X86ISelLowering.cpp revision 07b7f672a066317ffc8224c61dc3b72ce857f24d
1f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
3f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//                     The LLVM Compiler Infrastructure
4f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
5f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file is distributed under the University of Illinois Open Source
6f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// License. See LICENSE.TXT for details.
7f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
8f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
9f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
10f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file defines the interfaces that X86 uses to lower LLVM code into a
11f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// selection DAG.
12f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
13f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
14f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
15f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#define DEBUG_TYPE "x86-isel"
16f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86.h"
17f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86InstrBuilder.h"
18f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86ISelLowering.h"
19f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetMachine.h"
20f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetObjectFile.h"
21f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "Utils/X86ShuffleDecode.h"
22f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CallingConv.h"
23f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Constants.h"
24f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/DerivedTypes.h"
25f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalAlias.h"
26f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalVariable.h"
27f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Function.h"
28f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Instructions.h"
29f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Intrinsics.h"
30f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/LLVMContext.h"
31f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/IntrinsicLowering.h"
32f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFrameInfo.h"
33f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFunction.h"
34f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineInstrBuilder.h"
35f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineJumpTableInfo.h"
36f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineModuleInfo.h"
37f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineRegisterInfo.h"
38f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/PseudoSourceValue.h"
39f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCAsmInfo.h"
40f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCContext.h"
41f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCExpr.h"
42f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCSymbol.h"
43f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/BitVector.h"
44f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/SmallSet.h"
45f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/Statistic.h"
46f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/StringExtras.h"
47f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/VectorExtras.h"
48f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/CallSite.h"
49f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/Debug.h"
50f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/Dwarf.h"
51f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/ErrorHandling.h"
52f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/MathExtras.h"
53f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/raw_ostream.h"
54f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace llvm;
55f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace dwarf;
56f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
57f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteSTATISTIC(NumTailCalls, "Number of tail calls");
58f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
59f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// Forward declarations.
60f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                       SDValue V2);
62f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
63f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue Insert128BitVector(SDValue Result,
64f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SDValue Vec,
65f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SDValue Idx,
66f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SelectionDAG &DAG,
67f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  DebugLoc dl);
68f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
69f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue Extract128BitVector(SDValue Vec,
70f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   SDValue Idx,
71f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   SelectionDAG &DAG,
72f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   DebugLoc dl);
73f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
74f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// simple subregister reference.  Idx is an index in the 128 bits we
77f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// want.  It need not be aligned to a 128-bit bounday.  That makes
78f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// lowering EXTRACT_VECTOR_ELT operations easier.
79f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue Extract128BitVector(SDValue Vec,
80f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   SDValue Idx,
81f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   SelectionDAG &DAG,
82f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                   DebugLoc dl) {
83f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  EVT VT = Vec.getValueType();
84f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  EVT ElVT = VT.getVectorElementType();
86f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  int Factor = VT.getSizeInBits()/128;
87f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  VT.getVectorNumElements()/Factor);
89f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
90f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Extract from UNDEF is UNDEF.
91f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Vec.getOpcode() == ISD::UNDEF)
92f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
94f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (isa<ConstantSDNode>(Idx)) {
95f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
97f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // we can match to VEXTRACTF128.
99f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
101f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // This is the index of the first element of the 128-bit chunk
102f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // we want.
103f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                 * ElemsPerChunk);
105f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
106f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                 VecIdx);
109f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
110f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return Result;
111f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
112f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
113f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  return SDValue();
114f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette}
115f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
116f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// sets things up to match to an AVX VINSERTF128 instruction or a
118f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// simple superregister reference.  Idx is an index in the 128 bits
119f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette/// lowering INSERT_VECTOR_ELT operations easier.
121f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue Insert128BitVector(SDValue Result,
122f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SDValue Vec,
123f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SDValue Idx,
124f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  SelectionDAG &DAG,
125f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                  DebugLoc dl) {
126f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (isa<ConstantSDNode>(Idx)) {
127f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    EVT VT = Vec.getValueType();
128f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
130f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    EVT ElVT = VT.getVectorElementType();
131f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    EVT ResultVT = Result.getValueType();
133f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
134f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Insert the relevant 128 bits.
135f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
137f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // This is the index of the first element of the 128-bit chunk
138f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // we want.
139f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                                 * ElemsPerChunk);
141f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
142f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                         VecIdx);
145f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return Result;
146f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
147f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
148f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  return SDValue();
149f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette}
150f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
151f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  bool is64Bit = Subtarget->is64Bit();
154f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
155f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetEnvMacho()) {
156f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (is64Bit)
157f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      return new X8664_MachoTargetObjectFile();
158f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new TargetLoweringObjectFileMachO();
159f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
160f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
161f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetELF())
162f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new TargetLoweringObjectFileELF();
163f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new TargetLoweringObjectFileCOFF();
165f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  llvm_unreachable("unknown subtarget type");
166f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette}
167f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
168f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteX86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  : TargetLowering(TM, createTLOF(TM)) {
170f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  Subtarget = &TM.getSubtarget<X86Subtarget>();
171f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf64 = Subtarget->hasXMMInt() || Subtarget->hasAVX();
172f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf32 = Subtarget->hasXMM() || Subtarget->hasAVX();
173f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
175f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  RegInfo = TM.getRegisterInfo();
176f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  TD = getTargetData();
177f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
178f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the TargetLowering object.
179f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
181f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setBooleanContents(ZeroOrOneBooleanContent);
183f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
184f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // For 64-bit since we have so many registers use the ILP scheduler, for
185f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // 32-bit code use the register pressure specific scheduling.
186f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
187f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setSchedulingPreference(Sched::ILP);
188f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  else
189f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setSchedulingPreference(Sched::RegPressure);
190f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setStackPointerRegisterToSaveRestore(X86StackPtr);
191f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
192f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Setup Windows compiler runtime calls.
194f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::SREM_I64, "_allrem");
197f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::MUL_I64, "_allmul");
199f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
209f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
210f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetDarwin()) {
211f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(false);
213f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
214f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (Subtarget->isTargetMingw()) {
215f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // MS runtime is weird: it exports _setjmp, but longjmp!
216f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
217f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
218f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
219f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
220f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(true);
221f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
222f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
223f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the register classes.
224f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
228f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
230f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
232f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // We don't accept any truncstore of integer registers.
233f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
453  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
468  }
469
470  if (!Subtarget->is64Bit()) {
471    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
477    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
478    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
479  }
480
481  // FIXME - use subtarget debug flags
482  if (!Subtarget->isTargetDarwin() &&
483      !Subtarget->isTargetELF() &&
484      !Subtarget->isTargetCygMing()) {
485    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
486  }
487
488  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
489  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
490  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
491  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
492  if (Subtarget->is64Bit()) {
493    setExceptionPointerRegister(X86::RAX);
494    setExceptionSelectorRegister(X86::RDX);
495  } else {
496    setExceptionPointerRegister(X86::EAX);
497    setExceptionSelectorRegister(X86::EDX);
498  }
499  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
500  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
501
502  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
503
504  setOperationAction(ISD::TRAP, MVT::Other, Legal);
505
506  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
507  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
508  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
509  if (Subtarget->is64Bit()) {
510    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
511    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
512  } else {
513    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
514    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
515  }
516
517  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
518  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
519  setOperationAction(ISD::DYNAMIC_STACKALLOC,
520                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
521                     (Subtarget->isTargetCOFF()
522                      && !Subtarget->isTargetEnvMacho()
523                      ? Custom : Expand));
524
525  if (!UseSoftFloat && X86ScalarSSEf64) {
526    // f32 and f64 use SSE.
527    // Set up the FP register classes.
528    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
529    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
530
531    // Use ANDPD to simulate FABS.
532    setOperationAction(ISD::FABS , MVT::f64, Custom);
533    setOperationAction(ISD::FABS , MVT::f32, Custom);
534
535    // Use XORP to simulate FNEG.
536    setOperationAction(ISD::FNEG , MVT::f64, Custom);
537    setOperationAction(ISD::FNEG , MVT::f32, Custom);
538
539    // Use ANDPD and ORPD to simulate FCOPYSIGN.
540    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
541    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
542
543    // Lower this to FGETSIGNx86 plus an AND.
544    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
545    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
546
547    // We don't support sin/cos/fmod
548    setOperationAction(ISD::FSIN , MVT::f64, Expand);
549    setOperationAction(ISD::FCOS , MVT::f64, Expand);
550    setOperationAction(ISD::FSIN , MVT::f32, Expand);
551    setOperationAction(ISD::FCOS , MVT::f32, Expand);
552
553    // Expand FP immediates into loads from the stack, except for the special
554    // cases we handle.
555    addLegalFPImmediate(APFloat(+0.0)); // xorpd
556    addLegalFPImmediate(APFloat(+0.0f)); // xorps
557  } else if (!UseSoftFloat && X86ScalarSSEf32) {
558    // Use SSE for f32, x87 for f64.
559    // Set up the FP register classes.
560    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
561    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
562
563    // Use ANDPS to simulate FABS.
564    setOperationAction(ISD::FABS , MVT::f32, Custom);
565
566    // Use XORP to simulate FNEG.
567    setOperationAction(ISD::FNEG , MVT::f32, Custom);
568
569    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
570
571    // Use ANDPS and ORPS to simulate FCOPYSIGN.
572    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
573    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
574
575    // We don't support sin/cos/fmod
576    setOperationAction(ISD::FSIN , MVT::f32, Expand);
577    setOperationAction(ISD::FCOS , MVT::f32, Expand);
578
579    // Special cases we handle for FP constants.
580    addLegalFPImmediate(APFloat(+0.0f)); // xorps
581    addLegalFPImmediate(APFloat(+0.0)); // FLD0
582    addLegalFPImmediate(APFloat(+1.0)); // FLD1
583    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
584    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
585
586    if (!UnsafeFPMath) {
587      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
588      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
589    }
590  } else if (!UseSoftFloat) {
591    // f32 and f64 in x87.
592    // Set up the FP register classes.
593    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
594    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
595
596    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
597    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
598    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
599    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
600
601    if (!UnsafeFPMath) {
602      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
603      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
604    }
605    addLegalFPImmediate(APFloat(+0.0)); // FLD0
606    addLegalFPImmediate(APFloat(+1.0)); // FLD1
607    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
608    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
609    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
610    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
611    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
612    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
613  }
614
615  // We don't support FMA.
616  setOperationAction(ISD::FMA, MVT::f64, Expand);
617  setOperationAction(ISD::FMA, MVT::f32, Expand);
618
619  // Long double always uses X87.
620  if (!UseSoftFloat) {
621    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
622    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
623    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
624    {
625      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
626      addLegalFPImmediate(TmpFlt);  // FLD0
627      TmpFlt.changeSign();
628      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
629
630      bool ignored;
631      APFloat TmpFlt2(+1.0);
632      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
633                      &ignored);
634      addLegalFPImmediate(TmpFlt2);  // FLD1
635      TmpFlt2.changeSign();
636      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
637    }
638
639    if (!UnsafeFPMath) {
640      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
641      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
642    }
643
644    setOperationAction(ISD::FMA, MVT::f80, Expand);
645  }
646
647  // Always use a library call for pow.
648  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
649  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
650  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
651
652  setOperationAction(ISD::FLOG, MVT::f80, Expand);
653  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
654  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
655  setOperationAction(ISD::FEXP, MVT::f80, Expand);
656  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
657
658  // First set operation action for all vector types to either promote
659  // (for widening) or expand (for scalarization). Then we will selectively
660  // turn on ones that can be effectively codegen'd.
661  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
662       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
663    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
664    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
665    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
666    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
667    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
676    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
678    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
679    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
680    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
681    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
713    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
717    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
718         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
719      setTruncStoreAction((MVT::SimpleValueType)VT,
720                          (MVT::SimpleValueType)InnerVT, Expand);
721    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
722    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
723    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
724  }
725
726  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
727  // with -msoft-float, disable use of MMX as well.
728  if (!UseSoftFloat && Subtarget->hasMMX()) {
729    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
730    // No operations on x86mmx supported, everything uses intrinsics.
731  }
732
733  // MMX-sized vectors (other than x86mmx) are expected to be expanded
734  // into smaller operations.
735  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
736  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
737  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
738  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
739  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
740  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
741  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
742  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
743  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
744  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
745  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
746  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
747  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
748  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
749  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
750  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
751  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
752  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
753  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
754  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
755  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
756  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
757  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
758  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
759  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
760  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
761  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
762  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
763  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
764
765  if (!UseSoftFloat && Subtarget->hasXMM()) {
766    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
767
768    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
769    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
770    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
771    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
772    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
773    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
774    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
775    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
776    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
777    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
778    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
779    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
780  }
781
782  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
783    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
784
785    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
786    // registers cannot be used even for integer operations.
787    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
788    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
789    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
790    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
791
792    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
793    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
794    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
795    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
796    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
797    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
798    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
799    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
800    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
801    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
802    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
803    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
804    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
805    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
806    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
807    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
808
809    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
810    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
811    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
812    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
813
814    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
815    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
817    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
818    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
819
820    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
821    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
822    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
823    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
824    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
825
826    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
827    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
828      EVT VT = (MVT::SimpleValueType)i;
829      // Do not attempt to custom lower non-power-of-2 vectors
830      if (!isPowerOf2_32(VT.getVectorNumElements()))
831        continue;
832      // Do not attempt to custom lower non-128-bit vectors
833      if (!VT.is128BitVector())
834        continue;
835      setOperationAction(ISD::BUILD_VECTOR,
836                         VT.getSimpleVT().SimpleTy, Custom);
837      setOperationAction(ISD::VECTOR_SHUFFLE,
838                         VT.getSimpleVT().SimpleTy, Custom);
839      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
840                         VT.getSimpleVT().SimpleTy, Custom);
841    }
842
843    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
844    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
845    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
846    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
847    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
848    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
849
850    if (Subtarget->is64Bit()) {
851      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
852      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
853    }
854
855    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
856    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
857      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
858      EVT VT = SVT;
859
860      // Do not attempt to promote non-128-bit vectors
861      if (!VT.is128BitVector())
862        continue;
863
864      setOperationAction(ISD::AND,    SVT, Promote);
865      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
866      setOperationAction(ISD::OR,     SVT, Promote);
867      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
868      setOperationAction(ISD::XOR,    SVT, Promote);
869      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
870      setOperationAction(ISD::LOAD,   SVT, Promote);
871      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
872      setOperationAction(ISD::SELECT, SVT, Promote);
873      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
874    }
875
876    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
877
878    // Custom lower v2i64 and v2f64 selects.
879    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
880    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
881    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
882    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
883
884    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
885    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
886  }
887
888  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
889    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
890    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
891    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
892    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
893    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
894    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
895    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
896    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
897    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
898    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
899
900    // FIXME: Do we need to handle scalar-to-vector here?
901    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
902
903    // Can turn SHL into an integer multiply.
904    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
905    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
906
907    // i8 and i16 vectors are custom , because the source register and source
908    // source memory operand types are not the same width.  f32 vectors are
909    // custom since the immediate controlling the insert encodes additional
910    // information.
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
913    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
914    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
915
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
918    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
919    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
920
921    if (Subtarget->is64Bit()) {
922      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
923      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
924    }
925  }
926
927  if (Subtarget->hasSSE2() || Subtarget->hasAVX()) {
928    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
929    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
930    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
931    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
932
933    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
934    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
935    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
936
937    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
938    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
939  }
940
941  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
942    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
943
944  if (!UseSoftFloat && Subtarget->hasAVX()) {
945    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
946    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
947    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
948    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
949    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
950    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
951
952    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
953    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
954    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
955
956    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
957    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
958    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
959    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
960    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
961    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
962
963    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
964    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
965    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
966    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
967    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
968    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
969
970    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
971    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
972    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
973
974    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
975    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
976    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
977    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
978    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
979    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
980
981    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
982    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
984    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
985
986    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
987    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
988    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
989    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
990
991    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
992    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
993
994    setOperationAction(ISD::VSETCC,            MVT::v32i8, Custom);
995    setOperationAction(ISD::VSETCC,            MVT::v16i16, Custom);
996    setOperationAction(ISD::VSETCC,            MVT::v8i32, Custom);
997    setOperationAction(ISD::VSETCC,            MVT::v4i64, Custom);
998
999    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1000    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1001    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1002
1003    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1004    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1005    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1006    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1007
1008    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1009    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1010    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1011    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1012
1013    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1014    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1015    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1016    // Don't lower v32i8 because there is no 128-bit byte mul
1017
1018    // Custom lower several nodes for 256-bit types.
1019    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1020                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1021      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1022      EVT VT = SVT;
1023
1024      // Extract subvector is special because the value type
1025      // (result) is 128-bit but the source is 256-bit wide.
1026      if (VT.is128BitVector())
1027        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1028
1029      // Do not attempt to custom lower other non-256-bit vectors
1030      if (!VT.is256BitVector())
1031        continue;
1032
1033      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1034      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1035      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1036      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1037      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1038      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1039    }
1040
1041    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1042    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1043      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1044      EVT VT = SVT;
1045
1046      // Do not attempt to promote non-256-bit vectors
1047      if (!VT.is256BitVector())
1048        continue;
1049
1050      setOperationAction(ISD::AND,    SVT, Promote);
1051      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1052      setOperationAction(ISD::OR,     SVT, Promote);
1053      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1054      setOperationAction(ISD::XOR,    SVT, Promote);
1055      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1056      setOperationAction(ISD::LOAD,   SVT, Promote);
1057      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1058      setOperationAction(ISD::SELECT, SVT, Promote);
1059      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1060    }
1061  }
1062
1063  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1064  // of this type with custom code.
1065  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1066         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1067    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1068  }
1069
1070  // We want to custom lower some of our intrinsics.
1071  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1072
1073
1074  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1075  // handle type legalization for these operations here.
1076  //
1077  // FIXME: We really should do custom legalization for addition and
1078  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1079  // than generic legalization for 64-bit multiplication-with-overflow, though.
1080  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1081    // Add/Sub/Mul with overflow operations are custom lowered.
1082    MVT VT = IntVTs[i];
1083    setOperationAction(ISD::SADDO, VT, Custom);
1084    setOperationAction(ISD::UADDO, VT, Custom);
1085    setOperationAction(ISD::SSUBO, VT, Custom);
1086    setOperationAction(ISD::USUBO, VT, Custom);
1087    setOperationAction(ISD::SMULO, VT, Custom);
1088    setOperationAction(ISD::UMULO, VT, Custom);
1089  }
1090
1091  // There are no 8-bit 3-address imul/mul instructions
1092  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1093  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1094
1095  if (!Subtarget->is64Bit()) {
1096    // These libcalls are not available in 32-bit.
1097    setLibcallName(RTLIB::SHL_I128, 0);
1098    setLibcallName(RTLIB::SRL_I128, 0);
1099    setLibcallName(RTLIB::SRA_I128, 0);
1100  }
1101
1102  // We have target-specific dag combine patterns for the following nodes:
1103  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1104  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1105  setTargetDAGCombine(ISD::BUILD_VECTOR);
1106  setTargetDAGCombine(ISD::SELECT);
1107  setTargetDAGCombine(ISD::SHL);
1108  setTargetDAGCombine(ISD::SRA);
1109  setTargetDAGCombine(ISD::SRL);
1110  setTargetDAGCombine(ISD::OR);
1111  setTargetDAGCombine(ISD::AND);
1112  setTargetDAGCombine(ISD::ADD);
1113  setTargetDAGCombine(ISD::SUB);
1114  setTargetDAGCombine(ISD::STORE);
1115  setTargetDAGCombine(ISD::ZERO_EXTEND);
1116  setTargetDAGCombine(ISD::SINT_TO_FP);
1117  if (Subtarget->is64Bit())
1118    setTargetDAGCombine(ISD::MUL);
1119
1120  computeRegisterProperties();
1121
1122  // On Darwin, -Os means optimize for size without hurting performance,
1123  // do not reduce the limit.
1124  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1125  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1126  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1127  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1128  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1129  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1130  setPrefLoopAlignment(16);
1131  benefitFromCodePlacementOpt = true;
1132
1133  setPrefFunctionAlignment(4);
1134}
1135
1136
1137MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1138  return MVT::i8;
1139}
1140
1141
1142/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1143/// the desired ByVal argument alignment.
1144static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1145  if (MaxAlign == 16)
1146    return;
1147  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1148    if (VTy->getBitWidth() == 128)
1149      MaxAlign = 16;
1150  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1151    unsigned EltAlign = 0;
1152    getMaxByValAlign(ATy->getElementType(), EltAlign);
1153    if (EltAlign > MaxAlign)
1154      MaxAlign = EltAlign;
1155  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1156    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1157      unsigned EltAlign = 0;
1158      getMaxByValAlign(STy->getElementType(i), EltAlign);
1159      if (EltAlign > MaxAlign)
1160        MaxAlign = EltAlign;
1161      if (MaxAlign == 16)
1162        break;
1163    }
1164  }
1165  return;
1166}
1167
1168/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1169/// function arguments in the caller parameter area. For X86, aggregates
1170/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1171/// are at 4-byte boundaries.
1172unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1173  if (Subtarget->is64Bit()) {
1174    // Max of 8 and alignment of type.
1175    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1176    if (TyAlign > 8)
1177      return TyAlign;
1178    return 8;
1179  }
1180
1181  unsigned Align = 4;
1182  if (Subtarget->hasXMM())
1183    getMaxByValAlign(Ty, Align);
1184  return Align;
1185}
1186
1187/// getOptimalMemOpType - Returns the target specific optimal type for load
1188/// and store operations as a result of memset, memcpy, and memmove
1189/// lowering. If DstAlign is zero that means it's safe to destination
1190/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1191/// means there isn't a need to check it against alignment requirement,
1192/// probably because the source does not need to be loaded. If
1193/// 'NonScalarIntSafe' is true, that means it's safe to return a
1194/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1195/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1196/// constant so it does not need to be loaded.
1197/// It returns EVT::Other if the type should be determined using generic
1198/// target-independent logic.
1199EVT
1200X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1201                                       unsigned DstAlign, unsigned SrcAlign,
1202                                       bool NonScalarIntSafe,
1203                                       bool MemcpyStrSrc,
1204                                       MachineFunction &MF) const {
1205  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1206  // linux.  This is because the stack realignment code can't handle certain
1207  // cases like PR2962.  This should be removed when PR2962 is fixed.
1208  const Function *F = MF.getFunction();
1209  if (NonScalarIntSafe &&
1210      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1211    if (Size >= 16 &&
1212        (Subtarget->isUnalignedMemAccessFast() ||
1213         ((DstAlign == 0 || DstAlign >= 16) &&
1214          (SrcAlign == 0 || SrcAlign >= 16))) &&
1215        Subtarget->getStackAlignment() >= 16) {
1216      if (Subtarget->hasSSE2())
1217        return MVT::v4i32;
1218      if (Subtarget->hasSSE1())
1219        return MVT::v4f32;
1220    } else if (!MemcpyStrSrc && Size >= 8 &&
1221               !Subtarget->is64Bit() &&
1222               Subtarget->getStackAlignment() >= 8 &&
1223               Subtarget->hasXMMInt()) {
1224      // Do not use f64 to lower memcpy if source is string constant. It's
1225      // better to use i32 to avoid the loads.
1226      return MVT::f64;
1227    }
1228  }
1229  if (Subtarget->is64Bit() && Size >= 8)
1230    return MVT::i64;
1231  return MVT::i32;
1232}
1233
1234/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1235/// current function.  The returned value is a member of the
1236/// MachineJumpTableInfo::JTEntryKind enum.
1237unsigned X86TargetLowering::getJumpTableEncoding() const {
1238  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1239  // symbol.
1240  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1241      Subtarget->isPICStyleGOT())
1242    return MachineJumpTableInfo::EK_Custom32;
1243
1244  // Otherwise, use the normal jump table encoding heuristics.
1245  return TargetLowering::getJumpTableEncoding();
1246}
1247
1248const MCExpr *
1249X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1250                                             const MachineBasicBlock *MBB,
1251                                             unsigned uid,MCContext &Ctx) const{
1252  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1253         Subtarget->isPICStyleGOT());
1254  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1255  // entries.
1256  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1257                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1258}
1259
1260/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1261/// jumptable.
1262SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1263                                                    SelectionDAG &DAG) const {
1264  if (!Subtarget->is64Bit())
1265    // This doesn't have DebugLoc associated with it, but is not really the
1266    // same as a Register.
1267    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1268  return Table;
1269}
1270
1271/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1272/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1273/// MCExpr.
1274const MCExpr *X86TargetLowering::
1275getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1276                             MCContext &Ctx) const {
1277  // X86-64 uses RIP relative addressing based on the jump table label.
1278  if (Subtarget->isPICStyleRIPRel())
1279    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1280
1281  // Otherwise, the reference is relative to the PIC base.
1282  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1283}
1284
1285// FIXME: Why this routine is here? Move to RegInfo!
1286std::pair<const TargetRegisterClass*, uint8_t>
1287X86TargetLowering::findRepresentativeClass(EVT VT) const{
1288  const TargetRegisterClass *RRC = 0;
1289  uint8_t Cost = 1;
1290  switch (VT.getSimpleVT().SimpleTy) {
1291  default:
1292    return TargetLowering::findRepresentativeClass(VT);
1293  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1294    RRC = (Subtarget->is64Bit()
1295           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1296    break;
1297  case MVT::x86mmx:
1298    RRC = X86::VR64RegisterClass;
1299    break;
1300  case MVT::f32: case MVT::f64:
1301  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1302  case MVT::v4f32: case MVT::v2f64:
1303  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1304  case MVT::v4f64:
1305    RRC = X86::VR128RegisterClass;
1306    break;
1307  }
1308  return std::make_pair(RRC, Cost);
1309}
1310
1311bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1312                                               unsigned &Offset) const {
1313  if (!Subtarget->isTargetLinux())
1314    return false;
1315
1316  if (Subtarget->is64Bit()) {
1317    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1318    Offset = 0x28;
1319    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1320      AddressSpace = 256;
1321    else
1322      AddressSpace = 257;
1323  } else {
1324    // %gs:0x14 on i386
1325    Offset = 0x14;
1326    AddressSpace = 256;
1327  }
1328  return true;
1329}
1330
1331
1332//===----------------------------------------------------------------------===//
1333//               Return Value Calling Convention Implementation
1334//===----------------------------------------------------------------------===//
1335
1336#include "X86GenCallingConv.inc"
1337
1338bool
1339X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1340				  MachineFunction &MF, bool isVarArg,
1341                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1342                        LLVMContext &Context) const {
1343  SmallVector<CCValAssign, 16> RVLocs;
1344  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1345                 RVLocs, Context);
1346  return CCInfo.CheckReturn(Outs, RetCC_X86);
1347}
1348
1349SDValue
1350X86TargetLowering::LowerReturn(SDValue Chain,
1351                               CallingConv::ID CallConv, bool isVarArg,
1352                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1353                               const SmallVectorImpl<SDValue> &OutVals,
1354                               DebugLoc dl, SelectionDAG &DAG) const {
1355  MachineFunction &MF = DAG.getMachineFunction();
1356  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1357
1358  SmallVector<CCValAssign, 16> RVLocs;
1359  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1360                 RVLocs, *DAG.getContext());
1361  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1362
1363  // Add the regs to the liveout set for the function.
1364  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1365  for (unsigned i = 0; i != RVLocs.size(); ++i)
1366    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1367      MRI.addLiveOut(RVLocs[i].getLocReg());
1368
1369  SDValue Flag;
1370
1371  SmallVector<SDValue, 6> RetOps;
1372  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1373  // Operand #1 = Bytes To Pop
1374  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1375                   MVT::i16));
1376
1377  // Copy the result values into the output registers.
1378  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1379    CCValAssign &VA = RVLocs[i];
1380    assert(VA.isRegLoc() && "Can only return in registers!");
1381    SDValue ValToCopy = OutVals[i];
1382    EVT ValVT = ValToCopy.getValueType();
1383
1384    // If this is x86-64, and we disabled SSE, we can't return FP values,
1385    // or SSE or MMX vectors.
1386    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1387         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1388          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1389      report_fatal_error("SSE register return with SSE disabled");
1390    }
1391    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1392    // llvm-gcc has never done it right and no one has noticed, so this
1393    // should be OK for now.
1394    if (ValVT == MVT::f64 &&
1395        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1396      report_fatal_error("SSE2 register return with SSE2 disabled");
1397
1398    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1399    // the RET instruction and handled by the FP Stackifier.
1400    if (VA.getLocReg() == X86::ST0 ||
1401        VA.getLocReg() == X86::ST1) {
1402      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1403      // change the value to the FP stack register class.
1404      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1405        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1406      RetOps.push_back(ValToCopy);
1407      // Don't emit a copytoreg.
1408      continue;
1409    }
1410
1411    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1412    // which is returned in RAX / RDX.
1413    if (Subtarget->is64Bit()) {
1414      if (ValVT == MVT::x86mmx) {
1415        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1416          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1417          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1418                                  ValToCopy);
1419          // If we don't have SSE2 available, convert to v4f32 so the generated
1420          // register is legal.
1421          if (!Subtarget->hasSSE2())
1422            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1423        }
1424      }
1425    }
1426
1427    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1428    Flag = Chain.getValue(1);
1429  }
1430
1431  // The x86-64 ABI for returning structs by value requires that we copy
1432  // the sret argument into %rax for the return. We saved the argument into
1433  // a virtual register in the entry block, so now we copy the value out
1434  // and into %rax.
1435  if (Subtarget->is64Bit() &&
1436      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1437    MachineFunction &MF = DAG.getMachineFunction();
1438    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1439    unsigned Reg = FuncInfo->getSRetReturnReg();
1440    assert(Reg &&
1441           "SRetReturnReg should have been set in LowerFormalArguments().");
1442    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1443
1444    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1445    Flag = Chain.getValue(1);
1446
1447    // RAX now acts like a return value.
1448    MRI.addLiveOut(X86::RAX);
1449  }
1450
1451  RetOps[0] = Chain;  // Update chain.
1452
1453  // Add the flag if we have it.
1454  if (Flag.getNode())
1455    RetOps.push_back(Flag);
1456
1457  return DAG.getNode(X86ISD::RET_FLAG, dl,
1458                     MVT::Other, &RetOps[0], RetOps.size());
1459}
1460
1461bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1462  if (N->getNumValues() != 1)
1463    return false;
1464  if (!N->hasNUsesOfValue(1, 0))
1465    return false;
1466
1467  SDNode *Copy = *N->use_begin();
1468  if (Copy->getOpcode() != ISD::CopyToReg &&
1469      Copy->getOpcode() != ISD::FP_EXTEND)
1470    return false;
1471
1472  bool HasRet = false;
1473  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1474       UI != UE; ++UI) {
1475    if (UI->getOpcode() != X86ISD::RET_FLAG)
1476      return false;
1477    HasRet = true;
1478  }
1479
1480  return HasRet;
1481}
1482
1483EVT
1484X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1485                                            ISD::NodeType ExtendKind) const {
1486  MVT ReturnMVT;
1487  // TODO: Is this also valid on 32-bit?
1488  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1489    ReturnMVT = MVT::i8;
1490  else
1491    ReturnMVT = MVT::i32;
1492
1493  EVT MinVT = getRegisterType(Context, ReturnMVT);
1494  return VT.bitsLT(MinVT) ? MinVT : VT;
1495}
1496
1497/// LowerCallResult - Lower the result values of a call into the
1498/// appropriate copies out of appropriate physical registers.
1499///
1500SDValue
1501X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1502                                   CallingConv::ID CallConv, bool isVarArg,
1503                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1504                                   DebugLoc dl, SelectionDAG &DAG,
1505                                   SmallVectorImpl<SDValue> &InVals) const {
1506
1507  // Assign locations to each value returned by this call.
1508  SmallVector<CCValAssign, 16> RVLocs;
1509  bool Is64Bit = Subtarget->is64Bit();
1510  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1511		 getTargetMachine(), RVLocs, *DAG.getContext());
1512  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1513
1514  // Copy all of the result registers out of their specified physreg.
1515  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1516    CCValAssign &VA = RVLocs[i];
1517    EVT CopyVT = VA.getValVT();
1518
1519    // If this is x86-64, and we disabled SSE, we can't return FP values
1520    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1521        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1522      report_fatal_error("SSE register return with SSE disabled");
1523    }
1524
1525    SDValue Val;
1526
1527    // If this is a call to a function that returns an fp value on the floating
1528    // point stack, we must guarantee the the value is popped from the stack, so
1529    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1530    // if the return value is not used. We use the FpPOP_RETVAL instruction
1531    // instead.
1532    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1533      // If we prefer to use the value in xmm registers, copy it out as f80 and
1534      // use a truncate to move it from fp stack reg to xmm reg.
1535      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1536      SDValue Ops[] = { Chain, InFlag };
1537      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1538                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1539      Val = Chain.getValue(0);
1540
1541      // Round the f80 to the right size, which also moves it to the appropriate
1542      // xmm register.
1543      if (CopyVT != VA.getValVT())
1544        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1545                          // This truncation won't change the value.
1546                          DAG.getIntPtrConstant(1));
1547    } else {
1548      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1549                                 CopyVT, InFlag).getValue(1);
1550      Val = Chain.getValue(0);
1551    }
1552    InFlag = Chain.getValue(2);
1553    InVals.push_back(Val);
1554  }
1555
1556  return Chain;
1557}
1558
1559
1560//===----------------------------------------------------------------------===//
1561//                C & StdCall & Fast Calling Convention implementation
1562//===----------------------------------------------------------------------===//
1563//  StdCall calling convention seems to be standard for many Windows' API
1564//  routines and around. It differs from C calling convention just a little:
1565//  callee should clean up the stack, not caller. Symbols should be also
1566//  decorated in some fancy way :) It doesn't support any vector arguments.
1567//  For info on fast calling convention see Fast Calling Convention (tail call)
1568//  implementation LowerX86_32FastCCCallTo.
1569
1570/// CallIsStructReturn - Determines whether a call uses struct return
1571/// semantics.
1572static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1573  if (Outs.empty())
1574    return false;
1575
1576  return Outs[0].Flags.isSRet();
1577}
1578
1579/// ArgsAreStructReturn - Determines whether a function uses struct
1580/// return semantics.
1581static bool
1582ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1583  if (Ins.empty())
1584    return false;
1585
1586  return Ins[0].Flags.isSRet();
1587}
1588
1589/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1590/// by "Src" to address "Dst" with size and alignment information specified by
1591/// the specific parameter attribute. The copy will be passed as a byval
1592/// function parameter.
1593static SDValue
1594CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1595                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1596                          DebugLoc dl) {
1597  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1598
1599  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1600                       /*isVolatile*/false, /*AlwaysInline=*/true,
1601                       MachinePointerInfo(), MachinePointerInfo());
1602}
1603
1604/// IsTailCallConvention - Return true if the calling convention is one that
1605/// supports tail call optimization.
1606static bool IsTailCallConvention(CallingConv::ID CC) {
1607  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1608}
1609
1610bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1611  if (!CI->isTailCall())
1612    return false;
1613
1614  CallSite CS(CI);
1615  CallingConv::ID CalleeCC = CS.getCallingConv();
1616  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1617    return false;
1618
1619  return true;
1620}
1621
1622/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1623/// a tailcall target by changing its ABI.
1624static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1625  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1626}
1627
1628SDValue
1629X86TargetLowering::LowerMemArgument(SDValue Chain,
1630                                    CallingConv::ID CallConv,
1631                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1632                                    DebugLoc dl, SelectionDAG &DAG,
1633                                    const CCValAssign &VA,
1634                                    MachineFrameInfo *MFI,
1635                                    unsigned i) const {
1636  // Create the nodes corresponding to a load from this parameter slot.
1637  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1638  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1639  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1640  EVT ValVT;
1641
1642  // If value is passed by pointer we have address passed instead of the value
1643  // itself.
1644  if (VA.getLocInfo() == CCValAssign::Indirect)
1645    ValVT = VA.getLocVT();
1646  else
1647    ValVT = VA.getValVT();
1648
1649  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1650  // changed with more analysis.
1651  // In case of tail call optimization mark all arguments mutable. Since they
1652  // could be overwritten by lowering of arguments in case of a tail call.
1653  if (Flags.isByVal()) {
1654    unsigned Bytes = Flags.getByValSize();
1655    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1656    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1657    return DAG.getFrameIndex(FI, getPointerTy());
1658  } else {
1659    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1660                                    VA.getLocMemOffset(), isImmutable);
1661    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1662    return DAG.getLoad(ValVT, dl, Chain, FIN,
1663                       MachinePointerInfo::getFixedStack(FI),
1664                       false, false, 0);
1665  }
1666}
1667
1668SDValue
1669X86TargetLowering::LowerFormalArguments(SDValue Chain,
1670                                        CallingConv::ID CallConv,
1671                                        bool isVarArg,
1672                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1673                                        DebugLoc dl,
1674                                        SelectionDAG &DAG,
1675                                        SmallVectorImpl<SDValue> &InVals)
1676                                          const {
1677  MachineFunction &MF = DAG.getMachineFunction();
1678  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1679
1680  const Function* Fn = MF.getFunction();
1681  if (Fn->hasExternalLinkage() &&
1682      Subtarget->isTargetCygMing() &&
1683      Fn->getName() == "main")
1684    FuncInfo->setForceFramePointer(true);
1685
1686  MachineFrameInfo *MFI = MF.getFrameInfo();
1687  bool Is64Bit = Subtarget->is64Bit();
1688  bool IsWin64 = Subtarget->isTargetWin64();
1689
1690  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1691         "Var args not supported with calling convention fastcc or ghc");
1692
1693  // Assign locations to all of the incoming arguments.
1694  SmallVector<CCValAssign, 16> ArgLocs;
1695  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1696                 ArgLocs, *DAG.getContext());
1697
1698  // Allocate shadow area for Win64
1699  if (IsWin64) {
1700    CCInfo.AllocateStack(32, 8);
1701  }
1702
1703  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1704
1705  unsigned LastVal = ~0U;
1706  SDValue ArgValue;
1707  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1708    CCValAssign &VA = ArgLocs[i];
1709    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1710    // places.
1711    assert(VA.getValNo() != LastVal &&
1712           "Don't support value assigned to multiple locs yet");
1713    LastVal = VA.getValNo();
1714
1715    if (VA.isRegLoc()) {
1716      EVT RegVT = VA.getLocVT();
1717      TargetRegisterClass *RC = NULL;
1718      if (RegVT == MVT::i32)
1719        RC = X86::GR32RegisterClass;
1720      else if (Is64Bit && RegVT == MVT::i64)
1721        RC = X86::GR64RegisterClass;
1722      else if (RegVT == MVT::f32)
1723        RC = X86::FR32RegisterClass;
1724      else if (RegVT == MVT::f64)
1725        RC = X86::FR64RegisterClass;
1726      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1727        RC = X86::VR256RegisterClass;
1728      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1729        RC = X86::VR128RegisterClass;
1730      else if (RegVT == MVT::x86mmx)
1731        RC = X86::VR64RegisterClass;
1732      else
1733        llvm_unreachable("Unknown argument type!");
1734
1735      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1736      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1737
1738      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1739      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1740      // right size.
1741      if (VA.getLocInfo() == CCValAssign::SExt)
1742        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1743                               DAG.getValueType(VA.getValVT()));
1744      else if (VA.getLocInfo() == CCValAssign::ZExt)
1745        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1746                               DAG.getValueType(VA.getValVT()));
1747      else if (VA.getLocInfo() == CCValAssign::BCvt)
1748        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1749
1750      if (VA.isExtInLoc()) {
1751        // Handle MMX values passed in XMM regs.
1752        if (RegVT.isVector()) {
1753          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1754                                 ArgValue);
1755        } else
1756          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1757      }
1758    } else {
1759      assert(VA.isMemLoc());
1760      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1761    }
1762
1763    // If value is passed via pointer - do a load.
1764    if (VA.getLocInfo() == CCValAssign::Indirect)
1765      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1766                             MachinePointerInfo(), false, false, 0);
1767
1768    InVals.push_back(ArgValue);
1769  }
1770
1771  // The x86-64 ABI for returning structs by value requires that we copy
1772  // the sret argument into %rax for the return. Save the argument into
1773  // a virtual register so that we can access it from the return points.
1774  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1775    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1776    unsigned Reg = FuncInfo->getSRetReturnReg();
1777    if (!Reg) {
1778      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1779      FuncInfo->setSRetReturnReg(Reg);
1780    }
1781    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1782    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1783  }
1784
1785  unsigned StackSize = CCInfo.getNextStackOffset();
1786  // Align stack specially for tail calls.
1787  if (FuncIsMadeTailCallSafe(CallConv))
1788    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1789
1790  // If the function takes variable number of arguments, make a frame index for
1791  // the start of the first vararg value... for expansion of llvm.va_start.
1792  if (isVarArg) {
1793    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1794                    CallConv != CallingConv::X86_ThisCall)) {
1795      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1796    }
1797    if (Is64Bit) {
1798      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1799
1800      // FIXME: We should really autogenerate these arrays
1801      static const unsigned GPR64ArgRegsWin64[] = {
1802        X86::RCX, X86::RDX, X86::R8,  X86::R9
1803      };
1804      static const unsigned GPR64ArgRegs64Bit[] = {
1805        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1806      };
1807      static const unsigned XMMArgRegs64Bit[] = {
1808        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1809        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1810      };
1811      const unsigned *GPR64ArgRegs;
1812      unsigned NumXMMRegs = 0;
1813
1814      if (IsWin64) {
1815        // The XMM registers which might contain var arg parameters are shadowed
1816        // in their paired GPR.  So we only need to save the GPR to their home
1817        // slots.
1818        TotalNumIntRegs = 4;
1819        GPR64ArgRegs = GPR64ArgRegsWin64;
1820      } else {
1821        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1822        GPR64ArgRegs = GPR64ArgRegs64Bit;
1823
1824        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1825      }
1826      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1827                                                       TotalNumIntRegs);
1828
1829      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1830      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1831             "SSE register cannot be used when SSE is disabled!");
1832      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1833             "SSE register cannot be used when SSE is disabled!");
1834      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1835        // Kernel mode asks for SSE to be disabled, so don't push them
1836        // on the stack.
1837        TotalNumXMMRegs = 0;
1838
1839      if (IsWin64) {
1840        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1841        // Get to the caller-allocated home save location.  Add 8 to account
1842        // for the return address.
1843        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1844        FuncInfo->setRegSaveFrameIndex(
1845          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1846        // Fixup to set vararg frame on shadow area (4 x i64).
1847        if (NumIntRegs < 4)
1848          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1849      } else {
1850        // For X86-64, if there are vararg parameters that are passed via
1851        // registers, then we must store them to their spots on the stack so they
1852        // may be loaded by deferencing the result of va_next.
1853        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1854        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1855        FuncInfo->setRegSaveFrameIndex(
1856          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1857                               false));
1858      }
1859
1860      // Store the integer parameter registers.
1861      SmallVector<SDValue, 8> MemOps;
1862      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1863                                        getPointerTy());
1864      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1865      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1866        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1867                                  DAG.getIntPtrConstant(Offset));
1868        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1869                                     X86::GR64RegisterClass);
1870        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1871        SDValue Store =
1872          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1873                       MachinePointerInfo::getFixedStack(
1874                         FuncInfo->getRegSaveFrameIndex(), Offset),
1875                       false, false, 0);
1876        MemOps.push_back(Store);
1877        Offset += 8;
1878      }
1879
1880      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1881        // Now store the XMM (fp + vector) parameter registers.
1882        SmallVector<SDValue, 11> SaveXMMOps;
1883        SaveXMMOps.push_back(Chain);
1884
1885        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1886        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1887        SaveXMMOps.push_back(ALVal);
1888
1889        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1890                               FuncInfo->getRegSaveFrameIndex()));
1891        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1892                               FuncInfo->getVarArgsFPOffset()));
1893
1894        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1895          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1896                                       X86::VR128RegisterClass);
1897          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1898          SaveXMMOps.push_back(Val);
1899        }
1900        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1901                                     MVT::Other,
1902                                     &SaveXMMOps[0], SaveXMMOps.size()));
1903      }
1904
1905      if (!MemOps.empty())
1906        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1907                            &MemOps[0], MemOps.size());
1908    }
1909  }
1910
1911  // Some CCs need callee pop.
1912  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1913    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1914  } else {
1915    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1916    // If this is an sret function, the return should pop the hidden pointer.
1917    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1918      FuncInfo->setBytesToPopOnReturn(4);
1919  }
1920
1921  if (!Is64Bit) {
1922    // RegSaveFrameIndex is X86-64 only.
1923    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1924    if (CallConv == CallingConv::X86_FastCall ||
1925        CallConv == CallingConv::X86_ThisCall)
1926      // fastcc functions can't have varargs.
1927      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1928  }
1929
1930  return Chain;
1931}
1932
1933SDValue
1934X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1935                                    SDValue StackPtr, SDValue Arg,
1936                                    DebugLoc dl, SelectionDAG &DAG,
1937                                    const CCValAssign &VA,
1938                                    ISD::ArgFlagsTy Flags) const {
1939  unsigned LocMemOffset = VA.getLocMemOffset();
1940  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1941  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1942  if (Flags.isByVal())
1943    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1944
1945  return DAG.getStore(Chain, dl, Arg, PtrOff,
1946                      MachinePointerInfo::getStack(LocMemOffset),
1947                      false, false, 0);
1948}
1949
1950/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1951/// optimization is performed and it is required.
1952SDValue
1953X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1954                                           SDValue &OutRetAddr, SDValue Chain,
1955                                           bool IsTailCall, bool Is64Bit,
1956                                           int FPDiff, DebugLoc dl) const {
1957  // Adjust the Return address stack slot.
1958  EVT VT = getPointerTy();
1959  OutRetAddr = getReturnAddressFrameIndex(DAG);
1960
1961  // Load the "old" Return address.
1962  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1963                           false, false, 0);
1964  return SDValue(OutRetAddr.getNode(), 1);
1965}
1966
1967/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1968/// optimization is performed and it is required (FPDiff!=0).
1969static SDValue
1970EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1971                         SDValue Chain, SDValue RetAddrFrIdx,
1972                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1973  // Store the return address to the appropriate stack slot.
1974  if (!FPDiff) return Chain;
1975  // Calculate the new stack slot for the return address.
1976  int SlotSize = Is64Bit ? 8 : 4;
1977  int NewReturnAddrFI =
1978    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1979  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1980  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1981  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1982                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1983                       false, false, 0);
1984  return Chain;
1985}
1986
1987SDValue
1988X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1989                             CallingConv::ID CallConv, bool isVarArg,
1990                             bool &isTailCall,
1991                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1992                             const SmallVectorImpl<SDValue> &OutVals,
1993                             const SmallVectorImpl<ISD::InputArg> &Ins,
1994                             DebugLoc dl, SelectionDAG &DAG,
1995                             SmallVectorImpl<SDValue> &InVals) const {
1996  MachineFunction &MF = DAG.getMachineFunction();
1997  bool Is64Bit        = Subtarget->is64Bit();
1998  bool IsWin64        = Subtarget->isTargetWin64();
1999  bool IsStructRet    = CallIsStructReturn(Outs);
2000  bool IsSibcall      = false;
2001
2002  if (isTailCall) {
2003    // Check if it's really possible to do a tail call.
2004    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2005                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2006                                                   Outs, OutVals, Ins, DAG);
2007
2008    // Sibcalls are automatically detected tailcalls which do not require
2009    // ABI changes.
2010    if (!GuaranteedTailCallOpt && isTailCall)
2011      IsSibcall = true;
2012
2013    if (isTailCall)
2014      ++NumTailCalls;
2015  }
2016
2017  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2018         "Var args not supported with calling convention fastcc or ghc");
2019
2020  // Analyze operands of the call, assigning locations to each operand.
2021  SmallVector<CCValAssign, 16> ArgLocs;
2022  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2023                 ArgLocs, *DAG.getContext());
2024
2025  // Allocate shadow area for Win64
2026  if (IsWin64) {
2027    CCInfo.AllocateStack(32, 8);
2028  }
2029
2030  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2031
2032  // Get a count of how many bytes are to be pushed on the stack.
2033  unsigned NumBytes = CCInfo.getNextStackOffset();
2034  if (IsSibcall)
2035    // This is a sibcall. The memory operands are available in caller's
2036    // own caller's stack.
2037    NumBytes = 0;
2038  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2039    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2040
2041  int FPDiff = 0;
2042  if (isTailCall && !IsSibcall) {
2043    // Lower arguments at fp - stackoffset + fpdiff.
2044    unsigned NumBytesCallerPushed =
2045      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2046    FPDiff = NumBytesCallerPushed - NumBytes;
2047
2048    // Set the delta of movement of the returnaddr stackslot.
2049    // But only set if delta is greater than previous delta.
2050    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2051      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2052  }
2053
2054  if (!IsSibcall)
2055    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2056
2057  SDValue RetAddrFrIdx;
2058  // Load return address for tail calls.
2059  if (isTailCall && FPDiff)
2060    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2061                                    Is64Bit, FPDiff, dl);
2062
2063  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2064  SmallVector<SDValue, 8> MemOpChains;
2065  SDValue StackPtr;
2066
2067  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2068  // of tail call optimization arguments are handle later.
2069  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2070    CCValAssign &VA = ArgLocs[i];
2071    EVT RegVT = VA.getLocVT();
2072    SDValue Arg = OutVals[i];
2073    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2074    bool isByVal = Flags.isByVal();
2075
2076    // Promote the value if needed.
2077    switch (VA.getLocInfo()) {
2078    default: llvm_unreachable("Unknown loc info!");
2079    case CCValAssign::Full: break;
2080    case CCValAssign::SExt:
2081      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2082      break;
2083    case CCValAssign::ZExt:
2084      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2085      break;
2086    case CCValAssign::AExt:
2087      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2088        // Special case: passing MMX values in XMM registers.
2089        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2090        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2091        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2092      } else
2093        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2094      break;
2095    case CCValAssign::BCvt:
2096      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2097      break;
2098    case CCValAssign::Indirect: {
2099      // Store the argument.
2100      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2101      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2102      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2103                           MachinePointerInfo::getFixedStack(FI),
2104                           false, false, 0);
2105      Arg = SpillSlot;
2106      break;
2107    }
2108    }
2109
2110    if (VA.isRegLoc()) {
2111      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2112      if (isVarArg && IsWin64) {
2113        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2114        // shadow reg if callee is a varargs function.
2115        unsigned ShadowReg = 0;
2116        switch (VA.getLocReg()) {
2117        case X86::XMM0: ShadowReg = X86::RCX; break;
2118        case X86::XMM1: ShadowReg = X86::RDX; break;
2119        case X86::XMM2: ShadowReg = X86::R8; break;
2120        case X86::XMM3: ShadowReg = X86::R9; break;
2121        }
2122        if (ShadowReg)
2123          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2124      }
2125    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2126      assert(VA.isMemLoc());
2127      if (StackPtr.getNode() == 0)
2128        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2129      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2130                                             dl, DAG, VA, Flags));
2131    }
2132  }
2133
2134  if (!MemOpChains.empty())
2135    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2136                        &MemOpChains[0], MemOpChains.size());
2137
2138  // Build a sequence of copy-to-reg nodes chained together with token chain
2139  // and flag operands which copy the outgoing args into registers.
2140  SDValue InFlag;
2141  // Tail call byval lowering might overwrite argument registers so in case of
2142  // tail call optimization the copies to registers are lowered later.
2143  if (!isTailCall)
2144    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2145      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2146                               RegsToPass[i].second, InFlag);
2147      InFlag = Chain.getValue(1);
2148    }
2149
2150  if (Subtarget->isPICStyleGOT()) {
2151    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2152    // GOT pointer.
2153    if (!isTailCall) {
2154      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2155                               DAG.getNode(X86ISD::GlobalBaseReg,
2156                                           DebugLoc(), getPointerTy()),
2157                               InFlag);
2158      InFlag = Chain.getValue(1);
2159    } else {
2160      // If we are tail calling and generating PIC/GOT style code load the
2161      // address of the callee into ECX. The value in ecx is used as target of
2162      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2163      // for tail calls on PIC/GOT architectures. Normally we would just put the
2164      // address of GOT into ebx and then call target@PLT. But for tail calls
2165      // ebx would be restored (since ebx is callee saved) before jumping to the
2166      // target@PLT.
2167
2168      // Note: The actual moving to ECX is done further down.
2169      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2170      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2171          !G->getGlobal()->hasProtectedVisibility())
2172        Callee = LowerGlobalAddress(Callee, DAG);
2173      else if (isa<ExternalSymbolSDNode>(Callee))
2174        Callee = LowerExternalSymbol(Callee, DAG);
2175    }
2176  }
2177
2178  if (Is64Bit && isVarArg && !IsWin64) {
2179    // From AMD64 ABI document:
2180    // For calls that may call functions that use varargs or stdargs
2181    // (prototype-less calls or calls to functions containing ellipsis (...) in
2182    // the declaration) %al is used as hidden argument to specify the number
2183    // of SSE registers used. The contents of %al do not need to match exactly
2184    // the number of registers, but must be an ubound on the number of SSE
2185    // registers used and is in the range 0 - 8 inclusive.
2186
2187    // Count the number of XMM registers allocated.
2188    static const unsigned XMMArgRegs[] = {
2189      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2190      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2191    };
2192    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2193    assert((Subtarget->hasXMM() || !NumXMMRegs)
2194           && "SSE registers cannot be used when SSE is disabled");
2195
2196    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2197                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2198    InFlag = Chain.getValue(1);
2199  }
2200
2201
2202  // For tail calls lower the arguments to the 'real' stack slot.
2203  if (isTailCall) {
2204    // Force all the incoming stack arguments to be loaded from the stack
2205    // before any new outgoing arguments are stored to the stack, because the
2206    // outgoing stack slots may alias the incoming argument stack slots, and
2207    // the alias isn't otherwise explicit. This is slightly more conservative
2208    // than necessary, because it means that each store effectively depends
2209    // on every argument instead of just those arguments it would clobber.
2210    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2211
2212    SmallVector<SDValue, 8> MemOpChains2;
2213    SDValue FIN;
2214    int FI = 0;
2215    // Do not flag preceding copytoreg stuff together with the following stuff.
2216    InFlag = SDValue();
2217    if (GuaranteedTailCallOpt) {
2218      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2219        CCValAssign &VA = ArgLocs[i];
2220        if (VA.isRegLoc())
2221          continue;
2222        assert(VA.isMemLoc());
2223        SDValue Arg = OutVals[i];
2224        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2225        // Create frame index.
2226        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2227        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2228        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2229        FIN = DAG.getFrameIndex(FI, getPointerTy());
2230
2231        if (Flags.isByVal()) {
2232          // Copy relative to framepointer.
2233          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2234          if (StackPtr.getNode() == 0)
2235            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2236                                          getPointerTy());
2237          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2238
2239          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2240                                                           ArgChain,
2241                                                           Flags, DAG, dl));
2242        } else {
2243          // Store relative to framepointer.
2244          MemOpChains2.push_back(
2245            DAG.getStore(ArgChain, dl, Arg, FIN,
2246                         MachinePointerInfo::getFixedStack(FI),
2247                         false, false, 0));
2248        }
2249      }
2250    }
2251
2252    if (!MemOpChains2.empty())
2253      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2254                          &MemOpChains2[0], MemOpChains2.size());
2255
2256    // Copy arguments to their registers.
2257    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2258      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2259                               RegsToPass[i].second, InFlag);
2260      InFlag = Chain.getValue(1);
2261    }
2262    InFlag =SDValue();
2263
2264    // Store the return address to the appropriate stack slot.
2265    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2266                                     FPDiff, dl);
2267  }
2268
2269  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2270    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2271    // In the 64-bit large code model, we have to make all calls
2272    // through a register, since the call instruction's 32-bit
2273    // pc-relative offset may not be large enough to hold the whole
2274    // address.
2275  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2276    // If the callee is a GlobalAddress node (quite common, every direct call
2277    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2278    // it.
2279
2280    // We should use extra load for direct calls to dllimported functions in
2281    // non-JIT mode.
2282    const GlobalValue *GV = G->getGlobal();
2283    if (!GV->hasDLLImportLinkage()) {
2284      unsigned char OpFlags = 0;
2285      bool ExtraLoad = false;
2286      unsigned WrapperKind = ISD::DELETED_NODE;
2287
2288      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2289      // external symbols most go through the PLT in PIC mode.  If the symbol
2290      // has hidden or protected visibility, or if it is static or local, then
2291      // we don't need to use the PLT - we can directly call it.
2292      if (Subtarget->isTargetELF() &&
2293          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2294          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2295        OpFlags = X86II::MO_PLT;
2296      } else if (Subtarget->isPICStyleStubAny() &&
2297                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2298                 (!Subtarget->getTargetTriple().isMacOSX() ||
2299                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2300        // PC-relative references to external symbols should go through $stub,
2301        // unless we're building with the leopard linker or later, which
2302        // automatically synthesizes these stubs.
2303        OpFlags = X86II::MO_DARWIN_STUB;
2304      } else if (Subtarget->isPICStyleRIPRel() &&
2305                 isa<Function>(GV) &&
2306                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2307        // If the function is marked as non-lazy, generate an indirect call
2308        // which loads from the GOT directly. This avoids runtime overhead
2309        // at the cost of eager binding (and one extra byte of encoding).
2310        OpFlags = X86II::MO_GOTPCREL;
2311        WrapperKind = X86ISD::WrapperRIP;
2312        ExtraLoad = true;
2313      }
2314
2315      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2316                                          G->getOffset(), OpFlags);
2317
2318      // Add a wrapper if needed.
2319      if (WrapperKind != ISD::DELETED_NODE)
2320        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2321      // Add extra indirection if needed.
2322      if (ExtraLoad)
2323        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2324                             MachinePointerInfo::getGOT(),
2325                             false, false, 0);
2326    }
2327  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2328    unsigned char OpFlags = 0;
2329
2330    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2331    // external symbols should go through the PLT.
2332    if (Subtarget->isTargetELF() &&
2333        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2334      OpFlags = X86II::MO_PLT;
2335    } else if (Subtarget->isPICStyleStubAny() &&
2336               (!Subtarget->getTargetTriple().isMacOSX() ||
2337                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2338      // PC-relative references to external symbols should go through $stub,
2339      // unless we're building with the leopard linker or later, which
2340      // automatically synthesizes these stubs.
2341      OpFlags = X86II::MO_DARWIN_STUB;
2342    }
2343
2344    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2345                                         OpFlags);
2346  }
2347
2348  // Returns a chain & a flag for retval copy to use.
2349  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2350  SmallVector<SDValue, 8> Ops;
2351
2352  if (!IsSibcall && isTailCall) {
2353    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2354                           DAG.getIntPtrConstant(0, true), InFlag);
2355    InFlag = Chain.getValue(1);
2356  }
2357
2358  Ops.push_back(Chain);
2359  Ops.push_back(Callee);
2360
2361  if (isTailCall)
2362    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2363
2364  // Add argument registers to the end of the list so that they are known live
2365  // into the call.
2366  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2367    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2368                                  RegsToPass[i].second.getValueType()));
2369
2370  // Add an implicit use GOT pointer in EBX.
2371  if (!isTailCall && Subtarget->isPICStyleGOT())
2372    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2373
2374  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2375  if (Is64Bit && isVarArg && !IsWin64)
2376    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2377
2378  if (InFlag.getNode())
2379    Ops.push_back(InFlag);
2380
2381  if (isTailCall) {
2382    // We used to do:
2383    //// If this is the first return lowered for this function, add the regs
2384    //// to the liveout set for the function.
2385    // This isn't right, although it's probably harmless on x86; liveouts
2386    // should be computed from returns not tail calls.  Consider a void
2387    // function making a tail call to a function returning int.
2388    return DAG.getNode(X86ISD::TC_RETURN, dl,
2389                       NodeTys, &Ops[0], Ops.size());
2390  }
2391
2392  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2393  InFlag = Chain.getValue(1);
2394
2395  // Create the CALLSEQ_END node.
2396  unsigned NumBytesForCalleeToPush;
2397  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2398    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2399  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2400    // If this is a call to a struct-return function, the callee
2401    // pops the hidden struct pointer, so we have to push it back.
2402    // This is common for Darwin/X86, Linux & Mingw32 targets.
2403    NumBytesForCalleeToPush = 4;
2404  else
2405    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2406
2407  // Returns a flag for retval copy to use.
2408  if (!IsSibcall) {
2409    Chain = DAG.getCALLSEQ_END(Chain,
2410                               DAG.getIntPtrConstant(NumBytes, true),
2411                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2412                                                     true),
2413                               InFlag);
2414    InFlag = Chain.getValue(1);
2415  }
2416
2417  // Handle result values, copying them out of physregs into vregs that we
2418  // return.
2419  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2420                         Ins, dl, DAG, InVals);
2421}
2422
2423
2424//===----------------------------------------------------------------------===//
2425//                Fast Calling Convention (tail call) implementation
2426//===----------------------------------------------------------------------===//
2427
2428//  Like std call, callee cleans arguments, convention except that ECX is
2429//  reserved for storing the tail called function address. Only 2 registers are
2430//  free for argument passing (inreg). Tail call optimization is performed
2431//  provided:
2432//                * tailcallopt is enabled
2433//                * caller/callee are fastcc
2434//  On X86_64 architecture with GOT-style position independent code only local
2435//  (within module) calls are supported at the moment.
2436//  To keep the stack aligned according to platform abi the function
2437//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2438//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2439//  If a tail called function callee has more arguments than the caller the
2440//  caller needs to make sure that there is room to move the RETADDR to. This is
2441//  achieved by reserving an area the size of the argument delta right after the
2442//  original REtADDR, but before the saved framepointer or the spilled registers
2443//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2444//  stack layout:
2445//    arg1
2446//    arg2
2447//    RETADDR
2448//    [ new RETADDR
2449//      move area ]
2450//    (possible EBP)
2451//    ESI
2452//    EDI
2453//    local1 ..
2454
2455/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2456/// for a 16 byte align requirement.
2457unsigned
2458X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2459                                               SelectionDAG& DAG) const {
2460  MachineFunction &MF = DAG.getMachineFunction();
2461  const TargetMachine &TM = MF.getTarget();
2462  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2463  unsigned StackAlignment = TFI.getStackAlignment();
2464  uint64_t AlignMask = StackAlignment - 1;
2465  int64_t Offset = StackSize;
2466  uint64_t SlotSize = TD->getPointerSize();
2467  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2468    // Number smaller than 12 so just add the difference.
2469    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2470  } else {
2471    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2472    Offset = ((~AlignMask) & Offset) + StackAlignment +
2473      (StackAlignment-SlotSize);
2474  }
2475  return Offset;
2476}
2477
2478/// MatchingStackOffset - Return true if the given stack call argument is
2479/// already available in the same position (relatively) of the caller's
2480/// incoming argument stack.
2481static
2482bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2483                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2484                         const X86InstrInfo *TII) {
2485  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2486  int FI = INT_MAX;
2487  if (Arg.getOpcode() == ISD::CopyFromReg) {
2488    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2489    if (!TargetRegisterInfo::isVirtualRegister(VR))
2490      return false;
2491    MachineInstr *Def = MRI->getVRegDef(VR);
2492    if (!Def)
2493      return false;
2494    if (!Flags.isByVal()) {
2495      if (!TII->isLoadFromStackSlot(Def, FI))
2496        return false;
2497    } else {
2498      unsigned Opcode = Def->getOpcode();
2499      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2500          Def->getOperand(1).isFI()) {
2501        FI = Def->getOperand(1).getIndex();
2502        Bytes = Flags.getByValSize();
2503      } else
2504        return false;
2505    }
2506  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2507    if (Flags.isByVal())
2508      // ByVal argument is passed in as a pointer but it's now being
2509      // dereferenced. e.g.
2510      // define @foo(%struct.X* %A) {
2511      //   tail call @bar(%struct.X* byval %A)
2512      // }
2513      return false;
2514    SDValue Ptr = Ld->getBasePtr();
2515    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2516    if (!FINode)
2517      return false;
2518    FI = FINode->getIndex();
2519  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2520    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2521    FI = FINode->getIndex();
2522    Bytes = Flags.getByValSize();
2523  } else
2524    return false;
2525
2526  assert(FI != INT_MAX);
2527  if (!MFI->isFixedObjectIndex(FI))
2528    return false;
2529  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2530}
2531
2532/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2533/// for tail call optimization. Targets which want to do tail call
2534/// optimization should implement this function.
2535bool
2536X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2537                                                     CallingConv::ID CalleeCC,
2538                                                     bool isVarArg,
2539                                                     bool isCalleeStructRet,
2540                                                     bool isCallerStructRet,
2541                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2542                                    const SmallVectorImpl<SDValue> &OutVals,
2543                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2544                                                     SelectionDAG& DAG) const {
2545  if (!IsTailCallConvention(CalleeCC) &&
2546      CalleeCC != CallingConv::C)
2547    return false;
2548
2549  // If -tailcallopt is specified, make fastcc functions tail-callable.
2550  const MachineFunction &MF = DAG.getMachineFunction();
2551  const Function *CallerF = DAG.getMachineFunction().getFunction();
2552  CallingConv::ID CallerCC = CallerF->getCallingConv();
2553  bool CCMatch = CallerCC == CalleeCC;
2554
2555  if (GuaranteedTailCallOpt) {
2556    if (IsTailCallConvention(CalleeCC) && CCMatch)
2557      return true;
2558    return false;
2559  }
2560
2561  // Look for obvious safe cases to perform tail call optimization that do not
2562  // require ABI changes. This is what gcc calls sibcall.
2563
2564  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2565  // emit a special epilogue.
2566  if (RegInfo->needsStackRealignment(MF))
2567    return false;
2568
2569  // Also avoid sibcall optimization if either caller or callee uses struct
2570  // return semantics.
2571  if (isCalleeStructRet || isCallerStructRet)
2572    return false;
2573
2574  // An stdcall caller is expected to clean up its arguments; the callee
2575  // isn't going to do that.
2576  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2577    return false;
2578
2579  // Do not sibcall optimize vararg calls unless all arguments are passed via
2580  // registers.
2581  if (isVarArg && !Outs.empty()) {
2582
2583    // Optimizing for varargs on Win64 is unlikely to be safe without
2584    // additional testing.
2585    if (Subtarget->isTargetWin64())
2586      return false;
2587
2588    SmallVector<CCValAssign, 16> ArgLocs;
2589    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2590		   getTargetMachine(), ArgLocs, *DAG.getContext());
2591
2592    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2593    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2594      if (!ArgLocs[i].isRegLoc())
2595        return false;
2596  }
2597
2598  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2599  // Therefore if it's not used by the call it is not safe to optimize this into
2600  // a sibcall.
2601  bool Unused = false;
2602  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2603    if (!Ins[i].Used) {
2604      Unused = true;
2605      break;
2606    }
2607  }
2608  if (Unused) {
2609    SmallVector<CCValAssign, 16> RVLocs;
2610    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2611		   getTargetMachine(), RVLocs, *DAG.getContext());
2612    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2613    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2614      CCValAssign &VA = RVLocs[i];
2615      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2616        return false;
2617    }
2618  }
2619
2620  // If the calling conventions do not match, then we'd better make sure the
2621  // results are returned in the same way as what the caller expects.
2622  if (!CCMatch) {
2623    SmallVector<CCValAssign, 16> RVLocs1;
2624    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2625		    getTargetMachine(), RVLocs1, *DAG.getContext());
2626    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2627
2628    SmallVector<CCValAssign, 16> RVLocs2;
2629    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2630		    getTargetMachine(), RVLocs2, *DAG.getContext());
2631    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2632
2633    if (RVLocs1.size() != RVLocs2.size())
2634      return false;
2635    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2636      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2637        return false;
2638      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2639        return false;
2640      if (RVLocs1[i].isRegLoc()) {
2641        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2642          return false;
2643      } else {
2644        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2645          return false;
2646      }
2647    }
2648  }
2649
2650  // If the callee takes no arguments then go on to check the results of the
2651  // call.
2652  if (!Outs.empty()) {
2653    // Check if stack adjustment is needed. For now, do not do this if any
2654    // argument is passed on the stack.
2655    SmallVector<CCValAssign, 16> ArgLocs;
2656    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2657		   getTargetMachine(), ArgLocs, *DAG.getContext());
2658
2659    // Allocate shadow area for Win64
2660    if (Subtarget->isTargetWin64()) {
2661      CCInfo.AllocateStack(32, 8);
2662    }
2663
2664    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2665    if (CCInfo.getNextStackOffset()) {
2666      MachineFunction &MF = DAG.getMachineFunction();
2667      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2668        return false;
2669
2670      // Check if the arguments are already laid out in the right way as
2671      // the caller's fixed stack objects.
2672      MachineFrameInfo *MFI = MF.getFrameInfo();
2673      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2674      const X86InstrInfo *TII =
2675        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2676      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2677        CCValAssign &VA = ArgLocs[i];
2678        SDValue Arg = OutVals[i];
2679        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2680        if (VA.getLocInfo() == CCValAssign::Indirect)
2681          return false;
2682        if (!VA.isRegLoc()) {
2683          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2684                                   MFI, MRI, TII))
2685            return false;
2686        }
2687      }
2688    }
2689
2690    // If the tailcall address may be in a register, then make sure it's
2691    // possible to register allocate for it. In 32-bit, the call address can
2692    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2693    // callee-saved registers are restored. These happen to be the same
2694    // registers used to pass 'inreg' arguments so watch out for those.
2695    if (!Subtarget->is64Bit() &&
2696        !isa<GlobalAddressSDNode>(Callee) &&
2697        !isa<ExternalSymbolSDNode>(Callee)) {
2698      unsigned NumInRegs = 0;
2699      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2700        CCValAssign &VA = ArgLocs[i];
2701        if (!VA.isRegLoc())
2702          continue;
2703        unsigned Reg = VA.getLocReg();
2704        switch (Reg) {
2705        default: break;
2706        case X86::EAX: case X86::EDX: case X86::ECX:
2707          if (++NumInRegs == 3)
2708            return false;
2709          break;
2710        }
2711      }
2712    }
2713  }
2714
2715  return true;
2716}
2717
2718FastISel *
2719X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2720  return X86::createFastISel(funcInfo);
2721}
2722
2723
2724//===----------------------------------------------------------------------===//
2725//                           Other Lowering Hooks
2726//===----------------------------------------------------------------------===//
2727
2728static bool MayFoldLoad(SDValue Op) {
2729  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2730}
2731
2732static bool MayFoldIntoStore(SDValue Op) {
2733  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2734}
2735
2736static bool isTargetShuffle(unsigned Opcode) {
2737  switch(Opcode) {
2738  default: return false;
2739  case X86ISD::PSHUFD:
2740  case X86ISD::PSHUFHW:
2741  case X86ISD::PSHUFLW:
2742  case X86ISD::SHUFPD:
2743  case X86ISD::PALIGN:
2744  case X86ISD::SHUFPS:
2745  case X86ISD::MOVLHPS:
2746  case X86ISD::MOVLHPD:
2747  case X86ISD::MOVHLPS:
2748  case X86ISD::MOVLPS:
2749  case X86ISD::MOVLPD:
2750  case X86ISD::MOVSHDUP:
2751  case X86ISD::MOVSLDUP:
2752  case X86ISD::MOVDDUP:
2753  case X86ISD::MOVSS:
2754  case X86ISD::MOVSD:
2755  case X86ISD::UNPCKLPS:
2756  case X86ISD::UNPCKLPD:
2757  case X86ISD::VUNPCKLPSY:
2758  case X86ISD::VUNPCKLPDY:
2759  case X86ISD::PUNPCKLWD:
2760  case X86ISD::PUNPCKLBW:
2761  case X86ISD::PUNPCKLDQ:
2762  case X86ISD::PUNPCKLQDQ:
2763  case X86ISD::UNPCKHPS:
2764  case X86ISD::UNPCKHPD:
2765  case X86ISD::VUNPCKHPSY:
2766  case X86ISD::VUNPCKHPDY:
2767  case X86ISD::PUNPCKHWD:
2768  case X86ISD::PUNPCKHBW:
2769  case X86ISD::PUNPCKHDQ:
2770  case X86ISD::PUNPCKHQDQ:
2771  case X86ISD::VPERMILPS:
2772  case X86ISD::VPERMILPSY:
2773  case X86ISD::VPERMILPD:
2774  case X86ISD::VPERMILPDY:
2775  case X86ISD::VPERM2F128:
2776    return true;
2777  }
2778  return false;
2779}
2780
2781static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2782                                               SDValue V1, SelectionDAG &DAG) {
2783  switch(Opc) {
2784  default: llvm_unreachable("Unknown x86 shuffle node");
2785  case X86ISD::MOVSHDUP:
2786  case X86ISD::MOVSLDUP:
2787  case X86ISD::MOVDDUP:
2788    return DAG.getNode(Opc, dl, VT, V1);
2789  }
2790
2791  return SDValue();
2792}
2793
2794static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2795                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2796  switch(Opc) {
2797  default: llvm_unreachable("Unknown x86 shuffle node");
2798  case X86ISD::PSHUFD:
2799  case X86ISD::PSHUFHW:
2800  case X86ISD::PSHUFLW:
2801  case X86ISD::VPERMILPS:
2802  case X86ISD::VPERMILPSY:
2803  case X86ISD::VPERMILPD:
2804  case X86ISD::VPERMILPDY:
2805    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2806  }
2807
2808  return SDValue();
2809}
2810
2811static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2812               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2813  switch(Opc) {
2814  default: llvm_unreachable("Unknown x86 shuffle node");
2815  case X86ISD::PALIGN:
2816  case X86ISD::SHUFPD:
2817  case X86ISD::SHUFPS:
2818  case X86ISD::VPERM2F128:
2819    return DAG.getNode(Opc, dl, VT, V1, V2,
2820                       DAG.getConstant(TargetMask, MVT::i8));
2821  }
2822  return SDValue();
2823}
2824
2825static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2826                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2827  switch(Opc) {
2828  default: llvm_unreachable("Unknown x86 shuffle node");
2829  case X86ISD::MOVLHPS:
2830  case X86ISD::MOVLHPD:
2831  case X86ISD::MOVHLPS:
2832  case X86ISD::MOVLPS:
2833  case X86ISD::MOVLPD:
2834  case X86ISD::MOVSS:
2835  case X86ISD::MOVSD:
2836  case X86ISD::UNPCKLPS:
2837  case X86ISD::UNPCKLPD:
2838  case X86ISD::VUNPCKLPSY:
2839  case X86ISD::VUNPCKLPDY:
2840  case X86ISD::PUNPCKLWD:
2841  case X86ISD::PUNPCKLBW:
2842  case X86ISD::PUNPCKLDQ:
2843  case X86ISD::PUNPCKLQDQ:
2844  case X86ISD::UNPCKHPS:
2845  case X86ISD::UNPCKHPD:
2846  case X86ISD::VUNPCKHPSY:
2847  case X86ISD::VUNPCKHPDY:
2848  case X86ISD::PUNPCKHWD:
2849  case X86ISD::PUNPCKHBW:
2850  case X86ISD::PUNPCKHDQ:
2851  case X86ISD::PUNPCKHQDQ:
2852    return DAG.getNode(Opc, dl, VT, V1, V2);
2853  }
2854  return SDValue();
2855}
2856
2857SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2858  MachineFunction &MF = DAG.getMachineFunction();
2859  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2860  int ReturnAddrIndex = FuncInfo->getRAIndex();
2861
2862  if (ReturnAddrIndex == 0) {
2863    // Set up a frame object for the return address.
2864    uint64_t SlotSize = TD->getPointerSize();
2865    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2866                                                           false);
2867    FuncInfo->setRAIndex(ReturnAddrIndex);
2868  }
2869
2870  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2871}
2872
2873
2874bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2875                                       bool hasSymbolicDisplacement) {
2876  // Offset should fit into 32 bit immediate field.
2877  if (!isInt<32>(Offset))
2878    return false;
2879
2880  // If we don't have a symbolic displacement - we don't have any extra
2881  // restrictions.
2882  if (!hasSymbolicDisplacement)
2883    return true;
2884
2885  // FIXME: Some tweaks might be needed for medium code model.
2886  if (M != CodeModel::Small && M != CodeModel::Kernel)
2887    return false;
2888
2889  // For small code model we assume that latest object is 16MB before end of 31
2890  // bits boundary. We may also accept pretty large negative constants knowing
2891  // that all objects are in the positive half of address space.
2892  if (M == CodeModel::Small && Offset < 16*1024*1024)
2893    return true;
2894
2895  // For kernel code model we know that all object resist in the negative half
2896  // of 32bits address space. We may not accept negative offsets, since they may
2897  // be just off and we may accept pretty large positive ones.
2898  if (M == CodeModel::Kernel && Offset > 0)
2899    return true;
2900
2901  return false;
2902}
2903
2904/// isCalleePop - Determines whether the callee is required to pop its
2905/// own arguments. Callee pop is necessary to support tail calls.
2906bool X86::isCalleePop(CallingConv::ID CallingConv,
2907                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2908  if (IsVarArg)
2909    return false;
2910
2911  switch (CallingConv) {
2912  default:
2913    return false;
2914  case CallingConv::X86_StdCall:
2915    return !is64Bit;
2916  case CallingConv::X86_FastCall:
2917    return !is64Bit;
2918  case CallingConv::X86_ThisCall:
2919    return !is64Bit;
2920  case CallingConv::Fast:
2921    return TailCallOpt;
2922  case CallingConv::GHC:
2923    return TailCallOpt;
2924  }
2925}
2926
2927/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2928/// specific condition code, returning the condition code and the LHS/RHS of the
2929/// comparison to make.
2930static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2931                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2932  if (!isFP) {
2933    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2934      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2935        // X > -1   -> X == 0, jump !sign.
2936        RHS = DAG.getConstant(0, RHS.getValueType());
2937        return X86::COND_NS;
2938      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2939        // X < 0   -> X == 0, jump on sign.
2940        return X86::COND_S;
2941      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2942        // X < 1   -> X <= 0
2943        RHS = DAG.getConstant(0, RHS.getValueType());
2944        return X86::COND_LE;
2945      }
2946    }
2947
2948    switch (SetCCOpcode) {
2949    default: llvm_unreachable("Invalid integer condition!");
2950    case ISD::SETEQ:  return X86::COND_E;
2951    case ISD::SETGT:  return X86::COND_G;
2952    case ISD::SETGE:  return X86::COND_GE;
2953    case ISD::SETLT:  return X86::COND_L;
2954    case ISD::SETLE:  return X86::COND_LE;
2955    case ISD::SETNE:  return X86::COND_NE;
2956    case ISD::SETULT: return X86::COND_B;
2957    case ISD::SETUGT: return X86::COND_A;
2958    case ISD::SETULE: return X86::COND_BE;
2959    case ISD::SETUGE: return X86::COND_AE;
2960    }
2961  }
2962
2963  // First determine if it is required or is profitable to flip the operands.
2964
2965  // If LHS is a foldable load, but RHS is not, flip the condition.
2966  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2967      !ISD::isNON_EXTLoad(RHS.getNode())) {
2968    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2969    std::swap(LHS, RHS);
2970  }
2971
2972  switch (SetCCOpcode) {
2973  default: break;
2974  case ISD::SETOLT:
2975  case ISD::SETOLE:
2976  case ISD::SETUGT:
2977  case ISD::SETUGE:
2978    std::swap(LHS, RHS);
2979    break;
2980  }
2981
2982  // On a floating point condition, the flags are set as follows:
2983  // ZF  PF  CF   op
2984  //  0 | 0 | 0 | X > Y
2985  //  0 | 0 | 1 | X < Y
2986  //  1 | 0 | 0 | X == Y
2987  //  1 | 1 | 1 | unordered
2988  switch (SetCCOpcode) {
2989  default: llvm_unreachable("Condcode should be pre-legalized away");
2990  case ISD::SETUEQ:
2991  case ISD::SETEQ:   return X86::COND_E;
2992  case ISD::SETOLT:              // flipped
2993  case ISD::SETOGT:
2994  case ISD::SETGT:   return X86::COND_A;
2995  case ISD::SETOLE:              // flipped
2996  case ISD::SETOGE:
2997  case ISD::SETGE:   return X86::COND_AE;
2998  case ISD::SETUGT:              // flipped
2999  case ISD::SETULT:
3000  case ISD::SETLT:   return X86::COND_B;
3001  case ISD::SETUGE:              // flipped
3002  case ISD::SETULE:
3003  case ISD::SETLE:   return X86::COND_BE;
3004  case ISD::SETONE:
3005  case ISD::SETNE:   return X86::COND_NE;
3006  case ISD::SETUO:   return X86::COND_P;
3007  case ISD::SETO:    return X86::COND_NP;
3008  case ISD::SETOEQ:
3009  case ISD::SETUNE:  return X86::COND_INVALID;
3010  }
3011}
3012
3013/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3014/// code. Current x86 isa includes the following FP cmov instructions:
3015/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3016static bool hasFPCMov(unsigned X86CC) {
3017  switch (X86CC) {
3018  default:
3019    return false;
3020  case X86::COND_B:
3021  case X86::COND_BE:
3022  case X86::COND_E:
3023  case X86::COND_P:
3024  case X86::COND_A:
3025  case X86::COND_AE:
3026  case X86::COND_NE:
3027  case X86::COND_NP:
3028    return true;
3029  }
3030}
3031
3032/// isFPImmLegal - Returns true if the target can instruction select the
3033/// specified FP immediate natively. If false, the legalizer will
3034/// materialize the FP immediate as a load from a constant pool.
3035bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3036  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3037    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3038      return true;
3039  }
3040  return false;
3041}
3042
3043/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3044/// the specified range (L, H].
3045static bool isUndefOrInRange(int Val, int Low, int Hi) {
3046  return (Val < 0) || (Val >= Low && Val < Hi);
3047}
3048
3049/// isUndefOrInRange - Return true if every element in Mask, begining
3050/// from position Pos and ending in Pos+Size, falls within the specified
3051/// range (L, L+Pos]. or is undef.
3052static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3053                             int Pos, int Size, int Low, int Hi) {
3054  for (int i = Pos, e = Pos+Size; i != e; ++i)
3055    if (!isUndefOrInRange(Mask[i], Low, Hi))
3056      return false;
3057  return true;
3058}
3059
3060/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3061/// specified value.
3062static bool isUndefOrEqual(int Val, int CmpVal) {
3063  if (Val < 0 || Val == CmpVal)
3064    return true;
3065  return false;
3066}
3067
3068/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3069/// from position Pos and ending in Pos+Size, falls within the specified
3070/// sequential range (L, L+Pos]. or is undef.
3071static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3072                                       int Pos, int Size, int Low) {
3073  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3074    if (!isUndefOrEqual(Mask[i], Low))
3075      return false;
3076  return true;
3077}
3078
3079/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3080/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3081/// the second operand.
3082static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3083  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3084    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3085  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3086    return (Mask[0] < 2 && Mask[1] < 2);
3087  return false;
3088}
3089
3090bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3091  SmallVector<int, 8> M;
3092  N->getMask(M);
3093  return ::isPSHUFDMask(M, N->getValueType(0));
3094}
3095
3096/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3097/// is suitable for input to PSHUFHW.
3098static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3099  if (VT != MVT::v8i16)
3100    return false;
3101
3102  // Lower quadword copied in order or undef.
3103  for (int i = 0; i != 4; ++i)
3104    if (Mask[i] >= 0 && Mask[i] != i)
3105      return false;
3106
3107  // Upper quadword shuffled.
3108  for (int i = 4; i != 8; ++i)
3109    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3110      return false;
3111
3112  return true;
3113}
3114
3115bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3116  SmallVector<int, 8> M;
3117  N->getMask(M);
3118  return ::isPSHUFHWMask(M, N->getValueType(0));
3119}
3120
3121/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3122/// is suitable for input to PSHUFLW.
3123static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3124  if (VT != MVT::v8i16)
3125    return false;
3126
3127  // Upper quadword copied in order.
3128  for (int i = 4; i != 8; ++i)
3129    if (Mask[i] >= 0 && Mask[i] != i)
3130      return false;
3131
3132  // Lower quadword shuffled.
3133  for (int i = 0; i != 4; ++i)
3134    if (Mask[i] >= 4)
3135      return false;
3136
3137  return true;
3138}
3139
3140bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3141  SmallVector<int, 8> M;
3142  N->getMask(M);
3143  return ::isPSHUFLWMask(M, N->getValueType(0));
3144}
3145
3146/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3147/// is suitable for input to PALIGNR.
3148static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3149                          bool hasSSSE3) {
3150  int i, e = VT.getVectorNumElements();
3151  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3152    return false;
3153
3154  // Do not handle v2i64 / v2f64 shuffles with palignr.
3155  if (e < 4 || !hasSSSE3)
3156    return false;
3157
3158  for (i = 0; i != e; ++i)
3159    if (Mask[i] >= 0)
3160      break;
3161
3162  // All undef, not a palignr.
3163  if (i == e)
3164    return false;
3165
3166  // Make sure we're shifting in the right direction.
3167  if (Mask[i] <= i)
3168    return false;
3169
3170  int s = Mask[i] - i;
3171
3172  // Check the rest of the elements to see if they are consecutive.
3173  for (++i; i != e; ++i) {
3174    int m = Mask[i];
3175    if (m >= 0 && m != s+i)
3176      return false;
3177  }
3178  return true;
3179}
3180
3181/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3182/// specifies a shuffle of elements that is suitable for input to 256-bit
3183/// VSHUFPSY.
3184static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3185                          const X86Subtarget *Subtarget) {
3186  int NumElems = VT.getVectorNumElements();
3187
3188  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3189    return false;
3190
3191  if (NumElems != 8)
3192    return false;
3193
3194  // VSHUFPSY divides the resulting vector into 4 chunks.
3195  // The sources are also splitted into 4 chunks, and each destination
3196  // chunk must come from a different source chunk.
3197  //
3198  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3199  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3200  //
3201  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3202  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3203  //
3204  int QuarterSize = NumElems/4;
3205  int HalfSize = QuarterSize*2;
3206  for (int i = 0; i < QuarterSize; ++i)
3207    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3208      return false;
3209  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3210    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3211      return false;
3212
3213  // The mask of the second half must be the same as the first but with
3214  // the appropriate offsets. This works in the same way as VPERMILPS
3215  // works with masks.
3216  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3217    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3218      return false;
3219    int FstHalfIdx = i-HalfSize;
3220    if (Mask[FstHalfIdx] < 0)
3221      continue;
3222    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3223      return false;
3224  }
3225  for (int i = QuarterSize*3; i < NumElems; ++i) {
3226    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3227      return false;
3228    int FstHalfIdx = i-HalfSize;
3229    if (Mask[FstHalfIdx] < 0)
3230      continue;
3231    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3232      return false;
3233
3234  }
3235
3236  return true;
3237}
3238
3239/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3240/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3241static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3242  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3243  EVT VT = SVOp->getValueType(0);
3244  int NumElems = VT.getVectorNumElements();
3245
3246  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3247         "Only supports v8i32 and v8f32 types");
3248
3249  int HalfSize = NumElems/2;
3250  unsigned Mask = 0;
3251  for (int i = 0; i != NumElems ; ++i) {
3252    if (SVOp->getMaskElt(i) < 0)
3253      continue;
3254    // The mask of the first half must be equal to the second one.
3255    unsigned Shamt = (i%HalfSize)*2;
3256    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3257    Mask |= Elt << Shamt;
3258  }
3259
3260  return Mask;
3261}
3262
3263/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3264/// specifies a shuffle of elements that is suitable for input to 256-bit
3265/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3266/// version and the mask of the second half isn't binded with the first
3267/// one.
3268static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3269                           const X86Subtarget *Subtarget) {
3270  int NumElems = VT.getVectorNumElements();
3271
3272  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3273    return false;
3274
3275  if (NumElems != 4)
3276    return false;
3277
3278  // VSHUFPSY divides the resulting vector into 4 chunks.
3279  // The sources are also splitted into 4 chunks, and each destination
3280  // chunk must come from a different source chunk.
3281  //
3282  //  SRC1 =>      X3       X2       X1       X0
3283  //  SRC2 =>      Y3       Y2       Y1       Y0
3284  //
3285  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3286  //
3287  int QuarterSize = NumElems/4;
3288  int HalfSize = QuarterSize*2;
3289  for (int i = 0; i < QuarterSize; ++i)
3290    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3291      return false;
3292  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3293    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3294      return false;
3295  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3296    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3297      return false;
3298  for (int i = QuarterSize*3; i < NumElems; ++i)
3299    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3300      return false;
3301
3302  return true;
3303}
3304
3305/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3306/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3307static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3308  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3309  EVT VT = SVOp->getValueType(0);
3310  int NumElems = VT.getVectorNumElements();
3311
3312  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3313         "Only supports v4i64 and v4f64 types");
3314
3315  int HalfSize = NumElems/2;
3316  unsigned Mask = 0;
3317  for (int i = 0; i != NumElems ; ++i) {
3318    if (SVOp->getMaskElt(i) < 0)
3319      continue;
3320    int Elt = SVOp->getMaskElt(i) % HalfSize;
3321    Mask |= Elt << i;
3322  }
3323
3324  return Mask;
3325}
3326
3327/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3328/// specifies a shuffle of elements that is suitable for input to 128-bit
3329/// SHUFPS and SHUFPD.
3330static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3331  int NumElems = VT.getVectorNumElements();
3332
3333  if (VT.getSizeInBits() != 128)
3334    return false;
3335
3336  if (NumElems != 2 && NumElems != 4)
3337    return false;
3338
3339  int Half = NumElems / 2;
3340  for (int i = 0; i < Half; ++i)
3341    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3342      return false;
3343  for (int i = Half; i < NumElems; ++i)
3344    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3345      return false;
3346
3347  return true;
3348}
3349
3350bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3351  SmallVector<int, 8> M;
3352  N->getMask(M);
3353  return ::isSHUFPMask(M, N->getValueType(0));
3354}
3355
3356/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3357/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3358/// half elements to come from vector 1 (which would equal the dest.) and
3359/// the upper half to come from vector 2.
3360static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3361  int NumElems = VT.getVectorNumElements();
3362
3363  if (NumElems != 2 && NumElems != 4)
3364    return false;
3365
3366  int Half = NumElems / 2;
3367  for (int i = 0; i < Half; ++i)
3368    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3369      return false;
3370  for (int i = Half; i < NumElems; ++i)
3371    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3372      return false;
3373  return true;
3374}
3375
3376static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3377  SmallVector<int, 8> M;
3378  N->getMask(M);
3379  return isCommutedSHUFPMask(M, N->getValueType(0));
3380}
3381
3382/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3383/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3384bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3385  EVT VT = N->getValueType(0);
3386  unsigned NumElems = VT.getVectorNumElements();
3387
3388  if (VT.getSizeInBits() != 128)
3389    return false;
3390
3391  if (NumElems != 4)
3392    return false;
3393
3394  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3395  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3396         isUndefOrEqual(N->getMaskElt(1), 7) &&
3397         isUndefOrEqual(N->getMaskElt(2), 2) &&
3398         isUndefOrEqual(N->getMaskElt(3), 3);
3399}
3400
3401/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3402/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3403/// <2, 3, 2, 3>
3404bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3405  EVT VT = N->getValueType(0);
3406  unsigned NumElems = VT.getVectorNumElements();
3407
3408  if (VT.getSizeInBits() != 128)
3409    return false;
3410
3411  if (NumElems != 4)
3412    return false;
3413
3414  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3415         isUndefOrEqual(N->getMaskElt(1), 3) &&
3416         isUndefOrEqual(N->getMaskElt(2), 2) &&
3417         isUndefOrEqual(N->getMaskElt(3), 3);
3418}
3419
3420/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3421/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3422bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3423  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3424
3425  if (NumElems != 2 && NumElems != 4)
3426    return false;
3427
3428  for (unsigned i = 0; i < NumElems/2; ++i)
3429    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3430      return false;
3431
3432  for (unsigned i = NumElems/2; i < NumElems; ++i)
3433    if (!isUndefOrEqual(N->getMaskElt(i), i))
3434      return false;
3435
3436  return true;
3437}
3438
3439/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3440/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3441bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3442  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3443
3444  if ((NumElems != 2 && NumElems != 4)
3445      || N->getValueType(0).getSizeInBits() > 128)
3446    return false;
3447
3448  for (unsigned i = 0; i < NumElems/2; ++i)
3449    if (!isUndefOrEqual(N->getMaskElt(i), i))
3450      return false;
3451
3452  for (unsigned i = 0; i < NumElems/2; ++i)
3453    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3454      return false;
3455
3456  return true;
3457}
3458
3459/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3460/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3461static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3462                         bool V2IsSplat = false) {
3463  int NumElts = VT.getVectorNumElements();
3464
3465  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3466         "Unsupported vector type for unpckh");
3467
3468  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3469    return false;
3470
3471  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3472  // independently on 128-bit lanes.
3473  unsigned NumLanes = VT.getSizeInBits()/128;
3474  unsigned NumLaneElts = NumElts/NumLanes;
3475
3476  unsigned Start = 0;
3477  unsigned End = NumLaneElts;
3478  for (unsigned s = 0; s < NumLanes; ++s) {
3479    for (unsigned i = Start, j = s * NumLaneElts;
3480         i != End;
3481         i += 2, ++j) {
3482      int BitI  = Mask[i];
3483      int BitI1 = Mask[i+1];
3484      if (!isUndefOrEqual(BitI, j))
3485        return false;
3486      if (V2IsSplat) {
3487        if (!isUndefOrEqual(BitI1, NumElts))
3488          return false;
3489      } else {
3490        if (!isUndefOrEqual(BitI1, j + NumElts))
3491          return false;
3492      }
3493    }
3494    // Process the next 128 bits.
3495    Start += NumLaneElts;
3496    End += NumLaneElts;
3497  }
3498
3499  return true;
3500}
3501
3502bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3503  SmallVector<int, 8> M;
3504  N->getMask(M);
3505  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3506}
3507
3508/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3509/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3510static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3511                         bool V2IsSplat = false) {
3512  int NumElts = VT.getVectorNumElements();
3513
3514  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3515         "Unsupported vector type for unpckh");
3516
3517  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3518    return false;
3519
3520  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3521  // independently on 128-bit lanes.
3522  unsigned NumLanes = VT.getSizeInBits()/128;
3523  unsigned NumLaneElts = NumElts/NumLanes;
3524
3525  unsigned Start = 0;
3526  unsigned End = NumLaneElts;
3527  for (unsigned l = 0; l != NumLanes; ++l) {
3528    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3529                             i != End; i += 2, ++j) {
3530      int BitI  = Mask[i];
3531      int BitI1 = Mask[i+1];
3532      if (!isUndefOrEqual(BitI, j))
3533        return false;
3534      if (V2IsSplat) {
3535        if (isUndefOrEqual(BitI1, NumElts))
3536          return false;
3537      } else {
3538        if (!isUndefOrEqual(BitI1, j+NumElts))
3539          return false;
3540      }
3541    }
3542    // Process the next 128 bits.
3543    Start += NumLaneElts;
3544    End += NumLaneElts;
3545  }
3546  return true;
3547}
3548
3549bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3550  SmallVector<int, 8> M;
3551  N->getMask(M);
3552  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3553}
3554
3555/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3556/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3557/// <0, 0, 1, 1>
3558static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3559  int NumElems = VT.getVectorNumElements();
3560  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3561    return false;
3562
3563  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3564  // independently on 128-bit lanes.
3565  unsigned NumLanes = VT.getSizeInBits() / 128;
3566  unsigned NumLaneElts = NumElems / NumLanes;
3567
3568  for (unsigned s = 0; s < NumLanes; ++s) {
3569    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3570         i != NumLaneElts * (s + 1);
3571         i += 2, ++j) {
3572      int BitI  = Mask[i];
3573      int BitI1 = Mask[i+1];
3574
3575      if (!isUndefOrEqual(BitI, j))
3576        return false;
3577      if (!isUndefOrEqual(BitI1, j))
3578        return false;
3579    }
3580  }
3581
3582  return true;
3583}
3584
3585bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3586  SmallVector<int, 8> M;
3587  N->getMask(M);
3588  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3589}
3590
3591/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3592/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3593/// <2, 2, 3, 3>
3594static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3595  int NumElems = VT.getVectorNumElements();
3596  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3597    return false;
3598
3599  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3600    int BitI  = Mask[i];
3601    int BitI1 = Mask[i+1];
3602    if (!isUndefOrEqual(BitI, j))
3603      return false;
3604    if (!isUndefOrEqual(BitI1, j))
3605      return false;
3606  }
3607  return true;
3608}
3609
3610bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3611  SmallVector<int, 8> M;
3612  N->getMask(M);
3613  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3614}
3615
3616/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3617/// specifies a shuffle of elements that is suitable for input to MOVSS,
3618/// MOVSD, and MOVD, i.e. setting the lowest element.
3619static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3620  if (VT.getVectorElementType().getSizeInBits() < 32)
3621    return false;
3622
3623  int NumElts = VT.getVectorNumElements();
3624
3625  if (!isUndefOrEqual(Mask[0], NumElts))
3626    return false;
3627
3628  for (int i = 1; i < NumElts; ++i)
3629    if (!isUndefOrEqual(Mask[i], i))
3630      return false;
3631
3632  return true;
3633}
3634
3635bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3636  SmallVector<int, 8> M;
3637  N->getMask(M);
3638  return ::isMOVLMask(M, N->getValueType(0));
3639}
3640
3641/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3642/// as permutations between 128-bit chunks or halves. As an example: this
3643/// shuffle bellow:
3644///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3645/// The first half comes from the second half of V1 and the second half from the
3646/// the second half of V2.
3647static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3648                             const X86Subtarget *Subtarget) {
3649  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3650    return false;
3651
3652  // The shuffle result is divided into half A and half B. In total the two
3653  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3654  // B must come from C, D, E or F.
3655  int HalfSize = VT.getVectorNumElements()/2;
3656  bool MatchA = false, MatchB = false;
3657
3658  // Check if A comes from one of C, D, E, F.
3659  for (int Half = 0; Half < 4; ++Half) {
3660    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3661      MatchA = true;
3662      break;
3663    }
3664  }
3665
3666  // Check if B comes from one of C, D, E, F.
3667  for (int Half = 0; Half < 4; ++Half) {
3668    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3669      MatchB = true;
3670      break;
3671    }
3672  }
3673
3674  return MatchA && MatchB;
3675}
3676
3677/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3678/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3679static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3680  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3681  EVT VT = SVOp->getValueType(0);
3682
3683  int HalfSize = VT.getVectorNumElements()/2;
3684
3685  int FstHalf = 0, SndHalf = 0;
3686  for (int i = 0; i < HalfSize; ++i) {
3687    if (SVOp->getMaskElt(i) > 0) {
3688      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3689      break;
3690    }
3691  }
3692  for (int i = HalfSize; i < HalfSize*2; ++i) {
3693    if (SVOp->getMaskElt(i) > 0) {
3694      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3695      break;
3696    }
3697  }
3698
3699  return (FstHalf | (SndHalf << 4));
3700}
3701
3702/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3703/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3704/// Note that VPERMIL mask matching is different depending whether theunderlying
3705/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3706/// to the same elements of the low, but to the higher half of the source.
3707/// In VPERMILPD the two lanes could be shuffled independently of each other
3708/// with the same restriction that lanes can't be crossed.
3709static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3710                            const X86Subtarget *Subtarget) {
3711  int NumElts = VT.getVectorNumElements();
3712  int NumLanes = VT.getSizeInBits()/128;
3713
3714  if (!Subtarget->hasAVX())
3715    return false;
3716
3717  // Match any permutation of 128-bit vector with 64-bit types
3718  if (NumLanes == 1 && NumElts != 2)
3719    return false;
3720
3721  // Only match 256-bit with 32 types
3722  if (VT.getSizeInBits() == 256 && NumElts != 4)
3723    return false;
3724
3725  // The mask on the high lane is independent of the low. Both can match
3726  // any element in inside its own lane, but can't cross.
3727  int LaneSize = NumElts/NumLanes;
3728  for (int l = 0; l < NumLanes; ++l)
3729    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3730      int LaneStart = l*LaneSize;
3731      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3732        return false;
3733    }
3734
3735  return true;
3736}
3737
3738/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3739/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3740/// Note that VPERMIL mask matching is different depending whether theunderlying
3741/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3742/// to the same elements of the low, but to the higher half of the source.
3743/// In VPERMILPD the two lanes could be shuffled independently of each other
3744/// with the same restriction that lanes can't be crossed.
3745static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3746                            const X86Subtarget *Subtarget) {
3747  unsigned NumElts = VT.getVectorNumElements();
3748  unsigned NumLanes = VT.getSizeInBits()/128;
3749
3750  if (!Subtarget->hasAVX())
3751    return false;
3752
3753  // Match any permutation of 128-bit vector with 32-bit types
3754  if (NumLanes == 1 && NumElts != 4)
3755    return false;
3756
3757  // Only match 256-bit with 32 types
3758  if (VT.getSizeInBits() == 256 && NumElts != 8)
3759    return false;
3760
3761  // The mask on the high lane should be the same as the low. Actually,
3762  // they can differ if any of the corresponding index in a lane is undef
3763  // and the other stays in range.
3764  int LaneSize = NumElts/NumLanes;
3765  for (int i = 0; i < LaneSize; ++i) {
3766    int HighElt = i+LaneSize;
3767    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3768    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3769
3770    if (!HighValid || !LowValid)
3771      return false;
3772    if (Mask[i] < 0 || Mask[HighElt] < 0)
3773      continue;
3774    if (Mask[HighElt]-Mask[i] != LaneSize)
3775      return false;
3776  }
3777
3778  return true;
3779}
3780
3781/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3782/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3783static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3784  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3785  EVT VT = SVOp->getValueType(0);
3786
3787  int NumElts = VT.getVectorNumElements();
3788  int NumLanes = VT.getSizeInBits()/128;
3789  int LaneSize = NumElts/NumLanes;
3790
3791  // Although the mask is equal for both lanes do it twice to get the cases
3792  // where a mask will match because the same mask element is undef on the
3793  // first half but valid on the second. This would get pathological cases
3794  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3795  unsigned Mask = 0;
3796  for (int l = 0; l < NumLanes; ++l) {
3797    for (int i = 0; i < LaneSize; ++i) {
3798      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3799      if (MaskElt < 0)
3800        continue;
3801      if (MaskElt >= LaneSize)
3802        MaskElt -= LaneSize;
3803      Mask |= MaskElt << (i*2);
3804    }
3805  }
3806
3807  return Mask;
3808}
3809
3810/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3811/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3812static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3813  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3814  EVT VT = SVOp->getValueType(0);
3815
3816  int NumElts = VT.getVectorNumElements();
3817  int NumLanes = VT.getSizeInBits()/128;
3818
3819  unsigned Mask = 0;
3820  int LaneSize = NumElts/NumLanes;
3821  for (int l = 0; l < NumLanes; ++l)
3822    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3823      int MaskElt = SVOp->getMaskElt(i);
3824      if (MaskElt < 0)
3825        continue;
3826      Mask |= (MaskElt-l*LaneSize) << i;
3827    }
3828
3829  return Mask;
3830}
3831
3832/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3833/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3834/// element of vector 2 and the other elements to come from vector 1 in order.
3835static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3836                               bool V2IsSplat = false, bool V2IsUndef = false) {
3837  int NumOps = VT.getVectorNumElements();
3838  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3839    return false;
3840
3841  if (!isUndefOrEqual(Mask[0], 0))
3842    return false;
3843
3844  for (int i = 1; i < NumOps; ++i)
3845    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3846          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3847          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3848      return false;
3849
3850  return true;
3851}
3852
3853static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3854                           bool V2IsUndef = false) {
3855  SmallVector<int, 8> M;
3856  N->getMask(M);
3857  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3858}
3859
3860/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3861/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3862/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3863bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3864                         const X86Subtarget *Subtarget) {
3865  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3866    return false;
3867
3868  // The second vector must be undef
3869  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3870    return false;
3871
3872  EVT VT = N->getValueType(0);
3873  unsigned NumElems = VT.getVectorNumElements();
3874
3875  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3876      (VT.getSizeInBits() == 256 && NumElems != 8))
3877    return false;
3878
3879  // "i+1" is the value the indexed mask element must have
3880  for (unsigned i = 0; i < NumElems; i += 2)
3881    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3882        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3883      return false;
3884
3885  return true;
3886}
3887
3888/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3889/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3890/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3891bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3892                         const X86Subtarget *Subtarget) {
3893  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3894    return false;
3895
3896  // The second vector must be undef
3897  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3898    return false;
3899
3900  EVT VT = N->getValueType(0);
3901  unsigned NumElems = VT.getVectorNumElements();
3902
3903  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3904      (VT.getSizeInBits() == 256 && NumElems != 8))
3905    return false;
3906
3907  // "i" is the value the indexed mask element must have
3908  for (unsigned i = 0; i < NumElems; i += 2)
3909    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3910        !isUndefOrEqual(N->getMaskElt(i+1), i))
3911      return false;
3912
3913  return true;
3914}
3915
3916/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3917/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3918bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3919  int e = N->getValueType(0).getVectorNumElements() / 2;
3920
3921  for (int i = 0; i < e; ++i)
3922    if (!isUndefOrEqual(N->getMaskElt(i), i))
3923      return false;
3924  for (int i = 0; i < e; ++i)
3925    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3926      return false;
3927  return true;
3928}
3929
3930/// isVEXTRACTF128Index - Return true if the specified
3931/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3932/// suitable for input to VEXTRACTF128.
3933bool X86::isVEXTRACTF128Index(SDNode *N) {
3934  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3935    return false;
3936
3937  // The index should be aligned on a 128-bit boundary.
3938  uint64_t Index =
3939    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3940
3941  unsigned VL = N->getValueType(0).getVectorNumElements();
3942  unsigned VBits = N->getValueType(0).getSizeInBits();
3943  unsigned ElSize = VBits / VL;
3944  bool Result = (Index * ElSize) % 128 == 0;
3945
3946  return Result;
3947}
3948
3949/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3950/// operand specifies a subvector insert that is suitable for input to
3951/// VINSERTF128.
3952bool X86::isVINSERTF128Index(SDNode *N) {
3953  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3954    return false;
3955
3956  // The index should be aligned on a 128-bit boundary.
3957  uint64_t Index =
3958    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3959
3960  unsigned VL = N->getValueType(0).getVectorNumElements();
3961  unsigned VBits = N->getValueType(0).getSizeInBits();
3962  unsigned ElSize = VBits / VL;
3963  bool Result = (Index * ElSize) % 128 == 0;
3964
3965  return Result;
3966}
3967
3968/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3969/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3970unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3971  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3972  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3973
3974  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3975  unsigned Mask = 0;
3976  for (int i = 0; i < NumOperands; ++i) {
3977    int Val = SVOp->getMaskElt(NumOperands-i-1);
3978    if (Val < 0) Val = 0;
3979    if (Val >= NumOperands) Val -= NumOperands;
3980    Mask |= Val;
3981    if (i != NumOperands - 1)
3982      Mask <<= Shift;
3983  }
3984  return Mask;
3985}
3986
3987/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3988/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3989unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3990  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3991  unsigned Mask = 0;
3992  // 8 nodes, but we only care about the last 4.
3993  for (unsigned i = 7; i >= 4; --i) {
3994    int Val = SVOp->getMaskElt(i);
3995    if (Val >= 0)
3996      Mask |= (Val - 4);
3997    if (i != 4)
3998      Mask <<= 2;
3999  }
4000  return Mask;
4001}
4002
4003/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4004/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4005unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4006  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4007  unsigned Mask = 0;
4008  // 8 nodes, but we only care about the first 4.
4009  for (int i = 3; i >= 0; --i) {
4010    int Val = SVOp->getMaskElt(i);
4011    if (Val >= 0)
4012      Mask |= Val;
4013    if (i != 0)
4014      Mask <<= 2;
4015  }
4016  return Mask;
4017}
4018
4019/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4020/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4021unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4022  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4023  EVT VVT = N->getValueType(0);
4024  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4025  int Val = 0;
4026
4027  unsigned i, e;
4028  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4029    Val = SVOp->getMaskElt(i);
4030    if (Val >= 0)
4031      break;
4032  }
4033  assert(Val - i > 0 && "PALIGNR imm should be positive");
4034  return (Val - i) * EltSize;
4035}
4036
4037/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4038/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4039/// instructions.
4040unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4041  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4042    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4043
4044  uint64_t Index =
4045    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4046
4047  EVT VecVT = N->getOperand(0).getValueType();
4048  EVT ElVT = VecVT.getVectorElementType();
4049
4050  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4051  return Index / NumElemsPerChunk;
4052}
4053
4054/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4055/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4056/// instructions.
4057unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4058  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4059    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4060
4061  uint64_t Index =
4062    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4063
4064  EVT VecVT = N->getValueType(0);
4065  EVT ElVT = VecVT.getVectorElementType();
4066
4067  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4068  return Index / NumElemsPerChunk;
4069}
4070
4071/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4072/// constant +0.0.
4073bool X86::isZeroNode(SDValue Elt) {
4074  return ((isa<ConstantSDNode>(Elt) &&
4075           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4076          (isa<ConstantFPSDNode>(Elt) &&
4077           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4078}
4079
4080/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4081/// their permute mask.
4082static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4083                                    SelectionDAG &DAG) {
4084  EVT VT = SVOp->getValueType(0);
4085  unsigned NumElems = VT.getVectorNumElements();
4086  SmallVector<int, 8> MaskVec;
4087
4088  for (unsigned i = 0; i != NumElems; ++i) {
4089    int idx = SVOp->getMaskElt(i);
4090    if (idx < 0)
4091      MaskVec.push_back(idx);
4092    else if (idx < (int)NumElems)
4093      MaskVec.push_back(idx + NumElems);
4094    else
4095      MaskVec.push_back(idx - NumElems);
4096  }
4097  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4098                              SVOp->getOperand(0), &MaskVec[0]);
4099}
4100
4101/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4102/// the two vector operands have swapped position.
4103static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4104  unsigned NumElems = VT.getVectorNumElements();
4105  for (unsigned i = 0; i != NumElems; ++i) {
4106    int idx = Mask[i];
4107    if (idx < 0)
4108      continue;
4109    else if (idx < (int)NumElems)
4110      Mask[i] = idx + NumElems;
4111    else
4112      Mask[i] = idx - NumElems;
4113  }
4114}
4115
4116/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4117/// match movhlps. The lower half elements should come from upper half of
4118/// V1 (and in order), and the upper half elements should come from the upper
4119/// half of V2 (and in order).
4120static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4121  EVT VT = Op->getValueType(0);
4122  if (VT.getSizeInBits() != 128)
4123    return false;
4124  if (VT.getVectorNumElements() != 4)
4125    return false;
4126  for (unsigned i = 0, e = 2; i != e; ++i)
4127    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4128      return false;
4129  for (unsigned i = 2; i != 4; ++i)
4130    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4131      return false;
4132  return true;
4133}
4134
4135/// isScalarLoadToVector - Returns true if the node is a scalar load that
4136/// is promoted to a vector. It also returns the LoadSDNode by reference if
4137/// required.
4138static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4139  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4140    return false;
4141  N = N->getOperand(0).getNode();
4142  if (!ISD::isNON_EXTLoad(N))
4143    return false;
4144  if (LD)
4145    *LD = cast<LoadSDNode>(N);
4146  return true;
4147}
4148
4149/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4150/// match movlp{s|d}. The lower half elements should come from lower half of
4151/// V1 (and in order), and the upper half elements should come from the upper
4152/// half of V2 (and in order). And since V1 will become the source of the
4153/// MOVLP, it must be either a vector load or a scalar load to vector.
4154static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4155                               ShuffleVectorSDNode *Op) {
4156  EVT VT = Op->getValueType(0);
4157  if (VT.getSizeInBits() != 128)
4158    return false;
4159
4160  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4161    return false;
4162  // Is V2 is a vector load, don't do this transformation. We will try to use
4163  // load folding shufps op.
4164  if (ISD::isNON_EXTLoad(V2))
4165    return false;
4166
4167  unsigned NumElems = VT.getVectorNumElements();
4168
4169  if (NumElems != 2 && NumElems != 4)
4170    return false;
4171  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4172    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4173      return false;
4174  for (unsigned i = NumElems/2; i != NumElems; ++i)
4175    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4176      return false;
4177  return true;
4178}
4179
4180/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4181/// all the same.
4182static bool isSplatVector(SDNode *N) {
4183  if (N->getOpcode() != ISD::BUILD_VECTOR)
4184    return false;
4185
4186  SDValue SplatValue = N->getOperand(0);
4187  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4188    if (N->getOperand(i) != SplatValue)
4189      return false;
4190  return true;
4191}
4192
4193/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4194/// to an zero vector.
4195/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4196static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4197  SDValue V1 = N->getOperand(0);
4198  SDValue V2 = N->getOperand(1);
4199  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4200  for (unsigned i = 0; i != NumElems; ++i) {
4201    int Idx = N->getMaskElt(i);
4202    if (Idx >= (int)NumElems) {
4203      unsigned Opc = V2.getOpcode();
4204      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4205        continue;
4206      if (Opc != ISD::BUILD_VECTOR ||
4207          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4208        return false;
4209    } else if (Idx >= 0) {
4210      unsigned Opc = V1.getOpcode();
4211      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4212        continue;
4213      if (Opc != ISD::BUILD_VECTOR ||
4214          !X86::isZeroNode(V1.getOperand(Idx)))
4215        return false;
4216    }
4217  }
4218  return true;
4219}
4220
4221/// getZeroVector - Returns a vector of specified type with all zero elements.
4222///
4223static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
4224                             DebugLoc dl) {
4225  assert(VT.isVector() && "Expected a vector type");
4226
4227  // Always build SSE zero vectors as <4 x i32> bitcasted
4228  // to their dest type. This ensures they get CSE'd.
4229  SDValue Vec;
4230  if (VT.getSizeInBits() == 128) {  // SSE
4231    if (HasSSE2) {  // SSE2
4232      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4233      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4234    } else { // SSE1
4235      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4236      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4237    }
4238  } else if (VT.getSizeInBits() == 256) { // AVX
4239    // 256-bit logic and arithmetic instructions in AVX are
4240    // all floating-point, no support for integer ops. Default
4241    // to emitting fp zeroed vectors then.
4242    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4243    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4244    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4245  }
4246  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4247}
4248
4249/// getOnesVector - Returns a vector of specified type with all bits set.
4250/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4251/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4252/// original type, ensuring they get CSE'd.
4253static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4254  assert(VT.isVector() && "Expected a vector type");
4255  assert((VT.is128BitVector() || VT.is256BitVector())
4256         && "Expected a 128-bit or 256-bit vector type");
4257
4258  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4259  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4260                            Cst, Cst, Cst, Cst);
4261
4262  if (VT.is256BitVector()) {
4263    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4264                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4265    Vec = Insert128BitVector(InsV, Vec,
4266                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4267  }
4268
4269  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4270}
4271
4272/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4273/// that point to V2 points to its first element.
4274static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4275  EVT VT = SVOp->getValueType(0);
4276  unsigned NumElems = VT.getVectorNumElements();
4277
4278  bool Changed = false;
4279  SmallVector<int, 8> MaskVec;
4280  SVOp->getMask(MaskVec);
4281
4282  for (unsigned i = 0; i != NumElems; ++i) {
4283    if (MaskVec[i] > (int)NumElems) {
4284      MaskVec[i] = NumElems;
4285      Changed = true;
4286    }
4287  }
4288  if (Changed)
4289    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4290                                SVOp->getOperand(1), &MaskVec[0]);
4291  return SDValue(SVOp, 0);
4292}
4293
4294/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4295/// operation of specified width.
4296static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4297                       SDValue V2) {
4298  unsigned NumElems = VT.getVectorNumElements();
4299  SmallVector<int, 8> Mask;
4300  Mask.push_back(NumElems);
4301  for (unsigned i = 1; i != NumElems; ++i)
4302    Mask.push_back(i);
4303  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4304}
4305
4306/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4307static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4308                          SDValue V2) {
4309  unsigned NumElems = VT.getVectorNumElements();
4310  SmallVector<int, 8> Mask;
4311  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4312    Mask.push_back(i);
4313    Mask.push_back(i + NumElems);
4314  }
4315  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4316}
4317
4318/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4319static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4320                          SDValue V2) {
4321  unsigned NumElems = VT.getVectorNumElements();
4322  unsigned Half = NumElems/2;
4323  SmallVector<int, 8> Mask;
4324  for (unsigned i = 0; i != Half; ++i) {
4325    Mask.push_back(i + Half);
4326    Mask.push_back(i + NumElems + Half);
4327  }
4328  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4329}
4330
4331// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4332// a generic shuffle instruction because the target has no such instructions.
4333// Generate shuffles which repeat i16 and i8 several times until they can be
4334// represented by v4f32 and then be manipulated by target suported shuffles.
4335static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4336  EVT VT = V.getValueType();
4337  int NumElems = VT.getVectorNumElements();
4338  DebugLoc dl = V.getDebugLoc();
4339
4340  while (NumElems > 4) {
4341    if (EltNo < NumElems/2) {
4342      V = getUnpackl(DAG, dl, VT, V, V);
4343    } else {
4344      V = getUnpackh(DAG, dl, VT, V, V);
4345      EltNo -= NumElems/2;
4346    }
4347    NumElems >>= 1;
4348  }
4349  return V;
4350}
4351
4352/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4353static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4354  EVT VT = V.getValueType();
4355  DebugLoc dl = V.getDebugLoc();
4356  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4357         && "Vector size not supported");
4358
4359  if (VT.getSizeInBits() == 128) {
4360    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4361    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4362    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4363                             &SplatMask[0]);
4364  } else {
4365    // To use VPERMILPS to splat scalars, the second half of indicies must
4366    // refer to the higher part, which is a duplication of the lower one,
4367    // because VPERMILPS can only handle in-lane permutations.
4368    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4369                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4370
4371    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4372    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4373                             &SplatMask[0]);
4374  }
4375
4376  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4377}
4378
4379/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4380static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4381  EVT SrcVT = SV->getValueType(0);
4382  SDValue V1 = SV->getOperand(0);
4383  DebugLoc dl = SV->getDebugLoc();
4384
4385  int EltNo = SV->getSplatIndex();
4386  int NumElems = SrcVT.getVectorNumElements();
4387  unsigned Size = SrcVT.getSizeInBits();
4388
4389  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4390          "Unknown how to promote splat for type");
4391
4392  // Extract the 128-bit part containing the splat element and update
4393  // the splat element index when it refers to the higher register.
4394  if (Size == 256) {
4395    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4396    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4397    if (Idx > 0)
4398      EltNo -= NumElems/2;
4399  }
4400
4401  // All i16 and i8 vector types can't be used directly by a generic shuffle
4402  // instruction because the target has no such instruction. Generate shuffles
4403  // which repeat i16 and i8 several times until they fit in i32, and then can
4404  // be manipulated by target suported shuffles.
4405  EVT EltVT = SrcVT.getVectorElementType();
4406  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4407    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4408
4409  // Recreate the 256-bit vector and place the same 128-bit vector
4410  // into the low and high part. This is necessary because we want
4411  // to use VPERM* to shuffle the vectors
4412  if (Size == 256) {
4413    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4414                         DAG.getConstant(0, MVT::i32), DAG, dl);
4415    V1 = Insert128BitVector(InsV, V1,
4416               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4417  }
4418
4419  return getLegalSplat(DAG, V1, EltNo);
4420}
4421
4422/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4423/// vector of zero or undef vector.  This produces a shuffle where the low
4424/// element of V2 is swizzled into the zero/undef vector, landing at element
4425/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4426static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4427                                             bool isZero, bool HasSSE2,
4428                                             SelectionDAG &DAG) {
4429  EVT VT = V2.getValueType();
4430  SDValue V1 = isZero
4431    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4432  unsigned NumElems = VT.getVectorNumElements();
4433  SmallVector<int, 16> MaskVec;
4434  for (unsigned i = 0; i != NumElems; ++i)
4435    // If this is the insertion idx, put the low elt of V2 here.
4436    MaskVec.push_back(i == Idx ? NumElems : i);
4437  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4438}
4439
4440/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4441/// element of the result of the vector shuffle.
4442static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4443                                   unsigned Depth) {
4444  if (Depth == 6)
4445    return SDValue();  // Limit search depth.
4446
4447  SDValue V = SDValue(N, 0);
4448  EVT VT = V.getValueType();
4449  unsigned Opcode = V.getOpcode();
4450
4451  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4452  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4453    Index = SV->getMaskElt(Index);
4454
4455    if (Index < 0)
4456      return DAG.getUNDEF(VT.getVectorElementType());
4457
4458    int NumElems = VT.getVectorNumElements();
4459    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4460    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4461  }
4462
4463  // Recurse into target specific vector shuffles to find scalars.
4464  if (isTargetShuffle(Opcode)) {
4465    int NumElems = VT.getVectorNumElements();
4466    SmallVector<unsigned, 16> ShuffleMask;
4467    SDValue ImmN;
4468
4469    switch(Opcode) {
4470    case X86ISD::SHUFPS:
4471    case X86ISD::SHUFPD:
4472      ImmN = N->getOperand(N->getNumOperands()-1);
4473      DecodeSHUFPSMask(NumElems,
4474                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4475                       ShuffleMask);
4476      break;
4477    case X86ISD::PUNPCKHBW:
4478    case X86ISD::PUNPCKHWD:
4479    case X86ISD::PUNPCKHDQ:
4480    case X86ISD::PUNPCKHQDQ:
4481      DecodePUNPCKHMask(NumElems, ShuffleMask);
4482      break;
4483    case X86ISD::UNPCKHPS:
4484    case X86ISD::UNPCKHPD:
4485    case X86ISD::VUNPCKHPSY:
4486    case X86ISD::VUNPCKHPDY:
4487      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4488      break;
4489    case X86ISD::PUNPCKLBW:
4490    case X86ISD::PUNPCKLWD:
4491    case X86ISD::PUNPCKLDQ:
4492    case X86ISD::PUNPCKLQDQ:
4493      DecodePUNPCKLMask(VT, ShuffleMask);
4494      break;
4495    case X86ISD::UNPCKLPS:
4496    case X86ISD::UNPCKLPD:
4497    case X86ISD::VUNPCKLPSY:
4498    case X86ISD::VUNPCKLPDY:
4499      DecodeUNPCKLPMask(VT, ShuffleMask);
4500      break;
4501    case X86ISD::MOVHLPS:
4502      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4503      break;
4504    case X86ISD::MOVLHPS:
4505      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4506      break;
4507    case X86ISD::PSHUFD:
4508      ImmN = N->getOperand(N->getNumOperands()-1);
4509      DecodePSHUFMask(NumElems,
4510                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4511                      ShuffleMask);
4512      break;
4513    case X86ISD::PSHUFHW:
4514      ImmN = N->getOperand(N->getNumOperands()-1);
4515      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4516                        ShuffleMask);
4517      break;
4518    case X86ISD::PSHUFLW:
4519      ImmN = N->getOperand(N->getNumOperands()-1);
4520      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4521                        ShuffleMask);
4522      break;
4523    case X86ISD::MOVSS:
4524    case X86ISD::MOVSD: {
4525      // The index 0 always comes from the first element of the second source,
4526      // this is why MOVSS and MOVSD are used in the first place. The other
4527      // elements come from the other positions of the first source vector.
4528      unsigned OpNum = (Index == 0) ? 1 : 0;
4529      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4530                                 Depth+1);
4531    }
4532    case X86ISD::VPERMILPS:
4533      ImmN = N->getOperand(N->getNumOperands()-1);
4534      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4535                        ShuffleMask);
4536      break;
4537    case X86ISD::VPERMILPSY:
4538      ImmN = N->getOperand(N->getNumOperands()-1);
4539      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4540                        ShuffleMask);
4541      break;
4542    case X86ISD::VPERMILPD:
4543      ImmN = N->getOperand(N->getNumOperands()-1);
4544      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4545                        ShuffleMask);
4546      break;
4547    case X86ISD::VPERMILPDY:
4548      ImmN = N->getOperand(N->getNumOperands()-1);
4549      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4550                        ShuffleMask);
4551      break;
4552    case X86ISD::VPERM2F128:
4553      ImmN = N->getOperand(N->getNumOperands()-1);
4554      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4555                           ShuffleMask);
4556      break;
4557    default:
4558      assert("not implemented for target shuffle node");
4559      return SDValue();
4560    }
4561
4562    Index = ShuffleMask[Index];
4563    if (Index < 0)
4564      return DAG.getUNDEF(VT.getVectorElementType());
4565
4566    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4567    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4568                               Depth+1);
4569  }
4570
4571  // Actual nodes that may contain scalar elements
4572  if (Opcode == ISD::BITCAST) {
4573    V = V.getOperand(0);
4574    EVT SrcVT = V.getValueType();
4575    unsigned NumElems = VT.getVectorNumElements();
4576
4577    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4578      return SDValue();
4579  }
4580
4581  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4582    return (Index == 0) ? V.getOperand(0)
4583                          : DAG.getUNDEF(VT.getVectorElementType());
4584
4585  if (V.getOpcode() == ISD::BUILD_VECTOR)
4586    return V.getOperand(Index);
4587
4588  return SDValue();
4589}
4590
4591/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4592/// shuffle operation which come from a consecutively from a zero. The
4593/// search can start in two different directions, from left or right.
4594static
4595unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4596                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4597  int i = 0;
4598
4599  while (i < NumElems) {
4600    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4601    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4602    if (!(Elt.getNode() &&
4603         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4604      break;
4605    ++i;
4606  }
4607
4608  return i;
4609}
4610
4611/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4612/// MaskE correspond consecutively to elements from one of the vector operands,
4613/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4614static
4615bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4616                              int OpIdx, int NumElems, unsigned &OpNum) {
4617  bool SeenV1 = false;
4618  bool SeenV2 = false;
4619
4620  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4621    int Idx = SVOp->getMaskElt(i);
4622    // Ignore undef indicies
4623    if (Idx < 0)
4624      continue;
4625
4626    if (Idx < NumElems)
4627      SeenV1 = true;
4628    else
4629      SeenV2 = true;
4630
4631    // Only accept consecutive elements from the same vector
4632    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4633      return false;
4634  }
4635
4636  OpNum = SeenV1 ? 0 : 1;
4637  return true;
4638}
4639
4640/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4641/// logical left shift of a vector.
4642static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4643                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4644  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4645  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4646              false /* check zeros from right */, DAG);
4647  unsigned OpSrc;
4648
4649  if (!NumZeros)
4650    return false;
4651
4652  // Considering the elements in the mask that are not consecutive zeros,
4653  // check if they consecutively come from only one of the source vectors.
4654  //
4655  //               V1 = {X, A, B, C}     0
4656  //                         \  \  \    /
4657  //   vector_shuffle V1, V2 <1, 2, 3, X>
4658  //
4659  if (!isShuffleMaskConsecutive(SVOp,
4660            0,                   // Mask Start Index
4661            NumElems-NumZeros-1, // Mask End Index
4662            NumZeros,            // Where to start looking in the src vector
4663            NumElems,            // Number of elements in vector
4664            OpSrc))              // Which source operand ?
4665    return false;
4666
4667  isLeft = false;
4668  ShAmt = NumZeros;
4669  ShVal = SVOp->getOperand(OpSrc);
4670  return true;
4671}
4672
4673/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4674/// logical left shift of a vector.
4675static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4676                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4677  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4678  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4679              true /* check zeros from left */, DAG);
4680  unsigned OpSrc;
4681
4682  if (!NumZeros)
4683    return false;
4684
4685  // Considering the elements in the mask that are not consecutive zeros,
4686  // check if they consecutively come from only one of the source vectors.
4687  //
4688  //                           0    { A, B, X, X } = V2
4689  //                          / \    /  /
4690  //   vector_shuffle V1, V2 <X, X, 4, 5>
4691  //
4692  if (!isShuffleMaskConsecutive(SVOp,
4693            NumZeros,     // Mask Start Index
4694            NumElems-1,   // Mask End Index
4695            0,            // Where to start looking in the src vector
4696            NumElems,     // Number of elements in vector
4697            OpSrc))       // Which source operand ?
4698    return false;
4699
4700  isLeft = true;
4701  ShAmt = NumZeros;
4702  ShVal = SVOp->getOperand(OpSrc);
4703  return true;
4704}
4705
4706/// isVectorShift - Returns true if the shuffle can be implemented as a
4707/// logical left or right shift of a vector.
4708static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4709                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4710  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4711      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4712    return true;
4713
4714  return false;
4715}
4716
4717/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4718///
4719static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4720                                       unsigned NumNonZero, unsigned NumZero,
4721                                       SelectionDAG &DAG,
4722                                       const TargetLowering &TLI) {
4723  if (NumNonZero > 8)
4724    return SDValue();
4725
4726  DebugLoc dl = Op.getDebugLoc();
4727  SDValue V(0, 0);
4728  bool First = true;
4729  for (unsigned i = 0; i < 16; ++i) {
4730    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4731    if (ThisIsNonZero && First) {
4732      if (NumZero)
4733        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4734      else
4735        V = DAG.getUNDEF(MVT::v8i16);
4736      First = false;
4737    }
4738
4739    if ((i & 1) != 0) {
4740      SDValue ThisElt(0, 0), LastElt(0, 0);
4741      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4742      if (LastIsNonZero) {
4743        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4744                              MVT::i16, Op.getOperand(i-1));
4745      }
4746      if (ThisIsNonZero) {
4747        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4748        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4749                              ThisElt, DAG.getConstant(8, MVT::i8));
4750        if (LastIsNonZero)
4751          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4752      } else
4753        ThisElt = LastElt;
4754
4755      if (ThisElt.getNode())
4756        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4757                        DAG.getIntPtrConstant(i/2));
4758    }
4759  }
4760
4761  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4762}
4763
4764/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4765///
4766static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4767                                     unsigned NumNonZero, unsigned NumZero,
4768                                     SelectionDAG &DAG,
4769                                     const TargetLowering &TLI) {
4770  if (NumNonZero > 4)
4771    return SDValue();
4772
4773  DebugLoc dl = Op.getDebugLoc();
4774  SDValue V(0, 0);
4775  bool First = true;
4776  for (unsigned i = 0; i < 8; ++i) {
4777    bool isNonZero = (NonZeros & (1 << i)) != 0;
4778    if (isNonZero) {
4779      if (First) {
4780        if (NumZero)
4781          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4782        else
4783          V = DAG.getUNDEF(MVT::v8i16);
4784        First = false;
4785      }
4786      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4787                      MVT::v8i16, V, Op.getOperand(i),
4788                      DAG.getIntPtrConstant(i));
4789    }
4790  }
4791
4792  return V;
4793}
4794
4795/// getVShift - Return a vector logical shift node.
4796///
4797static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4798                         unsigned NumBits, SelectionDAG &DAG,
4799                         const TargetLowering &TLI, DebugLoc dl) {
4800  EVT ShVT = MVT::v2i64;
4801  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4802  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4803  return DAG.getNode(ISD::BITCAST, dl, VT,
4804                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4805                             DAG.getConstant(NumBits,
4806                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4807}
4808
4809SDValue
4810X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4811                                          SelectionDAG &DAG) const {
4812
4813  // Check if the scalar load can be widened into a vector load. And if
4814  // the address is "base + cst" see if the cst can be "absorbed" into
4815  // the shuffle mask.
4816  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4817    SDValue Ptr = LD->getBasePtr();
4818    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4819      return SDValue();
4820    EVT PVT = LD->getValueType(0);
4821    if (PVT != MVT::i32 && PVT != MVT::f32)
4822      return SDValue();
4823
4824    int FI = -1;
4825    int64_t Offset = 0;
4826    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4827      FI = FINode->getIndex();
4828      Offset = 0;
4829    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4830               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4831      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4832      Offset = Ptr.getConstantOperandVal(1);
4833      Ptr = Ptr.getOperand(0);
4834    } else {
4835      return SDValue();
4836    }
4837
4838    // FIXME: 256-bit vector instructions don't require a strict alignment,
4839    // improve this code to support it better.
4840    unsigned RequiredAlign = VT.getSizeInBits()/8;
4841    SDValue Chain = LD->getChain();
4842    // Make sure the stack object alignment is at least 16 or 32.
4843    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4844    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4845      if (MFI->isFixedObjectIndex(FI)) {
4846        // Can't change the alignment. FIXME: It's possible to compute
4847        // the exact stack offset and reference FI + adjust offset instead.
4848        // If someone *really* cares about this. That's the way to implement it.
4849        return SDValue();
4850      } else {
4851        MFI->setObjectAlignment(FI, RequiredAlign);
4852      }
4853    }
4854
4855    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4856    // Ptr + (Offset & ~15).
4857    if (Offset < 0)
4858      return SDValue();
4859    if ((Offset % RequiredAlign) & 3)
4860      return SDValue();
4861    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4862    if (StartOffset)
4863      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4864                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4865
4866    int EltNo = (Offset - StartOffset) >> 2;
4867    int NumElems = VT.getVectorNumElements();
4868
4869    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4870    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4871    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4872                             LD->getPointerInfo().getWithOffset(StartOffset),
4873                             false, false, 0);
4874
4875    // Canonicalize it to a v4i32 or v8i32 shuffle.
4876    SmallVector<int, 8> Mask;
4877    for (int i = 0; i < NumElems; ++i)
4878      Mask.push_back(EltNo);
4879
4880    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4881    return DAG.getNode(ISD::BITCAST, dl, NVT,
4882                       DAG.getVectorShuffle(CanonVT, dl, V1,
4883                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4884  }
4885
4886  return SDValue();
4887}
4888
4889/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4890/// vector of type 'VT', see if the elements can be replaced by a single large
4891/// load which has the same value as a build_vector whose operands are 'elts'.
4892///
4893/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4894///
4895/// FIXME: we'd also like to handle the case where the last elements are zero
4896/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4897/// There's even a handy isZeroNode for that purpose.
4898static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4899                                        DebugLoc &DL, SelectionDAG &DAG) {
4900  EVT EltVT = VT.getVectorElementType();
4901  unsigned NumElems = Elts.size();
4902
4903  LoadSDNode *LDBase = NULL;
4904  unsigned LastLoadedElt = -1U;
4905
4906  // For each element in the initializer, see if we've found a load or an undef.
4907  // If we don't find an initial load element, or later load elements are
4908  // non-consecutive, bail out.
4909  for (unsigned i = 0; i < NumElems; ++i) {
4910    SDValue Elt = Elts[i];
4911
4912    if (!Elt.getNode() ||
4913        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4914      return SDValue();
4915    if (!LDBase) {
4916      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4917        return SDValue();
4918      LDBase = cast<LoadSDNode>(Elt.getNode());
4919      LastLoadedElt = i;
4920      continue;
4921    }
4922    if (Elt.getOpcode() == ISD::UNDEF)
4923      continue;
4924
4925    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4926    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4927      return SDValue();
4928    LastLoadedElt = i;
4929  }
4930
4931  // If we have found an entire vector of loads and undefs, then return a large
4932  // load of the entire vector width starting at the base pointer.  If we found
4933  // consecutive loads for the low half, generate a vzext_load node.
4934  if (LastLoadedElt == NumElems - 1) {
4935    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4936      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4937                         LDBase->getPointerInfo(),
4938                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4939    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4940                       LDBase->getPointerInfo(),
4941                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4942                       LDBase->getAlignment());
4943  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4944             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4945    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4946    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4947    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4948                                              Ops, 2, MVT::i32,
4949                                              LDBase->getMemOperand());
4950    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4951  }
4952  return SDValue();
4953}
4954
4955SDValue
4956X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4957  DebugLoc dl = Op.getDebugLoc();
4958
4959  EVT VT = Op.getValueType();
4960  EVT ExtVT = VT.getVectorElementType();
4961  unsigned NumElems = Op.getNumOperands();
4962
4963  // Vectors containing all zeros can be matched by pxor and xorps later
4964  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4965    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4966    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4967    if (Op.getValueType() == MVT::v4i32 ||
4968        Op.getValueType() == MVT::v8i32)
4969      return Op;
4970
4971    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4972  }
4973
4974  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
4975  // vectors or broken into v4i32 operations on 256-bit vectors.
4976  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
4977    if (Op.getValueType() == MVT::v4i32)
4978      return Op;
4979
4980    return getOnesVector(Op.getValueType(), DAG, dl);
4981  }
4982
4983  unsigned EVTBits = ExtVT.getSizeInBits();
4984
4985  unsigned NumZero  = 0;
4986  unsigned NumNonZero = 0;
4987  unsigned NonZeros = 0;
4988  bool IsAllConstants = true;
4989  SmallSet<SDValue, 8> Values;
4990  for (unsigned i = 0; i < NumElems; ++i) {
4991    SDValue Elt = Op.getOperand(i);
4992    if (Elt.getOpcode() == ISD::UNDEF)
4993      continue;
4994    Values.insert(Elt);
4995    if (Elt.getOpcode() != ISD::Constant &&
4996        Elt.getOpcode() != ISD::ConstantFP)
4997      IsAllConstants = false;
4998    if (X86::isZeroNode(Elt))
4999      NumZero++;
5000    else {
5001      NonZeros |= (1 << i);
5002      NumNonZero++;
5003    }
5004  }
5005
5006  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5007  if (NumNonZero == 0)
5008    return DAG.getUNDEF(VT);
5009
5010  // Special case for single non-zero, non-undef, element.
5011  if (NumNonZero == 1) {
5012    unsigned Idx = CountTrailingZeros_32(NonZeros);
5013    SDValue Item = Op.getOperand(Idx);
5014
5015    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5016    // the value are obviously zero, truncate the value to i32 and do the
5017    // insertion that way.  Only do this if the value is non-constant or if the
5018    // value is a constant being inserted into element 0.  It is cheaper to do
5019    // a constant pool load than it is to do a movd + shuffle.
5020    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5021        (!IsAllConstants || Idx == 0)) {
5022      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5023        // Handle SSE only.
5024        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5025        EVT VecVT = MVT::v4i32;
5026        unsigned VecElts = 4;
5027
5028        // Truncate the value (which may itself be a constant) to i32, and
5029        // convert it to a vector with movd (S2V+shuffle to zero extend).
5030        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5031        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5032        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5033                                           Subtarget->hasSSE2(), DAG);
5034
5035        // Now we have our 32-bit value zero extended in the low element of
5036        // a vector.  If Idx != 0, swizzle it into place.
5037        if (Idx != 0) {
5038          SmallVector<int, 4> Mask;
5039          Mask.push_back(Idx);
5040          for (unsigned i = 1; i != VecElts; ++i)
5041            Mask.push_back(i);
5042          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5043                                      DAG.getUNDEF(Item.getValueType()),
5044                                      &Mask[0]);
5045        }
5046        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5047      }
5048    }
5049
5050    // If we have a constant or non-constant insertion into the low element of
5051    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5052    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5053    // depending on what the source datatype is.
5054    if (Idx == 0) {
5055      if (NumZero == 0) {
5056        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5057      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5058          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5059        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5060        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5061        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
5062                                           DAG);
5063      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5064        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5065        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5066        EVT MiddleVT = MVT::v4i32;
5067        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5068        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5069                                           Subtarget->hasSSE2(), DAG);
5070        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5071      }
5072    }
5073
5074    // Is it a vector logical left shift?
5075    if (NumElems == 2 && Idx == 1 &&
5076        X86::isZeroNode(Op.getOperand(0)) &&
5077        !X86::isZeroNode(Op.getOperand(1))) {
5078      unsigned NumBits = VT.getSizeInBits();
5079      return getVShift(true, VT,
5080                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5081                                   VT, Op.getOperand(1)),
5082                       NumBits/2, DAG, *this, dl);
5083    }
5084
5085    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5086      return SDValue();
5087
5088    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5089    // is a non-constant being inserted into an element other than the low one,
5090    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5091    // movd/movss) to move this into the low element, then shuffle it into
5092    // place.
5093    if (EVTBits == 32) {
5094      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5095
5096      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5097      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5098                                         Subtarget->hasSSE2(), DAG);
5099      SmallVector<int, 8> MaskVec;
5100      for (unsigned i = 0; i < NumElems; i++)
5101        MaskVec.push_back(i == Idx ? 0 : 1);
5102      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5103    }
5104  }
5105
5106  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5107  if (Values.size() == 1) {
5108    if (EVTBits == 32) {
5109      // Instead of a shuffle like this:
5110      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5111      // Check if it's possible to issue this instead.
5112      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5113      unsigned Idx = CountTrailingZeros_32(NonZeros);
5114      SDValue Item = Op.getOperand(Idx);
5115      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5116        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5117    }
5118    return SDValue();
5119  }
5120
5121  // A vector full of immediates; various special cases are already
5122  // handled, so this is best done with a single constant-pool load.
5123  if (IsAllConstants)
5124    return SDValue();
5125
5126  // For AVX-length vectors, build the individual 128-bit pieces and use
5127  // shuffles to put them in place.
5128  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5129    SmallVector<SDValue, 32> V;
5130    for (unsigned i = 0; i < NumElems; ++i)
5131      V.push_back(Op.getOperand(i));
5132
5133    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5134
5135    // Build both the lower and upper subvector.
5136    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5137    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5138                                NumElems/2);
5139
5140    // Recreate the wider vector with the lower and upper part.
5141    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5142                                DAG.getConstant(0, MVT::i32), DAG, dl);
5143    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5144                              DAG, dl);
5145  }
5146
5147  // Let legalizer expand 2-wide build_vectors.
5148  if (EVTBits == 64) {
5149    if (NumNonZero == 1) {
5150      // One half is zero or undef.
5151      unsigned Idx = CountTrailingZeros_32(NonZeros);
5152      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5153                                 Op.getOperand(Idx));
5154      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5155                                         Subtarget->hasSSE2(), DAG);
5156    }
5157    return SDValue();
5158  }
5159
5160  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5161  if (EVTBits == 8 && NumElems == 16) {
5162    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5163                                        *this);
5164    if (V.getNode()) return V;
5165  }
5166
5167  if (EVTBits == 16 && NumElems == 8) {
5168    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5169                                      *this);
5170    if (V.getNode()) return V;
5171  }
5172
5173  // If element VT is == 32 bits, turn it into a number of shuffles.
5174  SmallVector<SDValue, 8> V;
5175  V.resize(NumElems);
5176  if (NumElems == 4 && NumZero > 0) {
5177    for (unsigned i = 0; i < 4; ++i) {
5178      bool isZero = !(NonZeros & (1 << i));
5179      if (isZero)
5180        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5181      else
5182        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5183    }
5184
5185    for (unsigned i = 0; i < 2; ++i) {
5186      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5187        default: break;
5188        case 0:
5189          V[i] = V[i*2];  // Must be a zero vector.
5190          break;
5191        case 1:
5192          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5193          break;
5194        case 2:
5195          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5196          break;
5197        case 3:
5198          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5199          break;
5200      }
5201    }
5202
5203    SmallVector<int, 8> MaskVec;
5204    bool Reverse = (NonZeros & 0x3) == 2;
5205    for (unsigned i = 0; i < 2; ++i)
5206      MaskVec.push_back(Reverse ? 1-i : i);
5207    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5208    for (unsigned i = 0; i < 2; ++i)
5209      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5210    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5211  }
5212
5213  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5214    // Check for a build vector of consecutive loads.
5215    for (unsigned i = 0; i < NumElems; ++i)
5216      V[i] = Op.getOperand(i);
5217
5218    // Check for elements which are consecutive loads.
5219    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5220    if (LD.getNode())
5221      return LD;
5222
5223    // For SSE 4.1, use insertps to put the high elements into the low element.
5224    if (getSubtarget()->hasSSE41()) {
5225      SDValue Result;
5226      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5227        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5228      else
5229        Result = DAG.getUNDEF(VT);
5230
5231      for (unsigned i = 1; i < NumElems; ++i) {
5232        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5233        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5234                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5235      }
5236      return Result;
5237    }
5238
5239    // Otherwise, expand into a number of unpckl*, start by extending each of
5240    // our (non-undef) elements to the full vector width with the element in the
5241    // bottom slot of the vector (which generates no code for SSE).
5242    for (unsigned i = 0; i < NumElems; ++i) {
5243      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5244        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5245      else
5246        V[i] = DAG.getUNDEF(VT);
5247    }
5248
5249    // Next, we iteratively mix elements, e.g. for v4f32:
5250    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5251    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5252    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5253    unsigned EltStride = NumElems >> 1;
5254    while (EltStride != 0) {
5255      for (unsigned i = 0; i < EltStride; ++i) {
5256        // If V[i+EltStride] is undef and this is the first round of mixing,
5257        // then it is safe to just drop this shuffle: V[i] is already in the
5258        // right place, the one element (since it's the first round) being
5259        // inserted as undef can be dropped.  This isn't safe for successive
5260        // rounds because they will permute elements within both vectors.
5261        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5262            EltStride == NumElems/2)
5263          continue;
5264
5265        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5266      }
5267      EltStride >>= 1;
5268    }
5269    return V[0];
5270  }
5271  return SDValue();
5272}
5273
5274// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5275// them in a MMX register.  This is better than doing a stack convert.
5276static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5277  DebugLoc dl = Op.getDebugLoc();
5278  EVT ResVT = Op.getValueType();
5279
5280  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5281         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5282  int Mask[2];
5283  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5284  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5285  InVec = Op.getOperand(1);
5286  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5287    unsigned NumElts = ResVT.getVectorNumElements();
5288    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5289    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5290                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5291  } else {
5292    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5293    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5294    Mask[0] = 0; Mask[1] = 2;
5295    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5296  }
5297  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5298}
5299
5300// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5301// to create 256-bit vectors from two other 128-bit ones.
5302static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5303  DebugLoc dl = Op.getDebugLoc();
5304  EVT ResVT = Op.getValueType();
5305
5306  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5307
5308  SDValue V1 = Op.getOperand(0);
5309  SDValue V2 = Op.getOperand(1);
5310  unsigned NumElems = ResVT.getVectorNumElements();
5311
5312  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5313                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5314  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5315                            DAG, dl);
5316}
5317
5318SDValue
5319X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5320  EVT ResVT = Op.getValueType();
5321
5322  assert(Op.getNumOperands() == 2);
5323  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5324         "Unsupported CONCAT_VECTORS for value type");
5325
5326  // We support concatenate two MMX registers and place them in a MMX register.
5327  // This is better than doing a stack convert.
5328  if (ResVT.is128BitVector())
5329    return LowerMMXCONCAT_VECTORS(Op, DAG);
5330
5331  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5332  // from two other 128-bit ones.
5333  return LowerAVXCONCAT_VECTORS(Op, DAG);
5334}
5335
5336// v8i16 shuffles - Prefer shuffles in the following order:
5337// 1. [all]   pshuflw, pshufhw, optional move
5338// 2. [ssse3] 1 x pshufb
5339// 3. [ssse3] 2 x pshufb + 1 x por
5340// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5341SDValue
5342X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5343                                            SelectionDAG &DAG) const {
5344  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5345  SDValue V1 = SVOp->getOperand(0);
5346  SDValue V2 = SVOp->getOperand(1);
5347  DebugLoc dl = SVOp->getDebugLoc();
5348  SmallVector<int, 8> MaskVals;
5349
5350  // Determine if more than 1 of the words in each of the low and high quadwords
5351  // of the result come from the same quadword of one of the two inputs.  Undef
5352  // mask values count as coming from any quadword, for better codegen.
5353  SmallVector<unsigned, 4> LoQuad(4);
5354  SmallVector<unsigned, 4> HiQuad(4);
5355  BitVector InputQuads(4);
5356  for (unsigned i = 0; i < 8; ++i) {
5357    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5358    int EltIdx = SVOp->getMaskElt(i);
5359    MaskVals.push_back(EltIdx);
5360    if (EltIdx < 0) {
5361      ++Quad[0];
5362      ++Quad[1];
5363      ++Quad[2];
5364      ++Quad[3];
5365      continue;
5366    }
5367    ++Quad[EltIdx / 4];
5368    InputQuads.set(EltIdx / 4);
5369  }
5370
5371  int BestLoQuad = -1;
5372  unsigned MaxQuad = 1;
5373  for (unsigned i = 0; i < 4; ++i) {
5374    if (LoQuad[i] > MaxQuad) {
5375      BestLoQuad = i;
5376      MaxQuad = LoQuad[i];
5377    }
5378  }
5379
5380  int BestHiQuad = -1;
5381  MaxQuad = 1;
5382  for (unsigned i = 0; i < 4; ++i) {
5383    if (HiQuad[i] > MaxQuad) {
5384      BestHiQuad = i;
5385      MaxQuad = HiQuad[i];
5386    }
5387  }
5388
5389  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5390  // of the two input vectors, shuffle them into one input vector so only a
5391  // single pshufb instruction is necessary. If There are more than 2 input
5392  // quads, disable the next transformation since it does not help SSSE3.
5393  bool V1Used = InputQuads[0] || InputQuads[1];
5394  bool V2Used = InputQuads[2] || InputQuads[3];
5395  if (Subtarget->hasSSSE3()) {
5396    if (InputQuads.count() == 2 && V1Used && V2Used) {
5397      BestLoQuad = InputQuads.find_first();
5398      BestHiQuad = InputQuads.find_next(BestLoQuad);
5399    }
5400    if (InputQuads.count() > 2) {
5401      BestLoQuad = -1;
5402      BestHiQuad = -1;
5403    }
5404  }
5405
5406  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5407  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5408  // words from all 4 input quadwords.
5409  SDValue NewV;
5410  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5411    SmallVector<int, 8> MaskV;
5412    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5413    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5414    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5415                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5416                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5417    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5418
5419    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5420    // source words for the shuffle, to aid later transformations.
5421    bool AllWordsInNewV = true;
5422    bool InOrder[2] = { true, true };
5423    for (unsigned i = 0; i != 8; ++i) {
5424      int idx = MaskVals[i];
5425      if (idx != (int)i)
5426        InOrder[i/4] = false;
5427      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5428        continue;
5429      AllWordsInNewV = false;
5430      break;
5431    }
5432
5433    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5434    if (AllWordsInNewV) {
5435      for (int i = 0; i != 8; ++i) {
5436        int idx = MaskVals[i];
5437        if (idx < 0)
5438          continue;
5439        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5440        if ((idx != i) && idx < 4)
5441          pshufhw = false;
5442        if ((idx != i) && idx > 3)
5443          pshuflw = false;
5444      }
5445      V1 = NewV;
5446      V2Used = false;
5447      BestLoQuad = 0;
5448      BestHiQuad = 1;
5449    }
5450
5451    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5452    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5453    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5454      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5455      unsigned TargetMask = 0;
5456      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5457                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5458      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5459                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5460      V1 = NewV.getOperand(0);
5461      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5462    }
5463  }
5464
5465  // If we have SSSE3, and all words of the result are from 1 input vector,
5466  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5467  // is present, fall back to case 4.
5468  if (Subtarget->hasSSSE3()) {
5469    SmallVector<SDValue,16> pshufbMask;
5470
5471    // If we have elements from both input vectors, set the high bit of the
5472    // shuffle mask element to zero out elements that come from V2 in the V1
5473    // mask, and elements that come from V1 in the V2 mask, so that the two
5474    // results can be OR'd together.
5475    bool TwoInputs = V1Used && V2Used;
5476    for (unsigned i = 0; i != 8; ++i) {
5477      int EltIdx = MaskVals[i] * 2;
5478      if (TwoInputs && (EltIdx >= 16)) {
5479        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5480        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5481        continue;
5482      }
5483      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5484      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5485    }
5486    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5487    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5488                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5489                                 MVT::v16i8, &pshufbMask[0], 16));
5490    if (!TwoInputs)
5491      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5492
5493    // Calculate the shuffle mask for the second input, shuffle it, and
5494    // OR it with the first shuffled input.
5495    pshufbMask.clear();
5496    for (unsigned i = 0; i != 8; ++i) {
5497      int EltIdx = MaskVals[i] * 2;
5498      if (EltIdx < 16) {
5499        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5500        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5501        continue;
5502      }
5503      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5504      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5505    }
5506    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5507    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5508                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5509                                 MVT::v16i8, &pshufbMask[0], 16));
5510    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5511    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5512  }
5513
5514  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5515  // and update MaskVals with new element order.
5516  BitVector InOrder(8);
5517  if (BestLoQuad >= 0) {
5518    SmallVector<int, 8> MaskV;
5519    for (int i = 0; i != 4; ++i) {
5520      int idx = MaskVals[i];
5521      if (idx < 0) {
5522        MaskV.push_back(-1);
5523        InOrder.set(i);
5524      } else if ((idx / 4) == BestLoQuad) {
5525        MaskV.push_back(idx & 3);
5526        InOrder.set(i);
5527      } else {
5528        MaskV.push_back(-1);
5529      }
5530    }
5531    for (unsigned i = 4; i != 8; ++i)
5532      MaskV.push_back(i);
5533    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5534                                &MaskV[0]);
5535
5536    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5537      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5538                               NewV.getOperand(0),
5539                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5540                               DAG);
5541  }
5542
5543  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5544  // and update MaskVals with the new element order.
5545  if (BestHiQuad >= 0) {
5546    SmallVector<int, 8> MaskV;
5547    for (unsigned i = 0; i != 4; ++i)
5548      MaskV.push_back(i);
5549    for (unsigned i = 4; i != 8; ++i) {
5550      int idx = MaskVals[i];
5551      if (idx < 0) {
5552        MaskV.push_back(-1);
5553        InOrder.set(i);
5554      } else if ((idx / 4) == BestHiQuad) {
5555        MaskV.push_back((idx & 3) + 4);
5556        InOrder.set(i);
5557      } else {
5558        MaskV.push_back(-1);
5559      }
5560    }
5561    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5562                                &MaskV[0]);
5563
5564    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5565      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5566                              NewV.getOperand(0),
5567                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5568                              DAG);
5569  }
5570
5571  // In case BestHi & BestLo were both -1, which means each quadword has a word
5572  // from each of the four input quadwords, calculate the InOrder bitvector now
5573  // before falling through to the insert/extract cleanup.
5574  if (BestLoQuad == -1 && BestHiQuad == -1) {
5575    NewV = V1;
5576    for (int i = 0; i != 8; ++i)
5577      if (MaskVals[i] < 0 || MaskVals[i] == i)
5578        InOrder.set(i);
5579  }
5580
5581  // The other elements are put in the right place using pextrw and pinsrw.
5582  for (unsigned i = 0; i != 8; ++i) {
5583    if (InOrder[i])
5584      continue;
5585    int EltIdx = MaskVals[i];
5586    if (EltIdx < 0)
5587      continue;
5588    SDValue ExtOp = (EltIdx < 8)
5589    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5590                  DAG.getIntPtrConstant(EltIdx))
5591    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5592                  DAG.getIntPtrConstant(EltIdx - 8));
5593    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5594                       DAG.getIntPtrConstant(i));
5595  }
5596  return NewV;
5597}
5598
5599// v16i8 shuffles - Prefer shuffles in the following order:
5600// 1. [ssse3] 1 x pshufb
5601// 2. [ssse3] 2 x pshufb + 1 x por
5602// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5603static
5604SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5605                                 SelectionDAG &DAG,
5606                                 const X86TargetLowering &TLI) {
5607  SDValue V1 = SVOp->getOperand(0);
5608  SDValue V2 = SVOp->getOperand(1);
5609  DebugLoc dl = SVOp->getDebugLoc();
5610  SmallVector<int, 16> MaskVals;
5611  SVOp->getMask(MaskVals);
5612
5613  // If we have SSSE3, case 1 is generated when all result bytes come from
5614  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5615  // present, fall back to case 3.
5616  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5617  bool V1Only = true;
5618  bool V2Only = true;
5619  for (unsigned i = 0; i < 16; ++i) {
5620    int EltIdx = MaskVals[i];
5621    if (EltIdx < 0)
5622      continue;
5623    if (EltIdx < 16)
5624      V2Only = false;
5625    else
5626      V1Only = false;
5627  }
5628
5629  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5630  if (TLI.getSubtarget()->hasSSSE3()) {
5631    SmallVector<SDValue,16> pshufbMask;
5632
5633    // If all result elements are from one input vector, then only translate
5634    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5635    //
5636    // Otherwise, we have elements from both input vectors, and must zero out
5637    // elements that come from V2 in the first mask, and V1 in the second mask
5638    // so that we can OR them together.
5639    bool TwoInputs = !(V1Only || V2Only);
5640    for (unsigned i = 0; i != 16; ++i) {
5641      int EltIdx = MaskVals[i];
5642      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5643        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5644        continue;
5645      }
5646      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5647    }
5648    // If all the elements are from V2, assign it to V1 and return after
5649    // building the first pshufb.
5650    if (V2Only)
5651      V1 = V2;
5652    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5653                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5654                                 MVT::v16i8, &pshufbMask[0], 16));
5655    if (!TwoInputs)
5656      return V1;
5657
5658    // Calculate the shuffle mask for the second input, shuffle it, and
5659    // OR it with the first shuffled input.
5660    pshufbMask.clear();
5661    for (unsigned i = 0; i != 16; ++i) {
5662      int EltIdx = MaskVals[i];
5663      if (EltIdx < 16) {
5664        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5665        continue;
5666      }
5667      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5668    }
5669    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5670                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5671                                 MVT::v16i8, &pshufbMask[0], 16));
5672    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5673  }
5674
5675  // No SSSE3 - Calculate in place words and then fix all out of place words
5676  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5677  // the 16 different words that comprise the two doublequadword input vectors.
5678  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5679  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5680  SDValue NewV = V2Only ? V2 : V1;
5681  for (int i = 0; i != 8; ++i) {
5682    int Elt0 = MaskVals[i*2];
5683    int Elt1 = MaskVals[i*2+1];
5684
5685    // This word of the result is all undef, skip it.
5686    if (Elt0 < 0 && Elt1 < 0)
5687      continue;
5688
5689    // This word of the result is already in the correct place, skip it.
5690    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5691      continue;
5692    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5693      continue;
5694
5695    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5696    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5697    SDValue InsElt;
5698
5699    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5700    // using a single extract together, load it and store it.
5701    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5702      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5703                           DAG.getIntPtrConstant(Elt1 / 2));
5704      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5705                        DAG.getIntPtrConstant(i));
5706      continue;
5707    }
5708
5709    // If Elt1 is defined, extract it from the appropriate source.  If the
5710    // source byte is not also odd, shift the extracted word left 8 bits
5711    // otherwise clear the bottom 8 bits if we need to do an or.
5712    if (Elt1 >= 0) {
5713      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5714                           DAG.getIntPtrConstant(Elt1 / 2));
5715      if ((Elt1 & 1) == 0)
5716        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5717                             DAG.getConstant(8,
5718                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5719      else if (Elt0 >= 0)
5720        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5721                             DAG.getConstant(0xFF00, MVT::i16));
5722    }
5723    // If Elt0 is defined, extract it from the appropriate source.  If the
5724    // source byte is not also even, shift the extracted word right 8 bits. If
5725    // Elt1 was also defined, OR the extracted values together before
5726    // inserting them in the result.
5727    if (Elt0 >= 0) {
5728      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5729                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5730      if ((Elt0 & 1) != 0)
5731        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5732                              DAG.getConstant(8,
5733                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5734      else if (Elt1 >= 0)
5735        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5736                             DAG.getConstant(0x00FF, MVT::i16));
5737      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5738                         : InsElt0;
5739    }
5740    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5741                       DAG.getIntPtrConstant(i));
5742  }
5743  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5744}
5745
5746/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5747/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5748/// done when every pair / quad of shuffle mask elements point to elements in
5749/// the right sequence. e.g.
5750/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5751static
5752SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5753                                 SelectionDAG &DAG, DebugLoc dl) {
5754  EVT VT = SVOp->getValueType(0);
5755  SDValue V1 = SVOp->getOperand(0);
5756  SDValue V2 = SVOp->getOperand(1);
5757  unsigned NumElems = VT.getVectorNumElements();
5758  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5759  EVT NewVT;
5760  switch (VT.getSimpleVT().SimpleTy) {
5761  default: assert(false && "Unexpected!");
5762  case MVT::v4f32: NewVT = MVT::v2f64; break;
5763  case MVT::v4i32: NewVT = MVT::v2i64; break;
5764  case MVT::v8i16: NewVT = MVT::v4i32; break;
5765  case MVT::v16i8: NewVT = MVT::v4i32; break;
5766  }
5767
5768  int Scale = NumElems / NewWidth;
5769  SmallVector<int, 8> MaskVec;
5770  for (unsigned i = 0; i < NumElems; i += Scale) {
5771    int StartIdx = -1;
5772    for (int j = 0; j < Scale; ++j) {
5773      int EltIdx = SVOp->getMaskElt(i+j);
5774      if (EltIdx < 0)
5775        continue;
5776      if (StartIdx == -1)
5777        StartIdx = EltIdx - (EltIdx % Scale);
5778      if (EltIdx != StartIdx + j)
5779        return SDValue();
5780    }
5781    if (StartIdx == -1)
5782      MaskVec.push_back(-1);
5783    else
5784      MaskVec.push_back(StartIdx / Scale);
5785  }
5786
5787  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5788  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5789  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5790}
5791
5792/// getVZextMovL - Return a zero-extending vector move low node.
5793///
5794static SDValue getVZextMovL(EVT VT, EVT OpVT,
5795                            SDValue SrcOp, SelectionDAG &DAG,
5796                            const X86Subtarget *Subtarget, DebugLoc dl) {
5797  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5798    LoadSDNode *LD = NULL;
5799    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5800      LD = dyn_cast<LoadSDNode>(SrcOp);
5801    if (!LD) {
5802      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5803      // instead.
5804      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5805      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5806          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5807          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5808          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5809        // PR2108
5810        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5811        return DAG.getNode(ISD::BITCAST, dl, VT,
5812                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5813                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5814                                                   OpVT,
5815                                                   SrcOp.getOperand(0)
5816                                                          .getOperand(0))));
5817      }
5818    }
5819  }
5820
5821  return DAG.getNode(ISD::BITCAST, dl, VT,
5822                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5823                                 DAG.getNode(ISD::BITCAST, dl,
5824                                             OpVT, SrcOp)));
5825}
5826
5827/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5828/// shuffle node referes to only one lane in the sources.
5829static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5830  EVT VT = SVOp->getValueType(0);
5831  int NumElems = VT.getVectorNumElements();
5832  int HalfSize = NumElems/2;
5833  SmallVector<int, 16> M;
5834  SVOp->getMask(M);
5835  bool MatchA = false, MatchB = false;
5836
5837  for (int l = 0; l < NumElems*2; l += HalfSize) {
5838    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5839      MatchA = true;
5840      break;
5841    }
5842  }
5843
5844  for (int l = 0; l < NumElems*2; l += HalfSize) {
5845    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5846      MatchB = true;
5847      break;
5848    }
5849  }
5850
5851  return MatchA && MatchB;
5852}
5853
5854/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5855/// which could not be matched by any known target speficic shuffle
5856static SDValue
5857LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5858  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5859    // If each half of a vector shuffle node referes to only one lane in the
5860    // source vectors, extract each used 128-bit lane and shuffle them using
5861    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5862    // the work to the legalizer.
5863    DebugLoc dl = SVOp->getDebugLoc();
5864    EVT VT = SVOp->getValueType(0);
5865    int NumElems = VT.getVectorNumElements();
5866    int HalfSize = NumElems/2;
5867
5868    // Extract the reference for each half
5869    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5870    int FstVecOpNum = 0, SndVecOpNum = 0;
5871    for (int i = 0; i < HalfSize; ++i) {
5872      int Elt = SVOp->getMaskElt(i);
5873      if (SVOp->getMaskElt(i) < 0)
5874        continue;
5875      FstVecOpNum = Elt/NumElems;
5876      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5877      break;
5878    }
5879    for (int i = HalfSize; i < NumElems; ++i) {
5880      int Elt = SVOp->getMaskElt(i);
5881      if (SVOp->getMaskElt(i) < 0)
5882        continue;
5883      SndVecOpNum = Elt/NumElems;
5884      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5885      break;
5886    }
5887
5888    // Extract the subvectors
5889    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5890                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5891    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5892                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5893
5894    // Generate 128-bit shuffles
5895    SmallVector<int, 16> MaskV1, MaskV2;
5896    for (int i = 0; i < HalfSize; ++i) {
5897      int Elt = SVOp->getMaskElt(i);
5898      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5899    }
5900    for (int i = HalfSize; i < NumElems; ++i) {
5901      int Elt = SVOp->getMaskElt(i);
5902      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5903    }
5904
5905    EVT NVT = V1.getValueType();
5906    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5907    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5908
5909    // Concatenate the result back
5910    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
5911                                   DAG.getConstant(0, MVT::i32), DAG, dl);
5912    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5913                              DAG, dl);
5914  }
5915
5916  return SDValue();
5917}
5918
5919/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5920/// 4 elements, and match them with several different shuffle types.
5921static SDValue
5922LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5923  SDValue V1 = SVOp->getOperand(0);
5924  SDValue V2 = SVOp->getOperand(1);
5925  DebugLoc dl = SVOp->getDebugLoc();
5926  EVT VT = SVOp->getValueType(0);
5927
5928  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5929
5930  SmallVector<std::pair<int, int>, 8> Locs;
5931  Locs.resize(4);
5932  SmallVector<int, 8> Mask1(4U, -1);
5933  SmallVector<int, 8> PermMask;
5934  SVOp->getMask(PermMask);
5935
5936  unsigned NumHi = 0;
5937  unsigned NumLo = 0;
5938  for (unsigned i = 0; i != 4; ++i) {
5939    int Idx = PermMask[i];
5940    if (Idx < 0) {
5941      Locs[i] = std::make_pair(-1, -1);
5942    } else {
5943      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5944      if (Idx < 4) {
5945        Locs[i] = std::make_pair(0, NumLo);
5946        Mask1[NumLo] = Idx;
5947        NumLo++;
5948      } else {
5949        Locs[i] = std::make_pair(1, NumHi);
5950        if (2+NumHi < 4)
5951          Mask1[2+NumHi] = Idx;
5952        NumHi++;
5953      }
5954    }
5955  }
5956
5957  if (NumLo <= 2 && NumHi <= 2) {
5958    // If no more than two elements come from either vector. This can be
5959    // implemented with two shuffles. First shuffle gather the elements.
5960    // The second shuffle, which takes the first shuffle as both of its
5961    // vector operands, put the elements into the right order.
5962    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5963
5964    SmallVector<int, 8> Mask2(4U, -1);
5965
5966    for (unsigned i = 0; i != 4; ++i) {
5967      if (Locs[i].first == -1)
5968        continue;
5969      else {
5970        unsigned Idx = (i < 2) ? 0 : 4;
5971        Idx += Locs[i].first * 2 + Locs[i].second;
5972        Mask2[i] = Idx;
5973      }
5974    }
5975
5976    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5977  } else if (NumLo == 3 || NumHi == 3) {
5978    // Otherwise, we must have three elements from one vector, call it X, and
5979    // one element from the other, call it Y.  First, use a shufps to build an
5980    // intermediate vector with the one element from Y and the element from X
5981    // that will be in the same half in the final destination (the indexes don't
5982    // matter). Then, use a shufps to build the final vector, taking the half
5983    // containing the element from Y from the intermediate, and the other half
5984    // from X.
5985    if (NumHi == 3) {
5986      // Normalize it so the 3 elements come from V1.
5987      CommuteVectorShuffleMask(PermMask, VT);
5988      std::swap(V1, V2);
5989    }
5990
5991    // Find the element from V2.
5992    unsigned HiIndex;
5993    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5994      int Val = PermMask[HiIndex];
5995      if (Val < 0)
5996        continue;
5997      if (Val >= 4)
5998        break;
5999    }
6000
6001    Mask1[0] = PermMask[HiIndex];
6002    Mask1[1] = -1;
6003    Mask1[2] = PermMask[HiIndex^1];
6004    Mask1[3] = -1;
6005    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6006
6007    if (HiIndex >= 2) {
6008      Mask1[0] = PermMask[0];
6009      Mask1[1] = PermMask[1];
6010      Mask1[2] = HiIndex & 1 ? 6 : 4;
6011      Mask1[3] = HiIndex & 1 ? 4 : 6;
6012      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6013    } else {
6014      Mask1[0] = HiIndex & 1 ? 2 : 0;
6015      Mask1[1] = HiIndex & 1 ? 0 : 2;
6016      Mask1[2] = PermMask[2];
6017      Mask1[3] = PermMask[3];
6018      if (Mask1[2] >= 0)
6019        Mask1[2] += 4;
6020      if (Mask1[3] >= 0)
6021        Mask1[3] += 4;
6022      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6023    }
6024  }
6025
6026  // Break it into (shuffle shuffle_hi, shuffle_lo).
6027  Locs.clear();
6028  Locs.resize(4);
6029  SmallVector<int,8> LoMask(4U, -1);
6030  SmallVector<int,8> HiMask(4U, -1);
6031
6032  SmallVector<int,8> *MaskPtr = &LoMask;
6033  unsigned MaskIdx = 0;
6034  unsigned LoIdx = 0;
6035  unsigned HiIdx = 2;
6036  for (unsigned i = 0; i != 4; ++i) {
6037    if (i == 2) {
6038      MaskPtr = &HiMask;
6039      MaskIdx = 1;
6040      LoIdx = 0;
6041      HiIdx = 2;
6042    }
6043    int Idx = PermMask[i];
6044    if (Idx < 0) {
6045      Locs[i] = std::make_pair(-1, -1);
6046    } else if (Idx < 4) {
6047      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6048      (*MaskPtr)[LoIdx] = Idx;
6049      LoIdx++;
6050    } else {
6051      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6052      (*MaskPtr)[HiIdx] = Idx;
6053      HiIdx++;
6054    }
6055  }
6056
6057  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6058  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6059  SmallVector<int, 8> MaskOps;
6060  for (unsigned i = 0; i != 4; ++i) {
6061    if (Locs[i].first == -1) {
6062      MaskOps.push_back(-1);
6063    } else {
6064      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6065      MaskOps.push_back(Idx);
6066    }
6067  }
6068  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6069}
6070
6071static bool MayFoldVectorLoad(SDValue V) {
6072  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6073    V = V.getOperand(0);
6074  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6075    V = V.getOperand(0);
6076  if (MayFoldLoad(V))
6077    return true;
6078  return false;
6079}
6080
6081// FIXME: the version above should always be used. Since there's
6082// a bug where several vector shuffles can't be folded because the
6083// DAG is not updated during lowering and a node claims to have two
6084// uses while it only has one, use this version, and let isel match
6085// another instruction if the load really happens to have more than
6086// one use. Remove this version after this bug get fixed.
6087// rdar://8434668, PR8156
6088static bool RelaxedMayFoldVectorLoad(SDValue V) {
6089  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6090    V = V.getOperand(0);
6091  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6092    V = V.getOperand(0);
6093  if (ISD::isNormalLoad(V.getNode()))
6094    return true;
6095  return false;
6096}
6097
6098/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6099/// a vector extract, and if both can be later optimized into a single load.
6100/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6101/// here because otherwise a target specific shuffle node is going to be
6102/// emitted for this shuffle, and the optimization not done.
6103/// FIXME: This is probably not the best approach, but fix the problem
6104/// until the right path is decided.
6105static
6106bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6107                                         const TargetLowering &TLI) {
6108  EVT VT = V.getValueType();
6109  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6110
6111  // Be sure that the vector shuffle is present in a pattern like this:
6112  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6113  if (!V.hasOneUse())
6114    return false;
6115
6116  SDNode *N = *V.getNode()->use_begin();
6117  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6118    return false;
6119
6120  SDValue EltNo = N->getOperand(1);
6121  if (!isa<ConstantSDNode>(EltNo))
6122    return false;
6123
6124  // If the bit convert changed the number of elements, it is unsafe
6125  // to examine the mask.
6126  bool HasShuffleIntoBitcast = false;
6127  if (V.getOpcode() == ISD::BITCAST) {
6128    EVT SrcVT = V.getOperand(0).getValueType();
6129    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6130      return false;
6131    V = V.getOperand(0);
6132    HasShuffleIntoBitcast = true;
6133  }
6134
6135  // Select the input vector, guarding against out of range extract vector.
6136  unsigned NumElems = VT.getVectorNumElements();
6137  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6138  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6139  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6140
6141  // Skip one more bit_convert if necessary
6142  if (V.getOpcode() == ISD::BITCAST)
6143    V = V.getOperand(0);
6144
6145  if (ISD::isNormalLoad(V.getNode())) {
6146    // Is the original load suitable?
6147    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6148
6149    // FIXME: avoid the multi-use bug that is preventing lots of
6150    // of foldings to be detected, this is still wrong of course, but
6151    // give the temporary desired behavior, and if it happens that
6152    // the load has real more uses, during isel it will not fold, and
6153    // will generate poor code.
6154    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6155      return false;
6156
6157    if (!HasShuffleIntoBitcast)
6158      return true;
6159
6160    // If there's a bitcast before the shuffle, check if the load type and
6161    // alignment is valid.
6162    unsigned Align = LN0->getAlignment();
6163    unsigned NewAlign =
6164      TLI.getTargetData()->getABITypeAlignment(
6165                                    VT.getTypeForEVT(*DAG.getContext()));
6166
6167    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6168      return false;
6169  }
6170
6171  return true;
6172}
6173
6174static
6175SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6176  EVT VT = Op.getValueType();
6177
6178  // Canonizalize to v2f64.
6179  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6180  return DAG.getNode(ISD::BITCAST, dl, VT,
6181                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6182                                          V1, DAG));
6183}
6184
6185static
6186SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6187                        bool HasSSE2) {
6188  SDValue V1 = Op.getOperand(0);
6189  SDValue V2 = Op.getOperand(1);
6190  EVT VT = Op.getValueType();
6191
6192  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6193
6194  if (HasSSE2 && VT == MVT::v2f64)
6195    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6196
6197  // v4f32 or v4i32
6198  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
6199}
6200
6201static
6202SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6203  SDValue V1 = Op.getOperand(0);
6204  SDValue V2 = Op.getOperand(1);
6205  EVT VT = Op.getValueType();
6206
6207  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6208         "unsupported shuffle type");
6209
6210  if (V2.getOpcode() == ISD::UNDEF)
6211    V2 = V1;
6212
6213  // v4i32 or v4f32
6214  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6215}
6216
6217static inline unsigned getSHUFPOpcode(EVT VT) {
6218  switch(VT.getSimpleVT().SimpleTy) {
6219  case MVT::v8i32: // Use fp unit for int unpack.
6220  case MVT::v8f32:
6221  case MVT::v4i32: // Use fp unit for int unpack.
6222  case MVT::v4f32: return X86ISD::SHUFPS;
6223  case MVT::v4i64: // Use fp unit for int unpack.
6224  case MVT::v4f64:
6225  case MVT::v2i64: // Use fp unit for int unpack.
6226  case MVT::v2f64: return X86ISD::SHUFPD;
6227  default:
6228    llvm_unreachable("Unknown type for shufp*");
6229  }
6230  return 0;
6231}
6232
6233static
6234SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6235  SDValue V1 = Op.getOperand(0);
6236  SDValue V2 = Op.getOperand(1);
6237  EVT VT = Op.getValueType();
6238  unsigned NumElems = VT.getVectorNumElements();
6239
6240  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6241  // operand of these instructions is only memory, so check if there's a
6242  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6243  // same masks.
6244  bool CanFoldLoad = false;
6245
6246  // Trivial case, when V2 comes from a load.
6247  if (MayFoldVectorLoad(V2))
6248    CanFoldLoad = true;
6249
6250  // When V1 is a load, it can be folded later into a store in isel, example:
6251  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6252  //    turns into:
6253  //  (MOVLPSmr addr:$src1, VR128:$src2)
6254  // So, recognize this potential and also use MOVLPS or MOVLPD
6255  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6256    CanFoldLoad = true;
6257
6258  // Both of them can't be memory operations though.
6259  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6260    CanFoldLoad = false;
6261
6262  if (CanFoldLoad) {
6263    if (HasSSE2 && NumElems == 2)
6264      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6265
6266    if (NumElems == 4)
6267      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6268  }
6269
6270  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6271  // movl and movlp will both match v2i64, but v2i64 is never matched by
6272  // movl earlier because we make it strict to avoid messing with the movlp load
6273  // folding logic (see the code above getMOVLP call). Match it here then,
6274  // this is horrible, but will stay like this until we move all shuffle
6275  // matching to x86 specific nodes. Note that for the 1st condition all
6276  // types are matched with movsd.
6277  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
6278    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6279  else if (HasSSE2)
6280    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6281
6282
6283  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6284
6285  // Invert the operand order and use SHUFPS to match it.
6286  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6287                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6288}
6289
6290static inline unsigned getUNPCKLOpcode(EVT VT) {
6291  switch(VT.getSimpleVT().SimpleTy) {
6292  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6293  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6294  case MVT::v4f32: return X86ISD::UNPCKLPS;
6295  case MVT::v2f64: return X86ISD::UNPCKLPD;
6296  case MVT::v8i32: // Use fp unit for int unpack.
6297  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6298  case MVT::v4i64: // Use fp unit for int unpack.
6299  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6300  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6301  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6302  default:
6303    llvm_unreachable("Unknown type for unpckl");
6304  }
6305  return 0;
6306}
6307
6308static inline unsigned getUNPCKHOpcode(EVT VT) {
6309  switch(VT.getSimpleVT().SimpleTy) {
6310  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6311  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6312  case MVT::v4f32: return X86ISD::UNPCKHPS;
6313  case MVT::v2f64: return X86ISD::UNPCKHPD;
6314  case MVT::v8i32: // Use fp unit for int unpack.
6315  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6316  case MVT::v4i64: // Use fp unit for int unpack.
6317  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6318  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6319  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6320  default:
6321    llvm_unreachable("Unknown type for unpckh");
6322  }
6323  return 0;
6324}
6325
6326static inline unsigned getVPERMILOpcode(EVT VT) {
6327  switch(VT.getSimpleVT().SimpleTy) {
6328  case MVT::v4i32:
6329  case MVT::v4f32: return X86ISD::VPERMILPS;
6330  case MVT::v2i64:
6331  case MVT::v2f64: return X86ISD::VPERMILPD;
6332  case MVT::v8i32:
6333  case MVT::v8f32: return X86ISD::VPERMILPSY;
6334  case MVT::v4i64:
6335  case MVT::v4f64: return X86ISD::VPERMILPDY;
6336  default:
6337    llvm_unreachable("Unknown type for vpermil");
6338  }
6339  return 0;
6340}
6341
6342/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6343/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6344/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6345static bool isVectorBroadcast(SDValue &Op) {
6346  EVT VT = Op.getValueType();
6347  bool Is256 = VT.getSizeInBits() == 256;
6348
6349  assert((VT.getSizeInBits() == 128 || Is256) &&
6350         "Unsupported type for vbroadcast node");
6351
6352  SDValue V = Op;
6353  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6354    V = V.getOperand(0);
6355
6356  if (Is256 && !(V.hasOneUse() &&
6357                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6358                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6359    return false;
6360
6361  if (Is256)
6362    V = V.getOperand(1);
6363  if (V.hasOneUse() && V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6364    return false;
6365
6366  // Check the source scalar_to_vector type. 256-bit broadcasts are
6367  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6368  // for 32-bit scalars.
6369  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6370  if (ScalarSize != 32 && ScalarSize != 64)
6371    return false;
6372  if (!Is256 && ScalarSize == 64)
6373    return false;
6374
6375  V = V.getOperand(0);
6376  if (!MayFoldLoad(V))
6377    return false;
6378
6379  // Return the load node
6380  Op = V;
6381  return true;
6382}
6383
6384static
6385SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6386                               const TargetLowering &TLI,
6387                               const X86Subtarget *Subtarget) {
6388  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6389  EVT VT = Op.getValueType();
6390  DebugLoc dl = Op.getDebugLoc();
6391  SDValue V1 = Op.getOperand(0);
6392  SDValue V2 = Op.getOperand(1);
6393
6394  if (isZeroShuffle(SVOp))
6395    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6396
6397  // Handle splat operations
6398  if (SVOp->isSplat()) {
6399    unsigned NumElem = VT.getVectorNumElements();
6400    int Size = VT.getSizeInBits();
6401    // Special case, this is the only place now where it's allowed to return
6402    // a vector_shuffle operation without using a target specific node, because
6403    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6404    // this be moved to DAGCombine instead?
6405    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6406      return Op;
6407
6408    // Use vbroadcast whenever the splat comes from a foldable load
6409    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6410      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6411
6412    // Handle splats by matching through known shuffle masks
6413    if ((Size == 128 && NumElem <= 4) ||
6414        (Size == 256 && NumElem < 8))
6415      return SDValue();
6416
6417    // All remaning splats are promoted to target supported vector shuffles.
6418    return PromoteSplat(SVOp, DAG);
6419  }
6420
6421  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6422  // do it!
6423  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6424    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6425    if (NewOp.getNode())
6426      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6427  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6428    // FIXME: Figure out a cleaner way to do this.
6429    // Try to make use of movq to zero out the top part.
6430    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6431      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6432      if (NewOp.getNode()) {
6433        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6434          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6435                              DAG, Subtarget, dl);
6436      }
6437    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6438      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6439      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6440        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6441                            DAG, Subtarget, dl);
6442    }
6443  }
6444  return SDValue();
6445}
6446
6447SDValue
6448X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6449  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6450  SDValue V1 = Op.getOperand(0);
6451  SDValue V2 = Op.getOperand(1);
6452  EVT VT = Op.getValueType();
6453  DebugLoc dl = Op.getDebugLoc();
6454  unsigned NumElems = VT.getVectorNumElements();
6455  bool isMMX = VT.getSizeInBits() == 64;
6456  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6457  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6458  bool V1IsSplat = false;
6459  bool V2IsSplat = false;
6460  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
6461  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
6462  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
6463  MachineFunction &MF = DAG.getMachineFunction();
6464  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6465
6466  // Shuffle operations on MMX not supported.
6467  if (isMMX)
6468    return Op;
6469
6470  // Vector shuffle lowering takes 3 steps:
6471  //
6472  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6473  //    narrowing and commutation of operands should be handled.
6474  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6475  //    shuffle nodes.
6476  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6477  //    so the shuffle can be broken into other shuffles and the legalizer can
6478  //    try the lowering again.
6479  //
6480  // The general ideia is that no vector_shuffle operation should be left to
6481  // be matched during isel, all of them must be converted to a target specific
6482  // node here.
6483
6484  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6485  // narrowing and commutation of operands should be handled. The actual code
6486  // doesn't include all of those, work in progress...
6487  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6488  if (NewOp.getNode())
6489    return NewOp;
6490
6491  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6492  // unpckh_undef). Only use pshufd if speed is more important than size.
6493  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6494    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6495  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6496    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6497
6498  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
6499      RelaxedMayFoldVectorLoad(V1))
6500    return getMOVDDup(Op, dl, V1, DAG);
6501
6502  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6503    return getMOVHighToLow(Op, dl, DAG);
6504
6505  // Use to match splats
6506  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6507      (VT == MVT::v2f64 || VT == MVT::v2i64))
6508    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6509
6510  if (X86::isPSHUFDMask(SVOp)) {
6511    // The actual implementation will match the mask in the if above and then
6512    // during isel it can match several different instructions, not only pshufd
6513    // as its name says, sad but true, emulate the behavior for now...
6514    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6515        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6516
6517    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6518
6519    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6520      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6521
6522    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6523                                TargetMask, DAG);
6524  }
6525
6526  // Check if this can be converted into a logical shift.
6527  bool isLeft = false;
6528  unsigned ShAmt = 0;
6529  SDValue ShVal;
6530  bool isShift = getSubtarget()->hasSSE2() &&
6531    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6532  if (isShift && ShVal.hasOneUse()) {
6533    // If the shifted value has multiple uses, it may be cheaper to use
6534    // v_set0 + movlhps or movhlps, etc.
6535    EVT EltVT = VT.getVectorElementType();
6536    ShAmt *= EltVT.getSizeInBits();
6537    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6538  }
6539
6540  if (X86::isMOVLMask(SVOp)) {
6541    if (V1IsUndef)
6542      return V2;
6543    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6544      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6545    if (!X86::isMOVLPMask(SVOp)) {
6546      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6547        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6548
6549      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6550        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6551    }
6552  }
6553
6554  // FIXME: fold these into legal mask.
6555  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6556    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6557
6558  if (X86::isMOVHLPSMask(SVOp))
6559    return getMOVHighToLow(Op, dl, DAG);
6560
6561  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6562    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6563
6564  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6565    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6566
6567  if (X86::isMOVLPMask(SVOp))
6568    return getMOVLP(Op, dl, DAG, HasSSE2);
6569
6570  if (ShouldXformToMOVHLPS(SVOp) ||
6571      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6572    return CommuteVectorShuffle(SVOp, DAG);
6573
6574  if (isShift) {
6575    // No better options. Use a vshl / vsrl.
6576    EVT EltVT = VT.getVectorElementType();
6577    ShAmt *= EltVT.getSizeInBits();
6578    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6579  }
6580
6581  bool Commuted = false;
6582  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6583  // 1,1,1,1 -> v8i16 though.
6584  V1IsSplat = isSplatVector(V1.getNode());
6585  V2IsSplat = isSplatVector(V2.getNode());
6586
6587  // Canonicalize the splat or undef, if present, to be on the RHS.
6588  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6589    Op = CommuteVectorShuffle(SVOp, DAG);
6590    SVOp = cast<ShuffleVectorSDNode>(Op);
6591    V1 = SVOp->getOperand(0);
6592    V2 = SVOp->getOperand(1);
6593    std::swap(V1IsSplat, V2IsSplat);
6594    std::swap(V1IsUndef, V2IsUndef);
6595    Commuted = true;
6596  }
6597
6598  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6599    // Shuffling low element of v1 into undef, just return v1.
6600    if (V2IsUndef)
6601      return V1;
6602    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6603    // the instruction selector will not match, so get a canonical MOVL with
6604    // swapped operands to undo the commute.
6605    return getMOVL(DAG, dl, VT, V2, V1);
6606  }
6607
6608  if (X86::isUNPCKLMask(SVOp))
6609    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6610
6611  if (X86::isUNPCKHMask(SVOp))
6612    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6613
6614  if (V2IsSplat) {
6615    // Normalize mask so all entries that point to V2 points to its first
6616    // element then try to match unpck{h|l} again. If match, return a
6617    // new vector_shuffle with the corrected mask.
6618    SDValue NewMask = NormalizeMask(SVOp, DAG);
6619    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6620    if (NSVOp != SVOp) {
6621      if (X86::isUNPCKLMask(NSVOp, true)) {
6622        return NewMask;
6623      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6624        return NewMask;
6625      }
6626    }
6627  }
6628
6629  if (Commuted) {
6630    // Commute is back and try unpck* again.
6631    // FIXME: this seems wrong.
6632    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6633    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6634
6635    if (X86::isUNPCKLMask(NewSVOp))
6636      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6637
6638    if (X86::isUNPCKHMask(NewSVOp))
6639      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6640  }
6641
6642  // Normalize the node to match x86 shuffle ops if needed
6643  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6644    return CommuteVectorShuffle(SVOp, DAG);
6645
6646  // The checks below are all present in isShuffleMaskLegal, but they are
6647  // inlined here right now to enable us to directly emit target specific
6648  // nodes, and remove one by one until they don't return Op anymore.
6649  SmallVector<int, 16> M;
6650  SVOp->getMask(M);
6651
6652  if (isPALIGNRMask(M, VT, HasSSSE3))
6653    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6654                                X86::getShufflePALIGNRImmediate(SVOp),
6655                                DAG);
6656
6657  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6658      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6659    if (VT == MVT::v2f64)
6660      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6661    if (VT == MVT::v2i64)
6662      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6663  }
6664
6665  if (isPSHUFHWMask(M, VT))
6666    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6667                                X86::getShufflePSHUFHWImmediate(SVOp),
6668                                DAG);
6669
6670  if (isPSHUFLWMask(M, VT))
6671    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6672                                X86::getShufflePSHUFLWImmediate(SVOp),
6673                                DAG);
6674
6675  if (isSHUFPMask(M, VT))
6676    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6677                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6678
6679  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6680    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6681  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6682    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6683
6684  //===--------------------------------------------------------------------===//
6685  // Generate target specific nodes for 128 or 256-bit shuffles only
6686  // supported in the AVX instruction set.
6687  //
6688
6689  // Handle VPERMILPS* permutations
6690  if (isVPERMILPSMask(M, VT, Subtarget))
6691    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6692                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6693
6694  // Handle VPERMILPD* permutations
6695  if (isVPERMILPDMask(M, VT, Subtarget))
6696    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6697                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6698
6699  // Handle VPERM2F128 permutations
6700  if (isVPERM2F128Mask(M, VT, Subtarget))
6701    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6702                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6703
6704  // Handle VSHUFPSY permutations
6705  if (isVSHUFPSYMask(M, VT, Subtarget))
6706    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6707                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6708
6709  // Handle VSHUFPDY permutations
6710  if (isVSHUFPDYMask(M, VT, Subtarget))
6711    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6712                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6713
6714  //===--------------------------------------------------------------------===//
6715  // Since no target specific shuffle was selected for this generic one,
6716  // lower it into other known shuffles. FIXME: this isn't true yet, but
6717  // this is the plan.
6718  //
6719
6720  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6721  if (VT == MVT::v8i16) {
6722    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6723    if (NewOp.getNode())
6724      return NewOp;
6725  }
6726
6727  if (VT == MVT::v16i8) {
6728    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6729    if (NewOp.getNode())
6730      return NewOp;
6731  }
6732
6733  // Handle all 128-bit wide vectors with 4 elements, and match them with
6734  // several different shuffle types.
6735  if (NumElems == 4 && VT.getSizeInBits() == 128)
6736    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6737
6738  // Handle general 256-bit shuffles
6739  if (VT.is256BitVector())
6740    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6741
6742  return SDValue();
6743}
6744
6745SDValue
6746X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6747                                                SelectionDAG &DAG) const {
6748  EVT VT = Op.getValueType();
6749  DebugLoc dl = Op.getDebugLoc();
6750
6751  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6752    return SDValue();
6753
6754  if (VT.getSizeInBits() == 8) {
6755    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6756                                    Op.getOperand(0), Op.getOperand(1));
6757    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6758                                    DAG.getValueType(VT));
6759    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6760  } else if (VT.getSizeInBits() == 16) {
6761    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6762    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6763    if (Idx == 0)
6764      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6765                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6766                                     DAG.getNode(ISD::BITCAST, dl,
6767                                                 MVT::v4i32,
6768                                                 Op.getOperand(0)),
6769                                     Op.getOperand(1)));
6770    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6771                                    Op.getOperand(0), Op.getOperand(1));
6772    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6773                                    DAG.getValueType(VT));
6774    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6775  } else if (VT == MVT::f32) {
6776    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6777    // the result back to FR32 register. It's only worth matching if the
6778    // result has a single use which is a store or a bitcast to i32.  And in
6779    // the case of a store, it's not worth it if the index is a constant 0,
6780    // because a MOVSSmr can be used instead, which is smaller and faster.
6781    if (!Op.hasOneUse())
6782      return SDValue();
6783    SDNode *User = *Op.getNode()->use_begin();
6784    if ((User->getOpcode() != ISD::STORE ||
6785         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6786          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6787        (User->getOpcode() != ISD::BITCAST ||
6788         User->getValueType(0) != MVT::i32))
6789      return SDValue();
6790    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6791                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6792                                              Op.getOperand(0)),
6793                                              Op.getOperand(1));
6794    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6795  } else if (VT == MVT::i32) {
6796    // ExtractPS works with constant index.
6797    if (isa<ConstantSDNode>(Op.getOperand(1)))
6798      return Op;
6799  }
6800  return SDValue();
6801}
6802
6803
6804SDValue
6805X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6806                                           SelectionDAG &DAG) const {
6807  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6808    return SDValue();
6809
6810  SDValue Vec = Op.getOperand(0);
6811  EVT VecVT = Vec.getValueType();
6812
6813  // If this is a 256-bit vector result, first extract the 128-bit vector and
6814  // then extract the element from the 128-bit vector.
6815  if (VecVT.getSizeInBits() == 256) {
6816    DebugLoc dl = Op.getNode()->getDebugLoc();
6817    unsigned NumElems = VecVT.getVectorNumElements();
6818    SDValue Idx = Op.getOperand(1);
6819    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6820
6821    // Get the 128-bit vector.
6822    bool Upper = IdxVal >= NumElems/2;
6823    Vec = Extract128BitVector(Vec,
6824                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6825
6826    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6827                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6828  }
6829
6830  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6831
6832  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6833    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6834    if (Res.getNode())
6835      return Res;
6836  }
6837
6838  EVT VT = Op.getValueType();
6839  DebugLoc dl = Op.getDebugLoc();
6840  // TODO: handle v16i8.
6841  if (VT.getSizeInBits() == 16) {
6842    SDValue Vec = Op.getOperand(0);
6843    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6844    if (Idx == 0)
6845      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6846                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6847                                     DAG.getNode(ISD::BITCAST, dl,
6848                                                 MVT::v4i32, Vec),
6849                                     Op.getOperand(1)));
6850    // Transform it so it match pextrw which produces a 32-bit result.
6851    EVT EltVT = MVT::i32;
6852    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6853                                    Op.getOperand(0), Op.getOperand(1));
6854    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6855                                    DAG.getValueType(VT));
6856    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6857  } else if (VT.getSizeInBits() == 32) {
6858    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6859    if (Idx == 0)
6860      return Op;
6861
6862    // SHUFPS the element to the lowest double word, then movss.
6863    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6864    EVT VVT = Op.getOperand(0).getValueType();
6865    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6866                                       DAG.getUNDEF(VVT), Mask);
6867    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6868                       DAG.getIntPtrConstant(0));
6869  } else if (VT.getSizeInBits() == 64) {
6870    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6871    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6872    //        to match extract_elt for f64.
6873    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6874    if (Idx == 0)
6875      return Op;
6876
6877    // UNPCKHPD the element to the lowest double word, then movsd.
6878    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6879    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6880    int Mask[2] = { 1, -1 };
6881    EVT VVT = Op.getOperand(0).getValueType();
6882    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6883                                       DAG.getUNDEF(VVT), Mask);
6884    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6885                       DAG.getIntPtrConstant(0));
6886  }
6887
6888  return SDValue();
6889}
6890
6891SDValue
6892X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6893                                               SelectionDAG &DAG) const {
6894  EVT VT = Op.getValueType();
6895  EVT EltVT = VT.getVectorElementType();
6896  DebugLoc dl = Op.getDebugLoc();
6897
6898  SDValue N0 = Op.getOperand(0);
6899  SDValue N1 = Op.getOperand(1);
6900  SDValue N2 = Op.getOperand(2);
6901
6902  if (VT.getSizeInBits() == 256)
6903    return SDValue();
6904
6905  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6906      isa<ConstantSDNode>(N2)) {
6907    unsigned Opc;
6908    if (VT == MVT::v8i16)
6909      Opc = X86ISD::PINSRW;
6910    else if (VT == MVT::v16i8)
6911      Opc = X86ISD::PINSRB;
6912    else
6913      Opc = X86ISD::PINSRB;
6914
6915    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6916    // argument.
6917    if (N1.getValueType() != MVT::i32)
6918      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6919    if (N2.getValueType() != MVT::i32)
6920      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6921    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6922  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6923    // Bits [7:6] of the constant are the source select.  This will always be
6924    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6925    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6926    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6927    // Bits [5:4] of the constant are the destination select.  This is the
6928    //  value of the incoming immediate.
6929    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6930    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6931    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6932    // Create this as a scalar to vector..
6933    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6934    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6935  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6936    // PINSR* works with constant index.
6937    return Op;
6938  }
6939  return SDValue();
6940}
6941
6942SDValue
6943X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6944  EVT VT = Op.getValueType();
6945  EVT EltVT = VT.getVectorElementType();
6946
6947  DebugLoc dl = Op.getDebugLoc();
6948  SDValue N0 = Op.getOperand(0);
6949  SDValue N1 = Op.getOperand(1);
6950  SDValue N2 = Op.getOperand(2);
6951
6952  // If this is a 256-bit vector result, first extract the 128-bit vector,
6953  // insert the element into the extracted half and then place it back.
6954  if (VT.getSizeInBits() == 256) {
6955    if (!isa<ConstantSDNode>(N2))
6956      return SDValue();
6957
6958    // Get the desired 128-bit vector half.
6959    unsigned NumElems = VT.getVectorNumElements();
6960    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6961    bool Upper = IdxVal >= NumElems/2;
6962    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6963    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6964
6965    // Insert the element into the desired half.
6966    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6967                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6968
6969    // Insert the changed part back to the 256-bit vector
6970    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6971  }
6972
6973  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
6974    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6975
6976  if (EltVT == MVT::i8)
6977    return SDValue();
6978
6979  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6980    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6981    // as its second argument.
6982    if (N1.getValueType() != MVT::i32)
6983      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6984    if (N2.getValueType() != MVT::i32)
6985      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6986    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6987  }
6988  return SDValue();
6989}
6990
6991SDValue
6992X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6993  LLVMContext *Context = DAG.getContext();
6994  DebugLoc dl = Op.getDebugLoc();
6995  EVT OpVT = Op.getValueType();
6996
6997  // If this is a 256-bit vector result, first insert into a 128-bit
6998  // vector and then insert into the 256-bit vector.
6999  if (OpVT.getSizeInBits() > 128) {
7000    // Insert into a 128-bit vector.
7001    EVT VT128 = EVT::getVectorVT(*Context,
7002                                 OpVT.getVectorElementType(),
7003                                 OpVT.getVectorNumElements() / 2);
7004
7005    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7006
7007    // Insert the 128-bit vector.
7008    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7009                              DAG.getConstant(0, MVT::i32),
7010                              DAG, dl);
7011  }
7012
7013  if (Op.getValueType() == MVT::v1i64 &&
7014      Op.getOperand(0).getValueType() == MVT::i64)
7015    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7016
7017  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7018  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7019         "Expected an SSE type!");
7020  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7021                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7022}
7023
7024// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7025// a simple subregister reference or explicit instructions to grab
7026// upper bits of a vector.
7027SDValue
7028X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7029  if (Subtarget->hasAVX()) {
7030    DebugLoc dl = Op.getNode()->getDebugLoc();
7031    SDValue Vec = Op.getNode()->getOperand(0);
7032    SDValue Idx = Op.getNode()->getOperand(1);
7033
7034    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7035        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7036        return Extract128BitVector(Vec, Idx, DAG, dl);
7037    }
7038  }
7039  return SDValue();
7040}
7041
7042// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7043// simple superregister reference or explicit instructions to insert
7044// the upper bits of a vector.
7045SDValue
7046X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7047  if (Subtarget->hasAVX()) {
7048    DebugLoc dl = Op.getNode()->getDebugLoc();
7049    SDValue Vec = Op.getNode()->getOperand(0);
7050    SDValue SubVec = Op.getNode()->getOperand(1);
7051    SDValue Idx = Op.getNode()->getOperand(2);
7052
7053    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7054        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7055      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7056    }
7057  }
7058  return SDValue();
7059}
7060
7061// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7062// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7063// one of the above mentioned nodes. It has to be wrapped because otherwise
7064// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7065// be used to form addressing mode. These wrapped nodes will be selected
7066// into MOV32ri.
7067SDValue
7068X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7069  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7070
7071  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7072  // global base reg.
7073  unsigned char OpFlag = 0;
7074  unsigned WrapperKind = X86ISD::Wrapper;
7075  CodeModel::Model M = getTargetMachine().getCodeModel();
7076
7077  if (Subtarget->isPICStyleRIPRel() &&
7078      (M == CodeModel::Small || M == CodeModel::Kernel))
7079    WrapperKind = X86ISD::WrapperRIP;
7080  else if (Subtarget->isPICStyleGOT())
7081    OpFlag = X86II::MO_GOTOFF;
7082  else if (Subtarget->isPICStyleStubPIC())
7083    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7084
7085  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7086                                             CP->getAlignment(),
7087                                             CP->getOffset(), OpFlag);
7088  DebugLoc DL = CP->getDebugLoc();
7089  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7090  // With PIC, the address is actually $g + Offset.
7091  if (OpFlag) {
7092    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7093                         DAG.getNode(X86ISD::GlobalBaseReg,
7094                                     DebugLoc(), getPointerTy()),
7095                         Result);
7096  }
7097
7098  return Result;
7099}
7100
7101SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7102  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7103
7104  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7105  // global base reg.
7106  unsigned char OpFlag = 0;
7107  unsigned WrapperKind = X86ISD::Wrapper;
7108  CodeModel::Model M = getTargetMachine().getCodeModel();
7109
7110  if (Subtarget->isPICStyleRIPRel() &&
7111      (M == CodeModel::Small || M == CodeModel::Kernel))
7112    WrapperKind = X86ISD::WrapperRIP;
7113  else if (Subtarget->isPICStyleGOT())
7114    OpFlag = X86II::MO_GOTOFF;
7115  else if (Subtarget->isPICStyleStubPIC())
7116    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7117
7118  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7119                                          OpFlag);
7120  DebugLoc DL = JT->getDebugLoc();
7121  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7122
7123  // With PIC, the address is actually $g + Offset.
7124  if (OpFlag)
7125    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7126                         DAG.getNode(X86ISD::GlobalBaseReg,
7127                                     DebugLoc(), getPointerTy()),
7128                         Result);
7129
7130  return Result;
7131}
7132
7133SDValue
7134X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7135  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7136
7137  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7138  // global base reg.
7139  unsigned char OpFlag = 0;
7140  unsigned WrapperKind = X86ISD::Wrapper;
7141  CodeModel::Model M = getTargetMachine().getCodeModel();
7142
7143  if (Subtarget->isPICStyleRIPRel() &&
7144      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7145    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7146      OpFlag = X86II::MO_GOTPCREL;
7147    WrapperKind = X86ISD::WrapperRIP;
7148  } else if (Subtarget->isPICStyleGOT()) {
7149    OpFlag = X86II::MO_GOT;
7150  } else if (Subtarget->isPICStyleStubPIC()) {
7151    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7152  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7153    OpFlag = X86II::MO_DARWIN_NONLAZY;
7154  }
7155
7156  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7157
7158  DebugLoc DL = Op.getDebugLoc();
7159  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7160
7161
7162  // With PIC, the address is actually $g + Offset.
7163  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7164      !Subtarget->is64Bit()) {
7165    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7166                         DAG.getNode(X86ISD::GlobalBaseReg,
7167                                     DebugLoc(), getPointerTy()),
7168                         Result);
7169  }
7170
7171  // For symbols that require a load from a stub to get the address, emit the
7172  // load.
7173  if (isGlobalStubReference(OpFlag))
7174    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7175                         MachinePointerInfo::getGOT(), false, false, 0);
7176
7177  return Result;
7178}
7179
7180SDValue
7181X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7182  // Create the TargetBlockAddressAddress node.
7183  unsigned char OpFlags =
7184    Subtarget->ClassifyBlockAddressReference();
7185  CodeModel::Model M = getTargetMachine().getCodeModel();
7186  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7187  DebugLoc dl = Op.getDebugLoc();
7188  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7189                                       /*isTarget=*/true, OpFlags);
7190
7191  if (Subtarget->isPICStyleRIPRel() &&
7192      (M == CodeModel::Small || M == CodeModel::Kernel))
7193    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7194  else
7195    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7196
7197  // With PIC, the address is actually $g + Offset.
7198  if (isGlobalRelativeToPICBase(OpFlags)) {
7199    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7200                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7201                         Result);
7202  }
7203
7204  return Result;
7205}
7206
7207SDValue
7208X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7209                                      int64_t Offset,
7210                                      SelectionDAG &DAG) const {
7211  // Create the TargetGlobalAddress node, folding in the constant
7212  // offset if it is legal.
7213  unsigned char OpFlags =
7214    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7215  CodeModel::Model M = getTargetMachine().getCodeModel();
7216  SDValue Result;
7217  if (OpFlags == X86II::MO_NO_FLAG &&
7218      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7219    // A direct static reference to a global.
7220    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7221    Offset = 0;
7222  } else {
7223    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7224  }
7225
7226  if (Subtarget->isPICStyleRIPRel() &&
7227      (M == CodeModel::Small || M == CodeModel::Kernel))
7228    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7229  else
7230    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7231
7232  // With PIC, the address is actually $g + Offset.
7233  if (isGlobalRelativeToPICBase(OpFlags)) {
7234    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7235                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7236                         Result);
7237  }
7238
7239  // For globals that require a load from a stub to get the address, emit the
7240  // load.
7241  if (isGlobalStubReference(OpFlags))
7242    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7243                         MachinePointerInfo::getGOT(), false, false, 0);
7244
7245  // If there was a non-zero offset that we didn't fold, create an explicit
7246  // addition for it.
7247  if (Offset != 0)
7248    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7249                         DAG.getConstant(Offset, getPointerTy()));
7250
7251  return Result;
7252}
7253
7254SDValue
7255X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7256  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7257  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7258  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7259}
7260
7261static SDValue
7262GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7263           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7264           unsigned char OperandFlags) {
7265  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7266  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7267  DebugLoc dl = GA->getDebugLoc();
7268  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7269                                           GA->getValueType(0),
7270                                           GA->getOffset(),
7271                                           OperandFlags);
7272  if (InFlag) {
7273    SDValue Ops[] = { Chain,  TGA, *InFlag };
7274    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7275  } else {
7276    SDValue Ops[]  = { Chain, TGA };
7277    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7278  }
7279
7280  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7281  MFI->setAdjustsStack(true);
7282
7283  SDValue Flag = Chain.getValue(1);
7284  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7285}
7286
7287// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7288static SDValue
7289LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7290                                const EVT PtrVT) {
7291  SDValue InFlag;
7292  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7293  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7294                                     DAG.getNode(X86ISD::GlobalBaseReg,
7295                                                 DebugLoc(), PtrVT), InFlag);
7296  InFlag = Chain.getValue(1);
7297
7298  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7299}
7300
7301// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7302static SDValue
7303LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7304                                const EVT PtrVT) {
7305  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7306                    X86::RAX, X86II::MO_TLSGD);
7307}
7308
7309// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7310// "local exec" model.
7311static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7312                                   const EVT PtrVT, TLSModel::Model model,
7313                                   bool is64Bit) {
7314  DebugLoc dl = GA->getDebugLoc();
7315
7316  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7317  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7318                                                         is64Bit ? 257 : 256));
7319
7320  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7321                                      DAG.getIntPtrConstant(0),
7322                                      MachinePointerInfo(Ptr), false, false, 0);
7323
7324  unsigned char OperandFlags = 0;
7325  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7326  // initialexec.
7327  unsigned WrapperKind = X86ISD::Wrapper;
7328  if (model == TLSModel::LocalExec) {
7329    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7330  } else if (is64Bit) {
7331    assert(model == TLSModel::InitialExec);
7332    OperandFlags = X86II::MO_GOTTPOFF;
7333    WrapperKind = X86ISD::WrapperRIP;
7334  } else {
7335    assert(model == TLSModel::InitialExec);
7336    OperandFlags = X86II::MO_INDNTPOFF;
7337  }
7338
7339  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7340  // exec)
7341  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7342                                           GA->getValueType(0),
7343                                           GA->getOffset(), OperandFlags);
7344  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7345
7346  if (model == TLSModel::InitialExec)
7347    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7348                         MachinePointerInfo::getGOT(), false, false, 0);
7349
7350  // The address of the thread local variable is the add of the thread
7351  // pointer with the offset of the variable.
7352  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7353}
7354
7355SDValue
7356X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7357
7358  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7359  const GlobalValue *GV = GA->getGlobal();
7360
7361  if (Subtarget->isTargetELF()) {
7362    // TODO: implement the "local dynamic" model
7363    // TODO: implement the "initial exec"model for pic executables
7364
7365    // If GV is an alias then use the aliasee for determining
7366    // thread-localness.
7367    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7368      GV = GA->resolveAliasedGlobal(false);
7369
7370    TLSModel::Model model
7371      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7372
7373    switch (model) {
7374      case TLSModel::GeneralDynamic:
7375      case TLSModel::LocalDynamic: // not implemented
7376        if (Subtarget->is64Bit())
7377          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7378        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7379
7380      case TLSModel::InitialExec:
7381      case TLSModel::LocalExec:
7382        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7383                                   Subtarget->is64Bit());
7384    }
7385  } else if (Subtarget->isTargetDarwin()) {
7386    // Darwin only has one model of TLS.  Lower to that.
7387    unsigned char OpFlag = 0;
7388    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7389                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7390
7391    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7392    // global base reg.
7393    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7394                  !Subtarget->is64Bit();
7395    if (PIC32)
7396      OpFlag = X86II::MO_TLVP_PIC_BASE;
7397    else
7398      OpFlag = X86II::MO_TLVP;
7399    DebugLoc DL = Op.getDebugLoc();
7400    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7401                                                GA->getValueType(0),
7402                                                GA->getOffset(), OpFlag);
7403    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7404
7405    // With PIC32, the address is actually $g + Offset.
7406    if (PIC32)
7407      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7408                           DAG.getNode(X86ISD::GlobalBaseReg,
7409                                       DebugLoc(), getPointerTy()),
7410                           Offset);
7411
7412    // Lowering the machine isd will make sure everything is in the right
7413    // location.
7414    SDValue Chain = DAG.getEntryNode();
7415    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7416    SDValue Args[] = { Chain, Offset };
7417    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7418
7419    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7420    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7421    MFI->setAdjustsStack(true);
7422
7423    // And our return value (tls address) is in the standard call return value
7424    // location.
7425    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7426    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7427  }
7428
7429  assert(false &&
7430         "TLS not implemented for this target.");
7431
7432  llvm_unreachable("Unreachable");
7433  return SDValue();
7434}
7435
7436
7437/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7438/// take a 2 x i32 value to shift plus a shift amount.
7439SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7440  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7441  EVT VT = Op.getValueType();
7442  unsigned VTBits = VT.getSizeInBits();
7443  DebugLoc dl = Op.getDebugLoc();
7444  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7445  SDValue ShOpLo = Op.getOperand(0);
7446  SDValue ShOpHi = Op.getOperand(1);
7447  SDValue ShAmt  = Op.getOperand(2);
7448  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7449                                     DAG.getConstant(VTBits - 1, MVT::i8))
7450                       : DAG.getConstant(0, VT);
7451
7452  SDValue Tmp2, Tmp3;
7453  if (Op.getOpcode() == ISD::SHL_PARTS) {
7454    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7455    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7456  } else {
7457    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7458    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7459  }
7460
7461  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7462                                DAG.getConstant(VTBits, MVT::i8));
7463  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7464                             AndNode, DAG.getConstant(0, MVT::i8));
7465
7466  SDValue Hi, Lo;
7467  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7468  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7469  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7470
7471  if (Op.getOpcode() == ISD::SHL_PARTS) {
7472    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7473    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7474  } else {
7475    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7476    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7477  }
7478
7479  SDValue Ops[2] = { Lo, Hi };
7480  return DAG.getMergeValues(Ops, 2, dl);
7481}
7482
7483SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7484                                           SelectionDAG &DAG) const {
7485  EVT SrcVT = Op.getOperand(0).getValueType();
7486
7487  if (SrcVT.isVector())
7488    return SDValue();
7489
7490  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7491         "Unknown SINT_TO_FP to lower!");
7492
7493  // These are really Legal; return the operand so the caller accepts it as
7494  // Legal.
7495  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7496    return Op;
7497  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7498      Subtarget->is64Bit()) {
7499    return Op;
7500  }
7501
7502  DebugLoc dl = Op.getDebugLoc();
7503  unsigned Size = SrcVT.getSizeInBits()/8;
7504  MachineFunction &MF = DAG.getMachineFunction();
7505  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7506  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7507  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7508                               StackSlot,
7509                               MachinePointerInfo::getFixedStack(SSFI),
7510                               false, false, 0);
7511  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7512}
7513
7514SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7515                                     SDValue StackSlot,
7516                                     SelectionDAG &DAG) const {
7517  // Build the FILD
7518  DebugLoc DL = Op.getDebugLoc();
7519  SDVTList Tys;
7520  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7521  if (useSSE)
7522    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7523  else
7524    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7525
7526  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7527
7528  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7529  MachineMemOperand *MMO;
7530  if (FI) {
7531    int SSFI = FI->getIndex();
7532    MMO =
7533      DAG.getMachineFunction()
7534      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7535                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7536  } else {
7537    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7538    StackSlot = StackSlot.getOperand(1);
7539  }
7540  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7541  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7542                                           X86ISD::FILD, DL,
7543                                           Tys, Ops, array_lengthof(Ops),
7544                                           SrcVT, MMO);
7545
7546  if (useSSE) {
7547    Chain = Result.getValue(1);
7548    SDValue InFlag = Result.getValue(2);
7549
7550    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7551    // shouldn't be necessary except that RFP cannot be live across
7552    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7553    MachineFunction &MF = DAG.getMachineFunction();
7554    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7555    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7556    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7557    Tys = DAG.getVTList(MVT::Other);
7558    SDValue Ops[] = {
7559      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7560    };
7561    MachineMemOperand *MMO =
7562      DAG.getMachineFunction()
7563      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7564                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7565
7566    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7567                                    Ops, array_lengthof(Ops),
7568                                    Op.getValueType(), MMO);
7569    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7570                         MachinePointerInfo::getFixedStack(SSFI),
7571                         false, false, 0);
7572  }
7573
7574  return Result;
7575}
7576
7577// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7578SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7579                                               SelectionDAG &DAG) const {
7580  // This algorithm is not obvious. Here it is in C code, more or less:
7581  /*
7582    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7583      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7584      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7585
7586      // Copy ints to xmm registers.
7587      __m128i xh = _mm_cvtsi32_si128( hi );
7588      __m128i xl = _mm_cvtsi32_si128( lo );
7589
7590      // Combine into low half of a single xmm register.
7591      __m128i x = _mm_unpacklo_epi32( xh, xl );
7592      __m128d d;
7593      double sd;
7594
7595      // Merge in appropriate exponents to give the integer bits the right
7596      // magnitude.
7597      x = _mm_unpacklo_epi32( x, exp );
7598
7599      // Subtract away the biases to deal with the IEEE-754 double precision
7600      // implicit 1.
7601      d = _mm_sub_pd( (__m128d) x, bias );
7602
7603      // All conversions up to here are exact. The correctly rounded result is
7604      // calculated using the current rounding mode using the following
7605      // horizontal add.
7606      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7607      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7608                                // store doesn't really need to be here (except
7609                                // maybe to zero the other double)
7610      return sd;
7611    }
7612  */
7613
7614  DebugLoc dl = Op.getDebugLoc();
7615  LLVMContext *Context = DAG.getContext();
7616
7617  // Build some magic constants.
7618  std::vector<Constant*> CV0;
7619  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7620  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7621  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7622  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7623  Constant *C0 = ConstantVector::get(CV0);
7624  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7625
7626  std::vector<Constant*> CV1;
7627  CV1.push_back(
7628    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7629  CV1.push_back(
7630    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7631  Constant *C1 = ConstantVector::get(CV1);
7632  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7633
7634  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7635                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7636                                        Op.getOperand(0),
7637                                        DAG.getIntPtrConstant(1)));
7638  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7639                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7640                                        Op.getOperand(0),
7641                                        DAG.getIntPtrConstant(0)));
7642  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7643  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7644                              MachinePointerInfo::getConstantPool(),
7645                              false, false, 16);
7646  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7647  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7648  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7649                              MachinePointerInfo::getConstantPool(),
7650                              false, false, 16);
7651  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7652
7653  // Add the halves; easiest way is to swap them into another reg first.
7654  int ShufMask[2] = { 1, -1 };
7655  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7656                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7657  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7658  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7659                     DAG.getIntPtrConstant(0));
7660}
7661
7662// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7663SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7664                                               SelectionDAG &DAG) const {
7665  DebugLoc dl = Op.getDebugLoc();
7666  // FP constant to bias correct the final result.
7667  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7668                                   MVT::f64);
7669
7670  // Load the 32-bit value into an XMM register.
7671  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7672                             Op.getOperand(0));
7673
7674  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7675                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7676                     DAG.getIntPtrConstant(0));
7677
7678  // Or the load with the bias.
7679  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7680                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7681                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7682                                                   MVT::v2f64, Load)),
7683                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7684                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7685                                                   MVT::v2f64, Bias)));
7686  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7687                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7688                   DAG.getIntPtrConstant(0));
7689
7690  // Subtract the bias.
7691  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7692
7693  // Handle final rounding.
7694  EVT DestVT = Op.getValueType();
7695
7696  if (DestVT.bitsLT(MVT::f64)) {
7697    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7698                       DAG.getIntPtrConstant(0));
7699  } else if (DestVT.bitsGT(MVT::f64)) {
7700    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7701  }
7702
7703  // Handle final rounding.
7704  return Sub;
7705}
7706
7707SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7708                                           SelectionDAG &DAG) const {
7709  SDValue N0 = Op.getOperand(0);
7710  DebugLoc dl = Op.getDebugLoc();
7711
7712  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7713  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7714  // the optimization here.
7715  if (DAG.SignBitIsZero(N0))
7716    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7717
7718  EVT SrcVT = N0.getValueType();
7719  EVT DstVT = Op.getValueType();
7720  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7721    return LowerUINT_TO_FP_i64(Op, DAG);
7722  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7723    return LowerUINT_TO_FP_i32(Op, DAG);
7724
7725  // Make a 64-bit buffer, and use it to build an FILD.
7726  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7727  if (SrcVT == MVT::i32) {
7728    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7729    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7730                                     getPointerTy(), StackSlot, WordOff);
7731    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7732                                  StackSlot, MachinePointerInfo(),
7733                                  false, false, 0);
7734    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7735                                  OffsetSlot, MachinePointerInfo(),
7736                                  false, false, 0);
7737    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7738    return Fild;
7739  }
7740
7741  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7742  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7743                                StackSlot, MachinePointerInfo(),
7744                               false, false, 0);
7745  // For i64 source, we need to add the appropriate power of 2 if the input
7746  // was negative.  This is the same as the optimization in
7747  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7748  // we must be careful to do the computation in x87 extended precision, not
7749  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7750  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7751  MachineMemOperand *MMO =
7752    DAG.getMachineFunction()
7753    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7754                          MachineMemOperand::MOLoad, 8, 8);
7755
7756  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7757  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7758  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7759                                         MVT::i64, MMO);
7760
7761  APInt FF(32, 0x5F800000ULL);
7762
7763  // Check whether the sign bit is set.
7764  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7765                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7766                                 ISD::SETLT);
7767
7768  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7769  SDValue FudgePtr = DAG.getConstantPool(
7770                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7771                                         getPointerTy());
7772
7773  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7774  SDValue Zero = DAG.getIntPtrConstant(0);
7775  SDValue Four = DAG.getIntPtrConstant(4);
7776  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7777                               Zero, Four);
7778  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7779
7780  // Load the value out, extending it from f32 to f80.
7781  // FIXME: Avoid the extend by constructing the right constant pool?
7782  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7783                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7784                                 MVT::f32, false, false, 4);
7785  // Extend everything to 80 bits to force it to be done on x87.
7786  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7787  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7788}
7789
7790std::pair<SDValue,SDValue> X86TargetLowering::
7791FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7792  DebugLoc DL = Op.getDebugLoc();
7793
7794  EVT DstTy = Op.getValueType();
7795
7796  if (!IsSigned) {
7797    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7798    DstTy = MVT::i64;
7799  }
7800
7801  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7802         DstTy.getSimpleVT() >= MVT::i16 &&
7803         "Unknown FP_TO_SINT to lower!");
7804
7805  // These are really Legal.
7806  if (DstTy == MVT::i32 &&
7807      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7808    return std::make_pair(SDValue(), SDValue());
7809  if (Subtarget->is64Bit() &&
7810      DstTy == MVT::i64 &&
7811      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7812    return std::make_pair(SDValue(), SDValue());
7813
7814  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7815  // stack slot.
7816  MachineFunction &MF = DAG.getMachineFunction();
7817  unsigned MemSize = DstTy.getSizeInBits()/8;
7818  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7819  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7820
7821
7822
7823  unsigned Opc;
7824  switch (DstTy.getSimpleVT().SimpleTy) {
7825  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7826  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7827  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7828  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7829  }
7830
7831  SDValue Chain = DAG.getEntryNode();
7832  SDValue Value = Op.getOperand(0);
7833  EVT TheVT = Op.getOperand(0).getValueType();
7834  if (isScalarFPTypeInSSEReg(TheVT)) {
7835    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7836    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7837                         MachinePointerInfo::getFixedStack(SSFI),
7838                         false, false, 0);
7839    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7840    SDValue Ops[] = {
7841      Chain, StackSlot, DAG.getValueType(TheVT)
7842    };
7843
7844    MachineMemOperand *MMO =
7845      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7846                              MachineMemOperand::MOLoad, MemSize, MemSize);
7847    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7848                                    DstTy, MMO);
7849    Chain = Value.getValue(1);
7850    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7851    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7852  }
7853
7854  MachineMemOperand *MMO =
7855    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7856                            MachineMemOperand::MOStore, MemSize, MemSize);
7857
7858  // Build the FP_TO_INT*_IN_MEM
7859  SDValue Ops[] = { Chain, Value, StackSlot };
7860  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7861                                         Ops, 3, DstTy, MMO);
7862
7863  return std::make_pair(FIST, StackSlot);
7864}
7865
7866SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7867                                           SelectionDAG &DAG) const {
7868  if (Op.getValueType().isVector())
7869    return SDValue();
7870
7871  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7872  SDValue FIST = Vals.first, StackSlot = Vals.second;
7873  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7874  if (FIST.getNode() == 0) return Op;
7875
7876  // Load the result.
7877  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7878                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7879}
7880
7881SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7882                                           SelectionDAG &DAG) const {
7883  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7884  SDValue FIST = Vals.first, StackSlot = Vals.second;
7885  assert(FIST.getNode() && "Unexpected failure");
7886
7887  // Load the result.
7888  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7889                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7890}
7891
7892SDValue X86TargetLowering::LowerFABS(SDValue Op,
7893                                     SelectionDAG &DAG) const {
7894  LLVMContext *Context = DAG.getContext();
7895  DebugLoc dl = Op.getDebugLoc();
7896  EVT VT = Op.getValueType();
7897  EVT EltVT = VT;
7898  if (VT.isVector())
7899    EltVT = VT.getVectorElementType();
7900  std::vector<Constant*> CV;
7901  if (EltVT == MVT::f64) {
7902    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7903    CV.push_back(C);
7904    CV.push_back(C);
7905  } else {
7906    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7907    CV.push_back(C);
7908    CV.push_back(C);
7909    CV.push_back(C);
7910    CV.push_back(C);
7911  }
7912  Constant *C = ConstantVector::get(CV);
7913  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7914  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7915                             MachinePointerInfo::getConstantPool(),
7916                             false, false, 16);
7917  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7918}
7919
7920SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7921  LLVMContext *Context = DAG.getContext();
7922  DebugLoc dl = Op.getDebugLoc();
7923  EVT VT = Op.getValueType();
7924  EVT EltVT = VT;
7925  if (VT.isVector())
7926    EltVT = VT.getVectorElementType();
7927  std::vector<Constant*> CV;
7928  if (EltVT == MVT::f64) {
7929    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7930    CV.push_back(C);
7931    CV.push_back(C);
7932  } else {
7933    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7934    CV.push_back(C);
7935    CV.push_back(C);
7936    CV.push_back(C);
7937    CV.push_back(C);
7938  }
7939  Constant *C = ConstantVector::get(CV);
7940  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7941  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7942                             MachinePointerInfo::getConstantPool(),
7943                             false, false, 16);
7944  if (VT.isVector()) {
7945    return DAG.getNode(ISD::BITCAST, dl, VT,
7946                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7947                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7948                                Op.getOperand(0)),
7949                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7950  } else {
7951    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7952  }
7953}
7954
7955SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7956  LLVMContext *Context = DAG.getContext();
7957  SDValue Op0 = Op.getOperand(0);
7958  SDValue Op1 = Op.getOperand(1);
7959  DebugLoc dl = Op.getDebugLoc();
7960  EVT VT = Op.getValueType();
7961  EVT SrcVT = Op1.getValueType();
7962
7963  // If second operand is smaller, extend it first.
7964  if (SrcVT.bitsLT(VT)) {
7965    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7966    SrcVT = VT;
7967  }
7968  // And if it is bigger, shrink it first.
7969  if (SrcVT.bitsGT(VT)) {
7970    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7971    SrcVT = VT;
7972  }
7973
7974  // At this point the operands and the result should have the same
7975  // type, and that won't be f80 since that is not custom lowered.
7976
7977  // First get the sign bit of second operand.
7978  std::vector<Constant*> CV;
7979  if (SrcVT == MVT::f64) {
7980    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7981    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7982  } else {
7983    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7984    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7985    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7986    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7987  }
7988  Constant *C = ConstantVector::get(CV);
7989  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7990  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7991                              MachinePointerInfo::getConstantPool(),
7992                              false, false, 16);
7993  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7994
7995  // Shift sign bit right or left if the two operands have different types.
7996  if (SrcVT.bitsGT(VT)) {
7997    // Op0 is MVT::f32, Op1 is MVT::f64.
7998    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7999    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8000                          DAG.getConstant(32, MVT::i32));
8001    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8002    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8003                          DAG.getIntPtrConstant(0));
8004  }
8005
8006  // Clear first operand sign bit.
8007  CV.clear();
8008  if (VT == MVT::f64) {
8009    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8010    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8011  } else {
8012    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8013    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8014    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8015    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8016  }
8017  C = ConstantVector::get(CV);
8018  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8019  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8020                              MachinePointerInfo::getConstantPool(),
8021                              false, false, 16);
8022  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8023
8024  // Or the value with the sign bit.
8025  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8026}
8027
8028SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8029  SDValue N0 = Op.getOperand(0);
8030  DebugLoc dl = Op.getDebugLoc();
8031  EVT VT = Op.getValueType();
8032
8033  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8034  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8035                                  DAG.getConstant(1, VT));
8036  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8037}
8038
8039/// Emit nodes that will be selected as "test Op0,Op0", or something
8040/// equivalent.
8041SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8042                                    SelectionDAG &DAG) const {
8043  DebugLoc dl = Op.getDebugLoc();
8044
8045  // CF and OF aren't always set the way we want. Determine which
8046  // of these we need.
8047  bool NeedCF = false;
8048  bool NeedOF = false;
8049  switch (X86CC) {
8050  default: break;
8051  case X86::COND_A: case X86::COND_AE:
8052  case X86::COND_B: case X86::COND_BE:
8053    NeedCF = true;
8054    break;
8055  case X86::COND_G: case X86::COND_GE:
8056  case X86::COND_L: case X86::COND_LE:
8057  case X86::COND_O: case X86::COND_NO:
8058    NeedOF = true;
8059    break;
8060  }
8061
8062  // See if we can use the EFLAGS value from the operand instead of
8063  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8064  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8065  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8066    // Emit a CMP with 0, which is the TEST pattern.
8067    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8068                       DAG.getConstant(0, Op.getValueType()));
8069
8070  unsigned Opcode = 0;
8071  unsigned NumOperands = 0;
8072  switch (Op.getNode()->getOpcode()) {
8073  case ISD::ADD:
8074    // Due to an isel shortcoming, be conservative if this add is likely to be
8075    // selected as part of a load-modify-store instruction. When the root node
8076    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8077    // uses of other nodes in the match, such as the ADD in this case. This
8078    // leads to the ADD being left around and reselected, with the result being
8079    // two adds in the output.  Alas, even if none our users are stores, that
8080    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8081    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8082    // climbing the DAG back to the root, and it doesn't seem to be worth the
8083    // effort.
8084    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8085           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8086      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8087        goto default_case;
8088
8089    if (ConstantSDNode *C =
8090        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8091      // An add of one will be selected as an INC.
8092      if (C->getAPIntValue() == 1) {
8093        Opcode = X86ISD::INC;
8094        NumOperands = 1;
8095        break;
8096      }
8097
8098      // An add of negative one (subtract of one) will be selected as a DEC.
8099      if (C->getAPIntValue().isAllOnesValue()) {
8100        Opcode = X86ISD::DEC;
8101        NumOperands = 1;
8102        break;
8103      }
8104    }
8105
8106    // Otherwise use a regular EFLAGS-setting add.
8107    Opcode = X86ISD::ADD;
8108    NumOperands = 2;
8109    break;
8110  case ISD::AND: {
8111    // If the primary and result isn't used, don't bother using X86ISD::AND,
8112    // because a TEST instruction will be better.
8113    bool NonFlagUse = false;
8114    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8115           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8116      SDNode *User = *UI;
8117      unsigned UOpNo = UI.getOperandNo();
8118      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8119        // Look pass truncate.
8120        UOpNo = User->use_begin().getOperandNo();
8121        User = *User->use_begin();
8122      }
8123
8124      if (User->getOpcode() != ISD::BRCOND &&
8125          User->getOpcode() != ISD::SETCC &&
8126          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8127        NonFlagUse = true;
8128        break;
8129      }
8130    }
8131
8132    if (!NonFlagUse)
8133      break;
8134  }
8135    // FALL THROUGH
8136  case ISD::SUB:
8137  case ISD::OR:
8138  case ISD::XOR:
8139    // Due to the ISEL shortcoming noted above, be conservative if this op is
8140    // likely to be selected as part of a load-modify-store instruction.
8141    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8142           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8143      if (UI->getOpcode() == ISD::STORE)
8144        goto default_case;
8145
8146    // Otherwise use a regular EFLAGS-setting instruction.
8147    switch (Op.getNode()->getOpcode()) {
8148    default: llvm_unreachable("unexpected operator!");
8149    case ISD::SUB: Opcode = X86ISD::SUB; break;
8150    case ISD::OR:  Opcode = X86ISD::OR;  break;
8151    case ISD::XOR: Opcode = X86ISD::XOR; break;
8152    case ISD::AND: Opcode = X86ISD::AND; break;
8153    }
8154
8155    NumOperands = 2;
8156    break;
8157  case X86ISD::ADD:
8158  case X86ISD::SUB:
8159  case X86ISD::INC:
8160  case X86ISD::DEC:
8161  case X86ISD::OR:
8162  case X86ISD::XOR:
8163  case X86ISD::AND:
8164    return SDValue(Op.getNode(), 1);
8165  default:
8166  default_case:
8167    break;
8168  }
8169
8170  if (Opcode == 0)
8171    // Emit a CMP with 0, which is the TEST pattern.
8172    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8173                       DAG.getConstant(0, Op.getValueType()));
8174
8175  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8176  SmallVector<SDValue, 4> Ops;
8177  for (unsigned i = 0; i != NumOperands; ++i)
8178    Ops.push_back(Op.getOperand(i));
8179
8180  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8181  DAG.ReplaceAllUsesWith(Op, New);
8182  return SDValue(New.getNode(), 1);
8183}
8184
8185/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8186/// equivalent.
8187SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8188                                   SelectionDAG &DAG) const {
8189  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8190    if (C->getAPIntValue() == 0)
8191      return EmitTest(Op0, X86CC, DAG);
8192
8193  DebugLoc dl = Op0.getDebugLoc();
8194  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8195}
8196
8197/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8198/// if it's possible.
8199SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8200                                     DebugLoc dl, SelectionDAG &DAG) const {
8201  SDValue Op0 = And.getOperand(0);
8202  SDValue Op1 = And.getOperand(1);
8203  if (Op0.getOpcode() == ISD::TRUNCATE)
8204    Op0 = Op0.getOperand(0);
8205  if (Op1.getOpcode() == ISD::TRUNCATE)
8206    Op1 = Op1.getOperand(0);
8207
8208  SDValue LHS, RHS;
8209  if (Op1.getOpcode() == ISD::SHL)
8210    std::swap(Op0, Op1);
8211  if (Op0.getOpcode() == ISD::SHL) {
8212    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8213      if (And00C->getZExtValue() == 1) {
8214        // If we looked past a truncate, check that it's only truncating away
8215        // known zeros.
8216        unsigned BitWidth = Op0.getValueSizeInBits();
8217        unsigned AndBitWidth = And.getValueSizeInBits();
8218        if (BitWidth > AndBitWidth) {
8219          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8220          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8221          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8222            return SDValue();
8223        }
8224        LHS = Op1;
8225        RHS = Op0.getOperand(1);
8226      }
8227  } else if (Op1.getOpcode() == ISD::Constant) {
8228    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8229    SDValue AndLHS = Op0;
8230    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8231      LHS = AndLHS.getOperand(0);
8232      RHS = AndLHS.getOperand(1);
8233    }
8234  }
8235
8236  if (LHS.getNode()) {
8237    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8238    // instruction.  Since the shift amount is in-range-or-undefined, we know
8239    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8240    // the encoding for the i16 version is larger than the i32 version.
8241    // Also promote i16 to i32 for performance / code size reason.
8242    if (LHS.getValueType() == MVT::i8 ||
8243        LHS.getValueType() == MVT::i16)
8244      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8245
8246    // If the operand types disagree, extend the shift amount to match.  Since
8247    // BT ignores high bits (like shifts) we can use anyextend.
8248    if (LHS.getValueType() != RHS.getValueType())
8249      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8250
8251    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8252    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8253    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8254                       DAG.getConstant(Cond, MVT::i8), BT);
8255  }
8256
8257  return SDValue();
8258}
8259
8260SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8261  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8262  SDValue Op0 = Op.getOperand(0);
8263  SDValue Op1 = Op.getOperand(1);
8264  DebugLoc dl = Op.getDebugLoc();
8265  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8266
8267  // Optimize to BT if possible.
8268  // Lower (X & (1 << N)) == 0 to BT(X, N).
8269  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8270  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8271  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8272      Op1.getOpcode() == ISD::Constant &&
8273      cast<ConstantSDNode>(Op1)->isNullValue() &&
8274      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8275    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8276    if (NewSetCC.getNode())
8277      return NewSetCC;
8278  }
8279
8280  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8281  // these.
8282  if (Op1.getOpcode() == ISD::Constant &&
8283      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8284       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8285      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8286
8287    // If the input is a setcc, then reuse the input setcc or use a new one with
8288    // the inverted condition.
8289    if (Op0.getOpcode() == X86ISD::SETCC) {
8290      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8291      bool Invert = (CC == ISD::SETNE) ^
8292        cast<ConstantSDNode>(Op1)->isNullValue();
8293      if (!Invert) return Op0;
8294
8295      CCode = X86::GetOppositeBranchCondition(CCode);
8296      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8297                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8298    }
8299  }
8300
8301  bool isFP = Op1.getValueType().isFloatingPoint();
8302  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8303  if (X86CC == X86::COND_INVALID)
8304    return SDValue();
8305
8306  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8307  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8308                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8309}
8310
8311// Lower256IntVETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8312// ones, and then concatenate the result back.
8313static SDValue Lower256IntVETCC(SDValue Op, SelectionDAG &DAG) {
8314  EVT VT = Op.getValueType();
8315
8316  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::VSETCC &&
8317         "Unsupported value type for operation");
8318
8319  int NumElems = VT.getVectorNumElements();
8320  DebugLoc dl = Op.getDebugLoc();
8321  SDValue CC = Op.getOperand(2);
8322  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8323  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8324
8325  // Extract the LHS vectors
8326  SDValue LHS = Op.getOperand(0);
8327  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8328  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8329
8330  // Extract the RHS vectors
8331  SDValue RHS = Op.getOperand(1);
8332  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8333  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8334
8335  // Issue the operation on the smaller types and concatenate the result back
8336  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8337  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8338  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8339                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8340                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8341}
8342
8343
8344SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8345  SDValue Cond;
8346  SDValue Op0 = Op.getOperand(0);
8347  SDValue Op1 = Op.getOperand(1);
8348  SDValue CC = Op.getOperand(2);
8349  EVT VT = Op.getValueType();
8350  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8351  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8352  DebugLoc dl = Op.getDebugLoc();
8353
8354  if (isFP) {
8355    unsigned SSECC = 8;
8356    EVT EltVT = Op0.getValueType().getVectorElementType();
8357    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8358
8359    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8360    bool Swap = false;
8361
8362    switch (SetCCOpcode) {
8363    default: break;
8364    case ISD::SETOEQ:
8365    case ISD::SETEQ:  SSECC = 0; break;
8366    case ISD::SETOGT:
8367    case ISD::SETGT: Swap = true; // Fallthrough
8368    case ISD::SETLT:
8369    case ISD::SETOLT: SSECC = 1; break;
8370    case ISD::SETOGE:
8371    case ISD::SETGE: Swap = true; // Fallthrough
8372    case ISD::SETLE:
8373    case ISD::SETOLE: SSECC = 2; break;
8374    case ISD::SETUO:  SSECC = 3; break;
8375    case ISD::SETUNE:
8376    case ISD::SETNE:  SSECC = 4; break;
8377    case ISD::SETULE: Swap = true;
8378    case ISD::SETUGE: SSECC = 5; break;
8379    case ISD::SETULT: Swap = true;
8380    case ISD::SETUGT: SSECC = 6; break;
8381    case ISD::SETO:   SSECC = 7; break;
8382    }
8383    if (Swap)
8384      std::swap(Op0, Op1);
8385
8386    // In the two special cases we can't handle, emit two comparisons.
8387    if (SSECC == 8) {
8388      if (SetCCOpcode == ISD::SETUEQ) {
8389        SDValue UNORD, EQ;
8390        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8391        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8392        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8393      }
8394      else if (SetCCOpcode == ISD::SETONE) {
8395        SDValue ORD, NEQ;
8396        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8397        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8398        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8399      }
8400      llvm_unreachable("Illegal FP comparison");
8401    }
8402    // Handle all other FP comparisons here.
8403    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8404  }
8405
8406  // Break 256-bit integer vector compare into smaller ones.
8407  if (!isFP && VT.getSizeInBits() == 256)
8408    return Lower256IntVETCC(Op, DAG);
8409
8410  // We are handling one of the integer comparisons here.  Since SSE only has
8411  // GT and EQ comparisons for integer, swapping operands and multiple
8412  // operations may be required for some comparisons.
8413  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8414  bool Swap = false, Invert = false, FlipSigns = false;
8415
8416  switch (VT.getSimpleVT().SimpleTy) {
8417  default: break;
8418  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8419  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8420  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8421  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8422  }
8423
8424  switch (SetCCOpcode) {
8425  default: break;
8426  case ISD::SETNE:  Invert = true;
8427  case ISD::SETEQ:  Opc = EQOpc; break;
8428  case ISD::SETLT:  Swap = true;
8429  case ISD::SETGT:  Opc = GTOpc; break;
8430  case ISD::SETGE:  Swap = true;
8431  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8432  case ISD::SETULT: Swap = true;
8433  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8434  case ISD::SETUGE: Swap = true;
8435  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8436  }
8437  if (Swap)
8438    std::swap(Op0, Op1);
8439
8440  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8441  // bits of the inputs before performing those operations.
8442  if (FlipSigns) {
8443    EVT EltVT = VT.getVectorElementType();
8444    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8445                                      EltVT);
8446    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8447    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8448                                    SignBits.size());
8449    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8450    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8451  }
8452
8453  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8454
8455  // If the logical-not of the result is required, perform that now.
8456  if (Invert)
8457    Result = DAG.getNOT(dl, Result, VT);
8458
8459  return Result;
8460}
8461
8462// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8463static bool isX86LogicalCmp(SDValue Op) {
8464  unsigned Opc = Op.getNode()->getOpcode();
8465  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8466    return true;
8467  if (Op.getResNo() == 1 &&
8468      (Opc == X86ISD::ADD ||
8469       Opc == X86ISD::SUB ||
8470       Opc == X86ISD::ADC ||
8471       Opc == X86ISD::SBB ||
8472       Opc == X86ISD::SMUL ||
8473       Opc == X86ISD::UMUL ||
8474       Opc == X86ISD::INC ||
8475       Opc == X86ISD::DEC ||
8476       Opc == X86ISD::OR ||
8477       Opc == X86ISD::XOR ||
8478       Opc == X86ISD::AND))
8479    return true;
8480
8481  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8482    return true;
8483
8484  return false;
8485}
8486
8487static bool isZero(SDValue V) {
8488  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8489  return C && C->isNullValue();
8490}
8491
8492static bool isAllOnes(SDValue V) {
8493  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8494  return C && C->isAllOnesValue();
8495}
8496
8497SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8498  bool addTest = true;
8499  SDValue Cond  = Op.getOperand(0);
8500  SDValue Op1 = Op.getOperand(1);
8501  SDValue Op2 = Op.getOperand(2);
8502  DebugLoc DL = Op.getDebugLoc();
8503  SDValue CC;
8504
8505  if (Cond.getOpcode() == ISD::SETCC) {
8506    SDValue NewCond = LowerSETCC(Cond, DAG);
8507    if (NewCond.getNode())
8508      Cond = NewCond;
8509  }
8510
8511  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8512  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8513  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8514  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8515  if (Cond.getOpcode() == X86ISD::SETCC &&
8516      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8517      isZero(Cond.getOperand(1).getOperand(1))) {
8518    SDValue Cmp = Cond.getOperand(1);
8519
8520    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8521
8522    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8523        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8524      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8525
8526      SDValue CmpOp0 = Cmp.getOperand(0);
8527      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8528                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8529
8530      SDValue Res =   // Res = 0 or -1.
8531        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8532                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8533
8534      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8535        Res = DAG.getNOT(DL, Res, Res.getValueType());
8536
8537      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8538      if (N2C == 0 || !N2C->isNullValue())
8539        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8540      return Res;
8541    }
8542  }
8543
8544  // Look past (and (setcc_carry (cmp ...)), 1).
8545  if (Cond.getOpcode() == ISD::AND &&
8546      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8547    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8548    if (C && C->getAPIntValue() == 1)
8549      Cond = Cond.getOperand(0);
8550  }
8551
8552  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8553  // setting operand in place of the X86ISD::SETCC.
8554  if (Cond.getOpcode() == X86ISD::SETCC ||
8555      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8556    CC = Cond.getOperand(0);
8557
8558    SDValue Cmp = Cond.getOperand(1);
8559    unsigned Opc = Cmp.getOpcode();
8560    EVT VT = Op.getValueType();
8561
8562    bool IllegalFPCMov = false;
8563    if (VT.isFloatingPoint() && !VT.isVector() &&
8564        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8565      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8566
8567    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8568        Opc == X86ISD::BT) { // FIXME
8569      Cond = Cmp;
8570      addTest = false;
8571    }
8572  }
8573
8574  if (addTest) {
8575    // Look pass the truncate.
8576    if (Cond.getOpcode() == ISD::TRUNCATE)
8577      Cond = Cond.getOperand(0);
8578
8579    // We know the result of AND is compared against zero. Try to match
8580    // it to BT.
8581    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8582      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8583      if (NewSetCC.getNode()) {
8584        CC = NewSetCC.getOperand(0);
8585        Cond = NewSetCC.getOperand(1);
8586        addTest = false;
8587      }
8588    }
8589  }
8590
8591  if (addTest) {
8592    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8593    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8594  }
8595
8596  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8597  // a <  b ?  0 : -1 -> RES = setcc_carry
8598  // a >= b ? -1 :  0 -> RES = setcc_carry
8599  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8600  if (Cond.getOpcode() == X86ISD::CMP) {
8601    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8602
8603    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8604        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8605      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8606                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8607      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8608        return DAG.getNOT(DL, Res, Res.getValueType());
8609      return Res;
8610    }
8611  }
8612
8613  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8614  // condition is true.
8615  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8616  SDValue Ops[] = { Op2, Op1, CC, Cond };
8617  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8618}
8619
8620// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8621// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8622// from the AND / OR.
8623static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8624  Opc = Op.getOpcode();
8625  if (Opc != ISD::OR && Opc != ISD::AND)
8626    return false;
8627  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8628          Op.getOperand(0).hasOneUse() &&
8629          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8630          Op.getOperand(1).hasOneUse());
8631}
8632
8633// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8634// 1 and that the SETCC node has a single use.
8635static bool isXor1OfSetCC(SDValue Op) {
8636  if (Op.getOpcode() != ISD::XOR)
8637    return false;
8638  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8639  if (N1C && N1C->getAPIntValue() == 1) {
8640    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8641      Op.getOperand(0).hasOneUse();
8642  }
8643  return false;
8644}
8645
8646SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8647  bool addTest = true;
8648  SDValue Chain = Op.getOperand(0);
8649  SDValue Cond  = Op.getOperand(1);
8650  SDValue Dest  = Op.getOperand(2);
8651  DebugLoc dl = Op.getDebugLoc();
8652  SDValue CC;
8653
8654  if (Cond.getOpcode() == ISD::SETCC) {
8655    SDValue NewCond = LowerSETCC(Cond, DAG);
8656    if (NewCond.getNode())
8657      Cond = NewCond;
8658  }
8659#if 0
8660  // FIXME: LowerXALUO doesn't handle these!!
8661  else if (Cond.getOpcode() == X86ISD::ADD  ||
8662           Cond.getOpcode() == X86ISD::SUB  ||
8663           Cond.getOpcode() == X86ISD::SMUL ||
8664           Cond.getOpcode() == X86ISD::UMUL)
8665    Cond = LowerXALUO(Cond, DAG);
8666#endif
8667
8668  // Look pass (and (setcc_carry (cmp ...)), 1).
8669  if (Cond.getOpcode() == ISD::AND &&
8670      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8671    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8672    if (C && C->getAPIntValue() == 1)
8673      Cond = Cond.getOperand(0);
8674  }
8675
8676  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8677  // setting operand in place of the X86ISD::SETCC.
8678  if (Cond.getOpcode() == X86ISD::SETCC ||
8679      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8680    CC = Cond.getOperand(0);
8681
8682    SDValue Cmp = Cond.getOperand(1);
8683    unsigned Opc = Cmp.getOpcode();
8684    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8685    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8686      Cond = Cmp;
8687      addTest = false;
8688    } else {
8689      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8690      default: break;
8691      case X86::COND_O:
8692      case X86::COND_B:
8693        // These can only come from an arithmetic instruction with overflow,
8694        // e.g. SADDO, UADDO.
8695        Cond = Cond.getNode()->getOperand(1);
8696        addTest = false;
8697        break;
8698      }
8699    }
8700  } else {
8701    unsigned CondOpc;
8702    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8703      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8704      if (CondOpc == ISD::OR) {
8705        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8706        // two branches instead of an explicit OR instruction with a
8707        // separate test.
8708        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8709            isX86LogicalCmp(Cmp)) {
8710          CC = Cond.getOperand(0).getOperand(0);
8711          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8712                              Chain, Dest, CC, Cmp);
8713          CC = Cond.getOperand(1).getOperand(0);
8714          Cond = Cmp;
8715          addTest = false;
8716        }
8717      } else { // ISD::AND
8718        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8719        // two branches instead of an explicit AND instruction with a
8720        // separate test. However, we only do this if this block doesn't
8721        // have a fall-through edge, because this requires an explicit
8722        // jmp when the condition is false.
8723        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8724            isX86LogicalCmp(Cmp) &&
8725            Op.getNode()->hasOneUse()) {
8726          X86::CondCode CCode =
8727            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8728          CCode = X86::GetOppositeBranchCondition(CCode);
8729          CC = DAG.getConstant(CCode, MVT::i8);
8730          SDNode *User = *Op.getNode()->use_begin();
8731          // Look for an unconditional branch following this conditional branch.
8732          // We need this because we need to reverse the successors in order
8733          // to implement FCMP_OEQ.
8734          if (User->getOpcode() == ISD::BR) {
8735            SDValue FalseBB = User->getOperand(1);
8736            SDNode *NewBR =
8737              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8738            assert(NewBR == User);
8739            (void)NewBR;
8740            Dest = FalseBB;
8741
8742            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8743                                Chain, Dest, CC, Cmp);
8744            X86::CondCode CCode =
8745              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8746            CCode = X86::GetOppositeBranchCondition(CCode);
8747            CC = DAG.getConstant(CCode, MVT::i8);
8748            Cond = Cmp;
8749            addTest = false;
8750          }
8751        }
8752      }
8753    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8754      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8755      // It should be transformed during dag combiner except when the condition
8756      // is set by a arithmetics with overflow node.
8757      X86::CondCode CCode =
8758        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8759      CCode = X86::GetOppositeBranchCondition(CCode);
8760      CC = DAG.getConstant(CCode, MVT::i8);
8761      Cond = Cond.getOperand(0).getOperand(1);
8762      addTest = false;
8763    }
8764  }
8765
8766  if (addTest) {
8767    // Look pass the truncate.
8768    if (Cond.getOpcode() == ISD::TRUNCATE)
8769      Cond = Cond.getOperand(0);
8770
8771    // We know the result of AND is compared against zero. Try to match
8772    // it to BT.
8773    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8774      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8775      if (NewSetCC.getNode()) {
8776        CC = NewSetCC.getOperand(0);
8777        Cond = NewSetCC.getOperand(1);
8778        addTest = false;
8779      }
8780    }
8781  }
8782
8783  if (addTest) {
8784    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8785    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8786  }
8787  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8788                     Chain, Dest, CC, Cond);
8789}
8790
8791
8792// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8793// Calls to _alloca is needed to probe the stack when allocating more than 4k
8794// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8795// that the guard pages used by the OS virtual memory manager are allocated in
8796// correct sequence.
8797SDValue
8798X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8799                                           SelectionDAG &DAG) const {
8800  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8801         "This should be used only on Windows targets");
8802  assert(!Subtarget->isTargetEnvMacho());
8803  DebugLoc dl = Op.getDebugLoc();
8804
8805  // Get the inputs.
8806  SDValue Chain = Op.getOperand(0);
8807  SDValue Size  = Op.getOperand(1);
8808  // FIXME: Ensure alignment here
8809
8810  SDValue Flag;
8811
8812  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8813  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8814
8815  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8816  Flag = Chain.getValue(1);
8817
8818  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8819
8820  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8821  Flag = Chain.getValue(1);
8822
8823  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8824
8825  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8826  return DAG.getMergeValues(Ops1, 2, dl);
8827}
8828
8829SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8830  MachineFunction &MF = DAG.getMachineFunction();
8831  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8832
8833  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8834  DebugLoc DL = Op.getDebugLoc();
8835
8836  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8837    // vastart just stores the address of the VarArgsFrameIndex slot into the
8838    // memory location argument.
8839    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8840                                   getPointerTy());
8841    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8842                        MachinePointerInfo(SV), false, false, 0);
8843  }
8844
8845  // __va_list_tag:
8846  //   gp_offset         (0 - 6 * 8)
8847  //   fp_offset         (48 - 48 + 8 * 16)
8848  //   overflow_arg_area (point to parameters coming in memory).
8849  //   reg_save_area
8850  SmallVector<SDValue, 8> MemOps;
8851  SDValue FIN = Op.getOperand(1);
8852  // Store gp_offset
8853  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8854                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8855                                               MVT::i32),
8856                               FIN, MachinePointerInfo(SV), false, false, 0);
8857  MemOps.push_back(Store);
8858
8859  // Store fp_offset
8860  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8861                    FIN, DAG.getIntPtrConstant(4));
8862  Store = DAG.getStore(Op.getOperand(0), DL,
8863                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8864                                       MVT::i32),
8865                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8866  MemOps.push_back(Store);
8867
8868  // Store ptr to overflow_arg_area
8869  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8870                    FIN, DAG.getIntPtrConstant(4));
8871  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8872                                    getPointerTy());
8873  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8874                       MachinePointerInfo(SV, 8),
8875                       false, false, 0);
8876  MemOps.push_back(Store);
8877
8878  // Store ptr to reg_save_area.
8879  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8880                    FIN, DAG.getIntPtrConstant(8));
8881  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8882                                    getPointerTy());
8883  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8884                       MachinePointerInfo(SV, 16), false, false, 0);
8885  MemOps.push_back(Store);
8886  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8887                     &MemOps[0], MemOps.size());
8888}
8889
8890SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8891  assert(Subtarget->is64Bit() &&
8892         "LowerVAARG only handles 64-bit va_arg!");
8893  assert((Subtarget->isTargetLinux() ||
8894          Subtarget->isTargetDarwin()) &&
8895          "Unhandled target in LowerVAARG");
8896  assert(Op.getNode()->getNumOperands() == 4);
8897  SDValue Chain = Op.getOperand(0);
8898  SDValue SrcPtr = Op.getOperand(1);
8899  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8900  unsigned Align = Op.getConstantOperandVal(3);
8901  DebugLoc dl = Op.getDebugLoc();
8902
8903  EVT ArgVT = Op.getNode()->getValueType(0);
8904  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8905  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8906  uint8_t ArgMode;
8907
8908  // Decide which area this value should be read from.
8909  // TODO: Implement the AMD64 ABI in its entirety. This simple
8910  // selection mechanism works only for the basic types.
8911  if (ArgVT == MVT::f80) {
8912    llvm_unreachable("va_arg for f80 not yet implemented");
8913  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8914    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8915  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8916    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8917  } else {
8918    llvm_unreachable("Unhandled argument type in LowerVAARG");
8919  }
8920
8921  if (ArgMode == 2) {
8922    // Sanity Check: Make sure using fp_offset makes sense.
8923    assert(!UseSoftFloat &&
8924           !(DAG.getMachineFunction()
8925                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8926           Subtarget->hasXMM());
8927  }
8928
8929  // Insert VAARG_64 node into the DAG
8930  // VAARG_64 returns two values: Variable Argument Address, Chain
8931  SmallVector<SDValue, 11> InstOps;
8932  InstOps.push_back(Chain);
8933  InstOps.push_back(SrcPtr);
8934  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8935  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8936  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8937  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8938  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8939                                          VTs, &InstOps[0], InstOps.size(),
8940                                          MVT::i64,
8941                                          MachinePointerInfo(SV),
8942                                          /*Align=*/0,
8943                                          /*Volatile=*/false,
8944                                          /*ReadMem=*/true,
8945                                          /*WriteMem=*/true);
8946  Chain = VAARG.getValue(1);
8947
8948  // Load the next argument and return it
8949  return DAG.getLoad(ArgVT, dl,
8950                     Chain,
8951                     VAARG,
8952                     MachinePointerInfo(),
8953                     false, false, 0);
8954}
8955
8956SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8957  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8958  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8959  SDValue Chain = Op.getOperand(0);
8960  SDValue DstPtr = Op.getOperand(1);
8961  SDValue SrcPtr = Op.getOperand(2);
8962  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8963  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8964  DebugLoc DL = Op.getDebugLoc();
8965
8966  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8967                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8968                       false,
8969                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8970}
8971
8972SDValue
8973X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8974  DebugLoc dl = Op.getDebugLoc();
8975  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8976  switch (IntNo) {
8977  default: return SDValue();    // Don't custom lower most intrinsics.
8978  // Comparison intrinsics.
8979  case Intrinsic::x86_sse_comieq_ss:
8980  case Intrinsic::x86_sse_comilt_ss:
8981  case Intrinsic::x86_sse_comile_ss:
8982  case Intrinsic::x86_sse_comigt_ss:
8983  case Intrinsic::x86_sse_comige_ss:
8984  case Intrinsic::x86_sse_comineq_ss:
8985  case Intrinsic::x86_sse_ucomieq_ss:
8986  case Intrinsic::x86_sse_ucomilt_ss:
8987  case Intrinsic::x86_sse_ucomile_ss:
8988  case Intrinsic::x86_sse_ucomigt_ss:
8989  case Intrinsic::x86_sse_ucomige_ss:
8990  case Intrinsic::x86_sse_ucomineq_ss:
8991  case Intrinsic::x86_sse2_comieq_sd:
8992  case Intrinsic::x86_sse2_comilt_sd:
8993  case Intrinsic::x86_sse2_comile_sd:
8994  case Intrinsic::x86_sse2_comigt_sd:
8995  case Intrinsic::x86_sse2_comige_sd:
8996  case Intrinsic::x86_sse2_comineq_sd:
8997  case Intrinsic::x86_sse2_ucomieq_sd:
8998  case Intrinsic::x86_sse2_ucomilt_sd:
8999  case Intrinsic::x86_sse2_ucomile_sd:
9000  case Intrinsic::x86_sse2_ucomigt_sd:
9001  case Intrinsic::x86_sse2_ucomige_sd:
9002  case Intrinsic::x86_sse2_ucomineq_sd: {
9003    unsigned Opc = 0;
9004    ISD::CondCode CC = ISD::SETCC_INVALID;
9005    switch (IntNo) {
9006    default: break;
9007    case Intrinsic::x86_sse_comieq_ss:
9008    case Intrinsic::x86_sse2_comieq_sd:
9009      Opc = X86ISD::COMI;
9010      CC = ISD::SETEQ;
9011      break;
9012    case Intrinsic::x86_sse_comilt_ss:
9013    case Intrinsic::x86_sse2_comilt_sd:
9014      Opc = X86ISD::COMI;
9015      CC = ISD::SETLT;
9016      break;
9017    case Intrinsic::x86_sse_comile_ss:
9018    case Intrinsic::x86_sse2_comile_sd:
9019      Opc = X86ISD::COMI;
9020      CC = ISD::SETLE;
9021      break;
9022    case Intrinsic::x86_sse_comigt_ss:
9023    case Intrinsic::x86_sse2_comigt_sd:
9024      Opc = X86ISD::COMI;
9025      CC = ISD::SETGT;
9026      break;
9027    case Intrinsic::x86_sse_comige_ss:
9028    case Intrinsic::x86_sse2_comige_sd:
9029      Opc = X86ISD::COMI;
9030      CC = ISD::SETGE;
9031      break;
9032    case Intrinsic::x86_sse_comineq_ss:
9033    case Intrinsic::x86_sse2_comineq_sd:
9034      Opc = X86ISD::COMI;
9035      CC = ISD::SETNE;
9036      break;
9037    case Intrinsic::x86_sse_ucomieq_ss:
9038    case Intrinsic::x86_sse2_ucomieq_sd:
9039      Opc = X86ISD::UCOMI;
9040      CC = ISD::SETEQ;
9041      break;
9042    case Intrinsic::x86_sse_ucomilt_ss:
9043    case Intrinsic::x86_sse2_ucomilt_sd:
9044      Opc = X86ISD::UCOMI;
9045      CC = ISD::SETLT;
9046      break;
9047    case Intrinsic::x86_sse_ucomile_ss:
9048    case Intrinsic::x86_sse2_ucomile_sd:
9049      Opc = X86ISD::UCOMI;
9050      CC = ISD::SETLE;
9051      break;
9052    case Intrinsic::x86_sse_ucomigt_ss:
9053    case Intrinsic::x86_sse2_ucomigt_sd:
9054      Opc = X86ISD::UCOMI;
9055      CC = ISD::SETGT;
9056      break;
9057    case Intrinsic::x86_sse_ucomige_ss:
9058    case Intrinsic::x86_sse2_ucomige_sd:
9059      Opc = X86ISD::UCOMI;
9060      CC = ISD::SETGE;
9061      break;
9062    case Intrinsic::x86_sse_ucomineq_ss:
9063    case Intrinsic::x86_sse2_ucomineq_sd:
9064      Opc = X86ISD::UCOMI;
9065      CC = ISD::SETNE;
9066      break;
9067    }
9068
9069    SDValue LHS = Op.getOperand(1);
9070    SDValue RHS = Op.getOperand(2);
9071    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9072    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9073    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9074    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9075                                DAG.getConstant(X86CC, MVT::i8), Cond);
9076    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9077  }
9078  // ptest and testp intrinsics. The intrinsic these come from are designed to
9079  // return an integer value, not just an instruction so lower it to the ptest
9080  // or testp pattern and a setcc for the result.
9081  case Intrinsic::x86_sse41_ptestz:
9082  case Intrinsic::x86_sse41_ptestc:
9083  case Intrinsic::x86_sse41_ptestnzc:
9084  case Intrinsic::x86_avx_ptestz_256:
9085  case Intrinsic::x86_avx_ptestc_256:
9086  case Intrinsic::x86_avx_ptestnzc_256:
9087  case Intrinsic::x86_avx_vtestz_ps:
9088  case Intrinsic::x86_avx_vtestc_ps:
9089  case Intrinsic::x86_avx_vtestnzc_ps:
9090  case Intrinsic::x86_avx_vtestz_pd:
9091  case Intrinsic::x86_avx_vtestc_pd:
9092  case Intrinsic::x86_avx_vtestnzc_pd:
9093  case Intrinsic::x86_avx_vtestz_ps_256:
9094  case Intrinsic::x86_avx_vtestc_ps_256:
9095  case Intrinsic::x86_avx_vtestnzc_ps_256:
9096  case Intrinsic::x86_avx_vtestz_pd_256:
9097  case Intrinsic::x86_avx_vtestc_pd_256:
9098  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9099    bool IsTestPacked = false;
9100    unsigned X86CC = 0;
9101    switch (IntNo) {
9102    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9103    case Intrinsic::x86_avx_vtestz_ps:
9104    case Intrinsic::x86_avx_vtestz_pd:
9105    case Intrinsic::x86_avx_vtestz_ps_256:
9106    case Intrinsic::x86_avx_vtestz_pd_256:
9107      IsTestPacked = true; // Fallthrough
9108    case Intrinsic::x86_sse41_ptestz:
9109    case Intrinsic::x86_avx_ptestz_256:
9110      // ZF = 1
9111      X86CC = X86::COND_E;
9112      break;
9113    case Intrinsic::x86_avx_vtestc_ps:
9114    case Intrinsic::x86_avx_vtestc_pd:
9115    case Intrinsic::x86_avx_vtestc_ps_256:
9116    case Intrinsic::x86_avx_vtestc_pd_256:
9117      IsTestPacked = true; // Fallthrough
9118    case Intrinsic::x86_sse41_ptestc:
9119    case Intrinsic::x86_avx_ptestc_256:
9120      // CF = 1
9121      X86CC = X86::COND_B;
9122      break;
9123    case Intrinsic::x86_avx_vtestnzc_ps:
9124    case Intrinsic::x86_avx_vtestnzc_pd:
9125    case Intrinsic::x86_avx_vtestnzc_ps_256:
9126    case Intrinsic::x86_avx_vtestnzc_pd_256:
9127      IsTestPacked = true; // Fallthrough
9128    case Intrinsic::x86_sse41_ptestnzc:
9129    case Intrinsic::x86_avx_ptestnzc_256:
9130      // ZF and CF = 0
9131      X86CC = X86::COND_A;
9132      break;
9133    }
9134
9135    SDValue LHS = Op.getOperand(1);
9136    SDValue RHS = Op.getOperand(2);
9137    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9138    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9139    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9140    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9141    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9142  }
9143
9144  // Fix vector shift instructions where the last operand is a non-immediate
9145  // i32 value.
9146  case Intrinsic::x86_sse2_pslli_w:
9147  case Intrinsic::x86_sse2_pslli_d:
9148  case Intrinsic::x86_sse2_pslli_q:
9149  case Intrinsic::x86_sse2_psrli_w:
9150  case Intrinsic::x86_sse2_psrli_d:
9151  case Intrinsic::x86_sse2_psrli_q:
9152  case Intrinsic::x86_sse2_psrai_w:
9153  case Intrinsic::x86_sse2_psrai_d:
9154  case Intrinsic::x86_mmx_pslli_w:
9155  case Intrinsic::x86_mmx_pslli_d:
9156  case Intrinsic::x86_mmx_pslli_q:
9157  case Intrinsic::x86_mmx_psrli_w:
9158  case Intrinsic::x86_mmx_psrli_d:
9159  case Intrinsic::x86_mmx_psrli_q:
9160  case Intrinsic::x86_mmx_psrai_w:
9161  case Intrinsic::x86_mmx_psrai_d: {
9162    SDValue ShAmt = Op.getOperand(2);
9163    if (isa<ConstantSDNode>(ShAmt))
9164      return SDValue();
9165
9166    unsigned NewIntNo = 0;
9167    EVT ShAmtVT = MVT::v4i32;
9168    switch (IntNo) {
9169    case Intrinsic::x86_sse2_pslli_w:
9170      NewIntNo = Intrinsic::x86_sse2_psll_w;
9171      break;
9172    case Intrinsic::x86_sse2_pslli_d:
9173      NewIntNo = Intrinsic::x86_sse2_psll_d;
9174      break;
9175    case Intrinsic::x86_sse2_pslli_q:
9176      NewIntNo = Intrinsic::x86_sse2_psll_q;
9177      break;
9178    case Intrinsic::x86_sse2_psrli_w:
9179      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9180      break;
9181    case Intrinsic::x86_sse2_psrli_d:
9182      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9183      break;
9184    case Intrinsic::x86_sse2_psrli_q:
9185      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9186      break;
9187    case Intrinsic::x86_sse2_psrai_w:
9188      NewIntNo = Intrinsic::x86_sse2_psra_w;
9189      break;
9190    case Intrinsic::x86_sse2_psrai_d:
9191      NewIntNo = Intrinsic::x86_sse2_psra_d;
9192      break;
9193    default: {
9194      ShAmtVT = MVT::v2i32;
9195      switch (IntNo) {
9196      case Intrinsic::x86_mmx_pslli_w:
9197        NewIntNo = Intrinsic::x86_mmx_psll_w;
9198        break;
9199      case Intrinsic::x86_mmx_pslli_d:
9200        NewIntNo = Intrinsic::x86_mmx_psll_d;
9201        break;
9202      case Intrinsic::x86_mmx_pslli_q:
9203        NewIntNo = Intrinsic::x86_mmx_psll_q;
9204        break;
9205      case Intrinsic::x86_mmx_psrli_w:
9206        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9207        break;
9208      case Intrinsic::x86_mmx_psrli_d:
9209        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9210        break;
9211      case Intrinsic::x86_mmx_psrli_q:
9212        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9213        break;
9214      case Intrinsic::x86_mmx_psrai_w:
9215        NewIntNo = Intrinsic::x86_mmx_psra_w;
9216        break;
9217      case Intrinsic::x86_mmx_psrai_d:
9218        NewIntNo = Intrinsic::x86_mmx_psra_d;
9219        break;
9220      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9221      }
9222      break;
9223    }
9224    }
9225
9226    // The vector shift intrinsics with scalars uses 32b shift amounts but
9227    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9228    // to be zero.
9229    SDValue ShOps[4];
9230    ShOps[0] = ShAmt;
9231    ShOps[1] = DAG.getConstant(0, MVT::i32);
9232    if (ShAmtVT == MVT::v4i32) {
9233      ShOps[2] = DAG.getUNDEF(MVT::i32);
9234      ShOps[3] = DAG.getUNDEF(MVT::i32);
9235      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9236    } else {
9237      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9238// FIXME this must be lowered to get rid of the invalid type.
9239    }
9240
9241    EVT VT = Op.getValueType();
9242    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9243    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9244                       DAG.getConstant(NewIntNo, MVT::i32),
9245                       Op.getOperand(1), ShAmt);
9246  }
9247  }
9248}
9249
9250SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9251                                           SelectionDAG &DAG) const {
9252  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9253  MFI->setReturnAddressIsTaken(true);
9254
9255  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9256  DebugLoc dl = Op.getDebugLoc();
9257
9258  if (Depth > 0) {
9259    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9260    SDValue Offset =
9261      DAG.getConstant(TD->getPointerSize(),
9262                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9263    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9264                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9265                                   FrameAddr, Offset),
9266                       MachinePointerInfo(), false, false, 0);
9267  }
9268
9269  // Just load the return address.
9270  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9271  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9272                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9273}
9274
9275SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9276  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9277  MFI->setFrameAddressIsTaken(true);
9278
9279  EVT VT = Op.getValueType();
9280  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9281  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9282  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9283  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9284  while (Depth--)
9285    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9286                            MachinePointerInfo(),
9287                            false, false, 0);
9288  return FrameAddr;
9289}
9290
9291SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9292                                                     SelectionDAG &DAG) const {
9293  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9294}
9295
9296SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9297  MachineFunction &MF = DAG.getMachineFunction();
9298  SDValue Chain     = Op.getOperand(0);
9299  SDValue Offset    = Op.getOperand(1);
9300  SDValue Handler   = Op.getOperand(2);
9301  DebugLoc dl       = Op.getDebugLoc();
9302
9303  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9304                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9305                                     getPointerTy());
9306  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9307
9308  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9309                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9310  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9311  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9312                       false, false, 0);
9313  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9314  MF.getRegInfo().addLiveOut(StoreAddrReg);
9315
9316  return DAG.getNode(X86ISD::EH_RETURN, dl,
9317                     MVT::Other,
9318                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9319}
9320
9321SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
9322                                             SelectionDAG &DAG) const {
9323  SDValue Root = Op.getOperand(0);
9324  SDValue Trmp = Op.getOperand(1); // trampoline
9325  SDValue FPtr = Op.getOperand(2); // nested function
9326  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9327  DebugLoc dl  = Op.getDebugLoc();
9328
9329  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9330
9331  if (Subtarget->is64Bit()) {
9332    SDValue OutChains[6];
9333
9334    // Large code-model.
9335    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9336    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9337
9338    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9339    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9340
9341    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9342
9343    // Load the pointer to the nested function into R11.
9344    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9345    SDValue Addr = Trmp;
9346    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9347                                Addr, MachinePointerInfo(TrmpAddr),
9348                                false, false, 0);
9349
9350    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9351                       DAG.getConstant(2, MVT::i64));
9352    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9353                                MachinePointerInfo(TrmpAddr, 2),
9354                                false, false, 2);
9355
9356    // Load the 'nest' parameter value into R10.
9357    // R10 is specified in X86CallingConv.td
9358    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9359    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9360                       DAG.getConstant(10, MVT::i64));
9361    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9362                                Addr, MachinePointerInfo(TrmpAddr, 10),
9363                                false, false, 0);
9364
9365    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9366                       DAG.getConstant(12, MVT::i64));
9367    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9368                                MachinePointerInfo(TrmpAddr, 12),
9369                                false, false, 2);
9370
9371    // Jump to the nested function.
9372    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9373    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9374                       DAG.getConstant(20, MVT::i64));
9375    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9376                                Addr, MachinePointerInfo(TrmpAddr, 20),
9377                                false, false, 0);
9378
9379    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9380    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9381                       DAG.getConstant(22, MVT::i64));
9382    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9383                                MachinePointerInfo(TrmpAddr, 22),
9384                                false, false, 0);
9385
9386    SDValue Ops[] =
9387      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
9388    return DAG.getMergeValues(Ops, 2, dl);
9389  } else {
9390    const Function *Func =
9391      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9392    CallingConv::ID CC = Func->getCallingConv();
9393    unsigned NestReg;
9394
9395    switch (CC) {
9396    default:
9397      llvm_unreachable("Unsupported calling convention");
9398    case CallingConv::C:
9399    case CallingConv::X86_StdCall: {
9400      // Pass 'nest' parameter in ECX.
9401      // Must be kept in sync with X86CallingConv.td
9402      NestReg = X86::ECX;
9403
9404      // Check that ECX wasn't needed by an 'inreg' parameter.
9405      FunctionType *FTy = Func->getFunctionType();
9406      const AttrListPtr &Attrs = Func->getAttributes();
9407
9408      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9409        unsigned InRegCount = 0;
9410        unsigned Idx = 1;
9411
9412        for (FunctionType::param_iterator I = FTy->param_begin(),
9413             E = FTy->param_end(); I != E; ++I, ++Idx)
9414          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9415            // FIXME: should only count parameters that are lowered to integers.
9416            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9417
9418        if (InRegCount > 2) {
9419          report_fatal_error("Nest register in use - reduce number of inreg"
9420                             " parameters!");
9421        }
9422      }
9423      break;
9424    }
9425    case CallingConv::X86_FastCall:
9426    case CallingConv::X86_ThisCall:
9427    case CallingConv::Fast:
9428      // Pass 'nest' parameter in EAX.
9429      // Must be kept in sync with X86CallingConv.td
9430      NestReg = X86::EAX;
9431      break;
9432    }
9433
9434    SDValue OutChains[4];
9435    SDValue Addr, Disp;
9436
9437    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9438                       DAG.getConstant(10, MVT::i32));
9439    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9440
9441    // This is storing the opcode for MOV32ri.
9442    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9443    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9444    OutChains[0] = DAG.getStore(Root, dl,
9445                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9446                                Trmp, MachinePointerInfo(TrmpAddr),
9447                                false, false, 0);
9448
9449    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9450                       DAG.getConstant(1, MVT::i32));
9451    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9452                                MachinePointerInfo(TrmpAddr, 1),
9453                                false, false, 1);
9454
9455    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9456    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9457                       DAG.getConstant(5, MVT::i32));
9458    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9459                                MachinePointerInfo(TrmpAddr, 5),
9460                                false, false, 1);
9461
9462    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9463                       DAG.getConstant(6, MVT::i32));
9464    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9465                                MachinePointerInfo(TrmpAddr, 6),
9466                                false, false, 1);
9467
9468    SDValue Ops[] =
9469      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
9470    return DAG.getMergeValues(Ops, 2, dl);
9471  }
9472}
9473
9474SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9475                                            SelectionDAG &DAG) const {
9476  /*
9477   The rounding mode is in bits 11:10 of FPSR, and has the following
9478   settings:
9479     00 Round to nearest
9480     01 Round to -inf
9481     10 Round to +inf
9482     11 Round to 0
9483
9484  FLT_ROUNDS, on the other hand, expects the following:
9485    -1 Undefined
9486     0 Round to 0
9487     1 Round to nearest
9488     2 Round to +inf
9489     3 Round to -inf
9490
9491  To perform the conversion, we do:
9492    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9493  */
9494
9495  MachineFunction &MF = DAG.getMachineFunction();
9496  const TargetMachine &TM = MF.getTarget();
9497  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9498  unsigned StackAlignment = TFI.getStackAlignment();
9499  EVT VT = Op.getValueType();
9500  DebugLoc DL = Op.getDebugLoc();
9501
9502  // Save FP Control Word to stack slot
9503  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9504  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9505
9506
9507  MachineMemOperand *MMO =
9508   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9509                           MachineMemOperand::MOStore, 2, 2);
9510
9511  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9512  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9513                                          DAG.getVTList(MVT::Other),
9514                                          Ops, 2, MVT::i16, MMO);
9515
9516  // Load FP Control Word from stack slot
9517  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9518                            MachinePointerInfo(), false, false, 0);
9519
9520  // Transform as necessary
9521  SDValue CWD1 =
9522    DAG.getNode(ISD::SRL, DL, MVT::i16,
9523                DAG.getNode(ISD::AND, DL, MVT::i16,
9524                            CWD, DAG.getConstant(0x800, MVT::i16)),
9525                DAG.getConstant(11, MVT::i8));
9526  SDValue CWD2 =
9527    DAG.getNode(ISD::SRL, DL, MVT::i16,
9528                DAG.getNode(ISD::AND, DL, MVT::i16,
9529                            CWD, DAG.getConstant(0x400, MVT::i16)),
9530                DAG.getConstant(9, MVT::i8));
9531
9532  SDValue RetVal =
9533    DAG.getNode(ISD::AND, DL, MVT::i16,
9534                DAG.getNode(ISD::ADD, DL, MVT::i16,
9535                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9536                            DAG.getConstant(1, MVT::i16)),
9537                DAG.getConstant(3, MVT::i16));
9538
9539
9540  return DAG.getNode((VT.getSizeInBits() < 16 ?
9541                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9542}
9543
9544SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9545  EVT VT = Op.getValueType();
9546  EVT OpVT = VT;
9547  unsigned NumBits = VT.getSizeInBits();
9548  DebugLoc dl = Op.getDebugLoc();
9549
9550  Op = Op.getOperand(0);
9551  if (VT == MVT::i8) {
9552    // Zero extend to i32 since there is not an i8 bsr.
9553    OpVT = MVT::i32;
9554    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9555  }
9556
9557  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9558  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9559  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9560
9561  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9562  SDValue Ops[] = {
9563    Op,
9564    DAG.getConstant(NumBits+NumBits-1, OpVT),
9565    DAG.getConstant(X86::COND_E, MVT::i8),
9566    Op.getValue(1)
9567  };
9568  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9569
9570  // Finally xor with NumBits-1.
9571  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9572
9573  if (VT == MVT::i8)
9574    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9575  return Op;
9576}
9577
9578SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9579  EVT VT = Op.getValueType();
9580  EVT OpVT = VT;
9581  unsigned NumBits = VT.getSizeInBits();
9582  DebugLoc dl = Op.getDebugLoc();
9583
9584  Op = Op.getOperand(0);
9585  if (VT == MVT::i8) {
9586    OpVT = MVT::i32;
9587    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9588  }
9589
9590  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9591  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9592  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9593
9594  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9595  SDValue Ops[] = {
9596    Op,
9597    DAG.getConstant(NumBits, OpVT),
9598    DAG.getConstant(X86::COND_E, MVT::i8),
9599    Op.getValue(1)
9600  };
9601  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9602
9603  if (VT == MVT::i8)
9604    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9605  return Op;
9606}
9607
9608// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9609// ones, and then concatenate the result back.
9610static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9611  EVT VT = Op.getValueType();
9612
9613  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9614         "Unsupported value type for operation");
9615
9616  int NumElems = VT.getVectorNumElements();
9617  DebugLoc dl = Op.getDebugLoc();
9618  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9619  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9620
9621  // Extract the LHS vectors
9622  SDValue LHS = Op.getOperand(0);
9623  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9624  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9625
9626  // Extract the RHS vectors
9627  SDValue RHS = Op.getOperand(1);
9628  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9629  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9630
9631  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9632  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9633
9634  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9635                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9636                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9637}
9638
9639SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9640  assert(Op.getValueType().getSizeInBits() == 256 &&
9641         Op.getValueType().isInteger() &&
9642         "Only handle AVX 256-bit vector integer operation");
9643  return Lower256IntArith(Op, DAG);
9644}
9645
9646SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9647  assert(Op.getValueType().getSizeInBits() == 256 &&
9648         Op.getValueType().isInteger() &&
9649         "Only handle AVX 256-bit vector integer operation");
9650  return Lower256IntArith(Op, DAG);
9651}
9652
9653SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9654  EVT VT = Op.getValueType();
9655
9656  // Decompose 256-bit ops into smaller 128-bit ops.
9657  if (VT.getSizeInBits() == 256)
9658    return Lower256IntArith(Op, DAG);
9659
9660  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9661  DebugLoc dl = Op.getDebugLoc();
9662
9663  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9664  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9665  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9666  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9667  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9668  //
9669  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9670  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9671  //  return AloBlo + AloBhi + AhiBlo;
9672
9673  SDValue A = Op.getOperand(0);
9674  SDValue B = Op.getOperand(1);
9675
9676  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9677                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9678                       A, DAG.getConstant(32, MVT::i32));
9679  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9680                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9681                       B, DAG.getConstant(32, MVT::i32));
9682  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9683                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9684                       A, B);
9685  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9686                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9687                       A, Bhi);
9688  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9689                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9690                       Ahi, B);
9691  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9692                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9693                       AloBhi, DAG.getConstant(32, MVT::i32));
9694  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9695                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9696                       AhiBlo, DAG.getConstant(32, MVT::i32));
9697  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9698  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9699  return Res;
9700}
9701
9702SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9703
9704  EVT VT = Op.getValueType();
9705  DebugLoc dl = Op.getDebugLoc();
9706  SDValue R = Op.getOperand(0);
9707  SDValue Amt = Op.getOperand(1);
9708  LLVMContext *Context = DAG.getContext();
9709
9710  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
9711    return SDValue();
9712
9713  // Decompose 256-bit shifts into smaller 128-bit shifts.
9714  if (VT.getSizeInBits() == 256) {
9715    int NumElems = VT.getVectorNumElements();
9716    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9717    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9718
9719    // Extract the two vectors
9720    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9721    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9722                                     DAG, dl);
9723
9724    // Recreate the shift amount vectors
9725    SDValue Amt1, Amt2;
9726    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9727      // Constant shift amount
9728      SmallVector<SDValue, 4> Amt1Csts;
9729      SmallVector<SDValue, 4> Amt2Csts;
9730      for (int i = 0; i < NumElems/2; ++i)
9731        Amt1Csts.push_back(Amt->getOperand(i));
9732      for (int i = NumElems/2; i < NumElems; ++i)
9733        Amt2Csts.push_back(Amt->getOperand(i));
9734
9735      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9736                                 &Amt1Csts[0], NumElems/2);
9737      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9738                                 &Amt2Csts[0], NumElems/2);
9739    } else {
9740      // Variable shift amount
9741      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9742      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9743                                 DAG, dl);
9744    }
9745
9746    // Issue new vector shifts for the smaller types
9747    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9748    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9749
9750    // Concatenate the result back
9751    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9752  }
9753
9754  // Optimize shl/srl/sra with constant shift amount.
9755  if (isSplatVector(Amt.getNode())) {
9756    SDValue SclrAmt = Amt->getOperand(0);
9757    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9758      uint64_t ShiftAmt = C->getZExtValue();
9759
9760      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9761       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9762                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9763                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9764
9765      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9766       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9767                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9768                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9769
9770      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9771       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9772                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9773                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9774
9775      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9776       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9777                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9778                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9779
9780      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9781       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9782                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9783                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9784
9785      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9786       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9787                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9788                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9789
9790      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9791       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9792                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9793                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9794
9795      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9796       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9797                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9798                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9799    }
9800  }
9801
9802  // Lower SHL with variable shift amount.
9803  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9804    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9805                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9806                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9807
9808    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9809
9810    std::vector<Constant*> CV(4, CI);
9811    Constant *C = ConstantVector::get(CV);
9812    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9813    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9814                                 MachinePointerInfo::getConstantPool(),
9815                                 false, false, 16);
9816
9817    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9818    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9819    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9820    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9821  }
9822  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9823    // a = a << 5;
9824    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9825                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9826                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9827
9828    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9829    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9830
9831    std::vector<Constant*> CVM1(16, CM1);
9832    std::vector<Constant*> CVM2(16, CM2);
9833    Constant *C = ConstantVector::get(CVM1);
9834    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9835    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9836                            MachinePointerInfo::getConstantPool(),
9837                            false, false, 16);
9838
9839    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9840    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9841    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9842                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9843                    DAG.getConstant(4, MVT::i32));
9844    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9845    // a += a
9846    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9847
9848    C = ConstantVector::get(CVM2);
9849    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9850    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9851                    MachinePointerInfo::getConstantPool(),
9852                    false, false, 16);
9853
9854    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9855    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9856    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9857                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9858                    DAG.getConstant(2, MVT::i32));
9859    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9860    // a += a
9861    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9862
9863    // return pblendv(r, r+r, a);
9864    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9865                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9866    return R;
9867  }
9868  return SDValue();
9869}
9870
9871SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9872  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9873  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9874  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9875  // has only one use.
9876  SDNode *N = Op.getNode();
9877  SDValue LHS = N->getOperand(0);
9878  SDValue RHS = N->getOperand(1);
9879  unsigned BaseOp = 0;
9880  unsigned Cond = 0;
9881  DebugLoc DL = Op.getDebugLoc();
9882  switch (Op.getOpcode()) {
9883  default: llvm_unreachable("Unknown ovf instruction!");
9884  case ISD::SADDO:
9885    // A subtract of one will be selected as a INC. Note that INC doesn't
9886    // set CF, so we can't do this for UADDO.
9887    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9888      if (C->isOne()) {
9889        BaseOp = X86ISD::INC;
9890        Cond = X86::COND_O;
9891        break;
9892      }
9893    BaseOp = X86ISD::ADD;
9894    Cond = X86::COND_O;
9895    break;
9896  case ISD::UADDO:
9897    BaseOp = X86ISD::ADD;
9898    Cond = X86::COND_B;
9899    break;
9900  case ISD::SSUBO:
9901    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9902    // set CF, so we can't do this for USUBO.
9903    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9904      if (C->isOne()) {
9905        BaseOp = X86ISD::DEC;
9906        Cond = X86::COND_O;
9907        break;
9908      }
9909    BaseOp = X86ISD::SUB;
9910    Cond = X86::COND_O;
9911    break;
9912  case ISD::USUBO:
9913    BaseOp = X86ISD::SUB;
9914    Cond = X86::COND_B;
9915    break;
9916  case ISD::SMULO:
9917    BaseOp = X86ISD::SMUL;
9918    Cond = X86::COND_O;
9919    break;
9920  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9921    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9922                                 MVT::i32);
9923    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9924
9925    SDValue SetCC =
9926      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9927                  DAG.getConstant(X86::COND_O, MVT::i32),
9928                  SDValue(Sum.getNode(), 2));
9929
9930    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9931  }
9932  }
9933
9934  // Also sets EFLAGS.
9935  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9936  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9937
9938  SDValue SetCC =
9939    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9940                DAG.getConstant(Cond, MVT::i32),
9941                SDValue(Sum.getNode(), 1));
9942
9943  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9944}
9945
9946SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9947  DebugLoc dl = Op.getDebugLoc();
9948  SDNode* Node = Op.getNode();
9949  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9950  EVT VT = Node->getValueType(0);
9951
9952  if (Subtarget->hasSSE2() && VT.isVector()) {
9953    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9954                        ExtraVT.getScalarType().getSizeInBits();
9955    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9956
9957    unsigned SHLIntrinsicsID = 0;
9958    unsigned SRAIntrinsicsID = 0;
9959    switch (VT.getSimpleVT().SimpleTy) {
9960      default:
9961        return SDValue();
9962      case MVT::v2i64: {
9963        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
9964        SRAIntrinsicsID = 0;
9965        break;
9966      }
9967      case MVT::v4i32: {
9968        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
9969        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
9970        break;
9971      }
9972      case MVT::v8i16: {
9973        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
9974        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
9975        break;
9976      }
9977    }
9978
9979    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9980                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
9981                         Node->getOperand(0), ShAmt);
9982
9983    // In case of 1 bit sext, no need to shr
9984    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
9985
9986    if (SRAIntrinsicsID) {
9987      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9988                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
9989                         Tmp1, ShAmt);
9990    }
9991    return Tmp1;
9992  }
9993
9994  return SDValue();
9995}
9996
9997
9998SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9999  DebugLoc dl = Op.getDebugLoc();
10000
10001  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10002  // There isn't any reason to disable it if the target processor supports it.
10003  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10004    SDValue Chain = Op.getOperand(0);
10005    SDValue Zero = DAG.getConstant(0, MVT::i32);
10006    SDValue Ops[] = {
10007      DAG.getRegister(X86::ESP, MVT::i32), // Base
10008      DAG.getTargetConstant(1, MVT::i8),   // Scale
10009      DAG.getRegister(0, MVT::i32),        // Index
10010      DAG.getTargetConstant(0, MVT::i32),  // Disp
10011      DAG.getRegister(0, MVT::i32),        // Segment.
10012      Zero,
10013      Chain
10014    };
10015    SDNode *Res =
10016      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10017                          array_lengthof(Ops));
10018    return SDValue(Res, 0);
10019  }
10020
10021  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10022  if (!isDev)
10023    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10024
10025  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10026  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10027  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10028  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10029
10030  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10031  if (!Op1 && !Op2 && !Op3 && Op4)
10032    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10033
10034  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10035  if (Op1 && !Op2 && !Op3 && !Op4)
10036    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10037
10038  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10039  //           (MFENCE)>;
10040  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10041}
10042
10043SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10044                                             SelectionDAG &DAG) const {
10045  DebugLoc dl = Op.getDebugLoc();
10046  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10047    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10048  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10049    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10050
10051  // The only fence that needs an instruction is a sequentially-consistent
10052  // cross-thread fence.
10053  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10054    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10055    // no-sse2). There isn't any reason to disable it if the target processor
10056    // supports it.
10057    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10058      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10059
10060    SDValue Chain = Op.getOperand(0);
10061    SDValue Zero = DAG.getConstant(0, MVT::i32);
10062    SDValue Ops[] = {
10063      DAG.getRegister(X86::ESP, MVT::i32), // Base
10064      DAG.getTargetConstant(1, MVT::i8),   // Scale
10065      DAG.getRegister(0, MVT::i32),        // Index
10066      DAG.getTargetConstant(0, MVT::i32),  // Disp
10067      DAG.getRegister(0, MVT::i32),        // Segment.
10068      Zero,
10069      Chain
10070    };
10071    SDNode *Res =
10072      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10073                         array_lengthof(Ops));
10074    return SDValue(Res, 0);
10075  }
10076
10077  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10078  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10079}
10080
10081
10082SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10083  EVT T = Op.getValueType();
10084  DebugLoc DL = Op.getDebugLoc();
10085  unsigned Reg = 0;
10086  unsigned size = 0;
10087  switch(T.getSimpleVT().SimpleTy) {
10088  default:
10089    assert(false && "Invalid value type!");
10090  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10091  case MVT::i16: Reg = X86::AX;  size = 2; break;
10092  case MVT::i32: Reg = X86::EAX; size = 4; break;
10093  case MVT::i64:
10094    assert(Subtarget->is64Bit() && "Node not type legal!");
10095    Reg = X86::RAX; size = 8;
10096    break;
10097  }
10098  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10099                                    Op.getOperand(2), SDValue());
10100  SDValue Ops[] = { cpIn.getValue(0),
10101                    Op.getOperand(1),
10102                    Op.getOperand(3),
10103                    DAG.getTargetConstant(size, MVT::i8),
10104                    cpIn.getValue(1) };
10105  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10106  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10107  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10108                                           Ops, 5, T, MMO);
10109  SDValue cpOut =
10110    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10111  return cpOut;
10112}
10113
10114SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10115                                                 SelectionDAG &DAG) const {
10116  assert(Subtarget->is64Bit() && "Result not type legalized?");
10117  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10118  SDValue TheChain = Op.getOperand(0);
10119  DebugLoc dl = Op.getDebugLoc();
10120  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10121  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10122  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10123                                   rax.getValue(2));
10124  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10125                            DAG.getConstant(32, MVT::i8));
10126  SDValue Ops[] = {
10127    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10128    rdx.getValue(1)
10129  };
10130  return DAG.getMergeValues(Ops, 2, dl);
10131}
10132
10133SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10134                                            SelectionDAG &DAG) const {
10135  EVT SrcVT = Op.getOperand(0).getValueType();
10136  EVT DstVT = Op.getValueType();
10137  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10138         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10139  assert((DstVT == MVT::i64 ||
10140          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10141         "Unexpected custom BITCAST");
10142  // i64 <=> MMX conversions are Legal.
10143  if (SrcVT==MVT::i64 && DstVT.isVector())
10144    return Op;
10145  if (DstVT==MVT::i64 && SrcVT.isVector())
10146    return Op;
10147  // MMX <=> MMX conversions are Legal.
10148  if (SrcVT.isVector() && DstVT.isVector())
10149    return Op;
10150  // All other conversions need to be expanded.
10151  return SDValue();
10152}
10153
10154SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10155  SDNode *Node = Op.getNode();
10156  DebugLoc dl = Node->getDebugLoc();
10157  EVT T = Node->getValueType(0);
10158  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10159                              DAG.getConstant(0, T), Node->getOperand(2));
10160  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10161                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10162                       Node->getOperand(0),
10163                       Node->getOperand(1), negOp,
10164                       cast<AtomicSDNode>(Node)->getSrcValue(),
10165                       cast<AtomicSDNode>(Node)->getAlignment(),
10166                       cast<AtomicSDNode>(Node)->getOrdering(),
10167                       cast<AtomicSDNode>(Node)->getSynchScope());
10168}
10169
10170static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10171  SDNode *Node = Op.getNode();
10172  DebugLoc dl = Node->getDebugLoc();
10173  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10174
10175  // Convert seq_cst store -> xchg
10176  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10177  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10178  //        (The only way to get a 16-byte store is cmpxchg16b)
10179  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10180  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10181      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10182    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10183                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10184                                 Node->getOperand(0),
10185                                 Node->getOperand(1), Node->getOperand(2),
10186                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10187                                 cast<AtomicSDNode>(Node)->getOrdering(),
10188                                 cast<AtomicSDNode>(Node)->getSynchScope());
10189    return Swap.getValue(1);
10190  }
10191  // Other atomic stores have a simple pattern.
10192  return Op;
10193}
10194
10195static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10196  EVT VT = Op.getNode()->getValueType(0);
10197
10198  // Let legalize expand this if it isn't a legal type yet.
10199  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10200    return SDValue();
10201
10202  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10203
10204  unsigned Opc;
10205  bool ExtraOp = false;
10206  switch (Op.getOpcode()) {
10207  default: assert(0 && "Invalid code");
10208  case ISD::ADDC: Opc = X86ISD::ADD; break;
10209  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10210  case ISD::SUBC: Opc = X86ISD::SUB; break;
10211  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10212  }
10213
10214  if (!ExtraOp)
10215    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10216                       Op.getOperand(1));
10217  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10218                     Op.getOperand(1), Op.getOperand(2));
10219}
10220
10221/// LowerOperation - Provide custom lowering hooks for some operations.
10222///
10223SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10224  switch (Op.getOpcode()) {
10225  default: llvm_unreachable("Should not custom lower this!");
10226  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10227  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10228  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10229  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10230  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10231  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10232  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10233  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10234  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10235  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10236  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10237  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10238  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10239  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10240  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10241  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10242  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10243  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10244  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10245  case ISD::SHL_PARTS:
10246  case ISD::SRA_PARTS:
10247  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10248  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10249  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10250  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10251  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10252  case ISD::FABS:               return LowerFABS(Op, DAG);
10253  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10254  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10255  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10256  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10257  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
10258  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10259  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10260  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10261  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10262  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10263  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10264  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10265  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10266  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10267  case ISD::FRAME_TO_ARGS_OFFSET:
10268                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10269  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10270  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10271  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
10272  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10273  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10274  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10275  case ISD::MUL:                return LowerMUL(Op, DAG);
10276  case ISD::SRA:
10277  case ISD::SRL:
10278  case ISD::SHL:                return LowerShift(Op, DAG);
10279  case ISD::SADDO:
10280  case ISD::UADDO:
10281  case ISD::SSUBO:
10282  case ISD::USUBO:
10283  case ISD::SMULO:
10284  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10285  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10286  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10287  case ISD::ADDC:
10288  case ISD::ADDE:
10289  case ISD::SUBC:
10290  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10291  case ISD::ADD:                return LowerADD(Op, DAG);
10292  case ISD::SUB:                return LowerSUB(Op, DAG);
10293  }
10294}
10295
10296static void ReplaceATOMIC_LOAD(SDNode *Node,
10297                                  SmallVectorImpl<SDValue> &Results,
10298                                  SelectionDAG &DAG) {
10299  DebugLoc dl = Node->getDebugLoc();
10300  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10301
10302  // Convert wide load -> cmpxchg8b/cmpxchg16b
10303  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10304  //        (The only way to get a 16-byte load is cmpxchg16b)
10305  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10306  SDValue Zero = DAG.getConstant(0, cast<AtomicSDNode>(Node)->getMemoryVT());
10307  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
10308                               cast<AtomicSDNode>(Node)->getMemoryVT(),
10309                               Node->getOperand(0),
10310                               Node->getOperand(1), Zero, Zero,
10311                               cast<AtomicSDNode>(Node)->getMemOperand(),
10312                               cast<AtomicSDNode>(Node)->getOrdering(),
10313                               cast<AtomicSDNode>(Node)->getSynchScope());
10314  Results.push_back(Swap.getValue(0));
10315  Results.push_back(Swap.getValue(1));
10316}
10317
10318void X86TargetLowering::
10319ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10320                        SelectionDAG &DAG, unsigned NewOp) const {
10321  EVT T = Node->getValueType(0);
10322  DebugLoc dl = Node->getDebugLoc();
10323  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
10324
10325  SDValue Chain = Node->getOperand(0);
10326  SDValue In1 = Node->getOperand(1);
10327  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10328                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10329  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10330                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10331  SDValue Ops[] = { Chain, In1, In2L, In2H };
10332  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10333  SDValue Result =
10334    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10335                            cast<MemSDNode>(Node)->getMemOperand());
10336  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10337  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10338  Results.push_back(Result.getValue(2));
10339}
10340
10341/// ReplaceNodeResults - Replace a node with an illegal result type
10342/// with a new node built out of custom code.
10343void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10344                                           SmallVectorImpl<SDValue>&Results,
10345                                           SelectionDAG &DAG) const {
10346  DebugLoc dl = N->getDebugLoc();
10347  switch (N->getOpcode()) {
10348  default:
10349    assert(false && "Do not know how to custom type legalize this operation!");
10350    return;
10351  case ISD::SIGN_EXTEND_INREG:
10352  case ISD::ADDC:
10353  case ISD::ADDE:
10354  case ISD::SUBC:
10355  case ISD::SUBE:
10356    // We don't want to expand or promote these.
10357    return;
10358  case ISD::FP_TO_SINT: {
10359    std::pair<SDValue,SDValue> Vals =
10360        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10361    SDValue FIST = Vals.first, StackSlot = Vals.second;
10362    if (FIST.getNode() != 0) {
10363      EVT VT = N->getValueType(0);
10364      // Return a load from the stack slot.
10365      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10366                                    MachinePointerInfo(), false, false, 0));
10367    }
10368    return;
10369  }
10370  case ISD::READCYCLECOUNTER: {
10371    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10372    SDValue TheChain = N->getOperand(0);
10373    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10374    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10375                                     rd.getValue(1));
10376    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10377                                     eax.getValue(2));
10378    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10379    SDValue Ops[] = { eax, edx };
10380    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10381    Results.push_back(edx.getValue(1));
10382    return;
10383  }
10384  case ISD::ATOMIC_CMP_SWAP: {
10385    EVT T = N->getValueType(0);
10386    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
10387    SDValue cpInL, cpInH;
10388    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
10389                        DAG.getConstant(0, MVT::i32));
10390    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
10391                        DAG.getConstant(1, MVT::i32));
10392    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
10393    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
10394                             cpInL.getValue(1));
10395    SDValue swapInL, swapInH;
10396    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
10397                          DAG.getConstant(0, MVT::i32));
10398    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
10399                          DAG.getConstant(1, MVT::i32));
10400    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
10401                               cpInH.getValue(1));
10402    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
10403                               swapInL.getValue(1));
10404    SDValue Ops[] = { swapInH.getValue(0),
10405                      N->getOperand(1),
10406                      swapInH.getValue(1) };
10407    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10408    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10409    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
10410                                             Ops, 3, T, MMO);
10411    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
10412                                        MVT::i32, Result.getValue(1));
10413    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
10414                                        MVT::i32, cpOutL.getValue(2));
10415    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10416    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10417    Results.push_back(cpOutH.getValue(1));
10418    return;
10419  }
10420  case ISD::ATOMIC_LOAD_ADD:
10421    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10422    return;
10423  case ISD::ATOMIC_LOAD_AND:
10424    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10425    return;
10426  case ISD::ATOMIC_LOAD_NAND:
10427    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10428    return;
10429  case ISD::ATOMIC_LOAD_OR:
10430    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10431    return;
10432  case ISD::ATOMIC_LOAD_SUB:
10433    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10434    return;
10435  case ISD::ATOMIC_LOAD_XOR:
10436    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10437    return;
10438  case ISD::ATOMIC_SWAP:
10439    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10440    return;
10441  case ISD::ATOMIC_LOAD:
10442    ReplaceATOMIC_LOAD(N, Results, DAG);
10443  }
10444}
10445
10446const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10447  switch (Opcode) {
10448  default: return NULL;
10449  case X86ISD::BSF:                return "X86ISD::BSF";
10450  case X86ISD::BSR:                return "X86ISD::BSR";
10451  case X86ISD::SHLD:               return "X86ISD::SHLD";
10452  case X86ISD::SHRD:               return "X86ISD::SHRD";
10453  case X86ISD::FAND:               return "X86ISD::FAND";
10454  case X86ISD::FOR:                return "X86ISD::FOR";
10455  case X86ISD::FXOR:               return "X86ISD::FXOR";
10456  case X86ISD::FSRL:               return "X86ISD::FSRL";
10457  case X86ISD::FILD:               return "X86ISD::FILD";
10458  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10459  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10460  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10461  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10462  case X86ISD::FLD:                return "X86ISD::FLD";
10463  case X86ISD::FST:                return "X86ISD::FST";
10464  case X86ISD::CALL:               return "X86ISD::CALL";
10465  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10466  case X86ISD::BT:                 return "X86ISD::BT";
10467  case X86ISD::CMP:                return "X86ISD::CMP";
10468  case X86ISD::COMI:               return "X86ISD::COMI";
10469  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10470  case X86ISD::SETCC:              return "X86ISD::SETCC";
10471  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10472  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10473  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10474  case X86ISD::CMOV:               return "X86ISD::CMOV";
10475  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10476  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10477  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10478  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10479  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10480  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10481  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10482  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10483  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10484  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10485  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10486  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10487  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10488  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10489  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10490  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10491  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10492  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
10493  case X86ISD::FMAX:               return "X86ISD::FMAX";
10494  case X86ISD::FMIN:               return "X86ISD::FMIN";
10495  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10496  case X86ISD::FRCP:               return "X86ISD::FRCP";
10497  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10498  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10499  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10500  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10501  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10502  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10503  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10504  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10505  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10506  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10507  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10508  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10509  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10510  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10511  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10512  case X86ISD::VSHL:               return "X86ISD::VSHL";
10513  case X86ISD::VSRL:               return "X86ISD::VSRL";
10514  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10515  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10516  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10517  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10518  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10519  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10520  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10521  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10522  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10523  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10524  case X86ISD::ADD:                return "X86ISD::ADD";
10525  case X86ISD::SUB:                return "X86ISD::SUB";
10526  case X86ISD::ADC:                return "X86ISD::ADC";
10527  case X86ISD::SBB:                return "X86ISD::SBB";
10528  case X86ISD::SMUL:               return "X86ISD::SMUL";
10529  case X86ISD::UMUL:               return "X86ISD::UMUL";
10530  case X86ISD::INC:                return "X86ISD::INC";
10531  case X86ISD::DEC:                return "X86ISD::DEC";
10532  case X86ISD::OR:                 return "X86ISD::OR";
10533  case X86ISD::XOR:                return "X86ISD::XOR";
10534  case X86ISD::AND:                return "X86ISD::AND";
10535  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10536  case X86ISD::PTEST:              return "X86ISD::PTEST";
10537  case X86ISD::TESTP:              return "X86ISD::TESTP";
10538  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10539  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10540  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10541  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10542  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10543  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10544  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10545  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10546  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10547  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10548  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10549  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10550  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10551  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10552  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10553  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10554  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10555  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10556  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10557  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10558  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10559  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10560  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10561  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10562  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10563  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10564  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10565  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10566  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10567  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10568  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10569  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10570  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10571  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10572  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10573  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10574  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10575  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10576  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10577  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10578  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10579  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10580  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10581  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10582  }
10583}
10584
10585// isLegalAddressingMode - Return true if the addressing mode represented
10586// by AM is legal for this target, for a load/store of the specified type.
10587bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10588                                              Type *Ty) const {
10589  // X86 supports extremely general addressing modes.
10590  CodeModel::Model M = getTargetMachine().getCodeModel();
10591  Reloc::Model R = getTargetMachine().getRelocationModel();
10592
10593  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10594  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10595    return false;
10596
10597  if (AM.BaseGV) {
10598    unsigned GVFlags =
10599      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10600
10601    // If a reference to this global requires an extra load, we can't fold it.
10602    if (isGlobalStubReference(GVFlags))
10603      return false;
10604
10605    // If BaseGV requires a register for the PIC base, we cannot also have a
10606    // BaseReg specified.
10607    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10608      return false;
10609
10610    // If lower 4G is not available, then we must use rip-relative addressing.
10611    if ((M != CodeModel::Small || R != Reloc::Static) &&
10612        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10613      return false;
10614  }
10615
10616  switch (AM.Scale) {
10617  case 0:
10618  case 1:
10619  case 2:
10620  case 4:
10621  case 8:
10622    // These scales always work.
10623    break;
10624  case 3:
10625  case 5:
10626  case 9:
10627    // These scales are formed with basereg+scalereg.  Only accept if there is
10628    // no basereg yet.
10629    if (AM.HasBaseReg)
10630      return false;
10631    break;
10632  default:  // Other stuff never works.
10633    return false;
10634  }
10635
10636  return true;
10637}
10638
10639
10640bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10641  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10642    return false;
10643  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10644  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10645  if (NumBits1 <= NumBits2)
10646    return false;
10647  return true;
10648}
10649
10650bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10651  if (!VT1.isInteger() || !VT2.isInteger())
10652    return false;
10653  unsigned NumBits1 = VT1.getSizeInBits();
10654  unsigned NumBits2 = VT2.getSizeInBits();
10655  if (NumBits1 <= NumBits2)
10656    return false;
10657  return true;
10658}
10659
10660bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10661  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10662  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10663}
10664
10665bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10666  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10667  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10668}
10669
10670bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10671  // i16 instructions are longer (0x66 prefix) and potentially slower.
10672  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10673}
10674
10675/// isShuffleMaskLegal - Targets can use this to indicate that they only
10676/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10677/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10678/// are assumed to be legal.
10679bool
10680X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10681                                      EVT VT) const {
10682  // Very little shuffling can be done for 64-bit vectors right now.
10683  if (VT.getSizeInBits() == 64)
10684    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
10685
10686  // FIXME: pshufb, blends, shifts.
10687  return (VT.getVectorNumElements() == 2 ||
10688          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10689          isMOVLMask(M, VT) ||
10690          isSHUFPMask(M, VT) ||
10691          isPSHUFDMask(M, VT) ||
10692          isPSHUFHWMask(M, VT) ||
10693          isPSHUFLWMask(M, VT) ||
10694          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10695          isUNPCKLMask(M, VT) ||
10696          isUNPCKHMask(M, VT) ||
10697          isUNPCKL_v_undef_Mask(M, VT) ||
10698          isUNPCKH_v_undef_Mask(M, VT));
10699}
10700
10701bool
10702X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10703                                          EVT VT) const {
10704  unsigned NumElts = VT.getVectorNumElements();
10705  // FIXME: This collection of masks seems suspect.
10706  if (NumElts == 2)
10707    return true;
10708  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10709    return (isMOVLMask(Mask, VT)  ||
10710            isCommutedMOVLMask(Mask, VT, true) ||
10711            isSHUFPMask(Mask, VT) ||
10712            isCommutedSHUFPMask(Mask, VT));
10713  }
10714  return false;
10715}
10716
10717//===----------------------------------------------------------------------===//
10718//                           X86 Scheduler Hooks
10719//===----------------------------------------------------------------------===//
10720
10721// private utility function
10722MachineBasicBlock *
10723X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10724                                                       MachineBasicBlock *MBB,
10725                                                       unsigned regOpc,
10726                                                       unsigned immOpc,
10727                                                       unsigned LoadOpc,
10728                                                       unsigned CXchgOpc,
10729                                                       unsigned notOpc,
10730                                                       unsigned EAXreg,
10731                                                       TargetRegisterClass *RC,
10732                                                       bool invSrc) const {
10733  // For the atomic bitwise operator, we generate
10734  //   thisMBB:
10735  //   newMBB:
10736  //     ld  t1 = [bitinstr.addr]
10737  //     op  t2 = t1, [bitinstr.val]
10738  //     mov EAX = t1
10739  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10740  //     bz  newMBB
10741  //     fallthrough -->nextMBB
10742  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10743  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10744  MachineFunction::iterator MBBIter = MBB;
10745  ++MBBIter;
10746
10747  /// First build the CFG
10748  MachineFunction *F = MBB->getParent();
10749  MachineBasicBlock *thisMBB = MBB;
10750  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10751  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10752  F->insert(MBBIter, newMBB);
10753  F->insert(MBBIter, nextMBB);
10754
10755  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10756  nextMBB->splice(nextMBB->begin(), thisMBB,
10757                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10758                  thisMBB->end());
10759  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10760
10761  // Update thisMBB to fall through to newMBB
10762  thisMBB->addSuccessor(newMBB);
10763
10764  // newMBB jumps to itself and fall through to nextMBB
10765  newMBB->addSuccessor(nextMBB);
10766  newMBB->addSuccessor(newMBB);
10767
10768  // Insert instructions into newMBB based on incoming instruction
10769  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10770         "unexpected number of operands");
10771  DebugLoc dl = bInstr->getDebugLoc();
10772  MachineOperand& destOper = bInstr->getOperand(0);
10773  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10774  int numArgs = bInstr->getNumOperands() - 1;
10775  for (int i=0; i < numArgs; ++i)
10776    argOpers[i] = &bInstr->getOperand(i+1);
10777
10778  // x86 address has 4 operands: base, index, scale, and displacement
10779  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10780  int valArgIndx = lastAddrIndx + 1;
10781
10782  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10783  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10784  for (int i=0; i <= lastAddrIndx; ++i)
10785    (*MIB).addOperand(*argOpers[i]);
10786
10787  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10788  if (invSrc) {
10789    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10790  }
10791  else
10792    tt = t1;
10793
10794  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10795  assert((argOpers[valArgIndx]->isReg() ||
10796          argOpers[valArgIndx]->isImm()) &&
10797         "invalid operand");
10798  if (argOpers[valArgIndx]->isReg())
10799    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10800  else
10801    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10802  MIB.addReg(tt);
10803  (*MIB).addOperand(*argOpers[valArgIndx]);
10804
10805  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10806  MIB.addReg(t1);
10807
10808  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10809  for (int i=0; i <= lastAddrIndx; ++i)
10810    (*MIB).addOperand(*argOpers[i]);
10811  MIB.addReg(t2);
10812  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10813  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10814                    bInstr->memoperands_end());
10815
10816  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10817  MIB.addReg(EAXreg);
10818
10819  // insert branch
10820  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10821
10822  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10823  return nextMBB;
10824}
10825
10826// private utility function:  64 bit atomics on 32 bit host.
10827MachineBasicBlock *
10828X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10829                                                       MachineBasicBlock *MBB,
10830                                                       unsigned regOpcL,
10831                                                       unsigned regOpcH,
10832                                                       unsigned immOpcL,
10833                                                       unsigned immOpcH,
10834                                                       bool invSrc) const {
10835  // For the atomic bitwise operator, we generate
10836  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10837  //     ld t1,t2 = [bitinstr.addr]
10838  //   newMBB:
10839  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10840  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10841  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10842  //     mov ECX, EBX <- t5, t6
10843  //     mov EAX, EDX <- t1, t2
10844  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10845  //     mov t3, t4 <- EAX, EDX
10846  //     bz  newMBB
10847  //     result in out1, out2
10848  //     fallthrough -->nextMBB
10849
10850  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10851  const unsigned LoadOpc = X86::MOV32rm;
10852  const unsigned NotOpc = X86::NOT32r;
10853  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10854  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10855  MachineFunction::iterator MBBIter = MBB;
10856  ++MBBIter;
10857
10858  /// First build the CFG
10859  MachineFunction *F = MBB->getParent();
10860  MachineBasicBlock *thisMBB = MBB;
10861  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10862  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10863  F->insert(MBBIter, newMBB);
10864  F->insert(MBBIter, nextMBB);
10865
10866  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10867  nextMBB->splice(nextMBB->begin(), thisMBB,
10868                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10869                  thisMBB->end());
10870  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10871
10872  // Update thisMBB to fall through to newMBB
10873  thisMBB->addSuccessor(newMBB);
10874
10875  // newMBB jumps to itself and fall through to nextMBB
10876  newMBB->addSuccessor(nextMBB);
10877  newMBB->addSuccessor(newMBB);
10878
10879  DebugLoc dl = bInstr->getDebugLoc();
10880  // Insert instructions into newMBB based on incoming instruction
10881  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10882  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10883         "unexpected number of operands");
10884  MachineOperand& dest1Oper = bInstr->getOperand(0);
10885  MachineOperand& dest2Oper = bInstr->getOperand(1);
10886  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10887  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10888    argOpers[i] = &bInstr->getOperand(i+2);
10889
10890    // We use some of the operands multiple times, so conservatively just
10891    // clear any kill flags that might be present.
10892    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10893      argOpers[i]->setIsKill(false);
10894  }
10895
10896  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10897  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10898
10899  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10900  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10901  for (int i=0; i <= lastAddrIndx; ++i)
10902    (*MIB).addOperand(*argOpers[i]);
10903  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10904  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10905  // add 4 to displacement.
10906  for (int i=0; i <= lastAddrIndx-2; ++i)
10907    (*MIB).addOperand(*argOpers[i]);
10908  MachineOperand newOp3 = *(argOpers[3]);
10909  if (newOp3.isImm())
10910    newOp3.setImm(newOp3.getImm()+4);
10911  else
10912    newOp3.setOffset(newOp3.getOffset()+4);
10913  (*MIB).addOperand(newOp3);
10914  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10915
10916  // t3/4 are defined later, at the bottom of the loop
10917  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10918  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10919  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10920    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10921  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10922    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10923
10924  // The subsequent operations should be using the destination registers of
10925  //the PHI instructions.
10926  if (invSrc) {
10927    t1 = F->getRegInfo().createVirtualRegister(RC);
10928    t2 = F->getRegInfo().createVirtualRegister(RC);
10929    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10930    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10931  } else {
10932    t1 = dest1Oper.getReg();
10933    t2 = dest2Oper.getReg();
10934  }
10935
10936  int valArgIndx = lastAddrIndx + 1;
10937  assert((argOpers[valArgIndx]->isReg() ||
10938          argOpers[valArgIndx]->isImm()) &&
10939         "invalid operand");
10940  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10941  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10942  if (argOpers[valArgIndx]->isReg())
10943    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10944  else
10945    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10946  if (regOpcL != X86::MOV32rr)
10947    MIB.addReg(t1);
10948  (*MIB).addOperand(*argOpers[valArgIndx]);
10949  assert(argOpers[valArgIndx + 1]->isReg() ==
10950         argOpers[valArgIndx]->isReg());
10951  assert(argOpers[valArgIndx + 1]->isImm() ==
10952         argOpers[valArgIndx]->isImm());
10953  if (argOpers[valArgIndx + 1]->isReg())
10954    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
10955  else
10956    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
10957  if (regOpcH != X86::MOV32rr)
10958    MIB.addReg(t2);
10959  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
10960
10961  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10962  MIB.addReg(t1);
10963  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
10964  MIB.addReg(t2);
10965
10966  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
10967  MIB.addReg(t5);
10968  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
10969  MIB.addReg(t6);
10970
10971  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
10972  for (int i=0; i <= lastAddrIndx; ++i)
10973    (*MIB).addOperand(*argOpers[i]);
10974
10975  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10976  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10977                    bInstr->memoperands_end());
10978
10979  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
10980  MIB.addReg(X86::EAX);
10981  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
10982  MIB.addReg(X86::EDX);
10983
10984  // insert branch
10985  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10986
10987  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10988  return nextMBB;
10989}
10990
10991// private utility function
10992MachineBasicBlock *
10993X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
10994                                                      MachineBasicBlock *MBB,
10995                                                      unsigned cmovOpc) const {
10996  // For the atomic min/max operator, we generate
10997  //   thisMBB:
10998  //   newMBB:
10999  //     ld t1 = [min/max.addr]
11000  //     mov t2 = [min/max.val]
11001  //     cmp  t1, t2
11002  //     cmov[cond] t2 = t1
11003  //     mov EAX = t1
11004  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11005  //     bz   newMBB
11006  //     fallthrough -->nextMBB
11007  //
11008  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11009  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11010  MachineFunction::iterator MBBIter = MBB;
11011  ++MBBIter;
11012
11013  /// First build the CFG
11014  MachineFunction *F = MBB->getParent();
11015  MachineBasicBlock *thisMBB = MBB;
11016  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11017  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11018  F->insert(MBBIter, newMBB);
11019  F->insert(MBBIter, nextMBB);
11020
11021  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11022  nextMBB->splice(nextMBB->begin(), thisMBB,
11023                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11024                  thisMBB->end());
11025  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11026
11027  // Update thisMBB to fall through to newMBB
11028  thisMBB->addSuccessor(newMBB);
11029
11030  // newMBB jumps to newMBB and fall through to nextMBB
11031  newMBB->addSuccessor(nextMBB);
11032  newMBB->addSuccessor(newMBB);
11033
11034  DebugLoc dl = mInstr->getDebugLoc();
11035  // Insert instructions into newMBB based on incoming instruction
11036  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11037         "unexpected number of operands");
11038  MachineOperand& destOper = mInstr->getOperand(0);
11039  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11040  int numArgs = mInstr->getNumOperands() - 1;
11041  for (int i=0; i < numArgs; ++i)
11042    argOpers[i] = &mInstr->getOperand(i+1);
11043
11044  // x86 address has 4 operands: base, index, scale, and displacement
11045  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11046  int valArgIndx = lastAddrIndx + 1;
11047
11048  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11049  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11050  for (int i=0; i <= lastAddrIndx; ++i)
11051    (*MIB).addOperand(*argOpers[i]);
11052
11053  // We only support register and immediate values
11054  assert((argOpers[valArgIndx]->isReg() ||
11055          argOpers[valArgIndx]->isImm()) &&
11056         "invalid operand");
11057
11058  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11059  if (argOpers[valArgIndx]->isReg())
11060    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11061  else
11062    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11063  (*MIB).addOperand(*argOpers[valArgIndx]);
11064
11065  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11066  MIB.addReg(t1);
11067
11068  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11069  MIB.addReg(t1);
11070  MIB.addReg(t2);
11071
11072  // Generate movc
11073  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11074  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11075  MIB.addReg(t2);
11076  MIB.addReg(t1);
11077
11078  // Cmp and exchange if none has modified the memory location
11079  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11080  for (int i=0; i <= lastAddrIndx; ++i)
11081    (*MIB).addOperand(*argOpers[i]);
11082  MIB.addReg(t3);
11083  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11084  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11085                    mInstr->memoperands_end());
11086
11087  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11088  MIB.addReg(X86::EAX);
11089
11090  // insert branch
11091  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11092
11093  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11094  return nextMBB;
11095}
11096
11097// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11098// or XMM0_V32I8 in AVX all of this code can be replaced with that
11099// in the .td file.
11100MachineBasicBlock *
11101X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11102                            unsigned numArgs, bool memArg) const {
11103  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11104         "Target must have SSE4.2 or AVX features enabled");
11105
11106  DebugLoc dl = MI->getDebugLoc();
11107  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11108  unsigned Opc;
11109  if (!Subtarget->hasAVX()) {
11110    if (memArg)
11111      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11112    else
11113      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11114  } else {
11115    if (memArg)
11116      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11117    else
11118      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11119  }
11120
11121  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11122  for (unsigned i = 0; i < numArgs; ++i) {
11123    MachineOperand &Op = MI->getOperand(i+1);
11124    if (!(Op.isReg() && Op.isImplicit()))
11125      MIB.addOperand(Op);
11126  }
11127  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
11128    .addReg(X86::XMM0);
11129
11130  MI->eraseFromParent();
11131  return BB;
11132}
11133
11134MachineBasicBlock *
11135X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11136  DebugLoc dl = MI->getDebugLoc();
11137  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11138
11139  // Address into RAX/EAX, other two args into ECX, EDX.
11140  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11141  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11142  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11143  for (int i = 0; i < X86::AddrNumOperands; ++i)
11144    MIB.addOperand(MI->getOperand(i));
11145
11146  unsigned ValOps = X86::AddrNumOperands;
11147  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11148    .addReg(MI->getOperand(ValOps).getReg());
11149  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11150    .addReg(MI->getOperand(ValOps+1).getReg());
11151
11152  // The instruction doesn't actually take any operands though.
11153  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11154
11155  MI->eraseFromParent(); // The pseudo is gone now.
11156  return BB;
11157}
11158
11159MachineBasicBlock *
11160X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11161  DebugLoc dl = MI->getDebugLoc();
11162  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11163
11164  // First arg in ECX, the second in EAX.
11165  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11166    .addReg(MI->getOperand(0).getReg());
11167  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11168    .addReg(MI->getOperand(1).getReg());
11169
11170  // The instruction doesn't actually take any operands though.
11171  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11172
11173  MI->eraseFromParent(); // The pseudo is gone now.
11174  return BB;
11175}
11176
11177MachineBasicBlock *
11178X86TargetLowering::EmitVAARG64WithCustomInserter(
11179                   MachineInstr *MI,
11180                   MachineBasicBlock *MBB) const {
11181  // Emit va_arg instruction on X86-64.
11182
11183  // Operands to this pseudo-instruction:
11184  // 0  ) Output        : destination address (reg)
11185  // 1-5) Input         : va_list address (addr, i64mem)
11186  // 6  ) ArgSize       : Size (in bytes) of vararg type
11187  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11188  // 8  ) Align         : Alignment of type
11189  // 9  ) EFLAGS (implicit-def)
11190
11191  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11192  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11193
11194  unsigned DestReg = MI->getOperand(0).getReg();
11195  MachineOperand &Base = MI->getOperand(1);
11196  MachineOperand &Scale = MI->getOperand(2);
11197  MachineOperand &Index = MI->getOperand(3);
11198  MachineOperand &Disp = MI->getOperand(4);
11199  MachineOperand &Segment = MI->getOperand(5);
11200  unsigned ArgSize = MI->getOperand(6).getImm();
11201  unsigned ArgMode = MI->getOperand(7).getImm();
11202  unsigned Align = MI->getOperand(8).getImm();
11203
11204  // Memory Reference
11205  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11206  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11207  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11208
11209  // Machine Information
11210  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11211  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11212  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11213  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11214  DebugLoc DL = MI->getDebugLoc();
11215
11216  // struct va_list {
11217  //   i32   gp_offset
11218  //   i32   fp_offset
11219  //   i64   overflow_area (address)
11220  //   i64   reg_save_area (address)
11221  // }
11222  // sizeof(va_list) = 24
11223  // alignment(va_list) = 8
11224
11225  unsigned TotalNumIntRegs = 6;
11226  unsigned TotalNumXMMRegs = 8;
11227  bool UseGPOffset = (ArgMode == 1);
11228  bool UseFPOffset = (ArgMode == 2);
11229  unsigned MaxOffset = TotalNumIntRegs * 8 +
11230                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11231
11232  /* Align ArgSize to a multiple of 8 */
11233  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11234  bool NeedsAlign = (Align > 8);
11235
11236  MachineBasicBlock *thisMBB = MBB;
11237  MachineBasicBlock *overflowMBB;
11238  MachineBasicBlock *offsetMBB;
11239  MachineBasicBlock *endMBB;
11240
11241  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11242  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11243  unsigned OffsetReg = 0;
11244
11245  if (!UseGPOffset && !UseFPOffset) {
11246    // If we only pull from the overflow region, we don't create a branch.
11247    // We don't need to alter control flow.
11248    OffsetDestReg = 0; // unused
11249    OverflowDestReg = DestReg;
11250
11251    offsetMBB = NULL;
11252    overflowMBB = thisMBB;
11253    endMBB = thisMBB;
11254  } else {
11255    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11256    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11257    // If not, pull from overflow_area. (branch to overflowMBB)
11258    //
11259    //       thisMBB
11260    //         |     .
11261    //         |        .
11262    //     offsetMBB   overflowMBB
11263    //         |        .
11264    //         |     .
11265    //        endMBB
11266
11267    // Registers for the PHI in endMBB
11268    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11269    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11270
11271    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11272    MachineFunction *MF = MBB->getParent();
11273    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11274    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11275    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11276
11277    MachineFunction::iterator MBBIter = MBB;
11278    ++MBBIter;
11279
11280    // Insert the new basic blocks
11281    MF->insert(MBBIter, offsetMBB);
11282    MF->insert(MBBIter, overflowMBB);
11283    MF->insert(MBBIter, endMBB);
11284
11285    // Transfer the remainder of MBB and its successor edges to endMBB.
11286    endMBB->splice(endMBB->begin(), thisMBB,
11287                    llvm::next(MachineBasicBlock::iterator(MI)),
11288                    thisMBB->end());
11289    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11290
11291    // Make offsetMBB and overflowMBB successors of thisMBB
11292    thisMBB->addSuccessor(offsetMBB);
11293    thisMBB->addSuccessor(overflowMBB);
11294
11295    // endMBB is a successor of both offsetMBB and overflowMBB
11296    offsetMBB->addSuccessor(endMBB);
11297    overflowMBB->addSuccessor(endMBB);
11298
11299    // Load the offset value into a register
11300    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11301    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11302      .addOperand(Base)
11303      .addOperand(Scale)
11304      .addOperand(Index)
11305      .addDisp(Disp, UseFPOffset ? 4 : 0)
11306      .addOperand(Segment)
11307      .setMemRefs(MMOBegin, MMOEnd);
11308
11309    // Check if there is enough room left to pull this argument.
11310    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11311      .addReg(OffsetReg)
11312      .addImm(MaxOffset + 8 - ArgSizeA8);
11313
11314    // Branch to "overflowMBB" if offset >= max
11315    // Fall through to "offsetMBB" otherwise
11316    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11317      .addMBB(overflowMBB);
11318  }
11319
11320  // In offsetMBB, emit code to use the reg_save_area.
11321  if (offsetMBB) {
11322    assert(OffsetReg != 0);
11323
11324    // Read the reg_save_area address.
11325    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11326    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11327      .addOperand(Base)
11328      .addOperand(Scale)
11329      .addOperand(Index)
11330      .addDisp(Disp, 16)
11331      .addOperand(Segment)
11332      .setMemRefs(MMOBegin, MMOEnd);
11333
11334    // Zero-extend the offset
11335    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11336      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11337        .addImm(0)
11338        .addReg(OffsetReg)
11339        .addImm(X86::sub_32bit);
11340
11341    // Add the offset to the reg_save_area to get the final address.
11342    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11343      .addReg(OffsetReg64)
11344      .addReg(RegSaveReg);
11345
11346    // Compute the offset for the next argument
11347    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11348    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11349      .addReg(OffsetReg)
11350      .addImm(UseFPOffset ? 16 : 8);
11351
11352    // Store it back into the va_list.
11353    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11354      .addOperand(Base)
11355      .addOperand(Scale)
11356      .addOperand(Index)
11357      .addDisp(Disp, UseFPOffset ? 4 : 0)
11358      .addOperand(Segment)
11359      .addReg(NextOffsetReg)
11360      .setMemRefs(MMOBegin, MMOEnd);
11361
11362    // Jump to endMBB
11363    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11364      .addMBB(endMBB);
11365  }
11366
11367  //
11368  // Emit code to use overflow area
11369  //
11370
11371  // Load the overflow_area address into a register.
11372  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11373  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11374    .addOperand(Base)
11375    .addOperand(Scale)
11376    .addOperand(Index)
11377    .addDisp(Disp, 8)
11378    .addOperand(Segment)
11379    .setMemRefs(MMOBegin, MMOEnd);
11380
11381  // If we need to align it, do so. Otherwise, just copy the address
11382  // to OverflowDestReg.
11383  if (NeedsAlign) {
11384    // Align the overflow address
11385    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11386    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11387
11388    // aligned_addr = (addr + (align-1)) & ~(align-1)
11389    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11390      .addReg(OverflowAddrReg)
11391      .addImm(Align-1);
11392
11393    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11394      .addReg(TmpReg)
11395      .addImm(~(uint64_t)(Align-1));
11396  } else {
11397    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11398      .addReg(OverflowAddrReg);
11399  }
11400
11401  // Compute the next overflow address after this argument.
11402  // (the overflow address should be kept 8-byte aligned)
11403  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11404  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11405    .addReg(OverflowDestReg)
11406    .addImm(ArgSizeA8);
11407
11408  // Store the new overflow address.
11409  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11410    .addOperand(Base)
11411    .addOperand(Scale)
11412    .addOperand(Index)
11413    .addDisp(Disp, 8)
11414    .addOperand(Segment)
11415    .addReg(NextAddrReg)
11416    .setMemRefs(MMOBegin, MMOEnd);
11417
11418  // If we branched, emit the PHI to the front of endMBB.
11419  if (offsetMBB) {
11420    BuildMI(*endMBB, endMBB->begin(), DL,
11421            TII->get(X86::PHI), DestReg)
11422      .addReg(OffsetDestReg).addMBB(offsetMBB)
11423      .addReg(OverflowDestReg).addMBB(overflowMBB);
11424  }
11425
11426  // Erase the pseudo instruction
11427  MI->eraseFromParent();
11428
11429  return endMBB;
11430}
11431
11432MachineBasicBlock *
11433X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11434                                                 MachineInstr *MI,
11435                                                 MachineBasicBlock *MBB) const {
11436  // Emit code to save XMM registers to the stack. The ABI says that the
11437  // number of registers to save is given in %al, so it's theoretically
11438  // possible to do an indirect jump trick to avoid saving all of them,
11439  // however this code takes a simpler approach and just executes all
11440  // of the stores if %al is non-zero. It's less code, and it's probably
11441  // easier on the hardware branch predictor, and stores aren't all that
11442  // expensive anyway.
11443
11444  // Create the new basic blocks. One block contains all the XMM stores,
11445  // and one block is the final destination regardless of whether any
11446  // stores were performed.
11447  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11448  MachineFunction *F = MBB->getParent();
11449  MachineFunction::iterator MBBIter = MBB;
11450  ++MBBIter;
11451  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11452  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11453  F->insert(MBBIter, XMMSaveMBB);
11454  F->insert(MBBIter, EndMBB);
11455
11456  // Transfer the remainder of MBB and its successor edges to EndMBB.
11457  EndMBB->splice(EndMBB->begin(), MBB,
11458                 llvm::next(MachineBasicBlock::iterator(MI)),
11459                 MBB->end());
11460  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11461
11462  // The original block will now fall through to the XMM save block.
11463  MBB->addSuccessor(XMMSaveMBB);
11464  // The XMMSaveMBB will fall through to the end block.
11465  XMMSaveMBB->addSuccessor(EndMBB);
11466
11467  // Now add the instructions.
11468  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11469  DebugLoc DL = MI->getDebugLoc();
11470
11471  unsigned CountReg = MI->getOperand(0).getReg();
11472  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11473  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11474
11475  if (!Subtarget->isTargetWin64()) {
11476    // If %al is 0, branch around the XMM save block.
11477    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11478    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11479    MBB->addSuccessor(EndMBB);
11480  }
11481
11482  // In the XMM save block, save all the XMM argument registers.
11483  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11484    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11485    MachineMemOperand *MMO =
11486      F->getMachineMemOperand(
11487          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11488        MachineMemOperand::MOStore,
11489        /*Size=*/16, /*Align=*/16);
11490    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
11491      .addFrameIndex(RegSaveFrameIndex)
11492      .addImm(/*Scale=*/1)
11493      .addReg(/*IndexReg=*/0)
11494      .addImm(/*Disp=*/Offset)
11495      .addReg(/*Segment=*/0)
11496      .addReg(MI->getOperand(i).getReg())
11497      .addMemOperand(MMO);
11498  }
11499
11500  MI->eraseFromParent();   // The pseudo instruction is gone now.
11501
11502  return EndMBB;
11503}
11504
11505MachineBasicBlock *
11506X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11507                                     MachineBasicBlock *BB) const {
11508  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11509  DebugLoc DL = MI->getDebugLoc();
11510
11511  // To "insert" a SELECT_CC instruction, we actually have to insert the
11512  // diamond control-flow pattern.  The incoming instruction knows the
11513  // destination vreg to set, the condition code register to branch on, the
11514  // true/false values to select between, and a branch opcode to use.
11515  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11516  MachineFunction::iterator It = BB;
11517  ++It;
11518
11519  //  thisMBB:
11520  //  ...
11521  //   TrueVal = ...
11522  //   cmpTY ccX, r1, r2
11523  //   bCC copy1MBB
11524  //   fallthrough --> copy0MBB
11525  MachineBasicBlock *thisMBB = BB;
11526  MachineFunction *F = BB->getParent();
11527  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11528  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11529  F->insert(It, copy0MBB);
11530  F->insert(It, sinkMBB);
11531
11532  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11533  // live into the sink and copy blocks.
11534  const MachineFunction *MF = BB->getParent();
11535  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
11536  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
11537
11538  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
11539    const MachineOperand &MO = MI->getOperand(I);
11540    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
11541    unsigned Reg = MO.getReg();
11542    if (Reg != X86::EFLAGS) continue;
11543    copy0MBB->addLiveIn(Reg);
11544    sinkMBB->addLiveIn(Reg);
11545  }
11546
11547  // Transfer the remainder of BB and its successor edges to sinkMBB.
11548  sinkMBB->splice(sinkMBB->begin(), BB,
11549                  llvm::next(MachineBasicBlock::iterator(MI)),
11550                  BB->end());
11551  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11552
11553  // Add the true and fallthrough blocks as its successors.
11554  BB->addSuccessor(copy0MBB);
11555  BB->addSuccessor(sinkMBB);
11556
11557  // Create the conditional branch instruction.
11558  unsigned Opc =
11559    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11560  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11561
11562  //  copy0MBB:
11563  //   %FalseValue = ...
11564  //   # fallthrough to sinkMBB
11565  copy0MBB->addSuccessor(sinkMBB);
11566
11567  //  sinkMBB:
11568  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11569  //  ...
11570  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11571          TII->get(X86::PHI), MI->getOperand(0).getReg())
11572    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11573    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11574
11575  MI->eraseFromParent();   // The pseudo instruction is gone now.
11576  return sinkMBB;
11577}
11578
11579MachineBasicBlock *
11580X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11581                                          MachineBasicBlock *BB) const {
11582  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11583  DebugLoc DL = MI->getDebugLoc();
11584
11585  assert(!Subtarget->isTargetEnvMacho());
11586
11587  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11588  // non-trivial part is impdef of ESP.
11589
11590  if (Subtarget->isTargetWin64()) {
11591    if (Subtarget->isTargetCygMing()) {
11592      // ___chkstk(Mingw64):
11593      // Clobbers R10, R11, RAX and EFLAGS.
11594      // Updates RSP.
11595      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11596        .addExternalSymbol("___chkstk")
11597        .addReg(X86::RAX, RegState::Implicit)
11598        .addReg(X86::RSP, RegState::Implicit)
11599        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11600        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11601        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11602    } else {
11603      // __chkstk(MSVCRT): does not update stack pointer.
11604      // Clobbers R10, R11 and EFLAGS.
11605      // FIXME: RAX(allocated size) might be reused and not killed.
11606      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11607        .addExternalSymbol("__chkstk")
11608        .addReg(X86::RAX, RegState::Implicit)
11609        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11610      // RAX has the offset to subtracted from RSP.
11611      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11612        .addReg(X86::RSP)
11613        .addReg(X86::RAX);
11614    }
11615  } else {
11616    const char *StackProbeSymbol =
11617      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11618
11619    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11620      .addExternalSymbol(StackProbeSymbol)
11621      .addReg(X86::EAX, RegState::Implicit)
11622      .addReg(X86::ESP, RegState::Implicit)
11623      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11624      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11625      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11626  }
11627
11628  MI->eraseFromParent();   // The pseudo instruction is gone now.
11629  return BB;
11630}
11631
11632MachineBasicBlock *
11633X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11634                                      MachineBasicBlock *BB) const {
11635  // This is pretty easy.  We're taking the value that we received from
11636  // our load from the relocation, sticking it in either RDI (x86-64)
11637  // or EAX and doing an indirect call.  The return value will then
11638  // be in the normal return register.
11639  const X86InstrInfo *TII
11640    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11641  DebugLoc DL = MI->getDebugLoc();
11642  MachineFunction *F = BB->getParent();
11643
11644  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11645  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11646
11647  if (Subtarget->is64Bit()) {
11648    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11649                                      TII->get(X86::MOV64rm), X86::RDI)
11650    .addReg(X86::RIP)
11651    .addImm(0).addReg(0)
11652    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11653                      MI->getOperand(3).getTargetFlags())
11654    .addReg(0);
11655    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11656    addDirectMem(MIB, X86::RDI);
11657  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11658    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11659                                      TII->get(X86::MOV32rm), X86::EAX)
11660    .addReg(0)
11661    .addImm(0).addReg(0)
11662    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11663                      MI->getOperand(3).getTargetFlags())
11664    .addReg(0);
11665    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11666    addDirectMem(MIB, X86::EAX);
11667  } else {
11668    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11669                                      TII->get(X86::MOV32rm), X86::EAX)
11670    .addReg(TII->getGlobalBaseReg(F))
11671    .addImm(0).addReg(0)
11672    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11673                      MI->getOperand(3).getTargetFlags())
11674    .addReg(0);
11675    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11676    addDirectMem(MIB, X86::EAX);
11677  }
11678
11679  MI->eraseFromParent(); // The pseudo instruction is gone now.
11680  return BB;
11681}
11682
11683MachineBasicBlock *
11684X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11685                                               MachineBasicBlock *BB) const {
11686  switch (MI->getOpcode()) {
11687  default: assert(false && "Unexpected instr type to insert");
11688  case X86::TAILJMPd64:
11689  case X86::TAILJMPr64:
11690  case X86::TAILJMPm64:
11691    assert(!"TAILJMP64 would not be touched here.");
11692  case X86::TCRETURNdi64:
11693  case X86::TCRETURNri64:
11694  case X86::TCRETURNmi64:
11695    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11696    // On AMD64, additional defs should be added before register allocation.
11697    if (!Subtarget->isTargetWin64()) {
11698      MI->addRegisterDefined(X86::RSI);
11699      MI->addRegisterDefined(X86::RDI);
11700      MI->addRegisterDefined(X86::XMM6);
11701      MI->addRegisterDefined(X86::XMM7);
11702      MI->addRegisterDefined(X86::XMM8);
11703      MI->addRegisterDefined(X86::XMM9);
11704      MI->addRegisterDefined(X86::XMM10);
11705      MI->addRegisterDefined(X86::XMM11);
11706      MI->addRegisterDefined(X86::XMM12);
11707      MI->addRegisterDefined(X86::XMM13);
11708      MI->addRegisterDefined(X86::XMM14);
11709      MI->addRegisterDefined(X86::XMM15);
11710    }
11711    return BB;
11712  case X86::WIN_ALLOCA:
11713    return EmitLoweredWinAlloca(MI, BB);
11714  case X86::TLSCall_32:
11715  case X86::TLSCall_64:
11716    return EmitLoweredTLSCall(MI, BB);
11717  case X86::CMOV_GR8:
11718  case X86::CMOV_FR32:
11719  case X86::CMOV_FR64:
11720  case X86::CMOV_V4F32:
11721  case X86::CMOV_V2F64:
11722  case X86::CMOV_V2I64:
11723  case X86::CMOV_V8F32:
11724  case X86::CMOV_V4F64:
11725  case X86::CMOV_V4I64:
11726  case X86::CMOV_GR16:
11727  case X86::CMOV_GR32:
11728  case X86::CMOV_RFP32:
11729  case X86::CMOV_RFP64:
11730  case X86::CMOV_RFP80:
11731    return EmitLoweredSelect(MI, BB);
11732
11733  case X86::FP32_TO_INT16_IN_MEM:
11734  case X86::FP32_TO_INT32_IN_MEM:
11735  case X86::FP32_TO_INT64_IN_MEM:
11736  case X86::FP64_TO_INT16_IN_MEM:
11737  case X86::FP64_TO_INT32_IN_MEM:
11738  case X86::FP64_TO_INT64_IN_MEM:
11739  case X86::FP80_TO_INT16_IN_MEM:
11740  case X86::FP80_TO_INT32_IN_MEM:
11741  case X86::FP80_TO_INT64_IN_MEM: {
11742    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11743    DebugLoc DL = MI->getDebugLoc();
11744
11745    // Change the floating point control register to use "round towards zero"
11746    // mode when truncating to an integer value.
11747    MachineFunction *F = BB->getParent();
11748    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
11749    addFrameReference(BuildMI(*BB, MI, DL,
11750                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
11751
11752    // Load the old value of the high byte of the control word...
11753    unsigned OldCW =
11754      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
11755    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
11756                      CWFrameIdx);
11757
11758    // Set the high part to be round to zero...
11759    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
11760      .addImm(0xC7F);
11761
11762    // Reload the modified control word now...
11763    addFrameReference(BuildMI(*BB, MI, DL,
11764                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11765
11766    // Restore the memory image of control word to original value
11767    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
11768      .addReg(OldCW);
11769
11770    // Get the X86 opcode to use.
11771    unsigned Opc;
11772    switch (MI->getOpcode()) {
11773    default: llvm_unreachable("illegal opcode!");
11774    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
11775    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
11776    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
11777    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
11778    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
11779    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
11780    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
11781    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
11782    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
11783    }
11784
11785    X86AddressMode AM;
11786    MachineOperand &Op = MI->getOperand(0);
11787    if (Op.isReg()) {
11788      AM.BaseType = X86AddressMode::RegBase;
11789      AM.Base.Reg = Op.getReg();
11790    } else {
11791      AM.BaseType = X86AddressMode::FrameIndexBase;
11792      AM.Base.FrameIndex = Op.getIndex();
11793    }
11794    Op = MI->getOperand(1);
11795    if (Op.isImm())
11796      AM.Scale = Op.getImm();
11797    Op = MI->getOperand(2);
11798    if (Op.isImm())
11799      AM.IndexReg = Op.getImm();
11800    Op = MI->getOperand(3);
11801    if (Op.isGlobal()) {
11802      AM.GV = Op.getGlobal();
11803    } else {
11804      AM.Disp = Op.getImm();
11805    }
11806    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
11807                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
11808
11809    // Reload the original control word now.
11810    addFrameReference(BuildMI(*BB, MI, DL,
11811                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11812
11813    MI->eraseFromParent();   // The pseudo instruction is gone now.
11814    return BB;
11815  }
11816    // String/text processing lowering.
11817  case X86::PCMPISTRM128REG:
11818  case X86::VPCMPISTRM128REG:
11819    return EmitPCMP(MI, BB, 3, false /* in-mem */);
11820  case X86::PCMPISTRM128MEM:
11821  case X86::VPCMPISTRM128MEM:
11822    return EmitPCMP(MI, BB, 3, true /* in-mem */);
11823  case X86::PCMPESTRM128REG:
11824  case X86::VPCMPESTRM128REG:
11825    return EmitPCMP(MI, BB, 5, false /* in mem */);
11826  case X86::PCMPESTRM128MEM:
11827  case X86::VPCMPESTRM128MEM:
11828    return EmitPCMP(MI, BB, 5, true /* in mem */);
11829
11830    // Thread synchronization.
11831  case X86::MONITOR:
11832    return EmitMonitor(MI, BB);
11833  case X86::MWAIT:
11834    return EmitMwait(MI, BB);
11835
11836    // Atomic Lowering.
11837  case X86::ATOMAND32:
11838    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11839                                               X86::AND32ri, X86::MOV32rm,
11840                                               X86::LCMPXCHG32,
11841                                               X86::NOT32r, X86::EAX,
11842                                               X86::GR32RegisterClass);
11843  case X86::ATOMOR32:
11844    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
11845                                               X86::OR32ri, X86::MOV32rm,
11846                                               X86::LCMPXCHG32,
11847                                               X86::NOT32r, X86::EAX,
11848                                               X86::GR32RegisterClass);
11849  case X86::ATOMXOR32:
11850    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
11851                                               X86::XOR32ri, X86::MOV32rm,
11852                                               X86::LCMPXCHG32,
11853                                               X86::NOT32r, X86::EAX,
11854                                               X86::GR32RegisterClass);
11855  case X86::ATOMNAND32:
11856    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11857                                               X86::AND32ri, X86::MOV32rm,
11858                                               X86::LCMPXCHG32,
11859                                               X86::NOT32r, X86::EAX,
11860                                               X86::GR32RegisterClass, true);
11861  case X86::ATOMMIN32:
11862    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
11863  case X86::ATOMMAX32:
11864    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
11865  case X86::ATOMUMIN32:
11866    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
11867  case X86::ATOMUMAX32:
11868    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
11869
11870  case X86::ATOMAND16:
11871    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11872                                               X86::AND16ri, X86::MOV16rm,
11873                                               X86::LCMPXCHG16,
11874                                               X86::NOT16r, X86::AX,
11875                                               X86::GR16RegisterClass);
11876  case X86::ATOMOR16:
11877    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
11878                                               X86::OR16ri, X86::MOV16rm,
11879                                               X86::LCMPXCHG16,
11880                                               X86::NOT16r, X86::AX,
11881                                               X86::GR16RegisterClass);
11882  case X86::ATOMXOR16:
11883    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
11884                                               X86::XOR16ri, X86::MOV16rm,
11885                                               X86::LCMPXCHG16,
11886                                               X86::NOT16r, X86::AX,
11887                                               X86::GR16RegisterClass);
11888  case X86::ATOMNAND16:
11889    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11890                                               X86::AND16ri, X86::MOV16rm,
11891                                               X86::LCMPXCHG16,
11892                                               X86::NOT16r, X86::AX,
11893                                               X86::GR16RegisterClass, true);
11894  case X86::ATOMMIN16:
11895    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
11896  case X86::ATOMMAX16:
11897    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
11898  case X86::ATOMUMIN16:
11899    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
11900  case X86::ATOMUMAX16:
11901    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
11902
11903  case X86::ATOMAND8:
11904    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11905                                               X86::AND8ri, X86::MOV8rm,
11906                                               X86::LCMPXCHG8,
11907                                               X86::NOT8r, X86::AL,
11908                                               X86::GR8RegisterClass);
11909  case X86::ATOMOR8:
11910    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11911                                               X86::OR8ri, X86::MOV8rm,
11912                                               X86::LCMPXCHG8,
11913                                               X86::NOT8r, X86::AL,
11914                                               X86::GR8RegisterClass);
11915  case X86::ATOMXOR8:
11916    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11917                                               X86::XOR8ri, X86::MOV8rm,
11918                                               X86::LCMPXCHG8,
11919                                               X86::NOT8r, X86::AL,
11920                                               X86::GR8RegisterClass);
11921  case X86::ATOMNAND8:
11922    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11923                                               X86::AND8ri, X86::MOV8rm,
11924                                               X86::LCMPXCHG8,
11925                                               X86::NOT8r, X86::AL,
11926                                               X86::GR8RegisterClass, true);
11927  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11928  // This group is for 64-bit host.
11929  case X86::ATOMAND64:
11930    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11931                                               X86::AND64ri32, X86::MOV64rm,
11932                                               X86::LCMPXCHG64,
11933                                               X86::NOT64r, X86::RAX,
11934                                               X86::GR64RegisterClass);
11935  case X86::ATOMOR64:
11936    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11937                                               X86::OR64ri32, X86::MOV64rm,
11938                                               X86::LCMPXCHG64,
11939                                               X86::NOT64r, X86::RAX,
11940                                               X86::GR64RegisterClass);
11941  case X86::ATOMXOR64:
11942    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11943                                               X86::XOR64ri32, X86::MOV64rm,
11944                                               X86::LCMPXCHG64,
11945                                               X86::NOT64r, X86::RAX,
11946                                               X86::GR64RegisterClass);
11947  case X86::ATOMNAND64:
11948    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11949                                               X86::AND64ri32, X86::MOV64rm,
11950                                               X86::LCMPXCHG64,
11951                                               X86::NOT64r, X86::RAX,
11952                                               X86::GR64RegisterClass, true);
11953  case X86::ATOMMIN64:
11954    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
11955  case X86::ATOMMAX64:
11956    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
11957  case X86::ATOMUMIN64:
11958    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
11959  case X86::ATOMUMAX64:
11960    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
11961
11962  // This group does 64-bit operations on a 32-bit host.
11963  case X86::ATOMAND6432:
11964    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11965                                               X86::AND32rr, X86::AND32rr,
11966                                               X86::AND32ri, X86::AND32ri,
11967                                               false);
11968  case X86::ATOMOR6432:
11969    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11970                                               X86::OR32rr, X86::OR32rr,
11971                                               X86::OR32ri, X86::OR32ri,
11972                                               false);
11973  case X86::ATOMXOR6432:
11974    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11975                                               X86::XOR32rr, X86::XOR32rr,
11976                                               X86::XOR32ri, X86::XOR32ri,
11977                                               false);
11978  case X86::ATOMNAND6432:
11979    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11980                                               X86::AND32rr, X86::AND32rr,
11981                                               X86::AND32ri, X86::AND32ri,
11982                                               true);
11983  case X86::ATOMADD6432:
11984    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11985                                               X86::ADD32rr, X86::ADC32rr,
11986                                               X86::ADD32ri, X86::ADC32ri,
11987                                               false);
11988  case X86::ATOMSUB6432:
11989    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11990                                               X86::SUB32rr, X86::SBB32rr,
11991                                               X86::SUB32ri, X86::SBB32ri,
11992                                               false);
11993  case X86::ATOMSWAP6432:
11994    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11995                                               X86::MOV32rr, X86::MOV32rr,
11996                                               X86::MOV32ri, X86::MOV32ri,
11997                                               false);
11998  case X86::VASTART_SAVE_XMM_REGS:
11999    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12000
12001  case X86::VAARG_64:
12002    return EmitVAARG64WithCustomInserter(MI, BB);
12003  }
12004}
12005
12006//===----------------------------------------------------------------------===//
12007//                           X86 Optimization Hooks
12008//===----------------------------------------------------------------------===//
12009
12010void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12011                                                       const APInt &Mask,
12012                                                       APInt &KnownZero,
12013                                                       APInt &KnownOne,
12014                                                       const SelectionDAG &DAG,
12015                                                       unsigned Depth) const {
12016  unsigned Opc = Op.getOpcode();
12017  assert((Opc >= ISD::BUILTIN_OP_END ||
12018          Opc == ISD::INTRINSIC_WO_CHAIN ||
12019          Opc == ISD::INTRINSIC_W_CHAIN ||
12020          Opc == ISD::INTRINSIC_VOID) &&
12021         "Should use MaskedValueIsZero if you don't know whether Op"
12022         " is a target node!");
12023
12024  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12025  switch (Opc) {
12026  default: break;
12027  case X86ISD::ADD:
12028  case X86ISD::SUB:
12029  case X86ISD::ADC:
12030  case X86ISD::SBB:
12031  case X86ISD::SMUL:
12032  case X86ISD::UMUL:
12033  case X86ISD::INC:
12034  case X86ISD::DEC:
12035  case X86ISD::OR:
12036  case X86ISD::XOR:
12037  case X86ISD::AND:
12038    // These nodes' second result is a boolean.
12039    if (Op.getResNo() == 0)
12040      break;
12041    // Fallthrough
12042  case X86ISD::SETCC:
12043    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12044                                       Mask.getBitWidth() - 1);
12045    break;
12046  }
12047}
12048
12049unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12050                                                         unsigned Depth) const {
12051  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12052  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12053    return Op.getValueType().getScalarType().getSizeInBits();
12054
12055  // Fallback case.
12056  return 1;
12057}
12058
12059/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12060/// node is a GlobalAddress + offset.
12061bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12062                                       const GlobalValue* &GA,
12063                                       int64_t &Offset) const {
12064  if (N->getOpcode() == X86ISD::Wrapper) {
12065    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12066      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12067      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12068      return true;
12069    }
12070  }
12071  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12072}
12073
12074/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12075/// same as extracting the high 128-bit part of 256-bit vector and then
12076/// inserting the result into the low part of a new 256-bit vector
12077static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12078  EVT VT = SVOp->getValueType(0);
12079  int NumElems = VT.getVectorNumElements();
12080
12081  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12082  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12083    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12084        SVOp->getMaskElt(j) >= 0)
12085      return false;
12086
12087  return true;
12088}
12089
12090/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12091/// same as extracting the low 128-bit part of 256-bit vector and then
12092/// inserting the result into the high part of a new 256-bit vector
12093static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12094  EVT VT = SVOp->getValueType(0);
12095  int NumElems = VT.getVectorNumElements();
12096
12097  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12098  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12099    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12100        SVOp->getMaskElt(j) >= 0)
12101      return false;
12102
12103  return true;
12104}
12105
12106/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12107static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12108                                        TargetLowering::DAGCombinerInfo &DCI) {
12109  DebugLoc dl = N->getDebugLoc();
12110  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12111  SDValue V1 = SVOp->getOperand(0);
12112  SDValue V2 = SVOp->getOperand(1);
12113  EVT VT = SVOp->getValueType(0);
12114  int NumElems = VT.getVectorNumElements();
12115
12116  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12117      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12118    //
12119    //                   0,0,0,...
12120    //                      |
12121    //    V      UNDEF    BUILD_VECTOR    UNDEF
12122    //     \      /           \           /
12123    //  CONCAT_VECTOR         CONCAT_VECTOR
12124    //         \                  /
12125    //          \                /
12126    //          RESULT: V + zero extended
12127    //
12128    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12129        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12130        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12131      return SDValue();
12132
12133    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12134      return SDValue();
12135
12136    // To match the shuffle mask, the first half of the mask should
12137    // be exactly the first vector, and all the rest a splat with the
12138    // first element of the second one.
12139    for (int i = 0; i < NumElems/2; ++i)
12140      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12141          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12142        return SDValue();
12143
12144    // Emit a zeroed vector and insert the desired subvector on its
12145    // first half.
12146    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
12147    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12148                         DAG.getConstant(0, MVT::i32), DAG, dl);
12149    return DCI.CombineTo(N, InsV);
12150  }
12151
12152  //===--------------------------------------------------------------------===//
12153  // Combine some shuffles into subvector extracts and inserts:
12154  //
12155
12156  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12157  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12158    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12159                                    DAG, dl);
12160    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12161                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12162    return DCI.CombineTo(N, InsV);
12163  }
12164
12165  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12166  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12167    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12168    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12169                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12170    return DCI.CombineTo(N, InsV);
12171  }
12172
12173  return SDValue();
12174}
12175
12176/// PerformShuffleCombine - Performs several different shuffle combines.
12177static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12178                                     TargetLowering::DAGCombinerInfo &DCI,
12179                                     const X86Subtarget *Subtarget) {
12180  DebugLoc dl = N->getDebugLoc();
12181  EVT VT = N->getValueType(0);
12182
12183  // Don't create instructions with illegal types after legalize types has run.
12184  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12185  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12186    return SDValue();
12187
12188  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12189  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12190      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12191    return PerformShuffleCombine256(N, DAG, DCI);
12192
12193  // Only handle 128 wide vector from here on.
12194  if (VT.getSizeInBits() != 128)
12195    return SDValue();
12196
12197  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12198  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12199  // consecutive, non-overlapping, and in the right order.
12200  SmallVector<SDValue, 16> Elts;
12201  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12202    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12203
12204  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12205}
12206
12207/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12208/// generation and convert it from being a bunch of shuffles and extracts
12209/// to a simple store and scalar loads to extract the elements.
12210static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12211                                                const TargetLowering &TLI) {
12212  SDValue InputVector = N->getOperand(0);
12213
12214  // Only operate on vectors of 4 elements, where the alternative shuffling
12215  // gets to be more expensive.
12216  if (InputVector.getValueType() != MVT::v4i32)
12217    return SDValue();
12218
12219  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12220  // single use which is a sign-extend or zero-extend, and all elements are
12221  // used.
12222  SmallVector<SDNode *, 4> Uses;
12223  unsigned ExtractedElements = 0;
12224  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12225       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12226    if (UI.getUse().getResNo() != InputVector.getResNo())
12227      return SDValue();
12228
12229    SDNode *Extract = *UI;
12230    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12231      return SDValue();
12232
12233    if (Extract->getValueType(0) != MVT::i32)
12234      return SDValue();
12235    if (!Extract->hasOneUse())
12236      return SDValue();
12237    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12238        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12239      return SDValue();
12240    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12241      return SDValue();
12242
12243    // Record which element was extracted.
12244    ExtractedElements |=
12245      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12246
12247    Uses.push_back(Extract);
12248  }
12249
12250  // If not all the elements were used, this may not be worthwhile.
12251  if (ExtractedElements != 15)
12252    return SDValue();
12253
12254  // Ok, we've now decided to do the transformation.
12255  DebugLoc dl = InputVector.getDebugLoc();
12256
12257  // Store the value to a temporary stack slot.
12258  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12259  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12260                            MachinePointerInfo(), false, false, 0);
12261
12262  // Replace each use (extract) with a load of the appropriate element.
12263  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12264       UE = Uses.end(); UI != UE; ++UI) {
12265    SDNode *Extract = *UI;
12266
12267    // cOMpute the element's address.
12268    SDValue Idx = Extract->getOperand(1);
12269    unsigned EltSize =
12270        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12271    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12272    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12273
12274    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12275                                     StackPtr, OffsetVal);
12276
12277    // Load the scalar.
12278    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12279                                     ScalarAddr, MachinePointerInfo(),
12280                                     false, false, 0);
12281
12282    // Replace the exact with the load.
12283    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12284  }
12285
12286  // The replacement was made in place; don't return anything.
12287  return SDValue();
12288}
12289
12290/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
12291static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12292                                    const X86Subtarget *Subtarget) {
12293  DebugLoc DL = N->getDebugLoc();
12294  SDValue Cond = N->getOperand(0);
12295  // Get the LHS/RHS of the select.
12296  SDValue LHS = N->getOperand(1);
12297  SDValue RHS = N->getOperand(2);
12298
12299  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12300  // instructions match the semantics of the common C idiom x<y?x:y but not
12301  // x<=y?x:y, because of how they handle negative zero (which can be
12302  // ignored in unsafe-math mode).
12303  if (Subtarget->hasSSE2() &&
12304      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
12305      Cond.getOpcode() == ISD::SETCC) {
12306    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12307
12308    unsigned Opcode = 0;
12309    // Check for x CC y ? x : y.
12310    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12311        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12312      switch (CC) {
12313      default: break;
12314      case ISD::SETULT:
12315        // Converting this to a min would handle NaNs incorrectly, and swapping
12316        // the operands would cause it to handle comparisons between positive
12317        // and negative zero incorrectly.
12318        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12319          if (!UnsafeFPMath &&
12320              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12321            break;
12322          std::swap(LHS, RHS);
12323        }
12324        Opcode = X86ISD::FMIN;
12325        break;
12326      case ISD::SETOLE:
12327        // Converting this to a min would handle comparisons between positive
12328        // and negative zero incorrectly.
12329        if (!UnsafeFPMath &&
12330            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12331          break;
12332        Opcode = X86ISD::FMIN;
12333        break;
12334      case ISD::SETULE:
12335        // Converting this to a min would handle both negative zeros and NaNs
12336        // incorrectly, but we can swap the operands to fix both.
12337        std::swap(LHS, RHS);
12338      case ISD::SETOLT:
12339      case ISD::SETLT:
12340      case ISD::SETLE:
12341        Opcode = X86ISD::FMIN;
12342        break;
12343
12344      case ISD::SETOGE:
12345        // Converting this to a max would handle comparisons between positive
12346        // and negative zero incorrectly.
12347        if (!UnsafeFPMath &&
12348            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12349          break;
12350        Opcode = X86ISD::FMAX;
12351        break;
12352      case ISD::SETUGT:
12353        // Converting this to a max would handle NaNs incorrectly, and swapping
12354        // the operands would cause it to handle comparisons between positive
12355        // and negative zero incorrectly.
12356        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12357          if (!UnsafeFPMath &&
12358              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12359            break;
12360          std::swap(LHS, RHS);
12361        }
12362        Opcode = X86ISD::FMAX;
12363        break;
12364      case ISD::SETUGE:
12365        // Converting this to a max would handle both negative zeros and NaNs
12366        // incorrectly, but we can swap the operands to fix both.
12367        std::swap(LHS, RHS);
12368      case ISD::SETOGT:
12369      case ISD::SETGT:
12370      case ISD::SETGE:
12371        Opcode = X86ISD::FMAX;
12372        break;
12373      }
12374    // Check for x CC y ? y : x -- a min/max with reversed arms.
12375    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12376               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12377      switch (CC) {
12378      default: break;
12379      case ISD::SETOGE:
12380        // Converting this to a min would handle comparisons between positive
12381        // and negative zero incorrectly, and swapping the operands would
12382        // cause it to handle NaNs incorrectly.
12383        if (!UnsafeFPMath &&
12384            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12385          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12386            break;
12387          std::swap(LHS, RHS);
12388        }
12389        Opcode = X86ISD::FMIN;
12390        break;
12391      case ISD::SETUGT:
12392        // Converting this to a min would handle NaNs incorrectly.
12393        if (!UnsafeFPMath &&
12394            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12395          break;
12396        Opcode = X86ISD::FMIN;
12397        break;
12398      case ISD::SETUGE:
12399        // Converting this to a min would handle both negative zeros and NaNs
12400        // incorrectly, but we can swap the operands to fix both.
12401        std::swap(LHS, RHS);
12402      case ISD::SETOGT:
12403      case ISD::SETGT:
12404      case ISD::SETGE:
12405        Opcode = X86ISD::FMIN;
12406        break;
12407
12408      case ISD::SETULT:
12409        // Converting this to a max would handle NaNs incorrectly.
12410        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12411          break;
12412        Opcode = X86ISD::FMAX;
12413        break;
12414      case ISD::SETOLE:
12415        // Converting this to a max would handle comparisons between positive
12416        // and negative zero incorrectly, and swapping the operands would
12417        // cause it to handle NaNs incorrectly.
12418        if (!UnsafeFPMath &&
12419            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12420          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12421            break;
12422          std::swap(LHS, RHS);
12423        }
12424        Opcode = X86ISD::FMAX;
12425        break;
12426      case ISD::SETULE:
12427        // Converting this to a max would handle both negative zeros and NaNs
12428        // incorrectly, but we can swap the operands to fix both.
12429        std::swap(LHS, RHS);
12430      case ISD::SETOLT:
12431      case ISD::SETLT:
12432      case ISD::SETLE:
12433        Opcode = X86ISD::FMAX;
12434        break;
12435      }
12436    }
12437
12438    if (Opcode)
12439      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12440  }
12441
12442  // If this is a select between two integer constants, try to do some
12443  // optimizations.
12444  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12445    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12446      // Don't do this for crazy integer types.
12447      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12448        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12449        // so that TrueC (the true value) is larger than FalseC.
12450        bool NeedsCondInvert = false;
12451
12452        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12453            // Efficiently invertible.
12454            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12455             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12456              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12457          NeedsCondInvert = true;
12458          std::swap(TrueC, FalseC);
12459        }
12460
12461        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12462        if (FalseC->getAPIntValue() == 0 &&
12463            TrueC->getAPIntValue().isPowerOf2()) {
12464          if (NeedsCondInvert) // Invert the condition if needed.
12465            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12466                               DAG.getConstant(1, Cond.getValueType()));
12467
12468          // Zero extend the condition if needed.
12469          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12470
12471          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12472          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12473                             DAG.getConstant(ShAmt, MVT::i8));
12474        }
12475
12476        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12477        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12478          if (NeedsCondInvert) // Invert the condition if needed.
12479            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12480                               DAG.getConstant(1, Cond.getValueType()));
12481
12482          // Zero extend the condition if needed.
12483          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12484                             FalseC->getValueType(0), Cond);
12485          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12486                             SDValue(FalseC, 0));
12487        }
12488
12489        // Optimize cases that will turn into an LEA instruction.  This requires
12490        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12491        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12492          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12493          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12494
12495          bool isFastMultiplier = false;
12496          if (Diff < 10) {
12497            switch ((unsigned char)Diff) {
12498              default: break;
12499              case 1:  // result = add base, cond
12500              case 2:  // result = lea base(    , cond*2)
12501              case 3:  // result = lea base(cond, cond*2)
12502              case 4:  // result = lea base(    , cond*4)
12503              case 5:  // result = lea base(cond, cond*4)
12504              case 8:  // result = lea base(    , cond*8)
12505              case 9:  // result = lea base(cond, cond*8)
12506                isFastMultiplier = true;
12507                break;
12508            }
12509          }
12510
12511          if (isFastMultiplier) {
12512            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12513            if (NeedsCondInvert) // Invert the condition if needed.
12514              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12515                                 DAG.getConstant(1, Cond.getValueType()));
12516
12517            // Zero extend the condition if needed.
12518            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12519                               Cond);
12520            // Scale the condition by the difference.
12521            if (Diff != 1)
12522              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12523                                 DAG.getConstant(Diff, Cond.getValueType()));
12524
12525            // Add the base if non-zero.
12526            if (FalseC->getAPIntValue() != 0)
12527              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12528                                 SDValue(FalseC, 0));
12529            return Cond;
12530          }
12531        }
12532      }
12533  }
12534
12535  return SDValue();
12536}
12537
12538/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12539static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12540                                  TargetLowering::DAGCombinerInfo &DCI) {
12541  DebugLoc DL = N->getDebugLoc();
12542
12543  // If the flag operand isn't dead, don't touch this CMOV.
12544  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12545    return SDValue();
12546
12547  SDValue FalseOp = N->getOperand(0);
12548  SDValue TrueOp = N->getOperand(1);
12549  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12550  SDValue Cond = N->getOperand(3);
12551  if (CC == X86::COND_E || CC == X86::COND_NE) {
12552    switch (Cond.getOpcode()) {
12553    default: break;
12554    case X86ISD::BSR:
12555    case X86ISD::BSF:
12556      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12557      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12558        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12559    }
12560  }
12561
12562  // If this is a select between two integer constants, try to do some
12563  // optimizations.  Note that the operands are ordered the opposite of SELECT
12564  // operands.
12565  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12566    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12567      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12568      // larger than FalseC (the false value).
12569      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12570        CC = X86::GetOppositeBranchCondition(CC);
12571        std::swap(TrueC, FalseC);
12572      }
12573
12574      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12575      // This is efficient for any integer data type (including i8/i16) and
12576      // shift amount.
12577      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12578        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12579                           DAG.getConstant(CC, MVT::i8), Cond);
12580
12581        // Zero extend the condition if needed.
12582        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12583
12584        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12585        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12586                           DAG.getConstant(ShAmt, MVT::i8));
12587        if (N->getNumValues() == 2)  // Dead flag value?
12588          return DCI.CombineTo(N, Cond, SDValue());
12589        return Cond;
12590      }
12591
12592      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12593      // for any integer data type, including i8/i16.
12594      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12595        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12596                           DAG.getConstant(CC, MVT::i8), Cond);
12597
12598        // Zero extend the condition if needed.
12599        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12600                           FalseC->getValueType(0), Cond);
12601        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12602                           SDValue(FalseC, 0));
12603
12604        if (N->getNumValues() == 2)  // Dead flag value?
12605          return DCI.CombineTo(N, Cond, SDValue());
12606        return Cond;
12607      }
12608
12609      // Optimize cases that will turn into an LEA instruction.  This requires
12610      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12611      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12612        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12613        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12614
12615        bool isFastMultiplier = false;
12616        if (Diff < 10) {
12617          switch ((unsigned char)Diff) {
12618          default: break;
12619          case 1:  // result = add base, cond
12620          case 2:  // result = lea base(    , cond*2)
12621          case 3:  // result = lea base(cond, cond*2)
12622          case 4:  // result = lea base(    , cond*4)
12623          case 5:  // result = lea base(cond, cond*4)
12624          case 8:  // result = lea base(    , cond*8)
12625          case 9:  // result = lea base(cond, cond*8)
12626            isFastMultiplier = true;
12627            break;
12628          }
12629        }
12630
12631        if (isFastMultiplier) {
12632          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12633          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12634                             DAG.getConstant(CC, MVT::i8), Cond);
12635          // Zero extend the condition if needed.
12636          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12637                             Cond);
12638          // Scale the condition by the difference.
12639          if (Diff != 1)
12640            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12641                               DAG.getConstant(Diff, Cond.getValueType()));
12642
12643          // Add the base if non-zero.
12644          if (FalseC->getAPIntValue() != 0)
12645            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12646                               SDValue(FalseC, 0));
12647          if (N->getNumValues() == 2)  // Dead flag value?
12648            return DCI.CombineTo(N, Cond, SDValue());
12649          return Cond;
12650        }
12651      }
12652    }
12653  }
12654  return SDValue();
12655}
12656
12657
12658/// PerformMulCombine - Optimize a single multiply with constant into two
12659/// in order to implement it with two cheaper instructions, e.g.
12660/// LEA + SHL, LEA + LEA.
12661static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12662                                 TargetLowering::DAGCombinerInfo &DCI) {
12663  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12664    return SDValue();
12665
12666  EVT VT = N->getValueType(0);
12667  if (VT != MVT::i64)
12668    return SDValue();
12669
12670  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12671  if (!C)
12672    return SDValue();
12673  uint64_t MulAmt = C->getZExtValue();
12674  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12675    return SDValue();
12676
12677  uint64_t MulAmt1 = 0;
12678  uint64_t MulAmt2 = 0;
12679  if ((MulAmt % 9) == 0) {
12680    MulAmt1 = 9;
12681    MulAmt2 = MulAmt / 9;
12682  } else if ((MulAmt % 5) == 0) {
12683    MulAmt1 = 5;
12684    MulAmt2 = MulAmt / 5;
12685  } else if ((MulAmt % 3) == 0) {
12686    MulAmt1 = 3;
12687    MulAmt2 = MulAmt / 3;
12688  }
12689  if (MulAmt2 &&
12690      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12691    DebugLoc DL = N->getDebugLoc();
12692
12693    if (isPowerOf2_64(MulAmt2) &&
12694        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12695      // If second multiplifer is pow2, issue it first. We want the multiply by
12696      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12697      // is an add.
12698      std::swap(MulAmt1, MulAmt2);
12699
12700    SDValue NewMul;
12701    if (isPowerOf2_64(MulAmt1))
12702      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12703                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12704    else
12705      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12706                           DAG.getConstant(MulAmt1, VT));
12707
12708    if (isPowerOf2_64(MulAmt2))
12709      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12710                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12711    else
12712      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12713                           DAG.getConstant(MulAmt2, VT));
12714
12715    // Do not add new nodes to DAG combiner worklist.
12716    DCI.CombineTo(N, NewMul, false);
12717  }
12718  return SDValue();
12719}
12720
12721static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12722  SDValue N0 = N->getOperand(0);
12723  SDValue N1 = N->getOperand(1);
12724  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12725  EVT VT = N0.getValueType();
12726
12727  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12728  // since the result of setcc_c is all zero's or all ones.
12729  if (N1C && N0.getOpcode() == ISD::AND &&
12730      N0.getOperand(1).getOpcode() == ISD::Constant) {
12731    SDValue N00 = N0.getOperand(0);
12732    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
12733        ((N00.getOpcode() == ISD::ANY_EXTEND ||
12734          N00.getOpcode() == ISD::ZERO_EXTEND) &&
12735         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
12736      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
12737      APInt ShAmt = N1C->getAPIntValue();
12738      Mask = Mask.shl(ShAmt);
12739      if (Mask != 0)
12740        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
12741                           N00, DAG.getConstant(Mask, VT));
12742    }
12743  }
12744
12745  return SDValue();
12746}
12747
12748/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
12749///                       when possible.
12750static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
12751                                   const X86Subtarget *Subtarget) {
12752  EVT VT = N->getValueType(0);
12753  if (!VT.isVector() && VT.isInteger() &&
12754      N->getOpcode() == ISD::SHL)
12755    return PerformSHLCombine(N, DAG);
12756
12757  // On X86 with SSE2 support, we can transform this to a vector shift if
12758  // all elements are shifted by the same amount.  We can't do this in legalize
12759  // because the a constant vector is typically transformed to a constant pool
12760  // so we have no knowledge of the shift amount.
12761  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
12762    return SDValue();
12763
12764  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
12765    return SDValue();
12766
12767  SDValue ShAmtOp = N->getOperand(1);
12768  EVT EltVT = VT.getVectorElementType();
12769  DebugLoc DL = N->getDebugLoc();
12770  SDValue BaseShAmt = SDValue();
12771  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
12772    unsigned NumElts = VT.getVectorNumElements();
12773    unsigned i = 0;
12774    for (; i != NumElts; ++i) {
12775      SDValue Arg = ShAmtOp.getOperand(i);
12776      if (Arg.getOpcode() == ISD::UNDEF) continue;
12777      BaseShAmt = Arg;
12778      break;
12779    }
12780    for (; i != NumElts; ++i) {
12781      SDValue Arg = ShAmtOp.getOperand(i);
12782      if (Arg.getOpcode() == ISD::UNDEF) continue;
12783      if (Arg != BaseShAmt) {
12784        return SDValue();
12785      }
12786    }
12787  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
12788             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
12789    SDValue InVec = ShAmtOp.getOperand(0);
12790    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12791      unsigned NumElts = InVec.getValueType().getVectorNumElements();
12792      unsigned i = 0;
12793      for (; i != NumElts; ++i) {
12794        SDValue Arg = InVec.getOperand(i);
12795        if (Arg.getOpcode() == ISD::UNDEF) continue;
12796        BaseShAmt = Arg;
12797        break;
12798      }
12799    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12800       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12801         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
12802         if (C->getZExtValue() == SplatIdx)
12803           BaseShAmt = InVec.getOperand(1);
12804       }
12805    }
12806    if (BaseShAmt.getNode() == 0)
12807      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
12808                              DAG.getIntPtrConstant(0));
12809  } else
12810    return SDValue();
12811
12812  // The shift amount is an i32.
12813  if (EltVT.bitsGT(MVT::i32))
12814    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
12815  else if (EltVT.bitsLT(MVT::i32))
12816    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
12817
12818  // The shift amount is identical so we can do a vector shift.
12819  SDValue  ValOp = N->getOperand(0);
12820  switch (N->getOpcode()) {
12821  default:
12822    llvm_unreachable("Unknown shift opcode!");
12823    break;
12824  case ISD::SHL:
12825    if (VT == MVT::v2i64)
12826      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12827                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
12828                         ValOp, BaseShAmt);
12829    if (VT == MVT::v4i32)
12830      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12831                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
12832                         ValOp, BaseShAmt);
12833    if (VT == MVT::v8i16)
12834      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12835                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
12836                         ValOp, BaseShAmt);
12837    break;
12838  case ISD::SRA:
12839    if (VT == MVT::v4i32)
12840      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12841                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
12842                         ValOp, BaseShAmt);
12843    if (VT == MVT::v8i16)
12844      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12845                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
12846                         ValOp, BaseShAmt);
12847    break;
12848  case ISD::SRL:
12849    if (VT == MVT::v2i64)
12850      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12851                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
12852                         ValOp, BaseShAmt);
12853    if (VT == MVT::v4i32)
12854      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12855                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
12856                         ValOp, BaseShAmt);
12857    if (VT ==  MVT::v8i16)
12858      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12859                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
12860                         ValOp, BaseShAmt);
12861    break;
12862  }
12863  return SDValue();
12864}
12865
12866
12867// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
12868// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
12869// and friends.  Likewise for OR -> CMPNEQSS.
12870static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
12871                            TargetLowering::DAGCombinerInfo &DCI,
12872                            const X86Subtarget *Subtarget) {
12873  unsigned opcode;
12874
12875  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
12876  // we're requiring SSE2 for both.
12877  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
12878    SDValue N0 = N->getOperand(0);
12879    SDValue N1 = N->getOperand(1);
12880    SDValue CMP0 = N0->getOperand(1);
12881    SDValue CMP1 = N1->getOperand(1);
12882    DebugLoc DL = N->getDebugLoc();
12883
12884    // The SETCCs should both refer to the same CMP.
12885    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
12886      return SDValue();
12887
12888    SDValue CMP00 = CMP0->getOperand(0);
12889    SDValue CMP01 = CMP0->getOperand(1);
12890    EVT     VT    = CMP00.getValueType();
12891
12892    if (VT == MVT::f32 || VT == MVT::f64) {
12893      bool ExpectingFlags = false;
12894      // Check for any users that want flags:
12895      for (SDNode::use_iterator UI = N->use_begin(),
12896             UE = N->use_end();
12897           !ExpectingFlags && UI != UE; ++UI)
12898        switch (UI->getOpcode()) {
12899        default:
12900        case ISD::BR_CC:
12901        case ISD::BRCOND:
12902        case ISD::SELECT:
12903          ExpectingFlags = true;
12904          break;
12905        case ISD::CopyToReg:
12906        case ISD::SIGN_EXTEND:
12907        case ISD::ZERO_EXTEND:
12908        case ISD::ANY_EXTEND:
12909          break;
12910        }
12911
12912      if (!ExpectingFlags) {
12913        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
12914        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
12915
12916        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
12917          X86::CondCode tmp = cc0;
12918          cc0 = cc1;
12919          cc1 = tmp;
12920        }
12921
12922        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
12923            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
12924          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
12925          X86ISD::NodeType NTOperator = is64BitFP ?
12926            X86ISD::FSETCCsd : X86ISD::FSETCCss;
12927          // FIXME: need symbolic constants for these magic numbers.
12928          // See X86ATTInstPrinter.cpp:printSSECC().
12929          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
12930          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
12931                                              DAG.getConstant(x86cc, MVT::i8));
12932          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
12933                                              OnesOrZeroesF);
12934          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
12935                                      DAG.getConstant(1, MVT::i32));
12936          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
12937          return OneBitOfTruth;
12938        }
12939      }
12940    }
12941  }
12942  return SDValue();
12943}
12944
12945/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
12946/// so it can be folded inside ANDNP.
12947static bool CanFoldXORWithAllOnes(const SDNode *N) {
12948  EVT VT = N->getValueType(0);
12949
12950  // Match direct AllOnes for 128 and 256-bit vectors
12951  if (ISD::isBuildVectorAllOnes(N))
12952    return true;
12953
12954  // Look through a bit convert.
12955  if (N->getOpcode() == ISD::BITCAST)
12956    N = N->getOperand(0).getNode();
12957
12958  // Sometimes the operand may come from a insert_subvector building a 256-bit
12959  // allones vector
12960  if (VT.getSizeInBits() == 256 &&
12961      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
12962    SDValue V1 = N->getOperand(0);
12963    SDValue V2 = N->getOperand(1);
12964
12965    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
12966        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
12967        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
12968        ISD::isBuildVectorAllOnes(V2.getNode()))
12969      return true;
12970  }
12971
12972  return false;
12973}
12974
12975static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
12976                                 TargetLowering::DAGCombinerInfo &DCI,
12977                                 const X86Subtarget *Subtarget) {
12978  if (DCI.isBeforeLegalizeOps())
12979    return SDValue();
12980
12981  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12982  if (R.getNode())
12983    return R;
12984
12985  // Want to form ANDNP nodes:
12986  // 1) In the hopes of then easily combining them with OR and AND nodes
12987  //    to form PBLEND/PSIGN.
12988  // 2) To match ANDN packed intrinsics
12989  EVT VT = N->getValueType(0);
12990  if (VT != MVT::v2i64 && VT != MVT::v4i64)
12991    return SDValue();
12992
12993  SDValue N0 = N->getOperand(0);
12994  SDValue N1 = N->getOperand(1);
12995  DebugLoc DL = N->getDebugLoc();
12996
12997  // Check LHS for vnot
12998  if (N0.getOpcode() == ISD::XOR &&
12999      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13000      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13001    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13002
13003  // Check RHS for vnot
13004  if (N1.getOpcode() == ISD::XOR &&
13005      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13006      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13007    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13008
13009  return SDValue();
13010}
13011
13012static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13013                                TargetLowering::DAGCombinerInfo &DCI,
13014                                const X86Subtarget *Subtarget) {
13015  if (DCI.isBeforeLegalizeOps())
13016    return SDValue();
13017
13018  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13019  if (R.getNode())
13020    return R;
13021
13022  EVT VT = N->getValueType(0);
13023  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13024    return SDValue();
13025
13026  SDValue N0 = N->getOperand(0);
13027  SDValue N1 = N->getOperand(1);
13028
13029  // look for psign/blend
13030  if (Subtarget->hasSSSE3()) {
13031    if (VT == MVT::v2i64) {
13032      // Canonicalize pandn to RHS
13033      if (N0.getOpcode() == X86ISD::ANDNP)
13034        std::swap(N0, N1);
13035      // or (and (m, x), (pandn m, y))
13036      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13037        SDValue Mask = N1.getOperand(0);
13038        SDValue X    = N1.getOperand(1);
13039        SDValue Y;
13040        if (N0.getOperand(0) == Mask)
13041          Y = N0.getOperand(1);
13042        if (N0.getOperand(1) == Mask)
13043          Y = N0.getOperand(0);
13044
13045        // Check to see if the mask appeared in both the AND and ANDNP and
13046        if (!Y.getNode())
13047          return SDValue();
13048
13049        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13050        if (Mask.getOpcode() != ISD::BITCAST ||
13051            X.getOpcode() != ISD::BITCAST ||
13052            Y.getOpcode() != ISD::BITCAST)
13053          return SDValue();
13054
13055        // Look through mask bitcast.
13056        Mask = Mask.getOperand(0);
13057        EVT MaskVT = Mask.getValueType();
13058
13059        // Validate that the Mask operand is a vector sra node.  The sra node
13060        // will be an intrinsic.
13061        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13062          return SDValue();
13063
13064        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13065        // there is no psrai.b
13066        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13067        case Intrinsic::x86_sse2_psrai_w:
13068        case Intrinsic::x86_sse2_psrai_d:
13069          break;
13070        default: return SDValue();
13071        }
13072
13073        // Check that the SRA is all signbits.
13074        SDValue SraC = Mask.getOperand(2);
13075        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13076        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13077        if ((SraAmt + 1) != EltBits)
13078          return SDValue();
13079
13080        DebugLoc DL = N->getDebugLoc();
13081
13082        // Now we know we at least have a plendvb with the mask val.  See if
13083        // we can form a psignb/w/d.
13084        // psign = x.type == y.type == mask.type && y = sub(0, x);
13085        X = X.getOperand(0);
13086        Y = Y.getOperand(0);
13087        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13088            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13089            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13090          unsigned Opc = 0;
13091          switch (EltBits) {
13092          case 8: Opc = X86ISD::PSIGNB; break;
13093          case 16: Opc = X86ISD::PSIGNW; break;
13094          case 32: Opc = X86ISD::PSIGND; break;
13095          default: break;
13096          }
13097          if (Opc) {
13098            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13099            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13100          }
13101        }
13102        // PBLENDVB only available on SSE 4.1
13103        if (!Subtarget->hasSSE41())
13104          return SDValue();
13105
13106        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13107        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13108        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13109        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
13110        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13111      }
13112    }
13113  }
13114
13115  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13116  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13117    std::swap(N0, N1);
13118  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13119    return SDValue();
13120  if (!N0.hasOneUse() || !N1.hasOneUse())
13121    return SDValue();
13122
13123  SDValue ShAmt0 = N0.getOperand(1);
13124  if (ShAmt0.getValueType() != MVT::i8)
13125    return SDValue();
13126  SDValue ShAmt1 = N1.getOperand(1);
13127  if (ShAmt1.getValueType() != MVT::i8)
13128    return SDValue();
13129  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13130    ShAmt0 = ShAmt0.getOperand(0);
13131  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13132    ShAmt1 = ShAmt1.getOperand(0);
13133
13134  DebugLoc DL = N->getDebugLoc();
13135  unsigned Opc = X86ISD::SHLD;
13136  SDValue Op0 = N0.getOperand(0);
13137  SDValue Op1 = N1.getOperand(0);
13138  if (ShAmt0.getOpcode() == ISD::SUB) {
13139    Opc = X86ISD::SHRD;
13140    std::swap(Op0, Op1);
13141    std::swap(ShAmt0, ShAmt1);
13142  }
13143
13144  unsigned Bits = VT.getSizeInBits();
13145  if (ShAmt1.getOpcode() == ISD::SUB) {
13146    SDValue Sum = ShAmt1.getOperand(0);
13147    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13148      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13149      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13150        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13151      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13152        return DAG.getNode(Opc, DL, VT,
13153                           Op0, Op1,
13154                           DAG.getNode(ISD::TRUNCATE, DL,
13155                                       MVT::i8, ShAmt0));
13156    }
13157  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13158    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13159    if (ShAmt0C &&
13160        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13161      return DAG.getNode(Opc, DL, VT,
13162                         N0.getOperand(0), N1.getOperand(0),
13163                         DAG.getNode(ISD::TRUNCATE, DL,
13164                                       MVT::i8, ShAmt0));
13165  }
13166
13167  return SDValue();
13168}
13169
13170/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13171static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13172                                   const X86Subtarget *Subtarget) {
13173  StoreSDNode *St = cast<StoreSDNode>(N);
13174  EVT VT = St->getValue().getValueType();
13175  EVT StVT = St->getMemoryVT();
13176  DebugLoc dl = St->getDebugLoc();
13177  SDValue StoredVal = St->getOperand(1);
13178  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13179
13180  // If we are saving a concatination of two XMM registers, perform two stores.
13181  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13182  // 128-bit ones. If in the future the cost becomes only one memory access the
13183  // first version would be better.
13184  if (VT.getSizeInBits() == 256 &&
13185    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13186    StoredVal.getNumOperands() == 2) {
13187
13188    SDValue Value0 = StoredVal.getOperand(0);
13189    SDValue Value1 = StoredVal.getOperand(1);
13190
13191    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13192    SDValue Ptr0 = St->getBasePtr();
13193    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13194
13195    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13196                                St->getPointerInfo(), St->isVolatile(),
13197                                St->isNonTemporal(), St->getAlignment());
13198    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13199                                St->getPointerInfo(), St->isVolatile(),
13200                                St->isNonTemporal(), St->getAlignment());
13201    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13202  }
13203
13204  // Optimize trunc store (of multiple scalars) to shuffle and store.
13205  // First, pack all of the elements in one place. Next, store to memory
13206  // in fewer chunks.
13207  if (St->isTruncatingStore() && VT.isVector()) {
13208    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13209    unsigned NumElems = VT.getVectorNumElements();
13210    assert(StVT != VT && "Cannot truncate to the same type");
13211    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13212    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13213
13214    // From, To sizes and ElemCount must be pow of two
13215    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13216    // We are going to use the original vector elt for storing.
13217    // accumulated smaller vector elements must be a multiple of bigger size.
13218    if (0 != (NumElems * ToSz) % FromSz) return SDValue();
13219    unsigned SizeRatio  = FromSz / ToSz;
13220
13221    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13222
13223    // Create a type on which we perform the shuffle
13224    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13225            StVT.getScalarType(), NumElems*SizeRatio);
13226
13227    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13228
13229    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13230    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13231    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13232
13233    // Can't shuffle using an illegal type
13234    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13235
13236    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13237                                DAG.getUNDEF(WideVec.getValueType()),
13238                                ShuffleVec.data());
13239    // At this point all of the data is stored at the bottom of the
13240    // register. We now need to save it to mem.
13241
13242    // Find the largest store unit
13243    MVT StoreType = MVT::i8;
13244    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13245         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13246      MVT Tp = (MVT::SimpleValueType)tp;
13247      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13248        StoreType = Tp;
13249    }
13250
13251    // Bitcast the original vector into a vector of store-size units
13252    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13253            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13254    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13255    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13256    SmallVector<SDValue, 8> Chains;
13257    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13258                                        TLI.getPointerTy());
13259    SDValue Ptr = St->getBasePtr();
13260
13261    // Perform one or more big stores into memory.
13262    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13263      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13264                                   StoreType, ShuffWide,
13265                                   DAG.getIntPtrConstant(i));
13266      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13267                                St->getPointerInfo(), St->isVolatile(),
13268                                St->isNonTemporal(), St->getAlignment());
13269      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13270      Chains.push_back(Ch);
13271    }
13272
13273    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13274                               Chains.size());
13275  }
13276
13277
13278  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13279  // the FP state in cases where an emms may be missing.
13280  // A preferable solution to the general problem is to figure out the right
13281  // places to insert EMMS.  This qualifies as a quick hack.
13282
13283  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13284  if (VT.getSizeInBits() != 64)
13285    return SDValue();
13286
13287  const Function *F = DAG.getMachineFunction().getFunction();
13288  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13289  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13290    && Subtarget->hasSSE2();
13291  if ((VT.isVector() ||
13292       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13293      isa<LoadSDNode>(St->getValue()) &&
13294      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13295      St->getChain().hasOneUse() && !St->isVolatile()) {
13296    SDNode* LdVal = St->getValue().getNode();
13297    LoadSDNode *Ld = 0;
13298    int TokenFactorIndex = -1;
13299    SmallVector<SDValue, 8> Ops;
13300    SDNode* ChainVal = St->getChain().getNode();
13301    // Must be a store of a load.  We currently handle two cases:  the load
13302    // is a direct child, and it's under an intervening TokenFactor.  It is
13303    // possible to dig deeper under nested TokenFactors.
13304    if (ChainVal == LdVal)
13305      Ld = cast<LoadSDNode>(St->getChain());
13306    else if (St->getValue().hasOneUse() &&
13307             ChainVal->getOpcode() == ISD::TokenFactor) {
13308      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13309        if (ChainVal->getOperand(i).getNode() == LdVal) {
13310          TokenFactorIndex = i;
13311          Ld = cast<LoadSDNode>(St->getValue());
13312        } else
13313          Ops.push_back(ChainVal->getOperand(i));
13314      }
13315    }
13316
13317    if (!Ld || !ISD::isNormalLoad(Ld))
13318      return SDValue();
13319
13320    // If this is not the MMX case, i.e. we are just turning i64 load/store
13321    // into f64 load/store, avoid the transformation if there are multiple
13322    // uses of the loaded value.
13323    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13324      return SDValue();
13325
13326    DebugLoc LdDL = Ld->getDebugLoc();
13327    DebugLoc StDL = N->getDebugLoc();
13328    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13329    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13330    // pair instead.
13331    if (Subtarget->is64Bit() || F64IsLegal) {
13332      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13333      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13334                                  Ld->getPointerInfo(), Ld->isVolatile(),
13335                                  Ld->isNonTemporal(), Ld->getAlignment());
13336      SDValue NewChain = NewLd.getValue(1);
13337      if (TokenFactorIndex != -1) {
13338        Ops.push_back(NewChain);
13339        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13340                               Ops.size());
13341      }
13342      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13343                          St->getPointerInfo(),
13344                          St->isVolatile(), St->isNonTemporal(),
13345                          St->getAlignment());
13346    }
13347
13348    // Otherwise, lower to two pairs of 32-bit loads / stores.
13349    SDValue LoAddr = Ld->getBasePtr();
13350    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13351                                 DAG.getConstant(4, MVT::i32));
13352
13353    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13354                               Ld->getPointerInfo(),
13355                               Ld->isVolatile(), Ld->isNonTemporal(),
13356                               Ld->getAlignment());
13357    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13358                               Ld->getPointerInfo().getWithOffset(4),
13359                               Ld->isVolatile(), Ld->isNonTemporal(),
13360                               MinAlign(Ld->getAlignment(), 4));
13361
13362    SDValue NewChain = LoLd.getValue(1);
13363    if (TokenFactorIndex != -1) {
13364      Ops.push_back(LoLd);
13365      Ops.push_back(HiLd);
13366      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13367                             Ops.size());
13368    }
13369
13370    LoAddr = St->getBasePtr();
13371    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13372                         DAG.getConstant(4, MVT::i32));
13373
13374    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13375                                St->getPointerInfo(),
13376                                St->isVolatile(), St->isNonTemporal(),
13377                                St->getAlignment());
13378    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13379                                St->getPointerInfo().getWithOffset(4),
13380                                St->isVolatile(),
13381                                St->isNonTemporal(),
13382                                MinAlign(St->getAlignment(), 4));
13383    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13384  }
13385  return SDValue();
13386}
13387
13388/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13389/// X86ISD::FXOR nodes.
13390static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13391  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13392  // F[X]OR(0.0, x) -> x
13393  // F[X]OR(x, 0.0) -> x
13394  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13395    if (C->getValueAPF().isPosZero())
13396      return N->getOperand(1);
13397  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13398    if (C->getValueAPF().isPosZero())
13399      return N->getOperand(0);
13400  return SDValue();
13401}
13402
13403/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
13404static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13405  // FAND(0.0, x) -> 0.0
13406  // FAND(x, 0.0) -> 0.0
13407  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13408    if (C->getValueAPF().isPosZero())
13409      return N->getOperand(0);
13410  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13411    if (C->getValueAPF().isPosZero())
13412      return N->getOperand(1);
13413  return SDValue();
13414}
13415
13416static SDValue PerformBTCombine(SDNode *N,
13417                                SelectionDAG &DAG,
13418                                TargetLowering::DAGCombinerInfo &DCI) {
13419  // BT ignores high bits in the bit index operand.
13420  SDValue Op1 = N->getOperand(1);
13421  if (Op1.hasOneUse()) {
13422    unsigned BitWidth = Op1.getValueSizeInBits();
13423    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
13424    APInt KnownZero, KnownOne;
13425    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
13426                                          !DCI.isBeforeLegalizeOps());
13427    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13428    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
13429        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
13430      DCI.CommitTargetLoweringOpt(TLO);
13431  }
13432  return SDValue();
13433}
13434
13435static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
13436  SDValue Op = N->getOperand(0);
13437  if (Op.getOpcode() == ISD::BITCAST)
13438    Op = Op.getOperand(0);
13439  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
13440  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
13441      VT.getVectorElementType().getSizeInBits() ==
13442      OpVT.getVectorElementType().getSizeInBits()) {
13443    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
13444  }
13445  return SDValue();
13446}
13447
13448static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
13449  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
13450  //           (and (i32 x86isd::setcc_carry), 1)
13451  // This eliminates the zext. This transformation is necessary because
13452  // ISD::SETCC is always legalized to i8.
13453  DebugLoc dl = N->getDebugLoc();
13454  SDValue N0 = N->getOperand(0);
13455  EVT VT = N->getValueType(0);
13456  if (N0.getOpcode() == ISD::AND &&
13457      N0.hasOneUse() &&
13458      N0.getOperand(0).hasOneUse()) {
13459    SDValue N00 = N0.getOperand(0);
13460    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
13461      return SDValue();
13462    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
13463    if (!C || C->getZExtValue() != 1)
13464      return SDValue();
13465    return DAG.getNode(ISD::AND, dl, VT,
13466                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
13467                                   N00.getOperand(0), N00.getOperand(1)),
13468                       DAG.getConstant(1, VT));
13469  }
13470
13471  return SDValue();
13472}
13473
13474// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
13475static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
13476  unsigned X86CC = N->getConstantOperandVal(0);
13477  SDValue EFLAG = N->getOperand(1);
13478  DebugLoc DL = N->getDebugLoc();
13479
13480  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
13481  // a zext and produces an all-ones bit which is more useful than 0/1 in some
13482  // cases.
13483  if (X86CC == X86::COND_B)
13484    return DAG.getNode(ISD::AND, DL, MVT::i8,
13485                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
13486                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
13487                       DAG.getConstant(1, MVT::i8));
13488
13489  return SDValue();
13490}
13491
13492static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
13493                                        const X86TargetLowering *XTLI) {
13494  SDValue Op0 = N->getOperand(0);
13495  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
13496  // a 32-bit target where SSE doesn't support i64->FP operations.
13497  if (Op0.getOpcode() == ISD::LOAD) {
13498    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
13499    EVT VT = Ld->getValueType(0);
13500    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
13501        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
13502        !XTLI->getSubtarget()->is64Bit() &&
13503        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13504      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
13505                                          Ld->getChain(), Op0, DAG);
13506      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
13507      return FILDChain;
13508    }
13509  }
13510  return SDValue();
13511}
13512
13513// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
13514static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
13515                                 X86TargetLowering::DAGCombinerInfo &DCI) {
13516  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
13517  // the result is either zero or one (depending on the input carry bit).
13518  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
13519  if (X86::isZeroNode(N->getOperand(0)) &&
13520      X86::isZeroNode(N->getOperand(1)) &&
13521      // We don't have a good way to replace an EFLAGS use, so only do this when
13522      // dead right now.
13523      SDValue(N, 1).use_empty()) {
13524    DebugLoc DL = N->getDebugLoc();
13525    EVT VT = N->getValueType(0);
13526    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
13527    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
13528                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
13529                                           DAG.getConstant(X86::COND_B,MVT::i8),
13530                                           N->getOperand(2)),
13531                               DAG.getConstant(1, VT));
13532    return DCI.CombineTo(N, Res1, CarryOut);
13533  }
13534
13535  return SDValue();
13536}
13537
13538// fold (add Y, (sete  X, 0)) -> adc  0, Y
13539//      (add Y, (setne X, 0)) -> sbb -1, Y
13540//      (sub (sete  X, 0), Y) -> sbb  0, Y
13541//      (sub (setne X, 0), Y) -> adc -1, Y
13542static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
13543  DebugLoc DL = N->getDebugLoc();
13544
13545  // Look through ZExts.
13546  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
13547  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
13548    return SDValue();
13549
13550  SDValue SetCC = Ext.getOperand(0);
13551  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
13552    return SDValue();
13553
13554  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
13555  if (CC != X86::COND_E && CC != X86::COND_NE)
13556    return SDValue();
13557
13558  SDValue Cmp = SetCC.getOperand(1);
13559  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
13560      !X86::isZeroNode(Cmp.getOperand(1)) ||
13561      !Cmp.getOperand(0).getValueType().isInteger())
13562    return SDValue();
13563
13564  SDValue CmpOp0 = Cmp.getOperand(0);
13565  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
13566                               DAG.getConstant(1, CmpOp0.getValueType()));
13567
13568  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
13569  if (CC == X86::COND_NE)
13570    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
13571                       DL, OtherVal.getValueType(), OtherVal,
13572                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
13573  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
13574                     DL, OtherVal.getValueType(), OtherVal,
13575                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
13576}
13577
13578static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
13579  SDValue Op0 = N->getOperand(0);
13580  SDValue Op1 = N->getOperand(1);
13581
13582  // X86 can't encode an immediate LHS of a sub. See if we can push the
13583  // negation into a preceding instruction.
13584  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
13585    // If the RHS of the sub is a XOR with one use and a constant, invert the
13586    // immediate. Then add one to the LHS of the sub so we can turn
13587    // X-Y -> X+~Y+1, saving one register.
13588    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
13589        isa<ConstantSDNode>(Op1.getOperand(1))) {
13590      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
13591      EVT VT = Op0.getValueType();
13592      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
13593                                   Op1.getOperand(0),
13594                                   DAG.getConstant(~XorC, VT));
13595      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
13596                         DAG.getConstant(C->getAPIntValue()+1, VT));
13597    }
13598  }
13599
13600  return OptimizeConditionalInDecrement(N, DAG);
13601}
13602
13603SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
13604                                             DAGCombinerInfo &DCI) const {
13605  SelectionDAG &DAG = DCI.DAG;
13606  switch (N->getOpcode()) {
13607  default: break;
13608  case ISD::EXTRACT_VECTOR_ELT:
13609    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
13610  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
13611  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
13612  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
13613  case ISD::SUB:            return PerformSubCombine(N, DAG);
13614  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
13615  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
13616  case ISD::SHL:
13617  case ISD::SRA:
13618  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
13619  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
13620  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
13621  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
13622  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
13623  case X86ISD::FXOR:
13624  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
13625  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
13626  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
13627  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
13628  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
13629  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
13630  case X86ISD::SHUFPS:      // Handle all target specific shuffles
13631  case X86ISD::SHUFPD:
13632  case X86ISD::PALIGN:
13633  case X86ISD::PUNPCKHBW:
13634  case X86ISD::PUNPCKHWD:
13635  case X86ISD::PUNPCKHDQ:
13636  case X86ISD::PUNPCKHQDQ:
13637  case X86ISD::UNPCKHPS:
13638  case X86ISD::UNPCKHPD:
13639  case X86ISD::VUNPCKHPSY:
13640  case X86ISD::VUNPCKHPDY:
13641  case X86ISD::PUNPCKLBW:
13642  case X86ISD::PUNPCKLWD:
13643  case X86ISD::PUNPCKLDQ:
13644  case X86ISD::PUNPCKLQDQ:
13645  case X86ISD::UNPCKLPS:
13646  case X86ISD::UNPCKLPD:
13647  case X86ISD::VUNPCKLPSY:
13648  case X86ISD::VUNPCKLPDY:
13649  case X86ISD::MOVHLPS:
13650  case X86ISD::MOVLHPS:
13651  case X86ISD::PSHUFD:
13652  case X86ISD::PSHUFHW:
13653  case X86ISD::PSHUFLW:
13654  case X86ISD::MOVSS:
13655  case X86ISD::MOVSD:
13656  case X86ISD::VPERMILPS:
13657  case X86ISD::VPERMILPSY:
13658  case X86ISD::VPERMILPD:
13659  case X86ISD::VPERMILPDY:
13660  case X86ISD::VPERM2F128:
13661  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
13662  }
13663
13664  return SDValue();
13665}
13666
13667/// isTypeDesirableForOp - Return true if the target has native support for
13668/// the specified value type and it is 'desirable' to use the type for the
13669/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
13670/// instruction encodings are longer and some i16 instructions are slow.
13671bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
13672  if (!isTypeLegal(VT))
13673    return false;
13674  if (VT != MVT::i16)
13675    return true;
13676
13677  switch (Opc) {
13678  default:
13679    return true;
13680  case ISD::LOAD:
13681  case ISD::SIGN_EXTEND:
13682  case ISD::ZERO_EXTEND:
13683  case ISD::ANY_EXTEND:
13684  case ISD::SHL:
13685  case ISD::SRL:
13686  case ISD::SUB:
13687  case ISD::ADD:
13688  case ISD::MUL:
13689  case ISD::AND:
13690  case ISD::OR:
13691  case ISD::XOR:
13692    return false;
13693  }
13694}
13695
13696/// IsDesirableToPromoteOp - This method query the target whether it is
13697/// beneficial for dag combiner to promote the specified node. If true, it
13698/// should return the desired promotion type by reference.
13699bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
13700  EVT VT = Op.getValueType();
13701  if (VT != MVT::i16)
13702    return false;
13703
13704  bool Promote = false;
13705  bool Commute = false;
13706  switch (Op.getOpcode()) {
13707  default: break;
13708  case ISD::LOAD: {
13709    LoadSDNode *LD = cast<LoadSDNode>(Op);
13710    // If the non-extending load has a single use and it's not live out, then it
13711    // might be folded.
13712    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
13713                                                     Op.hasOneUse()*/) {
13714      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13715             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
13716        // The only case where we'd want to promote LOAD (rather then it being
13717        // promoted as an operand is when it's only use is liveout.
13718        if (UI->getOpcode() != ISD::CopyToReg)
13719          return false;
13720      }
13721    }
13722    Promote = true;
13723    break;
13724  }
13725  case ISD::SIGN_EXTEND:
13726  case ISD::ZERO_EXTEND:
13727  case ISD::ANY_EXTEND:
13728    Promote = true;
13729    break;
13730  case ISD::SHL:
13731  case ISD::SRL: {
13732    SDValue N0 = Op.getOperand(0);
13733    // Look out for (store (shl (load), x)).
13734    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
13735      return false;
13736    Promote = true;
13737    break;
13738  }
13739  case ISD::ADD:
13740  case ISD::MUL:
13741  case ISD::AND:
13742  case ISD::OR:
13743  case ISD::XOR:
13744    Commute = true;
13745    // fallthrough
13746  case ISD::SUB: {
13747    SDValue N0 = Op.getOperand(0);
13748    SDValue N1 = Op.getOperand(1);
13749    if (!Commute && MayFoldLoad(N1))
13750      return false;
13751    // Avoid disabling potential load folding opportunities.
13752    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
13753      return false;
13754    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
13755      return false;
13756    Promote = true;
13757  }
13758  }
13759
13760  PVT = MVT::i32;
13761  return Promote;
13762}
13763
13764//===----------------------------------------------------------------------===//
13765//                           X86 Inline Assembly Support
13766//===----------------------------------------------------------------------===//
13767
13768bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
13769  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13770
13771  std::string AsmStr = IA->getAsmString();
13772
13773  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
13774  SmallVector<StringRef, 4> AsmPieces;
13775  SplitString(AsmStr, AsmPieces, ";\n");
13776
13777  switch (AsmPieces.size()) {
13778  default: return false;
13779  case 1:
13780    AsmStr = AsmPieces[0];
13781    AsmPieces.clear();
13782    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
13783
13784    // FIXME: this should verify that we are targeting a 486 or better.  If not,
13785    // we will turn this bswap into something that will be lowered to logical ops
13786    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
13787    // so don't worry about this.
13788    // bswap $0
13789    if (AsmPieces.size() == 2 &&
13790        (AsmPieces[0] == "bswap" ||
13791         AsmPieces[0] == "bswapq" ||
13792         AsmPieces[0] == "bswapl") &&
13793        (AsmPieces[1] == "$0" ||
13794         AsmPieces[1] == "${0:q}")) {
13795      // No need to check constraints, nothing other than the equivalent of
13796      // "=r,0" would be valid here.
13797      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13798      if (!Ty || Ty->getBitWidth() % 16 != 0)
13799        return false;
13800      return IntrinsicLowering::LowerToByteSwap(CI);
13801    }
13802    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
13803    if (CI->getType()->isIntegerTy(16) &&
13804        AsmPieces.size() == 3 &&
13805        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
13806        AsmPieces[1] == "$$8," &&
13807        AsmPieces[2] == "${0:w}" &&
13808        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13809      AsmPieces.clear();
13810      const std::string &ConstraintsStr = IA->getConstraintString();
13811      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13812      std::sort(AsmPieces.begin(), AsmPieces.end());
13813      if (AsmPieces.size() == 4 &&
13814          AsmPieces[0] == "~{cc}" &&
13815          AsmPieces[1] == "~{dirflag}" &&
13816          AsmPieces[2] == "~{flags}" &&
13817          AsmPieces[3] == "~{fpsr}") {
13818        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13819        if (!Ty || Ty->getBitWidth() % 16 != 0)
13820          return false;
13821        return IntrinsicLowering::LowerToByteSwap(CI);
13822      }
13823    }
13824    break;
13825  case 3:
13826    if (CI->getType()->isIntegerTy(32) &&
13827        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13828      SmallVector<StringRef, 4> Words;
13829      SplitString(AsmPieces[0], Words, " \t,");
13830      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13831          Words[2] == "${0:w}") {
13832        Words.clear();
13833        SplitString(AsmPieces[1], Words, " \t,");
13834        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
13835            Words[2] == "$0") {
13836          Words.clear();
13837          SplitString(AsmPieces[2], Words, " \t,");
13838          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13839              Words[2] == "${0:w}") {
13840            AsmPieces.clear();
13841            const std::string &ConstraintsStr = IA->getConstraintString();
13842            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13843            std::sort(AsmPieces.begin(), AsmPieces.end());
13844            if (AsmPieces.size() == 4 &&
13845                AsmPieces[0] == "~{cc}" &&
13846                AsmPieces[1] == "~{dirflag}" &&
13847                AsmPieces[2] == "~{flags}" &&
13848                AsmPieces[3] == "~{fpsr}") {
13849              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13850              if (!Ty || Ty->getBitWidth() % 16 != 0)
13851                return false;
13852              return IntrinsicLowering::LowerToByteSwap(CI);
13853            }
13854          }
13855        }
13856      }
13857    }
13858
13859    if (CI->getType()->isIntegerTy(64)) {
13860      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
13861      if (Constraints.size() >= 2 &&
13862          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
13863          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
13864        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
13865        SmallVector<StringRef, 4> Words;
13866        SplitString(AsmPieces[0], Words, " \t");
13867        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
13868          Words.clear();
13869          SplitString(AsmPieces[1], Words, " \t");
13870          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
13871            Words.clear();
13872            SplitString(AsmPieces[2], Words, " \t,");
13873            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
13874                Words[2] == "%edx") {
13875              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13876              if (!Ty || Ty->getBitWidth() % 16 != 0)
13877                return false;
13878              return IntrinsicLowering::LowerToByteSwap(CI);
13879            }
13880          }
13881        }
13882      }
13883    }
13884    break;
13885  }
13886  return false;
13887}
13888
13889
13890
13891/// getConstraintType - Given a constraint letter, return the type of
13892/// constraint it is for this target.
13893X86TargetLowering::ConstraintType
13894X86TargetLowering::getConstraintType(const std::string &Constraint) const {
13895  if (Constraint.size() == 1) {
13896    switch (Constraint[0]) {
13897    case 'R':
13898    case 'q':
13899    case 'Q':
13900    case 'f':
13901    case 't':
13902    case 'u':
13903    case 'y':
13904    case 'x':
13905    case 'Y':
13906    case 'l':
13907      return C_RegisterClass;
13908    case 'a':
13909    case 'b':
13910    case 'c':
13911    case 'd':
13912    case 'S':
13913    case 'D':
13914    case 'A':
13915      return C_Register;
13916    case 'I':
13917    case 'J':
13918    case 'K':
13919    case 'L':
13920    case 'M':
13921    case 'N':
13922    case 'G':
13923    case 'C':
13924    case 'e':
13925    case 'Z':
13926      return C_Other;
13927    default:
13928      break;
13929    }
13930  }
13931  return TargetLowering::getConstraintType(Constraint);
13932}
13933
13934/// Examine constraint type and operand type and determine a weight value.
13935/// This object must already have been set up with the operand type
13936/// and the current alternative constraint selected.
13937TargetLowering::ConstraintWeight
13938  X86TargetLowering::getSingleConstraintMatchWeight(
13939    AsmOperandInfo &info, const char *constraint) const {
13940  ConstraintWeight weight = CW_Invalid;
13941  Value *CallOperandVal = info.CallOperandVal;
13942    // If we don't have a value, we can't do a match,
13943    // but allow it at the lowest weight.
13944  if (CallOperandVal == NULL)
13945    return CW_Default;
13946  Type *type = CallOperandVal->getType();
13947  // Look at the constraint type.
13948  switch (*constraint) {
13949  default:
13950    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13951  case 'R':
13952  case 'q':
13953  case 'Q':
13954  case 'a':
13955  case 'b':
13956  case 'c':
13957  case 'd':
13958  case 'S':
13959  case 'D':
13960  case 'A':
13961    if (CallOperandVal->getType()->isIntegerTy())
13962      weight = CW_SpecificReg;
13963    break;
13964  case 'f':
13965  case 't':
13966  case 'u':
13967      if (type->isFloatingPointTy())
13968        weight = CW_SpecificReg;
13969      break;
13970  case 'y':
13971      if (type->isX86_MMXTy() && Subtarget->hasMMX())
13972        weight = CW_SpecificReg;
13973      break;
13974  case 'x':
13975  case 'Y':
13976    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
13977      weight = CW_Register;
13978    break;
13979  case 'I':
13980    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
13981      if (C->getZExtValue() <= 31)
13982        weight = CW_Constant;
13983    }
13984    break;
13985  case 'J':
13986    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13987      if (C->getZExtValue() <= 63)
13988        weight = CW_Constant;
13989    }
13990    break;
13991  case 'K':
13992    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13993      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
13994        weight = CW_Constant;
13995    }
13996    break;
13997  case 'L':
13998    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13999      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14000        weight = CW_Constant;
14001    }
14002    break;
14003  case 'M':
14004    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14005      if (C->getZExtValue() <= 3)
14006        weight = CW_Constant;
14007    }
14008    break;
14009  case 'N':
14010    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14011      if (C->getZExtValue() <= 0xff)
14012        weight = CW_Constant;
14013    }
14014    break;
14015  case 'G':
14016  case 'C':
14017    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14018      weight = CW_Constant;
14019    }
14020    break;
14021  case 'e':
14022    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14023      if ((C->getSExtValue() >= -0x80000000LL) &&
14024          (C->getSExtValue() <= 0x7fffffffLL))
14025        weight = CW_Constant;
14026    }
14027    break;
14028  case 'Z':
14029    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14030      if (C->getZExtValue() <= 0xffffffff)
14031        weight = CW_Constant;
14032    }
14033    break;
14034  }
14035  return weight;
14036}
14037
14038/// LowerXConstraint - try to replace an X constraint, which matches anything,
14039/// with another that has more specific requirements based on the type of the
14040/// corresponding operand.
14041const char *X86TargetLowering::
14042LowerXConstraint(EVT ConstraintVT) const {
14043  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14044  // 'f' like normal targets.
14045  if (ConstraintVT.isFloatingPoint()) {
14046    if (Subtarget->hasXMMInt())
14047      return "Y";
14048    if (Subtarget->hasXMM())
14049      return "x";
14050  }
14051
14052  return TargetLowering::LowerXConstraint(ConstraintVT);
14053}
14054
14055/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14056/// vector.  If it is invalid, don't add anything to Ops.
14057void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14058                                                     std::string &Constraint,
14059                                                     std::vector<SDValue>&Ops,
14060                                                     SelectionDAG &DAG) const {
14061  SDValue Result(0, 0);
14062
14063  // Only support length 1 constraints for now.
14064  if (Constraint.length() > 1) return;
14065
14066  char ConstraintLetter = Constraint[0];
14067  switch (ConstraintLetter) {
14068  default: break;
14069  case 'I':
14070    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14071      if (C->getZExtValue() <= 31) {
14072        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14073        break;
14074      }
14075    }
14076    return;
14077  case 'J':
14078    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14079      if (C->getZExtValue() <= 63) {
14080        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14081        break;
14082      }
14083    }
14084    return;
14085  case 'K':
14086    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14087      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14088        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14089        break;
14090      }
14091    }
14092    return;
14093  case 'N':
14094    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14095      if (C->getZExtValue() <= 255) {
14096        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14097        break;
14098      }
14099    }
14100    return;
14101  case 'e': {
14102    // 32-bit signed value
14103    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14104      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14105                                           C->getSExtValue())) {
14106        // Widen to 64 bits here to get it sign extended.
14107        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14108        break;
14109      }
14110    // FIXME gcc accepts some relocatable values here too, but only in certain
14111    // memory models; it's complicated.
14112    }
14113    return;
14114  }
14115  case 'Z': {
14116    // 32-bit unsigned value
14117    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14118      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14119                                           C->getZExtValue())) {
14120        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14121        break;
14122      }
14123    }
14124    // FIXME gcc accepts some relocatable values here too, but only in certain
14125    // memory models; it's complicated.
14126    return;
14127  }
14128  case 'i': {
14129    // Literal immediates are always ok.
14130    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14131      // Widen to 64 bits here to get it sign extended.
14132      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14133      break;
14134    }
14135
14136    // In any sort of PIC mode addresses need to be computed at runtime by
14137    // adding in a register or some sort of table lookup.  These can't
14138    // be used as immediates.
14139    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14140      return;
14141
14142    // If we are in non-pic codegen mode, we allow the address of a global (with
14143    // an optional displacement) to be used with 'i'.
14144    GlobalAddressSDNode *GA = 0;
14145    int64_t Offset = 0;
14146
14147    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14148    while (1) {
14149      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14150        Offset += GA->getOffset();
14151        break;
14152      } else if (Op.getOpcode() == ISD::ADD) {
14153        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14154          Offset += C->getZExtValue();
14155          Op = Op.getOperand(0);
14156          continue;
14157        }
14158      } else if (Op.getOpcode() == ISD::SUB) {
14159        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14160          Offset += -C->getZExtValue();
14161          Op = Op.getOperand(0);
14162          continue;
14163        }
14164      }
14165
14166      // Otherwise, this isn't something we can handle, reject it.
14167      return;
14168    }
14169
14170    const GlobalValue *GV = GA->getGlobal();
14171    // If we require an extra load to get this address, as in PIC mode, we
14172    // can't accept it.
14173    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14174                                                        getTargetMachine())))
14175      return;
14176
14177    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14178                                        GA->getValueType(0), Offset);
14179    break;
14180  }
14181  }
14182
14183  if (Result.getNode()) {
14184    Ops.push_back(Result);
14185    return;
14186  }
14187  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14188}
14189
14190std::pair<unsigned, const TargetRegisterClass*>
14191X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14192                                                EVT VT) const {
14193  // First, see if this is a constraint that directly corresponds to an LLVM
14194  // register class.
14195  if (Constraint.size() == 1) {
14196    // GCC Constraint Letters
14197    switch (Constraint[0]) {
14198    default: break;
14199      // TODO: Slight differences here in allocation order and leaving
14200      // RIP in the class. Do they matter any more here than they do
14201      // in the normal allocation?
14202    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14203      if (Subtarget->is64Bit()) {
14204	if (VT == MVT::i32 || VT == MVT::f32)
14205	  return std::make_pair(0U, X86::GR32RegisterClass);
14206	else if (VT == MVT::i16)
14207	  return std::make_pair(0U, X86::GR16RegisterClass);
14208	else if (VT == MVT::i8 || VT == MVT::i1)
14209	  return std::make_pair(0U, X86::GR8RegisterClass);
14210	else if (VT == MVT::i64 || VT == MVT::f64)
14211	  return std::make_pair(0U, X86::GR64RegisterClass);
14212	break;
14213      }
14214      // 32-bit fallthrough
14215    case 'Q':   // Q_REGS
14216      if (VT == MVT::i32 || VT == MVT::f32)
14217	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14218      else if (VT == MVT::i16)
14219	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14220      else if (VT == MVT::i8 || VT == MVT::i1)
14221	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14222      else if (VT == MVT::i64)
14223	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14224      break;
14225    case 'r':   // GENERAL_REGS
14226    case 'l':   // INDEX_REGS
14227      if (VT == MVT::i8 || VT == MVT::i1)
14228        return std::make_pair(0U, X86::GR8RegisterClass);
14229      if (VT == MVT::i16)
14230        return std::make_pair(0U, X86::GR16RegisterClass);
14231      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14232        return std::make_pair(0U, X86::GR32RegisterClass);
14233      return std::make_pair(0U, X86::GR64RegisterClass);
14234    case 'R':   // LEGACY_REGS
14235      if (VT == MVT::i8 || VT == MVT::i1)
14236        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14237      if (VT == MVT::i16)
14238        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14239      if (VT == MVT::i32 || !Subtarget->is64Bit())
14240        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14241      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14242    case 'f':  // FP Stack registers.
14243      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14244      // value to the correct fpstack register class.
14245      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14246        return std::make_pair(0U, X86::RFP32RegisterClass);
14247      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14248        return std::make_pair(0U, X86::RFP64RegisterClass);
14249      return std::make_pair(0U, X86::RFP80RegisterClass);
14250    case 'y':   // MMX_REGS if MMX allowed.
14251      if (!Subtarget->hasMMX()) break;
14252      return std::make_pair(0U, X86::VR64RegisterClass);
14253    case 'Y':   // SSE_REGS if SSE2 allowed
14254      if (!Subtarget->hasXMMInt()) break;
14255      // FALL THROUGH.
14256    case 'x':   // SSE_REGS if SSE1 allowed
14257      if (!Subtarget->hasXMM()) break;
14258
14259      switch (VT.getSimpleVT().SimpleTy) {
14260      default: break;
14261      // Scalar SSE types.
14262      case MVT::f32:
14263      case MVT::i32:
14264        return std::make_pair(0U, X86::FR32RegisterClass);
14265      case MVT::f64:
14266      case MVT::i64:
14267        return std::make_pair(0U, X86::FR64RegisterClass);
14268      // Vector types.
14269      case MVT::v16i8:
14270      case MVT::v8i16:
14271      case MVT::v4i32:
14272      case MVT::v2i64:
14273      case MVT::v4f32:
14274      case MVT::v2f64:
14275        return std::make_pair(0U, X86::VR128RegisterClass);
14276      }
14277      break;
14278    }
14279  }
14280
14281  // Use the default implementation in TargetLowering to convert the register
14282  // constraint into a member of a register class.
14283  std::pair<unsigned, const TargetRegisterClass*> Res;
14284  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14285
14286  // Not found as a standard register?
14287  if (Res.second == 0) {
14288    // Map st(0) -> st(7) -> ST0
14289    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14290        tolower(Constraint[1]) == 's' &&
14291        tolower(Constraint[2]) == 't' &&
14292        Constraint[3] == '(' &&
14293        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14294        Constraint[5] == ')' &&
14295        Constraint[6] == '}') {
14296
14297      Res.first = X86::ST0+Constraint[4]-'0';
14298      Res.second = X86::RFP80RegisterClass;
14299      return Res;
14300    }
14301
14302    // GCC allows "st(0)" to be called just plain "st".
14303    if (StringRef("{st}").equals_lower(Constraint)) {
14304      Res.first = X86::ST0;
14305      Res.second = X86::RFP80RegisterClass;
14306      return Res;
14307    }
14308
14309    // flags -> EFLAGS
14310    if (StringRef("{flags}").equals_lower(Constraint)) {
14311      Res.first = X86::EFLAGS;
14312      Res.second = X86::CCRRegisterClass;
14313      return Res;
14314    }
14315
14316    // 'A' means EAX + EDX.
14317    if (Constraint == "A") {
14318      Res.first = X86::EAX;
14319      Res.second = X86::GR32_ADRegisterClass;
14320      return Res;
14321    }
14322    return Res;
14323  }
14324
14325  // Otherwise, check to see if this is a register class of the wrong value
14326  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14327  // turn into {ax},{dx}.
14328  if (Res.second->hasType(VT))
14329    return Res;   // Correct type already, nothing to do.
14330
14331  // All of the single-register GCC register classes map their values onto
14332  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14333  // really want an 8-bit or 32-bit register, map to the appropriate register
14334  // class and return the appropriate register.
14335  if (Res.second == X86::GR16RegisterClass) {
14336    if (VT == MVT::i8) {
14337      unsigned DestReg = 0;
14338      switch (Res.first) {
14339      default: break;
14340      case X86::AX: DestReg = X86::AL; break;
14341      case X86::DX: DestReg = X86::DL; break;
14342      case X86::CX: DestReg = X86::CL; break;
14343      case X86::BX: DestReg = X86::BL; break;
14344      }
14345      if (DestReg) {
14346        Res.first = DestReg;
14347        Res.second = X86::GR8RegisterClass;
14348      }
14349    } else if (VT == MVT::i32) {
14350      unsigned DestReg = 0;
14351      switch (Res.first) {
14352      default: break;
14353      case X86::AX: DestReg = X86::EAX; break;
14354      case X86::DX: DestReg = X86::EDX; break;
14355      case X86::CX: DestReg = X86::ECX; break;
14356      case X86::BX: DestReg = X86::EBX; break;
14357      case X86::SI: DestReg = X86::ESI; break;
14358      case X86::DI: DestReg = X86::EDI; break;
14359      case X86::BP: DestReg = X86::EBP; break;
14360      case X86::SP: DestReg = X86::ESP; break;
14361      }
14362      if (DestReg) {
14363        Res.first = DestReg;
14364        Res.second = X86::GR32RegisterClass;
14365      }
14366    } else if (VT == MVT::i64) {
14367      unsigned DestReg = 0;
14368      switch (Res.first) {
14369      default: break;
14370      case X86::AX: DestReg = X86::RAX; break;
14371      case X86::DX: DestReg = X86::RDX; break;
14372      case X86::CX: DestReg = X86::RCX; break;
14373      case X86::BX: DestReg = X86::RBX; break;
14374      case X86::SI: DestReg = X86::RSI; break;
14375      case X86::DI: DestReg = X86::RDI; break;
14376      case X86::BP: DestReg = X86::RBP; break;
14377      case X86::SP: DestReg = X86::RSP; break;
14378      }
14379      if (DestReg) {
14380        Res.first = DestReg;
14381        Res.second = X86::GR64RegisterClass;
14382      }
14383    }
14384  } else if (Res.second == X86::FR32RegisterClass ||
14385             Res.second == X86::FR64RegisterClass ||
14386             Res.second == X86::VR128RegisterClass) {
14387    // Handle references to XMM physical registers that got mapped into the
14388    // wrong class.  This can happen with constraints like {xmm0} where the
14389    // target independent register mapper will just pick the first match it can
14390    // find, ignoring the required type.
14391    if (VT == MVT::f32)
14392      Res.second = X86::FR32RegisterClass;
14393    else if (VT == MVT::f64)
14394      Res.second = X86::FR64RegisterClass;
14395    else if (X86::VR128RegisterClass->hasType(VT))
14396      Res.second = X86::VR128RegisterClass;
14397  }
14398
14399  return Res;
14400}
14401