DstTy, MMO);
7028
7029  return std::make_pair(FIST, StackSlot);
7030}
7031
7032SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7033                                           SelectionDAG &DAG) const {
7034  if (Op.getValueType().isVector())
7035    return SDValue();
7036
7037  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7038  SDValue FIST = Vals.first, StackSlot = Vals.second;
7039  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7040  if (FIST.getNode() == 0) return Op;
7041
7042  // Load the result.
7043  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7044                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7045}
7046
7047SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7048                                           SelectionDAG &DAG) const {
7049  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7050  SDValue FIST = Vals.first, StackSlot = Vals.second;
7051  assert(FIST.getNode() && "Unexpected failure");
7052
7053  // Load the result.
7054  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7055                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7056}
7057
7058SDValue X86TargetLowering::LowerFABS(SDValue Op,
7059                                     SelectionDAG &DAG) const {
7060  LLVMContext *Context = DAG.getContext();
7061  DebugLoc dl = Op.getDebugLoc();
7062  EVT VT = Op.getValueType();
7063  EVT EltVT = VT;
7064  if (VT.isVector())
7065    EltVT = VT.getVectorElementType();
7066  std::vector<Constant*> CV;
7067  if (EltVT == MVT::f64) {
7068    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7069    CV.push_back(C);
7070    CV.push_back(C);
7071  } else {
7072    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7073    CV.push_back(C);
7074    CV.push_back(C);
7075    CV.push_back(C);
7076    CV.push_back(C);
7077  }
7078  Constant *C = ConstantVector::get(CV);
7079  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7080  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7081                             MachinePointerInfo::getConstantPool(),
7082                             false, false, 16);
7083  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7084}
7085
7086SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7087  LLVMContext *Context = DAG.getContext();
7088  DebugLoc dl = Op.getDebugLoc();
7089  EVT VT = Op.getValueType();
7090  EVT EltVT = VT;
7091  if (VT.isVector())
7092    EltVT = VT.getVectorElementType();
7093  std::vector<Constant*> CV;
7094  if (EltVT == MVT::f64) {
7095    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7096    CV.push_back(C);
7097    CV.push_back(C);
7098  } else {
7099    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7100    CV.push_back(C);
7101    CV.push_back(C);
7102    CV.push_back(C);
7103    CV.push_back(C);
7104  }
7105  Constant *C = ConstantVector::get(CV);
7106  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7107  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7108                             MachinePointerInfo::getConstantPool(),
7109                             false, false, 16);
7110  if (VT.isVector()) {
7111    return DAG.getNode(ISD::BITCAST, dl, VT,
7112                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7113                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7114                                Op.getOperand(0)),
7115                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7116  } else {
7117    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7118  }
7119}
7120
7121SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7122  LLVMContext *Context = DAG.getContext();
7123  SDValue Op0 = Op.getOperand(0);
7124  SDValue Op1 = Op.getOperand(1);
7125  DebugLoc dl = Op.getDebugLoc();
7126  EVT VT = Op.getValueType();
7127  EVT SrcVT = Op1.getValueType();
7128
7129  // If second operand is smaller, extend it first.
7130  if (SrcVT.bitsLT(VT)) {
7131    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7132    SrcVT = VT;
7133  }
7134  // And if it is bigger, shrink it first.
7135  if (SrcVT.bitsGT(VT)) {
7136    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7137    SrcVT = VT;
7138  }
7139
7140  // At this point the operands and the result should have the same
7141  // type, and that won't be f80 since that is not custom lowered.
7142
7143  // First get the sign bit of second operand.
7144  std::vector<Constant*> CV;
7145  if (SrcVT == MVT::f64) {
7146    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7147    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7148  } else {
7149    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7150    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7151    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7152    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7153  }
7154  Constant *C = ConstantVector::get(CV);
7155  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7156  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7157                              MachinePointerInfo::getConstantPool(),
7158                              false, false, 16);
7159  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7160
7161  // Shift sign bit right or left if the two operands have different types.
7162  if (SrcVT.bitsGT(VT)) {
7163    // Op0 is MVT::f32, Op1 is MVT::f64.
7164    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7165    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7166                          DAG.getConstant(32, MVT::i32));
7167    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7168    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7169                          DAG.getIntPtrConstant(0));
7170  }
7171
7172  // Clear first operand sign bit.
7173  CV.clear();
7174  if (VT == MVT::f64) {
7175    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7176    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7177  } else {
7178    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7179    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7180    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7181    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7182  }
7183  C = ConstantVector::get(CV);
7184  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7185  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7186                              MachinePointerInfo::getConstantPool(),
7187                              false, false, 16);
7188  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7189
7190  // Or the value with the sign bit.
7191  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7192}
7193
7194/// Emit nodes that will be selected as "test Op0,Op0", or something
7195/// equivalent.
7196SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7197                                    SelectionDAG &DAG) const {
7198  DebugLoc dl = Op.getDebugLoc();
7199
7200  // CF and OF aren't always set the way we want. Determine which
7201  // of these we need.
7202  bool NeedCF = false;
7203  bool NeedOF = false;
7204  switch (X86CC) {
7205  default: break;
7206  case X86::COND_A: case X86::COND_AE:
7207  case X86::COND_B: case X86::COND_BE:
7208    NeedCF = true;
7209    break;
7210  case X86::COND_G: case X86::COND_GE:
7211  case X86::COND_L: case X86::COND_LE:
7212  case X86::COND_O: case X86::COND_NO:
7213    NeedOF = true;
7214    break;
7215  }
7216
7217  // See if we can use the EFLAGS value from the operand instead of
7218  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7219  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7220  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7221    // Emit a CMP with 0, which is the TEST pattern.
7222    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7223                       DAG.getConstant(0, Op.getValueType()));
7224
7225  unsigned Opcode = 0;
7226  unsigned NumOperands = 0;
7227  switch (Op.getNode()->getOpcode()) {
7228  case ISD::ADD:
7229    // Due to an isel shortcoming, be conservative if this add is likely to be
7230    // selected as part of a load-modify-store instruction. When the root node
7231    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7232    // uses of other nodes in the match, such as the ADD in this case. This
7233    // leads to the ADD being left around and reselected, with the result being
7234    // two adds in the output.  Alas, even if none our users are stores, that
7235    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7236    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7237    // climbing the DAG back to the root, and it doesn't seem to be worth the
7238    // effort.
7239    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7240           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7241      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7242        goto default_case;
7243
7244    if (ConstantSDNode *C =
7245        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7246      // An add of one will be selected as an INC.
7247      if (C->getAPIntValue() == 1) {
7248        Opcode = X86ISD::INC;
7249        NumOperands = 1;
7250        break;
7251      }
7252
7253      // An add of negative one (subtract of one) will be selected as a DEC.
7254      if (C->getAPIntValue().isAllOnesValue()) {
7255        Opcode = X86ISD::DEC;
7256        NumOperands = 1;
7257        break;
7258      }
7259    }
7260
7261    // Otherwise use a regular EFLAGS-setting add.
7262    Opcode = X86ISD::ADD;
7263    NumOperands = 2;
7264    break;
7265  case ISD::AND: {
7266    // If the primary and result isn't used, don't bother using X86ISD::AND,
7267    // because a TEST instruction will be better.
7268    bool NonFlagUse = false;
7269    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7270           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7271      SDNode *User = *UI;
7272      unsigned UOpNo = UI.getOperandNo();
7273      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7274        // Look pass truncate.
7275        UOpNo = User->use_begin().getOperandNo();
7276        User = *User->use_begin();
7277      }
7278
7279      if (User->getOpcode() != ISD::BRCOND &&
7280          User->getOpcode() != ISD::SETCC &&
7281          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7282        NonFlagUse = true;
7283        break;
7284      }
7285    }
7286
7287    if (!NonFlagUse)
7288      break;
7289  }
7290    // FALL THROUGH
7291  case ISD::SUB:
7292  case ISD::OR:
7293  case ISD::XOR:
7294    // Due to the ISEL shortcoming noted above, be conservative if this op is
7295    // likely to be selected as part of a load-modify-store instruction.
7296    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7297           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7298      if (UI->getOpcode() == ISD::STORE)
7299        goto default_case;
7300
7301    // Otherwise use a regular EFLAGS-setting instruction.
7302    switch (Op.getNode()->getOpcode()) {
7303    default: llvm_unreachable("unexpected operator!");
7304    case ISD::SUB: Opcode = X86ISD::SUB; break;
7305    case ISD::OR:  Opcode = X86ISD::OR;  break;
7306    case ISD::XOR: Opcode = X86ISD::XOR; break;
7307    case ISD::AND: Opcode = X86ISD::AND; break;
7308    }
7309
7310    NumOperands = 2;
7311    break;
7312  case X86ISD::ADD:
7313  case X86ISD::SUB:
7314  case X86ISD::INC:
7315  case X86ISD::DEC:
7316  case X86ISD::OR:
7317  case X86ISD::XOR:
7318  case X86ISD::AND:
7319    return SDValue(Op.getNode(), 1);
7320  default:
7321  default_case:
7322    break;
7323  }
7324
7325  if (Opcode == 0)
7326    // Emit a CMP with 0, which is the TEST pattern.
7327    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7328                       DAG.getConstant(0, Op.getValueType()));
7329
7330  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7331  SmallVector<SDValue, 4> Ops;
7332  for (unsigned i = 0; i != NumOperands; ++i)
7333    Ops.push_back(Op.getOperand(i));
7334
7335  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7336  DAG.ReplaceAllUsesWith(Op, New);
7337  return SDValue(New.getNode(), 1);
7338}
7339
7340/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7341/// equivalent.
7342SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7343                                   SelectionDAG &DAG) const {
7344  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7345    if (C->getAPIntValue() == 0)
7346      return EmitTest(Op0, X86CC, DAG);
7347
7348  DebugLoc dl = Op0.getDebugLoc();
7349  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7350}
7351
7352/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7353/// if it's possible.
7354SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7355                                     DebugLoc dl, SelectionDAG &DAG) const {
7356  SDValue Op0 = And.getOperand(0);
7357  SDValue Op1 = And.getOperand(1);
7358  if (Op0.getOpcode() == ISD::TRUNCATE)
7359    Op0 = Op0.getOperand(0);
7360  if (Op1.getOpcode() == ISD::TRUNCATE)
7361    Op1 = Op1.getOperand(0);
7362
7363  SDValue LHS, RHS;
7364  if (Op1.getOpcode() == ISD::SHL)
7365    std::swap(Op0, Op1);
7366  if (Op0.getOpcode() == ISD::SHL) {
7367    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7368      if (And00C->getZExtValue() == 1) {
7369        // If we looked past a truncate, check that it's only truncating away
7370        // known zeros.
7371        unsigned BitWidth = Op0.getValueSizeInBits();
7372        unsigned AndBitWidth = And.getValueSizeInBits();
7373        if (BitWidth > AndBitWidth) {
7374          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7375          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7376          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7377            return SDValue();
7378        }
7379        LHS = Op1;
7380        RHS = Op0.getOperand(1);
7381      }
7382  } else if (Op1.getOpcode() == ISD::Constant) {
7383    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7384    SDValue AndLHS = Op0;
7385    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7386      LHS = AndLHS.getOperand(0);
7387      RHS = AndLHS.getOperand(1);
7388    }
7389  }
7390
7391  if (LHS.getNode()) {
7392    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7393    // instruction.  Since the shift amount is in-range-or-undefined, we know
7394    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7395    // the encoding for the i16 version is larger than the i32 version.
7396    // Also promote i16 to i32 for performance / code size reason.
7397    if (LHS.getValueType() == MVT::i8 ||
7398        LHS.getValueType() == MVT::i16)
7399      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7400
7401    // If the operand types disagree, extend the shift amount to match.  Since
7402    // BT ignores high bits (like shifts) we can use anyextend.
7403    if (LHS.getValueType() != RHS.getValueType())
7404      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7405
7406    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7407    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7408    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7409                       DAG.getConstant(Cond, MVT::i8), BT);
7410  }
7411
7412  return SDValue();
7413}
7414
7415SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7416  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7417  SDValue Op0 = Op.getOperand(0);
7418  SDValue Op1 = Op.getOperand(1);
7419  DebugLoc dl = Op.getDebugLoc();
7420  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7421
7422  // Optimize to BT if possible.
7423  // Lower (X & (1 << N)) == 0 to BT(X, N).
7424  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7425  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7426  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7427      Op1.getOpcode() == ISD::Constant &&
7428      cast<ConstantSDNode>(Op1)->isNullValue() &&
7429      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7430    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7431    if (NewSetCC.getNode())
7432      return NewSetCC;
7433  }
7434
7435  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7436  // these.
7437  if (Op1.getOpcode() == ISD::Constant &&
7438      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7439       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7440      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7441
7442    // If the input is a setcc, then reuse the input setcc or use a new one with
7443    // the inverted condition.
7444    if (Op0.getOpcode() == X86ISD::SETCC) {
7445      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7446      bool Invert = (CC == ISD::SETNE) ^
7447        cast<ConstantSDNode>(Op1)->isNullValue();
7448      if (!Invert) return Op0;
7449
7450      CCode = X86::GetOppositeBranchCondition(CCode);
7451      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7452                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7453    }
7454  }
7455
7456  bool isFP = Op1.getValueType().isFloatingPoint();
7457  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7458  if (X86CC == X86::COND_INVALID)
7459    return SDValue();
7460
7461  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7462  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7463                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7464}
7465
7466SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7467  SDValue Cond;
7468  SDValue Op0 = Op.getOperand(0);
7469  SDValue Op1 = Op.getOperand(1);
7470  SDValue CC = Op.getOperand(2);
7471  EVT VT = Op.getValueType();
7472  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7473  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7474  DebugLoc dl = Op.getDebugLoc();
7475
7476  if (isFP) {
7477    unsigned SSECC = 8;
7478    EVT VT0 = Op0.getValueType();
7479    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7480    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7481    bool Swap = false;
7482
7483    switch (SetCCOpcode) {
7484    default: break;
7485    case ISD::SETOEQ:
7486    case ISD::SETEQ:  SSECC = 0; break;
7487    case ISD::SETOGT:
7488    case ISD::SETGT: Swap = true; // Fallthrough
7489    case ISD::SETLT:
7490    case ISD::SETOLT: SSECC = 1; break;
7491    case ISD::SETOGE:
7492    case ISD::SETGE: Swap = true; // Fallthrough
7493    case ISD::SETLE:
7494    case ISD::SETOLE: SSECC = 2; break;
7495    case ISD::SETUO:  SSECC = 3; break;
7496    case ISD::SETUNE:
7497    case ISD::SETNE:  SSECC = 4; break;
7498    case ISD::SETULE: Swap = true;
7499    case ISD::SETUGE: SSECC = 5; break;
7500    case ISD::SETULT: Swap = true;
7501    case ISD::SETUGT: SSECC = 6; break;
7502    case ISD::SETO:   SSECC = 7; break;
7503    }
7504    if (Swap)
7505      std::swap(Op0, Op1);
7506
7507    // In the two special cases we can't handle, emit two comparisons.
7508    if (SSECC == 8) {
7509      if (SetCCOpcode == ISD::SETUEQ) {
7510        SDValue UNORD, EQ;
7511        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7512        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7513        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7514      }
7515      else if (SetCCOpcode == ISD::SETONE) {
7516        SDValue ORD, NEQ;
7517        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7518        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7519        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7520      }
7521      llvm_unreachable("Illegal FP comparison");
7522    }
7523    // Handle all other FP comparisons here.
7524    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7525  }
7526
7527  // We are handling one of the integer comparisons here.  Since SSE only has
7528  // GT and EQ comparisons for integer, swapping operands and multiple
7529  // operations may be required for some comparisons.
7530  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7531  bool Swap = false, Invert = false, FlipSigns = false;
7532
7533  switch (VT.getSimpleVT().SimpleTy) {
7534  default: break;
7535  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7536  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7537  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7538  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7539  }
7540
7541  switch (SetCCOpcode) {
7542  default: break;
7543  case ISD::SETNE:  Invert = true;
7544  case ISD::SETEQ:  Opc = EQOpc; break;
7545  case ISD::SETLT:  Swap = true;
7546  case ISD::SETGT:  Opc = GTOpc; break;
7547  case ISD::SETGE:  Swap = true;
7548  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7549  case ISD::SETULT: Swap = true;
7550  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7551  case ISD::SETUGE: Swap = true;
7552  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7553  }
7554  if (Swap)
7555    std::swap(Op0, Op1);
7556
7557  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7558  // bits of the inputs before performing those operations.
7559  if (FlipSigns) {
7560    EVT EltVT = VT.getVectorElementType();
7561    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7562                                      EltVT);
7563    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7564    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7565                                    SignBits.size());
7566    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7567    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7568  }
7569
7570  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7571
7572  // If the logical-not of the result is required, perform that now.
7573  if (Invert)
7574    Result = DAG.getNOT(dl, Result, VT);
7575
7576  return Result;
7577}
7578
7579// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7580static bool isX86LogicalCmp(SDValue Op) {
7581  unsigned Opc = Op.getNode()->getOpcode();
7582  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7583    return true;
7584  if (Op.getResNo() == 1 &&
7585      (Opc == X86ISD::ADD ||
7586       Opc == X86ISD::SUB ||
7587       Opc == X86ISD::ADC ||
7588       Opc == X86ISD::SBB ||
7589       Opc == X86ISD::SMUL ||
7590       Opc == X86ISD::UMUL ||
7591       Opc == X86ISD::INC ||
7592       Opc == X86ISD::DEC ||
7593       Opc == X86ISD::OR ||
7594       Opc == X86ISD::XOR ||
7595       Opc == X86ISD::AND))
7596    return true;
7597
7598  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7599    return true;
7600
7601  return false;
7602}
7603
7604static bool isZero(SDValue V) {
7605  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7606  return C && C->isNullValue();
7607}
7608
7609static bool isAllOnes(SDValue V) {
7610  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7611  return C && C->isAllOnesValue();
7612}
7613
7614SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7615  bool addTest = true;
7616  SDValue Cond  = Op.getOperand(0);
7617  SDValue Op1 = Op.getOperand(1);
7618  SDValue Op2 = Op.getOperand(2);
7619  DebugLoc DL = Op.getDebugLoc();
7620  SDValue CC;
7621
7622  if (Cond.getOpcode() == ISD::SETCC) {
7623    SDValue NewCond = LowerSETCC(Cond, DAG);
7624    if (NewCond.getNode())
7625      Cond = NewCond;
7626  }
7627
7628  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7629  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7630  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7631  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7632  if (Cond.getOpcode() == X86ISD::SETCC &&
7633      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7634      isZero(Cond.getOperand(1).getOperand(1))) {
7635    SDValue Cmp = Cond.getOperand(1);
7636
7637    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7638
7639    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7640        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7641      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7642
7643      SDValue CmpOp0 = Cmp.getOperand(0);
7644      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7645                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7646
7647      SDValue Res =   // Res = 0 or -1.
7648        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7649                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7650
7651      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7652        Res = DAG.getNOT(DL, Res, Res.getValueType());
7653
7654      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7655      if (N2C == 0 || !N2C->isNullValue())
7656        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7657      return Res;
7658    }
7659  }
7660
7661  // Look past (and (setcc_carry (cmp ...)), 1).
7662  if (Cond.getOpcode() == ISD::AND &&
7663      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7664    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7665    if (C && C->getAPIntValue() == 1)
7666      Cond = Cond.getOperand(0);
7667  }
7668
7669  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7670  // setting operand in place of the X86ISD::SETCC.
7671  if (Cond.getOpcode() == X86ISD::SETCC ||
7672      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7673    CC = Cond.getOperand(0);
7674
7675    SDValue Cmp = Cond.getOperand(1);
7676    unsigned Opc = Cmp.getOpcode();
7677    EVT VT = Op.getValueType();
7678
7679    bool IllegalFPCMov = false;
7680    if (VT.isFloatingPoint() && !VT.isVector() &&
7681        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7682      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7683
7684    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7685        Opc == X86ISD::BT) { // FIXME
7686      Cond = Cmp;
7687      addTest = false;
7688    }
7689  }
7690
7691  if (addTest) {
7692    // Look pass the truncate.
7693    if (Cond.getOpcode() == ISD::TRUNCATE)
7694      Cond = Cond.getOperand(0);
7695
7696    // We know the result of AND is compared against zero. Try to match
7697    // it to BT.
7698    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7699      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7700      if (NewSetCC.getNode()) {
7701        CC = NewSetCC.getOperand(0);
7702        Cond = NewSetCC.getOperand(1);
7703        addTest = false;
7704      }
7705    }
7706  }
7707
7708  if (addTest) {
7709    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7710    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7711  }
7712
7713  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7714  // a <  b ?  0 : -1 -> RES = setcc_carry
7715  // a >= b ? -1 :  0 -> RES = setcc_carry
7716  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7717  if (Cond.getOpcode() == X86ISD::CMP) {
7718    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7719
7720    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7721        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7722      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7723                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7724      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7725        return DAG.getNOT(DL, Res, Res.getValueType());
7726      return Res;
7727    }
7728  }
7729
7730  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7731  // condition is true.
7732  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7733  SDValue Ops[] = { Op2, Op1, CC, Cond };
7734  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7735}
7736
7737// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7738// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7739// from the AND / OR.
7740static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7741  Opc = Op.getOpcode();
7742  if (Opc != ISD::OR && Opc != ISD::AND)
7743    return false;
7744  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7745          Op.getOperand(0).hasOneUse() &&
7746          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7747          Op.getOperand(1).hasOneUse());
7748}
7749
7750// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7751// 1 and that the SETCC node has a single use.
7752static bool isXor1OfSetCC(SDValue Op) {
7753  if (Op.getOpcode() != ISD::XOR)
7754    return false;
7755  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7756  if (N1C && N1C->getAPIntValue() == 1) {
7757    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7758      Op.getOperand(0).hasOneUse();
7759  }
7760  return false;
7761}
7762
7763SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7764  bool addTest = true;
7765  SDValue Chain = Op.getOperand(0);
7766  SDValue Cond  = Op.getOperand(1);
7767  SDValue Dest  = Op.getOperand(2);
7768  DebugLoc dl = Op.getDebugLoc();
7769  SDValue CC;
7770
7771  if (Cond.getOpcode() == ISD::SETCC) {
7772    SDValue NewCond = LowerSETCC(Cond, DAG);
7773    if (NewCond.getNode())
7774      Cond = NewCond;
7775  }
7776#if 0
7777  // FIXME: LowerXALUO doesn't handle these!!
7778  else if (Cond.getOpcode() == X86ISD::ADD  ||
7779           Cond.getOpcode() == X86ISD::SUB  ||
7780           Cond.getOpcode() == X86ISD::SMUL ||
7781           Cond.getOpcode() == X86ISD::UMUL)
7782    Cond = LowerXALUO(Cond, DAG);
7783#endif
7784
7785  // Look pass (and (setcc_carry (cmp ...)), 1).
7786  if (Cond.getOpcode() == ISD::AND &&
7787      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7788    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7789    if (C && C->getAPIntValue() == 1)
7790      Cond = Cond.getOperand(0);
7791  }
7792
7793  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7794  // setting operand in place of the X86ISD::SETCC.
7795  if (Cond.getOpcode() == X86ISD::SETCC ||
7796      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7797    CC = Cond.getOperand(0);
7798
7799    SDValue Cmp = Cond.getOperand(1);
7800    unsigned Opc = Cmp.getOpcode();
7801    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7802    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7803      Cond = Cmp;
7804      addTest = false;
7805    } else {
7806      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7807      default: break;
7808      case X86::COND_O:
7809      case X86::COND_B:
7810        // These can only come from an arithmetic instruction with overflow,
7811        // e.g. SADDO, UADDO.
7812        Cond = Cond.getNode()->getOperand(1);
7813        addTest = false;
7814        break;
7815      }
7816    }
7817  } else {
7818    unsigned CondOpc;
7819    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7820      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7821      if (CondOpc == ISD::OR) {
7822        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7823        // two branches instead of an explicit OR instruction with a
7824        // separate test.
7825        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7826            isX86LogicalCmp(Cmp)) {
7827          CC = Cond.getOperand(0).getOperand(0);
7828          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7829                              Chain, Dest, CC, Cmp);
7830          CC = Cond.getOperand(1).getOperand(0);
7831          Cond = Cmp;
7832          addTest = false;
7833        }
7834      } else { // ISD::AND
7835        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7836        // two branches instead of an explicit AND instruction with a
7837        // separate test. However, we only do this if this block doesn't
7838        // have a fall-through edge, because this requires an explicit
7839        // jmp when the condition is false.
7840        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7841            isX86LogicalCmp(Cmp) &&
7842            Op.getNode()->hasOneUse()) {
7843          X86::CondCode CCode =
7844            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7845          CCode = X86::GetOppositeBranchCondition(CCode);
7846          CC = DAG.getConstant(CCode, MVT::i8);
7847          SDNode *User = *Op.getNode()->use_begin();
7848          // Look for an unconditional branch following this conditional branch.
7849          // We need this because we need to reverse the successors in order
7850          // to implement FCMP_OEQ.
7851          if (User->getOpcode() == ISD::BR) {
7852            SDValue FalseBB = User->getOperand(1);
7853            SDNode *NewBR =
7854              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7855            assert(NewBR == User);
7856            (void)NewBR;
7857            Dest = FalseBB;
7858
7859            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7860                                Chain, Dest, CC, Cmp);
7861            X86::CondCode CCode =
7862              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7863            CCode = X86::GetOppositeBranchCondition(CCode);
7864            CC = DAG.getConstant(CCode, MVT::i8);
7865            Cond = Cmp;
7866            addTest = false;
7867          }
7868        }
7869      }
7870    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7871      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7872      // It should be transformed during dag combiner except when the condition
7873      // is set by a arithmetics with overflow node.
7874      X86::CondCode CCode =
7875        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7876      CCode = X86::GetOppositeBranchCondition(CCode);
7877      CC = DAG.getConstant(CCode, MVT::i8);
7878      Cond = Cond.getOperand(0).getOperand(1);
7879      addTest = false;
7880    }
7881  }
7882
7883  if (addTest) {
7884    // Look pass the truncate.
7885    if (Cond.getOpcode() == ISD::TRUNCATE)
7886      Cond = Cond.getOperand(0);
7887
7888    // We know the result of AND is compared against zero. Try to match
7889    // it to BT.
7890    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7891      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7892      if (NewSetCC.getNode()) {
7893        CC = NewSetCC.getOperand(0);
7894        Cond = NewSetCC.getOperand(1);
7895        addTest = false;
7896      }
7897    }
7898  }
7899
7900  if (addTest) {
7901    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7902    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7903  }
7904  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7905                     Chain, Dest, CC, Cond);
7906}
7907
7908
7909// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7910// Calls to _alloca is needed to probe the stack when allocating more than 4k
7911// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7912// that the guard pages used by the OS virtual memory manager are allocated in
7913// correct sequence.
7914SDValue
7915X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7916                                           SelectionDAG &DAG) const {
7917  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7918         "This should be used only on Windows targets");
7919  DebugLoc dl = Op.getDebugLoc();
7920
7921  // Get the inputs.
7922  SDValue Chain = Op.getOperand(0);
7923  SDValue Size  = Op.getOperand(1);
7924  // FIXME: Ensure alignment here
7925
7926  SDValue Flag;
7927
7928  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7929
7930  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7931  Flag = Chain.getValue(1);
7932
7933  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7934
7935  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7936  Flag = Chain.getValue(1);
7937
7938  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7939
7940  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7941  return DAG.getMergeValues(Ops1, 2, dl);
7942}
7943
7944SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7945  MachineFunction &MF = DAG.getMachineFunction();
7946  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7947
7948  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7949  DebugLoc DL = Op.getDebugLoc();
7950
7951  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7952    // vastart just stores the address of the VarArgsFrameIndex slot into the
7953    // memory location argument.
7954    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7955                                   getPointerTy());
7956    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7957                        MachinePointerInfo(SV), false, false, 0);
7958  }
7959
7960  // __va_list_tag:
7961  //   gp_offset         (0 - 6 * 8)
7962  //   fp_offset         (48 - 48 + 8 * 16)
7963  //   overflow_arg_area (point to parameters coming in memory).
7964  //   reg_save_area
7965  SmallVector<SDValue, 8> MemOps;
7966  SDValue FIN = Op.getOperand(1);
7967  // Store gp_offset
7968  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7969                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7970                                               MVT::i32),
7971                               FIN, MachinePointerInfo(SV), false, false, 0);
7972  MemOps.push_back(Store);
7973
7974  // Store fp_offset
7975  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7976                    FIN, DAG.getIntPtrConstant(4));
7977  Store = DAG.getStore(Op.getOperand(0), DL,
7978                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7979                                       MVT::i32),
7980                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7981  MemOps.push_back(Store);
7982
7983  // Store ptr to overflow_arg_area
7984  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7985                    FIN, DAG.getIntPtrConstant(4));
7986  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7987                                    getPointerTy());
7988  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7989                       MachinePointerInfo(SV, 8),
7990                       false, false, 0);
7991  MemOps.push_back(Store);
7992
7993  // Store ptr to reg_save_area.
7994  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7995                    FIN, DAG.getIntPtrConstant(8));
7996  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7997                                    getPointerTy());
7998  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7999                       MachinePointerInfo(SV, 16), false, false, 0);
8000  MemOps.push_back(Store);
8001  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8002                     &MemOps[0], MemOps.size());
8003}
8004
8005SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8006  assert(Subtarget->is64Bit() &&
8007         "LowerVAARG only handles 64-bit va_arg!");
8008  assert((Subtarget->isTargetLinux() ||
8009          Subtarget->isTargetDarwin()) &&
8010          "Unhandled target in LowerVAARG");
8011  assert(Op.getNode()->getNumOperands() == 4);
8012  SDValue Chain = Op.getOperand(0);
8013  SDValue SrcPtr = Op.getOperand(1);
8014  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8015  unsigned Align = Op.getConstantOperandVal(3);
8016  DebugLoc dl = Op.getDebugLoc();
8017
8018  EVT ArgVT = Op.getNode()->getValueType(0);
8019  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8020  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8021  uint8_t ArgMode;
8022
8023  // Decide which area this value should be read from.
8024  // TODO: Implement the AMD64 ABI in its entirety. This simple
8025  // selection mechanism works only for the basic types.
8026  if (ArgVT == MVT::f80) {
8027    llvm_unreachable("va_arg for f80 not yet implemented");
8028  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8029    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8030  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8031    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8032  } else {
8033    llvm_unreachable("Unhandled argument type in LowerVAARG");
8034  }
8035
8036  if (ArgMode == 2) {
8037    // Sanity Check: Make sure using fp_offset makes sense.
8038    assert(!UseSoftFloat &&
8039           !(DAG.getMachineFunction()
8040                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8041           Subtarget->hasXMM());
8042  }
8043
8044  // Insert VAARG_64 node into the DAG
8045  // VAARG_64 returns two values: Variable Argument Address, Chain
8046  SmallVector<SDValue, 11> InstOps;
8047  InstOps.push_back(Chain);
8048  InstOps.push_back(SrcPtr);
8049  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8050  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8051  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8052  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8053  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8054                                          VTs, &InstOps[0], InstOps.size(),
8055                                          MVT::i64,
8056                                          MachinePointerInfo(SV),
8057                                          /*Align=*/0,
8058                                          /*Volatile=*/false,
8059                                          /*ReadMem=*/true,
8060                                          /*WriteMem=*/true);
8061  Chain = VAARG.getValue(1);
8062
8063  // Load the next argument and return it
8064  return DAG.getLoad(ArgVT, dl,
8065                     Chain,
8066                     VAARG,
8067                     MachinePointerInfo(),
8068                     false, false, 0);
8069}
8070
8071SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8072  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8073  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8074  SDValue Chain = Op.getOperand(0);
8075  SDValue DstPtr = Op.getOperand(1);
8076  SDValue SrcPtr = Op.getOperand(2);
8077  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8078  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8079  DebugLoc DL = Op.getDebugLoc();
8080
8081  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8082                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8083                       false,
8084                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8085}
8086
8087SDValue
8088X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8089  DebugLoc dl = Op.getDebugLoc();
8090  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8091  switch (IntNo) {
8092  default: return SDValue();    // Don't custom lower most intrinsics.
8093  // Comparison intrinsics.
8094  case Intrinsic::x86_sse_comieq_ss:
8095  case Intrinsic::x86_sse_comilt_ss:
8096  case Intrinsic::x86_sse_comile_ss:
8097  case Intrinsic::x86_sse_comigt_ss:
8098  case Intrinsic::x86_sse_comige_ss:
8099  case Intrinsic::x86_sse_comineq_ss:
8100  case Intrinsic::x86_sse_ucomieq_ss:
8101  case Intrinsic::x86_sse_ucomilt_ss:
8102  case Intrinsic::x86_sse_ucomile_ss:
8103  case Intrinsic::x86_sse_ucomigt_ss:
8104  case Intrinsic::x86_sse_ucomige_ss:
8105  case Intrinsic::x86_sse_ucomineq_ss:
8106  case Intrinsic::x86_sse2_comieq_sd:
8107  case Intrinsic::x86_sse2_comilt_sd:
8108  case Intrinsic::x86_sse2_comile_sd:
8109  case Intrinsic::x86_sse2_comigt_sd:
8110  case Intrinsic::x86_sse2_comige_sd:
8111  case Intrinsic::x86_sse2_comineq_sd:
8112  case Intrinsic::x86_sse2_ucomieq_sd:
8113  case Intrinsic::x86_sse2_ucomilt_sd:
8114  case Intrinsic::x86_sse2_ucomile_sd:
8115  case Intrinsic::x86_sse2_ucomigt_sd:
8116  case Intrinsic::x86_sse2_ucomige_sd:
8117  case Intrinsic::x86_sse2_ucomineq_sd: {
8118    unsigned Opc = 0;
8119    ISD::CondCode CC = ISD::SETCC_INVALID;
8120    switch (IntNo) {
8121    default: break;
8122    case Intrinsic::x86_sse_comieq_ss:
8123    case Intrinsic::x86_sse2_comieq_sd:
8124      Opc = X86ISD::COMI;
8125      CC = ISD::SETEQ;
8126      break;
8127    case Intrinsic::x86_sse_comilt_ss:
8128    case Intrinsic::x86_sse2_comilt_sd:
8129      Opc = X86ISD::COMI;
8130      CC = ISD::SETLT;
8131      break;
8132    case Intrinsic::x86_sse_comile_ss:
8133    case Intrinsic::x86_sse2_comile_sd:
8134      Opc = X86ISD::COMI;
8135      CC = ISD::SETLE;
8136      break;
8137    case Intrinsic::x86_sse_comigt_ss:
8138    case Intrinsic::x86_sse2_comigt_sd:
8139      Opc = X86ISD::COMI;
8140      CC = ISD::SETGT;
8141      break;
8142    case Intrinsic::x86_sse_comige_ss:
8143    case Intrinsic::x86_sse2_comige_sd:
8144      Opc = X86ISD::COMI;
8145      CC = ISD::SETGE;
8146      break;
8147    case Intrinsic::x86_sse_comineq_ss:
8148    case Intrinsic::x86_sse2_comineq_sd:
8149      Opc = X86ISD::COMI;
8150      CC = ISD::SETNE;
8151      break;
8152    case Intrinsic::x86_sse_ucomieq_ss:
8153    case Intrinsic::x86_sse2_ucomieq_sd:
8154      Opc = X86ISD::UCOMI;
8155      CC = ISD::SETEQ;
8156      break;
8157    case Intrinsic::x86_sse_ucomilt_ss:
8158    case Intrinsic::x86_sse2_ucomilt_sd:
8159      Opc = X86ISD::UCOMI;
8160      CC = ISD::SETLT;
8161      break;
8162    case Intrinsic::x86_sse_ucomile_ss:
8163    case Intrinsic::x86_sse2_ucomile_sd:
8164      Opc = X86ISD::UCOMI;
8165      CC = ISD::SETLE;
8166      break;
8167    case Intrinsic::x86_sse_ucomigt_ss:
8168    case Intrinsic::x86_sse2_ucomigt_sd:
8169      Opc = X86ISD::UCOMI;
8170      CC = ISD::SETGT;
8171      break;
8172    case Intrinsic::x86_sse_ucomige_ss:
8173    case Intrinsic::x86_sse2_ucomige_sd:
8174      Opc = X86ISD::UCOMI;
8175      CC = ISD::SETGE;
8176      break;
8177    case Intrinsic::x86_sse_ucomineq_ss:
8178    case Intrinsic::x86_sse2_ucomineq_sd:
8179      Opc = X86ISD::UCOMI;
8180      CC = ISD::SETNE;
8181      break;
8182    }
8183
8184    SDValue LHS = Op.getOperand(1);
8185    SDValue RHS = Op.getOperand(2);
8186    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8187    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8188    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8189    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8190                                DAG.getConstant(X86CC, MVT::i8), Cond);
8191    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8192  }
8193  // ptest and testp intrinsics. The intrinsic these come from are designed to
8194  // return an integer value, not just an instruction so lower it to the ptest
8195  // or testp pattern and a setcc for the result.
8196  case Intrinsic::x86_sse41_ptestz:
8197  case Intrinsic::x86_sse41_ptestc:
8198  case Intrinsic::x86_sse41_ptestnzc:
8199  case Intrinsic::x86_avx_ptestz_256:
8200  case Intrinsic::x86_avx_ptestc_256:
8201  case Intrinsic::x86_avx_ptestnzc_256:
8202  case Intrinsic::x86_avx_vtestz_ps:
8203  case Intrinsic::x86_avx_vtestc_ps:
8204  case Intrinsic::x86_avx_vtestnzc_ps:
8205  case Intrinsic::x86_avx_vtestz_pd:
8206  case Intrinsic::x86_avx_vtestc_pd:
8207  case Intrinsic::x86_avx_vtestnzc_pd:
8208  case Intrinsic::x86_avx_vtestz_ps_256:
8209  case Intrinsic::x86_avx_vtestc_ps_256:
8210  case Intrinsic::x86_avx_vtestnzc_ps_256:
8211  case Intrinsic::x86_avx_vtestz_pd_256:
8212  case Intrinsic::x86_avx_vtestc_pd_256:
8213  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8214    bool IsTestPacked = false;
8215    unsigned X86CC = 0;
8216    switch (IntNo) {
8217    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8218    case Intrinsic::x86_avx_vtestz_ps:
8219    case Intrinsic::x86_avx_vtestz_pd:
8220    case Intrinsic::x86_avx_vtestz_ps_256:
8221    case Intrinsic::x86_avx_vtestz_pd_256:
8222      IsTestPacked = true; // Fallthrough
8223    case Intrinsic::x86_sse41_ptestz:
8224    case Intrinsic::x86_avx_ptestz_256:
8225      // ZF = 1
8226      X86CC = X86::COND_E;
8227      break;
8228    case Intrinsic::x86_avx_vtestc_ps:
8229    case Intrinsic::x86_avx_vtestc_pd:
8230    case Intrinsic::x86_avx_vtestc_ps_256:
8231    case Intrinsic::x86_avx_vtestc_pd_256:
8232      IsTestPacked = true; // Fallthrough
8233    case Intrinsic::x86_sse41_ptestc:
8234    case Intrinsic::x86_avx_ptestc_256:
8235      // CF = 1
8236      X86CC = X86::COND_B;
8237      break;
8238    case Intrinsic::x86_avx_vtestnzc_ps:
8239    case Intrinsic::x86_avx_vtestnzc_pd:
8240    case Intrinsic::x86_avx_vtestnzc_ps_256:
8241    case Intrinsic::x86_avx_vtestnzc_pd_256:
8242      IsTestPacked = true; // Fallthrough
8243    case Intrinsic::x86_sse41_ptestnzc:
8244    case Intrinsic::x86_avx_ptestnzc_256:
8245      // ZF and CF = 0
8246      X86CC = X86::COND_A;
8247      break;
8248    }
8249
8250    SDValue LHS = Op.getOperand(1);
8251    SDValue RHS = Op.getOperand(2);
8252    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8253    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8254    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8255    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8256    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8257  }
8258
8259  // Fix vector shift instructions where the last operand is a non-immediate
8260  // i32 value.
8261  case Intrinsic::x86_sse2_pslli_w:
8262  case Intrinsic::x86_sse2_pslli_d:
8263  case Intrinsic::x86_sse2_pslli_q:
8264  case Intrinsic::x86_sse2_psrli_w:
8265  case Intrinsic::x86_sse2_psrli_d:
8266  case Intrinsic::x86_sse2_psrli_q:
8267  case Intrinsic::x86_sse2_psrai_w:
8268  case Intrinsic::x86_sse2_psrai_d:
8269  case Intrinsic::x86_mmx_pslli_w:
8270  case Intrinsic::x86_mmx_pslli_d:
8271  case Intrinsic::x86_mmx_pslli_q:
8272  case Intrinsic::x86_mmx_psrli_w:
8273  case Intrinsic::x86_mmx_psrli_d:
8274  case Intrinsic::x86_mmx_psrli_q:
8275  case Intrinsic::x86_mmx_psrai_w:
8276  case Intrinsic::x86_mmx_psrai_d: {
8277    SDValue ShAmt = Op.getOperand(2);
8278    if (isa<ConstantSDNode>(ShAmt))
8279      return SDValue();
8280
8281    unsigned NewIntNo = 0;
8282    EVT ShAmtVT = MVT::v4i32;
8283    switch (IntNo) {
8284    case Intrinsic::x86_sse2_pslli_w:
8285      NewIntNo = Intrinsic::x86_sse2_psll_w;
8286      break;
8287    case Intrinsic::x86_sse2_pslli_d:
8288      NewIntNo = Intrinsic::x86_sse2_psll_d;
8289      break;
8290    case Intrinsic::x86_sse2_pslli_q:
8291      NewIntNo = Intrinsic::x86_sse2_psll_q;
8292      break;
8293    case Intrinsic::x86_sse2_psrli_w:
8294      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8295      break;
8296    case Intrinsic::x86_sse2_psrli_d:
8297      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8298      break;
8299    case Intrinsic::x86_sse2_psrli_q:
8300      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8301      break;
8302    case Intrinsic::x86_sse2_psrai_w:
8303      NewIntNo = Intrinsic::x86_sse2_psra_w;
8304      break;
8305    case Intrinsic::x86_sse2_psrai_d:
8306      NewIntNo = Intrinsic::x86_sse2_psra_d;
8307      break;
8308    default: {
8309      ShAmtVT = MVT::v2i32;
8310      switch (IntNo) {
8311      case Intrinsic::x86_mmx_pslli_w:
8312        NewIntNo = Intrinsic::x86_mmx_psll_w;
8313        break;
8314      case Intrinsic::x86_mmx_pslli_d:
8315        NewIntNo = Intrinsic::x86_mmx_psll_d;
8316        break;
8317      case Intrinsic::x86_mmx_pslli_q:
8318        NewIntNo = Intrinsic::x86_mmx_psll_q;
8319        break;
8320      case Intrinsic::x86_mmx_psrli_w:
8321        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8322        break;
8323      case Intrinsic::x86_mmx_psrli_d:
8324        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8325        break;
8326      case Intrinsic::x86_mmx_psrli_q:
8327        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8328        break;
8329      case Intrinsic::x86_mmx_psrai_w:
8330        NewIntNo = Intrinsic::x86_mmx_psra_w;
8331        break;
8332      case Intrinsic::x86_mmx_psrai_d:
8333        NewIntNo = Intrinsic::x86_mmx_psra_d;
8334        break;
8335      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8336      }
8337      break;
8338    }
8339    }
8340
8341    // The vector shift intrinsics with scalars uses 32b shift amounts but
8342    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8343    // to be zero.
8344    SDValue ShOps[4];
8345    ShOps[0] = ShAmt;
8346    ShOps[1] = DAG.getConstant(0, MVT::i32);
8347    if (ShAmtVT == MVT::v4i32) {
8348      ShOps[2] = DAG.getUNDEF(MVT::i32);
8349      ShOps[3] = DAG.getUNDEF(MVT::i32);
8350      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8351    } else {
8352      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8353// FIXME this must be lowered to get rid of the invalid type.
8354    }
8355
8356    EVT VT = Op.getValueType();
8357    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8358    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8359                       DAG.getConstant(NewIntNo, MVT::i32),
8360                       Op.getOperand(1), ShAmt);
8361  }
8362  }
8363}
8364
8365SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8366                                           SelectionDAG &DAG) const {
8367  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8368  MFI->setReturnAddressIsTaken(true);
8369
8370  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8371  DebugLoc dl = Op.getDebugLoc();
8372
8373  if (Depth > 0) {
8374    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8375    SDValue Offset =
8376      DAG.getConstant(TD->getPointerSize(),
8377                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8378    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8379                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8380                                   FrameAddr, Offset),
8381                       MachinePointerInfo(), false, false, 0);
8382  }
8383
8384  // Just load the return address.
8385  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8386  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8387                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8388}
8389
8390SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8391  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8392  MFI->setFrameAddressIsTaken(true);
8393
8394  EVT VT = Op.getValueType();
8395  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8396  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8397  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8398  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8399  while (Depth--)
8400    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8401                            MachinePointerInfo(),
8402                            false, false, 0);
8403  return FrameAddr;
8404}
8405
8406SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8407                                                     SelectionDAG &DAG) const {
8408  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8409}
8410
8411SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8412  MachineFunction &MF = DAG.getMachineFunction();
8413  SDValue Chain     = Op.getOperand(0);
8414  SDValue Offset    = Op.getOperand(1);
8415  SDValue Handler   = Op.getOperand(2);
8416  DebugLoc dl       = Op.getDebugLoc();
8417
8418  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8419                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8420                                     getPointerTy());
8421  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8422
8423  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8424                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8425  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8426  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8427                       false, false, 0);
8428  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8429  MF.getRegInfo().addLiveOut(StoreAddrReg);
8430
8431  return DAG.getNode(X86ISD::EH_RETURN, dl,
8432                     MVT::Other,
8433                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8434}
8435
8436SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8437                                             SelectionDAG &DAG) const {
8438  SDValue Root = Op.getOperand(0);
8439  SDValue Trmp = Op.getOperand(1); // trampoline
8440  SDValue FPtr = Op.getOperand(2); // nested function
8441  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8442  DebugLoc dl  = Op.getDebugLoc();
8443
8444  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8445
8446  if (Subtarget->is64Bit()) {
8447    SDValue OutChains[6];
8448
8449    // Large code-model.
8450    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8451    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8452
8453    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8454    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8455
8456    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8457
8458    // Load the pointer to the nested function into R11.
8459    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8460    SDValue Addr = Trmp;
8461    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8462                                Addr, MachinePointerInfo(TrmpAddr),
8463                                false, false, 0);
8464
8465    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8466                       DAG.getConstant(2, MVT::i64));
8467    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8468                                MachinePointerInfo(TrmpAddr, 2),
8469                                false, false, 2);
8470
8471    // Load the 'nest' parameter value into R10.
8472    // R10 is specified in X86CallingConv.td
8473    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8474    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8475                       DAG.getConstant(10, MVT::i64));
8476    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8477                                Addr, MachinePointerInfo(TrmpAddr, 10),
8478                                false, false, 0);
8479
8480    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8481                       DAG.getConstant(12, MVT::i64));
8482    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8483                                MachinePointerInfo(TrmpAddr, 12),
8484                                false, false, 2);
8485
8486    // Jump to the nested function.
8487    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8488    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8489                       DAG.getConstant(20, MVT::i64));
8490    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8491                                Addr, MachinePointerInfo(TrmpAddr, 20),
8492                                false, false, 0);
8493
8494    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8495    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8496                       DAG.getConstant(22, MVT::i64));
8497    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8498                                MachinePointerInfo(TrmpAddr, 22),
8499                                false, false, 0);
8500
8501    SDValue Ops[] =
8502      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8503    return DAG.getMergeValues(Ops, 2, dl);
8504  } else {
8505    const Function *Func =
8506      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8507    CallingConv::ID CC = Func->getCallingConv();
8508    unsigned NestReg;
8509
8510    switch (CC) {
8511    default:
8512      llvm_unreachable("Unsupported calling convention");
8513    case CallingConv::C:
8514    case CallingConv::X86_StdCall: {
8515      // Pass 'nest' parameter in ECX.
8516      // Must be kept in sync with X86CallingConv.td
8517      NestReg = X86::ECX;
8518
8519      // Check that ECX wasn't needed by an 'inreg' parameter.
8520      const FunctionType *FTy = Func->getFunctionType();
8521      const AttrListPtr &Attrs = Func->getAttributes();
8522
8523      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8524        unsigned InRegCount = 0;
8525        unsigned Idx = 1;
8526
8527        for (FunctionType::param_iterator I = FTy->param_begin(),
8528             E = FTy->param_end(); I != E; ++I, ++Idx)
8529          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8530            // FIXME: should only count parameters that are lowered to integers.
8531            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8532
8533        if (InRegCount > 2) {
8534          report_fatal_error("Nest register in use - reduce number of inreg"
8535                             " parameters!");
8536        }
8537      }
8538      break;
8539    }
8540    case CallingConv::X86_FastCall:
8541    case CallingConv::X86_ThisCall:
8542    case CallingConv::Fast:
8543      // Pass 'nest' parameter in EAX.
8544      // Must be kept in sync with X86CallingConv.td
8545      NestReg = X86::EAX;
8546      break;
8547    }
8548
8549    SDValue OutChains[4];
8550    SDValue Addr, Disp;
8551
8552    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8553                       DAG.getConstant(10, MVT::i32));
8554    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8555
8556    // This is storing the opcode for MOV32ri.
8557    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8558    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8559    OutChains[0] = DAG.getStore(Root, dl,
8560                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8561                                Trmp, MachinePointerInfo(TrmpAddr),
8562                                false, false, 0);
8563
8564    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8565                       DAG.getConstant(1, MVT::i32));
8566    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8567                                MachinePointerInfo(TrmpAddr, 1),
8568                                false, false, 1);
8569
8570    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8571    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8572                       DAG.getConstant(5, MVT::i32));
8573    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8574                                MachinePointerInfo(TrmpAddr, 5),
8575                                false, false, 1);
8576
8577    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8578                       DAG.getConstant(6, MVT::i32));
8579    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8580                                MachinePointerInfo(TrmpAddr, 6),
8581                                false, false, 1);
8582
8583    SDValue Ops[] =
8584      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8585    return DAG.getMergeValues(Ops, 2, dl);
8586  }
8587}
8588
8589SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8590                                            SelectionDAG &DAG) const {
8591  /*
8592   The rounding mode is in bits 11:10 of FPSR, and has the following
8593   settings:
8594     00 Round to nearest
8595     01 Round to -inf
8596     10 Round to +inf
8597     11 Round to 0
8598
8599  FLT_ROUNDS, on the other hand, expects the following:
8600    -1 Undefined
8601     0 Round to 0
8602     1 Round to nearest
8603     2 Round to +inf
8604     3 Round to -inf
8605
8606  To perform the conversion, we do:
8607    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8608  */
8609
8610  MachineFunction &MF = DAG.getMachineFunction();
8611  const TargetMachine &TM = MF.getTarget();
8612  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8613  unsigned StackAlignment = TFI.getStackAlignment();
8614  EVT VT = Op.getValueType();
8615  DebugLoc DL = Op.getDebugLoc();
8616
8617  // Save FP Control Word to stack slot
8618  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8619  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8620
8621
8622  MachineMemOperand *MMO =
8623   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8624                           MachineMemOperand::MOStore, 2, 2);
8625
8626  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8627  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8628                                          DAG.getVTList(MVT::Other),
8629                                          Ops, 2, MVT::i16, MMO);
8630
8631  // Load FP Control Word from stack slot
8632  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8633                            MachinePointerInfo(), false, false, 0);
8634
8635  // Transform as necessary
8636  SDValue CWD1 =
8637    DAG.getNode(ISD::SRL, DL, MVT::i16,
8638                DAG.getNode(ISD::AND, DL, MVT::i16,
8639                            CWD, DAG.getConstant(0x800, MVT::i16)),
8640                DAG.getConstant(11, MVT::i8));
8641  SDValue CWD2 =
8642    DAG.getNode(ISD::SRL, DL, MVT::i16,
8643                DAG.getNode(ISD::AND, DL, MVT::i16,
8644                            CWD, DAG.getConstant(0x400, MVT::i16)),
8645                DAG.getConstant(9, MVT::i8));
8646
8647  SDValue RetVal =
8648    DAG.getNode(ISD::AND, DL, MVT::i16,
8649                DAG.getNode(ISD::ADD, DL, MVT::i16,
8650                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8651                            DAG.getConstant(1, MVT::i16)),
8652                DAG.getConstant(3, MVT::i16));
8653
8654
8655  return DAG.getNode((VT.getSizeInBits() < 16 ?
8656                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8657}
8658
8659SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8660  EVT VT = Op.getValueType();
8661  EVT OpVT = VT;
8662  unsigned NumBits = VT.getSizeInBits();
8663  DebugLoc dl = Op.getDebugLoc();
8664
8665  Op = Op.getOperand(0);
8666  if (VT == MVT::i8) {
8667    // Zero extend to i32 since there is not an i8 bsr.
8668    OpVT = MVT::i32;
8669    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8670  }
8671
8672  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8673  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8674  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8675
8676  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8677  SDValue Ops[] = {
8678    Op,
8679    DAG.getConstant(NumBits+NumBits-1, OpVT),
8680    DAG.getConstant(X86::COND_E, MVT::i8),
8681    Op.getValue(1)
8682  };
8683  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8684
8685  // Finally xor with NumBits-1.
8686  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8687
8688  if (VT == MVT::i8)
8689    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8690  return Op;
8691}
8692
8693SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8694  EVT VT = Op.getValueType();
8695  EVT OpVT = VT;
8696  unsigned NumBits = VT.getSizeInBits();
8697  DebugLoc dl = Op.getDebugLoc();
8698
8699  Op = Op.getOperand(0);
8700  if (VT == MVT::i8) {
8701    OpVT = MVT::i32;
8702    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8703  }
8704
8705  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8706  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8707  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8708
8709  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8710  SDValue Ops[] = {
8711    Op,
8712    DAG.getConstant(NumBits, OpVT),
8713    DAG.getConstant(X86::COND_E, MVT::i8),
8714    Op.getValue(1)
8715  };
8716  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8717
8718  if (VT == MVT::i8)
8719    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8720  return Op;
8721}
8722
8723SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8724  EVT VT = Op.getValueType();
8725  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8726  DebugLoc dl = Op.getDebugLoc();
8727
8728  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8729  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8730  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8731  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8732  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8733  //
8734  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8735  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8736  //  return AloBlo + AloBhi + AhiBlo;
8737
8738  SDValue A = Op.getOperand(0);
8739  SDValue B = Op.getOperand(1);
8740
8741  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8742                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8743                       A, DAG.getConstant(32, MVT::i32));
8744  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8745                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8746                       B, DAG.getConstant(32, MVT::i32));
8747  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8748                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8749                       A, B);
8750  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8751                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8752                       A, Bhi);
8753  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8754                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8755                       Ahi, B);
8756  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8757                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8758                       AloBhi, DAG.getConstant(32, MVT::i32));
8759  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8760                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8761                       AhiBlo, DAG.getConstant(32, MVT::i32));
8762  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8763  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8764  return Res;
8765}
8766
8767SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8768  EVT VT = Op.getValueType();
8769  DebugLoc dl = Op.getDebugLoc();
8770  SDValue R = Op.getOperand(0);
8771
8772  LLVMContext *Context = DAG.getContext();
8773
8774  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8775
8776  if (VT == MVT::v4i32) {
8777    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8778                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8779                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8780
8781    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8782
8783    std::vector<Constant*> CV(4, CI);
8784    Constant *C = ConstantVector::get(CV);
8785    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8786    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8787                                 MachinePointerInfo::getConstantPool(),
8788                                 false, false, 16);
8789
8790    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8791    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8792    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8793    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8794  }
8795  if (VT == MVT::v16i8) {
8796    // a = a << 5;
8797    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8798                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8799                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8800
8801    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8802    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8803
8804    std::vector<Constant*> CVM1(16, CM1);
8805    std::vector<Constant*> CVM2(16, CM2);
8806    Constant *C = ConstantVector::get(CVM1);
8807    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8808    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8809                            MachinePointerInfo::getConstantPool(),
8810                            false, false, 16);
8811
8812    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8813    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8814    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8815                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8816                    DAG.getConstant(4, MVT::i32));
8817    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8818    // a += a
8819    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8820
8821    C = ConstantVector::get(CVM2);
8822    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8823    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8824                    MachinePointerInfo::getConstantPool(),
8825                    false, false, 16);
8826
8827    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8828    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8829    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8830                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8831                    DAG.getConstant(2, MVT::i32));
8832    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8833    // a += a
8834    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8835
8836    // return pblendv(r, r+r, a);
8837    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8838                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8839    return R;
8840  }
8841  return SDValue();
8842}
8843
8844SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8845  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8846  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8847  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8848  // has only one use.
8849  SDNode *N = Op.getNode();
8850  SDValue LHS = N->getOperand(0);
8851  SDValue RHS = N->getOperand(1);
8852  unsigned BaseOp = 0;
8853  unsigned Cond = 0;
8854  DebugLoc DL = Op.getDebugLoc();
8855  switch (Op.getOpcode()) {
8856  default: llvm_unreachable("Unknown ovf instruction!");
8857  case ISD::SADDO:
8858    // A subtract of one will be selected as a INC. Note that INC doesn't
8859    // set CF, so we can't do this for UADDO.
8860    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8861      if (C->isOne()) {
8862        BaseOp = X86ISD::INC;
8863        Cond = X86::COND_O;
8864        break;
8865      }
8866    BaseOp = X86ISD::ADD;
8867    Cond = X86::COND_O;
8868    break;
8869  case ISD::UADDO:
8870    BaseOp = X86ISD::ADD;
8871    Cond = X86::COND_B;
8872    break;
8873  case ISD::SSUBO:
8874    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8875    // set CF, so we can't do this for USUBO.
8876    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8877      if (C->isOne()) {
8878        BaseOp = X86ISD::DEC;
8879        Cond = X86::COND_O;
8880        break;
8881      }
8882    BaseOp = X86ISD::SUB;
8883    Cond = X86::COND_O;
8884    break;
8885  case ISD::USUBO:
8886    BaseOp = X86ISD::SUB;
8887    Cond = X86::COND_B;
8888    break;
8889  case ISD::SMULO:
8890    BaseOp = X86ISD::SMUL;
8891    Cond = X86::COND_O;
8892    break;
8893  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8894    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8895                                 MVT::i32);
8896    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8897
8898    SDValue SetCC =
8899      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8900                  DAG.getConstant(X86::COND_O, MVT::i32),
8901                  SDValue(Sum.getNode(), 2));
8902
8903    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8904    return Sum;
8905  }
8906  }
8907
8908  // Also sets EFLAGS.
8909  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8910  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8911
8912  SDValue SetCC =
8913    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8914                DAG.getConstant(Cond, MVT::i32),
8915                SDValue(Sum.getNode(), 1));
8916
8917  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8918  return Sum;
8919}
8920
8921SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8922  DebugLoc dl = Op.getDebugLoc();
8923
8924  if (!Subtarget->hasSSE2()) {
8925    SDValue Chain = Op.getOperand(0);
8926    SDValue Zero = DAG.getConstant(0,
8927                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8928    SDValue Ops[] = {
8929      DAG.getRegister(X86::ESP, MVT::i32), // Base
8930      DAG.getTargetConstant(1, MVT::i8),   // Scale
8931      DAG.getRegister(0, MVT::i32),        // Index
8932      DAG.getTargetConstant(0, MVT::i32),  // Disp
8933      DAG.getRegister(0, MVT::i32),        // Segment.
8934      Zero,
8935      Chain
8936    };
8937    SDNode *Res =
8938      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8939                          array_lengthof(Ops));
8940    return SDValue(Res, 0);
8941  }
8942
8943  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8944  if (!isDev)
8945    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8946
8947  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8948  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8949  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8950  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8951
8952  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8953  if (!Op1 && !Op2 && !Op3 && Op4)
8954    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8955
8956  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8957  if (Op1 && !Op2 && !Op3 && !Op4)
8958    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8959
8960  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8961  //           (MFENCE)>;
8962  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8963}
8964
8965SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8966  EVT T = Op.getValueType();
8967  DebugLoc DL = Op.getDebugLoc();
8968  unsigned Reg = 0;
8969  unsigned size = 0;
8970  switch(T.getSimpleVT().SimpleTy) {
8971  default:
8972    assert(false && "Invalid value type!");
8973  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8974  case MVT::i16: Reg = X86::AX;  size = 2; break;
8975  case MVT::i32: Reg = X86::EAX; size = 4; break;
8976  case MVT::i64:
8977    assert(Subtarget->is64Bit() && "Node not type legal!");
8978    Reg = X86::RAX; size = 8;
8979    break;
8980  }
8981  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8982                                    Op.getOperand(2), SDValue());
8983  SDValue Ops[] = { cpIn.getValue(0),
8984                    Op.getOperand(1),
8985                    Op.getOperand(3),
8986                    DAG.getTargetConstant(size, MVT::i8),
8987                    cpIn.getValue(1) };
8988  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8989  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8990  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8991                                           Ops, 5, T, MMO);
8992  SDValue cpOut =
8993    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8994  return cpOut;
8995}
8996
8997SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8998                                                 SelectionDAG &DAG) const {
8999  assert(Subtarget->is64Bit() && "Result not type legalized?");
9000  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9001  SDValue TheChain = Op.getOperand(0);
9002  DebugLoc dl = Op.getDebugLoc();
9003  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9004  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9005  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9006                                   rax.getValue(2));
9007  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9008                            DAG.getConstant(32, MVT::i8));
9009  SDValue Ops[] = {
9010    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9011    rdx.getValue(1)
9012  };
9013  return DAG.getMergeValues(Ops, 2, dl);
9014}
9015
9016SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9017                                            SelectionDAG &DAG) const {
9018  EVT SrcVT = Op.getOperand(0).getValueType();
9019  EVT DstVT = Op.getValueType();
9020  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9021         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9022  assert((DstVT == MVT::i64 ||
9023          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9024         "Unexpected custom BITCAST");
9025  // i64 <=> MMX conversions are Legal.
9026  if (SrcVT==MVT::i64 && DstVT.isVector())
9027    return Op;
9028  if (DstVT==MVT::i64 && SrcVT.isVector())
9029    return Op;
9030  // MMX <=> MMX conversions are Legal.
9031  if (SrcVT.isVector() && DstVT.isVector())
9032    return Op;
9033  // All other conversions need to be expanded.
9034  return SDValue();
9035}
9036
9037SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9038  SDNode *Node = Op.getNode();
9039  DebugLoc dl = Node->getDebugLoc();
9040  EVT T = Node->getValueType(0);
9041  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9042                              DAG.getConstant(0, T), Node->getOperand(2));
9043  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9044                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9045                       Node->getOperand(0),
9046                       Node->getOperand(1), negOp,
9047                       cast<AtomicSDNode>(Node)->getSrcValue(),
9048                       cast<AtomicSDNode>(Node)->getAlignment());
9049}
9050
9051static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9052  EVT VT = Op.getNode()->getValueType(0);
9053
9054  // Let legalize expand this if it isn't a legal type yet.
9055  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9056    return SDValue();
9057
9058  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9059
9060  unsigned Opc;
9061  bool ExtraOp = false;
9062  switch (Op.getOpcode()) {
9063  default: assert(0 && "Invalid code");
9064  case ISD::ADDC: Opc = X86ISD::ADD; break;
9065  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9066  case ISD::SUBC: Opc = X86ISD::SUB; break;
9067  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9068  }
9069
9070  if (!ExtraOp)
9071    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9072                       Op.getOperand(1));
9073  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9074                     Op.getOperand(1), Op.getOperand(2));
9075}
9076
9077/// LowerOperation - Provide custom lowering hooks for some operations.
9078///
9079SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9080  switch (Op.getOpcode()) {
9081  default: llvm_unreachable("Should not custom lower this!");
9082  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9083  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9084  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9085  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9086  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9087  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9088  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9089  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9090  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9091  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9092  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9093  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9094  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9095  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9096  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9097  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9098  case ISD::SHL_PARTS:
9099  case ISD::SRA_PARTS:
9100  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
9101  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9102  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9103  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9104  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9105  case ISD::FABS:               return LowerFABS(Op, DAG);
9106  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9107  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9108  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9109  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9110  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9111  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9112  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9113  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9114  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9115  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9116  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9117  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9118  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9119  case ISD::FRAME_TO_ARGS_OFFSET:
9120                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9121  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9122  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9123  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9124  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9125  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9126  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9127  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9128  case ISD::SHL:                return LowerSHL(Op, DAG);
9129  case ISD::SADDO:
9130  case ISD::UADDO:
9131  case ISD::SSUBO:
9132  case ISD::USUBO:
9133  case ISD::SMULO:
9134  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9135  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9136  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9137  case ISD::ADDC:
9138  case ISD::ADDE:
9139  case ISD::SUBC:
9140  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9141  }
9142}
9143
9144void X86TargetLowering::
9145ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9146                        SelectionDAG &DAG, unsigned NewOp) const {
9147  EVT T = Node->getValueType(0);
9148  DebugLoc dl = Node->getDebugLoc();
9149  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9150
9151  SDValue Chain = Node->getOperand(0);
9152  SDValue In1 = Node->getOperand(1);
9153  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9154                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9155  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9156                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9157  SDValue Ops[] = { Chain, In1, In2L, In2H };
9158  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9159  SDValue Result =
9160    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9161                            cast<MemSDNode>(Node)->getMemOperand());
9162  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9163  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9164  Results.push_back(Result.getValue(2));
9165}
9166
9167/// ReplaceNodeResults - Replace a node with an illegal result type
9168/// with a new node built out of custom code.
9169void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9170                                           SmallVectorImpl<SDValue>&Results,
9171                                           SelectionDAG &DAG) const {
9172  DebugLoc dl = N->getDebugLoc();
9173  switch (N->getOpcode()) {
9174  default:
9175    assert(false && "Do not know how to custom type legalize this operation!");
9176    return;
9177  case ISD::ADDC:
9178  case ISD::ADDE:
9179  case ISD::SUBC:
9180  case ISD::SUBE:
9181    // We don't want to expand or promote these.
9182    return;
9183  case ISD::FP_TO_SINT: {
9184    std::pair<SDValue,SDValue> Vals =
9185        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9186    SDValue FIST = Vals.first, StackSlot = Vals.second;
9187    if (FIST.getNode() != 0) {
9188      EVT VT = N->getValueType(0);
9189      // Return a load from the stack slot.
9190      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9191                                    MachinePointerInfo(), false, false, 0));
9192    }
9193    return;
9194  }
9195  case ISD::READCYCLECOUNTER: {
9196    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9197    SDValue TheChain = N->getOperand(0);
9198    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9199    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9200                                     rd.getValue(1));
9201    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9202                                     eax.getValue(2));
9203    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9204    SDValue Ops[] = { eax, edx };
9205    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9206    Results.push_back(edx.getValue(1));
9207    return;
9208  }
9209  case ISD::ATOMIC_CMP_SWAP: {
9210    EVT T = N->getValueType(0);
9211    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9212    SDValue cpInL, cpInH;
9213    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9214                        DAG.getConstant(0, MVT::i32));
9215    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9216                        DAG.getConstant(1, MVT::i32));
9217    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9218    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9219                             cpInL.getValue(1));
9220    SDValue swapInL, swapInH;
9221    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9222                          DAG.getConstant(0, MVT::i32));
9223    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9224                          DAG.getConstant(1, MVT::i32));
9225    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9226                               cpInH.getValue(1));
9227    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9228                               swapInL.getValue(1));
9229    SDValue Ops[] = { swapInH.getValue(0),
9230                      N->getOperand(1),
9231                      swapInH.getValue(1) };
9232    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9233    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9234    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9235                                             Ops, 3, T, MMO);
9236    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9237                                        MVT::i32, Result.getValue(1));
9238    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9239                                        MVT::i32, cpOutL.getValue(2));
9240    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9241    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9242    Results.push_back(cpOutH.getValue(1));
9243    return;
9244  }
9245  case ISD::ATOMIC_LOAD_ADD:
9246    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9247    return;
9248  case ISD::ATOMIC_LOAD_AND:
9249    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9250    return;
9251  case ISD::ATOMIC_LOAD_NAND:
9252    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9253    return;
9254  case ISD::ATOMIC_LOAD_OR:
9255    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9256    return;
9257  case ISD::ATOMIC_LOAD_SUB:
9258    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9259    return;
9260  case ISD::ATOMIC_LOAD_XOR:
9261    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9262    return;
9263  case ISD::ATOMIC_SWAP:
9264    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9265    return;
9266  }
9267}
9268
9269const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9270  switch (Opcode) {
9271  default: return NULL;
9272  case X86ISD::BSF:                return "X86ISD::BSF";
9273  case X86ISD::BSR:                return "X86ISD::BSR";
9274  case X86ISD::SHLD:               return "X86ISD::SHLD";
9275  case X86ISD::SHRD:               return "X86ISD::SHRD";
9276  case X86ISD::FAND:               return "X86ISD::FAND";
9277  case X86ISD::FOR:                return "X86ISD::FOR";
9278  case X86ISD::FXOR:               return "X86ISD::FXOR";
9279  case X86ISD::FSRL:               return "X86ISD::FSRL";
9280  case X86ISD::FILD:               return "X86ISD::FILD";
9281  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9282  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9283  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9284  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9285  case X86ISD::FLD:                return "X86ISD::FLD";
9286  case X86ISD::FST:                return "X86ISD::FST";
9287  case X86ISD::CALL:               return "X86ISD::CALL";
9288  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9289  case X86ISD::BT:                 return "X86ISD::BT";
9290  case X86ISD::CMP:                return "X86ISD::CMP";
9291  case X86ISD::COMI:               return "X86ISD::COMI";
9292  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9293  case X86ISD::SETCC:              return "X86ISD::SETCC";
9294  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9295  case X86ISD::CMOV:               return "X86ISD::CMOV";
9296  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9297  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9298  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9299  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9300  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9301  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9302  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9303  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9304  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9305  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9306  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9307  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9308  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9309  case X86ISD::PANDN:              return "X86ISD::PANDN";
9310  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9311  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9312  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9313  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9314  case X86ISD::FMAX:               return "X86ISD::FMAX";
9315  case X86ISD::FMIN:               return "X86ISD::FMIN";
9316  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9317  case X86ISD::FRCP:               return "X86ISD::FRCP";
9318  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9319  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9320  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9321  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9322  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9323  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9324  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9325  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9326  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9327  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9328  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9329  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9330  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9331  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9332  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9333  case X86ISD::VSHL:               return "X86ISD::VSHL";
9334  case X86ISD::VSRL:               return "X86ISD::VSRL";
9335  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9336  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9337  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9338  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9339  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9340  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9341  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9342  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9343  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9344  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9345  case X86ISD::ADD:                return "X86ISD::ADD";
9346  case X86ISD::SUB:                return "X86ISD::SUB";
9347  case X86ISD::ADC:                return "X86ISD::ADC";
9348  case X86ISD::SBB:                return "X86ISD::SBB";
9349  case X86ISD::SMUL:               return "X86ISD::SMUL";
9350  case X86ISD::UMUL:               return "X86ISD::UMUL";
9351  case X86ISD::INC:                return "X86ISD::INC";
9352  case X86ISD::DEC:                return "X86ISD::DEC";
9353  case X86ISD::OR:                 return "X86ISD::OR";
9354  case X86ISD::XOR:                return "X86ISD::XOR";
9355  case X86ISD::AND:                return "X86ISD::AND";
9356  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9357  case X86ISD::PTEST:              return "X86ISD::PTEST";
9358  case X86ISD::TESTP:              return "X86ISD::TESTP";
9359  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9360  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9361  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9362  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9363  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9364  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9365  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9366  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9367  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9368  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9369  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9370  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9371  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9372  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9373  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9374  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9375  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9376  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9377  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9378  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9379  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9380  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9381  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9382  case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS";
9383  case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD";
9384  case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
9385  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9386  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9387  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9388  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9389  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9390  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9391  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9392  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9393  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9394  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9395  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9396  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9397  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9398  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9399  }
9400}
9401
9402// isLegalAddressingMode - Return true if the addressing mode represented
9403// by AM is legal for this target, for a load/store of the specified type.
9404bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9405                                              const Type *Ty) const {
9406  // X86 supports extremely general addressing modes.
9407  CodeModel::Model M = getTargetMachine().getCodeModel();
9408  Reloc::Model R = getTargetMachine().getRelocationModel();
9409
9410  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9411  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9412    return false;
9413
9414  if (AM.BaseGV) {
9415    unsigned GVFlags =
9416      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9417
9418    // If a reference to this global requires an extra load, we can't fold it.
9419    if (isGlobalStubReference(GVFlags))
9420      return false;
9421
9422    // If BaseGV requires a register for the PIC base, we cannot also have a
9423    // BaseReg specified.
9424    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9425      return false;
9426
9427    // If lower 4G is not available, then we must use rip-relative addressing.
9428    if ((M != CodeModel::Small || R != Reloc::Static) &&
9429        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9430      return false;
9431  }
9432
9433  switch (AM.Scale) {
9434  case 0:
9435  case 1:
9436  case 2:
9437  case 4:
9438  case 8:
9439    // These scales always work.
9440    break;
9441  case 3:
9442  case 5:
9443  case 9:
9444    // These scales are formed with basereg+scalereg.  Only accept if there is
9445    // no basereg yet.
9446    if (AM.HasBaseReg)
9447      return false;
9448    break;
9449  default:  // Other stuff never works.
9450    return false;
9451  }
9452
9453  return true;
9454}
9455
9456
9457bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9458  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9459    return false;
9460  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9461  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9462  if (NumBits1 <= NumBits2)
9463    return false;
9464  return true;
9465}
9466
9467bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9468  if (!VT1.isInteger() || !VT2.isInteger())
9469    return false;
9470  unsigned NumBits1 = VT1.getSizeInBits();
9471  unsigned NumBits2 = VT2.getSizeInBits();
9472  if (NumBits1 <= NumBits2)
9473    return false;
9474  return true;
9475}
9476
9477bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9478  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9479  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9480}
9481
9482bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9483  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9484  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9485}
9486
9487bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9488  // i16 instructions are longer (0x66 prefix) and potentially slower.
9489  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9490}
9491
9492/// isShuffleMaskLegal - Targets can use this to indicate that they only
9493/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9494/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9495/// are assumed to be legal.
9496bool
9497X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9498                                      EVT VT) const {
9499  // Very little shuffling can be done for 64-bit vectors right now.
9500  if (VT.getSizeInBits() == 64)
9501    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9502
9503  // FIXME: pshufb, blends, shifts.
9504  return (VT.getVectorNumElements() == 2 ||
9505          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9506          isMOVLMask(M, VT) ||
9507          isSHUFPMask(M, VT) ||
9508          isPSHUFDMask(M, VT) ||
9509          isPSHUFHWMask(M, VT) ||
9510          isPSHUFLWMask(M, VT) ||
9511          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9512          isUNPCKLMask(M, VT) ||
9513          isUNPCKHMask(M, VT) ||
9514          isUNPCKL_v_undef_Mask(M, VT) ||
9515          isUNPCKH_v_undef_Mask(M, VT));
9516}
9517
9518bool
9519X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9520                                          EVT VT) const {
9521  unsigned NumElts = VT.getVectorNumElements();
9522  // FIXME: This collection of masks seems suspect.
9523  if (NumElts == 2)
9524    return true;
9525  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9526    return (isMOVLMask(Mask, VT)  ||
9527            isCommutedMOVLMask(Mask, VT, true) ||
9528            isSHUFPMask(Mask, VT) ||
9529            isCommutedSHUFPMask(Mask, VT));
9530  }
9531  return false;
9532}
9533
9534//===----------------------------------------------------------------------===//
9535//                           X86 Scheduler Hooks
9536//===----------------------------------------------------------------------===//
9537
9538// private utility function
9539MachineBasicBlock *
9540X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9541                                                       MachineBasicBlock *MBB,
9542                                                       unsigned regOpc,
9543                                                       unsigned immOpc,
9544                                                       unsigned LoadOpc,
9545                                                       unsigned CXchgOpc,
9546                                                       unsigned notOpc,
9547                                                       unsigned EAXreg,
9548                                                       TargetRegisterClass *RC,
9549                                                       bool invSrc) const {
9550  // For the atomic bitwise operator, we generate
9551  //   thisMBB:
9552  //   newMBB:
9553  //     ld  t1 = [bitinstr.addr]
9554  //     op  t2 = t1, [bitinstr.val]
9555  //     mov EAX = t1
9556  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9557  //     bz  newMBB
9558  //     fallthrough -->nextMBB
9559  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9560  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9561  MachineFunction::iterator MBBIter = MBB;
9562  ++MBBIter;
9563
9564  /// First build the CFG
9565  MachineFunction *F = MBB->getParent();
9566  MachineBasicBlock *thisMBB = MBB;
9567  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9568  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9569  F->insert(MBBIter, newMBB);
9570  F->insert(MBBIter, nextMBB);
9571
9572  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9573  nextMBB->splice(nextMBB->begin(), thisMBB,
9574                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9575                  thisMBB->end());
9576  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9577
9578  // Update thisMBB to fall through to newMBB
9579  thisMBB->addSuccessor(newMBB);
9580
9581  // newMBB jumps to itself and fall through to nextMBB
9582  newMBB->addSuccessor(nextMBB);
9583  newMBB->addSuccessor(newMBB);
9584
9585  // Insert instructions into newMBB based on incoming instruction
9586  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9587         "unexpected number of operands");
9588  DebugLoc dl = bInstr->getDebugLoc();
9589  MachineOperand& destOper = bInstr->getOperand(0);
9590  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9591  int numArgs = bInstr->getNumOperands() - 1;
9592  for (int i=0; i < numArgs; ++i)
9593    argOpers[i] = &bInstr->getOperand(i+1);
9594
9595  // x86 address has 4 operands: base, index, scale, and displacement
9596  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9597  int valArgIndx = lastAddrIndx + 1;
9598
9599  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9600  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9601  for (int i=0; i <= lastAddrIndx; ++i)
9602    (*MIB).addOperand(*argOpers[i]);
9603
9604  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9605  if (invSrc) {
9606    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9607  }
9608  else
9609    tt = t1;
9610
9611  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9612  assert((argOpers[valArgIndx]->isReg() ||
9613          argOpers[valArgIndx]->isImm()) &&
9614         "invalid operand");
9615  if (argOpers[valArgIndx]->isReg())
9616    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9617  else
9618    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9619  MIB.addReg(tt);
9620  (*MIB).addOperand(*argOpers[valArgIndx]);
9621
9622  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9623  MIB.addReg(t1);
9624
9625  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9626  for (int i=0; i <= lastAddrIndx; ++i)
9627    (*MIB).addOperand(*argOpers[i]);
9628  MIB.addReg(t2);
9629  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9630  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9631                    bInstr->memoperands_end());
9632
9633  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9634  MIB.addReg(EAXreg);
9635
9636  // insert branch
9637  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9638
9639  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9640  return nextMBB;
9641}
9642
9643// private utility function:  64 bit atomics on 32 bit host.
9644MachineBasicBlock *
9645X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9646                                                       MachineBasicBlock *MBB,
9647                                                       unsigned regOpcL,
9648                                                       unsigned regOpcH,
9649                                                       unsigned immOpcL,
9650                                                       unsigned immOpcH,
9651                                                       bool invSrc) const {
9652  // For the atomic bitwise operator, we generate
9653  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9654  //     ld t1,t2 = [bitinstr.addr]
9655  //   newMBB:
9656  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9657  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9658  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9659  //     mov ECX, EBX <- t5, t6
9660  //     mov EAX, EDX <- t1, t2
9661  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9662  //     mov t3, t4 <- EAX, EDX
9663  //     bz  newMBB
9664  //     result in out1, out2
9665  //     fallthrough -->nextMBB
9666
9667  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9668  const unsigned LoadOpc = X86::MOV32rm;
9669  const unsigned NotOpc = X86::NOT32r;
9670  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9671  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9672  MachineFunction::iterator MBBIter = MBB;
9673  ++MBBIter;
9674
9675  /// First build the CFG
9676  MachineFunction *F = MBB->getParent();
9677  MachineBasicBlock *thisMBB = MBB;
9678  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9679  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9680  F->insert(MBBIter, newMBB);
9681  F->insert(MBBIter, nextMBB);
9682
9683  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9684  nextMBB->splice(nextMBB->begin(), thisMBB,
9685                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9686                  thisMBB->end());
9687  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9688
9689  // Update thisMBB to fall through to newMBB
9690  thisMBB->addSuccessor(newMBB);
9691
9692  // newMBB jumps to itself and fall through to nextMBB
9693  newMBB->addSuccessor(nextMBB);
9694  newMBB->addSuccessor(newMBB);
9695
9696  DebugLoc dl = bInstr->getDebugLoc();
9697  // Insert instructions into newMBB based on incoming instruction
9698  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9699  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9700         "unexpected number of operands");
9701  MachineOperand& dest1Oper = bInstr->getOperand(0);
9702  MachineOperand& dest2Oper = bInstr->getOperand(1);
9703  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9704  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9705    argOpers[i] = &bInstr->getOperand(i+2);
9706
9707    // We use some of the operands multiple times, so conservatively just
9708    // clear any kill flags that might be present.
9709    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9710      argOpers[i]->setIsKill(false);
9711  }
9712
9713  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9714  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9715
9716  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9717  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9718  for (int i=0; i <= lastAddrIndx; ++i)
9719    (*MIB).addOperand(*argOpers[i]);
9720  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9721  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9722  // add 4 to displacement.
9723  for (int i=0; i <= lastAddrIndx-2; ++i)
9724    (*MIB).addOperand(*argOpers[i]);
9725  MachineOperand newOp3 = *(argOpers[3]);
9726  if (newOp3.isImm())
9727    newOp3.setImm(newOp3.getImm()+4);
9728  else
9729    newOp3.setOffset(newOp3.getOffset()+4);
9730  (*MIB).addOperand(newOp3);
9731  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9732
9733  // t3/4 are defined later, at the bottom of the loop
9734  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9735  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9736  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9737    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9738  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9739    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9740
9741  // The subsequent operations should be using the destination registers of
9742  //the PHI instructions.
9743  if (invSrc) {
9744    t1 = F->getRegInfo().createVirtualRegister(RC);
9745    t2 = F->getRegInfo().createVirtualRegister(RC);
9746    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9747    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9748  } else {
9749    t1 = dest1Oper.getReg();
9750    t2 = dest2Oper.getReg();
9751  }
9752
9753  int valArgIndx = lastAddrIndx + 1;
9754  assert((argOpers[valArgIndx]->isReg() ||
9755          argOpers[valArgIndx]->isImm()) &&
9756         "invalid operand");
9757  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9758  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9759  if (argOpers[valArgIndx]->isReg())
9760    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9761  else
9762    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9763  if (regOpcL != X86::MOV32rr)
9764    MIB.addReg(t1);
9765  (*MIB).addOperand(*argOpers[valArgIndx]);
9766  assert(argOpers[valArgIndx + 1]->isReg() ==
9767         argOpers[valArgIndx]->isReg());
9768  assert(argOpers[valArgIndx + 1]->isImm() ==
9769         argOpers[valArgIndx]->isImm());
9770  if (argOpers[valArgIndx + 1]->isReg())
9771    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9772  else
9773    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9774  if (regOpcH != X86::MOV32rr)
9775    MIB.addReg(t2);
9776  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9777
9778  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9779  MIB.addReg(t1);
9780  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9781  MIB.addReg(t2);
9782
9783  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9784  MIB.addReg(t5);
9785  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9786  MIB.addReg(t6);
9787
9788  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9789  for (int i=0; i <= lastAddrIndx; ++i)
9790    (*MIB).addOperand(*argOpers[i]);
9791
9792  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9793  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9794                    bInstr->memoperands_end());
9795
9796  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9797  MIB.addReg(X86::EAX);
9798  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9799  MIB.addReg(X86::EDX);
9800
9801  // insert branch
9802  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9803
9804  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9805  return nextMBB;
9806}
9807
9808// private utility function
9809MachineBasicBlock *
9810X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9811                                                      MachineBasicBlock *MBB,
9812                                                      unsigned cmovOpc) const {
9813  // For the atomic min/max operator, we generate
9814  //   thisMBB:
9815  //   newMBB:
9816  //     ld t1 = [min/max.addr]
9817  //     mov t2 = [min/max.val]
9818  //     cmp  t1, t2
9819  //     cmov[cond] t2 = t1
9820  //     mov EAX = t1
9821  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9822  //     bz   newMBB
9823  //     fallthrough -->nextMBB
9824  //
9825  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9826  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9827  MachineFunction::iterator MBBIter = MBB;
9828  ++MBBIter;
9829
9830  /// First build the CFG
9831  MachineFunction *F = MBB->getParent();
9832  MachineBasicBlock *thisMBB = MBB;
9833  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9834  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9835  F->insert(MBBIter, newMBB);
9836  F->insert(MBBIter, nextMBB);
9837
9838  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9839  nextMBB->splice(nextMBB->begin(), thisMBB,
9840                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9841                  thisMBB->end());
9842  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9843
9844  // Update thisMBB to fall through to newMBB
9845  thisMBB->addSuccessor(newMBB);
9846
9847  // newMBB jumps to newMBB and fall through to nextMBB
9848  newMBB->addSuccessor(nextMBB);
9849  newMBB->addSuccessor(newMBB);
9850
9851  DebugLoc dl = mInstr->getDebugLoc();
9852  // Insert instructions into newMBB based on incoming instruction
9853  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9854         "unexpected number of operands");
9855  MachineOperand& destOper = mInstr->getOperand(0);
9856  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9857  int numArgs = mInstr->getNumOperands() - 1;
9858  for (int i=0; i < numArgs; ++i)
9859    argOpers[i] = &mInstr->getOperand(i+1);
9860
9861  // x86 address has 4 operands: base, index, scale, and displacement
9862  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9863  int valArgIndx = lastAddrIndx + 1;
9864
9865  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9866  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9867  for (int i=0; i <= lastAddrIndx; ++i)
9868    (*MIB).addOperand(*argOpers[i]);
9869
9870  // We only support register and immediate values
9871  assert((argOpers[valArgIndx]->isReg() ||
9872          argOpers[valArgIndx]->isImm()) &&
9873         "invalid operand");
9874
9875  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9876  if (argOpers[valArgIndx]->isReg())
9877    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9878  else
9879    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9880  (*MIB).addOperand(*argOpers[valArgIndx]);
9881
9882  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9883  MIB.addReg(t1);
9884
9885  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9886  MIB.addReg(t1);
9887  MIB.addReg(t2);
9888
9889  // Generate movc
9890  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9891  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9892  MIB.addReg(t2);
9893  MIB.addReg(t1);
9894
9895  // Cmp and exchange if none has modified the memory location
9896  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9897  for (int i=0; i <= lastAddrIndx; ++i)
9898    (*MIB).addOperand(*argOpers[i]);
9899  MIB.addReg(t3);
9900  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9901  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9902                    mInstr->memoperands_end());
9903
9904  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9905  MIB.addReg(X86::EAX);
9906
9907  // insert branch
9908  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9909
9910  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9911  return nextMBB;
9912}
9913
9914// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9915// or XMM0_V32I8 in AVX all of this code can be replaced with that
9916// in the .td file.
9917MachineBasicBlock *
9918X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9919                            unsigned numArgs, bool memArg) const {
9920  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9921         "Target must have SSE4.2 or AVX features enabled");
9922
9923  DebugLoc dl = MI->getDebugLoc();
9924  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9925  unsigned Opc;
9926  if (!Subtarget->hasAVX()) {
9927    if (memArg)
9928      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9929    else
9930      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9931  } else {
9932    if (memArg)
9933      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9934    else
9935      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9936  }
9937
9938  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
9939  for (unsigned i = 0; i < numArgs; ++i) {
9940    MachineOperand &Op = MI->getOperand(i+1);
9941    if (!(Op.isReg() && Op.isImplicit()))
9942      MIB.addOperand(Op);
9943  }
9944  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9945    .addReg(X86::XMM0);
9946
9947  MI->eraseFromParent();
9948  return BB;
9949}
9950
9951MachineBasicBlock *
9952X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
9953  DebugLoc dl = MI->getDebugLoc();
9954  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9955
9956  // Address into RAX/EAX, other two args into ECX, EDX.
9957  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
9958  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
9959  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
9960  for (int i = 0; i < X86::AddrNumOperands; ++i)
9961    MIB.addOperand(MI->getOperand(i));
9962
9963  unsigned ValOps = X86::AddrNumOperands;
9964  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9965    .addReg(MI->getOperand(ValOps).getReg());
9966  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
9967    .addReg(MI->getOperand(ValOps+1).getReg());
9968
9969  // The instruction doesn't actually take any operands though.
9970  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
9971
9972  MI->eraseFromParent(); // The pseudo is gone now.
9973  return BB;
9974}
9975
9976MachineBasicBlock *
9977X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
9978  DebugLoc dl = MI->getDebugLoc();
9979  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9980
9981  // First arg in ECX, the second in EAX.
9982  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9983    .addReg(MI->getOperand(0).getReg());
9984  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
9985    .addReg(MI->getOperand(1).getReg());
9986
9987  // The instruction doesn't actually take any operands though.
9988  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
9989
9990  MI->eraseFromParent(); // The pseudo is gone now.
9991  return BB;
9992}
9993
9994MachineBasicBlock *
9995X86TargetLowering::EmitVAARG64WithCustomInserter(
9996                   MachineInstr *MI,
9997                   MachineBasicBlock *MBB) const {
9998  // Emit va_arg instruction on X86-64.
9999
10000  // Operands to this pseudo-instruction:
10001  // 0  ) Output        : destination address (reg)
10002  // 1-5) Input         : va_list address (addr, i64mem)
10003  // 6  ) ArgSize       : Size (in bytes) of vararg type
10004  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10005  // 8  ) Align         : Alignment of type
10006  // 9  ) EFLAGS (implicit-def)
10007
10008  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10009  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10010
10011  unsigned DestReg = MI->getOperand(0).getReg();
10012  MachineOperand &Base = MI->getOperand(1);
10013  MachineOperand &Scale = MI->getOperand(2);
10014  MachineOperand &Index = MI->getOperand(3);
10015  MachineOperand &Disp = MI->getOperand(4);
10016  MachineOperand &Segment = MI->getOperand(5);
10017  unsigned ArgSize = MI->getOperand(6).getImm();
10018  unsigned ArgMode = MI->getOperand(7).getImm();
10019  unsigned Align = MI->getOperand(8).getImm();
10020
10021  // Memory Reference
10022  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10023  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10024  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10025
10026  // Machine Information
10027  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10028  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10029  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10030  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10031  DebugLoc DL = MI->getDebugLoc();
10032
10033  // struct va_list {
10034  //   i32   gp_offset
10035  //   i32   fp_offset
10036  //   i64   overflow_area (address)
10037  //   i64   reg_save_area (address)
10038  // }
10039  // sizeof(va_list) = 24
10040  // alignment(va_list) = 8
10041
10042  unsigned TotalNumIntRegs = 6;
10043  unsigned TotalNumXMMRegs = 8;
10044  bool UseGPOffset = (ArgMode == 1);
10045  bool UseFPOffset = (ArgMode == 2);
10046  unsigned MaxOffset = TotalNumIntRegs * 8 +
10047                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10048
10049  /* Align ArgSize to a multiple of 8 */
10050  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10051  bool NeedsAlign = (Align > 8);
10052
10053  MachineBasicBlock *thisMBB = MBB;
10054  MachineBasicBlock *overflowMBB;
10055  MachineBasicBlock *offsetMBB;
10056  MachineBasicBlock *endMBB;
10057
10058  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10059  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10060  unsigned OffsetReg = 0;
10061
10062  if (!UseGPOffset && !UseFPOffset) {
10063    // If we only pull from the overflow region, we don't create a branch.
10064    // We don't need to alter control flow.
10065    OffsetDestReg = 0; // unused
10066    OverflowDestReg = DestReg;
10067
10068    offsetMBB = NULL;
10069    overflowMBB = thisMBB;
10070    endMBB = thisMBB;
10071  } else {
10072    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10073    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10074    // If not, pull from overflow_area. (branch to overflowMBB)
10075    //
10076    //       thisMBB
10077    //         |     .
10078    //         |        .
10079    //     offsetMBB   overflowMBB
10080    //         |        .
10081    //         |     .
10082    //        endMBB
10083
10084    // Registers for the PHI in endMBB
10085    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10086    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10087
10088    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10089    MachineFunction *MF = MBB->getParent();
10090    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10091    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10092    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10093
10094    MachineFunction::iterator MBBIter = MBB;
10095    ++MBBIter;
10096
10097    // Insert the new basic blocks
10098    MF->insert(MBBIter, offsetMBB);
10099    MF->insert(MBBIter, overflowMBB);
10100    MF->insert(MBBIter, endMBB);
10101
10102    // Transfer the remainder of MBB and its successor edges to endMBB.
10103    endMBB->splice(endMBB->begin(), thisMBB,
10104                    llvm::next(MachineBasicBlock::iterator(MI)),
10105                    thisMBB->end());
10106    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10107
10108    // Make offsetMBB and overflowMBB successors of thisMBB
10109    thisMBB->addSuccessor(offsetMBB);
10110    thisMBB->addSuccessor(overflowMBB);
10111
10112    // endMBB is a successor of both offsetMBB and overflowMBB
10113    offsetMBB->addSuccessor(endMBB);
10114    overflowMBB->addSuccessor(endMBB);
10115
10116    // Load the offset value into a register
10117    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10118    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10119      .addOperand(Base)
10120      .addOperand(Scale)
10121      .addOperand(Index)
10122      .addDisp(Disp, UseFPOffset ? 4 : 0)
10123      .addOperand(Segment)
10124      .setMemRefs(MMOBegin, MMOEnd);
10125
10126    // Check if there is enough room left to pull this argument.
10127    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10128      .addReg(OffsetReg)
10129      .addImm(MaxOffset + 8 - ArgSizeA8);
10130
10131    // Branch to "overflowMBB" if offset >= max
10132    // Fall through to "offsetMBB" otherwise
10133    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10134      .addMBB(overflowMBB);
10135  }
10136
10137  // In offsetMBB, emit code to use the reg_save_area.
10138  if (offsetMBB) {
10139    assert(OffsetReg != 0);
10140
10141    // Read the reg_save_area address.
10142    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10143    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10144      .addOperand(Base)
10145      .addOperand(Scale)
10146      .addOperand(Index)
10147      .addDisp(Disp, 16)
10148      .addOperand(Segment)
10149      .setMemRefs(MMOBegin, MMOEnd);
10150
10151    // Zero-extend the offset
10152    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10153      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10154        .addImm(0)
10155        .addReg(OffsetReg)
10156        .addImm(X86::sub_32bit);
10157
10158    // Add the offset to the reg_save_area to get the final address.
10159    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10160      .addReg(OffsetReg64)
10161      .addReg(RegSaveReg);
10162
10163    // Compute the offset for the next argument
10164    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10165    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10166      .addReg(OffsetReg)
10167      .addImm(UseFPOffset ? 16 : 8);
10168
10169    // Store it back into the va_list.
10170    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10171      .addOperand(Base)
10172      .addOperand(Scale)
10173      .addOperand(Index)
10174      .addDisp(Disp, UseFPOffset ? 4 : 0)
10175      .addOperand(Segment)
10176      .addReg(NextOffsetReg)
10177      .setMemRefs(MMOBegin, MMOEnd);
10178
10179    // Jump to endMBB
10180    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10181      .addMBB(endMBB);
10182  }
10183
10184  //
10185  // Emit code to use overflow area
10186  //
10187
10188  // Load the overflow_area address into a register.
10189  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10190  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10191    .addOperand(Base)
10192    .addOperand(Scale)
10193    .addOperand(Index)
10194    .addDisp(Disp, 8)
10195    .addOperand(Segment)
10196    .setMemRefs(MMOBegin, MMOEnd);
10197
10198  // If we need to align it, do so. Otherwise, just copy the address
10199  // to OverflowDestReg.
10200  if (NeedsAlign) {
10201    // Align the overflow address
10202    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10203    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10204
10205    // aligned_addr = (addr + (align-1)) & ~(align-1)
10206    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10207      .addReg(OverflowAddrReg)
10208      .addImm(Align-1);
10209
10210    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10211      .addReg(TmpReg)
10212      .addImm(~(uint64_t)(Align-1));
10213  } else {
10214    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10215      .addReg(OverflowAddrReg);
10216  }
10217
10218  // Compute the next overflow address after this argument.
10219  // (the overflow address should be kept 8-byte aligned)
10220  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10221  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10222    .addReg(OverflowDestReg)
10223    .addImm(ArgSizeA8);
10224
10225  // Store the new overflow address.
10226  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10227    .addOperand(Base)
10228    .addOperand(Scale)
10229    .addOperand(Index)
10230    .addDisp(Disp, 8)
10231    .addOperand(Segment)
10232    .addReg(NextAddrReg)
10233    .setMemRefs(MMOBegin, MMOEnd);
10234
10235  // If we branched, emit the PHI to the front of endMBB.
10236  if (offsetMBB) {
10237    BuildMI(*endMBB, endMBB->begin(), DL,
10238            TII->get(X86::PHI), DestReg)
10239      .addReg(OffsetDestReg).addMBB(offsetMBB)
10240      .addReg(OverflowDestReg).addMBB(overflowMBB);
10241  }
10242
10243  // Erase the pseudo instruction
10244  MI->eraseFromParent();
10245
10246  return endMBB;
10247}
10248
10249MachineBasicBlock *
10250X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10251                                                 MachineInstr *MI,
10252                                                 MachineBasicBlock *MBB) const {
10253  // Emit code to save XMM registers to the stack. The ABI says that the
10254  // number of registers to save is given in %al, so it's theoretically
10255  // possible to do an indirect jump trick to avoid saving all of them,
10256  // however this code takes a simpler approach and just executes all
10257  // of the stores if %al is non-zero. It's less code, and it's probably
10258  // easier on the hardware branch predictor, and stores aren't all that
10259  // expensive anyway.
10260
10261  // Create the new basic blocks. One block contains all the XMM stores,
10262  // and one block is the final destination regardless of whether any
10263  // stores were performed.
10264  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10265  MachineFunction *F = MBB->getParent();
10266  MachineFunction::iterator MBBIter = MBB;
10267  ++MBBIter;
10268  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10269  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10270  F->insert(MBBIter, XMMSaveMBB);
10271  F->insert(MBBIter, EndMBB);
10272
10273  // Transfer the remainder of MBB and its successor edges to EndMBB.
10274  EndMBB->splice(EndMBB->begin(), MBB,
10275                 llvm::next(MachineBasicBlock::iterator(MI)),
10276                 MBB->end());
10277  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10278
10279  // The original block will now fall through to the XMM save block.
10280  MBB->addSuccessor(XMMSaveMBB);
10281  // The XMMSaveMBB will fall through to the end block.
10282  XMMSaveMBB->addSuccessor(EndMBB);
10283
10284  // Now add the instructions.
10285  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10286  DebugLoc DL = MI->getDebugLoc();
10287
10288  unsigned CountReg = MI->getOperand(0).getReg();
10289  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10290  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10291
10292  if (!Subtarget->isTargetWin64()) {
10293    // If %al is 0, branch around the XMM save block.
10294    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10295    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10296    MBB->addSuccessor(EndMBB);
10297  }
10298
10299  // In the XMM save block, save all the XMM argument registers.
10300  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10301    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10302    MachineMemOperand *MMO =
10303      F->getMachineMemOperand(
10304          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10305        MachineMemOperand::MOStore,
10306        /*Size=*/16, /*Align=*/16);
10307    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10308      .addFrameIndex(RegSaveFrameIndex)
10309      .addImm(/*Scale=*/1)
10310      .addReg(/*IndexReg=*/0)
10311      .addImm(/*Disp=*/Offset)
10312      .addReg(/*Segment=*/0)
10313      .addReg(MI->getOperand(i).getReg())
10314      .addMemOperand(MMO);
10315  }
10316
10317  MI->eraseFromParent();   // The pseudo instruction is gone now.
10318
10319  return EndMBB;
10320}
10321
10322MachineBasicBlock *
10323X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10324                                     MachineBasicBlock *BB) const {
10325  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10326  DebugLoc DL = MI->getDebugLoc();
10327
10328  // To "insert" a SELECT_CC instruction, we actually have to insert the
10329  // diamond control-flow pattern.  The incoming instruction knows the
10330  // destination vreg to set, the condition code register to branch on, the
10331  // true/false values to select between, and a branch opcode to use.
10332  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10333  MachineFunction::iterator It = BB;
10334  ++It;
10335
10336  //  thisMBB:
10337  //  ...
10338  //   TrueVal = ...
10339  //   cmpTY ccX, r1, r2
10340  //   bCC copy1MBB
10341  //   fallthrough --> copy0MBB
10342  MachineBasicBlock *thisMBB = BB;
10343  MachineFunction *F = BB->getParent();
10344  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10345  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10346  F->insert(It, copy0MBB);
10347  F->insert(It, sinkMBB);
10348
10349  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10350  // live into the sink and copy blocks.
10351  const MachineFunction *MF = BB->getParent();
10352  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10353  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10354
10355  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10356    const MachineOperand &MO = MI->getOperand(I);
10357    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10358    unsigned Reg = MO.getReg();
10359    if (Reg != X86::EFLAGS) continue;
10360    copy0MBB->addLiveIn(Reg);
10361    sinkMBB->addLiveIn(Reg);
10362  }
10363
10364  // Transfer the remainder of BB and its successor edges to sinkMBB.
10365  sinkMBB->splice(sinkMBB->begin(), BB,
10366                  llvm::next(MachineBasicBlock::iterator(MI)),
10367                  BB->end());
10368  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10369
10370  // Add the true and fallthrough blocks as its successors.
10371  BB->addSuccessor(copy0MBB);
10372  BB->addSuccessor(sinkMBB);
10373
10374  // Create the conditional branch instruction.
10375  unsigned Opc =
10376    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10377  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10378
10379  //  copy0MBB:
10380  //   %FalseValue = ...
10381  //   # fallthrough to sinkMBB
10382  copy0MBB->addSuccessor(sinkMBB);
10383
10384  //  sinkMBB:
10385  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10386  //  ...
10387  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10388          TII->get(X86::PHI), MI->getOperand(0).getReg())
10389    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10390    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10391
10392  MI->eraseFromParent();   // The pseudo instruction is gone now.
10393  return sinkMBB;
10394}
10395
10396MachineBasicBlock *
10397X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10398                                          MachineBasicBlock *BB) const {
10399  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10400  DebugLoc DL = MI->getDebugLoc();
10401
10402  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10403  // non-trivial part is impdef of ESP.
10404  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
10405  // mingw-w64.
10406
10407  const char *StackProbeSymbol =
10408      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10409
10410  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10411    .addExternalSymbol(StackProbeSymbol)
10412    .addReg(X86::EAX, RegState::Implicit)
10413    .addReg(X86::ESP, RegState::Implicit)
10414    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10415    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10416    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10417
10418  MI->eraseFromParent();   // The pseudo instruction is gone now.
10419  return BB;
10420}
10421
10422MachineBasicBlock *
10423X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10424                                      MachineBasicBlock *BB) const {
10425  // This is pretty easy.  We're taking the value that we received from
10426  // our load from the relocation, sticking it in either RDI (x86-64)
10427  // or EAX and doing an indirect call.  The return value will then
10428  // be in the normal return register.
10429  const X86InstrInfo *TII
10430    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10431  DebugLoc DL = MI->getDebugLoc();
10432  MachineFunction *F = BB->getParent();
10433
10434  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10435  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10436
10437  if (Subtarget->is64Bit()) {
10438    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10439                                      TII->get(X86::MOV64rm), X86::RDI)
10440    .addReg(X86::RIP)
10441    .addImm(0).addReg(0)
10442    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10443                      MI->getOperand(3).getTargetFlags())
10444    .addReg(0);
10445    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10446    addDirectMem(MIB, X86::RDI);
10447  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10448    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10449                                      TII->get(X86::MOV32rm), X86::EAX)
10450    .addReg(0)
10451    .addImm(0).addReg(0)
10452    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10453                      MI->getOperand(3).getTargetFlags())
10454    .addReg(0);
10455    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10456    addDirectMem(MIB, X86::EAX);
10457  } else {
10458    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10459                                      TII->get(X86::MOV32rm), X86::EAX)
10460    .addReg(TII->getGlobalBaseReg(F))
10461    .addImm(0).addReg(0)
10462    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10463                      MI->getOperand(3).getTargetFlags())
10464    .addReg(0);
10465    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10466    addDirectMem(MIB, X86::EAX);
10467  }
10468
10469  MI->eraseFromParent(); // The pseudo instruction is gone now.
10470  return BB;
10471}
10472
10473MachineBasicBlock *
10474X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10475                                               MachineBasicBlock *BB) const {
10476  switch (MI->getOpcode()) {
10477  default: assert(false && "Unexpected instr type to insert");
10478  case X86::TAILJMPd64:
10479  case X86::TAILJMPr64:
10480  case X86::TAILJMPm64:
10481    assert(!"TAILJMP64 would not be touched here.");
10482  case X86::TCRETURNdi64:
10483  case X86::TCRETURNri64:
10484  case X86::TCRETURNmi64:
10485    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10486    // On AMD64, additional defs should be added before register allocation.
10487    if (!Subtarget->isTargetWin64()) {
10488      MI->addRegisterDefined(X86::RSI);
10489      MI->addRegisterDefined(X86::RDI);
10490      MI->addRegisterDefined(X86::XMM6);
10491      MI->addRegisterDefined(X86::XMM7);
10492      MI->addRegisterDefined(X86::XMM8);
10493      MI->addRegisterDefined(X86::XMM9);
10494      MI->addRegisterDefined(X86::XMM10);
10495      MI->addRegisterDefined(X86::XMM11);
10496      MI->addRegisterDefined(X86::XMM12);
10497      MI->addRegisterDefined(X86::XMM13);
10498      MI->addRegisterDefined(X86::XMM14);
10499      MI->addRegisterDefined(X86::XMM15);
10500    }
10501    return BB;
10502  case X86::WIN_ALLOCA:
10503    return EmitLoweredWinAlloca(MI, BB);
10504  case X86::TLSCall_32:
10505  case X86::TLSCall_64:
10506    return EmitLoweredTLSCall(MI, BB);
10507  case X86::CMOV_GR8:
10508  case X86::CMOV_FR32:
10509  case X86::CMOV_FR64:
10510  case X86::CMOV_V4F32:
10511  case X86::CMOV_V2F64:
10512  case X86::CMOV_V2I64:
10513  case X86::CMOV_GR16:
10514  case X86::CMOV_GR32:
10515  case X86::CMOV_RFP32:
10516  case X86::CMOV_RFP64:
10517  case X86::CMOV_RFP80:
10518    return EmitLoweredSelect(MI, BB);
10519
10520  case X86::FP32_TO_INT16_IN_MEM:
10521  case X86::FP32_TO_INT32_IN_MEM:
10522  case X86::FP32_TO_INT64_IN_MEM:
10523  case X86::FP64_TO_INT16_IN_MEM:
10524  case X86::FP64_TO_INT32_IN_MEM:
10525  case X86::FP64_TO_INT64_IN_MEM:
10526  case X86::FP80_TO_INT16_IN_MEM:
10527  case X86::FP80_TO_INT32_IN_MEM:
10528  case X86::FP80_TO_INT64_IN_MEM: {
10529    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10530    DebugLoc DL = MI->getDebugLoc();
10531
10532    // Change the floating point control register to use "round towards zero"
10533    // mode when truncating to an integer value.
10534    MachineFunction *F = BB->getParent();
10535    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10536    addFrameReference(BuildMI(*BB, MI, DL,
10537                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10538
10539    // Load the old value of the high byte of the control word...
10540    unsigned OldCW =
10541      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10542    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10543                      CWFrameIdx);
10544
10545    // Set the high part to be round to zero...
10546    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10547      .addImm(0xC7F);
10548
10549    // Reload the modified control word now...
10550    addFrameReference(BuildMI(*BB, MI, DL,
10551                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10552
10553    // Restore the memory image of control word to original value
10554    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10555      .addReg(OldCW);
10556
10557    // Get the X86 opcode to use.
10558    unsigned Opc;
10559    switch (MI->getOpcode()) {
10560    default: llvm_unreachable("illegal opcode!");
10561    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10562    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10563    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10564    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10565    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10566    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10567    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10568    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10569    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10570    }
10571
10572    X86AddressMode AM;
10573    MachineOperand &Op = MI->getOperand(0);
10574    if (Op.isReg()) {
10575      AM.BaseType = X86AddressMode::RegBase;
10576      AM.Base.Reg = Op.getReg();
10577    } else {
10578      AM.BaseType = X86AddressMode::FrameIndexBase;
10579      AM.Base.FrameIndex = Op.getIndex();
10580    }
10581    Op = MI->getOperand(1);
10582    if (Op.isImm())
10583      AM.Scale = Op.getImm();
10584    Op = MI->getOperand(2);
10585    if (Op.isImm())
10586      AM.IndexReg = Op.getImm();
10587    Op = MI->getOperand(3);
10588    if (Op.isGlobal()) {
10589      AM.GV = Op.getGlobal();
10590    } else {
10591      AM.Disp = Op.getImm();
10592    }
10593    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10594                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10595
10596    // Reload the original control word now.
10597    addFrameReference(BuildMI(*BB, MI, DL,
10598                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10599
10600    MI->eraseFromParent();   // The pseudo instruction is gone now.
10601    return BB;
10602  }
10603    // String/text processing lowering.
10604  case X86::PCMPISTRM128REG:
10605  case X86::VPCMPISTRM128REG:
10606    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10607  case X86::PCMPISTRM128MEM:
10608  case X86::VPCMPISTRM128MEM:
10609    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10610  case X86::PCMPESTRM128REG:
10611  case X86::VPCMPESTRM128REG:
10612    return EmitPCMP(MI, BB, 5, false /* in mem */);
10613  case X86::PCMPESTRM128MEM:
10614  case X86::VPCMPESTRM128MEM:
10615    return EmitPCMP(MI, BB, 5, true /* in mem */);
10616
10617    // Thread synchronization.
10618  case X86::MONITOR:
10619    return EmitMonitor(MI, BB);
10620  case X86::MWAIT:
10621    return EmitMwait(MI, BB);
10622
10623    // Atomic Lowering.
10624  case X86::ATOMAND32:
10625    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10626                                               X86::AND32ri, X86::MOV32rm,
10627                                               X86::LCMPXCHG32,
10628                                               X86::NOT32r, X86::EAX,
10629                                               X86::GR32RegisterClass);
10630  case X86::ATOMOR32:
10631    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10632                                               X86::OR32ri, X86::MOV32rm,
10633                                               X86::LCMPXCHG32,
10634                                               X86::NOT32r, X86::EAX,
10635                                               X86::GR32RegisterClass);
10636  case X86::ATOMXOR32:
10637    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10638                                               X86::XOR32ri, X86::MOV32rm,
10639                                               X86::LCMPXCHG32,
10640                                               X86::NOT32r, X86::EAX,
10641                                               X86::GR32RegisterClass);
10642  case X86::ATOMNAND32:
10643    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10644                                               X86::AND32ri, X86::MOV32rm,
10645                                               X86::LCMPXCHG32,
10646                                               X86::NOT32r, X86::EAX,
10647                                               X86::GR32RegisterClass, true);
10648  case X86::ATOMMIN32:
10649    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10650  case X86::ATOMMAX32:
10651    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10652  case X86::ATOMUMIN32:
10653    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10654  case X86::ATOMUMAX32:
10655    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10656
10657  case X86::ATOMAND16:
10658    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10659                                               X86::AND16ri, X86::MOV16rm,
10660                                               X86::LCMPXCHG16,
10661                                               X86::NOT16r, X86::AX,
10662                                               X86::GR16RegisterClass);
10663  case X86::ATOMOR16:
10664    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10665                                               X86::OR16ri, X86::MOV16rm,
10666                                               X86::LCMPXCHG16,
10667                                               X86::NOT16r, X86::AX,
10668                                               X86::GR16RegisterClass);
10669  case X86::ATOMXOR16:
10670    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10671                                               X86::XOR16ri, X86::MOV16rm,
10672                                               X86::LCMPXCHG16,
10673                                               X86::NOT16r, X86::AX,
10674                                               X86::GR16RegisterClass);
10675  case X86::ATOMNAND16:
10676    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10677                                               X86::AND16ri, X86::MOV16rm,
10678                                               X86::LCMPXCHG16,
10679                                               X86::NOT16r, X86::AX,
10680                                               X86::GR16RegisterClass, true);
10681  case X86::ATOMMIN16:
10682    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10683  case X86::ATOMMAX16:
10684    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10685  case X86::ATOMUMIN16:
10686    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10687  case X86::ATOMUMAX16:
10688    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10689
10690  case X86::ATOMAND8:
10691    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10692                                               X86::AND8ri, X86::MOV8rm,
10693                                               X86::LCMPXCHG8,
10694                                               X86::NOT8r, X86::AL,
10695                                               X86::GR8RegisterClass);
10696  case X86::ATOMOR8:
10697    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10698                                               X86::OR8ri, X86::MOV8rm,
10699                                               X86::LCMPXCHG8,
10700                                               X86::NOT8r, X86::AL,
10701                                               X86::GR8RegisterClass);
10702  case X86::ATOMXOR8:
10703    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10704                                               X86::XOR8ri, X86::MOV8rm,
10705                                               X86::LCMPXCHG8,
10706                                               X86::NOT8r, X86::AL,
10707                                               X86::GR8RegisterClass);
10708  case X86::ATOMNAND8:
10709    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10710                                               X86::AND8ri, X86::MOV8rm,
10711                                               X86::LCMPXCHG8,
10712                                               X86::NOT8r, X86::AL,
10713                                               X86::GR8RegisterClass, true);
10714  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10715  // This group is for 64-bit host.
10716  case X86::ATOMAND64:
10717    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10718                                               X86::AND64ri32, X86::MOV64rm,
10719                                               X86::LCMPXCHG64,
10720                                               X86::NOT64r, X86::RAX,
10721                                               X86::GR64RegisterClass);
10722  case X86::ATOMOR64:
10723    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10724                                               X86::OR64ri32, X86::MOV64rm,
10725                                               X86::LCMPXCHG64,
10726                                               X86::NOT64r, X86::RAX,
10727                                               X86::GR64RegisterClass);
10728  case X86::ATOMXOR64:
10729    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10730                                               X86::XOR64ri32, X86::MOV64rm,
10731                                               X86::LCMPXCHG64,
10732                                               X86::NOT64r, X86::RAX,
10733                                               X86::GR64RegisterClass);
10734  case X86::ATOMNAND64:
10735    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10736                                               X86::AND64ri32, X86::MOV64rm,
10737                                               X86::LCMPXCHG64,
10738                                               X86::NOT64r, X86::RAX,
10739                                               X86::GR64RegisterClass, true);
10740  case X86::ATOMMIN64:
10741    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10742  case X86::ATOMMAX64:
10743    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10744  case X86::ATOMUMIN64:
10745    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10746  case X86::ATOMUMAX64:
10747    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10748
10749  // This group does 64-bit operations on a 32-bit host.
10750  case X86::ATOMAND6432:
10751    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10752                                               X86::AND32rr, X86::AND32rr,
10753                                               X86::AND32ri, X86::AND32ri,
10754                                               false);
10755  case X86::ATOMOR6432:
10756    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10757                                               X86::OR32rr, X86::OR32rr,
10758                                               X86::OR32ri, X86::OR32ri,
10759                                               false);
10760  case X86::ATOMXOR6432:
10761    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10762                                               X86::XOR32rr, X86::XOR32rr,
10763                                               X86::XOR32ri, X86::XOR32ri,
10764                                               false);
10765  case X86::ATOMNAND6432:
10766    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10767                                               X86::AND32rr, X86::AND32rr,
10768                                               X86::AND32ri, X86::AND32ri,
10769                                               true);
10770  case X86::ATOMADD6432:
10771    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10772                                               X86::ADD32rr, X86::ADC32rr,
10773                                               X86::ADD32ri, X86::ADC32ri,
10774                                               false);
10775  case X86::ATOMSUB6432:
10776    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10777                                               X86::SUB32rr, X86::SBB32rr,
10778                                               X86::SUB32ri, X86::SBB32ri,
10779                                               false);
10780  case X86::ATOMSWAP6432:
10781    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10782                                               X86::MOV32rr, X86::MOV32rr,
10783                                               X86::MOV32ri, X86::MOV32ri,
10784                                               false);
10785  case X86::VASTART_SAVE_XMM_REGS:
10786    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10787
10788  case X86::VAARG_64:
10789    return EmitVAARG64WithCustomInserter(MI, BB);
10790  }
10791}
10792
10793//===----------------------------------------------------------------------===//
10794//                           X86 Optimization Hooks
10795//===----------------------------------------------------------------------===//
10796
10797void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10798                                                       const APInt &Mask,
10799                                                       APInt &KnownZero,
10800                                                       APInt &KnownOne,
10801                                                       const SelectionDAG &DAG,
10802                                                       unsigned Depth) const {
10803  unsigned Opc = Op.getOpcode();
10804  assert((Opc >= ISD::BUILTIN_OP_END ||
10805          Opc == ISD::INTRINSIC_WO_CHAIN ||
10806          Opc == ISD::INTRINSIC_W_CHAIN ||
10807          Opc == ISD::INTRINSIC_VOID) &&
10808         "Should use MaskedValueIsZero if you don't know whether Op"
10809         " is a target node!");
10810
10811  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10812  switch (Opc) {
10813  default: break;
10814  case X86ISD::ADD:
10815  case X86ISD::SUB:
10816  case X86ISD::ADC:
10817  case X86ISD::SBB:
10818  case X86ISD::SMUL:
10819  case X86ISD::UMUL:
10820  case X86ISD::INC:
10821  case X86ISD::DEC:
10822  case X86ISD::OR:
10823  case X86ISD::XOR:
10824  case X86ISD::AND:
10825    // These nodes' second result is a boolean.
10826    if (Op.getResNo() == 0)
10827      break;
10828    // Fallthrough
10829  case X86ISD::SETCC:
10830    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10831                                       Mask.getBitWidth() - 1);
10832    break;
10833  }
10834}
10835
10836unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10837                                                         unsigned Depth) const {
10838  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10839  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10840    return Op.getValueType().getScalarType().getSizeInBits();
10841
10842  // Fallback case.
10843  return 1;
10844}
10845
10846/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10847/// node is a GlobalAddress + offset.
10848bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10849                                       const GlobalValue* &GA,
10850                                       int64_t &Offset) const {
10851  if (N->getOpcode() == X86ISD::Wrapper) {
10852    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10853      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10854      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10855      return true;
10856    }
10857  }
10858  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10859}
10860
10861/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10862/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10863/// if the load addresses are consecutive, non-overlapping, and in the right
10864/// order.
10865static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10866                                     TargetLowering::DAGCombinerInfo &DCI) {
10867  DebugLoc dl = N->getDebugLoc();
10868  EVT VT = N->getValueType(0);
10869
10870  if (VT.getSizeInBits() != 128)
10871    return SDValue();
10872
10873  // Don't create instructions with illegal types after legalize types has run.
10874  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10875  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10876    return SDValue();
10877
10878  SmallVector<SDValue, 16> Elts;
10879  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10880    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10881
10882  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10883}
10884
10885/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10886/// generation and convert it from being a bunch of shuffles and extracts
10887/// to a simple store and scalar loads to extract the elements.
10888static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10889                                                const TargetLowering &TLI) {
10890  SDValue InputVector = N->getOperand(0);
10891
10892  // Only operate on vectors of 4 elements, where the alternative shuffling
10893  // gets to be more expensive.
10894  if (InputVector.getValueType() != MVT::v4i32)
10895    return SDValue();
10896
10897  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10898  // single use which is a sign-extend or zero-extend, and all elements are
10899  // used.
10900  SmallVector<SDNode *, 4> Uses;
10901  unsigned ExtractedElements = 0;
10902  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10903       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10904    if (UI.getUse().getResNo() != InputVector.getResNo())
10905      return SDValue();
10906
10907    SDNode *Extract = *UI;
10908    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10909      return SDValue();
10910
10911    if (Extract->getValueType(0) != MVT::i32)
10912      return SDValue();
10913    if (!Extract->hasOneUse())
10914      return SDValue();
10915    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10916        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10917      return SDValue();
10918    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10919      return SDValue();
10920
10921    // Record which element was extracted.
10922    ExtractedElements |=
10923      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10924
10925    Uses.push_back(Extract);
10926  }
10927
10928  // If not all the elements were used, this may not be worthwhile.
10929  if (ExtractedElements != 15)
10930    return SDValue();
10931
10932  // Ok, we've now decided to do the transformation.
10933  DebugLoc dl = InputVector.getDebugLoc();
10934
10935  // Store the value to a temporary stack slot.
10936  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10937  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10938                            MachinePointerInfo(), false, false, 0);
10939
10940  // Replace each use (extract) with a load of the appropriate element.
10941  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10942       UE = Uses.end(); UI != UE; ++UI) {
10943    SDNode *Extract = *UI;
10944
10945    // Compute the element's address.
10946    SDValue Idx = Extract->getOperand(1);
10947    unsigned EltSize =
10948        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10949    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10950    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10951
10952    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10953                                     StackPtr, OffsetVal);
10954
10955    // Load the scalar.
10956    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10957                                     ScalarAddr, MachinePointerInfo(),
10958                                     false, false, 0);
10959
10960    // Replace the exact with the load.
10961    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10962  }
10963
10964  // The replacement was made in place; don't return anything.
10965  return SDValue();
10966}
10967
10968/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10969static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10970                                    const X86Subtarget *Subtarget) {
10971  DebugLoc DL = N->getDebugLoc();
10972  SDValue Cond = N->getOperand(0);
10973  // Get the LHS/RHS of the select.
10974  SDValue LHS = N->getOperand(1);
10975  SDValue RHS = N->getOperand(2);
10976
10977  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10978  // instructions match the semantics of the common C idiom x<y?x:y but not
10979  // x<=y?x:y, because of how they handle negative zero (which can be
10980  // ignored in unsafe-math mode).
10981  if (Subtarget->hasSSE2() &&
10982      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10983      Cond.getOpcode() == ISD::SETCC) {
10984    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10985
10986    unsigned Opcode = 0;
10987    // Check for x CC y ? x : y.
10988    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10989        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10990      switch (CC) {
10991      default: break;
10992      case ISD::SETULT:
10993        // Converting this to a min would handle NaNs incorrectly, and swapping
10994        // the operands would cause it to handle comparisons between positive
10995        // and negative zero incorrectly.
10996        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10997          if (!UnsafeFPMath &&
10998              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10999            break;
11000          std::swap(LHS, RHS);
11001        }
11002        Opcode = X86ISD::FMIN;
11003        break;
11004      case ISD::SETOLE:
11005        // Converting this to a min would handle comparisons between positive
11006        // and negative zero incorrectly.
11007        if (!UnsafeFPMath &&
11008            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11009          break;
11010        Opcode = X86ISD::FMIN;
11011        break;
11012      case ISD::SETULE:
11013        // Converting this to a min would handle both negative zeros and NaNs
11014        // incorrectly, but we can swap the operands to fix both.
11015        std::swap(LHS, RHS);
11016      case ISD::SETOLT:
11017      case ISD::SETLT:
11018      case ISD::SETLE:
11019        Opcode = X86ISD::FMIN;
11020        break;
11021
11022      case ISD::SETOGE:
11023        // Converting this to a max would handle comparisons between positive
11024        // and negative zero incorrectly.
11025        if (!UnsafeFPMath &&
11026            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11027          break;
11028        Opcode = X86ISD::FMAX;
11029        break;
11030      case ISD::SETUGT:
11031        // Converting this to a max would handle NaNs incorrectly, and swapping
11032        // the operands would cause it to handle comparisons between positive
11033        // and negative zero incorrectly.
11034        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11035          if (!UnsafeFPMath &&
11036              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11037            break;
11038          std::swap(LHS, RHS);
11039        }
11040        Opcode = X86ISD::FMAX;
11041        break;
11042      case ISD::SETUGE:
11043        // Converting this to a max would handle both negative zeros and NaNs
11044        // incorrectly, but we can swap the operands to fix both.
11045        std::swap(LHS, RHS);
11046      case ISD::SETOGT:
11047      case ISD::SETGT:
11048      case ISD::SETGE:
11049        Opcode = X86ISD::FMAX;
11050        break;
11051      }
11052    // Check for x CC y ? y : x -- a min/max with reversed arms.
11053    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11054               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11055      switch (CC) {
11056      default: break;
11057      case ISD::SETOGE:
11058        // Converting this to a min would handle comparisons between positive
11059        // and negative zero incorrectly, and swapping the operands would
11060        // cause it to handle NaNs incorrectly.
11061        if (!UnsafeFPMath &&
11062            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11063          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11064            break;
11065          std::swap(LHS, RHS);
11066        }
11067        Opcode = X86ISD::FMIN;
11068        break;
11069      case ISD::SETUGT:
11070        // Converting this to a min would handle NaNs incorrectly.
11071        if (!UnsafeFPMath &&
11072            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11073          break;
11074        Opcode = X86ISD::FMIN;
11075        break;
11076      case ISD::SETUGE:
11077        // Converting this to a min would handle both negative zeros and NaNs
11078        // incorrectly, but we can swap the operands to fix both.
11079        std::swap(LHS, RHS);
11080      case ISD::SETOGT:
11081      case ISD::SETGT:
11082      case ISD::SETGE:
11083        Opcode = X86ISD::FMIN;
11084        break;
11085
11086      case ISD::SETULT:
11087        // Converting this to a max would handle NaNs incorrectly.
11088        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11089          break;
11090        Opcode = X86ISD::FMAX;
11091        break;
11092      case ISD::SETOLE:
11093        // Converting this to a max would handle comparisons between positive
11094        // and negative zero incorrectly, and swapping the operands would
11095        // cause it to handle NaNs incorrectly.
11096        if (!UnsafeFPMath &&
11097            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11098          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11099            break;
11100          std::swap(LHS, RHS);
11101        }
11102        Opcode = X86ISD::FMAX;
11103        break;
11104      case ISD::SETULE:
11105        // Converting this to a max would handle both negative zeros and NaNs
11106        // incorrectly, but we can swap the operands to fix both.
11107        std::swap(LHS, RHS);
11108      case ISD::SETOLT:
11109      case ISD::SETLT:
11110      case ISD::SETLE:
11111        Opcode = X86ISD::FMAX;
11112        break;
11113      }
11114    }
11115
11116    if (Opcode)
11117      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11118  }
11119
11120  // If this is a select between two integer constants, try to do some
11121  // optimizations.
11122  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11123    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11124      // Don't do this for crazy integer types.
11125      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11126        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11127        // so that TrueC (the true value) is larger than FalseC.
11128        bool NeedsCondInvert = false;
11129
11130        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11131            // Efficiently invertible.
11132            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11133             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11134              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11135          NeedsCondInvert = true;
11136          std::swap(TrueC, FalseC);
11137        }
11138
11139        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11140        if (FalseC->getAPIntValue() == 0 &&
11141            TrueC->getAPIntValue().isPowerOf2()) {
11142          if (NeedsCondInvert) // Invert the condition if needed.
11143            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11144                               DAG.getConstant(1, Cond.getValueType()));
11145
11146          // Zero extend the condition if needed.
11147          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11148
11149          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11150          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11151                             DAG.getConstant(ShAmt, MVT::i8));
11152        }
11153
11154        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11155        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11156          if (NeedsCondInvert) // Invert the condition if needed.
11157            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11158                               DAG.getConstant(1, Cond.getValueType()));
11159
11160          // Zero extend the condition if needed.
11161          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11162                             FalseC->getValueType(0), Cond);
11163          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11164                             SDValue(FalseC, 0));
11165        }
11166
11167        // Optimize cases that will turn into an LEA instruction.  This requires
11168        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11169        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11170          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11171          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11172
11173          bool isFastMultiplier = false;
11174          if (Diff < 10) {
11175            switch ((unsigned char)Diff) {
11176              default: break;
11177              case 1:  // result = add base, cond
11178              case 2:  // result = lea base(    , cond*2)
11179              case 3:  // result = lea base(cond, cond*2)
11180              case 4:  // result = lea base(    , cond*4)
11181              case 5:  // result = lea base(cond, cond*4)
11182              case 8:  // result = lea base(    , cond*8)
11183              case 9:  // result = lea base(cond, cond*8)
11184                isFastMultiplier = true;
11185                break;
11186            }
11187          }
11188
11189          if (isFastMultiplier) {
11190            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11191            if (NeedsCondInvert) // Invert the condition if needed.
11192              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11193                                 DAG.getConstant(1, Cond.getValueType()));
11194
11195            // Zero extend the condition if needed.
11196            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11197                               Cond);
11198            // Scale the condition by the difference.
11199            if (Diff != 1)
11200              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11201                                 DAG.getConstant(Diff, Cond.getValueType()));
11202
11203            // Add the base if non-zero.
11204            if (FalseC->getAPIntValue() != 0)
11205              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11206                                 SDValue(FalseC, 0));
11207            return Cond;
11208          }
11209        }
11210      }
11211  }
11212
11213  return SDValue();
11214}
11215
11216/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11217static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11218                                  TargetLowering::DAGCombinerInfo &DCI) {
11219  DebugLoc DL = N->getDebugLoc();
11220
11221  // If the flag operand isn't dead, don't touch this CMOV.
11222  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11223    return SDValue();
11224
11225  // If this is a select between two integer constants, try to do some
11226  // optimizations.  Note that the operands are ordered the opposite of SELECT
11227  // operands.
11228  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
11229    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11230      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11231      // larger than FalseC (the false value).
11232      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11233
11234      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11235        CC = X86::GetOppositeBranchCondition(CC);
11236        std::swap(TrueC, FalseC);
11237      }
11238
11239      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11240      // This is efficient for any integer data type (including i8/i16) and
11241      // shift amount.
11242      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11243        SDValue Cond = N->getOperand(3);
11244        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11245                           DAG.getConstant(CC, MVT::i8), Cond);
11246
11247        // Zero extend the condition if needed.
11248        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11249
11250        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11251        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11252                           DAG.getConstant(ShAmt, MVT::i8));
11253        if (N->getNumValues() == 2)  // Dead flag value?
11254          return DCI.CombineTo(N, Cond, SDValue());
11255        return Cond;
11256      }
11257
11258      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11259      // for any integer data type, including i8/i16.
11260      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11261        SDValue Cond = N->getOperand(3);
11262        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11263                           DAG.getConstant(CC, MVT::i8), Cond);
11264
11265        // Zero extend the condition if needed.
11266        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11267                           FalseC->getValueType(0), Cond);
11268        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11269                           SDValue(FalseC, 0));
11270
11271        if (N->getNumValues() == 2)  // Dead flag value?
11272          return DCI.CombineTo(N, Cond, SDValue());
11273        return Cond;
11274      }
11275
11276      // Optimize cases that will turn into an LEA instruction.  This requires
11277      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11278      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11279        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11280        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11281
11282        bool isFastMultiplier = false;
11283        if (Diff < 10) {
11284          switch ((unsigned char)Diff) {
11285          default: break;
11286          case 1:  // result = add base, cond
11287          case 2:  // result = lea base(    , cond*2)
11288          case 3:  // result = lea base(cond, cond*2)
11289          case 4:  // result = lea base(    , cond*4)
11290          case 5:  // result = lea base(cond, cond*4)
11291          case 8:  // result = lea base(    , cond*8)
11292          case 9:  // result = lea base(cond, cond*8)
11293            isFastMultiplier = true;
11294            break;
11295          }
11296        }
11297
11298        if (isFastMultiplier) {
11299          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11300          SDValue Cond = N->getOperand(3);
11301          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11302                             DAG.getConstant(CC, MVT::i8), Cond);
11303          // Zero extend the condition if needed.
11304          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11305                             Cond);
11306          // Scale the condition by the difference.
11307          if (Diff != 1)
11308            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11309                               DAG.getConstant(Diff, Cond.getValueType()));
11310
11311          // Add the base if non-zero.
11312          if (FalseC->getAPIntValue() != 0)
11313            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11314                               SDValue(FalseC, 0));
11315          if (N->getNumValues() == 2)  // Dead flag value?
11316            return DCI.CombineTo(N, Cond, SDValue());
11317          return Cond;
11318        }
11319      }
11320    }
11321  }
11322  return SDValue();
11323}
11324
11325
11326/// PerformMulCombine - Optimize a single multiply with constant into two
11327/// in order to implement it with two cheaper instructions, e.g.
11328/// LEA + SHL, LEA + LEA.
11329static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11330                                 TargetLowering::DAGCombinerInfo &DCI) {
11331  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11332    return SDValue();
11333
11334  EVT VT = N->getValueType(0);
11335  if (VT != MVT::i64)
11336    return SDValue();
11337
11338  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11339  if (!C)
11340    return SDValue();
11341  uint64_t MulAmt = C->getZExtValue();
11342  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11343    return SDValue();
11344
11345  uint64_t MulAmt1 = 0;
11346  uint64_t MulAmt2 = 0;
11347  if ((MulAmt % 9) == 0) {
11348    MulAmt1 = 9;
11349    MulAmt2 = MulAmt / 9;
11350  } else if ((MulAmt % 5) == 0) {
11351    MulAmt1 = 5;
11352    MulAmt2 = MulAmt / 5;
11353  } else if ((MulAmt % 3) == 0) {
11354    MulAmt1 = 3;
11355    MulAmt2 = MulAmt / 3;
11356  }
11357  if (MulAmt2 &&
11358      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11359    DebugLoc DL = N->getDebugLoc();
11360
11361    if (isPowerOf2_64(MulAmt2) &&
11362        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11363      // If second multiplifer is pow2, issue it first. We want the multiply by
11364      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11365      // is an add.
11366      std::swap(MulAmt1, MulAmt2);
11367
11368    SDValue NewMul;
11369    if (isPowerOf2_64(MulAmt1))
11370      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11371                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11372    else
11373      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11374                           DAG.getConstant(MulAmt1, VT));
11375
11376    if (isPowerOf2_64(MulAmt2))
11377      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11378                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11379    else
11380      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11381                           DAG.getConstant(MulAmt2, VT));
11382
11383    // Do not add new nodes to DAG combiner worklist.
11384    DCI.CombineTo(N, NewMul, false);
11385  }
11386  return SDValue();
11387}
11388
11389static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11390  SDValue N0 = N->getOperand(0);
11391  SDValue N1 = N->getOperand(1);
11392  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11393  EVT VT = N0.getValueType();
11394
11395  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11396  // since the result of setcc_c is all zero's or all ones.
11397  if (N1C && N0.getOpcode() == ISD::AND &&
11398      N0.getOperand(1).getOpcode() == ISD::Constant) {
11399    SDValue N00 = N0.getOperand(0);
11400    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11401        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11402          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11403         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11404      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11405      APInt ShAmt = N1C->getAPIntValue();
11406      Mask = Mask.shl(ShAmt);
11407      if (Mask != 0)
11408        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11409                           N00, DAG.getConstant(Mask, VT));
11410    }
11411  }
11412
11413  return SDValue();
11414}
11415
11416/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11417///                       when possible.
11418static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11419                                   const X86Subtarget *Subtarget) {
11420  EVT VT = N->getValueType(0);
11421  if (!VT.isVector() && VT.isInteger() &&
11422      N->getOpcode() == ISD::SHL)
11423    return PerformSHLCombine(N, DAG);
11424
11425  // On X86 with SSE2 support, we can transform this to a vector shift if
11426  // all elements are shifted by the same amount.  We can't do this in legalize
11427  // because the a constant vector is typically transformed to a constant pool
11428  // so we have no knowledge of the shift amount.
11429  if (!Subtarget->hasSSE2())
11430    return SDValue();
11431
11432  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11433    return SDValue();
11434
11435  SDValue ShAmtOp = N->getOperand(1);
11436  EVT EltVT = VT.getVectorElementType();
11437  DebugLoc DL = N->getDebugLoc();
11438  SDValue BaseShAmt = SDValue();
11439  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11440    unsigned NumElts = VT.getVectorNumElements();
11441    unsigned i = 0;
11442    for (; i != NumElts; ++i) {
11443      SDValue Arg = ShAmtOp.getOperand(i);
11444      if (Arg.getOpcode() == ISD::UNDEF) continue;
11445      BaseShAmt = Arg;
11446      break;
11447    }
11448    for (; i != NumElts; ++i) {
11449      SDValue Arg = ShAmtOp.getOperand(i);
11450      if (Arg.getOpcode() == ISD::UNDEF) continue;
11451      if (Arg != BaseShAmt) {
11452        return SDValue();
11453      }
11454    }
11455  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11456             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11457    SDValue InVec = ShAmtOp.getOperand(0);
11458    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11459      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11460      unsigned i = 0;
11461      for (; i != NumElts; ++i) {
11462        SDValue Arg = InVec.getOperand(i);
11463        if (Arg.getOpcode() == ISD::UNDEF) continue;
11464        BaseShAmt = Arg;
11465        break;
11466      }
11467    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11468       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11469         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11470         if (C->getZExtValue() == SplatIdx)
11471           BaseShAmt = InVec.getOperand(1);
11472       }
11473    }
11474    if (BaseShAmt.getNode() == 0)
11475      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11476                              DAG.getIntPtrConstant(0));
11477  } else
11478    return SDValue();
11479
11480  // The shift amount is an i32.
11481  if (EltVT.bitsGT(MVT::i32))
11482    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11483  else if (EltVT.bitsLT(MVT::i32))
11484    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11485
11486  // The shift amount is identical so we can do a vector shift.
11487  SDValue  ValOp = N->getOperand(0);
11488  switch (N->getOpcode()) {
11489  default:
11490    llvm_unreachable("Unknown shift opcode!");
11491    break;
11492  case ISD::SHL:
11493    if (VT == MVT::v2i64)
11494      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11495                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11496                         ValOp, BaseShAmt);
11497    if (VT == MVT::v4i32)
11498      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11499                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11500                         ValOp, BaseShAmt);
11501    if (VT == MVT::v8i16)
11502      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11503                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11504                         ValOp, BaseShAmt);
11505    break;
11506  case ISD::SRA:
11507    if (VT == MVT::v4i32)
11508      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11509                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11510                         ValOp, BaseShAmt);
11511    if (VT == MVT::v8i16)
11512      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11513                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11514                         ValOp, BaseShAmt);
11515    break;
11516  case ISD::SRL:
11517    if (VT == MVT::v2i64)
11518      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11519                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11520                         ValOp, BaseShAmt);
11521    if (VT == MVT::v4i32)
11522      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11523                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11524                         ValOp, BaseShAmt);
11525    if (VT ==  MVT::v8i16)
11526      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11527                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11528                         ValOp, BaseShAmt);
11529    break;
11530  }
11531  return SDValue();
11532}
11533
11534
11535static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11536                                 TargetLowering::DAGCombinerInfo &DCI,
11537                                 const X86Subtarget *Subtarget) {
11538  if (DCI.isBeforeLegalizeOps())
11539    return SDValue();
11540
11541  // Want to form PANDN nodes, in the hopes of then easily combining them with
11542  // OR and AND nodes to form PBLEND/PSIGN.
11543  EVT VT = N->getValueType(0);
11544  if (VT != MVT::v2i64)
11545    return SDValue();
11546
11547  SDValue N0 = N->getOperand(0);
11548  SDValue N1 = N->getOperand(1);
11549  DebugLoc DL = N->getDebugLoc();
11550
11551  // Check LHS for vnot
11552  if (N0.getOpcode() == ISD::XOR &&
11553      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11554    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11555
11556  // Check RHS for vnot
11557  if (N1.getOpcode() == ISD::XOR &&
11558      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11559    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11560
11561  return SDValue();
11562}
11563
11564static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11565                                TargetLowering::DAGCombinerInfo &DCI,
11566                                const X86Subtarget *Subtarget) {
11567  if (DCI.isBeforeLegalizeOps())
11568    return SDValue();
11569
11570  EVT VT = N->getValueType(0);
11571  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11572    return SDValue();
11573
11574  SDValue N0 = N->getOperand(0);
11575  SDValue N1 = N->getOperand(1);
11576
11577  // look for psign/blend
11578  if (Subtarget->hasSSSE3()) {
11579    if (VT == MVT::v2i64) {
11580      // Canonicalize pandn to RHS
11581      if (N0.getOpcode() == X86ISD::PANDN)
11582        std::swap(N0, N1);
11583      // or (and (m, x), (pandn m, y))
11584      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11585        SDValue Mask = N1.getOperand(0);
11586        SDValue X    = N1.getOperand(1);
11587        SDValue Y;
11588        if (N0.getOperand(0) == Mask)
11589          Y = N0.getOperand(1);
11590        if (N0.getOperand(1) == Mask)
11591          Y = N0.getOperand(0);
11592
11593        // Check to see if the mask appeared in both the AND and PANDN and
11594        if (!Y.getNode())
11595          return SDValue();
11596
11597        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11598        if (Mask.getOpcode() != ISD::BITCAST ||
11599            X.getOpcode() != ISD::BITCAST ||
11600            Y.getOpcode() != ISD::BITCAST)
11601          return SDValue();
11602
11603        // Look through mask bitcast.
11604        Mask = Mask.getOperand(0);
11605        EVT MaskVT = Mask.getValueType();
11606
11607        // Validate that the Mask operand is a vector sra node.  The sra node
11608        // will be an intrinsic.
11609        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11610          return SDValue();
11611
11612        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11613        // there is no psrai.b
11614        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11615        case Intrinsic::x86_sse2_psrai_w:
11616        case Intrinsic::x86_sse2_psrai_d:
11617          break;
11618        default: return SDValue();
11619        }
11620
11621        // Check that the SRA is all signbits.
11622        SDValue SraC = Mask.getOperand(2);
11623        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11624        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11625        if ((SraAmt + 1) != EltBits)
11626          return SDValue();
11627
11628        DebugLoc DL = N->getDebugLoc();
11629
11630        // Now we know we at least have a plendvb with the mask val.  See if
11631        // we can form a psignb/w/d.
11632        // psign = x.type == y.type == mask.type && y = sub(0, x);
11633        X = X.getOperand(0);
11634        Y = Y.getOperand(0);
11635        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11636            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11637            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11638          unsigned Opc = 0;
11639          switch (EltBits) {
11640          case 8: Opc = X86ISD::PSIGNB; break;
11641          case 16: Opc = X86ISD::PSIGNW; break;
11642          case 32: Opc = X86ISD::PSIGND; break;
11643          default: break;
11644          }
11645          if (Opc) {
11646            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11647            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11648          }
11649        }
11650        // PBLENDVB only available on SSE 4.1
11651        if (!Subtarget->hasSSE41())
11652          return SDValue();
11653
11654        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11655        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11656        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11657        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11658        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11659      }
11660    }
11661  }
11662
11663  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11664  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11665    std::swap(N0, N1);
11666  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11667    return SDValue();
11668  if (!N0.hasOneUse() || !N1.hasOneUse())
11669    return SDValue();
11670
11671  SDValue ShAmt0 = N0.getOperand(1);
11672  if (ShAmt0.getValueType() != MVT::i8)
11673    return SDValue();
11674  SDValue ShAmt1 = N1.getOperand(1);
11675  if (ShAmt1.getValueType() != MVT::i8)
11676    return SDValue();
11677  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11678    ShAmt0 = ShAmt0.getOperand(0);
11679  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11680    ShAmt1 = ShAmt1.getOperand(0);
11681
11682  DebugLoc DL = N->getDebugLoc();
11683  unsigned Opc = X86ISD::SHLD;
11684  SDValue Op0 = N0.getOperand(0);
11685  SDValue Op1 = N1.getOperand(0);
11686  if (ShAmt0.getOpcode() == ISD::SUB) {
11687    Opc = X86ISD::SHRD;
11688    std::swap(Op0, Op1);
11689    std::swap(ShAmt0, ShAmt1);
11690  }
11691
11692  unsigned Bits = VT.getSizeInBits();
11693  if (ShAmt1.getOpcode() == ISD::SUB) {
11694    SDValue Sum = ShAmt1.getOperand(0);
11695    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11696      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11697      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11698        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11699      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11700        return DAG.getNode(Opc, DL, VT,
11701                           Op0, Op1,
11702                           DAG.getNode(ISD::TRUNCATE, DL,
11703                                       MVT::i8, ShAmt0));
11704    }
11705  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11706    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11707    if (ShAmt0C &&
11708        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11709      return DAG.getNode(Opc, DL, VT,
11710                         N0.getOperand(0), N1.getOperand(0),
11711                         DAG.getNode(ISD::TRUNCATE, DL,
11712                                       MVT::i8, ShAmt0));
11713  }
11714
11715  return SDValue();
11716}
11717
11718/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11719static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11720                                   const X86Subtarget *Subtarget) {
11721  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11722  // the FP state in cases where an emms may be missing.
11723  // A preferable solution to the general problem is to figure out the right
11724  // places to insert EMMS.  This qualifies as a quick hack.
11725
11726  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11727  StoreSDNode *St = cast<StoreSDNode>(N);
11728  EVT VT = St->getValue().getValueType();
11729  if (VT.getSizeInBits() != 64)
11730    return SDValue();
11731
11732  const Function *F = DAG.getMachineFunction().getFunction();
11733  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11734  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11735    && Subtarget->hasSSE2();
11736  if ((VT.isVector() ||
11737       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11738      isa<LoadSDNode>(St->getValue()) &&
11739      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11740      St->getChain().hasOneUse() && !St->isVolatile()) {
11741    SDNode* LdVal = St->getValue().getNode();
11742    LoadSDNode *Ld = 0;
11743    int TokenFactorIndex = -1;
11744    SmallVector<SDValue, 8> Ops;
11745    SDNode* ChainVal = St->getChain().getNode();
11746    // Must be a store of a load.  We currently handle two cases:  the load
11747    // is a direct child, and it's under an intervening TokenFactor.  It is
11748    // possible to dig deeper under nested TokenFactors.
11749    if (ChainVal == LdVal)
11750      Ld = cast<LoadSDNode>(St->getChain());
11751    else if (St->getValue().hasOneUse() &&
11752             ChainVal->getOpcode() == ISD::TokenFactor) {
11753      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11754        if (ChainVal->getOperand(i).getNode() == LdVal) {
11755          TokenFactorIndex = i;
11756          Ld = cast<LoadSDNode>(St->getValue());
11757        } else
11758          Ops.push_back(ChainVal->getOperand(i));
11759      }
11760    }
11761
11762    if (!Ld || !ISD::isNormalLoad(Ld))
11763      return SDValue();
11764
11765    // If this is not the MMX case, i.e. we are just turning i64 load/store
11766    // into f64 load/store, avoid the transformation if there are multiple
11767    // uses of the loaded value.
11768    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11769      return SDValue();
11770
11771    DebugLoc LdDL = Ld->getDebugLoc();
11772    DebugLoc StDL = N->getDebugLoc();
11773    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11774    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11775    // pair instead.
11776    if (Subtarget->is64Bit() || F64IsLegal) {
11777      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11778      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11779                                  Ld->getPointerInfo(), Ld->isVolatile(),
11780                                  Ld->isNonTemporal(), Ld->getAlignment());
11781      SDValue NewChain = NewLd.getValue(1);
11782      if (TokenFactorIndex != -1) {
11783        Ops.push_back(NewChain);
11784        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11785                               Ops.size());
11786      }
11787      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11788                          St->getPointerInfo(),
11789                          St->isVolatile(), St->isNonTemporal(),
11790                          St->getAlignment());
11791    }
11792
11793    // Otherwise, lower to two pairs of 32-bit loads / stores.
11794    SDValue LoAddr = Ld->getBasePtr();
11795    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11796                                 DAG.getConstant(4, MVT::i32));
11797
11798    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11799                               Ld->getPointerInfo(),
11800                               Ld->isVolatile(), Ld->isNonTemporal(),
11801                               Ld->getAlignment());
11802    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11803                               Ld->getPointerInfo().getWithOffset(4),
11804                               Ld->isVolatile(), Ld->isNonTemporal(),
11805                               MinAlign(Ld->getAlignment(), 4));
11806
11807    SDValue NewChain = LoLd.getValue(1);
11808    if (TokenFactorIndex != -1) {
11809      Ops.push_back(LoLd);
11810      Ops.push_back(HiLd);
11811      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11812                             Ops.size());
11813    }
11814
11815    LoAddr = St->getBasePtr();
11816    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11817                         DAG.getConstant(4, MVT::i32));
11818
11819    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11820                                St->getPointerInfo(),
11821                                St->isVolatile(), St->isNonTemporal(),
11822                                St->getAlignment());
11823    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11824                                St->getPointerInfo().getWithOffset(4),
11825                                St->isVolatile(),
11826                                St->isNonTemporal(),
11827                                MinAlign(St->getAlignment(), 4));
11828    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11829  }
11830  return SDValue();
11831}
11832
11833/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11834/// X86ISD::FXOR nodes.
11835static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11836  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11837  // F[X]OR(0.0, x) -> x
11838  // F[X]OR(x, 0.0) -> x
11839  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11840    if (C->getValueAPF().isPosZero())
11841      return N->getOperand(1);
11842  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11843    if (C->getValueAPF().isPosZero())
11844      return N->getOperand(0);
11845  return SDValue();
11846}
11847
11848/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11849static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11850  // FAND(0.0, x) -> 0.0
11851  // FAND(x, 0.0) -> 0.0
11852  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11853    if (C->getValueAPF().isPosZero())
11854      return N->getOperand(0);
11855  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11856    if (C->getValueAPF().isPosZero())
11857      return N->getOperand(1);
11858  return SDValue();
11859}
11860
11861static SDValue PerformBTCombine(SDNode *N,
11862                                SelectionDAG &DAG,
11863                                TargetLowering::DAGCombinerInfo &DCI) {
11864  // BT ignores high bits in the bit index operand.
11865  SDValue Op1 = N->getOperand(1);
11866  if (Op1.hasOneUse()) {
11867    unsigned BitWidth = Op1.getValueSizeInBits();
11868    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11869    APInt KnownZero, KnownOne;
11870    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11871                                          !DCI.isBeforeLegalizeOps());
11872    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11873    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11874        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11875      DCI.CommitTargetLoweringOpt(TLO);
11876  }
11877  return SDValue();
11878}
11879
11880static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11881  SDValue Op = N->getOperand(0);
11882  if (Op.getOpcode() == ISD::BITCAST)
11883    Op = Op.getOperand(0);
11884  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11885  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11886      VT.getVectorElementType().getSizeInBits() ==
11887      OpVT.getVectorElementType().getSizeInBits()) {
11888    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11889  }
11890  return SDValue();
11891}
11892
11893static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11894  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11895  //           (and (i32 x86isd::setcc_carry), 1)
11896  // This eliminates the zext. This transformation is necessary because
11897  // ISD::SETCC is always legalized to i8.
11898  DebugLoc dl = N->getDebugLoc();
11899  SDValue N0 = N->getOperand(0);
11900  EVT VT = N->getValueType(0);
11901  if (N0.getOpcode() == ISD::AND &&
11902      N0.hasOneUse() &&
11903      N0.getOperand(0).hasOneUse()) {
11904    SDValue N00 = N0.getOperand(0);
11905    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11906      return SDValue();
11907    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11908    if (!C || C->getZExtValue() != 1)
11909      return SDValue();
11910    return DAG.getNode(ISD::AND, dl, VT,
11911                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11912                                   N00.getOperand(0), N00.getOperand(1)),
11913                       DAG.getConstant(1, VT));
11914  }
11915
11916  return SDValue();
11917}
11918
11919// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
11920static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
11921  unsigned X86CC = N->getConstantOperandVal(0);
11922  SDValue EFLAG = N->getOperand(1);
11923  DebugLoc DL = N->getDebugLoc();
11924
11925  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
11926  // a zext and produces an all-ones bit which is more useful than 0/1 in some
11927  // cases.
11928  if (X86CC == X86::COND_B)
11929    return DAG.getNode(ISD::AND, DL, MVT::i8,
11930                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
11931                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
11932                       DAG.getConstant(1, MVT::i8));
11933
11934  return SDValue();
11935}
11936
11937// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
11938static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
11939                                 X86TargetLowering::DAGCombinerInfo &DCI) {
11940  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
11941  // the result is either zero or one (depending on the input carry bit).
11942  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
11943  if (X86::isZeroNode(N->getOperand(0)) &&
11944      X86::isZeroNode(N->getOperand(1)) &&
11945      // We don't have a good way to replace an EFLAGS use, so only do this when
11946      // dead right now.
11947      SDValue(N, 1).use_empty()) {
11948    DebugLoc DL = N->getDebugLoc();
11949    EVT VT = N->getValueType(0);
11950    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
11951    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
11952                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
11953                                           DAG.getConstant(X86::COND_B,MVT::i8),
11954                                           N->getOperand(2)),
11955                               DAG.getConstant(1, VT));
11956    return DCI.CombineTo(N, Res1, CarryOut);
11957  }
11958
11959  return SDValue();
11960}
11961
11962// fold (add Y, (sete  X, 0)) -> adc  0, Y
11963//      (add Y, (setne X, 0)) -> sbb -1, Y
11964//      (sub (sete  X, 0), Y) -> sbb  0, Y
11965//      (sub (setne X, 0), Y) -> adc -1, Y
11966static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
11967  DebugLoc DL = N->getDebugLoc();
11968
11969  // Look through ZExts.
11970  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
11971  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
11972    return SDValue();
11973
11974  SDValue SetCC = Ext.getOperand(0);
11975  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
11976    return SDValue();
11977
11978  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
11979  if (CC != X86::COND_E && CC != X86::COND_NE)
11980    return SDValue();
11981
11982  SDValue Cmp = SetCC.getOperand(1);
11983  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
11984      !X86::isZeroNode(Cmp.getOperand(1)) ||
11985      !Cmp.getOperand(0).getValueType().isInteger())
11986    return SDValue();
11987
11988  SDValue CmpOp0 = Cmp.getOperand(0);
11989  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
11990                               DAG.getConstant(1, CmpOp0.getValueType()));
11991
11992  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
11993  if (CC == X86::COND_NE)
11994    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
11995                       DL, OtherVal.getValueType(), OtherVal,
11996                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
11997  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
11998                     DL, OtherVal.getValueType(), OtherVal,
11999                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12000}
12001
12002SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12003                                             DAGCombinerInfo &DCI) const {
12004  SelectionDAG &DAG = DCI.DAG;
12005  switch (N->getOpcode()) {
12006  default: break;
12007  case ISD::EXTRACT_VECTOR_ELT:
12008    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12009  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12010  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12011  case ISD::ADD:
12012  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
12013  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12014  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12015  case ISD::SHL:
12016  case ISD::SRA:
12017  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12018  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12019  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12020  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12021  case X86ISD::FXOR:
12022  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12023  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12024  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12025  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12026  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12027  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12028  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12029  case X86ISD::SHUFPD:
12030  case X86ISD::PALIGN:
12031  case X86ISD::PUNPCKHBW:
12032  case X86ISD::PUNPCKHWD:
12033  case X86ISD::PUNPCKHDQ:
12034  case X86ISD::PUNPCKHQDQ:
12035  case X86ISD::UNPCKHPS:
12036  case X86ISD::UNPCKHPD:
12037  case X86ISD::PUNPCKLBW:
12038  case X86ISD::PUNPCKLWD:
12039  case X86ISD::PUNPCKLDQ:
12040  case X86ISD::PUNPCKLQDQ:
12041  case X86ISD::UNPCKLPS:
12042  case X86ISD::UNPCKLPD:
12043  case X86ISD::VUNPCKLPS:
12044  case X86ISD::VUNPCKLPD:
12045  case X86ISD::VUNPCKLPSY:
12046  case X86ISD::VUNPCKLPDY:
12047  case X86ISD::MOVHLPS:
12048  case X86ISD::MOVLHPS:
12049  case X86ISD::PSHUFD:
12050  case X86ISD::PSHUFHW:
12051  case X86ISD::PSHUFLW:
12052  case X86ISD::MOVSS:
12053  case X86ISD::MOVSD:
12054  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12055  }
12056
12057  return SDValue();
12058}
12059
12060/// isTypeDesirableForOp - Return true if the target has native support for
12061/// the specified value type and it is 'desirable' to use the type for the
12062/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12063/// instruction encodings are longer and some i16 instructions are slow.
12064bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12065  if (!isTypeLegal(VT))
12066    return false;
12067  if (VT != MVT::i16)
12068    return true;
12069
12070  switch (Opc) {
12071  default:
12072    return true;
12073  case ISD::LOAD:
12074  case ISD::SIGN_EXTEND:
12075  case ISD::ZERO_EXTEND:
12076  case ISD::ANY_EXTEND:
12077  case ISD::SHL:
12078  case ISD::SRL:
12079  case ISD::SUB:
12080  case ISD::ADD:
12081  case ISD::MUL:
12082  case ISD::AND:
12083  case ISD::OR:
12084  case ISD::XOR:
12085    return false;
12086  }
12087}
12088
12089/// IsDesirableToPromoteOp - This method query the target whether it is
12090/// beneficial for dag combiner to promote the specified node. If true, it
12091/// should return the desired promotion type by reference.
12092bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12093  EVT VT = Op.getValueType();
12094  if (VT != MVT::i16)
12095    return false;
12096
12097  bool Promote = false;
12098  bool Commute = false;
12099  switch (Op.getOpcode()) {
12100  default: break;
12101  case ISD::LOAD: {
12102    LoadSDNode *LD = cast<LoadSDNode>(Op);
12103    // If the non-extending load has a single use and it's not live out, then it
12104    // might be folded.
12105    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12106                                                     Op.hasOneUse()*/) {
12107      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12108             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12109        // The only case where we'd want to promote LOAD (rather then it being
12110        // promoted as an operand is when it's only use is liveout.
12111        if (UI->getOpcode() != ISD::CopyToReg)
12112          return false;
12113      }
12114    }
12115    Promote = true;
12116    break;
12117  }
12118  case ISD::SIGN_EXTEND:
12119  case ISD::ZERO_EXTEND:
12120  case ISD::ANY_EXTEND:
12121    Promote = true;
12122    break;
12123  case ISD::SHL:
12124  case ISD::SRL: {
12125    SDValue N0 = Op.getOperand(0);
12126    // Look out for (store (shl (load), x)).
12127    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12128      return false;
12129    Promote = true;
12130    break;
12131  }
12132  case ISD::ADD:
12133  case ISD::MUL:
12134  case ISD::AND:
12135  case ISD::OR:
12136  case ISD::XOR:
12137    Commute = true;
12138    // fallthrough
12139  case ISD::SUB: {
12140    SDValue N0 = Op.getOperand(0);
12141    SDValue N1 = Op.getOperand(1);
12142    if (!Commute && MayFoldLoad(N1))
12143      return false;
12144    // Avoid disabling potential load folding opportunities.
12145    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12146      return false;
12147    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12148      return false;
12149    Promote = true;
12150  }
12151  }
12152
12153  PVT = MVT::i32;
12154  return Promote;
12155}
12156
12157//===----------------------------------------------------------------------===//
12158//                           X86 Inline Assembly Support
12159//===----------------------------------------------------------------------===//
12160
12161bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12162  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12163
12164  std::string AsmStr = IA->getAsmString();
12165
12166  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12167  SmallVector<StringRef, 4> AsmPieces;
12168  SplitString(AsmStr, AsmPieces, ";\n");
12169
12170  switch (AsmPieces.size()) {
12171  default: return false;
12172  case 1:
12173    AsmStr = AsmPieces[0];
12174    AsmPieces.clear();
12175    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12176
12177    // FIXME: this should verify that we are targetting a 486 or better.  If not,
12178    // we will turn this bswap into something that will be lowered to logical ops
12179    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12180    // so don't worry about this.
12181    // bswap $0
12182    if (AsmPieces.size() == 2 &&
12183        (AsmPieces[0] == "bswap" ||
12184         AsmPieces[0] == "bswapq" ||
12185         AsmPieces[0] == "bswapl") &&
12186        (AsmPieces[1] == "$0" ||
12187         AsmPieces[1] == "${0:q}")) {
12188      // No need to check constraints, nothing other than the equivalent of
12189      // "=r,0" would be valid here.
12190      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12191      if (!Ty || Ty->getBitWidth() % 16 != 0)
12192        return false;
12193      return IntrinsicLowering::LowerToByteSwap(CI);
12194    }
12195    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12196    if (CI->getType()->isIntegerTy(16) &&
12197        AsmPieces.size() == 3 &&
12198        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12199        AsmPieces[1] == "$$8," &&
12200        AsmPieces[2] == "${0:w}" &&
12201        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12202      AsmPieces.clear();
12203      const std::string &ConstraintsStr = IA->getConstraintString();
12204      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12205      std::sort(AsmPieces.begin(), AsmPieces.end());
12206      if (AsmPieces.size() == 4 &&
12207          AsmPieces[0] == "~{cc}" &&
12208          AsmPieces[1] == "~{dirflag}" &&
12209          AsmPieces[2] == "~{flags}" &&
12210          AsmPieces[3] == "~{fpsr}") {
12211        const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12212        if (!Ty || Ty->getBitWidth() % 16 != 0)
12213          return false;
12214        return IntrinsicLowering::LowerToByteSwap(CI);
12215      }
12216    }
12217    break;
12218  case 3:
12219    if (CI->getType()->isIntegerTy(32) &&
12220        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12221      SmallVector<StringRef, 4> Words;
12222      SplitString(AsmPieces[0], Words, " \t,");
12223      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12224          Words[2] == "${0:w}") {
12225        Words.clear();
12226        SplitString(AsmPieces[1], Words, " \t,");
12227        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12228            Words[2] == "$0") {
12229          Words.clear();
12230          SplitString(AsmPieces[2], Words, " \t,");
12231          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12232              Words[2] == "${0:w}") {
12233            AsmPieces.clear();
12234            const std::string &ConstraintsStr = IA->getConstraintString();
12235            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12236            std::sort(AsmPieces.begin(), AsmPieces.end());
12237            if (AsmPieces.size() == 4 &&
12238                AsmPieces[0] == "~{cc}" &&
12239                AsmPieces[1] == "~{dirflag}" &&
12240                AsmPieces[2] == "~{flags}" &&
12241                AsmPieces[3] == "~{fpsr}") {
12242              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12243              if (!Ty || Ty->getBitWidth() % 16 != 0)
12244                return false;
12245              return IntrinsicLowering::LowerToByteSwap(CI);
12246            }
12247          }
12248        }
12249      }
12250    }
12251
12252    if (CI->getType()->isIntegerTy(64)) {
12253      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12254      if (Constraints.size() >= 2 &&
12255          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12256          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12257        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12258        SmallVector<StringRef, 4> Words;
12259        SplitString(AsmPieces[0], Words, " \t");
12260        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12261          Words.clear();
12262          SplitString(AsmPieces[1], Words, " \t");
12263          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12264            Words.clear();
12265            SplitString(AsmPieces[2], Words, " \t,");
12266            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12267                Words[2] == "%edx") {
12268              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12269              if (!Ty || Ty->getBitWidth() % 16 != 0)
12270                return false;
12271              return IntrinsicLowering::LowerToByteSwap(CI);
12272            }
12273          }
12274        }
12275      }
12276    }
12277    break;
12278  }
12279  return false;
12280}
12281
12282
12283
12284/// getConstraintType - Given a constraint letter, return the type of
12285/// constraint it is for this target.
12286X86TargetLowering::ConstraintType
12287X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12288  if (Constraint.size() == 1) {
12289    switch (Constraint[0]) {
12290    case 'R':
12291    case 'q':
12292    case 'Q':
12293    case 'f':
12294    case 't':
12295    case 'u':
12296    case 'y':
12297    case 'x':
12298    case 'Y':
12299      return C_RegisterClass;
12300    case 'a':
12301    case 'b':
12302    case 'c':
12303    case 'd':
12304    case 'S':
12305    case 'D':
12306    case 'A':
12307      return C_Register;
12308    case 'I':
12309    case 'J':
12310    case 'K':
12311    case 'L':
12312    case 'M':
12313    case 'N':
12314    case 'G':
12315    case 'C':
12316    case 'e':
12317    case 'Z':
12318      return C_Other;
12319    default:
12320      break;
12321    }
12322  }
12323  return TargetLowering::getConstraintType(Constraint);
12324}
12325
12326/// Examine constraint type and operand type and determine a weight value.
12327/// This object must already have been set up with the operand type
12328/// and the current alternative constraint selected.
12329TargetLowering::ConstraintWeight
12330  X86TargetLowering::getSingleConstraintMatchWeight(
12331    AsmOperandInfo &info, const char *constraint) const {
12332  ConstraintWeight weight = CW_Invalid;
12333  Value *CallOperandVal = info.CallOperandVal;
12334    // If we don't have a value, we can't do a match,
12335    // but allow it at the lowest weight.
12336  if (CallOperandVal == NULL)
12337    return CW_Default;
12338  const Type *type = CallOperandVal->getType();
12339  // Look at the constraint type.
12340  switch (*constraint) {
12341  default:
12342    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12343  case 'R':
12344  case 'q':
12345  case 'Q':
12346  case 'a':
12347  case 'b':
12348  case 'c':
12349  case 'd':
12350  case 'S':
12351  case 'D':
12352  case 'A':
12353    if (CallOperandVal->getType()->isIntegerTy())
12354      weight = CW_SpecificReg;
12355    break;
12356  case 'f':
12357  case 't':
12358  case 'u':
12359      if (type->isFloatingPointTy())
12360        weight = CW_SpecificReg;
12361      break;
12362  case 'y':
12363      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12364        weight = CW_SpecificReg;
12365      break;
12366  case 'x':
12367  case 'Y':
12368    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12369      weight = CW_Register;
12370    break;
12371  case 'I':
12372    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12373      if (C->getZExtValue() <= 31)
12374        weight = CW_Constant;
12375    }
12376    break;
12377  case 'J':
12378    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12379      if (C->getZExtValue() <= 63)
12380        weight = CW_Constant;
12381    }
12382    break;
12383  case 'K':
12384    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12385      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12386        weight = CW_Constant;
12387    }
12388    break;
12389  case 'L':
12390    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12391      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12392        weight = CW_Constant;
12393    }
12394    break;
12395  case 'M':
12396    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12397      if (C->getZExtValue() <= 3)
12398        weight = CW_Constant;
12399    }
12400    break;
12401  case 'N':
12402    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12403      if (C->getZExtValue() <= 0xff)
12404        weight = CW_Constant;
12405    }
12406    break;
12407  case 'G':
12408  case 'C':
12409    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12410      weight = CW_Constant;
12411    }
12412    break;
12413  case 'e':
12414    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12415      if ((C->getSExtValue() >= -0x80000000LL) &&
12416          (C->getSExtValue() <= 0x7fffffffLL))
12417        weight = CW_Constant;
12418    }
12419    break;
12420  case 'Z':
12421    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12422      if (C->getZExtValue() <= 0xffffffff)
12423        weight = CW_Constant;
12424    }
12425    break;
12426  }
12427  return weight;
12428}
12429
12430/// LowerXConstraint - try to replace an X constraint, which matches anything,
12431/// with another that has more specific requirements based on the type of the
12432/// corresponding operand.
12433const char *X86TargetLowering::
12434LowerXConstraint(EVT ConstraintVT) const {
12435  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12436  // 'f' like normal targets.
12437  if (ConstraintVT.isFloatingPoint()) {
12438    if (Subtarget->hasXMMInt())
12439      return "Y";
12440    if (Subtarget->hasXMM())
12441      return "x";
12442  }
12443
12444  return TargetLowering::LowerXConstraint(ConstraintVT);
12445}
12446
12447/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12448/// vector.  If it is invalid, don't add anything to Ops.
12449void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12450                                                     char Constraint,
12451                                                     std::vector<SDValue>&Ops,
12452                                                     SelectionDAG &DAG) const {
12453  SDValue Result(0, 0);
12454
12455  switch (Constraint) {
12456  default: break;
12457  case 'I':
12458    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12459      if (C->getZExtValue() <= 31) {
12460        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12461        break;
12462      }
12463    }
12464    return;
12465  case 'J':
12466    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12467      if (C->getZExtValue() <= 63) {
12468        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12469        break;
12470      }
12471    }
12472    return;
12473  case 'K':
12474    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12475      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12476        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12477        break;
12478      }
12479    }
12480    return;
12481  case 'N':
12482    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12483      if (C->getZExtValue() <= 255) {
12484        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12485        break;
12486      }
12487    }
12488    return;
12489  case 'e': {
12490    // 32-bit signed value
12491    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12492      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12493                                           C->getSExtValue())) {
12494        // Widen to 64 bits here to get it sign extended.
12495        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12496        break;
12497      }
12498    // FIXME gcc accepts some relocatable values here too, but only in certain
12499    // memory models; it's complicated.
12500    }
12501    return;
12502  }
12503  case 'Z': {
12504    // 32-bit unsigned value
12505    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12506      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12507                                           C->getZExtValue())) {
12508        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12509        break;
12510      }
12511    }
12512    // FIXME gcc accepts some relocatable values here too, but only in certain
12513    // memory models; it's complicated.
12514    return;
12515  }
12516  case 'i': {
12517    // Literal immediates are always ok.
12518    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12519      // Widen to 64 bits here to get it sign extended.
12520      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12521      break;
12522    }
12523
12524    // In any sort of PIC mode addresses need to be computed at runtime by
12525    // adding in a register or some sort of table lookup.  These can't
12526    // be used as immediates.
12527    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12528      return;
12529
12530    // If we are in non-pic codegen mode, we allow the address of a global (with
12531    // an optional displacement) to be used with 'i'.
12532    GlobalAddressSDNode *GA = 0;
12533    int64_t Offset = 0;
12534
12535    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12536    while (1) {
12537      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12538        Offset += GA->getOffset();
12539        break;
12540      } else if (Op.getOpcode() == ISD::ADD) {
12541        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12542          Offset += C->getZExtValue();
12543          Op = Op.getOperand(0);
12544          continue;
12545        }
12546      } else if (Op.getOpcode() == ISD::SUB) {
12547        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12548          Offset += -C->getZExtValue();
12549          Op = Op.getOperand(0);
12550          continue;
12551        }
12552      }
12553
12554      // Otherwise, this isn't something we can handle, reject it.
12555      return;
12556    }
12557
12558    const GlobalValue *GV = GA->getGlobal();
12559    // If we require an extra load to get this address, as in PIC mode, we
12560    // can't accept it.
12561    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12562                                                        getTargetMachine())))
12563      return;
12564
12565    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12566                                        GA->getValueType(0), Offset);
12567    break;
12568  }
12569  }
12570
12571  if (Result.getNode()) {
12572    Ops.push_back(Result);
12573    return;
12574  }
12575  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12576}
12577
12578std::vector<unsigned> X86TargetLowering::
12579getRegClassForInlineAsmConstraint(const std::string &Constraint,
12580                                  EVT VT) const {
12581  if (Constraint.size() == 1) {
12582    // FIXME: not handling fp-stack yet!
12583    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12584    default: break;  // Unknown constraint letter
12585    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12586      if (Subtarget->is64Bit()) {
12587        if (VT == MVT::i32)
12588          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12589                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12590                                       X86::R10D,X86::R11D,X86::R12D,
12591                                       X86::R13D,X86::R14D,X86::R15D,
12592                                       X86::EBP, X86::ESP, 0);
12593        else if (VT == MVT::i16)
12594          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12595                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12596                                       X86::R10W,X86::R11W,X86::R12W,
12597                                       X86::R13W,X86::R14W,X86::R15W,
12598                                       X86::BP,  X86::SP, 0);
12599        else if (VT == MVT::i8)
12600          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12601                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12602                                       X86::R10B,X86::R11B,X86::R12B,
12603                                       X86::R13B,X86::R14B,X86::R15B,
12604                                       X86::BPL, X86::SPL, 0);
12605
12606        else if (VT == MVT::i64)
12607          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12608                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12609                                       X86::R10, X86::R11, X86::R12,
12610                                       X86::R13, X86::R14, X86::R15,
12611                                       X86::RBP, X86::RSP, 0);
12612
12613        break;
12614      }
12615      // 32-bit fallthrough
12616    case 'Q':   // Q_REGS
12617      if (VT == MVT::i32)
12618        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12619      else if (VT == MVT::i16)
12620        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12621      else if (VT == MVT::i8)
12622        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12623      else if (VT == MVT::i64)
12624        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12625      break;
12626    }
12627  }
12628
12629  return std::vector<unsigned>();
12630}
12631
12632std::pair<unsigned, const TargetRegisterClass*>
12633X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12634                                                EVT VT) const {
12635  // First, see if this is a constraint that directly corresponds to an LLVM
12636  // register class.
12637  if (Constraint.size() == 1) {
12638    // GCC Constraint Letters
12639    switch (Constraint[0]) {
12640    default: break;
12641    case 'r':   // GENERAL_REGS
12642    case 'l':   // INDEX_REGS
12643      if (VT == MVT::i8)
12644        return std::make_pair(0U, X86::GR8RegisterClass);
12645      if (VT == MVT::i16)
12646        return std::make_pair(0U, X86::GR16RegisterClass);
12647      if (VT == MVT::i32 || !Subtarget->is64Bit())
12648        return std::make_pair(0U, X86::GR32RegisterClass);
12649      return std::make_pair(0U, X86::GR64RegisterClass);
12650    case 'R':   // LEGACY_REGS
12651      if (VT == MVT::i8)
12652        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12653      if (VT == MVT::i16)
12654        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12655      if (VT == MVT::i32 || !Subtarget->is64Bit())
12656        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12657      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12658    case 'f':  // FP Stack registers.
12659      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12660      // value to the correct fpstack register class.
12661      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12662        return std::make_pair(0U, X86::RFP32RegisterClass);
12663      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12664        return std::make_pair(0U, X86::RFP64RegisterClass);
12665      return std::make_pair(0U, X86::RFP80RegisterClass);
12666    case 'y':   // MMX_REGS if MMX allowed.
12667      if (!Subtarget->hasMMX()) break;
12668      return std::make_pair(0U, X86::VR64RegisterClass);
12669    case 'Y':   // SSE_REGS if SSE2 allowed
12670      if (!Subtarget->hasXMMInt()) break;
12671      // FALL THROUGH.
12672    case 'x':   // SSE_REGS if SSE1 allowed
12673      if (!Subtarget->hasXMM()) break;
12674
12675      switch (VT.getSimpleVT().SimpleTy) {
12676      default: break;
12677      // Scalar SSE types.
12678      case MVT::f32:
12679      case MVT::i32:
12680        return std::make_pair(0U, X86::FR32RegisterClass);
12681      case MVT::f64:
12682      case MVT::i64:
12683        return std::make_pair(0U, X86::FR64RegisterClass);
12684      // Vector types.
12685      case MVT::v16i8:
12686      case MVT::v8i16:
12687      case MVT::v4i32:
12688      case MVT::v2i64:
12689      case MVT::v4f32:
12690      case MVT::v2f64:
12691        return std::make_pair(0U, X86::VR128RegisterClass);
12692      }
12693      break;
12694    }
12695  }
12696
12697  // Use the default implementation in TargetLowering to convert the register
12698  // constraint into a member of a register class.
12699  std::pair<unsigned, const TargetRegisterClass*> Res;
12700  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12701
12702  // Not found as a standard register?
12703  if (Res.second == 0) {
12704    // Map st(0) -> st(7) -> ST0
12705    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12706        tolower(Constraint[1]) == 's' &&
12707        tolower(Constraint[2]) == 't' &&
12708        Constraint[3] == '(' &&
12709        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12710        Constraint[5] == ')' &&
12711        Constraint[6] == '}') {
12712
12713      Res.first = X86::ST0+Constraint[4]-'0';
12714      Res.second = X86::RFP80RegisterClass;
12715      return Res;
12716    }
12717
12718    // GCC allows "st(0)" to be called just plain "st".
12719    if (StringRef("{st}").equals_lower(Constraint)) {
12720      Res.first = X86::ST0;
12721      Res.second = X86::RFP80RegisterClass;
12722      return Res;
12723    }
12724
12725    // flags -> EFLAGS
12726    if (StringRef("{flags}").equals_lower(Constraint)) {
12727      Res.first = X86::EFLAGS;
12728      Res.second = X86::CCRRegisterClass;
12729      return Res;
12730    }
12731
12732    // 'A' means EAX + EDX.
12733    if (Constraint == "A") {
12734      Res.first = X86::EAX;
12735      Res.second = X86::GR32_ADRegisterClass;
12736      return Res;
12737    }
12738    return Res;
12739  }
12740
12741  // Otherwise, check to see if this is a register class of the wrong value
12742  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12743  // turn into {ax},{dx}.
12744  if (Res.second->hasType(VT))
12745    return Res;   // Correct type already, nothing to do.
12746
12747  // All of the single-register GCC register classes map their values onto
12748  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12749  // really want an 8-bit or 32-bit register, map to the appropriate register
12750  // class and return the appropriate register.
12751  if (Res.second == X86::GR16RegisterClass) {
12752    if (VT == MVT::i8) {
12753      unsigned DestReg = 0;
12754      switch (Res.first) {
12755      default: break;
12756      case X86::AX: DestReg = X86::AL; break;
12757      case X86::DX: DestReg = X86::DL; break;
12758      case X86::CX: DestReg = X86::CL; break;
12759      case X86::BX: DestReg = X86::BL; break;
12760      }
12761      if (DestReg) {
12762        Res.first = DestReg;
12763        Res.second = X86::GR8RegisterClass;
12764      }
12765    } else if (VT == MVT::i32) {
12766      unsigned DestReg = 0;
12767      switch (Res.first) {
12768      default: break;
12769      case X86::AX: DestReg = X86::EAX; break;
12770      case X86::DX: DestReg = X86::EDX; break;
12771      case X86::CX: DestReg = X86::ECX; break;
12772      case X86::BX: DestReg = X86::EBX; break;
12773      case X86::SI: DestReg = X86::ESI; break;
12774      case X86::DI: DestReg = X86::EDI; break;
12775      case X86::BP: DestReg = X86::EBP; break;
12776      case X86::SP: DestReg = X86::ESP; break;
12777      }
12778      if (DestReg) {
12779        Res.first = DestReg;
12780        Res.second = X86::GR32RegisterClass;
12781      }
12782    } else if (VT == MVT::i64) {
12783      unsigned DestReg = 0;
12784      switch (Res.first) {
12785      default: break;
12786      case X86::AX: DestReg = X86::RAX; break;
12787      case X86::DX: DestReg = X86::RDX; break;
12788      case X86::CX: DestReg = X86::RCX; break;
12789      case X86::BX: DestReg = X86::RBX; break;
12790      case X86::SI: DestReg = X86::RSI; break;
12791      case X86::DI: DestReg = X86::RDI; break;
12792      case X86::BP: DestReg = X86::RBP; break;
12793      case X86::SP: DestReg = X86::RSP; break;
12794      }
12795      if (DestReg) {
12796        Res.first = DestReg;
12797        Res.second = X86::GR64RegisterClass;
12798      }
12799    }
12800  } else if (Res.second == X86::FR32RegisterClass ||
12801             Res.second == X86::FR64RegisterClass ||
12802             Res.second == X86::VR128RegisterClass) {
12803    // Handle references to XMM physical registers that got mapped into the
12804    // wrong class.  This can happen with constraints like {xmm0} where the
12805    // target independent register mapper will just pick the first match it can
12806    // find, ignoring the required type.
12807    if (VT == MVT::f32)
12808      Res.second = X86::FR32RegisterClass;
12809    else if (VT == MVT::f64)
12810      Res.second = X86::FR64RegisterClass;
12811    else if (X86::VR128RegisterClass->hasType(VT))
12812      Res.second = X86::VR128RegisterClass;
12813  }
12814
12815  return Res;
12816}
12817