X86ISelLowering.cpp revision 0c8607ba6a21578996a7532b9390afba13bd2087
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161
162  RegInfo = TM.getRegisterInfo();
163  TD = getDataLayout();
164
165  // Set up the TargetLowering object.
166  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
167
168  // X86 is weird, it always uses i8 for shift amounts and setcc results.
169  setBooleanContents(ZeroOrOneBooleanContent);
170  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
171  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
172
173  // For 64-bit since we have so many registers use the ILP scheduler, for
174  // 32-bit code use the register pressure specific scheduling.
175  // For Atom, always use ILP scheduling.
176  if (Subtarget->isAtom())
177    setSchedulingPreference(Sched::ILP);
178  else if (Subtarget->is64Bit())
179    setSchedulingPreference(Sched::ILP);
180  else
181    setSchedulingPreference(Sched::RegPressure);
182  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
183
184  // Bypass i32 with i8 on Atom when compiling with O2
185  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
186    addBypassSlowDiv(32, 8);
187
188  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
189    // Setup Windows compiler runtime calls.
190    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
191    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
192    setLibcallName(RTLIB::SREM_I64, "_allrem");
193    setLibcallName(RTLIB::UREM_I64, "_aullrem");
194    setLibcallName(RTLIB::MUL_I64, "_allmul");
195    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
196    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
200
201    // The _ftol2 runtime function has an unusual calling conv, which
202    // is modeled by a special pseudo-instruction.
203    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
204    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
206    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
207  }
208
209  if (Subtarget->isTargetDarwin()) {
210    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
211    setUseUnderscoreSetJmp(false);
212    setUseUnderscoreLongJmp(false);
213  } else if (Subtarget->isTargetMingw()) {
214    // MS runtime is weird: it exports _setjmp, but longjmp!
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(false);
217  } else {
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(true);
220  }
221
222  // Set up the register classes.
223  addRegisterClass(MVT::i8, &X86::GR8RegClass);
224  addRegisterClass(MVT::i16, &X86::GR16RegClass);
225  addRegisterClass(MVT::i32, &X86::GR32RegClass);
226  if (Subtarget->is64Bit())
227    addRegisterClass(MVT::i64, &X86::GR64RegClass);
228
229  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
230
231  // We don't accept any truncstore of integer registers.
232  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
233  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
235  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
236  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
237  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
238
239  // SETOEQ and SETUNE require checking two conditions.
240  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
243  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
246
247  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
248  // operation.
249  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
252
253  if (Subtarget->is64Bit()) {
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256  } else if (!TM.Options.UseSoftFloat) {
257    // We have an algorithm for SSE2->double, and we turn this into a
258    // 64-bit FILD followed by conditional FADD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
260    // We have an algorithm for SSE2, and we turn this into a 64-bit
261    // FILD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
263  }
264
265  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
266  // this operation.
267  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
269
270  if (!TM.Options.UseSoftFloat) {
271    // SSE has no i16 to fp conversion, only i32
272    if (X86ScalarSSEf32) {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
274      // f32 and f64 cases are Legal, f80 case is not
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    } else {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    }
280  } else {
281    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
283  }
284
285  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
286  // are Legal, f80 is custom lowered.
287  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
288  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
289
290  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
291  // this operation.
292  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
294
295  if (X86ScalarSSEf32) {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
297    // f32 and f64 cases are Legal, f80 case is not
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  } else {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  }
303
304  // Handle FP_TO_UINT by promoting the destination to a larger signed
305  // conversion.
306  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
309
310  if (Subtarget->is64Bit()) {
311    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
313  } else if (!TM.Options.UseSoftFloat) {
314    // Since AVX is a superset of SSE3, only check for SSE here.
315    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  if (isTargetFTOL()) {
327    // Use the _ftol2 runtime function, which has a pseudo-instruction
328    // to handle its weird calling convention.
329    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
330  }
331
332  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
333  if (!X86ScalarSSEf64) {
334    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
335    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
336    if (Subtarget->is64Bit()) {
337      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
338      // Without SSE, i64->f64 goes through memory.
339      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
340    }
341  }
342
343  // Scalar integer divide and remainder are lowered to use operations that
344  // produce two results, to match the available instructions. This exposes
345  // the two-result form to trivial CSE, which is able to combine x/y and x%y
346  // into a single instruction.
347  //
348  // Scalar integer multiply-high is also lowered to use two-result
349  // operations, to match the available instructions. However, plain multiply
350  // (low) operations are left as Legal, as there are single-result
351  // instructions for this in x86. Using the two-result multiply instructions
352  // when both high and low results are needed must be arranged by dagcombine.
353  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
354    MVT VT = IntVTs[i];
355    setOperationAction(ISD::MULHS, VT, Expand);
356    setOperationAction(ISD::MULHU, VT, Expand);
357    setOperationAction(ISD::SDIV, VT, Expand);
358    setOperationAction(ISD::UDIV, VT, Expand);
359    setOperationAction(ISD::SREM, VT, Expand);
360    setOperationAction(ISD::UREM, VT, Expand);
361
362    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
363    setOperationAction(ISD::ADDC, VT, Custom);
364    setOperationAction(ISD::ADDE, VT, Custom);
365    setOperationAction(ISD::SUBC, VT, Custom);
366    setOperationAction(ISD::SUBE, VT, Custom);
367  }
368
369  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
370  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
371  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
372  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
373  if (Subtarget->is64Bit())
374    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
378  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
382  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
383
384  // Promote the i8 variants and force them on up to i32 which has a shorter
385  // encoding.
386  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
387  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
388  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
389  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
390  if (Subtarget->hasBMI()) {
391    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
395  } else {
396    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
397    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
398    if (Subtarget->is64Bit())
399      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
400  }
401
402  if (Subtarget->hasLZCNT()) {
403    // When promoting the i8 variants, force them to i32 for a shorter
404    // encoding.
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
406    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
408    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
411    if (Subtarget->is64Bit())
412      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
413  } else {
414    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
417    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
420    if (Subtarget->is64Bit()) {
421      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
422      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
423    }
424  }
425
426  if (Subtarget->hasPOPCNT()) {
427    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
428  } else {
429    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
430    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
432    if (Subtarget->is64Bit())
433      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
434  }
435
436  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
437  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
438
439  // These should be promoted to a larger select which is supported.
440  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
441  // X86 wants to expand cmov itself.
442  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
443  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
454  if (Subtarget->is64Bit()) {
455    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
456    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
457  }
458  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
459  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
460  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
461  // support continuation, user-level threading, and etc.. As a result, no
462  // other SjLj exception interfaces are implemented and please don't build
463  // your own exception handling based on them.
464  // LLVM/Clang supports zero-cost DWARF exception handling.
465  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
466  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
467
468  // Darwin ABI issue.
469  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
470  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
471  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
472  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
473  if (Subtarget->is64Bit())
474    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
475  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
476  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
479    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
480    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
481    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
482    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
483  }
484  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
485  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
486  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
487  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
488  if (Subtarget->is64Bit()) {
489    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
490    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
491    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
492  }
493
494  if (Subtarget->hasSSE1())
495    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
496
497  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
498  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
499
500  // On X86 and X86-64, atomic operations are lowered to locked instructions.
501  // Locked instructions, in turn, have implicit fence semantics (all memory
502  // operations are flushed before issuing the locked instruction, and they
503  // are not buffered), so we can fold away the common pattern of
504  // fence-atomic-fence.
505  setShouldFoldAtomicFences(true);
506
507  // Expand certain atomics
508  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
509    MVT VT = IntVTs[i];
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
512    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
513  }
514
515  if (!Subtarget->is64Bit()) {
516    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
517    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
521    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
522    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
523    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
524    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
526    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
527    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
528  }
529
530  if (Subtarget->hasCmpxchg16b()) {
531    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
532  }
533
534  // FIXME - use subtarget debug flags
535  if (!Subtarget->isTargetDarwin() &&
536      !Subtarget->isTargetELF() &&
537      !Subtarget->isTargetCygMing()) {
538    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
539  }
540
541  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
542  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
543  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
544  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
545  if (Subtarget->is64Bit()) {
546    setExceptionPointerRegister(X86::RAX);
547    setExceptionSelectorRegister(X86::RDX);
548  } else {
549    setExceptionPointerRegister(X86::EAX);
550    setExceptionSelectorRegister(X86::EDX);
551  }
552  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
553  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
554
555  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
556  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
557
558  setOperationAction(ISD::TRAP, MVT::Other, Legal);
559  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
560
561  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
562  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
563  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
564  if (Subtarget->is64Bit()) {
565    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
566    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
567  } else {
568    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
569    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
570  }
571
572  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
573  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
574
575  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
576    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
577                       MVT::i64 : MVT::i32, Custom);
578  else if (TM.Options.EnableSegmentedStacks)
579    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
580                       MVT::i64 : MVT::i32, Custom);
581  else
582    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
583                       MVT::i64 : MVT::i32, Expand);
584
585  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
586    // f32 and f64 use SSE.
587    // Set up the FP register classes.
588    addRegisterClass(MVT::f32, &X86::FR32RegClass);
589    addRegisterClass(MVT::f64, &X86::FR64RegClass);
590
591    // Use ANDPD to simulate FABS.
592    setOperationAction(ISD::FABS , MVT::f64, Custom);
593    setOperationAction(ISD::FABS , MVT::f32, Custom);
594
595    // Use XORP to simulate FNEG.
596    setOperationAction(ISD::FNEG , MVT::f64, Custom);
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    // Use ANDPD and ORPD to simulate FCOPYSIGN.
600    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
601    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
602
603    // Lower this to FGETSIGNx86 plus an AND.
604    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
605    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
606
607    // We don't support sin/cos/fmod
608    setOperationAction(ISD::FSIN , MVT::f64, Expand);
609    setOperationAction(ISD::FCOS , MVT::f64, Expand);
610    setOperationAction(ISD::FSIN , MVT::f32, Expand);
611    setOperationAction(ISD::FCOS , MVT::f32, Expand);
612
613    // Expand FP immediates into loads from the stack, except for the special
614    // cases we handle.
615    addLegalFPImmediate(APFloat(+0.0)); // xorpd
616    addLegalFPImmediate(APFloat(+0.0f)); // xorps
617  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
618    // Use SSE for f32, x87 for f64.
619    // Set up the FP register classes.
620    addRegisterClass(MVT::f32, &X86::FR32RegClass);
621    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
622
623    // Use ANDPS to simulate FABS.
624    setOperationAction(ISD::FABS , MVT::f32, Custom);
625
626    // Use XORP to simulate FNEG.
627    setOperationAction(ISD::FNEG , MVT::f32, Custom);
628
629    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
630
631    // Use ANDPS and ORPS to simulate FCOPYSIGN.
632    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
633    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
634
635    // We don't support sin/cos/fmod
636    setOperationAction(ISD::FSIN , MVT::f32, Expand);
637    setOperationAction(ISD::FCOS , MVT::f32, Expand);
638
639    // Special cases we handle for FP constants.
640    addLegalFPImmediate(APFloat(+0.0f)); // xorps
641    addLegalFPImmediate(APFloat(+0.0)); // FLD0
642    addLegalFPImmediate(APFloat(+1.0)); // FLD1
643    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
644    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
645
646    if (!TM.Options.UnsafeFPMath) {
647      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
648      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
649    }
650  } else if (!TM.Options.UseSoftFloat) {
651    // f32 and f64 in x87.
652    // Set up the FP register classes.
653    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
654    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
655
656    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
657    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
658    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
660
661    if (!TM.Options.UnsafeFPMath) {
662      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
663      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
664      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
665      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
666    }
667    addLegalFPImmediate(APFloat(+0.0)); // FLD0
668    addLegalFPImmediate(APFloat(+1.0)); // FLD1
669    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
670    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
671    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
672    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
673    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
674    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
675  }
676
677  // We don't support FMA.
678  setOperationAction(ISD::FMA, MVT::f64, Expand);
679  setOperationAction(ISD::FMA, MVT::f32, Expand);
680
681  // Long double always uses X87.
682  if (!TM.Options.UseSoftFloat) {
683    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
684    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
685    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
686    {
687      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
688      addLegalFPImmediate(TmpFlt);  // FLD0
689      TmpFlt.changeSign();
690      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
691
692      bool ignored;
693      APFloat TmpFlt2(+1.0);
694      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
695                      &ignored);
696      addLegalFPImmediate(TmpFlt2);  // FLD1
697      TmpFlt2.changeSign();
698      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
699    }
700
701    if (!TM.Options.UnsafeFPMath) {
702      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
703      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
704    }
705
706    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
707    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
708    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
709    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
710    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
711    setOperationAction(ISD::FMA, MVT::f80, Expand);
712  }
713
714  // Always use a library call for pow.
715  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
716  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
717  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
718
719  setOperationAction(ISD::FLOG, MVT::f80, Expand);
720  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
721  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
722  setOperationAction(ISD::FEXP, MVT::f80, Expand);
723  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
724
725  // First set operation action for all vector types to either promote
726  // (for widening) or expand (for scalarization). Then we will selectively
727  // turn on ones that can be effectively codegen'd.
728  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
729           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
730    MVT VT = (MVT::SimpleValueType)i;
731    setOperationAction(ISD::ADD , VT, Expand);
732    setOperationAction(ISD::SUB , VT, Expand);
733    setOperationAction(ISD::FADD, VT, Expand);
734    setOperationAction(ISD::FNEG, VT, Expand);
735    setOperationAction(ISD::FSUB, VT, Expand);
736    setOperationAction(ISD::MUL , VT, Expand);
737    setOperationAction(ISD::FMUL, VT, Expand);
738    setOperationAction(ISD::SDIV, VT, Expand);
739    setOperationAction(ISD::UDIV, VT, Expand);
740    setOperationAction(ISD::FDIV, VT, Expand);
741    setOperationAction(ISD::SREM, VT, Expand);
742    setOperationAction(ISD::UREM, VT, Expand);
743    setOperationAction(ISD::LOAD, VT, Expand);
744    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
746    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
747    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
748    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
749    setOperationAction(ISD::FABS, VT, Expand);
750    setOperationAction(ISD::FSIN, VT, Expand);
751    setOperationAction(ISD::FCOS, VT, Expand);
752    setOperationAction(ISD::FREM, VT, Expand);
753    setOperationAction(ISD::FMA,  VT, Expand);
754    setOperationAction(ISD::FPOWI, VT, Expand);
755    setOperationAction(ISD::FSQRT, VT, Expand);
756    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
757    setOperationAction(ISD::FFLOOR, VT, Expand);
758    setOperationAction(ISD::FCEIL, VT, Expand);
759    setOperationAction(ISD::FTRUNC, VT, Expand);
760    setOperationAction(ISD::FRINT, VT, Expand);
761    setOperationAction(ISD::FNEARBYINT, VT, Expand);
762    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
763    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
764    setOperationAction(ISD::SDIVREM, VT, Expand);
765    setOperationAction(ISD::UDIVREM, VT, Expand);
766    setOperationAction(ISD::FPOW, VT, Expand);
767    setOperationAction(ISD::CTPOP, VT, Expand);
768    setOperationAction(ISD::CTTZ, VT, Expand);
769    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
770    setOperationAction(ISD::CTLZ, VT, Expand);
771    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
772    setOperationAction(ISD::SHL, VT, Expand);
773    setOperationAction(ISD::SRA, VT, Expand);
774    setOperationAction(ISD::SRL, VT, Expand);
775    setOperationAction(ISD::ROTL, VT, Expand);
776    setOperationAction(ISD::ROTR, VT, Expand);
777    setOperationAction(ISD::BSWAP, VT, Expand);
778    setOperationAction(ISD::SETCC, VT, Expand);
779    setOperationAction(ISD::FLOG, VT, Expand);
780    setOperationAction(ISD::FLOG2, VT, Expand);
781    setOperationAction(ISD::FLOG10, VT, Expand);
782    setOperationAction(ISD::FEXP, VT, Expand);
783    setOperationAction(ISD::FEXP2, VT, Expand);
784    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
785    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
786    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
787    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
788    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
789    setOperationAction(ISD::TRUNCATE, VT, Expand);
790    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
791    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
792    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
793    setOperationAction(ISD::VSELECT, VT, Expand);
794    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
795             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
796      setTruncStoreAction(VT,
797                          (MVT::SimpleValueType)InnerVT, Expand);
798    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
799    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
800    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
801  }
802
803  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
804  // with -msoft-float, disable use of MMX as well.
805  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
806    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
807    // No operations on x86mmx supported, everything uses intrinsics.
808  }
809
810  // MMX-sized vectors (other than x86mmx) are expected to be expanded
811  // into smaller operations.
812  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
813  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
814  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
815  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
816  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
817  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
818  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
819  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
820  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
821  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
822  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
823  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
824  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
825  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
826  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
827  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
828  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
829  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
830  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
831  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
832  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
833  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
834  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
835  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
836  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
837  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
838  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
839  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
840  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
841
842  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
843    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
844
845    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
846    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
847    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
848    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
849    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
850    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
851    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
852    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
853    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
854    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
856    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
857  }
858
859  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
860    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
861
862    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
863    // registers cannot be used even for integer operations.
864    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
865    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
866    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
867    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
868
869    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
870    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
871    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
872    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
873    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
874    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
875    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
876    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
877    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
878    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
879    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
880    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
886    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
887
888    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
889    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
890    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
891    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
892
893    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
894    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
895    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
896    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
898
899    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
900    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
901      MVT VT = (MVT::SimpleValueType)i;
902      // Do not attempt to custom lower non-power-of-2 vectors
903      if (!isPowerOf2_32(VT.getVectorNumElements()))
904        continue;
905      // Do not attempt to custom lower non-128-bit vectors
906      if (!VT.is128BitVector())
907        continue;
908      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
909      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
910      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
911    }
912
913    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
914    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
915    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
916    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
918    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
919
920    if (Subtarget->is64Bit()) {
921      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
922      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
923    }
924
925    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
926    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
927      MVT VT = (MVT::SimpleValueType)i;
928
929      // Do not attempt to promote non-128-bit vectors
930      if (!VT.is128BitVector())
931        continue;
932
933      setOperationAction(ISD::AND,    VT, Promote);
934      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
935      setOperationAction(ISD::OR,     VT, Promote);
936      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
937      setOperationAction(ISD::XOR,    VT, Promote);
938      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
939      setOperationAction(ISD::LOAD,   VT, Promote);
940      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
941      setOperationAction(ISD::SELECT, VT, Promote);
942      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
943    }
944
945    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
946
947    // Custom lower v2i64 and v2f64 selects.
948    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
949    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
950    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
951    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
952
953    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
954    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
955
956    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
957    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
958    // As there is no 64-bit GPR available, we need build a special custom
959    // sequence to convert from v2i32 to v2f32.
960    if (!Subtarget->is64Bit())
961      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
962
963    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
964    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
965
966    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
967  }
968
969  if (Subtarget->hasSSE41()) {
970    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
971    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
972    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
973    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
974    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
975    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
976    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
977    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
978    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
979    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
980
981    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
982    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
983    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
984    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
985    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
986    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
987    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
988    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
989    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
990    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
991
992    // FIXME: Do we need to handle scalar-to-vector here?
993    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
994
995    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
996    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
997    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
998    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
999    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1000
1001    // i8 and i16 vectors are custom , because the source register and source
1002    // source memory operand types are not the same width.  f32 vectors are
1003    // custom since the immediate controlling the insert encodes additional
1004    // information.
1005    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1006    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1007    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1008    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1009
1010    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1011    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1012    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1013    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1014
1015    // FIXME: these should be Legal but thats only for the case where
1016    // the index is constant.  For now custom expand to deal with that.
1017    if (Subtarget->is64Bit()) {
1018      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1019      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1020    }
1021  }
1022
1023  if (Subtarget->hasSSE2()) {
1024    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1025    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1026
1027    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1028    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1029
1030    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1031    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1032
1033    if (Subtarget->hasInt256()) {
1034      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1035      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1036
1037      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1038      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1039
1040      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1041    } else {
1042      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1043      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1044
1045      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1046      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1047
1048      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1049    }
1050    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1051    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1052  }
1053
1054  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1055    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1056    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1057    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1058    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1059    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1060    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1061
1062    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1063    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1064    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1065
1066    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1067    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1068    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1069    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1070    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1071    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1072    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1073    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1074    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1075    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1076    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1077    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1078
1079    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1080    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1081    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1082    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1083    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1084    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1085    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1086    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1087    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1088    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1089    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1090    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1091
1092    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1093    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1094
1095    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1096
1097    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1098    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1099    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1100
1101    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1102    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1103    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1104
1105    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1106
1107    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1108    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1109
1110    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1111    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1112
1113    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1114    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1115
1116    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1117
1118    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1119    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1120    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1121    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1122
1123    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1124    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1125    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1126
1127    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1128    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1129    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1130    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1131
1132    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1133    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1134    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1135    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1136    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1137    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1138
1139    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1140      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1141      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1142      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1143      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1144      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1145      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1146    }
1147
1148    if (Subtarget->hasInt256()) {
1149      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1150      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1151      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1152      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1153
1154      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1155      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1156      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1157      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1158
1159      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1160      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1161      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1162      // Don't lower v32i8 because there is no 128-bit byte mul
1163
1164      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1165
1166      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1167      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1168
1169      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1170      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1171
1172      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1173
1174      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1175    } else {
1176      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1177      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1178      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1179      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1180
1181      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1182      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1183      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1184      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1185
1186      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1187      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1188      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1189      // Don't lower v32i8 because there is no 128-bit byte mul
1190
1191      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1192      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1193
1194      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1195      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1196
1197      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1198    }
1199
1200    // Custom lower several nodes for 256-bit types.
1201    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1202             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1203      MVT VT = (MVT::SimpleValueType)i;
1204
1205      // Extract subvector is special because the value type
1206      // (result) is 128-bit but the source is 256-bit wide.
1207      if (VT.is128BitVector())
1208        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1209
1210      // Do not attempt to custom lower other non-256-bit vectors
1211      if (!VT.is256BitVector())
1212        continue;
1213
1214      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1215      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1216      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1217      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1218      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1219      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1220      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1221    }
1222
1223    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1224    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1225      MVT VT = (MVT::SimpleValueType)i;
1226
1227      // Do not attempt to promote non-256-bit vectors
1228      if (!VT.is256BitVector())
1229        continue;
1230
1231      setOperationAction(ISD::AND,    VT, Promote);
1232      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1233      setOperationAction(ISD::OR,     VT, Promote);
1234      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1235      setOperationAction(ISD::XOR,    VT, Promote);
1236      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1237      setOperationAction(ISD::LOAD,   VT, Promote);
1238      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1239      setOperationAction(ISD::SELECT, VT, Promote);
1240      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1241    }
1242  }
1243
1244  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1245  // of this type with custom code.
1246  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1247           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1248    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1249                       Custom);
1250  }
1251
1252  // We want to custom lower some of our intrinsics.
1253  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1254  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1255
1256  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1257  // handle type legalization for these operations here.
1258  //
1259  // FIXME: We really should do custom legalization for addition and
1260  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1261  // than generic legalization for 64-bit multiplication-with-overflow, though.
1262  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1263    // Add/Sub/Mul with overflow operations are custom lowered.
1264    MVT VT = IntVTs[i];
1265    setOperationAction(ISD::SADDO, VT, Custom);
1266    setOperationAction(ISD::UADDO, VT, Custom);
1267    setOperationAction(ISD::SSUBO, VT, Custom);
1268    setOperationAction(ISD::USUBO, VT, Custom);
1269    setOperationAction(ISD::SMULO, VT, Custom);
1270    setOperationAction(ISD::UMULO, VT, Custom);
1271  }
1272
1273  // There are no 8-bit 3-address imul/mul instructions
1274  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1275  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1276
1277  if (!Subtarget->is64Bit()) {
1278    // These libcalls are not available in 32-bit.
1279    setLibcallName(RTLIB::SHL_I128, 0);
1280    setLibcallName(RTLIB::SRL_I128, 0);
1281    setLibcallName(RTLIB::SRA_I128, 0);
1282  }
1283
1284  // We have target-specific dag combine patterns for the following nodes:
1285  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1286  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1287  setTargetDAGCombine(ISD::VSELECT);
1288  setTargetDAGCombine(ISD::SELECT);
1289  setTargetDAGCombine(ISD::SHL);
1290  setTargetDAGCombine(ISD::SRA);
1291  setTargetDAGCombine(ISD::SRL);
1292  setTargetDAGCombine(ISD::OR);
1293  setTargetDAGCombine(ISD::AND);
1294  setTargetDAGCombine(ISD::ADD);
1295  setTargetDAGCombine(ISD::FADD);
1296  setTargetDAGCombine(ISD::FSUB);
1297  setTargetDAGCombine(ISD::FMA);
1298  setTargetDAGCombine(ISD::SUB);
1299  setTargetDAGCombine(ISD::LOAD);
1300  setTargetDAGCombine(ISD::STORE);
1301  setTargetDAGCombine(ISD::ZERO_EXTEND);
1302  setTargetDAGCombine(ISD::ANY_EXTEND);
1303  setTargetDAGCombine(ISD::SIGN_EXTEND);
1304  setTargetDAGCombine(ISD::TRUNCATE);
1305  setTargetDAGCombine(ISD::SINT_TO_FP);
1306  setTargetDAGCombine(ISD::SETCC);
1307  if (Subtarget->is64Bit())
1308    setTargetDAGCombine(ISD::MUL);
1309  setTargetDAGCombine(ISD::XOR);
1310
1311  computeRegisterProperties();
1312
1313  // On Darwin, -Os means optimize for size without hurting performance,
1314  // do not reduce the limit.
1315  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1316  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1317  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1318  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1319  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1320  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1321  setPrefLoopAlignment(4); // 2^4 bytes.
1322  benefitFromCodePlacementOpt = true;
1323
1324  // Predictable cmov don't hurt on atom because it's in-order.
1325  predictableSelectIsExpensive = !Subtarget->isAtom();
1326
1327  setPrefFunctionAlignment(4); // 2^4 bytes.
1328}
1329
1330EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1331  if (!VT.isVector()) return MVT::i8;
1332  return VT.changeVectorElementTypeToInteger();
1333}
1334
1335/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1336/// the desired ByVal argument alignment.
1337static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1338  if (MaxAlign == 16)
1339    return;
1340  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1341    if (VTy->getBitWidth() == 128)
1342      MaxAlign = 16;
1343  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1344    unsigned EltAlign = 0;
1345    getMaxByValAlign(ATy->getElementType(), EltAlign);
1346    if (EltAlign > MaxAlign)
1347      MaxAlign = EltAlign;
1348  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1349    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1350      unsigned EltAlign = 0;
1351      getMaxByValAlign(STy->getElementType(i), EltAlign);
1352      if (EltAlign > MaxAlign)
1353        MaxAlign = EltAlign;
1354      if (MaxAlign == 16)
1355        break;
1356    }
1357  }
1358}
1359
1360/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1361/// function arguments in the caller parameter area. For X86, aggregates
1362/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1363/// are at 4-byte boundaries.
1364unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1365  if (Subtarget->is64Bit()) {
1366    // Max of 8 and alignment of type.
1367    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1368    if (TyAlign > 8)
1369      return TyAlign;
1370    return 8;
1371  }
1372
1373  unsigned Align = 4;
1374  if (Subtarget->hasSSE1())
1375    getMaxByValAlign(Ty, Align);
1376  return Align;
1377}
1378
1379/// getOptimalMemOpType - Returns the target specific optimal type for load
1380/// and store operations as a result of memset, memcpy, and memmove
1381/// lowering. If DstAlign is zero that means it's safe to destination
1382/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1383/// means there isn't a need to check it against alignment requirement,
1384/// probably because the source does not need to be loaded. If 'IsMemset' is
1385/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1386/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1387/// source is constant so it does not need to be loaded.
1388/// It returns EVT::Other if the type should be determined using generic
1389/// target-independent logic.
1390EVT
1391X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1392                                       unsigned DstAlign, unsigned SrcAlign,
1393                                       bool IsMemset, bool ZeroMemset,
1394                                       bool MemcpyStrSrc,
1395                                       MachineFunction &MF) const {
1396  const Function *F = MF.getFunction();
1397  if ((!IsMemset || ZeroMemset) &&
1398      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1399                                       Attribute::NoImplicitFloat)) {
1400    if (Size >= 16 &&
1401        (Subtarget->isUnalignedMemAccessFast() ||
1402         ((DstAlign == 0 || DstAlign >= 16) &&
1403          (SrcAlign == 0 || SrcAlign >= 16)))) {
1404      if (Size >= 32) {
1405        if (Subtarget->hasInt256())
1406          return MVT::v8i32;
1407        if (Subtarget->hasFp256())
1408          return MVT::v8f32;
1409      }
1410      if (Subtarget->hasSSE2())
1411        return MVT::v4i32;
1412      if (Subtarget->hasSSE1())
1413        return MVT::v4f32;
1414    } else if (!MemcpyStrSrc && Size >= 8 &&
1415               !Subtarget->is64Bit() &&
1416               Subtarget->hasSSE2()) {
1417      // Do not use f64 to lower memcpy if source is string constant. It's
1418      // better to use i32 to avoid the loads.
1419      return MVT::f64;
1420    }
1421  }
1422  if (Subtarget->is64Bit() && Size >= 8)
1423    return MVT::i64;
1424  return MVT::i32;
1425}
1426
1427bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1428  if (VT == MVT::f32)
1429    return X86ScalarSSEf32;
1430  else if (VT == MVT::f64)
1431    return X86ScalarSSEf64;
1432  return true;
1433}
1434
1435bool
1436X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1437  if (Fast)
1438    *Fast = Subtarget->isUnalignedMemAccessFast();
1439  return true;
1440}
1441
1442/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1443/// current function.  The returned value is a member of the
1444/// MachineJumpTableInfo::JTEntryKind enum.
1445unsigned X86TargetLowering::getJumpTableEncoding() const {
1446  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1447  // symbol.
1448  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1449      Subtarget->isPICStyleGOT())
1450    return MachineJumpTableInfo::EK_Custom32;
1451
1452  // Otherwise, use the normal jump table encoding heuristics.
1453  return TargetLowering::getJumpTableEncoding();
1454}
1455
1456const MCExpr *
1457X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1458                                             const MachineBasicBlock *MBB,
1459                                             unsigned uid,MCContext &Ctx) const{
1460  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1461         Subtarget->isPICStyleGOT());
1462  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1463  // entries.
1464  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1465                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1466}
1467
1468/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1469/// jumptable.
1470SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1471                                                    SelectionDAG &DAG) const {
1472  if (!Subtarget->is64Bit())
1473    // This doesn't have DebugLoc associated with it, but is not really the
1474    // same as a Register.
1475    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1476  return Table;
1477}
1478
1479/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1480/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1481/// MCExpr.
1482const MCExpr *X86TargetLowering::
1483getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1484                             MCContext &Ctx) const {
1485  // X86-64 uses RIP relative addressing based on the jump table label.
1486  if (Subtarget->isPICStyleRIPRel())
1487    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1488
1489  // Otherwise, the reference is relative to the PIC base.
1490  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1491}
1492
1493// FIXME: Why this routine is here? Move to RegInfo!
1494std::pair<const TargetRegisterClass*, uint8_t>
1495X86TargetLowering::findRepresentativeClass(MVT VT) const{
1496  const TargetRegisterClass *RRC = 0;
1497  uint8_t Cost = 1;
1498  switch (VT.SimpleTy) {
1499  default:
1500    return TargetLowering::findRepresentativeClass(VT);
1501  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1502    RRC = Subtarget->is64Bit() ?
1503      (const TargetRegisterClass*)&X86::GR64RegClass :
1504      (const TargetRegisterClass*)&X86::GR32RegClass;
1505    break;
1506  case MVT::x86mmx:
1507    RRC = &X86::VR64RegClass;
1508    break;
1509  case MVT::f32: case MVT::f64:
1510  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1511  case MVT::v4f32: case MVT::v2f64:
1512  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1513  case MVT::v4f64:
1514    RRC = &X86::VR128RegClass;
1515    break;
1516  }
1517  return std::make_pair(RRC, Cost);
1518}
1519
1520bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1521                                               unsigned &Offset) const {
1522  if (!Subtarget->isTargetLinux())
1523    return false;
1524
1525  if (Subtarget->is64Bit()) {
1526    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1527    Offset = 0x28;
1528    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1529      AddressSpace = 256;
1530    else
1531      AddressSpace = 257;
1532  } else {
1533    // %gs:0x14 on i386
1534    Offset = 0x14;
1535    AddressSpace = 256;
1536  }
1537  return true;
1538}
1539
1540//===----------------------------------------------------------------------===//
1541//               Return Value Calling Convention Implementation
1542//===----------------------------------------------------------------------===//
1543
1544#include "X86GenCallingConv.inc"
1545
1546bool
1547X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1548                                  MachineFunction &MF, bool isVarArg,
1549                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1550                        LLVMContext &Context) const {
1551  SmallVector<CCValAssign, 16> RVLocs;
1552  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1553                 RVLocs, Context);
1554  return CCInfo.CheckReturn(Outs, RetCC_X86);
1555}
1556
1557SDValue
1558X86TargetLowering::LowerReturn(SDValue Chain,
1559                               CallingConv::ID CallConv, bool isVarArg,
1560                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1561                               const SmallVectorImpl<SDValue> &OutVals,
1562                               DebugLoc dl, SelectionDAG &DAG) const {
1563  MachineFunction &MF = DAG.getMachineFunction();
1564  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1565
1566  SmallVector<CCValAssign, 16> RVLocs;
1567  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1568                 RVLocs, *DAG.getContext());
1569  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1570
1571  // Add the regs to the liveout set for the function.
1572  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1573  for (unsigned i = 0; i != RVLocs.size(); ++i)
1574    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1575      MRI.addLiveOut(RVLocs[i].getLocReg());
1576
1577  SDValue Flag;
1578
1579  SmallVector<SDValue, 6> RetOps;
1580  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1581  // Operand #1 = Bytes To Pop
1582  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1583                   MVT::i16));
1584
1585  // Copy the result values into the output registers.
1586  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1587    CCValAssign &VA = RVLocs[i];
1588    assert(VA.isRegLoc() && "Can only return in registers!");
1589    SDValue ValToCopy = OutVals[i];
1590    EVT ValVT = ValToCopy.getValueType();
1591
1592    // Promote values to the appropriate types
1593    if (VA.getLocInfo() == CCValAssign::SExt)
1594      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1595    else if (VA.getLocInfo() == CCValAssign::ZExt)
1596      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1597    else if (VA.getLocInfo() == CCValAssign::AExt)
1598      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1599    else if (VA.getLocInfo() == CCValAssign::BCvt)
1600      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1601
1602    // If this is x86-64, and we disabled SSE, we can't return FP values,
1603    // or SSE or MMX vectors.
1604    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1605         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1606          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1607      report_fatal_error("SSE register return with SSE disabled");
1608    }
1609    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1610    // llvm-gcc has never done it right and no one has noticed, so this
1611    // should be OK for now.
1612    if (ValVT == MVT::f64 &&
1613        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1614      report_fatal_error("SSE2 register return with SSE2 disabled");
1615
1616    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1617    // the RET instruction and handled by the FP Stackifier.
1618    if (VA.getLocReg() == X86::ST0 ||
1619        VA.getLocReg() == X86::ST1) {
1620      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1621      // change the value to the FP stack register class.
1622      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1623        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1624      RetOps.push_back(ValToCopy);
1625      // Don't emit a copytoreg.
1626      continue;
1627    }
1628
1629    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1630    // which is returned in RAX / RDX.
1631    if (Subtarget->is64Bit()) {
1632      if (ValVT == MVT::x86mmx) {
1633        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1634          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1635          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1636                                  ValToCopy);
1637          // If we don't have SSE2 available, convert to v4f32 so the generated
1638          // register is legal.
1639          if (!Subtarget->hasSSE2())
1640            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1641        }
1642      }
1643    }
1644
1645    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1646    Flag = Chain.getValue(1);
1647  }
1648
1649  // The x86-64 ABI for returning structs by value requires that we copy
1650  // the sret argument into %rax for the return. We saved the argument into
1651  // a virtual register in the entry block, so now we copy the value out
1652  // and into %rax.
1653  if (Subtarget->is64Bit() &&
1654      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1655    MachineFunction &MF = DAG.getMachineFunction();
1656    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1657    unsigned Reg = FuncInfo->getSRetReturnReg();
1658    assert(Reg &&
1659           "SRetReturnReg should have been set in LowerFormalArguments().");
1660    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1661
1662    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1663    Flag = Chain.getValue(1);
1664
1665    // RAX now acts like a return value.
1666    MRI.addLiveOut(X86::RAX);
1667  }
1668
1669  RetOps[0] = Chain;  // Update chain.
1670
1671  // Add the flag if we have it.
1672  if (Flag.getNode())
1673    RetOps.push_back(Flag);
1674
1675  return DAG.getNode(X86ISD::RET_FLAG, dl,
1676                     MVT::Other, &RetOps[0], RetOps.size());
1677}
1678
1679bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1680  if (N->getNumValues() != 1)
1681    return false;
1682  if (!N->hasNUsesOfValue(1, 0))
1683    return false;
1684
1685  SDValue TCChain = Chain;
1686  SDNode *Copy = *N->use_begin();
1687  if (Copy->getOpcode() == ISD::CopyToReg) {
1688    // If the copy has a glue operand, we conservatively assume it isn't safe to
1689    // perform a tail call.
1690    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1691      return false;
1692    TCChain = Copy->getOperand(0);
1693  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1694    return false;
1695
1696  bool HasRet = false;
1697  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1698       UI != UE; ++UI) {
1699    if (UI->getOpcode() != X86ISD::RET_FLAG)
1700      return false;
1701    HasRet = true;
1702  }
1703
1704  if (!HasRet)
1705    return false;
1706
1707  Chain = TCChain;
1708  return true;
1709}
1710
1711MVT
1712X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1713                                            ISD::NodeType ExtendKind) const {
1714  MVT ReturnMVT;
1715  // TODO: Is this also valid on 32-bit?
1716  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1717    ReturnMVT = MVT::i8;
1718  else
1719    ReturnMVT = MVT::i32;
1720
1721  MVT MinVT = getRegisterType(ReturnMVT);
1722  return VT.bitsLT(MinVT) ? MinVT : VT;
1723}
1724
1725/// LowerCallResult - Lower the result values of a call into the
1726/// appropriate copies out of appropriate physical registers.
1727///
1728SDValue
1729X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1730                                   CallingConv::ID CallConv, bool isVarArg,
1731                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1732                                   DebugLoc dl, SelectionDAG &DAG,
1733                                   SmallVectorImpl<SDValue> &InVals) const {
1734
1735  // Assign locations to each value returned by this call.
1736  SmallVector<CCValAssign, 16> RVLocs;
1737  bool Is64Bit = Subtarget->is64Bit();
1738  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1739                 getTargetMachine(), RVLocs, *DAG.getContext());
1740  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1741
1742  // Copy all of the result registers out of their specified physreg.
1743  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1744    CCValAssign &VA = RVLocs[i];
1745    EVT CopyVT = VA.getValVT();
1746
1747    // If this is x86-64, and we disabled SSE, we can't return FP values
1748    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1749        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1750      report_fatal_error("SSE register return with SSE disabled");
1751    }
1752
1753    SDValue Val;
1754
1755    // If this is a call to a function that returns an fp value on the floating
1756    // point stack, we must guarantee the value is popped from the stack, so
1757    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1758    // if the return value is not used. We use the FpPOP_RETVAL instruction
1759    // instead.
1760    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1761      // If we prefer to use the value in xmm registers, copy it out as f80 and
1762      // use a truncate to move it from fp stack reg to xmm reg.
1763      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1764      SDValue Ops[] = { Chain, InFlag };
1765      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1766                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1767      Val = Chain.getValue(0);
1768
1769      // Round the f80 to the right size, which also moves it to the appropriate
1770      // xmm register.
1771      if (CopyVT != VA.getValVT())
1772        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1773                          // This truncation won't change the value.
1774                          DAG.getIntPtrConstant(1));
1775    } else {
1776      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1777                                 CopyVT, InFlag).getValue(1);
1778      Val = Chain.getValue(0);
1779    }
1780    InFlag = Chain.getValue(2);
1781    InVals.push_back(Val);
1782  }
1783
1784  return Chain;
1785}
1786
1787//===----------------------------------------------------------------------===//
1788//                C & StdCall & Fast Calling Convention implementation
1789//===----------------------------------------------------------------------===//
1790//  StdCall calling convention seems to be standard for many Windows' API
1791//  routines and around. It differs from C calling convention just a little:
1792//  callee should clean up the stack, not caller. Symbols should be also
1793//  decorated in some fancy way :) It doesn't support any vector arguments.
1794//  For info on fast calling convention see Fast Calling Convention (tail call)
1795//  implementation LowerX86_32FastCCCallTo.
1796
1797/// CallIsStructReturn - Determines whether a call uses struct return
1798/// semantics.
1799enum StructReturnType {
1800  NotStructReturn,
1801  RegStructReturn,
1802  StackStructReturn
1803};
1804static StructReturnType
1805callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1806  if (Outs.empty())
1807    return NotStructReturn;
1808
1809  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1810  if (!Flags.isSRet())
1811    return NotStructReturn;
1812  if (Flags.isInReg())
1813    return RegStructReturn;
1814  return StackStructReturn;
1815}
1816
1817/// ArgsAreStructReturn - Determines whether a function uses struct
1818/// return semantics.
1819static StructReturnType
1820argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1821  if (Ins.empty())
1822    return NotStructReturn;
1823
1824  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1825  if (!Flags.isSRet())
1826    return NotStructReturn;
1827  if (Flags.isInReg())
1828    return RegStructReturn;
1829  return StackStructReturn;
1830}
1831
1832/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1833/// by "Src" to address "Dst" with size and alignment information specified by
1834/// the specific parameter attribute. The copy will be passed as a byval
1835/// function parameter.
1836static SDValue
1837CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1838                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1839                          DebugLoc dl) {
1840  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1841
1842  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1843                       /*isVolatile*/false, /*AlwaysInline=*/true,
1844                       MachinePointerInfo(), MachinePointerInfo());
1845}
1846
1847/// IsTailCallConvention - Return true if the calling convention is one that
1848/// supports tail call optimization.
1849static bool IsTailCallConvention(CallingConv::ID CC) {
1850  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1851          CC == CallingConv::HiPE);
1852}
1853
1854bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1855  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1856    return false;
1857
1858  CallSite CS(CI);
1859  CallingConv::ID CalleeCC = CS.getCallingConv();
1860  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1861    return false;
1862
1863  return true;
1864}
1865
1866/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1867/// a tailcall target by changing its ABI.
1868static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1869                                   bool GuaranteedTailCallOpt) {
1870  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1871}
1872
1873SDValue
1874X86TargetLowering::LowerMemArgument(SDValue Chain,
1875                                    CallingConv::ID CallConv,
1876                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1877                                    DebugLoc dl, SelectionDAG &DAG,
1878                                    const CCValAssign &VA,
1879                                    MachineFrameInfo *MFI,
1880                                    unsigned i) const {
1881  // Create the nodes corresponding to a load from this parameter slot.
1882  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1883  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1884                              getTargetMachine().Options.GuaranteedTailCallOpt);
1885  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1886  EVT ValVT;
1887
1888  // If value is passed by pointer we have address passed instead of the value
1889  // itself.
1890  if (VA.getLocInfo() == CCValAssign::Indirect)
1891    ValVT = VA.getLocVT();
1892  else
1893    ValVT = VA.getValVT();
1894
1895  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1896  // changed with more analysis.
1897  // In case of tail call optimization mark all arguments mutable. Since they
1898  // could be overwritten by lowering of arguments in case of a tail call.
1899  if (Flags.isByVal()) {
1900    unsigned Bytes = Flags.getByValSize();
1901    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1902    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1903    return DAG.getFrameIndex(FI, getPointerTy());
1904  } else {
1905    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1906                                    VA.getLocMemOffset(), isImmutable);
1907    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1908    return DAG.getLoad(ValVT, dl, Chain, FIN,
1909                       MachinePointerInfo::getFixedStack(FI),
1910                       false, false, false, 0);
1911  }
1912}
1913
1914SDValue
1915X86TargetLowering::LowerFormalArguments(SDValue Chain,
1916                                        CallingConv::ID CallConv,
1917                                        bool isVarArg,
1918                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1919                                        DebugLoc dl,
1920                                        SelectionDAG &DAG,
1921                                        SmallVectorImpl<SDValue> &InVals)
1922                                          const {
1923  MachineFunction &MF = DAG.getMachineFunction();
1924  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1925
1926  const Function* Fn = MF.getFunction();
1927  if (Fn->hasExternalLinkage() &&
1928      Subtarget->isTargetCygMing() &&
1929      Fn->getName() == "main")
1930    FuncInfo->setForceFramePointer(true);
1931
1932  MachineFrameInfo *MFI = MF.getFrameInfo();
1933  bool Is64Bit = Subtarget->is64Bit();
1934  bool IsWindows = Subtarget->isTargetWindows();
1935  bool IsWin64 = Subtarget->isTargetWin64();
1936
1937  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1938         "Var args not supported with calling convention fastcc, ghc or hipe");
1939
1940  // Assign locations to all of the incoming arguments.
1941  SmallVector<CCValAssign, 16> ArgLocs;
1942  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1943                 ArgLocs, *DAG.getContext());
1944
1945  // Allocate shadow area for Win64
1946  if (IsWin64) {
1947    CCInfo.AllocateStack(32, 8);
1948  }
1949
1950  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1951
1952  unsigned LastVal = ~0U;
1953  SDValue ArgValue;
1954  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1955    CCValAssign &VA = ArgLocs[i];
1956    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1957    // places.
1958    assert(VA.getValNo() != LastVal &&
1959           "Don't support value assigned to multiple locs yet");
1960    (void)LastVal;
1961    LastVal = VA.getValNo();
1962
1963    if (VA.isRegLoc()) {
1964      EVT RegVT = VA.getLocVT();
1965      const TargetRegisterClass *RC;
1966      if (RegVT == MVT::i32)
1967        RC = &X86::GR32RegClass;
1968      else if (Is64Bit && RegVT == MVT::i64)
1969        RC = &X86::GR64RegClass;
1970      else if (RegVT == MVT::f32)
1971        RC = &X86::FR32RegClass;
1972      else if (RegVT == MVT::f64)
1973        RC = &X86::FR64RegClass;
1974      else if (RegVT.is256BitVector())
1975        RC = &X86::VR256RegClass;
1976      else if (RegVT.is128BitVector())
1977        RC = &X86::VR128RegClass;
1978      else if (RegVT == MVT::x86mmx)
1979        RC = &X86::VR64RegClass;
1980      else
1981        llvm_unreachable("Unknown argument type!");
1982
1983      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1984      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1985
1986      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1987      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1988      // right size.
1989      if (VA.getLocInfo() == CCValAssign::SExt)
1990        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1991                               DAG.getValueType(VA.getValVT()));
1992      else if (VA.getLocInfo() == CCValAssign::ZExt)
1993        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1994                               DAG.getValueType(VA.getValVT()));
1995      else if (VA.getLocInfo() == CCValAssign::BCvt)
1996        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1997
1998      if (VA.isExtInLoc()) {
1999        // Handle MMX values passed in XMM regs.
2000        if (RegVT.isVector())
2001          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2002        else
2003          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2004      }
2005    } else {
2006      assert(VA.isMemLoc());
2007      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2008    }
2009
2010    // If value is passed via pointer - do a load.
2011    if (VA.getLocInfo() == CCValAssign::Indirect)
2012      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2013                             MachinePointerInfo(), false, false, false, 0);
2014
2015    InVals.push_back(ArgValue);
2016  }
2017
2018  // The x86-64 ABI for returning structs by value requires that we copy
2019  // the sret argument into %rax for the return. Save the argument into
2020  // a virtual register so that we can access it from the return points.
2021  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
2022    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2023    unsigned Reg = FuncInfo->getSRetReturnReg();
2024    if (!Reg) {
2025      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
2026      FuncInfo->setSRetReturnReg(Reg);
2027    }
2028    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2029    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2030  }
2031
2032  unsigned StackSize = CCInfo.getNextStackOffset();
2033  // Align stack specially for tail calls.
2034  if (FuncIsMadeTailCallSafe(CallConv,
2035                             MF.getTarget().Options.GuaranteedTailCallOpt))
2036    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2037
2038  // If the function takes variable number of arguments, make a frame index for
2039  // the start of the first vararg value... for expansion of llvm.va_start.
2040  if (isVarArg) {
2041    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2042                    CallConv != CallingConv::X86_ThisCall)) {
2043      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2044    }
2045    if (Is64Bit) {
2046      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2047
2048      // FIXME: We should really autogenerate these arrays
2049      static const uint16_t GPR64ArgRegsWin64[] = {
2050        X86::RCX, X86::RDX, X86::R8,  X86::R9
2051      };
2052      static const uint16_t GPR64ArgRegs64Bit[] = {
2053        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2054      };
2055      static const uint16_t XMMArgRegs64Bit[] = {
2056        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2057        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2058      };
2059      const uint16_t *GPR64ArgRegs;
2060      unsigned NumXMMRegs = 0;
2061
2062      if (IsWin64) {
2063        // The XMM registers which might contain var arg parameters are shadowed
2064        // in their paired GPR.  So we only need to save the GPR to their home
2065        // slots.
2066        TotalNumIntRegs = 4;
2067        GPR64ArgRegs = GPR64ArgRegsWin64;
2068      } else {
2069        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2070        GPR64ArgRegs = GPR64ArgRegs64Bit;
2071
2072        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2073                                                TotalNumXMMRegs);
2074      }
2075      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2076                                                       TotalNumIntRegs);
2077
2078      bool NoImplicitFloatOps = Fn->getAttributes().
2079        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2080      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2081             "SSE register cannot be used when SSE is disabled!");
2082      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2083               NoImplicitFloatOps) &&
2084             "SSE register cannot be used when SSE is disabled!");
2085      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2086          !Subtarget->hasSSE1())
2087        // Kernel mode asks for SSE to be disabled, so don't push them
2088        // on the stack.
2089        TotalNumXMMRegs = 0;
2090
2091      if (IsWin64) {
2092        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2093        // Get to the caller-allocated home save location.  Add 8 to account
2094        // for the return address.
2095        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2096        FuncInfo->setRegSaveFrameIndex(
2097          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2098        // Fixup to set vararg frame on shadow area (4 x i64).
2099        if (NumIntRegs < 4)
2100          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2101      } else {
2102        // For X86-64, if there are vararg parameters that are passed via
2103        // registers, then we must store them to their spots on the stack so
2104        // they may be loaded by deferencing the result of va_next.
2105        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2106        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2107        FuncInfo->setRegSaveFrameIndex(
2108          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2109                               false));
2110      }
2111
2112      // Store the integer parameter registers.
2113      SmallVector<SDValue, 8> MemOps;
2114      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2115                                        getPointerTy());
2116      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2117      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2118        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2119                                  DAG.getIntPtrConstant(Offset));
2120        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2121                                     &X86::GR64RegClass);
2122        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2123        SDValue Store =
2124          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2125                       MachinePointerInfo::getFixedStack(
2126                         FuncInfo->getRegSaveFrameIndex(), Offset),
2127                       false, false, 0);
2128        MemOps.push_back(Store);
2129        Offset += 8;
2130      }
2131
2132      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2133        // Now store the XMM (fp + vector) parameter registers.
2134        SmallVector<SDValue, 11> SaveXMMOps;
2135        SaveXMMOps.push_back(Chain);
2136
2137        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2138        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2139        SaveXMMOps.push_back(ALVal);
2140
2141        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2142                               FuncInfo->getRegSaveFrameIndex()));
2143        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2144                               FuncInfo->getVarArgsFPOffset()));
2145
2146        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2147          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2148                                       &X86::VR128RegClass);
2149          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2150          SaveXMMOps.push_back(Val);
2151        }
2152        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2153                                     MVT::Other,
2154                                     &SaveXMMOps[0], SaveXMMOps.size()));
2155      }
2156
2157      if (!MemOps.empty())
2158        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2159                            &MemOps[0], MemOps.size());
2160    }
2161  }
2162
2163  // Some CCs need callee pop.
2164  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2165                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2166    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2167  } else {
2168    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2169    // If this is an sret function, the return should pop the hidden pointer.
2170    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2171        argsAreStructReturn(Ins) == StackStructReturn)
2172      FuncInfo->setBytesToPopOnReturn(4);
2173  }
2174
2175  if (!Is64Bit) {
2176    // RegSaveFrameIndex is X86-64 only.
2177    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2178    if (CallConv == CallingConv::X86_FastCall ||
2179        CallConv == CallingConv::X86_ThisCall)
2180      // fastcc functions can't have varargs.
2181      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2182  }
2183
2184  FuncInfo->setArgumentStackSize(StackSize);
2185
2186  return Chain;
2187}
2188
2189SDValue
2190X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2191                                    SDValue StackPtr, SDValue Arg,
2192                                    DebugLoc dl, SelectionDAG &DAG,
2193                                    const CCValAssign &VA,
2194                                    ISD::ArgFlagsTy Flags) const {
2195  unsigned LocMemOffset = VA.getLocMemOffset();
2196  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2197  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2198  if (Flags.isByVal())
2199    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2200
2201  return DAG.getStore(Chain, dl, Arg, PtrOff,
2202                      MachinePointerInfo::getStack(LocMemOffset),
2203                      false, false, 0);
2204}
2205
2206/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2207/// optimization is performed and it is required.
2208SDValue
2209X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2210                                           SDValue &OutRetAddr, SDValue Chain,
2211                                           bool IsTailCall, bool Is64Bit,
2212                                           int FPDiff, DebugLoc dl) const {
2213  // Adjust the Return address stack slot.
2214  EVT VT = getPointerTy();
2215  OutRetAddr = getReturnAddressFrameIndex(DAG);
2216
2217  // Load the "old" Return address.
2218  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2219                           false, false, false, 0);
2220  return SDValue(OutRetAddr.getNode(), 1);
2221}
2222
2223/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2224/// optimization is performed and it is required (FPDiff!=0).
2225static SDValue
2226EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2227                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2228                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2229  // Store the return address to the appropriate stack slot.
2230  if (!FPDiff) return Chain;
2231  // Calculate the new stack slot for the return address.
2232  int NewReturnAddrFI =
2233    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2234  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2235  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2236                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2237                       false, false, 0);
2238  return Chain;
2239}
2240
2241SDValue
2242X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2243                             SmallVectorImpl<SDValue> &InVals) const {
2244  SelectionDAG &DAG                     = CLI.DAG;
2245  DebugLoc &dl                          = CLI.DL;
2246  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2247  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2248  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2249  SDValue Chain                         = CLI.Chain;
2250  SDValue Callee                        = CLI.Callee;
2251  CallingConv::ID CallConv              = CLI.CallConv;
2252  bool &isTailCall                      = CLI.IsTailCall;
2253  bool isVarArg                         = CLI.IsVarArg;
2254
2255  MachineFunction &MF = DAG.getMachineFunction();
2256  bool Is64Bit        = Subtarget->is64Bit();
2257  bool IsWin64        = Subtarget->isTargetWin64();
2258  bool IsWindows      = Subtarget->isTargetWindows();
2259  StructReturnType SR = callIsStructReturn(Outs);
2260  bool IsSibcall      = false;
2261
2262  if (MF.getTarget().Options.DisableTailCalls)
2263    isTailCall = false;
2264
2265  if (isTailCall) {
2266    // Check if it's really possible to do a tail call.
2267    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2268                    isVarArg, SR != NotStructReturn,
2269                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2270                    Outs, OutVals, Ins, DAG);
2271
2272    // Sibcalls are automatically detected tailcalls which do not require
2273    // ABI changes.
2274    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2275      IsSibcall = true;
2276
2277    if (isTailCall)
2278      ++NumTailCalls;
2279  }
2280
2281  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2282         "Var args not supported with calling convention fastcc, ghc or hipe");
2283
2284  // Analyze operands of the call, assigning locations to each operand.
2285  SmallVector<CCValAssign, 16> ArgLocs;
2286  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2287                 ArgLocs, *DAG.getContext());
2288
2289  // Allocate shadow area for Win64
2290  if (IsWin64) {
2291    CCInfo.AllocateStack(32, 8);
2292  }
2293
2294  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2295
2296  // Get a count of how many bytes are to be pushed on the stack.
2297  unsigned NumBytes = CCInfo.getNextStackOffset();
2298  if (IsSibcall)
2299    // This is a sibcall. The memory operands are available in caller's
2300    // own caller's stack.
2301    NumBytes = 0;
2302  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2303           IsTailCallConvention(CallConv))
2304    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2305
2306  int FPDiff = 0;
2307  if (isTailCall && !IsSibcall) {
2308    // Lower arguments at fp - stackoffset + fpdiff.
2309    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2310    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2311
2312    FPDiff = NumBytesCallerPushed - NumBytes;
2313
2314    // Set the delta of movement of the returnaddr stackslot.
2315    // But only set if delta is greater than previous delta.
2316    if (FPDiff < X86Info->getTCReturnAddrDelta())
2317      X86Info->setTCReturnAddrDelta(FPDiff);
2318  }
2319
2320  if (!IsSibcall)
2321    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2322
2323  SDValue RetAddrFrIdx;
2324  // Load return address for tail calls.
2325  if (isTailCall && FPDiff)
2326    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2327                                    Is64Bit, FPDiff, dl);
2328
2329  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2330  SmallVector<SDValue, 8> MemOpChains;
2331  SDValue StackPtr;
2332
2333  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2334  // of tail call optimization arguments are handle later.
2335  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2336    CCValAssign &VA = ArgLocs[i];
2337    EVT RegVT = VA.getLocVT();
2338    SDValue Arg = OutVals[i];
2339    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2340    bool isByVal = Flags.isByVal();
2341
2342    // Promote the value if needed.
2343    switch (VA.getLocInfo()) {
2344    default: llvm_unreachable("Unknown loc info!");
2345    case CCValAssign::Full: break;
2346    case CCValAssign::SExt:
2347      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2348      break;
2349    case CCValAssign::ZExt:
2350      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2351      break;
2352    case CCValAssign::AExt:
2353      if (RegVT.is128BitVector()) {
2354        // Special case: passing MMX values in XMM registers.
2355        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2356        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2357        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2358      } else
2359        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2360      break;
2361    case CCValAssign::BCvt:
2362      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2363      break;
2364    case CCValAssign::Indirect: {
2365      // Store the argument.
2366      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2367      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2368      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2369                           MachinePointerInfo::getFixedStack(FI),
2370                           false, false, 0);
2371      Arg = SpillSlot;
2372      break;
2373    }
2374    }
2375
2376    if (VA.isRegLoc()) {
2377      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2378      if (isVarArg && IsWin64) {
2379        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2380        // shadow reg if callee is a varargs function.
2381        unsigned ShadowReg = 0;
2382        switch (VA.getLocReg()) {
2383        case X86::XMM0: ShadowReg = X86::RCX; break;
2384        case X86::XMM1: ShadowReg = X86::RDX; break;
2385        case X86::XMM2: ShadowReg = X86::R8; break;
2386        case X86::XMM3: ShadowReg = X86::R9; break;
2387        }
2388        if (ShadowReg)
2389          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2390      }
2391    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2392      assert(VA.isMemLoc());
2393      if (StackPtr.getNode() == 0)
2394        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2395                                      getPointerTy());
2396      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2397                                             dl, DAG, VA, Flags));
2398    }
2399  }
2400
2401  if (!MemOpChains.empty())
2402    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2403                        &MemOpChains[0], MemOpChains.size());
2404
2405  if (Subtarget->isPICStyleGOT()) {
2406    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2407    // GOT pointer.
2408    if (!isTailCall) {
2409      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2410               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2411    } else {
2412      // If we are tail calling and generating PIC/GOT style code load the
2413      // address of the callee into ECX. The value in ecx is used as target of
2414      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2415      // for tail calls on PIC/GOT architectures. Normally we would just put the
2416      // address of GOT into ebx and then call target@PLT. But for tail calls
2417      // ebx would be restored (since ebx is callee saved) before jumping to the
2418      // target@PLT.
2419
2420      // Note: The actual moving to ECX is done further down.
2421      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2422      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2423          !G->getGlobal()->hasProtectedVisibility())
2424        Callee = LowerGlobalAddress(Callee, DAG);
2425      else if (isa<ExternalSymbolSDNode>(Callee))
2426        Callee = LowerExternalSymbol(Callee, DAG);
2427    }
2428  }
2429
2430  if (Is64Bit && isVarArg && !IsWin64) {
2431    // From AMD64 ABI document:
2432    // For calls that may call functions that use varargs or stdargs
2433    // (prototype-less calls or calls to functions containing ellipsis (...) in
2434    // the declaration) %al is used as hidden argument to specify the number
2435    // of SSE registers used. The contents of %al do not need to match exactly
2436    // the number of registers, but must be an ubound on the number of SSE
2437    // registers used and is in the range 0 - 8 inclusive.
2438
2439    // Count the number of XMM registers allocated.
2440    static const uint16_t XMMArgRegs[] = {
2441      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2442      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2443    };
2444    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2445    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2446           && "SSE registers cannot be used when SSE is disabled");
2447
2448    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2449                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2450  }
2451
2452  // For tail calls lower the arguments to the 'real' stack slot.
2453  if (isTailCall) {
2454    // Force all the incoming stack arguments to be loaded from the stack
2455    // before any new outgoing arguments are stored to the stack, because the
2456    // outgoing stack slots may alias the incoming argument stack slots, and
2457    // the alias isn't otherwise explicit. This is slightly more conservative
2458    // than necessary, because it means that each store effectively depends
2459    // on every argument instead of just those arguments it would clobber.
2460    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2461
2462    SmallVector<SDValue, 8> MemOpChains2;
2463    SDValue FIN;
2464    int FI = 0;
2465    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2466      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2467        CCValAssign &VA = ArgLocs[i];
2468        if (VA.isRegLoc())
2469          continue;
2470        assert(VA.isMemLoc());
2471        SDValue Arg = OutVals[i];
2472        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2473        // Create frame index.
2474        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2475        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2476        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2477        FIN = DAG.getFrameIndex(FI, getPointerTy());
2478
2479        if (Flags.isByVal()) {
2480          // Copy relative to framepointer.
2481          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2482          if (StackPtr.getNode() == 0)
2483            StackPtr = DAG.getCopyFromReg(Chain, dl,
2484                                          RegInfo->getStackRegister(),
2485                                          getPointerTy());
2486          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2487
2488          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2489                                                           ArgChain,
2490                                                           Flags, DAG, dl));
2491        } else {
2492          // Store relative to framepointer.
2493          MemOpChains2.push_back(
2494            DAG.getStore(ArgChain, dl, Arg, FIN,
2495                         MachinePointerInfo::getFixedStack(FI),
2496                         false, false, 0));
2497        }
2498      }
2499    }
2500
2501    if (!MemOpChains2.empty())
2502      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2503                          &MemOpChains2[0], MemOpChains2.size());
2504
2505    // Store the return address to the appropriate stack slot.
2506    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2507                                     getPointerTy(), RegInfo->getSlotSize(),
2508                                     FPDiff, dl);
2509  }
2510
2511  // Build a sequence of copy-to-reg nodes chained together with token chain
2512  // and flag operands which copy the outgoing args into registers.
2513  SDValue InFlag;
2514  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2515    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2516                             RegsToPass[i].second, InFlag);
2517    InFlag = Chain.getValue(1);
2518  }
2519
2520  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2521    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2522    // In the 64-bit large code model, we have to make all calls
2523    // through a register, since the call instruction's 32-bit
2524    // pc-relative offset may not be large enough to hold the whole
2525    // address.
2526  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2527    // If the callee is a GlobalAddress node (quite common, every direct call
2528    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2529    // it.
2530
2531    // We should use extra load for direct calls to dllimported functions in
2532    // non-JIT mode.
2533    const GlobalValue *GV = G->getGlobal();
2534    if (!GV->hasDLLImportLinkage()) {
2535      unsigned char OpFlags = 0;
2536      bool ExtraLoad = false;
2537      unsigned WrapperKind = ISD::DELETED_NODE;
2538
2539      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2540      // external symbols most go through the PLT in PIC mode.  If the symbol
2541      // has hidden or protected visibility, or if it is static or local, then
2542      // we don't need to use the PLT - we can directly call it.
2543      if (Subtarget->isTargetELF() &&
2544          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2545          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2546        OpFlags = X86II::MO_PLT;
2547      } else if (Subtarget->isPICStyleStubAny() &&
2548                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2549                 (!Subtarget->getTargetTriple().isMacOSX() ||
2550                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2551        // PC-relative references to external symbols should go through $stub,
2552        // unless we're building with the leopard linker or later, which
2553        // automatically synthesizes these stubs.
2554        OpFlags = X86II::MO_DARWIN_STUB;
2555      } else if (Subtarget->isPICStyleRIPRel() &&
2556                 isa<Function>(GV) &&
2557                 cast<Function>(GV)->getAttributes().
2558                   hasAttribute(AttributeSet::FunctionIndex,
2559                                Attribute::NonLazyBind)) {
2560        // If the function is marked as non-lazy, generate an indirect call
2561        // which loads from the GOT directly. This avoids runtime overhead
2562        // at the cost of eager binding (and one extra byte of encoding).
2563        OpFlags = X86II::MO_GOTPCREL;
2564        WrapperKind = X86ISD::WrapperRIP;
2565        ExtraLoad = true;
2566      }
2567
2568      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2569                                          G->getOffset(), OpFlags);
2570
2571      // Add a wrapper if needed.
2572      if (WrapperKind != ISD::DELETED_NODE)
2573        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2574      // Add extra indirection if needed.
2575      if (ExtraLoad)
2576        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2577                             MachinePointerInfo::getGOT(),
2578                             false, false, false, 0);
2579    }
2580  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2581    unsigned char OpFlags = 0;
2582
2583    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2584    // external symbols should go through the PLT.
2585    if (Subtarget->isTargetELF() &&
2586        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2587      OpFlags = X86II::MO_PLT;
2588    } else if (Subtarget->isPICStyleStubAny() &&
2589               (!Subtarget->getTargetTriple().isMacOSX() ||
2590                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2591      // PC-relative references to external symbols should go through $stub,
2592      // unless we're building with the leopard linker or later, which
2593      // automatically synthesizes these stubs.
2594      OpFlags = X86II::MO_DARWIN_STUB;
2595    }
2596
2597    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2598                                         OpFlags);
2599  }
2600
2601  // Returns a chain & a flag for retval copy to use.
2602  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2603  SmallVector<SDValue, 8> Ops;
2604
2605  if (!IsSibcall && isTailCall) {
2606    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2607                           DAG.getIntPtrConstant(0, true), InFlag);
2608    InFlag = Chain.getValue(1);
2609  }
2610
2611  Ops.push_back(Chain);
2612  Ops.push_back(Callee);
2613
2614  if (isTailCall)
2615    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2616
2617  // Add argument registers to the end of the list so that they are known live
2618  // into the call.
2619  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2620    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2621                                  RegsToPass[i].second.getValueType()));
2622
2623  // Add a register mask operand representing the call-preserved registers.
2624  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2625  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2626  assert(Mask && "Missing call preserved mask for calling convention");
2627  Ops.push_back(DAG.getRegisterMask(Mask));
2628
2629  if (InFlag.getNode())
2630    Ops.push_back(InFlag);
2631
2632  if (isTailCall) {
2633    // We used to do:
2634    //// If this is the first return lowered for this function, add the regs
2635    //// to the liveout set for the function.
2636    // This isn't right, although it's probably harmless on x86; liveouts
2637    // should be computed from returns not tail calls.  Consider a void
2638    // function making a tail call to a function returning int.
2639    return DAG.getNode(X86ISD::TC_RETURN, dl,
2640                       NodeTys, &Ops[0], Ops.size());
2641  }
2642
2643  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2644  InFlag = Chain.getValue(1);
2645
2646  // Create the CALLSEQ_END node.
2647  unsigned NumBytesForCalleeToPush;
2648  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2649                       getTargetMachine().Options.GuaranteedTailCallOpt))
2650    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2651  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2652           SR == StackStructReturn)
2653    // If this is a call to a struct-return function, the callee
2654    // pops the hidden struct pointer, so we have to push it back.
2655    // This is common for Darwin/X86, Linux & Mingw32 targets.
2656    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2657    NumBytesForCalleeToPush = 4;
2658  else
2659    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2660
2661  // Returns a flag for retval copy to use.
2662  if (!IsSibcall) {
2663    Chain = DAG.getCALLSEQ_END(Chain,
2664                               DAG.getIntPtrConstant(NumBytes, true),
2665                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2666                                                     true),
2667                               InFlag);
2668    InFlag = Chain.getValue(1);
2669  }
2670
2671  // Handle result values, copying them out of physregs into vregs that we
2672  // return.
2673  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2674                         Ins, dl, DAG, InVals);
2675}
2676
2677//===----------------------------------------------------------------------===//
2678//                Fast Calling Convention (tail call) implementation
2679//===----------------------------------------------------------------------===//
2680
2681//  Like std call, callee cleans arguments, convention except that ECX is
2682//  reserved for storing the tail called function address. Only 2 registers are
2683//  free for argument passing (inreg). Tail call optimization is performed
2684//  provided:
2685//                * tailcallopt is enabled
2686//                * caller/callee are fastcc
2687//  On X86_64 architecture with GOT-style position independent code only local
2688//  (within module) calls are supported at the moment.
2689//  To keep the stack aligned according to platform abi the function
2690//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2691//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2692//  If a tail called function callee has more arguments than the caller the
2693//  caller needs to make sure that there is room to move the RETADDR to. This is
2694//  achieved by reserving an area the size of the argument delta right after the
2695//  original REtADDR, but before the saved framepointer or the spilled registers
2696//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2697//  stack layout:
2698//    arg1
2699//    arg2
2700//    RETADDR
2701//    [ new RETADDR
2702//      move area ]
2703//    (possible EBP)
2704//    ESI
2705//    EDI
2706//    local1 ..
2707
2708/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2709/// for a 16 byte align requirement.
2710unsigned
2711X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2712                                               SelectionDAG& DAG) const {
2713  MachineFunction &MF = DAG.getMachineFunction();
2714  const TargetMachine &TM = MF.getTarget();
2715  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2716  unsigned StackAlignment = TFI.getStackAlignment();
2717  uint64_t AlignMask = StackAlignment - 1;
2718  int64_t Offset = StackSize;
2719  unsigned SlotSize = RegInfo->getSlotSize();
2720  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2721    // Number smaller than 12 so just add the difference.
2722    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2723  } else {
2724    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2725    Offset = ((~AlignMask) & Offset) + StackAlignment +
2726      (StackAlignment-SlotSize);
2727  }
2728  return Offset;
2729}
2730
2731/// MatchingStackOffset - Return true if the given stack call argument is
2732/// already available in the same position (relatively) of the caller's
2733/// incoming argument stack.
2734static
2735bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2736                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2737                         const X86InstrInfo *TII) {
2738  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2739  int FI = INT_MAX;
2740  if (Arg.getOpcode() == ISD::CopyFromReg) {
2741    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2742    if (!TargetRegisterInfo::isVirtualRegister(VR))
2743      return false;
2744    MachineInstr *Def = MRI->getVRegDef(VR);
2745    if (!Def)
2746      return false;
2747    if (!Flags.isByVal()) {
2748      if (!TII->isLoadFromStackSlot(Def, FI))
2749        return false;
2750    } else {
2751      unsigned Opcode = Def->getOpcode();
2752      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2753          Def->getOperand(1).isFI()) {
2754        FI = Def->getOperand(1).getIndex();
2755        Bytes = Flags.getByValSize();
2756      } else
2757        return false;
2758    }
2759  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2760    if (Flags.isByVal())
2761      // ByVal argument is passed in as a pointer but it's now being
2762      // dereferenced. e.g.
2763      // define @foo(%struct.X* %A) {
2764      //   tail call @bar(%struct.X* byval %A)
2765      // }
2766      return false;
2767    SDValue Ptr = Ld->getBasePtr();
2768    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2769    if (!FINode)
2770      return false;
2771    FI = FINode->getIndex();
2772  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2773    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2774    FI = FINode->getIndex();
2775    Bytes = Flags.getByValSize();
2776  } else
2777    return false;
2778
2779  assert(FI != INT_MAX);
2780  if (!MFI->isFixedObjectIndex(FI))
2781    return false;
2782  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2783}
2784
2785/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2786/// for tail call optimization. Targets which want to do tail call
2787/// optimization should implement this function.
2788bool
2789X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2790                                                     CallingConv::ID CalleeCC,
2791                                                     bool isVarArg,
2792                                                     bool isCalleeStructRet,
2793                                                     bool isCallerStructRet,
2794                                                     Type *RetTy,
2795                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2796                                    const SmallVectorImpl<SDValue> &OutVals,
2797                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2798                                                     SelectionDAG& DAG) const {
2799  if (!IsTailCallConvention(CalleeCC) &&
2800      CalleeCC != CallingConv::C)
2801    return false;
2802
2803  // If -tailcallopt is specified, make fastcc functions tail-callable.
2804  const MachineFunction &MF = DAG.getMachineFunction();
2805  const Function *CallerF = DAG.getMachineFunction().getFunction();
2806
2807  // If the function return type is x86_fp80 and the callee return type is not,
2808  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2809  // perform a tailcall optimization here.
2810  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2811    return false;
2812
2813  CallingConv::ID CallerCC = CallerF->getCallingConv();
2814  bool CCMatch = CallerCC == CalleeCC;
2815
2816  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2817    if (IsTailCallConvention(CalleeCC) && CCMatch)
2818      return true;
2819    return false;
2820  }
2821
2822  // Look for obvious safe cases to perform tail call optimization that do not
2823  // require ABI changes. This is what gcc calls sibcall.
2824
2825  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2826  // emit a special epilogue.
2827  if (RegInfo->needsStackRealignment(MF))
2828    return false;
2829
2830  // Also avoid sibcall optimization if either caller or callee uses struct
2831  // return semantics.
2832  if (isCalleeStructRet || isCallerStructRet)
2833    return false;
2834
2835  // An stdcall caller is expected to clean up its arguments; the callee
2836  // isn't going to do that.
2837  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2838    return false;
2839
2840  // Do not sibcall optimize vararg calls unless all arguments are passed via
2841  // registers.
2842  if (isVarArg && !Outs.empty()) {
2843
2844    // Optimizing for varargs on Win64 is unlikely to be safe without
2845    // additional testing.
2846    if (Subtarget->isTargetWin64())
2847      return false;
2848
2849    SmallVector<CCValAssign, 16> ArgLocs;
2850    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2851                   getTargetMachine(), ArgLocs, *DAG.getContext());
2852
2853    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2854    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2855      if (!ArgLocs[i].isRegLoc())
2856        return false;
2857  }
2858
2859  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2860  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2861  // this into a sibcall.
2862  bool Unused = false;
2863  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2864    if (!Ins[i].Used) {
2865      Unused = true;
2866      break;
2867    }
2868  }
2869  if (Unused) {
2870    SmallVector<CCValAssign, 16> RVLocs;
2871    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2872                   getTargetMachine(), RVLocs, *DAG.getContext());
2873    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2874    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2875      CCValAssign &VA = RVLocs[i];
2876      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2877        return false;
2878    }
2879  }
2880
2881  // If the calling conventions do not match, then we'd better make sure the
2882  // results are returned in the same way as what the caller expects.
2883  if (!CCMatch) {
2884    SmallVector<CCValAssign, 16> RVLocs1;
2885    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2886                    getTargetMachine(), RVLocs1, *DAG.getContext());
2887    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2888
2889    SmallVector<CCValAssign, 16> RVLocs2;
2890    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2891                    getTargetMachine(), RVLocs2, *DAG.getContext());
2892    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2893
2894    if (RVLocs1.size() != RVLocs2.size())
2895      return false;
2896    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2897      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2898        return false;
2899      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2900        return false;
2901      if (RVLocs1[i].isRegLoc()) {
2902        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2903          return false;
2904      } else {
2905        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2906          return false;
2907      }
2908    }
2909  }
2910
2911  // If the callee takes no arguments then go on to check the results of the
2912  // call.
2913  if (!Outs.empty()) {
2914    // Check if stack adjustment is needed. For now, do not do this if any
2915    // argument is passed on the stack.
2916    SmallVector<CCValAssign, 16> ArgLocs;
2917    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2918                   getTargetMachine(), ArgLocs, *DAG.getContext());
2919
2920    // Allocate shadow area for Win64
2921    if (Subtarget->isTargetWin64()) {
2922      CCInfo.AllocateStack(32, 8);
2923    }
2924
2925    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2926    if (CCInfo.getNextStackOffset()) {
2927      MachineFunction &MF = DAG.getMachineFunction();
2928      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2929        return false;
2930
2931      // Check if the arguments are already laid out in the right way as
2932      // the caller's fixed stack objects.
2933      MachineFrameInfo *MFI = MF.getFrameInfo();
2934      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2935      const X86InstrInfo *TII =
2936        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2937      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2938        CCValAssign &VA = ArgLocs[i];
2939        SDValue Arg = OutVals[i];
2940        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2941        if (VA.getLocInfo() == CCValAssign::Indirect)
2942          return false;
2943        if (!VA.isRegLoc()) {
2944          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2945                                   MFI, MRI, TII))
2946            return false;
2947        }
2948      }
2949    }
2950
2951    // If the tailcall address may be in a register, then make sure it's
2952    // possible to register allocate for it. In 32-bit, the call address can
2953    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2954    // callee-saved registers are restored. These happen to be the same
2955    // registers used to pass 'inreg' arguments so watch out for those.
2956    if (!Subtarget->is64Bit() &&
2957        !isa<GlobalAddressSDNode>(Callee) &&
2958        !isa<ExternalSymbolSDNode>(Callee)) {
2959      unsigned NumInRegs = 0;
2960      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2961        CCValAssign &VA = ArgLocs[i];
2962        if (!VA.isRegLoc())
2963          continue;
2964        unsigned Reg = VA.getLocReg();
2965        switch (Reg) {
2966        default: break;
2967        case X86::EAX: case X86::EDX: case X86::ECX:
2968          if (++NumInRegs == 3)
2969            return false;
2970          break;
2971        }
2972      }
2973    }
2974  }
2975
2976  return true;
2977}
2978
2979FastISel *
2980X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2981                                  const TargetLibraryInfo *libInfo) const {
2982  return X86::createFastISel(funcInfo, libInfo);
2983}
2984
2985//===----------------------------------------------------------------------===//
2986//                           Other Lowering Hooks
2987//===----------------------------------------------------------------------===//
2988
2989static bool MayFoldLoad(SDValue Op) {
2990  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2991}
2992
2993static bool MayFoldIntoStore(SDValue Op) {
2994  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2995}
2996
2997static bool isTargetShuffle(unsigned Opcode) {
2998  switch(Opcode) {
2999  default: return false;
3000  case X86ISD::PSHUFD:
3001  case X86ISD::PSHUFHW:
3002  case X86ISD::PSHUFLW:
3003  case X86ISD::SHUFP:
3004  case X86ISD::PALIGN:
3005  case X86ISD::MOVLHPS:
3006  case X86ISD::MOVLHPD:
3007  case X86ISD::MOVHLPS:
3008  case X86ISD::MOVLPS:
3009  case X86ISD::MOVLPD:
3010  case X86ISD::MOVSHDUP:
3011  case X86ISD::MOVSLDUP:
3012  case X86ISD::MOVDDUP:
3013  case X86ISD::MOVSS:
3014  case X86ISD::MOVSD:
3015  case X86ISD::UNPCKL:
3016  case X86ISD::UNPCKH:
3017  case X86ISD::VPERMILP:
3018  case X86ISD::VPERM2X128:
3019  case X86ISD::VPERMI:
3020    return true;
3021  }
3022}
3023
3024static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3025                                    SDValue V1, SelectionDAG &DAG) {
3026  switch(Opc) {
3027  default: llvm_unreachable("Unknown x86 shuffle node");
3028  case X86ISD::MOVSHDUP:
3029  case X86ISD::MOVSLDUP:
3030  case X86ISD::MOVDDUP:
3031    return DAG.getNode(Opc, dl, VT, V1);
3032  }
3033}
3034
3035static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3036                                    SDValue V1, unsigned TargetMask,
3037                                    SelectionDAG &DAG) {
3038  switch(Opc) {
3039  default: llvm_unreachable("Unknown x86 shuffle node");
3040  case X86ISD::PSHUFD:
3041  case X86ISD::PSHUFHW:
3042  case X86ISD::PSHUFLW:
3043  case X86ISD::VPERMILP:
3044  case X86ISD::VPERMI:
3045    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3046  }
3047}
3048
3049static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3050                                    SDValue V1, SDValue V2, unsigned TargetMask,
3051                                    SelectionDAG &DAG) {
3052  switch(Opc) {
3053  default: llvm_unreachable("Unknown x86 shuffle node");
3054  case X86ISD::PALIGN:
3055  case X86ISD::SHUFP:
3056  case X86ISD::VPERM2X128:
3057    return DAG.getNode(Opc, dl, VT, V1, V2,
3058                       DAG.getConstant(TargetMask, MVT::i8));
3059  }
3060}
3061
3062static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3063                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3064  switch(Opc) {
3065  default: llvm_unreachable("Unknown x86 shuffle node");
3066  case X86ISD::MOVLHPS:
3067  case X86ISD::MOVLHPD:
3068  case X86ISD::MOVHLPS:
3069  case X86ISD::MOVLPS:
3070  case X86ISD::MOVLPD:
3071  case X86ISD::MOVSS:
3072  case X86ISD::MOVSD:
3073  case X86ISD::UNPCKL:
3074  case X86ISD::UNPCKH:
3075    return DAG.getNode(Opc, dl, VT, V1, V2);
3076  }
3077}
3078
3079SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3080  MachineFunction &MF = DAG.getMachineFunction();
3081  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3082  int ReturnAddrIndex = FuncInfo->getRAIndex();
3083
3084  if (ReturnAddrIndex == 0) {
3085    // Set up a frame object for the return address.
3086    unsigned SlotSize = RegInfo->getSlotSize();
3087    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3088                                                           false);
3089    FuncInfo->setRAIndex(ReturnAddrIndex);
3090  }
3091
3092  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3093}
3094
3095bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3096                                       bool hasSymbolicDisplacement) {
3097  // Offset should fit into 32 bit immediate field.
3098  if (!isInt<32>(Offset))
3099    return false;
3100
3101  // If we don't have a symbolic displacement - we don't have any extra
3102  // restrictions.
3103  if (!hasSymbolicDisplacement)
3104    return true;
3105
3106  // FIXME: Some tweaks might be needed for medium code model.
3107  if (M != CodeModel::Small && M != CodeModel::Kernel)
3108    return false;
3109
3110  // For small code model we assume that latest object is 16MB before end of 31
3111  // bits boundary. We may also accept pretty large negative constants knowing
3112  // that all objects are in the positive half of address space.
3113  if (M == CodeModel::Small && Offset < 16*1024*1024)
3114    return true;
3115
3116  // For kernel code model we know that all object resist in the negative half
3117  // of 32bits address space. We may not accept negative offsets, since they may
3118  // be just off and we may accept pretty large positive ones.
3119  if (M == CodeModel::Kernel && Offset > 0)
3120    return true;
3121
3122  return false;
3123}
3124
3125/// isCalleePop - Determines whether the callee is required to pop its
3126/// own arguments. Callee pop is necessary to support tail calls.
3127bool X86::isCalleePop(CallingConv::ID CallingConv,
3128                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3129  if (IsVarArg)
3130    return false;
3131
3132  switch (CallingConv) {
3133  default:
3134    return false;
3135  case CallingConv::X86_StdCall:
3136    return !is64Bit;
3137  case CallingConv::X86_FastCall:
3138    return !is64Bit;
3139  case CallingConv::X86_ThisCall:
3140    return !is64Bit;
3141  case CallingConv::Fast:
3142    return TailCallOpt;
3143  case CallingConv::GHC:
3144    return TailCallOpt;
3145  case CallingConv::HiPE:
3146    return TailCallOpt;
3147  }
3148}
3149
3150/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3151/// specific condition code, returning the condition code and the LHS/RHS of the
3152/// comparison to make.
3153static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3154                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3155  if (!isFP) {
3156    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3157      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3158        // X > -1   -> X == 0, jump !sign.
3159        RHS = DAG.getConstant(0, RHS.getValueType());
3160        return X86::COND_NS;
3161      }
3162      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3163        // X < 0   -> X == 0, jump on sign.
3164        return X86::COND_S;
3165      }
3166      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3167        // X < 1   -> X <= 0
3168        RHS = DAG.getConstant(0, RHS.getValueType());
3169        return X86::COND_LE;
3170      }
3171    }
3172
3173    switch (SetCCOpcode) {
3174    default: llvm_unreachable("Invalid integer condition!");
3175    case ISD::SETEQ:  return X86::COND_E;
3176    case ISD::SETGT:  return X86::COND_G;
3177    case ISD::SETGE:  return X86::COND_GE;
3178    case ISD::SETLT:  return X86::COND_L;
3179    case ISD::SETLE:  return X86::COND_LE;
3180    case ISD::SETNE:  return X86::COND_NE;
3181    case ISD::SETULT: return X86::COND_B;
3182    case ISD::SETUGT: return X86::COND_A;
3183    case ISD::SETULE: return X86::COND_BE;
3184    case ISD::SETUGE: return X86::COND_AE;
3185    }
3186  }
3187
3188  // First determine if it is required or is profitable to flip the operands.
3189
3190  // If LHS is a foldable load, but RHS is not, flip the condition.
3191  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3192      !ISD::isNON_EXTLoad(RHS.getNode())) {
3193    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3194    std::swap(LHS, RHS);
3195  }
3196
3197  switch (SetCCOpcode) {
3198  default: break;
3199  case ISD::SETOLT:
3200  case ISD::SETOLE:
3201  case ISD::SETUGT:
3202  case ISD::SETUGE:
3203    std::swap(LHS, RHS);
3204    break;
3205  }
3206
3207  // On a floating point condition, the flags are set as follows:
3208  // ZF  PF  CF   op
3209  //  0 | 0 | 0 | X > Y
3210  //  0 | 0 | 1 | X < Y
3211  //  1 | 0 | 0 | X == Y
3212  //  1 | 1 | 1 | unordered
3213  switch (SetCCOpcode) {
3214  default: llvm_unreachable("Condcode should be pre-legalized away");
3215  case ISD::SETUEQ:
3216  case ISD::SETEQ:   return X86::COND_E;
3217  case ISD::SETOLT:              // flipped
3218  case ISD::SETOGT:
3219  case ISD::SETGT:   return X86::COND_A;
3220  case ISD::SETOLE:              // flipped
3221  case ISD::SETOGE:
3222  case ISD::SETGE:   return X86::COND_AE;
3223  case ISD::SETUGT:              // flipped
3224  case ISD::SETULT:
3225  case ISD::SETLT:   return X86::COND_B;
3226  case ISD::SETUGE:              // flipped
3227  case ISD::SETULE:
3228  case ISD::SETLE:   return X86::COND_BE;
3229  case ISD::SETONE:
3230  case ISD::SETNE:   return X86::COND_NE;
3231  case ISD::SETUO:   return X86::COND_P;
3232  case ISD::SETO:    return X86::COND_NP;
3233  case ISD::SETOEQ:
3234  case ISD::SETUNE:  return X86::COND_INVALID;
3235  }
3236}
3237
3238/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3239/// code. Current x86 isa includes the following FP cmov instructions:
3240/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3241static bool hasFPCMov(unsigned X86CC) {
3242  switch (X86CC) {
3243  default:
3244    return false;
3245  case X86::COND_B:
3246  case X86::COND_BE:
3247  case X86::COND_E:
3248  case X86::COND_P:
3249  case X86::COND_A:
3250  case X86::COND_AE:
3251  case X86::COND_NE:
3252  case X86::COND_NP:
3253    return true;
3254  }
3255}
3256
3257/// isFPImmLegal - Returns true if the target can instruction select the
3258/// specified FP immediate natively. If false, the legalizer will
3259/// materialize the FP immediate as a load from a constant pool.
3260bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3261  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3262    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3263      return true;
3264  }
3265  return false;
3266}
3267
3268/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3269/// the specified range (L, H].
3270static bool isUndefOrInRange(int Val, int Low, int Hi) {
3271  return (Val < 0) || (Val >= Low && Val < Hi);
3272}
3273
3274/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3275/// specified value.
3276static bool isUndefOrEqual(int Val, int CmpVal) {
3277  return (Val < 0 || Val == CmpVal);
3278}
3279
3280/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3281/// from position Pos and ending in Pos+Size, falls within the specified
3282/// sequential range (L, L+Pos]. or is undef.
3283static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3284                                       unsigned Pos, unsigned Size, int Low) {
3285  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3286    if (!isUndefOrEqual(Mask[i], Low))
3287      return false;
3288  return true;
3289}
3290
3291/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3292/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3293/// the second operand.
3294static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3295  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3296    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3297  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3298    return (Mask[0] < 2 && Mask[1] < 2);
3299  return false;
3300}
3301
3302/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3303/// is suitable for input to PSHUFHW.
3304static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3305  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3306    return false;
3307
3308  // Lower quadword copied in order or undef.
3309  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3310    return false;
3311
3312  // Upper quadword shuffled.
3313  for (unsigned i = 4; i != 8; ++i)
3314    if (!isUndefOrInRange(Mask[i], 4, 8))
3315      return false;
3316
3317  if (VT == MVT::v16i16) {
3318    // Lower quadword copied in order or undef.
3319    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3320      return false;
3321
3322    // Upper quadword shuffled.
3323    for (unsigned i = 12; i != 16; ++i)
3324      if (!isUndefOrInRange(Mask[i], 12, 16))
3325        return false;
3326  }
3327
3328  return true;
3329}
3330
3331/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3332/// is suitable for input to PSHUFLW.
3333static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3334  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3335    return false;
3336
3337  // Upper quadword copied in order.
3338  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3339    return false;
3340
3341  // Lower quadword shuffled.
3342  for (unsigned i = 0; i != 4; ++i)
3343    if (!isUndefOrInRange(Mask[i], 0, 4))
3344      return false;
3345
3346  if (VT == MVT::v16i16) {
3347    // Upper quadword copied in order.
3348    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3349      return false;
3350
3351    // Lower quadword shuffled.
3352    for (unsigned i = 8; i != 12; ++i)
3353      if (!isUndefOrInRange(Mask[i], 8, 12))
3354        return false;
3355  }
3356
3357  return true;
3358}
3359
3360/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3361/// is suitable for input to PALIGNR.
3362static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3363                          const X86Subtarget *Subtarget) {
3364  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3365      (VT.is256BitVector() && !Subtarget->hasInt256()))
3366    return false;
3367
3368  unsigned NumElts = VT.getVectorNumElements();
3369  unsigned NumLanes = VT.getSizeInBits()/128;
3370  unsigned NumLaneElts = NumElts/NumLanes;
3371
3372  // Do not handle 64-bit element shuffles with palignr.
3373  if (NumLaneElts == 2)
3374    return false;
3375
3376  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3377    unsigned i;
3378    for (i = 0; i != NumLaneElts; ++i) {
3379      if (Mask[i+l] >= 0)
3380        break;
3381    }
3382
3383    // Lane is all undef, go to next lane
3384    if (i == NumLaneElts)
3385      continue;
3386
3387    int Start = Mask[i+l];
3388
3389    // Make sure its in this lane in one of the sources
3390    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3391        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3392      return false;
3393
3394    // If not lane 0, then we must match lane 0
3395    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3396      return false;
3397
3398    // Correct second source to be contiguous with first source
3399    if (Start >= (int)NumElts)
3400      Start -= NumElts - NumLaneElts;
3401
3402    // Make sure we're shifting in the right direction.
3403    if (Start <= (int)(i+l))
3404      return false;
3405
3406    Start -= i;
3407
3408    // Check the rest of the elements to see if they are consecutive.
3409    for (++i; i != NumLaneElts; ++i) {
3410      int Idx = Mask[i+l];
3411
3412      // Make sure its in this lane
3413      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3414          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3415        return false;
3416
3417      // If not lane 0, then we must match lane 0
3418      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3419        return false;
3420
3421      if (Idx >= (int)NumElts)
3422        Idx -= NumElts - NumLaneElts;
3423
3424      if (!isUndefOrEqual(Idx, Start+i))
3425        return false;
3426
3427    }
3428  }
3429
3430  return true;
3431}
3432
3433/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3434/// the two vector operands have swapped position.
3435static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3436                                     unsigned NumElems) {
3437  for (unsigned i = 0; i != NumElems; ++i) {
3438    int idx = Mask[i];
3439    if (idx < 0)
3440      continue;
3441    else if (idx < (int)NumElems)
3442      Mask[i] = idx + NumElems;
3443    else
3444      Mask[i] = idx - NumElems;
3445  }
3446}
3447
3448/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3449/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3450/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3451/// reverse of what x86 shuffles want.
3452static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3453                        bool Commuted = false) {
3454  if (!HasFp256 && VT.is256BitVector())
3455    return false;
3456
3457  unsigned NumElems = VT.getVectorNumElements();
3458  unsigned NumLanes = VT.getSizeInBits()/128;
3459  unsigned NumLaneElems = NumElems/NumLanes;
3460
3461  if (NumLaneElems != 2 && NumLaneElems != 4)
3462    return false;
3463
3464  // VSHUFPSY divides the resulting vector into 4 chunks.
3465  // The sources are also splitted into 4 chunks, and each destination
3466  // chunk must come from a different source chunk.
3467  //
3468  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3469  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3470  //
3471  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3472  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3473  //
3474  // VSHUFPDY divides the resulting vector into 4 chunks.
3475  // The sources are also splitted into 4 chunks, and each destination
3476  // chunk must come from a different source chunk.
3477  //
3478  //  SRC1 =>      X3       X2       X1       X0
3479  //  SRC2 =>      Y3       Y2       Y1       Y0
3480  //
3481  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3482  //
3483  unsigned HalfLaneElems = NumLaneElems/2;
3484  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3485    for (unsigned i = 0; i != NumLaneElems; ++i) {
3486      int Idx = Mask[i+l];
3487      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3488      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3489        return false;
3490      // For VSHUFPSY, the mask of the second half must be the same as the
3491      // first but with the appropriate offsets. This works in the same way as
3492      // VPERMILPS works with masks.
3493      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3494        continue;
3495      if (!isUndefOrEqual(Idx, Mask[i]+l))
3496        return false;
3497    }
3498  }
3499
3500  return true;
3501}
3502
3503/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3504/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3505static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3506  if (!VT.is128BitVector())
3507    return false;
3508
3509  unsigned NumElems = VT.getVectorNumElements();
3510
3511  if (NumElems != 4)
3512    return false;
3513
3514  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3515  return isUndefOrEqual(Mask[0], 6) &&
3516         isUndefOrEqual(Mask[1], 7) &&
3517         isUndefOrEqual(Mask[2], 2) &&
3518         isUndefOrEqual(Mask[3], 3);
3519}
3520
3521/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3522/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3523/// <2, 3, 2, 3>
3524static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3525  if (!VT.is128BitVector())
3526    return false;
3527
3528  unsigned NumElems = VT.getVectorNumElements();
3529
3530  if (NumElems != 4)
3531    return false;
3532
3533  return isUndefOrEqual(Mask[0], 2) &&
3534         isUndefOrEqual(Mask[1], 3) &&
3535         isUndefOrEqual(Mask[2], 2) &&
3536         isUndefOrEqual(Mask[3], 3);
3537}
3538
3539/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3540/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3541static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3542  if (!VT.is128BitVector())
3543    return false;
3544
3545  unsigned NumElems = VT.getVectorNumElements();
3546
3547  if (NumElems != 2 && NumElems != 4)
3548    return false;
3549
3550  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3551    if (!isUndefOrEqual(Mask[i], i + NumElems))
3552      return false;
3553
3554  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3555    if (!isUndefOrEqual(Mask[i], i))
3556      return false;
3557
3558  return true;
3559}
3560
3561/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3562/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3563static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3564  if (!VT.is128BitVector())
3565    return false;
3566
3567  unsigned NumElems = VT.getVectorNumElements();
3568
3569  if (NumElems != 2 && NumElems != 4)
3570    return false;
3571
3572  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3573    if (!isUndefOrEqual(Mask[i], i))
3574      return false;
3575
3576  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3577    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3578      return false;
3579
3580  return true;
3581}
3582
3583//
3584// Some special combinations that can be optimized.
3585//
3586static
3587SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3588                               SelectionDAG &DAG) {
3589  MVT VT = SVOp->getValueType(0).getSimpleVT();
3590  DebugLoc dl = SVOp->getDebugLoc();
3591
3592  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3593    return SDValue();
3594
3595  ArrayRef<int> Mask = SVOp->getMask();
3596
3597  // These are the special masks that may be optimized.
3598  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3599  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3600  bool MatchEvenMask = true;
3601  bool MatchOddMask  = true;
3602  for (int i=0; i<8; ++i) {
3603    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3604      MatchEvenMask = false;
3605    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3606      MatchOddMask = false;
3607  }
3608
3609  if (!MatchEvenMask && !MatchOddMask)
3610    return SDValue();
3611
3612  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3613
3614  SDValue Op0 = SVOp->getOperand(0);
3615  SDValue Op1 = SVOp->getOperand(1);
3616
3617  if (MatchEvenMask) {
3618    // Shift the second operand right to 32 bits.
3619    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3620    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3621  } else {
3622    // Shift the first operand left to 32 bits.
3623    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3624    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3625  }
3626  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3627  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3628}
3629
3630/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3631/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3632static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3633                         bool HasInt256, bool V2IsSplat = false) {
3634  unsigned NumElts = VT.getVectorNumElements();
3635
3636  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3637         "Unsupported vector type for unpckh");
3638
3639  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3640      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3641    return false;
3642
3643  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3644  // independently on 128-bit lanes.
3645  unsigned NumLanes = VT.getSizeInBits()/128;
3646  unsigned NumLaneElts = NumElts/NumLanes;
3647
3648  for (unsigned l = 0; l != NumLanes; ++l) {
3649    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3650         i != (l+1)*NumLaneElts;
3651         i += 2, ++j) {
3652      int BitI  = Mask[i];
3653      int BitI1 = Mask[i+1];
3654      if (!isUndefOrEqual(BitI, j))
3655        return false;
3656      if (V2IsSplat) {
3657        if (!isUndefOrEqual(BitI1, NumElts))
3658          return false;
3659      } else {
3660        if (!isUndefOrEqual(BitI1, j + NumElts))
3661          return false;
3662      }
3663    }
3664  }
3665
3666  return true;
3667}
3668
3669/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3670/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3671static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3672                         bool HasInt256, bool V2IsSplat = false) {
3673  unsigned NumElts = VT.getVectorNumElements();
3674
3675  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3676         "Unsupported vector type for unpckh");
3677
3678  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3679      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3680    return false;
3681
3682  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3683  // independently on 128-bit lanes.
3684  unsigned NumLanes = VT.getSizeInBits()/128;
3685  unsigned NumLaneElts = NumElts/NumLanes;
3686
3687  for (unsigned l = 0; l != NumLanes; ++l) {
3688    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3689         i != (l+1)*NumLaneElts; i += 2, ++j) {
3690      int BitI  = Mask[i];
3691      int BitI1 = Mask[i+1];
3692      if (!isUndefOrEqual(BitI, j))
3693        return false;
3694      if (V2IsSplat) {
3695        if (isUndefOrEqual(BitI1, NumElts))
3696          return false;
3697      } else {
3698        if (!isUndefOrEqual(BitI1, j+NumElts))
3699          return false;
3700      }
3701    }
3702  }
3703  return true;
3704}
3705
3706/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3707/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3708/// <0, 0, 1, 1>
3709static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3710  unsigned NumElts = VT.getVectorNumElements();
3711  bool Is256BitVec = VT.is256BitVector();
3712
3713  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3714         "Unsupported vector type for unpckh");
3715
3716  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3717      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3718    return false;
3719
3720  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3721  // FIXME: Need a better way to get rid of this, there's no latency difference
3722  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3723  // the former later. We should also remove the "_undef" special mask.
3724  if (NumElts == 4 && Is256BitVec)
3725    return false;
3726
3727  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3728  // independently on 128-bit lanes.
3729  unsigned NumLanes = VT.getSizeInBits()/128;
3730  unsigned NumLaneElts = NumElts/NumLanes;
3731
3732  for (unsigned l = 0; l != NumLanes; ++l) {
3733    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3734         i != (l+1)*NumLaneElts;
3735         i += 2, ++j) {
3736      int BitI  = Mask[i];
3737      int BitI1 = Mask[i+1];
3738
3739      if (!isUndefOrEqual(BitI, j))
3740        return false;
3741      if (!isUndefOrEqual(BitI1, j))
3742        return false;
3743    }
3744  }
3745
3746  return true;
3747}
3748
3749/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3750/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3751/// <2, 2, 3, 3>
3752static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3753  unsigned NumElts = VT.getVectorNumElements();
3754
3755  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3756         "Unsupported vector type for unpckh");
3757
3758  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3759      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3760    return false;
3761
3762  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3763  // independently on 128-bit lanes.
3764  unsigned NumLanes = VT.getSizeInBits()/128;
3765  unsigned NumLaneElts = NumElts/NumLanes;
3766
3767  for (unsigned l = 0; l != NumLanes; ++l) {
3768    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3769         i != (l+1)*NumLaneElts; i += 2, ++j) {
3770      int BitI  = Mask[i];
3771      int BitI1 = Mask[i+1];
3772      if (!isUndefOrEqual(BitI, j))
3773        return false;
3774      if (!isUndefOrEqual(BitI1, j))
3775        return false;
3776    }
3777  }
3778  return true;
3779}
3780
3781/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3782/// specifies a shuffle of elements that is suitable for input to MOVSS,
3783/// MOVSD, and MOVD, i.e. setting the lowest element.
3784static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3785  if (VT.getVectorElementType().getSizeInBits() < 32)
3786    return false;
3787  if (!VT.is128BitVector())
3788    return false;
3789
3790  unsigned NumElts = VT.getVectorNumElements();
3791
3792  if (!isUndefOrEqual(Mask[0], NumElts))
3793    return false;
3794
3795  for (unsigned i = 1; i != NumElts; ++i)
3796    if (!isUndefOrEqual(Mask[i], i))
3797      return false;
3798
3799  return true;
3800}
3801
3802/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3803/// as permutations between 128-bit chunks or halves. As an example: this
3804/// shuffle bellow:
3805///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3806/// The first half comes from the second half of V1 and the second half from the
3807/// the second half of V2.
3808static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3809  if (!HasFp256 || !VT.is256BitVector())
3810    return false;
3811
3812  // The shuffle result is divided into half A and half B. In total the two
3813  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3814  // B must come from C, D, E or F.
3815  unsigned HalfSize = VT.getVectorNumElements()/2;
3816  bool MatchA = false, MatchB = false;
3817
3818  // Check if A comes from one of C, D, E, F.
3819  for (unsigned Half = 0; Half != 4; ++Half) {
3820    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3821      MatchA = true;
3822      break;
3823    }
3824  }
3825
3826  // Check if B comes from one of C, D, E, F.
3827  for (unsigned Half = 0; Half != 4; ++Half) {
3828    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3829      MatchB = true;
3830      break;
3831    }
3832  }
3833
3834  return MatchA && MatchB;
3835}
3836
3837/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3838/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3839static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3840  MVT VT = SVOp->getValueType(0).getSimpleVT();
3841
3842  unsigned HalfSize = VT.getVectorNumElements()/2;
3843
3844  unsigned FstHalf = 0, SndHalf = 0;
3845  for (unsigned i = 0; i < HalfSize; ++i) {
3846    if (SVOp->getMaskElt(i) > 0) {
3847      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3848      break;
3849    }
3850  }
3851  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3852    if (SVOp->getMaskElt(i) > 0) {
3853      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3854      break;
3855    }
3856  }
3857
3858  return (FstHalf | (SndHalf << 4));
3859}
3860
3861/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3862/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3863/// Note that VPERMIL mask matching is different depending whether theunderlying
3864/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3865/// to the same elements of the low, but to the higher half of the source.
3866/// In VPERMILPD the two lanes could be shuffled independently of each other
3867/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3868static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3869  if (!HasFp256)
3870    return false;
3871
3872  unsigned NumElts = VT.getVectorNumElements();
3873  // Only match 256-bit with 32/64-bit types
3874  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3875    return false;
3876
3877  unsigned NumLanes = VT.getSizeInBits()/128;
3878  unsigned LaneSize = NumElts/NumLanes;
3879  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3880    for (unsigned i = 0; i != LaneSize; ++i) {
3881      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3882        return false;
3883      if (NumElts != 8 || l == 0)
3884        continue;
3885      // VPERMILPS handling
3886      if (Mask[i] < 0)
3887        continue;
3888      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3889        return false;
3890    }
3891  }
3892
3893  return true;
3894}
3895
3896/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3897/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3898/// element of vector 2 and the other elements to come from vector 1 in order.
3899static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3900                               bool V2IsSplat = false, bool V2IsUndef = false) {
3901  if (!VT.is128BitVector())
3902    return false;
3903
3904  unsigned NumOps = VT.getVectorNumElements();
3905  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3906    return false;
3907
3908  if (!isUndefOrEqual(Mask[0], 0))
3909    return false;
3910
3911  for (unsigned i = 1; i != NumOps; ++i)
3912    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3913          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3914          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3915      return false;
3916
3917  return true;
3918}
3919
3920/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3921/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3922/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3923static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3924                           const X86Subtarget *Subtarget) {
3925  if (!Subtarget->hasSSE3())
3926    return false;
3927
3928  unsigned NumElems = VT.getVectorNumElements();
3929
3930  if ((VT.is128BitVector() && NumElems != 4) ||
3931      (VT.is256BitVector() && NumElems != 8))
3932    return false;
3933
3934  // "i+1" is the value the indexed mask element must have
3935  for (unsigned i = 0; i != NumElems; i += 2)
3936    if (!isUndefOrEqual(Mask[i], i+1) ||
3937        !isUndefOrEqual(Mask[i+1], i+1))
3938      return false;
3939
3940  return true;
3941}
3942
3943/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3944/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3945/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3946static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3947                           const X86Subtarget *Subtarget) {
3948  if (!Subtarget->hasSSE3())
3949    return false;
3950
3951  unsigned NumElems = VT.getVectorNumElements();
3952
3953  if ((VT.is128BitVector() && NumElems != 4) ||
3954      (VT.is256BitVector() && NumElems != 8))
3955    return false;
3956
3957  // "i" is the value the indexed mask element must have
3958  for (unsigned i = 0; i != NumElems; i += 2)
3959    if (!isUndefOrEqual(Mask[i], i) ||
3960        !isUndefOrEqual(Mask[i+1], i))
3961      return false;
3962
3963  return true;
3964}
3965
3966/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3967/// specifies a shuffle of elements that is suitable for input to 256-bit
3968/// version of MOVDDUP.
3969static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3970  if (!HasFp256 || !VT.is256BitVector())
3971    return false;
3972
3973  unsigned NumElts = VT.getVectorNumElements();
3974  if (NumElts != 4)
3975    return false;
3976
3977  for (unsigned i = 0; i != NumElts/2; ++i)
3978    if (!isUndefOrEqual(Mask[i], 0))
3979      return false;
3980  for (unsigned i = NumElts/2; i != NumElts; ++i)
3981    if (!isUndefOrEqual(Mask[i], NumElts/2))
3982      return false;
3983  return true;
3984}
3985
3986/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3987/// specifies a shuffle of elements that is suitable for input to 128-bit
3988/// version of MOVDDUP.
3989static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3990  if (!VT.is128BitVector())
3991    return false;
3992
3993  unsigned e = VT.getVectorNumElements() / 2;
3994  for (unsigned i = 0; i != e; ++i)
3995    if (!isUndefOrEqual(Mask[i], i))
3996      return false;
3997  for (unsigned i = 0; i != e; ++i)
3998    if (!isUndefOrEqual(Mask[e+i], i))
3999      return false;
4000  return true;
4001}
4002
4003/// isVEXTRACTF128Index - Return true if the specified
4004/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4005/// suitable for input to VEXTRACTF128.
4006bool X86::isVEXTRACTF128Index(SDNode *N) {
4007  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4008    return false;
4009
4010  // The index should be aligned on a 128-bit boundary.
4011  uint64_t Index =
4012    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4013
4014  MVT VT = N->getValueType(0).getSimpleVT();
4015  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4016  bool Result = (Index * ElSize) % 128 == 0;
4017
4018  return Result;
4019}
4020
4021/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4022/// operand specifies a subvector insert that is suitable for input to
4023/// VINSERTF128.
4024bool X86::isVINSERTF128Index(SDNode *N) {
4025  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4026    return false;
4027
4028  // The index should be aligned on a 128-bit boundary.
4029  uint64_t Index =
4030    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4031
4032  MVT VT = N->getValueType(0).getSimpleVT();
4033  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4034  bool Result = (Index * ElSize) % 128 == 0;
4035
4036  return Result;
4037}
4038
4039/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4040/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4041/// Handles 128-bit and 256-bit.
4042static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4043  MVT VT = N->getValueType(0).getSimpleVT();
4044
4045  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4046         "Unsupported vector type for PSHUF/SHUFP");
4047
4048  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4049  // independently on 128-bit lanes.
4050  unsigned NumElts = VT.getVectorNumElements();
4051  unsigned NumLanes = VT.getSizeInBits()/128;
4052  unsigned NumLaneElts = NumElts/NumLanes;
4053
4054  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4055         "Only supports 2 or 4 elements per lane");
4056
4057  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4058  unsigned Mask = 0;
4059  for (unsigned i = 0; i != NumElts; ++i) {
4060    int Elt = N->getMaskElt(i);
4061    if (Elt < 0) continue;
4062    Elt &= NumLaneElts - 1;
4063    unsigned ShAmt = (i << Shift) % 8;
4064    Mask |= Elt << ShAmt;
4065  }
4066
4067  return Mask;
4068}
4069
4070/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4071/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4072static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4073  MVT VT = N->getValueType(0).getSimpleVT();
4074
4075  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4076         "Unsupported vector type for PSHUFHW");
4077
4078  unsigned NumElts = VT.getVectorNumElements();
4079
4080  unsigned Mask = 0;
4081  for (unsigned l = 0; l != NumElts; l += 8) {
4082    // 8 nodes per lane, but we only care about the last 4.
4083    for (unsigned i = 0; i < 4; ++i) {
4084      int Elt = N->getMaskElt(l+i+4);
4085      if (Elt < 0) continue;
4086      Elt &= 0x3; // only 2-bits.
4087      Mask |= Elt << (i * 2);
4088    }
4089  }
4090
4091  return Mask;
4092}
4093
4094/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4095/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4096static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4097  MVT VT = N->getValueType(0).getSimpleVT();
4098
4099  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4100         "Unsupported vector type for PSHUFHW");
4101
4102  unsigned NumElts = VT.getVectorNumElements();
4103
4104  unsigned Mask = 0;
4105  for (unsigned l = 0; l != NumElts; l += 8) {
4106    // 8 nodes per lane, but we only care about the first 4.
4107    for (unsigned i = 0; i < 4; ++i) {
4108      int Elt = N->getMaskElt(l+i);
4109      if (Elt < 0) continue;
4110      Elt &= 0x3; // only 2-bits
4111      Mask |= Elt << (i * 2);
4112    }
4113  }
4114
4115  return Mask;
4116}
4117
4118/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4119/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4120static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4121  MVT VT = SVOp->getValueType(0).getSimpleVT();
4122  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4123
4124  unsigned NumElts = VT.getVectorNumElements();
4125  unsigned NumLanes = VT.getSizeInBits()/128;
4126  unsigned NumLaneElts = NumElts/NumLanes;
4127
4128  int Val = 0;
4129  unsigned i;
4130  for (i = 0; i != NumElts; ++i) {
4131    Val = SVOp->getMaskElt(i);
4132    if (Val >= 0)
4133      break;
4134  }
4135  if (Val >= (int)NumElts)
4136    Val -= NumElts - NumLaneElts;
4137
4138  assert(Val - i > 0 && "PALIGNR imm should be positive");
4139  return (Val - i) * EltSize;
4140}
4141
4142/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4143/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4144/// instructions.
4145unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4146  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4147    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4148
4149  uint64_t Index =
4150    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4151
4152  MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
4153  MVT ElVT = VecVT.getVectorElementType();
4154
4155  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4156  return Index / NumElemsPerChunk;
4157}
4158
4159/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4160/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4161/// instructions.
4162unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4163  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4164    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4165
4166  uint64_t Index =
4167    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4168
4169  MVT VecVT = N->getValueType(0).getSimpleVT();
4170  MVT ElVT = VecVT.getVectorElementType();
4171
4172  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4173  return Index / NumElemsPerChunk;
4174}
4175
4176/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4177/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4178/// Handles 256-bit.
4179static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4180  MVT VT = N->getValueType(0).getSimpleVT();
4181
4182  unsigned NumElts = VT.getVectorNumElements();
4183
4184  assert((VT.is256BitVector() && NumElts == 4) &&
4185         "Unsupported vector type for VPERMQ/VPERMPD");
4186
4187  unsigned Mask = 0;
4188  for (unsigned i = 0; i != NumElts; ++i) {
4189    int Elt = N->getMaskElt(i);
4190    if (Elt < 0)
4191      continue;
4192    Mask |= Elt << (i*2);
4193  }
4194
4195  return Mask;
4196}
4197/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4198/// constant +0.0.
4199bool X86::isZeroNode(SDValue Elt) {
4200  return ((isa<ConstantSDNode>(Elt) &&
4201           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4202          (isa<ConstantFPSDNode>(Elt) &&
4203           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4204}
4205
4206/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4207/// their permute mask.
4208static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4209                                    SelectionDAG &DAG) {
4210  MVT VT = SVOp->getValueType(0).getSimpleVT();
4211  unsigned NumElems = VT.getVectorNumElements();
4212  SmallVector<int, 8> MaskVec;
4213
4214  for (unsigned i = 0; i != NumElems; ++i) {
4215    int Idx = SVOp->getMaskElt(i);
4216    if (Idx >= 0) {
4217      if (Idx < (int)NumElems)
4218        Idx += NumElems;
4219      else
4220        Idx -= NumElems;
4221    }
4222    MaskVec.push_back(Idx);
4223  }
4224  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4225                              SVOp->getOperand(0), &MaskVec[0]);
4226}
4227
4228/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4229/// match movhlps. The lower half elements should come from upper half of
4230/// V1 (and in order), and the upper half elements should come from the upper
4231/// half of V2 (and in order).
4232static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4233  if (!VT.is128BitVector())
4234    return false;
4235  if (VT.getVectorNumElements() != 4)
4236    return false;
4237  for (unsigned i = 0, e = 2; i != e; ++i)
4238    if (!isUndefOrEqual(Mask[i], i+2))
4239      return false;
4240  for (unsigned i = 2; i != 4; ++i)
4241    if (!isUndefOrEqual(Mask[i], i+4))
4242      return false;
4243  return true;
4244}
4245
4246/// isScalarLoadToVector - Returns true if the node is a scalar load that
4247/// is promoted to a vector. It also returns the LoadSDNode by reference if
4248/// required.
4249static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4250  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4251    return false;
4252  N = N->getOperand(0).getNode();
4253  if (!ISD::isNON_EXTLoad(N))
4254    return false;
4255  if (LD)
4256    *LD = cast<LoadSDNode>(N);
4257  return true;
4258}
4259
4260// Test whether the given value is a vector value which will be legalized
4261// into a load.
4262static bool WillBeConstantPoolLoad(SDNode *N) {
4263  if (N->getOpcode() != ISD::BUILD_VECTOR)
4264    return false;
4265
4266  // Check for any non-constant elements.
4267  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4268    switch (N->getOperand(i).getNode()->getOpcode()) {
4269    case ISD::UNDEF:
4270    case ISD::ConstantFP:
4271    case ISD::Constant:
4272      break;
4273    default:
4274      return false;
4275    }
4276
4277  // Vectors of all-zeros and all-ones are materialized with special
4278  // instructions rather than being loaded.
4279  return !ISD::isBuildVectorAllZeros(N) &&
4280         !ISD::isBuildVectorAllOnes(N);
4281}
4282
4283/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4284/// match movlp{s|d}. The lower half elements should come from lower half of
4285/// V1 (and in order), and the upper half elements should come from the upper
4286/// half of V2 (and in order). And since V1 will become the source of the
4287/// MOVLP, it must be either a vector load or a scalar load to vector.
4288static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4289                               ArrayRef<int> Mask, EVT VT) {
4290  if (!VT.is128BitVector())
4291    return false;
4292
4293  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4294    return false;
4295  // Is V2 is a vector load, don't do this transformation. We will try to use
4296  // load folding shufps op.
4297  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4298    return false;
4299
4300  unsigned NumElems = VT.getVectorNumElements();
4301
4302  if (NumElems != 2 && NumElems != 4)
4303    return false;
4304  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4305    if (!isUndefOrEqual(Mask[i], i))
4306      return false;
4307  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4308    if (!isUndefOrEqual(Mask[i], i+NumElems))
4309      return false;
4310  return true;
4311}
4312
4313/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4314/// all the same.
4315static bool isSplatVector(SDNode *N) {
4316  if (N->getOpcode() != ISD::BUILD_VECTOR)
4317    return false;
4318
4319  SDValue SplatValue = N->getOperand(0);
4320  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4321    if (N->getOperand(i) != SplatValue)
4322      return false;
4323  return true;
4324}
4325
4326/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4327/// to an zero vector.
4328/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4329static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4330  SDValue V1 = N->getOperand(0);
4331  SDValue V2 = N->getOperand(1);
4332  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4333  for (unsigned i = 0; i != NumElems; ++i) {
4334    int Idx = N->getMaskElt(i);
4335    if (Idx >= (int)NumElems) {
4336      unsigned Opc = V2.getOpcode();
4337      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4338        continue;
4339      if (Opc != ISD::BUILD_VECTOR ||
4340          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4341        return false;
4342    } else if (Idx >= 0) {
4343      unsigned Opc = V1.getOpcode();
4344      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4345        continue;
4346      if (Opc != ISD::BUILD_VECTOR ||
4347          !X86::isZeroNode(V1.getOperand(Idx)))
4348        return false;
4349    }
4350  }
4351  return true;
4352}
4353
4354/// getZeroVector - Returns a vector of specified type with all zero elements.
4355///
4356static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4357                             SelectionDAG &DAG, DebugLoc dl) {
4358  assert(VT.isVector() && "Expected a vector type");
4359
4360  // Always build SSE zero vectors as <4 x i32> bitcasted
4361  // to their dest type. This ensures they get CSE'd.
4362  SDValue Vec;
4363  if (VT.is128BitVector()) {  // SSE
4364    if (Subtarget->hasSSE2()) {  // SSE2
4365      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4366      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4367    } else { // SSE1
4368      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4369      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4370    }
4371  } else if (VT.is256BitVector()) { // AVX
4372    if (Subtarget->hasInt256()) { // AVX2
4373      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4374      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4375      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4376    } else {
4377      // 256-bit logic and arithmetic instructions in AVX are all
4378      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4379      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4380      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4381      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4382    }
4383  } else
4384    llvm_unreachable("Unexpected vector type");
4385
4386  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4387}
4388
4389/// getOnesVector - Returns a vector of specified type with all bits set.
4390/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4391/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4392/// Then bitcast to their original type, ensuring they get CSE'd.
4393static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4394                             DebugLoc dl) {
4395  assert(VT.isVector() && "Expected a vector type");
4396
4397  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4398  SDValue Vec;
4399  if (VT.is256BitVector()) {
4400    if (HasInt256) { // AVX2
4401      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4402      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4403    } else { // AVX
4404      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4405      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4406    }
4407  } else if (VT.is128BitVector()) {
4408    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4409  } else
4410    llvm_unreachable("Unexpected vector type");
4411
4412  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4413}
4414
4415/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4416/// that point to V2 points to its first element.
4417static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4418  for (unsigned i = 0; i != NumElems; ++i) {
4419    if (Mask[i] > (int)NumElems) {
4420      Mask[i] = NumElems;
4421    }
4422  }
4423}
4424
4425/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4426/// operation of specified width.
4427static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4428                       SDValue V2) {
4429  unsigned NumElems = VT.getVectorNumElements();
4430  SmallVector<int, 8> Mask;
4431  Mask.push_back(NumElems);
4432  for (unsigned i = 1; i != NumElems; ++i)
4433    Mask.push_back(i);
4434  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4435}
4436
4437/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4438static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4439                          SDValue V2) {
4440  unsigned NumElems = VT.getVectorNumElements();
4441  SmallVector<int, 8> Mask;
4442  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4443    Mask.push_back(i);
4444    Mask.push_back(i + NumElems);
4445  }
4446  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4447}
4448
4449/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4450static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4451                          SDValue V2) {
4452  unsigned NumElems = VT.getVectorNumElements();
4453  SmallVector<int, 8> Mask;
4454  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4455    Mask.push_back(i + Half);
4456    Mask.push_back(i + NumElems + Half);
4457  }
4458  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4459}
4460
4461// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4462// a generic shuffle instruction because the target has no such instructions.
4463// Generate shuffles which repeat i16 and i8 several times until they can be
4464// represented by v4f32 and then be manipulated by target suported shuffles.
4465static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4466  EVT VT = V.getValueType();
4467  int NumElems = VT.getVectorNumElements();
4468  DebugLoc dl = V.getDebugLoc();
4469
4470  while (NumElems > 4) {
4471    if (EltNo < NumElems/2) {
4472      V = getUnpackl(DAG, dl, VT, V, V);
4473    } else {
4474      V = getUnpackh(DAG, dl, VT, V, V);
4475      EltNo -= NumElems/2;
4476    }
4477    NumElems >>= 1;
4478  }
4479  return V;
4480}
4481
4482/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4483static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4484  EVT VT = V.getValueType();
4485  DebugLoc dl = V.getDebugLoc();
4486
4487  if (VT.is128BitVector()) {
4488    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4489    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4490    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4491                             &SplatMask[0]);
4492  } else if (VT.is256BitVector()) {
4493    // To use VPERMILPS to splat scalars, the second half of indicies must
4494    // refer to the higher part, which is a duplication of the lower one,
4495    // because VPERMILPS can only handle in-lane permutations.
4496    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4497                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4498
4499    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4500    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4501                             &SplatMask[0]);
4502  } else
4503    llvm_unreachable("Vector size not supported");
4504
4505  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4506}
4507
4508/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4509static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4510  EVT SrcVT = SV->getValueType(0);
4511  SDValue V1 = SV->getOperand(0);
4512  DebugLoc dl = SV->getDebugLoc();
4513
4514  int EltNo = SV->getSplatIndex();
4515  int NumElems = SrcVT.getVectorNumElements();
4516  bool Is256BitVec = SrcVT.is256BitVector();
4517
4518  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4519         "Unknown how to promote splat for type");
4520
4521  // Extract the 128-bit part containing the splat element and update
4522  // the splat element index when it refers to the higher register.
4523  if (Is256BitVec) {
4524    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4525    if (EltNo >= NumElems/2)
4526      EltNo -= NumElems/2;
4527  }
4528
4529  // All i16 and i8 vector types can't be used directly by a generic shuffle
4530  // instruction because the target has no such instruction. Generate shuffles
4531  // which repeat i16 and i8 several times until they fit in i32, and then can
4532  // be manipulated by target suported shuffles.
4533  EVT EltVT = SrcVT.getVectorElementType();
4534  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4535    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4536
4537  // Recreate the 256-bit vector and place the same 128-bit vector
4538  // into the low and high part. This is necessary because we want
4539  // to use VPERM* to shuffle the vectors
4540  if (Is256BitVec) {
4541    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4542  }
4543
4544  return getLegalSplat(DAG, V1, EltNo);
4545}
4546
4547/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4548/// vector of zero or undef vector.  This produces a shuffle where the low
4549/// element of V2 is swizzled into the zero/undef vector, landing at element
4550/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4551static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4552                                           bool IsZero,
4553                                           const X86Subtarget *Subtarget,
4554                                           SelectionDAG &DAG) {
4555  EVT VT = V2.getValueType();
4556  SDValue V1 = IsZero
4557    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4558  unsigned NumElems = VT.getVectorNumElements();
4559  SmallVector<int, 16> MaskVec;
4560  for (unsigned i = 0; i != NumElems; ++i)
4561    // If this is the insertion idx, put the low elt of V2 here.
4562    MaskVec.push_back(i == Idx ? NumElems : i);
4563  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4564}
4565
4566/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4567/// target specific opcode. Returns true if the Mask could be calculated.
4568/// Sets IsUnary to true if only uses one source.
4569static bool getTargetShuffleMask(SDNode *N, MVT VT,
4570                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4571  unsigned NumElems = VT.getVectorNumElements();
4572  SDValue ImmN;
4573
4574  IsUnary = false;
4575  switch(N->getOpcode()) {
4576  case X86ISD::SHUFP:
4577    ImmN = N->getOperand(N->getNumOperands()-1);
4578    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4579    break;
4580  case X86ISD::UNPCKH:
4581    DecodeUNPCKHMask(VT, Mask);
4582    break;
4583  case X86ISD::UNPCKL:
4584    DecodeUNPCKLMask(VT, Mask);
4585    break;
4586  case X86ISD::MOVHLPS:
4587    DecodeMOVHLPSMask(NumElems, Mask);
4588    break;
4589  case X86ISD::MOVLHPS:
4590    DecodeMOVLHPSMask(NumElems, Mask);
4591    break;
4592  case X86ISD::PSHUFD:
4593  case X86ISD::VPERMILP:
4594    ImmN = N->getOperand(N->getNumOperands()-1);
4595    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4596    IsUnary = true;
4597    break;
4598  case X86ISD::PSHUFHW:
4599    ImmN = N->getOperand(N->getNumOperands()-1);
4600    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4601    IsUnary = true;
4602    break;
4603  case X86ISD::PSHUFLW:
4604    ImmN = N->getOperand(N->getNumOperands()-1);
4605    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4606    IsUnary = true;
4607    break;
4608  case X86ISD::VPERMI:
4609    ImmN = N->getOperand(N->getNumOperands()-1);
4610    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4611    IsUnary = true;
4612    break;
4613  case X86ISD::MOVSS:
4614  case X86ISD::MOVSD: {
4615    // The index 0 always comes from the first element of the second source,
4616    // this is why MOVSS and MOVSD are used in the first place. The other
4617    // elements come from the other positions of the first source vector
4618    Mask.push_back(NumElems);
4619    for (unsigned i = 1; i != NumElems; ++i) {
4620      Mask.push_back(i);
4621    }
4622    break;
4623  }
4624  case X86ISD::VPERM2X128:
4625    ImmN = N->getOperand(N->getNumOperands()-1);
4626    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4627    if (Mask.empty()) return false;
4628    break;
4629  case X86ISD::MOVDDUP:
4630  case X86ISD::MOVLHPD:
4631  case X86ISD::MOVLPD:
4632  case X86ISD::MOVLPS:
4633  case X86ISD::MOVSHDUP:
4634  case X86ISD::MOVSLDUP:
4635  case X86ISD::PALIGN:
4636    // Not yet implemented
4637    return false;
4638  default: llvm_unreachable("unknown target shuffle node");
4639  }
4640
4641  return true;
4642}
4643
4644/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4645/// element of the result of the vector shuffle.
4646static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4647                                   unsigned Depth) {
4648  if (Depth == 6)
4649    return SDValue();  // Limit search depth.
4650
4651  SDValue V = SDValue(N, 0);
4652  EVT VT = V.getValueType();
4653  unsigned Opcode = V.getOpcode();
4654
4655  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4656  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4657    int Elt = SV->getMaskElt(Index);
4658
4659    if (Elt < 0)
4660      return DAG.getUNDEF(VT.getVectorElementType());
4661
4662    unsigned NumElems = VT.getVectorNumElements();
4663    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4664                                         : SV->getOperand(1);
4665    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4666  }
4667
4668  // Recurse into target specific vector shuffles to find scalars.
4669  if (isTargetShuffle(Opcode)) {
4670    MVT ShufVT = V.getValueType().getSimpleVT();
4671    unsigned NumElems = ShufVT.getVectorNumElements();
4672    SmallVector<int, 16> ShuffleMask;
4673    bool IsUnary;
4674
4675    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4676      return SDValue();
4677
4678    int Elt = ShuffleMask[Index];
4679    if (Elt < 0)
4680      return DAG.getUNDEF(ShufVT.getVectorElementType());
4681
4682    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4683                                         : N->getOperand(1);
4684    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4685                               Depth+1);
4686  }
4687
4688  // Actual nodes that may contain scalar elements
4689  if (Opcode == ISD::BITCAST) {
4690    V = V.getOperand(0);
4691    EVT SrcVT = V.getValueType();
4692    unsigned NumElems = VT.getVectorNumElements();
4693
4694    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4695      return SDValue();
4696  }
4697
4698  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4699    return (Index == 0) ? V.getOperand(0)
4700                        : DAG.getUNDEF(VT.getVectorElementType());
4701
4702  if (V.getOpcode() == ISD::BUILD_VECTOR)
4703    return V.getOperand(Index);
4704
4705  return SDValue();
4706}
4707
4708/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4709/// shuffle operation which come from a consecutively from a zero. The
4710/// search can start in two different directions, from left or right.
4711static
4712unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4713                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4714  unsigned i;
4715  for (i = 0; i != NumElems; ++i) {
4716    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4717    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4718    if (!(Elt.getNode() &&
4719         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4720      break;
4721  }
4722
4723  return i;
4724}
4725
4726/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4727/// correspond consecutively to elements from one of the vector operands,
4728/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4729static
4730bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4731                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4732                              unsigned NumElems, unsigned &OpNum) {
4733  bool SeenV1 = false;
4734  bool SeenV2 = false;
4735
4736  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4737    int Idx = SVOp->getMaskElt(i);
4738    // Ignore undef indicies
4739    if (Idx < 0)
4740      continue;
4741
4742    if (Idx < (int)NumElems)
4743      SeenV1 = true;
4744    else
4745      SeenV2 = true;
4746
4747    // Only accept consecutive elements from the same vector
4748    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4749      return false;
4750  }
4751
4752  OpNum = SeenV1 ? 0 : 1;
4753  return true;
4754}
4755
4756/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4757/// logical left shift of a vector.
4758static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4759                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4760  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4761  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4762              false /* check zeros from right */, DAG);
4763  unsigned OpSrc;
4764
4765  if (!NumZeros)
4766    return false;
4767
4768  // Considering the elements in the mask that are not consecutive zeros,
4769  // check if they consecutively come from only one of the source vectors.
4770  //
4771  //               V1 = {X, A, B, C}     0
4772  //                         \  \  \    /
4773  //   vector_shuffle V1, V2 <1, 2, 3, X>
4774  //
4775  if (!isShuffleMaskConsecutive(SVOp,
4776            0,                   // Mask Start Index
4777            NumElems-NumZeros,   // Mask End Index(exclusive)
4778            NumZeros,            // Where to start looking in the src vector
4779            NumElems,            // Number of elements in vector
4780            OpSrc))              // Which source operand ?
4781    return false;
4782
4783  isLeft = false;
4784  ShAmt = NumZeros;
4785  ShVal = SVOp->getOperand(OpSrc);
4786  return true;
4787}
4788
4789/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4790/// logical left shift of a vector.
4791static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4792                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4793  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4794  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4795              true /* check zeros from left */, DAG);
4796  unsigned OpSrc;
4797
4798  if (!NumZeros)
4799    return false;
4800
4801  // Considering the elements in the mask that are not consecutive zeros,
4802  // check if they consecutively come from only one of the source vectors.
4803  //
4804  //                           0    { A, B, X, X } = V2
4805  //                          / \    /  /
4806  //   vector_shuffle V1, V2 <X, X, 4, 5>
4807  //
4808  if (!isShuffleMaskConsecutive(SVOp,
4809            NumZeros,     // Mask Start Index
4810            NumElems,     // Mask End Index(exclusive)
4811            0,            // Where to start looking in the src vector
4812            NumElems,     // Number of elements in vector
4813            OpSrc))       // Which source operand ?
4814    return false;
4815
4816  isLeft = true;
4817  ShAmt = NumZeros;
4818  ShVal = SVOp->getOperand(OpSrc);
4819  return true;
4820}
4821
4822/// isVectorShift - Returns true if the shuffle can be implemented as a
4823/// logical left or right shift of a vector.
4824static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4825                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4826  // Although the logic below support any bitwidth size, there are no
4827  // shift instructions which handle more than 128-bit vectors.
4828  if (!SVOp->getValueType(0).is128BitVector())
4829    return false;
4830
4831  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4832      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4833    return true;
4834
4835  return false;
4836}
4837
4838/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4839///
4840static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4841                                       unsigned NumNonZero, unsigned NumZero,
4842                                       SelectionDAG &DAG,
4843                                       const X86Subtarget* Subtarget,
4844                                       const TargetLowering &TLI) {
4845  if (NumNonZero > 8)
4846    return SDValue();
4847
4848  DebugLoc dl = Op.getDebugLoc();
4849  SDValue V(0, 0);
4850  bool First = true;
4851  for (unsigned i = 0; i < 16; ++i) {
4852    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4853    if (ThisIsNonZero && First) {
4854      if (NumZero)
4855        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4856      else
4857        V = DAG.getUNDEF(MVT::v8i16);
4858      First = false;
4859    }
4860
4861    if ((i & 1) != 0) {
4862      SDValue ThisElt(0, 0), LastElt(0, 0);
4863      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4864      if (LastIsNonZero) {
4865        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4866                              MVT::i16, Op.getOperand(i-1));
4867      }
4868      if (ThisIsNonZero) {
4869        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4870        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4871                              ThisElt, DAG.getConstant(8, MVT::i8));
4872        if (LastIsNonZero)
4873          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4874      } else
4875        ThisElt = LastElt;
4876
4877      if (ThisElt.getNode())
4878        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4879                        DAG.getIntPtrConstant(i/2));
4880    }
4881  }
4882
4883  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4884}
4885
4886/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4887///
4888static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4889                                     unsigned NumNonZero, unsigned NumZero,
4890                                     SelectionDAG &DAG,
4891                                     const X86Subtarget* Subtarget,
4892                                     const TargetLowering &TLI) {
4893  if (NumNonZero > 4)
4894    return SDValue();
4895
4896  DebugLoc dl = Op.getDebugLoc();
4897  SDValue V(0, 0);
4898  bool First = true;
4899  for (unsigned i = 0; i < 8; ++i) {
4900    bool isNonZero = (NonZeros & (1 << i)) != 0;
4901    if (isNonZero) {
4902      if (First) {
4903        if (NumZero)
4904          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4905        else
4906          V = DAG.getUNDEF(MVT::v8i16);
4907        First = false;
4908      }
4909      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4910                      MVT::v8i16, V, Op.getOperand(i),
4911                      DAG.getIntPtrConstant(i));
4912    }
4913  }
4914
4915  return V;
4916}
4917
4918/// getVShift - Return a vector logical shift node.
4919///
4920static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4921                         unsigned NumBits, SelectionDAG &DAG,
4922                         const TargetLowering &TLI, DebugLoc dl) {
4923  assert(VT.is128BitVector() && "Unknown type for VShift");
4924  EVT ShVT = MVT::v2i64;
4925  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4926  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4927  return DAG.getNode(ISD::BITCAST, dl, VT,
4928                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4929                             DAG.getConstant(NumBits,
4930                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4931}
4932
4933SDValue
4934X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4935                                          SelectionDAG &DAG) const {
4936
4937  // Check if the scalar load can be widened into a vector load. And if
4938  // the address is "base + cst" see if the cst can be "absorbed" into
4939  // the shuffle mask.
4940  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4941    SDValue Ptr = LD->getBasePtr();
4942    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4943      return SDValue();
4944    EVT PVT = LD->getValueType(0);
4945    if (PVT != MVT::i32 && PVT != MVT::f32)
4946      return SDValue();
4947
4948    int FI = -1;
4949    int64_t Offset = 0;
4950    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4951      FI = FINode->getIndex();
4952      Offset = 0;
4953    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4954               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4955      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4956      Offset = Ptr.getConstantOperandVal(1);
4957      Ptr = Ptr.getOperand(0);
4958    } else {
4959      return SDValue();
4960    }
4961
4962    // FIXME: 256-bit vector instructions don't require a strict alignment,
4963    // improve this code to support it better.
4964    unsigned RequiredAlign = VT.getSizeInBits()/8;
4965    SDValue Chain = LD->getChain();
4966    // Make sure the stack object alignment is at least 16 or 32.
4967    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4968    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4969      if (MFI->isFixedObjectIndex(FI)) {
4970        // Can't change the alignment. FIXME: It's possible to compute
4971        // the exact stack offset and reference FI + adjust offset instead.
4972        // If someone *really* cares about this. That's the way to implement it.
4973        return SDValue();
4974      } else {
4975        MFI->setObjectAlignment(FI, RequiredAlign);
4976      }
4977    }
4978
4979    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4980    // Ptr + (Offset & ~15).
4981    if (Offset < 0)
4982      return SDValue();
4983    if ((Offset % RequiredAlign) & 3)
4984      return SDValue();
4985    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4986    if (StartOffset)
4987      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4988                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4989
4990    int EltNo = (Offset - StartOffset) >> 2;
4991    unsigned NumElems = VT.getVectorNumElements();
4992
4993    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4994    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4995                             LD->getPointerInfo().getWithOffset(StartOffset),
4996                             false, false, false, 0);
4997
4998    SmallVector<int, 8> Mask;
4999    for (unsigned i = 0; i != NumElems; ++i)
5000      Mask.push_back(EltNo);
5001
5002    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5003  }
5004
5005  return SDValue();
5006}
5007
5008/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5009/// vector of type 'VT', see if the elements can be replaced by a single large
5010/// load which has the same value as a build_vector whose operands are 'elts'.
5011///
5012/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5013///
5014/// FIXME: we'd also like to handle the case where the last elements are zero
5015/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5016/// There's even a handy isZeroNode for that purpose.
5017static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5018                                        DebugLoc &DL, SelectionDAG &DAG) {
5019  EVT EltVT = VT.getVectorElementType();
5020  unsigned NumElems = Elts.size();
5021
5022  LoadSDNode *LDBase = NULL;
5023  unsigned LastLoadedElt = -1U;
5024
5025  // For each element in the initializer, see if we've found a load or an undef.
5026  // If we don't find an initial load element, or later load elements are
5027  // non-consecutive, bail out.
5028  for (unsigned i = 0; i < NumElems; ++i) {
5029    SDValue Elt = Elts[i];
5030
5031    if (!Elt.getNode() ||
5032        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5033      return SDValue();
5034    if (!LDBase) {
5035      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5036        return SDValue();
5037      LDBase = cast<LoadSDNode>(Elt.getNode());
5038      LastLoadedElt = i;
5039      continue;
5040    }
5041    if (Elt.getOpcode() == ISD::UNDEF)
5042      continue;
5043
5044    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5045    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5046      return SDValue();
5047    LastLoadedElt = i;
5048  }
5049
5050  // If we have found an entire vector of loads and undefs, then return a large
5051  // load of the entire vector width starting at the base pointer.  If we found
5052  // consecutive loads for the low half, generate a vzext_load node.
5053  if (LastLoadedElt == NumElems - 1) {
5054    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5055      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5056                         LDBase->getPointerInfo(),
5057                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5058                         LDBase->isInvariant(), 0);
5059    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5060                       LDBase->getPointerInfo(),
5061                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5062                       LDBase->isInvariant(), LDBase->getAlignment());
5063  }
5064  if (NumElems == 4 && LastLoadedElt == 1 &&
5065      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5066    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5067    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5068    SDValue ResNode =
5069        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5070                                LDBase->getPointerInfo(),
5071                                LDBase->getAlignment(),
5072                                false/*isVolatile*/, true/*ReadMem*/,
5073                                false/*WriteMem*/);
5074
5075    // Make sure the newly-created LOAD is in the same position as LDBase in
5076    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5077    // update uses of LDBase's output chain to use the TokenFactor.
5078    if (LDBase->hasAnyUseOfValue(1)) {
5079      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5080                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5081      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5082      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5083                             SDValue(ResNode.getNode(), 1));
5084    }
5085
5086    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5087  }
5088  return SDValue();
5089}
5090
5091/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5092/// to generate a splat value for the following cases:
5093/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5094/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5095/// a scalar load, or a constant.
5096/// The VBROADCAST node is returned when a pattern is found,
5097/// or SDValue() otherwise.
5098SDValue
5099X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5100  if (!Subtarget->hasFp256())
5101    return SDValue();
5102
5103  MVT VT = Op.getValueType().getSimpleVT();
5104  DebugLoc dl = Op.getDebugLoc();
5105
5106  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5107         "Unsupported vector type for broadcast.");
5108
5109  SDValue Ld;
5110  bool ConstSplatVal;
5111
5112  switch (Op.getOpcode()) {
5113    default:
5114      // Unknown pattern found.
5115      return SDValue();
5116
5117    case ISD::BUILD_VECTOR: {
5118      // The BUILD_VECTOR node must be a splat.
5119      if (!isSplatVector(Op.getNode()))
5120        return SDValue();
5121
5122      Ld = Op.getOperand(0);
5123      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5124                     Ld.getOpcode() == ISD::ConstantFP);
5125
5126      // The suspected load node has several users. Make sure that all
5127      // of its users are from the BUILD_VECTOR node.
5128      // Constants may have multiple users.
5129      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5130        return SDValue();
5131      break;
5132    }
5133
5134    case ISD::VECTOR_SHUFFLE: {
5135      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5136
5137      // Shuffles must have a splat mask where the first element is
5138      // broadcasted.
5139      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5140        return SDValue();
5141
5142      SDValue Sc = Op.getOperand(0);
5143      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5144          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5145
5146        if (!Subtarget->hasInt256())
5147          return SDValue();
5148
5149        // Use the register form of the broadcast instruction available on AVX2.
5150        if (VT.is256BitVector())
5151          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5152        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5153      }
5154
5155      Ld = Sc.getOperand(0);
5156      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5157                       Ld.getOpcode() == ISD::ConstantFP);
5158
5159      // The scalar_to_vector node and the suspected
5160      // load node must have exactly one user.
5161      // Constants may have multiple users.
5162      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5163        return SDValue();
5164      break;
5165    }
5166  }
5167
5168  bool Is256 = VT.is256BitVector();
5169
5170  // Handle the broadcasting a single constant scalar from the constant pool
5171  // into a vector. On Sandybridge it is still better to load a constant vector
5172  // from the constant pool and not to broadcast it from a scalar.
5173  if (ConstSplatVal && Subtarget->hasInt256()) {
5174    EVT CVT = Ld.getValueType();
5175    assert(!CVT.isVector() && "Must not broadcast a vector type");
5176    unsigned ScalarSize = CVT.getSizeInBits();
5177
5178    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5179      const Constant *C = 0;
5180      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5181        C = CI->getConstantIntValue();
5182      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5183        C = CF->getConstantFPValue();
5184
5185      assert(C && "Invalid constant type");
5186
5187      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5188      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5189      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5190                       MachinePointerInfo::getConstantPool(),
5191                       false, false, false, Alignment);
5192
5193      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5194    }
5195  }
5196
5197  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5198  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5199
5200  // Handle AVX2 in-register broadcasts.
5201  if (!IsLoad && Subtarget->hasInt256() &&
5202      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5203    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5204
5205  // The scalar source must be a normal load.
5206  if (!IsLoad)
5207    return SDValue();
5208
5209  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5210    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5211
5212  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5213  // double since there is no vbroadcastsd xmm
5214  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5215    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5216      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5217  }
5218
5219  // Unsupported broadcast.
5220  return SDValue();
5221}
5222
5223SDValue
5224X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5225  EVT VT = Op.getValueType();
5226
5227  // Skip if insert_vec_elt is not supported.
5228  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5229    return SDValue();
5230
5231  DebugLoc DL = Op.getDebugLoc();
5232  unsigned NumElems = Op.getNumOperands();
5233
5234  SDValue VecIn1;
5235  SDValue VecIn2;
5236  SmallVector<unsigned, 4> InsertIndices;
5237  SmallVector<int, 8> Mask(NumElems, -1);
5238
5239  for (unsigned i = 0; i != NumElems; ++i) {
5240    unsigned Opc = Op.getOperand(i).getOpcode();
5241
5242    if (Opc == ISD::UNDEF)
5243      continue;
5244
5245    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5246      // Quit if more than 1 elements need inserting.
5247      if (InsertIndices.size() > 1)
5248        return SDValue();
5249
5250      InsertIndices.push_back(i);
5251      continue;
5252    }
5253
5254    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5255    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5256
5257    // Quit if extracted from vector of different type.
5258    if (ExtractedFromVec.getValueType() != VT)
5259      return SDValue();
5260
5261    // Quit if non-constant index.
5262    if (!isa<ConstantSDNode>(ExtIdx))
5263      return SDValue();
5264
5265    if (VecIn1.getNode() == 0)
5266      VecIn1 = ExtractedFromVec;
5267    else if (VecIn1 != ExtractedFromVec) {
5268      if (VecIn2.getNode() == 0)
5269        VecIn2 = ExtractedFromVec;
5270      else if (VecIn2 != ExtractedFromVec)
5271        // Quit if more than 2 vectors to shuffle
5272        return SDValue();
5273    }
5274
5275    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5276
5277    if (ExtractedFromVec == VecIn1)
5278      Mask[i] = Idx;
5279    else if (ExtractedFromVec == VecIn2)
5280      Mask[i] = Idx + NumElems;
5281  }
5282
5283  if (VecIn1.getNode() == 0)
5284    return SDValue();
5285
5286  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5287  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5288  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5289    unsigned Idx = InsertIndices[i];
5290    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5291                     DAG.getIntPtrConstant(Idx));
5292  }
5293
5294  return NV;
5295}
5296
5297SDValue
5298X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5299  DebugLoc dl = Op.getDebugLoc();
5300
5301  MVT VT = Op.getValueType().getSimpleVT();
5302  MVT ExtVT = VT.getVectorElementType();
5303  unsigned NumElems = Op.getNumOperands();
5304
5305  // Vectors containing all zeros can be matched by pxor and xorps later
5306  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5307    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5308    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5309    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5310      return Op;
5311
5312    return getZeroVector(VT, Subtarget, DAG, dl);
5313  }
5314
5315  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5316  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5317  // vpcmpeqd on 256-bit vectors.
5318  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5319    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5320      return Op;
5321
5322    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5323  }
5324
5325  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5326  if (Broadcast.getNode())
5327    return Broadcast;
5328
5329  unsigned EVTBits = ExtVT.getSizeInBits();
5330
5331  unsigned NumZero  = 0;
5332  unsigned NumNonZero = 0;
5333  unsigned NonZeros = 0;
5334  bool IsAllConstants = true;
5335  SmallSet<SDValue, 8> Values;
5336  for (unsigned i = 0; i < NumElems; ++i) {
5337    SDValue Elt = Op.getOperand(i);
5338    if (Elt.getOpcode() == ISD::UNDEF)
5339      continue;
5340    Values.insert(Elt);
5341    if (Elt.getOpcode() != ISD::Constant &&
5342        Elt.getOpcode() != ISD::ConstantFP)
5343      IsAllConstants = false;
5344    if (X86::isZeroNode(Elt))
5345      NumZero++;
5346    else {
5347      NonZeros |= (1 << i);
5348      NumNonZero++;
5349    }
5350  }
5351
5352  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5353  if (NumNonZero == 0)
5354    return DAG.getUNDEF(VT);
5355
5356  // Special case for single non-zero, non-undef, element.
5357  if (NumNonZero == 1) {
5358    unsigned Idx = CountTrailingZeros_32(NonZeros);
5359    SDValue Item = Op.getOperand(Idx);
5360
5361    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5362    // the value are obviously zero, truncate the value to i32 and do the
5363    // insertion that way.  Only do this if the value is non-constant or if the
5364    // value is a constant being inserted into element 0.  It is cheaper to do
5365    // a constant pool load than it is to do a movd + shuffle.
5366    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5367        (!IsAllConstants || Idx == 0)) {
5368      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5369        // Handle SSE only.
5370        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5371        EVT VecVT = MVT::v4i32;
5372        unsigned VecElts = 4;
5373
5374        // Truncate the value (which may itself be a constant) to i32, and
5375        // convert it to a vector with movd (S2V+shuffle to zero extend).
5376        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5377        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5378        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5379
5380        // Now we have our 32-bit value zero extended in the low element of
5381        // a vector.  If Idx != 0, swizzle it into place.
5382        if (Idx != 0) {
5383          SmallVector<int, 4> Mask;
5384          Mask.push_back(Idx);
5385          for (unsigned i = 1; i != VecElts; ++i)
5386            Mask.push_back(i);
5387          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5388                                      &Mask[0]);
5389        }
5390        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5391      }
5392    }
5393
5394    // If we have a constant or non-constant insertion into the low element of
5395    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5396    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5397    // depending on what the source datatype is.
5398    if (Idx == 0) {
5399      if (NumZero == 0)
5400        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5401
5402      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5403          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5404        if (VT.is256BitVector()) {
5405          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5406          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5407                             Item, DAG.getIntPtrConstant(0));
5408        }
5409        assert(VT.is128BitVector() && "Expected an SSE value type!");
5410        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5411        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5412        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5413      }
5414
5415      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5416        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5417        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5418        if (VT.is256BitVector()) {
5419          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5420          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5421        } else {
5422          assert(VT.is128BitVector() && "Expected an SSE value type!");
5423          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5424        }
5425        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5426      }
5427    }
5428
5429    // Is it a vector logical left shift?
5430    if (NumElems == 2 && Idx == 1 &&
5431        X86::isZeroNode(Op.getOperand(0)) &&
5432        !X86::isZeroNode(Op.getOperand(1))) {
5433      unsigned NumBits = VT.getSizeInBits();
5434      return getVShift(true, VT,
5435                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5436                                   VT, Op.getOperand(1)),
5437                       NumBits/2, DAG, *this, dl);
5438    }
5439
5440    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5441      return SDValue();
5442
5443    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5444    // is a non-constant being inserted into an element other than the low one,
5445    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5446    // movd/movss) to move this into the low element, then shuffle it into
5447    // place.
5448    if (EVTBits == 32) {
5449      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5450
5451      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5452      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5453      SmallVector<int, 8> MaskVec;
5454      for (unsigned i = 0; i != NumElems; ++i)
5455        MaskVec.push_back(i == Idx ? 0 : 1);
5456      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5457    }
5458  }
5459
5460  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5461  if (Values.size() == 1) {
5462    if (EVTBits == 32) {
5463      // Instead of a shuffle like this:
5464      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5465      // Check if it's possible to issue this instead.
5466      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5467      unsigned Idx = CountTrailingZeros_32(NonZeros);
5468      SDValue Item = Op.getOperand(Idx);
5469      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5470        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5471    }
5472    return SDValue();
5473  }
5474
5475  // A vector full of immediates; various special cases are already
5476  // handled, so this is best done with a single constant-pool load.
5477  if (IsAllConstants)
5478    return SDValue();
5479
5480  // For AVX-length vectors, build the individual 128-bit pieces and use
5481  // shuffles to put them in place.
5482  if (VT.is256BitVector()) {
5483    SmallVector<SDValue, 32> V;
5484    for (unsigned i = 0; i != NumElems; ++i)
5485      V.push_back(Op.getOperand(i));
5486
5487    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5488
5489    // Build both the lower and upper subvector.
5490    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5491    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5492                                NumElems/2);
5493
5494    // Recreate the wider vector with the lower and upper part.
5495    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5496  }
5497
5498  // Let legalizer expand 2-wide build_vectors.
5499  if (EVTBits == 64) {
5500    if (NumNonZero == 1) {
5501      // One half is zero or undef.
5502      unsigned Idx = CountTrailingZeros_32(NonZeros);
5503      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5504                                 Op.getOperand(Idx));
5505      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5506    }
5507    return SDValue();
5508  }
5509
5510  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5511  if (EVTBits == 8 && NumElems == 16) {
5512    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5513                                        Subtarget, *this);
5514    if (V.getNode()) return V;
5515  }
5516
5517  if (EVTBits == 16 && NumElems == 8) {
5518    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5519                                      Subtarget, *this);
5520    if (V.getNode()) return V;
5521  }
5522
5523  // If element VT is == 32 bits, turn it into a number of shuffles.
5524  SmallVector<SDValue, 8> V(NumElems);
5525  if (NumElems == 4 && NumZero > 0) {
5526    for (unsigned i = 0; i < 4; ++i) {
5527      bool isZero = !(NonZeros & (1 << i));
5528      if (isZero)
5529        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5530      else
5531        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5532    }
5533
5534    for (unsigned i = 0; i < 2; ++i) {
5535      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5536        default: break;
5537        case 0:
5538          V[i] = V[i*2];  // Must be a zero vector.
5539          break;
5540        case 1:
5541          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5542          break;
5543        case 2:
5544          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5545          break;
5546        case 3:
5547          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5548          break;
5549      }
5550    }
5551
5552    bool Reverse1 = (NonZeros & 0x3) == 2;
5553    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5554    int MaskVec[] = {
5555      Reverse1 ? 1 : 0,
5556      Reverse1 ? 0 : 1,
5557      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5558      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5559    };
5560    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5561  }
5562
5563  if (Values.size() > 1 && VT.is128BitVector()) {
5564    // Check for a build vector of consecutive loads.
5565    for (unsigned i = 0; i < NumElems; ++i)
5566      V[i] = Op.getOperand(i);
5567
5568    // Check for elements which are consecutive loads.
5569    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5570    if (LD.getNode())
5571      return LD;
5572
5573    // Check for a build vector from mostly shuffle plus few inserting.
5574    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5575    if (Sh.getNode())
5576      return Sh;
5577
5578    // For SSE 4.1, use insertps to put the high elements into the low element.
5579    if (getSubtarget()->hasSSE41()) {
5580      SDValue Result;
5581      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5582        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5583      else
5584        Result = DAG.getUNDEF(VT);
5585
5586      for (unsigned i = 1; i < NumElems; ++i) {
5587        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5588        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5589                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5590      }
5591      return Result;
5592    }
5593
5594    // Otherwise, expand into a number of unpckl*, start by extending each of
5595    // our (non-undef) elements to the full vector width with the element in the
5596    // bottom slot of the vector (which generates no code for SSE).
5597    for (unsigned i = 0; i < NumElems; ++i) {
5598      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5599        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5600      else
5601        V[i] = DAG.getUNDEF(VT);
5602    }
5603
5604    // Next, we iteratively mix elements, e.g. for v4f32:
5605    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5606    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5607    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5608    unsigned EltStride = NumElems >> 1;
5609    while (EltStride != 0) {
5610      for (unsigned i = 0; i < EltStride; ++i) {
5611        // If V[i+EltStride] is undef and this is the first round of mixing,
5612        // then it is safe to just drop this shuffle: V[i] is already in the
5613        // right place, the one element (since it's the first round) being
5614        // inserted as undef can be dropped.  This isn't safe for successive
5615        // rounds because they will permute elements within both vectors.
5616        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5617            EltStride == NumElems/2)
5618          continue;
5619
5620        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5621      }
5622      EltStride >>= 1;
5623    }
5624    return V[0];
5625  }
5626  return SDValue();
5627}
5628
5629// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5630// to create 256-bit vectors from two other 128-bit ones.
5631static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5632  DebugLoc dl = Op.getDebugLoc();
5633  MVT ResVT = Op.getValueType().getSimpleVT();
5634
5635  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5636
5637  SDValue V1 = Op.getOperand(0);
5638  SDValue V2 = Op.getOperand(1);
5639  unsigned NumElems = ResVT.getVectorNumElements();
5640
5641  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5642}
5643
5644static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5645  assert(Op.getNumOperands() == 2);
5646
5647  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5648  // from two other 128-bit ones.
5649  return LowerAVXCONCAT_VECTORS(Op, DAG);
5650}
5651
5652// Try to lower a shuffle node into a simple blend instruction.
5653static SDValue
5654LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5655                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5656  SDValue V1 = SVOp->getOperand(0);
5657  SDValue V2 = SVOp->getOperand(1);
5658  DebugLoc dl = SVOp->getDebugLoc();
5659  MVT VT = SVOp->getValueType(0).getSimpleVT();
5660  MVT EltVT = VT.getVectorElementType();
5661  unsigned NumElems = VT.getVectorNumElements();
5662
5663  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5664    return SDValue();
5665  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5666    return SDValue();
5667
5668  // Check the mask for BLEND and build the value.
5669  unsigned MaskValue = 0;
5670  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5671  unsigned NumLanes = (NumElems-1)/8 + 1;
5672  unsigned NumElemsInLane = NumElems / NumLanes;
5673
5674  // Blend for v16i16 should be symetric for the both lanes.
5675  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5676
5677    int SndLaneEltIdx = (NumLanes == 2) ?
5678      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5679    int EltIdx = SVOp->getMaskElt(i);
5680
5681    if ((EltIdx == -1 || EltIdx == (int)i) &&
5682        (SndLaneEltIdx == -1 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5683      continue;
5684
5685    if (((unsigned)EltIdx == (i + NumElems)) &&
5686        (SndLaneEltIdx == -1 ||
5687         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5688      MaskValue |= (1<<i);
5689    else
5690      return SDValue();
5691  }
5692
5693  // Convert i32 vectors to floating point if it is not AVX2.
5694  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5695  EVT BlendVT = VT;
5696  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5697    BlendVT = EVT::getVectorVT(*DAG.getContext(),
5698                              EVT::getFloatingPointVT(EltVT.getSizeInBits()),
5699                              NumElems);
5700    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5701    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5702  }
5703
5704  SDValue Ret =  DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5705                             DAG.getConstant(MaskValue, MVT::i32));
5706  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5707}
5708
5709// v8i16 shuffles - Prefer shuffles in the following order:
5710// 1. [all]   pshuflw, pshufhw, optional move
5711// 2. [ssse3] 1 x pshufb
5712// 3. [ssse3] 2 x pshufb + 1 x por
5713// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5714static SDValue
5715LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5716                         SelectionDAG &DAG) {
5717  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5718  SDValue V1 = SVOp->getOperand(0);
5719  SDValue V2 = SVOp->getOperand(1);
5720  DebugLoc dl = SVOp->getDebugLoc();
5721  SmallVector<int, 8> MaskVals;
5722
5723  // Determine if more than 1 of the words in each of the low and high quadwords
5724  // of the result come from the same quadword of one of the two inputs.  Undef
5725  // mask values count as coming from any quadword, for better codegen.
5726  unsigned LoQuad[] = { 0, 0, 0, 0 };
5727  unsigned HiQuad[] = { 0, 0, 0, 0 };
5728  std::bitset<4> InputQuads;
5729  for (unsigned i = 0; i < 8; ++i) {
5730    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5731    int EltIdx = SVOp->getMaskElt(i);
5732    MaskVals.push_back(EltIdx);
5733    if (EltIdx < 0) {
5734      ++Quad[0];
5735      ++Quad[1];
5736      ++Quad[2];
5737      ++Quad[3];
5738      continue;
5739    }
5740    ++Quad[EltIdx / 4];
5741    InputQuads.set(EltIdx / 4);
5742  }
5743
5744  int BestLoQuad = -1;
5745  unsigned MaxQuad = 1;
5746  for (unsigned i = 0; i < 4; ++i) {
5747    if (LoQuad[i] > MaxQuad) {
5748      BestLoQuad = i;
5749      MaxQuad = LoQuad[i];
5750    }
5751  }
5752
5753  int BestHiQuad = -1;
5754  MaxQuad = 1;
5755  for (unsigned i = 0; i < 4; ++i) {
5756    if (HiQuad[i] > MaxQuad) {
5757      BestHiQuad = i;
5758      MaxQuad = HiQuad[i];
5759    }
5760  }
5761
5762  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5763  // of the two input vectors, shuffle them into one input vector so only a
5764  // single pshufb instruction is necessary. If There are more than 2 input
5765  // quads, disable the next transformation since it does not help SSSE3.
5766  bool V1Used = InputQuads[0] || InputQuads[1];
5767  bool V2Used = InputQuads[2] || InputQuads[3];
5768  if (Subtarget->hasSSSE3()) {
5769    if (InputQuads.count() == 2 && V1Used && V2Used) {
5770      BestLoQuad = InputQuads[0] ? 0 : 1;
5771      BestHiQuad = InputQuads[2] ? 2 : 3;
5772    }
5773    if (InputQuads.count() > 2) {
5774      BestLoQuad = -1;
5775      BestHiQuad = -1;
5776    }
5777  }
5778
5779  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5780  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5781  // words from all 4 input quadwords.
5782  SDValue NewV;
5783  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5784    int MaskV[] = {
5785      BestLoQuad < 0 ? 0 : BestLoQuad,
5786      BestHiQuad < 0 ? 1 : BestHiQuad
5787    };
5788    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5789                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5790                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5791    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5792
5793    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5794    // source words for the shuffle, to aid later transformations.
5795    bool AllWordsInNewV = true;
5796    bool InOrder[2] = { true, true };
5797    for (unsigned i = 0; i != 8; ++i) {
5798      int idx = MaskVals[i];
5799      if (idx != (int)i)
5800        InOrder[i/4] = false;
5801      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5802        continue;
5803      AllWordsInNewV = false;
5804      break;
5805    }
5806
5807    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5808    if (AllWordsInNewV) {
5809      for (int i = 0; i != 8; ++i) {
5810        int idx = MaskVals[i];
5811        if (idx < 0)
5812          continue;
5813        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5814        if ((idx != i) && idx < 4)
5815          pshufhw = false;
5816        if ((idx != i) && idx > 3)
5817          pshuflw = false;
5818      }
5819      V1 = NewV;
5820      V2Used = false;
5821      BestLoQuad = 0;
5822      BestHiQuad = 1;
5823    }
5824
5825    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5826    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5827    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5828      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5829      unsigned TargetMask = 0;
5830      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5831                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5832      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5833      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5834                             getShufflePSHUFLWImmediate(SVOp);
5835      V1 = NewV.getOperand(0);
5836      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5837    }
5838  }
5839
5840  // If we have SSSE3, and all words of the result are from 1 input vector,
5841  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5842  // is present, fall back to case 4.
5843  if (Subtarget->hasSSSE3()) {
5844    SmallVector<SDValue,16> pshufbMask;
5845
5846    // If we have elements from both input vectors, set the high bit of the
5847    // shuffle mask element to zero out elements that come from V2 in the V1
5848    // mask, and elements that come from V1 in the V2 mask, so that the two
5849    // results can be OR'd together.
5850    bool TwoInputs = V1Used && V2Used;
5851    for (unsigned i = 0; i != 8; ++i) {
5852      int EltIdx = MaskVals[i] * 2;
5853      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5854      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5855      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5856      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5857    }
5858    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5859    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5860                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5861                                 MVT::v16i8, &pshufbMask[0], 16));
5862    if (!TwoInputs)
5863      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5864
5865    // Calculate the shuffle mask for the second input, shuffle it, and
5866    // OR it with the first shuffled input.
5867    pshufbMask.clear();
5868    for (unsigned i = 0; i != 8; ++i) {
5869      int EltIdx = MaskVals[i] * 2;
5870      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5871      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5872      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5873      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5874    }
5875    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5876    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5877                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5878                                 MVT::v16i8, &pshufbMask[0], 16));
5879    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5880    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5881  }
5882
5883  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5884  // and update MaskVals with new element order.
5885  std::bitset<8> InOrder;
5886  if (BestLoQuad >= 0) {
5887    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5888    for (int i = 0; i != 4; ++i) {
5889      int idx = MaskVals[i];
5890      if (idx < 0) {
5891        InOrder.set(i);
5892      } else if ((idx / 4) == BestLoQuad) {
5893        MaskV[i] = idx & 3;
5894        InOrder.set(i);
5895      }
5896    }
5897    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5898                                &MaskV[0]);
5899
5900    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5901      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5902      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5903                                  NewV.getOperand(0),
5904                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5905    }
5906  }
5907
5908  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5909  // and update MaskVals with the new element order.
5910  if (BestHiQuad >= 0) {
5911    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5912    for (unsigned i = 4; i != 8; ++i) {
5913      int idx = MaskVals[i];
5914      if (idx < 0) {
5915        InOrder.set(i);
5916      } else if ((idx / 4) == BestHiQuad) {
5917        MaskV[i] = (idx & 3) + 4;
5918        InOrder.set(i);
5919      }
5920    }
5921    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5922                                &MaskV[0]);
5923
5924    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5925      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5926      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5927                                  NewV.getOperand(0),
5928                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5929    }
5930  }
5931
5932  // In case BestHi & BestLo were both -1, which means each quadword has a word
5933  // from each of the four input quadwords, calculate the InOrder bitvector now
5934  // before falling through to the insert/extract cleanup.
5935  if (BestLoQuad == -1 && BestHiQuad == -1) {
5936    NewV = V1;
5937    for (int i = 0; i != 8; ++i)
5938      if (MaskVals[i] < 0 || MaskVals[i] == i)
5939        InOrder.set(i);
5940  }
5941
5942  // The other elements are put in the right place using pextrw and pinsrw.
5943  for (unsigned i = 0; i != 8; ++i) {
5944    if (InOrder[i])
5945      continue;
5946    int EltIdx = MaskVals[i];
5947    if (EltIdx < 0)
5948      continue;
5949    SDValue ExtOp = (EltIdx < 8) ?
5950      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5951                  DAG.getIntPtrConstant(EltIdx)) :
5952      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5953                  DAG.getIntPtrConstant(EltIdx - 8));
5954    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5955                       DAG.getIntPtrConstant(i));
5956  }
5957  return NewV;
5958}
5959
5960// v16i8 shuffles - Prefer shuffles in the following order:
5961// 1. [ssse3] 1 x pshufb
5962// 2. [ssse3] 2 x pshufb + 1 x por
5963// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5964static
5965SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5966                                 SelectionDAG &DAG,
5967                                 const X86TargetLowering &TLI) {
5968  SDValue V1 = SVOp->getOperand(0);
5969  SDValue V2 = SVOp->getOperand(1);
5970  DebugLoc dl = SVOp->getDebugLoc();
5971  ArrayRef<int> MaskVals = SVOp->getMask();
5972
5973  // If we have SSSE3, case 1 is generated when all result bytes come from
5974  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5975  // present, fall back to case 3.
5976
5977  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5978  if (TLI.getSubtarget()->hasSSSE3()) {
5979    SmallVector<SDValue,16> pshufbMask;
5980
5981    // If all result elements are from one input vector, then only translate
5982    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5983    //
5984    // Otherwise, we have elements from both input vectors, and must zero out
5985    // elements that come from V2 in the first mask, and V1 in the second mask
5986    // so that we can OR them together.
5987    for (unsigned i = 0; i != 16; ++i) {
5988      int EltIdx = MaskVals[i];
5989      if (EltIdx < 0 || EltIdx >= 16)
5990        EltIdx = 0x80;
5991      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5992    }
5993    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5994                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5995                                 MVT::v16i8, &pshufbMask[0], 16));
5996
5997    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5998    // the 2nd operand if it's undefined or zero.
5999    if (V2.getOpcode() == ISD::UNDEF ||
6000        ISD::isBuildVectorAllZeros(V2.getNode()))
6001      return V1;
6002
6003    // Calculate the shuffle mask for the second input, shuffle it, and
6004    // OR it with the first shuffled input.
6005    pshufbMask.clear();
6006    for (unsigned i = 0; i != 16; ++i) {
6007      int EltIdx = MaskVals[i];
6008      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6009      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6010    }
6011    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6012                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6013                                 MVT::v16i8, &pshufbMask[0], 16));
6014    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6015  }
6016
6017  // No SSSE3 - Calculate in place words and then fix all out of place words
6018  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6019  // the 16 different words that comprise the two doublequadword input vectors.
6020  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6021  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6022  SDValue NewV = V1;
6023  for (int i = 0; i != 8; ++i) {
6024    int Elt0 = MaskVals[i*2];
6025    int Elt1 = MaskVals[i*2+1];
6026
6027    // This word of the result is all undef, skip it.
6028    if (Elt0 < 0 && Elt1 < 0)
6029      continue;
6030
6031    // This word of the result is already in the correct place, skip it.
6032    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6033      continue;
6034
6035    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6036    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6037    SDValue InsElt;
6038
6039    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6040    // using a single extract together, load it and store it.
6041    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6042      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6043                           DAG.getIntPtrConstant(Elt1 / 2));
6044      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6045                        DAG.getIntPtrConstant(i));
6046      continue;
6047    }
6048
6049    // If Elt1 is defined, extract it from the appropriate source.  If the
6050    // source byte is not also odd, shift the extracted word left 8 bits
6051    // otherwise clear the bottom 8 bits if we need to do an or.
6052    if (Elt1 >= 0) {
6053      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6054                           DAG.getIntPtrConstant(Elt1 / 2));
6055      if ((Elt1 & 1) == 0)
6056        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6057                             DAG.getConstant(8,
6058                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6059      else if (Elt0 >= 0)
6060        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6061                             DAG.getConstant(0xFF00, MVT::i16));
6062    }
6063    // If Elt0 is defined, extract it from the appropriate source.  If the
6064    // source byte is not also even, shift the extracted word right 8 bits. If
6065    // Elt1 was also defined, OR the extracted values together before
6066    // inserting them in the result.
6067    if (Elt0 >= 0) {
6068      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6069                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6070      if ((Elt0 & 1) != 0)
6071        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6072                              DAG.getConstant(8,
6073                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6074      else if (Elt1 >= 0)
6075        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6076                             DAG.getConstant(0x00FF, MVT::i16));
6077      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6078                         : InsElt0;
6079    }
6080    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6081                       DAG.getIntPtrConstant(i));
6082  }
6083  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6084}
6085
6086// v32i8 shuffles - Translate to VPSHUFB if possible.
6087static
6088SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6089                                 const X86Subtarget *Subtarget,
6090                                 SelectionDAG &DAG) {
6091  MVT VT = SVOp->getValueType(0).getSimpleVT();
6092  SDValue V1 = SVOp->getOperand(0);
6093  SDValue V2 = SVOp->getOperand(1);
6094  DebugLoc dl = SVOp->getDebugLoc();
6095  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6096
6097  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6098  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6099  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6100
6101  // VPSHUFB may be generated if
6102  // (1) one of input vector is undefined or zeroinitializer.
6103  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6104  // And (2) the mask indexes don't cross the 128-bit lane.
6105  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6106      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6107    return SDValue();
6108
6109  if (V1IsAllZero && !V2IsAllZero) {
6110    CommuteVectorShuffleMask(MaskVals, 32);
6111    V1 = V2;
6112  }
6113  SmallVector<SDValue, 32> pshufbMask;
6114  for (unsigned i = 0; i != 32; i++) {
6115    int EltIdx = MaskVals[i];
6116    if (EltIdx < 0 || EltIdx >= 32)
6117      EltIdx = 0x80;
6118    else {
6119      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6120        // Cross lane is not allowed.
6121        return SDValue();
6122      EltIdx &= 0xf;
6123    }
6124    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6125  }
6126  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6127                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6128                                  MVT::v32i8, &pshufbMask[0], 32));
6129}
6130
6131/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6132/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6133/// done when every pair / quad of shuffle mask elements point to elements in
6134/// the right sequence. e.g.
6135/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6136static
6137SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6138                                 SelectionDAG &DAG) {
6139  MVT VT = SVOp->getValueType(0).getSimpleVT();
6140  DebugLoc dl = SVOp->getDebugLoc();
6141  unsigned NumElems = VT.getVectorNumElements();
6142  MVT NewVT;
6143  unsigned Scale;
6144  switch (VT.SimpleTy) {
6145  default: llvm_unreachable("Unexpected!");
6146  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6147  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6148  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6149  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6150  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6151  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6152  }
6153
6154  SmallVector<int, 8> MaskVec;
6155  for (unsigned i = 0; i != NumElems; i += Scale) {
6156    int StartIdx = -1;
6157    for (unsigned j = 0; j != Scale; ++j) {
6158      int EltIdx = SVOp->getMaskElt(i+j);
6159      if (EltIdx < 0)
6160        continue;
6161      if (StartIdx < 0)
6162        StartIdx = (EltIdx / Scale);
6163      if (EltIdx != (int)(StartIdx*Scale + j))
6164        return SDValue();
6165    }
6166    MaskVec.push_back(StartIdx);
6167  }
6168
6169  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6170  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6171  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6172}
6173
6174/// getVZextMovL - Return a zero-extending vector move low node.
6175///
6176static SDValue getVZextMovL(MVT VT, EVT OpVT,
6177                            SDValue SrcOp, SelectionDAG &DAG,
6178                            const X86Subtarget *Subtarget, DebugLoc dl) {
6179  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6180    LoadSDNode *LD = NULL;
6181    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6182      LD = dyn_cast<LoadSDNode>(SrcOp);
6183    if (!LD) {
6184      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6185      // instead.
6186      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6187      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6188          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6189          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6190          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6191        // PR2108
6192        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6193        return DAG.getNode(ISD::BITCAST, dl, VT,
6194                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6195                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6196                                                   OpVT,
6197                                                   SrcOp.getOperand(0)
6198                                                          .getOperand(0))));
6199      }
6200    }
6201  }
6202
6203  return DAG.getNode(ISD::BITCAST, dl, VT,
6204                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6205                                 DAG.getNode(ISD::BITCAST, dl,
6206                                             OpVT, SrcOp)));
6207}
6208
6209/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6210/// which could not be matched by any known target speficic shuffle
6211static SDValue
6212LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6213
6214  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6215  if (NewOp.getNode())
6216    return NewOp;
6217
6218  MVT VT = SVOp->getValueType(0).getSimpleVT();
6219
6220  unsigned NumElems = VT.getVectorNumElements();
6221  unsigned NumLaneElems = NumElems / 2;
6222
6223  DebugLoc dl = SVOp->getDebugLoc();
6224  MVT EltVT = VT.getVectorElementType();
6225  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6226  SDValue Output[2];
6227
6228  SmallVector<int, 16> Mask;
6229  for (unsigned l = 0; l < 2; ++l) {
6230    // Build a shuffle mask for the output, discovering on the fly which
6231    // input vectors to use as shuffle operands (recorded in InputUsed).
6232    // If building a suitable shuffle vector proves too hard, then bail
6233    // out with UseBuildVector set.
6234    bool UseBuildVector = false;
6235    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6236    unsigned LaneStart = l * NumLaneElems;
6237    for (unsigned i = 0; i != NumLaneElems; ++i) {
6238      // The mask element.  This indexes into the input.
6239      int Idx = SVOp->getMaskElt(i+LaneStart);
6240      if (Idx < 0) {
6241        // the mask element does not index into any input vector.
6242        Mask.push_back(-1);
6243        continue;
6244      }
6245
6246      // The input vector this mask element indexes into.
6247      int Input = Idx / NumLaneElems;
6248
6249      // Turn the index into an offset from the start of the input vector.
6250      Idx -= Input * NumLaneElems;
6251
6252      // Find or create a shuffle vector operand to hold this input.
6253      unsigned OpNo;
6254      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6255        if (InputUsed[OpNo] == Input)
6256          // This input vector is already an operand.
6257          break;
6258        if (InputUsed[OpNo] < 0) {
6259          // Create a new operand for this input vector.
6260          InputUsed[OpNo] = Input;
6261          break;
6262        }
6263      }
6264
6265      if (OpNo >= array_lengthof(InputUsed)) {
6266        // More than two input vectors used!  Give up on trying to create a
6267        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6268        UseBuildVector = true;
6269        break;
6270      }
6271
6272      // Add the mask index for the new shuffle vector.
6273      Mask.push_back(Idx + OpNo * NumLaneElems);
6274    }
6275
6276    if (UseBuildVector) {
6277      SmallVector<SDValue, 16> SVOps;
6278      for (unsigned i = 0; i != NumLaneElems; ++i) {
6279        // The mask element.  This indexes into the input.
6280        int Idx = SVOp->getMaskElt(i+LaneStart);
6281        if (Idx < 0) {
6282          SVOps.push_back(DAG.getUNDEF(EltVT));
6283          continue;
6284        }
6285
6286        // The input vector this mask element indexes into.
6287        int Input = Idx / NumElems;
6288
6289        // Turn the index into an offset from the start of the input vector.
6290        Idx -= Input * NumElems;
6291
6292        // Extract the vector element by hand.
6293        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6294                                    SVOp->getOperand(Input),
6295                                    DAG.getIntPtrConstant(Idx)));
6296      }
6297
6298      // Construct the output using a BUILD_VECTOR.
6299      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6300                              SVOps.size());
6301    } else if (InputUsed[0] < 0) {
6302      // No input vectors were used! The result is undefined.
6303      Output[l] = DAG.getUNDEF(NVT);
6304    } else {
6305      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6306                                        (InputUsed[0] % 2) * NumLaneElems,
6307                                        DAG, dl);
6308      // If only one input was used, use an undefined vector for the other.
6309      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6310        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6311                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6312      // At least one input vector was used. Create a new shuffle vector.
6313      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6314    }
6315
6316    Mask.clear();
6317  }
6318
6319  // Concatenate the result back
6320  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6321}
6322
6323/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6324/// 4 elements, and match them with several different shuffle types.
6325static SDValue
6326LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6327  SDValue V1 = SVOp->getOperand(0);
6328  SDValue V2 = SVOp->getOperand(1);
6329  DebugLoc dl = SVOp->getDebugLoc();
6330  MVT VT = SVOp->getValueType(0).getSimpleVT();
6331
6332  assert(VT.is128BitVector() && "Unsupported vector size");
6333
6334  std::pair<int, int> Locs[4];
6335  int Mask1[] = { -1, -1, -1, -1 };
6336  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6337
6338  unsigned NumHi = 0;
6339  unsigned NumLo = 0;
6340  for (unsigned i = 0; i != 4; ++i) {
6341    int Idx = PermMask[i];
6342    if (Idx < 0) {
6343      Locs[i] = std::make_pair(-1, -1);
6344    } else {
6345      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6346      if (Idx < 4) {
6347        Locs[i] = std::make_pair(0, NumLo);
6348        Mask1[NumLo] = Idx;
6349        NumLo++;
6350      } else {
6351        Locs[i] = std::make_pair(1, NumHi);
6352        if (2+NumHi < 4)
6353          Mask1[2+NumHi] = Idx;
6354        NumHi++;
6355      }
6356    }
6357  }
6358
6359  if (NumLo <= 2 && NumHi <= 2) {
6360    // If no more than two elements come from either vector. This can be
6361    // implemented with two shuffles. First shuffle gather the elements.
6362    // The second shuffle, which takes the first shuffle as both of its
6363    // vector operands, put the elements into the right order.
6364    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6365
6366    int Mask2[] = { -1, -1, -1, -1 };
6367
6368    for (unsigned i = 0; i != 4; ++i)
6369      if (Locs[i].first != -1) {
6370        unsigned Idx = (i < 2) ? 0 : 4;
6371        Idx += Locs[i].first * 2 + Locs[i].second;
6372        Mask2[i] = Idx;
6373      }
6374
6375    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6376  }
6377
6378  if (NumLo == 3 || NumHi == 3) {
6379    // Otherwise, we must have three elements from one vector, call it X, and
6380    // one element from the other, call it Y.  First, use a shufps to build an
6381    // intermediate vector with the one element from Y and the element from X
6382    // that will be in the same half in the final destination (the indexes don't
6383    // matter). Then, use a shufps to build the final vector, taking the half
6384    // containing the element from Y from the intermediate, and the other half
6385    // from X.
6386    if (NumHi == 3) {
6387      // Normalize it so the 3 elements come from V1.
6388      CommuteVectorShuffleMask(PermMask, 4);
6389      std::swap(V1, V2);
6390    }
6391
6392    // Find the element from V2.
6393    unsigned HiIndex;
6394    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6395      int Val = PermMask[HiIndex];
6396      if (Val < 0)
6397        continue;
6398      if (Val >= 4)
6399        break;
6400    }
6401
6402    Mask1[0] = PermMask[HiIndex];
6403    Mask1[1] = -1;
6404    Mask1[2] = PermMask[HiIndex^1];
6405    Mask1[3] = -1;
6406    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6407
6408    if (HiIndex >= 2) {
6409      Mask1[0] = PermMask[0];
6410      Mask1[1] = PermMask[1];
6411      Mask1[2] = HiIndex & 1 ? 6 : 4;
6412      Mask1[3] = HiIndex & 1 ? 4 : 6;
6413      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6414    }
6415
6416    Mask1[0] = HiIndex & 1 ? 2 : 0;
6417    Mask1[1] = HiIndex & 1 ? 0 : 2;
6418    Mask1[2] = PermMask[2];
6419    Mask1[3] = PermMask[3];
6420    if (Mask1[2] >= 0)
6421      Mask1[2] += 4;
6422    if (Mask1[3] >= 0)
6423      Mask1[3] += 4;
6424    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6425  }
6426
6427  // Break it into (shuffle shuffle_hi, shuffle_lo).
6428  int LoMask[] = { -1, -1, -1, -1 };
6429  int HiMask[] = { -1, -1, -1, -1 };
6430
6431  int *MaskPtr = LoMask;
6432  unsigned MaskIdx = 0;
6433  unsigned LoIdx = 0;
6434  unsigned HiIdx = 2;
6435  for (unsigned i = 0; i != 4; ++i) {
6436    if (i == 2) {
6437      MaskPtr = HiMask;
6438      MaskIdx = 1;
6439      LoIdx = 0;
6440      HiIdx = 2;
6441    }
6442    int Idx = PermMask[i];
6443    if (Idx < 0) {
6444      Locs[i] = std::make_pair(-1, -1);
6445    } else if (Idx < 4) {
6446      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6447      MaskPtr[LoIdx] = Idx;
6448      LoIdx++;
6449    } else {
6450      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6451      MaskPtr[HiIdx] = Idx;
6452      HiIdx++;
6453    }
6454  }
6455
6456  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6457  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6458  int MaskOps[] = { -1, -1, -1, -1 };
6459  for (unsigned i = 0; i != 4; ++i)
6460    if (Locs[i].first != -1)
6461      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6462  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6463}
6464
6465static bool MayFoldVectorLoad(SDValue V) {
6466  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6467    V = V.getOperand(0);
6468
6469  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6470    V = V.getOperand(0);
6471  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6472      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6473    // BUILD_VECTOR (load), undef
6474    V = V.getOperand(0);
6475
6476  return MayFoldLoad(V);
6477}
6478
6479static
6480SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6481  EVT VT = Op.getValueType();
6482
6483  // Canonizalize to v2f64.
6484  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6485  return DAG.getNode(ISD::BITCAST, dl, VT,
6486                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6487                                          V1, DAG));
6488}
6489
6490static
6491SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6492                        bool HasSSE2) {
6493  SDValue V1 = Op.getOperand(0);
6494  SDValue V2 = Op.getOperand(1);
6495  EVT VT = Op.getValueType();
6496
6497  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6498
6499  if (HasSSE2 && VT == MVT::v2f64)
6500    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6501
6502  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6503  return DAG.getNode(ISD::BITCAST, dl, VT,
6504                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6505                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6506                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6507}
6508
6509static
6510SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6511  SDValue V1 = Op.getOperand(0);
6512  SDValue V2 = Op.getOperand(1);
6513  EVT VT = Op.getValueType();
6514
6515  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6516         "unsupported shuffle type");
6517
6518  if (V2.getOpcode() == ISD::UNDEF)
6519    V2 = V1;
6520
6521  // v4i32 or v4f32
6522  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6523}
6524
6525static
6526SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6527  SDValue V1 = Op.getOperand(0);
6528  SDValue V2 = Op.getOperand(1);
6529  EVT VT = Op.getValueType();
6530  unsigned NumElems = VT.getVectorNumElements();
6531
6532  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6533  // operand of these instructions is only memory, so check if there's a
6534  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6535  // same masks.
6536  bool CanFoldLoad = false;
6537
6538  // Trivial case, when V2 comes from a load.
6539  if (MayFoldVectorLoad(V2))
6540    CanFoldLoad = true;
6541
6542  // When V1 is a load, it can be folded later into a store in isel, example:
6543  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6544  //    turns into:
6545  //  (MOVLPSmr addr:$src1, VR128:$src2)
6546  // So, recognize this potential and also use MOVLPS or MOVLPD
6547  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6548    CanFoldLoad = true;
6549
6550  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6551  if (CanFoldLoad) {
6552    if (HasSSE2 && NumElems == 2)
6553      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6554
6555    if (NumElems == 4)
6556      // If we don't care about the second element, proceed to use movss.
6557      if (SVOp->getMaskElt(1) != -1)
6558        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6559  }
6560
6561  // movl and movlp will both match v2i64, but v2i64 is never matched by
6562  // movl earlier because we make it strict to avoid messing with the movlp load
6563  // folding logic (see the code above getMOVLP call). Match it here then,
6564  // this is horrible, but will stay like this until we move all shuffle
6565  // matching to x86 specific nodes. Note that for the 1st condition all
6566  // types are matched with movsd.
6567  if (HasSSE2) {
6568    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6569    // as to remove this logic from here, as much as possible
6570    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6571      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6572    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6573  }
6574
6575  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6576
6577  // Invert the operand order and use SHUFPS to match it.
6578  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6579                              getShuffleSHUFImmediate(SVOp), DAG);
6580}
6581
6582// Reduce a vector shuffle to zext.
6583SDValue
6584X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6585  // PMOVZX is only available from SSE41.
6586  if (!Subtarget->hasSSE41())
6587    return SDValue();
6588
6589  EVT VT = Op.getValueType();
6590
6591  // Only AVX2 support 256-bit vector integer extending.
6592  if (!Subtarget->hasInt256() && VT.is256BitVector())
6593    return SDValue();
6594
6595  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6596  DebugLoc DL = Op.getDebugLoc();
6597  SDValue V1 = Op.getOperand(0);
6598  SDValue V2 = Op.getOperand(1);
6599  unsigned NumElems = VT.getVectorNumElements();
6600
6601  // Extending is an unary operation and the element type of the source vector
6602  // won't be equal to or larger than i64.
6603  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6604      VT.getVectorElementType() == MVT::i64)
6605    return SDValue();
6606
6607  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6608  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6609  while ((1U << Shift) < NumElems) {
6610    if (SVOp->getMaskElt(1U << Shift) == 1)
6611      break;
6612    Shift += 1;
6613    // The maximal ratio is 8, i.e. from i8 to i64.
6614    if (Shift > 3)
6615      return SDValue();
6616  }
6617
6618  // Check the shuffle mask.
6619  unsigned Mask = (1U << Shift) - 1;
6620  for (unsigned i = 0; i != NumElems; ++i) {
6621    int EltIdx = SVOp->getMaskElt(i);
6622    if ((i & Mask) != 0 && EltIdx != -1)
6623      return SDValue();
6624    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6625      return SDValue();
6626  }
6627
6628  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6629  EVT NeVT = EVT::getIntegerVT(*DAG.getContext(), NBits);
6630  EVT NVT = EVT::getVectorVT(*DAG.getContext(), NeVT, NumElems >> Shift);
6631
6632  if (!isTypeLegal(NVT))
6633    return SDValue();
6634
6635  // Simplify the operand as it's prepared to be fed into shuffle.
6636  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6637  if (V1.getOpcode() == ISD::BITCAST &&
6638      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6639      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6640      V1.getOperand(0)
6641        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6642    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6643    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6644    ConstantSDNode *CIdx =
6645      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6646    // If it's foldable, i.e. normal load with single use, we will let code
6647    // selection to fold it. Otherwise, we will short the conversion sequence.
6648    if (CIdx && CIdx->getZExtValue() == 0 &&
6649        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse()))
6650      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6651  }
6652
6653  return DAG.getNode(ISD::BITCAST, DL, VT,
6654                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6655}
6656
6657SDValue
6658X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6659  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6660  MVT VT = Op.getValueType().getSimpleVT();
6661  DebugLoc dl = Op.getDebugLoc();
6662  SDValue V1 = Op.getOperand(0);
6663  SDValue V2 = Op.getOperand(1);
6664
6665  if (isZeroShuffle(SVOp))
6666    return getZeroVector(VT, Subtarget, DAG, dl);
6667
6668  // Handle splat operations
6669  if (SVOp->isSplat()) {
6670    unsigned NumElem = VT.getVectorNumElements();
6671
6672    // Use vbroadcast whenever the splat comes from a foldable load
6673    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6674    if (Broadcast.getNode())
6675      return Broadcast;
6676
6677    // Handle splats by matching through known shuffle masks
6678    if ((VT.is128BitVector() && NumElem <= 4) ||
6679        (VT.is256BitVector() && NumElem <= 8))
6680      return SDValue();
6681
6682    // All remaning splats are promoted to target supported vector shuffles.
6683    return PromoteSplat(SVOp, DAG);
6684  }
6685
6686  // Check integer expanding shuffles.
6687  SDValue NewOp = LowerVectorIntExtend(Op, DAG);
6688  if (NewOp.getNode())
6689    return NewOp;
6690
6691  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6692  // do it!
6693  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6694      VT == MVT::v16i16 || VT == MVT::v32i8) {
6695    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6696    if (NewOp.getNode())
6697      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6698  } else if ((VT == MVT::v4i32 ||
6699             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6700    // FIXME: Figure out a cleaner way to do this.
6701    // Try to make use of movq to zero out the top part.
6702    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6703      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6704      if (NewOp.getNode()) {
6705        MVT NewVT = NewOp.getValueType().getSimpleVT();
6706        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6707                               NewVT, true, false))
6708          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6709                              DAG, Subtarget, dl);
6710      }
6711    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6712      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6713      if (NewOp.getNode()) {
6714        MVT NewVT = NewOp.getValueType().getSimpleVT();
6715        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6716          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6717                              DAG, Subtarget, dl);
6718      }
6719    }
6720  }
6721  return SDValue();
6722}
6723
6724SDValue
6725X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6726  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6727  SDValue V1 = Op.getOperand(0);
6728  SDValue V2 = Op.getOperand(1);
6729  MVT VT = Op.getValueType().getSimpleVT();
6730  DebugLoc dl = Op.getDebugLoc();
6731  unsigned NumElems = VT.getVectorNumElements();
6732  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6733  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6734  bool V1IsSplat = false;
6735  bool V2IsSplat = false;
6736  bool HasSSE2 = Subtarget->hasSSE2();
6737  bool HasFp256    = Subtarget->hasFp256();
6738  bool HasInt256   = Subtarget->hasInt256();
6739  MachineFunction &MF = DAG.getMachineFunction();
6740  bool OptForSize = MF.getFunction()->getAttributes().
6741    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6742
6743  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6744
6745  if (V1IsUndef && V2IsUndef)
6746    return DAG.getUNDEF(VT);
6747
6748  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6749
6750  // Vector shuffle lowering takes 3 steps:
6751  //
6752  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6753  //    narrowing and commutation of operands should be handled.
6754  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6755  //    shuffle nodes.
6756  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6757  //    so the shuffle can be broken into other shuffles and the legalizer can
6758  //    try the lowering again.
6759  //
6760  // The general idea is that no vector_shuffle operation should be left to
6761  // be matched during isel, all of them must be converted to a target specific
6762  // node here.
6763
6764  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6765  // narrowing and commutation of operands should be handled. The actual code
6766  // doesn't include all of those, work in progress...
6767  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6768  if (NewOp.getNode())
6769    return NewOp;
6770
6771  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6772
6773  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6774  // unpckh_undef). Only use pshufd if speed is more important than size.
6775  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6776    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6777  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6778    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6779
6780  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6781      V2IsUndef && MayFoldVectorLoad(V1))
6782    return getMOVDDup(Op, dl, V1, DAG);
6783
6784  if (isMOVHLPS_v_undef_Mask(M, VT))
6785    return getMOVHighToLow(Op, dl, DAG);
6786
6787  // Use to match splats
6788  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6789      (VT == MVT::v2f64 || VT == MVT::v2i64))
6790    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6791
6792  if (isPSHUFDMask(M, VT)) {
6793    // The actual implementation will match the mask in the if above and then
6794    // during isel it can match several different instructions, not only pshufd
6795    // as its name says, sad but true, emulate the behavior for now...
6796    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6797      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6798
6799    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6800
6801    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6802      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6803
6804    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6805      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6806                                  DAG);
6807
6808    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6809                                TargetMask, DAG);
6810  }
6811
6812  // Check if this can be converted into a logical shift.
6813  bool isLeft = false;
6814  unsigned ShAmt = 0;
6815  SDValue ShVal;
6816  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6817  if (isShift && ShVal.hasOneUse()) {
6818    // If the shifted value has multiple uses, it may be cheaper to use
6819    // v_set0 + movlhps or movhlps, etc.
6820    MVT EltVT = VT.getVectorElementType();
6821    ShAmt *= EltVT.getSizeInBits();
6822    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6823  }
6824
6825  if (isMOVLMask(M, VT)) {
6826    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6827      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6828    if (!isMOVLPMask(M, VT)) {
6829      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6830        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6831
6832      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6833        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6834    }
6835  }
6836
6837  // FIXME: fold these into legal mask.
6838  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6839    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6840
6841  if (isMOVHLPSMask(M, VT))
6842    return getMOVHighToLow(Op, dl, DAG);
6843
6844  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6845    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6846
6847  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6848    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6849
6850  if (isMOVLPMask(M, VT))
6851    return getMOVLP(Op, dl, DAG, HasSSE2);
6852
6853  if (ShouldXformToMOVHLPS(M, VT) ||
6854      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6855    return CommuteVectorShuffle(SVOp, DAG);
6856
6857  if (isShift) {
6858    // No better options. Use a vshldq / vsrldq.
6859    MVT EltVT = VT.getVectorElementType();
6860    ShAmt *= EltVT.getSizeInBits();
6861    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6862  }
6863
6864  bool Commuted = false;
6865  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6866  // 1,1,1,1 -> v8i16 though.
6867  V1IsSplat = isSplatVector(V1.getNode());
6868  V2IsSplat = isSplatVector(V2.getNode());
6869
6870  // Canonicalize the splat or undef, if present, to be on the RHS.
6871  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6872    CommuteVectorShuffleMask(M, NumElems);
6873    std::swap(V1, V2);
6874    std::swap(V1IsSplat, V2IsSplat);
6875    Commuted = true;
6876  }
6877
6878  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6879    // Shuffling low element of v1 into undef, just return v1.
6880    if (V2IsUndef)
6881      return V1;
6882    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6883    // the instruction selector will not match, so get a canonical MOVL with
6884    // swapped operands to undo the commute.
6885    return getMOVL(DAG, dl, VT, V2, V1);
6886  }
6887
6888  if (isUNPCKLMask(M, VT, HasInt256))
6889    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6890
6891  if (isUNPCKHMask(M, VT, HasInt256))
6892    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6893
6894  if (V2IsSplat) {
6895    // Normalize mask so all entries that point to V2 points to its first
6896    // element then try to match unpck{h|l} again. If match, return a
6897    // new vector_shuffle with the corrected mask.p
6898    SmallVector<int, 8> NewMask(M.begin(), M.end());
6899    NormalizeMask(NewMask, NumElems);
6900    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6901      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6902    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6903      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6904  }
6905
6906  if (Commuted) {
6907    // Commute is back and try unpck* again.
6908    // FIXME: this seems wrong.
6909    CommuteVectorShuffleMask(M, NumElems);
6910    std::swap(V1, V2);
6911    std::swap(V1IsSplat, V2IsSplat);
6912    Commuted = false;
6913
6914    if (isUNPCKLMask(M, VT, HasInt256))
6915      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6916
6917    if (isUNPCKHMask(M, VT, HasInt256))
6918      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6919  }
6920
6921  // Normalize the node to match x86 shuffle ops if needed
6922  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
6923    return CommuteVectorShuffle(SVOp, DAG);
6924
6925  // The checks below are all present in isShuffleMaskLegal, but they are
6926  // inlined here right now to enable us to directly emit target specific
6927  // nodes, and remove one by one until they don't return Op anymore.
6928
6929  if (isPALIGNRMask(M, VT, Subtarget))
6930    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6931                                getShufflePALIGNRImmediate(SVOp),
6932                                DAG);
6933
6934  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6935      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6936    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6937      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6938  }
6939
6940  if (isPSHUFHWMask(M, VT, HasInt256))
6941    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6942                                getShufflePSHUFHWImmediate(SVOp),
6943                                DAG);
6944
6945  if (isPSHUFLWMask(M, VT, HasInt256))
6946    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6947                                getShufflePSHUFLWImmediate(SVOp),
6948                                DAG);
6949
6950  if (isSHUFPMask(M, VT, HasFp256))
6951    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6952                                getShuffleSHUFImmediate(SVOp), DAG);
6953
6954  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6955    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6956  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6957    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6958
6959  //===--------------------------------------------------------------------===//
6960  // Generate target specific nodes for 128 or 256-bit shuffles only
6961  // supported in the AVX instruction set.
6962  //
6963
6964  // Handle VMOVDDUPY permutations
6965  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
6966    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6967
6968  // Handle VPERMILPS/D* permutations
6969  if (isVPERMILPMask(M, VT, HasFp256)) {
6970    if (HasInt256 && VT == MVT::v8i32)
6971      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6972                                  getShuffleSHUFImmediate(SVOp), DAG);
6973    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6974                                getShuffleSHUFImmediate(SVOp), DAG);
6975  }
6976
6977  // Handle VPERM2F128/VPERM2I128 permutations
6978  if (isVPERM2X128Mask(M, VT, HasFp256))
6979    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6980                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6981
6982  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6983  if (BlendOp.getNode())
6984    return BlendOp;
6985
6986  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6987    SmallVector<SDValue, 8> permclMask;
6988    for (unsigned i = 0; i != 8; ++i) {
6989      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6990    }
6991    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6992                               &permclMask[0], 8);
6993    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6994    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6995                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6996  }
6997
6998  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6999    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
7000                                getShuffleCLImmediate(SVOp), DAG);
7001
7002  //===--------------------------------------------------------------------===//
7003  // Since no target specific shuffle was selected for this generic one,
7004  // lower it into other known shuffles. FIXME: this isn't true yet, but
7005  // this is the plan.
7006  //
7007
7008  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7009  if (VT == MVT::v8i16) {
7010    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7011    if (NewOp.getNode())
7012      return NewOp;
7013  }
7014
7015  if (VT == MVT::v16i8) {
7016    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7017    if (NewOp.getNode())
7018      return NewOp;
7019  }
7020
7021  if (VT == MVT::v32i8) {
7022    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7023    if (NewOp.getNode())
7024      return NewOp;
7025  }
7026
7027  // Handle all 128-bit wide vectors with 4 elements, and match them with
7028  // several different shuffle types.
7029  if (NumElems == 4 && VT.is128BitVector())
7030    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7031
7032  // Handle general 256-bit shuffles
7033  if (VT.is256BitVector())
7034    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7035
7036  return SDValue();
7037}
7038
7039static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7040  MVT VT = Op.getValueType().getSimpleVT();
7041  DebugLoc dl = Op.getDebugLoc();
7042
7043  if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
7044    return SDValue();
7045
7046  if (VT.getSizeInBits() == 8) {
7047    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7048                                  Op.getOperand(0), Op.getOperand(1));
7049    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7050                                  DAG.getValueType(VT));
7051    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7052  }
7053
7054  if (VT.getSizeInBits() == 16) {
7055    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7056    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7057    if (Idx == 0)
7058      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7059                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7060                                     DAG.getNode(ISD::BITCAST, dl,
7061                                                 MVT::v4i32,
7062                                                 Op.getOperand(0)),
7063                                     Op.getOperand(1)));
7064    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7065                                  Op.getOperand(0), Op.getOperand(1));
7066    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7067                                  DAG.getValueType(VT));
7068    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7069  }
7070
7071  if (VT == MVT::f32) {
7072    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7073    // the result back to FR32 register. It's only worth matching if the
7074    // result has a single use which is a store or a bitcast to i32.  And in
7075    // the case of a store, it's not worth it if the index is a constant 0,
7076    // because a MOVSSmr can be used instead, which is smaller and faster.
7077    if (!Op.hasOneUse())
7078      return SDValue();
7079    SDNode *User = *Op.getNode()->use_begin();
7080    if ((User->getOpcode() != ISD::STORE ||
7081         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7082          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7083        (User->getOpcode() != ISD::BITCAST ||
7084         User->getValueType(0) != MVT::i32))
7085      return SDValue();
7086    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7087                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7088                                              Op.getOperand(0)),
7089                                              Op.getOperand(1));
7090    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7091  }
7092
7093  if (VT == MVT::i32 || VT == MVT::i64) {
7094    // ExtractPS/pextrq works with constant index.
7095    if (isa<ConstantSDNode>(Op.getOperand(1)))
7096      return Op;
7097  }
7098  return SDValue();
7099}
7100
7101SDValue
7102X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7103                                           SelectionDAG &DAG) const {
7104  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7105    return SDValue();
7106
7107  SDValue Vec = Op.getOperand(0);
7108  MVT VecVT = Vec.getValueType().getSimpleVT();
7109
7110  // If this is a 256-bit vector result, first extract the 128-bit vector and
7111  // then extract the element from the 128-bit vector.
7112  if (VecVT.is256BitVector()) {
7113    DebugLoc dl = Op.getNode()->getDebugLoc();
7114    unsigned NumElems = VecVT.getVectorNumElements();
7115    SDValue Idx = Op.getOperand(1);
7116    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7117
7118    // Get the 128-bit vector.
7119    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7120
7121    if (IdxVal >= NumElems/2)
7122      IdxVal -= NumElems/2;
7123    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7124                       DAG.getConstant(IdxVal, MVT::i32));
7125  }
7126
7127  assert(VecVT.is128BitVector() && "Unexpected vector length");
7128
7129  if (Subtarget->hasSSE41()) {
7130    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7131    if (Res.getNode())
7132      return Res;
7133  }
7134
7135  MVT VT = Op.getValueType().getSimpleVT();
7136  DebugLoc dl = Op.getDebugLoc();
7137  // TODO: handle v16i8.
7138  if (VT.getSizeInBits() == 16) {
7139    SDValue Vec = Op.getOperand(0);
7140    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7141    if (Idx == 0)
7142      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7143                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7144                                     DAG.getNode(ISD::BITCAST, dl,
7145                                                 MVT::v4i32, Vec),
7146                                     Op.getOperand(1)));
7147    // Transform it so it match pextrw which produces a 32-bit result.
7148    MVT EltVT = MVT::i32;
7149    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7150                                  Op.getOperand(0), Op.getOperand(1));
7151    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7152                                  DAG.getValueType(VT));
7153    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7154  }
7155
7156  if (VT.getSizeInBits() == 32) {
7157    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7158    if (Idx == 0)
7159      return Op;
7160
7161    // SHUFPS the element to the lowest double word, then movss.
7162    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7163    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7164    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7165                                       DAG.getUNDEF(VVT), Mask);
7166    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7167                       DAG.getIntPtrConstant(0));
7168  }
7169
7170  if (VT.getSizeInBits() == 64) {
7171    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7172    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7173    //        to match extract_elt for f64.
7174    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7175    if (Idx == 0)
7176      return Op;
7177
7178    // UNPCKHPD the element to the lowest double word, then movsd.
7179    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7180    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7181    int Mask[2] = { 1, -1 };
7182    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7183    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7184                                       DAG.getUNDEF(VVT), Mask);
7185    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7186                       DAG.getIntPtrConstant(0));
7187  }
7188
7189  return SDValue();
7190}
7191
7192static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7193  MVT VT = Op.getValueType().getSimpleVT();
7194  MVT EltVT = VT.getVectorElementType();
7195  DebugLoc dl = Op.getDebugLoc();
7196
7197  SDValue N0 = Op.getOperand(0);
7198  SDValue N1 = Op.getOperand(1);
7199  SDValue N2 = Op.getOperand(2);
7200
7201  if (!VT.is128BitVector())
7202    return SDValue();
7203
7204  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7205      isa<ConstantSDNode>(N2)) {
7206    unsigned Opc;
7207    if (VT == MVT::v8i16)
7208      Opc = X86ISD::PINSRW;
7209    else if (VT == MVT::v16i8)
7210      Opc = X86ISD::PINSRB;
7211    else
7212      Opc = X86ISD::PINSRB;
7213
7214    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7215    // argument.
7216    if (N1.getValueType() != MVT::i32)
7217      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7218    if (N2.getValueType() != MVT::i32)
7219      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7220    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7221  }
7222
7223  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7224    // Bits [7:6] of the constant are the source select.  This will always be
7225    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7226    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7227    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7228    // Bits [5:4] of the constant are the destination select.  This is the
7229    //  value of the incoming immediate.
7230    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7231    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7232    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7233    // Create this as a scalar to vector..
7234    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7235    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7236  }
7237
7238  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7239    // PINSR* works with constant index.
7240    return Op;
7241  }
7242  return SDValue();
7243}
7244
7245SDValue
7246X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7247  MVT VT = Op.getValueType().getSimpleVT();
7248  MVT EltVT = VT.getVectorElementType();
7249
7250  DebugLoc dl = Op.getDebugLoc();
7251  SDValue N0 = Op.getOperand(0);
7252  SDValue N1 = Op.getOperand(1);
7253  SDValue N2 = Op.getOperand(2);
7254
7255  // If this is a 256-bit vector result, first extract the 128-bit vector,
7256  // insert the element into the extracted half and then place it back.
7257  if (VT.is256BitVector()) {
7258    if (!isa<ConstantSDNode>(N2))
7259      return SDValue();
7260
7261    // Get the desired 128-bit vector half.
7262    unsigned NumElems = VT.getVectorNumElements();
7263    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7264    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7265
7266    // Insert the element into the desired half.
7267    bool Upper = IdxVal >= NumElems/2;
7268    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7269                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7270
7271    // Insert the changed part back to the 256-bit vector
7272    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7273  }
7274
7275  if (Subtarget->hasSSE41())
7276    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7277
7278  if (EltVT == MVT::i8)
7279    return SDValue();
7280
7281  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7282    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7283    // as its second argument.
7284    if (N1.getValueType() != MVT::i32)
7285      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7286    if (N2.getValueType() != MVT::i32)
7287      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7288    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7289  }
7290  return SDValue();
7291}
7292
7293static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7294  LLVMContext *Context = DAG.getContext();
7295  DebugLoc dl = Op.getDebugLoc();
7296  MVT OpVT = Op.getValueType().getSimpleVT();
7297
7298  // If this is a 256-bit vector result, first insert into a 128-bit
7299  // vector and then insert into the 256-bit vector.
7300  if (!OpVT.is128BitVector()) {
7301    // Insert into a 128-bit vector.
7302    EVT VT128 = EVT::getVectorVT(*Context,
7303                                 OpVT.getVectorElementType(),
7304                                 OpVT.getVectorNumElements() / 2);
7305
7306    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7307
7308    // Insert the 128-bit vector.
7309    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7310  }
7311
7312  if (OpVT == MVT::v1i64 &&
7313      Op.getOperand(0).getValueType() == MVT::i64)
7314    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7315
7316  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7317  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7318  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7319                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7320}
7321
7322// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7323// a simple subregister reference or explicit instructions to grab
7324// upper bits of a vector.
7325static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7326                                      SelectionDAG &DAG) {
7327  if (Subtarget->hasFp256()) {
7328    DebugLoc dl = Op.getNode()->getDebugLoc();
7329    SDValue Vec = Op.getNode()->getOperand(0);
7330    SDValue Idx = Op.getNode()->getOperand(1);
7331
7332    if (Op.getNode()->getValueType(0).is128BitVector() &&
7333        Vec.getNode()->getValueType(0).is256BitVector() &&
7334        isa<ConstantSDNode>(Idx)) {
7335      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7336      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7337    }
7338  }
7339  return SDValue();
7340}
7341
7342// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7343// simple superregister reference or explicit instructions to insert
7344// the upper bits of a vector.
7345static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7346                                     SelectionDAG &DAG) {
7347  if (Subtarget->hasFp256()) {
7348    DebugLoc dl = Op.getNode()->getDebugLoc();
7349    SDValue Vec = Op.getNode()->getOperand(0);
7350    SDValue SubVec = Op.getNode()->getOperand(1);
7351    SDValue Idx = Op.getNode()->getOperand(2);
7352
7353    if (Op.getNode()->getValueType(0).is256BitVector() &&
7354        SubVec.getNode()->getValueType(0).is128BitVector() &&
7355        isa<ConstantSDNode>(Idx)) {
7356      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7357      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7358    }
7359  }
7360  return SDValue();
7361}
7362
7363// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7364// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7365// one of the above mentioned nodes. It has to be wrapped because otherwise
7366// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7367// be used to form addressing mode. These wrapped nodes will be selected
7368// into MOV32ri.
7369SDValue
7370X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7371  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7372
7373  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7374  // global base reg.
7375  unsigned char OpFlag = 0;
7376  unsigned WrapperKind = X86ISD::Wrapper;
7377  CodeModel::Model M = getTargetMachine().getCodeModel();
7378
7379  if (Subtarget->isPICStyleRIPRel() &&
7380      (M == CodeModel::Small || M == CodeModel::Kernel))
7381    WrapperKind = X86ISD::WrapperRIP;
7382  else if (Subtarget->isPICStyleGOT())
7383    OpFlag = X86II::MO_GOTOFF;
7384  else if (Subtarget->isPICStyleStubPIC())
7385    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7386
7387  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7388                                             CP->getAlignment(),
7389                                             CP->getOffset(), OpFlag);
7390  DebugLoc DL = CP->getDebugLoc();
7391  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7392  // With PIC, the address is actually $g + Offset.
7393  if (OpFlag) {
7394    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7395                         DAG.getNode(X86ISD::GlobalBaseReg,
7396                                     DebugLoc(), getPointerTy()),
7397                         Result);
7398  }
7399
7400  return Result;
7401}
7402
7403SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7404  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7405
7406  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7407  // global base reg.
7408  unsigned char OpFlag = 0;
7409  unsigned WrapperKind = X86ISD::Wrapper;
7410  CodeModel::Model M = getTargetMachine().getCodeModel();
7411
7412  if (Subtarget->isPICStyleRIPRel() &&
7413      (M == CodeModel::Small || M == CodeModel::Kernel))
7414    WrapperKind = X86ISD::WrapperRIP;
7415  else if (Subtarget->isPICStyleGOT())
7416    OpFlag = X86II::MO_GOTOFF;
7417  else if (Subtarget->isPICStyleStubPIC())
7418    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7419
7420  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7421                                          OpFlag);
7422  DebugLoc DL = JT->getDebugLoc();
7423  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7424
7425  // With PIC, the address is actually $g + Offset.
7426  if (OpFlag)
7427    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7428                         DAG.getNode(X86ISD::GlobalBaseReg,
7429                                     DebugLoc(), getPointerTy()),
7430                         Result);
7431
7432  return Result;
7433}
7434
7435SDValue
7436X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7437  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7438
7439  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7440  // global base reg.
7441  unsigned char OpFlag = 0;
7442  unsigned WrapperKind = X86ISD::Wrapper;
7443  CodeModel::Model M = getTargetMachine().getCodeModel();
7444
7445  if (Subtarget->isPICStyleRIPRel() &&
7446      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7447    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7448      OpFlag = X86II::MO_GOTPCREL;
7449    WrapperKind = X86ISD::WrapperRIP;
7450  } else if (Subtarget->isPICStyleGOT()) {
7451    OpFlag = X86II::MO_GOT;
7452  } else if (Subtarget->isPICStyleStubPIC()) {
7453    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7454  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7455    OpFlag = X86II::MO_DARWIN_NONLAZY;
7456  }
7457
7458  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7459
7460  DebugLoc DL = Op.getDebugLoc();
7461  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7462
7463  // With PIC, the address is actually $g + Offset.
7464  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7465      !Subtarget->is64Bit()) {
7466    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7467                         DAG.getNode(X86ISD::GlobalBaseReg,
7468                                     DebugLoc(), getPointerTy()),
7469                         Result);
7470  }
7471
7472  // For symbols that require a load from a stub to get the address, emit the
7473  // load.
7474  if (isGlobalStubReference(OpFlag))
7475    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7476                         MachinePointerInfo::getGOT(), false, false, false, 0);
7477
7478  return Result;
7479}
7480
7481SDValue
7482X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7483  // Create the TargetBlockAddressAddress node.
7484  unsigned char OpFlags =
7485    Subtarget->ClassifyBlockAddressReference();
7486  CodeModel::Model M = getTargetMachine().getCodeModel();
7487  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7488  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7489  DebugLoc dl = Op.getDebugLoc();
7490  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7491                                             OpFlags);
7492
7493  if (Subtarget->isPICStyleRIPRel() &&
7494      (M == CodeModel::Small || M == CodeModel::Kernel))
7495    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7496  else
7497    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7498
7499  // With PIC, the address is actually $g + Offset.
7500  if (isGlobalRelativeToPICBase(OpFlags)) {
7501    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7502                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7503                         Result);
7504  }
7505
7506  return Result;
7507}
7508
7509SDValue
7510X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7511                                      int64_t Offset,
7512                                      SelectionDAG &DAG) const {
7513  // Create the TargetGlobalAddress node, folding in the constant
7514  // offset if it is legal.
7515  unsigned char OpFlags =
7516    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7517  CodeModel::Model M = getTargetMachine().getCodeModel();
7518  SDValue Result;
7519  if (OpFlags == X86II::MO_NO_FLAG &&
7520      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7521    // A direct static reference to a global.
7522    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7523    Offset = 0;
7524  } else {
7525    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7526  }
7527
7528  if (Subtarget->isPICStyleRIPRel() &&
7529      (M == CodeModel::Small || M == CodeModel::Kernel))
7530    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7531  else
7532    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7533
7534  // With PIC, the address is actually $g + Offset.
7535  if (isGlobalRelativeToPICBase(OpFlags)) {
7536    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7537                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7538                         Result);
7539  }
7540
7541  // For globals that require a load from a stub to get the address, emit the
7542  // load.
7543  if (isGlobalStubReference(OpFlags))
7544    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7545                         MachinePointerInfo::getGOT(), false, false, false, 0);
7546
7547  // If there was a non-zero offset that we didn't fold, create an explicit
7548  // addition for it.
7549  if (Offset != 0)
7550    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7551                         DAG.getConstant(Offset, getPointerTy()));
7552
7553  return Result;
7554}
7555
7556SDValue
7557X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7558  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7559  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7560  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7561}
7562
7563static SDValue
7564GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7565           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7566           unsigned char OperandFlags, bool LocalDynamic = false) {
7567  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7568  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7569  DebugLoc dl = GA->getDebugLoc();
7570  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7571                                           GA->getValueType(0),
7572                                           GA->getOffset(),
7573                                           OperandFlags);
7574
7575  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7576                                           : X86ISD::TLSADDR;
7577
7578  if (InFlag) {
7579    SDValue Ops[] = { Chain,  TGA, *InFlag };
7580    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7581  } else {
7582    SDValue Ops[]  = { Chain, TGA };
7583    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7584  }
7585
7586  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7587  MFI->setAdjustsStack(true);
7588
7589  SDValue Flag = Chain.getValue(1);
7590  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7591}
7592
7593// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7594static SDValue
7595LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7596                                const EVT PtrVT) {
7597  SDValue InFlag;
7598  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7599  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7600                                   DAG.getNode(X86ISD::GlobalBaseReg,
7601                                               DebugLoc(), PtrVT), InFlag);
7602  InFlag = Chain.getValue(1);
7603
7604  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7605}
7606
7607// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7608static SDValue
7609LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7610                                const EVT PtrVT) {
7611  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7612                    X86::RAX, X86II::MO_TLSGD);
7613}
7614
7615static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7616                                           SelectionDAG &DAG,
7617                                           const EVT PtrVT,
7618                                           bool is64Bit) {
7619  DebugLoc dl = GA->getDebugLoc();
7620
7621  // Get the start address of the TLS block for this module.
7622  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7623      .getInfo<X86MachineFunctionInfo>();
7624  MFI->incNumLocalDynamicTLSAccesses();
7625
7626  SDValue Base;
7627  if (is64Bit) {
7628    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7629                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7630  } else {
7631    SDValue InFlag;
7632    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7633        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7634    InFlag = Chain.getValue(1);
7635    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7636                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7637  }
7638
7639  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7640  // of Base.
7641
7642  // Build x@dtpoff.
7643  unsigned char OperandFlags = X86II::MO_DTPOFF;
7644  unsigned WrapperKind = X86ISD::Wrapper;
7645  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7646                                           GA->getValueType(0),
7647                                           GA->getOffset(), OperandFlags);
7648  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7649
7650  // Add x@dtpoff with the base.
7651  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7652}
7653
7654// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7655static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7656                                   const EVT PtrVT, TLSModel::Model model,
7657                                   bool is64Bit, bool isPIC) {
7658  DebugLoc dl = GA->getDebugLoc();
7659
7660  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7661  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7662                                                         is64Bit ? 257 : 256));
7663
7664  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7665                                      DAG.getIntPtrConstant(0),
7666                                      MachinePointerInfo(Ptr),
7667                                      false, false, false, 0);
7668
7669  unsigned char OperandFlags = 0;
7670  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7671  // initialexec.
7672  unsigned WrapperKind = X86ISD::Wrapper;
7673  if (model == TLSModel::LocalExec) {
7674    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7675  } else if (model == TLSModel::InitialExec) {
7676    if (is64Bit) {
7677      OperandFlags = X86II::MO_GOTTPOFF;
7678      WrapperKind = X86ISD::WrapperRIP;
7679    } else {
7680      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7681    }
7682  } else {
7683    llvm_unreachable("Unexpected model");
7684  }
7685
7686  // emit "addl x@ntpoff,%eax" (local exec)
7687  // or "addl x@indntpoff,%eax" (initial exec)
7688  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7689  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7690                                           GA->getValueType(0),
7691                                           GA->getOffset(), OperandFlags);
7692  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7693
7694  if (model == TLSModel::InitialExec) {
7695    if (isPIC && !is64Bit) {
7696      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7697                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7698                           Offset);
7699    }
7700
7701    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7702                         MachinePointerInfo::getGOT(), false, false, false,
7703                         0);
7704  }
7705
7706  // The address of the thread local variable is the add of the thread
7707  // pointer with the offset of the variable.
7708  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7709}
7710
7711SDValue
7712X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7713
7714  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7715  const GlobalValue *GV = GA->getGlobal();
7716
7717  if (Subtarget->isTargetELF()) {
7718    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7719
7720    switch (model) {
7721      case TLSModel::GeneralDynamic:
7722        if (Subtarget->is64Bit())
7723          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7724        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7725      case TLSModel::LocalDynamic:
7726        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7727                                           Subtarget->is64Bit());
7728      case TLSModel::InitialExec:
7729      case TLSModel::LocalExec:
7730        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7731                                   Subtarget->is64Bit(),
7732                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7733    }
7734    llvm_unreachable("Unknown TLS model.");
7735  }
7736
7737  if (Subtarget->isTargetDarwin()) {
7738    // Darwin only has one model of TLS.  Lower to that.
7739    unsigned char OpFlag = 0;
7740    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7741                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7742
7743    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7744    // global base reg.
7745    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7746                  !Subtarget->is64Bit();
7747    if (PIC32)
7748      OpFlag = X86II::MO_TLVP_PIC_BASE;
7749    else
7750      OpFlag = X86II::MO_TLVP;
7751    DebugLoc DL = Op.getDebugLoc();
7752    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7753                                                GA->getValueType(0),
7754                                                GA->getOffset(), OpFlag);
7755    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7756
7757    // With PIC32, the address is actually $g + Offset.
7758    if (PIC32)
7759      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7760                           DAG.getNode(X86ISD::GlobalBaseReg,
7761                                       DebugLoc(), getPointerTy()),
7762                           Offset);
7763
7764    // Lowering the machine isd will make sure everything is in the right
7765    // location.
7766    SDValue Chain = DAG.getEntryNode();
7767    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7768    SDValue Args[] = { Chain, Offset };
7769    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7770
7771    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7772    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7773    MFI->setAdjustsStack(true);
7774
7775    // And our return value (tls address) is in the standard call return value
7776    // location.
7777    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7778    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7779                              Chain.getValue(1));
7780  }
7781
7782  if (Subtarget->isTargetWindows()) {
7783    // Just use the implicit TLS architecture
7784    // Need to generate someting similar to:
7785    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7786    //                                  ; from TEB
7787    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7788    //   mov     rcx, qword [rdx+rcx*8]
7789    //   mov     eax, .tls$:tlsvar
7790    //   [rax+rcx] contains the address
7791    // Windows 64bit: gs:0x58
7792    // Windows 32bit: fs:__tls_array
7793
7794    // If GV is an alias then use the aliasee for determining
7795    // thread-localness.
7796    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7797      GV = GA->resolveAliasedGlobal(false);
7798    DebugLoc dl = GA->getDebugLoc();
7799    SDValue Chain = DAG.getEntryNode();
7800
7801    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7802    // %gs:0x58 (64-bit).
7803    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7804                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7805                                                             256)
7806                                        : Type::getInt32PtrTy(*DAG.getContext(),
7807                                                              257));
7808
7809    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7810                                        Subtarget->is64Bit()
7811                                        ? DAG.getIntPtrConstant(0x58)
7812                                        : DAG.getExternalSymbol("_tls_array",
7813                                                                getPointerTy()),
7814                                        MachinePointerInfo(Ptr),
7815                                        false, false, false, 0);
7816
7817    // Load the _tls_index variable
7818    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7819    if (Subtarget->is64Bit())
7820      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7821                           IDX, MachinePointerInfo(), MVT::i32,
7822                           false, false, 0);
7823    else
7824      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7825                        false, false, false, 0);
7826
7827    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7828                                    getPointerTy());
7829    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7830
7831    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7832    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7833                      false, false, false, 0);
7834
7835    // Get the offset of start of .tls section
7836    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7837                                             GA->getValueType(0),
7838                                             GA->getOffset(), X86II::MO_SECREL);
7839    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7840
7841    // The address of the thread local variable is the add of the thread
7842    // pointer with the offset of the variable.
7843    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7844  }
7845
7846  llvm_unreachable("TLS not implemented for this target.");
7847}
7848
7849/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7850/// and take a 2 x i32 value to shift plus a shift amount.
7851SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7852  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7853  EVT VT = Op.getValueType();
7854  unsigned VTBits = VT.getSizeInBits();
7855  DebugLoc dl = Op.getDebugLoc();
7856  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7857  SDValue ShOpLo = Op.getOperand(0);
7858  SDValue ShOpHi = Op.getOperand(1);
7859  SDValue ShAmt  = Op.getOperand(2);
7860  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7861                                     DAG.getConstant(VTBits - 1, MVT::i8))
7862                       : DAG.getConstant(0, VT);
7863
7864  SDValue Tmp2, Tmp3;
7865  if (Op.getOpcode() == ISD::SHL_PARTS) {
7866    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7867    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7868  } else {
7869    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7870    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7871  }
7872
7873  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7874                                DAG.getConstant(VTBits, MVT::i8));
7875  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7876                             AndNode, DAG.getConstant(0, MVT::i8));
7877
7878  SDValue Hi, Lo;
7879  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7880  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7881  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7882
7883  if (Op.getOpcode() == ISD::SHL_PARTS) {
7884    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7885    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7886  } else {
7887    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7888    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7889  }
7890
7891  SDValue Ops[2] = { Lo, Hi };
7892  return DAG.getMergeValues(Ops, 2, dl);
7893}
7894
7895SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7896                                           SelectionDAG &DAG) const {
7897  EVT SrcVT = Op.getOperand(0).getValueType();
7898
7899  if (SrcVT.isVector())
7900    return SDValue();
7901
7902  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7903         "Unknown SINT_TO_FP to lower!");
7904
7905  // These are really Legal; return the operand so the caller accepts it as
7906  // Legal.
7907  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7908    return Op;
7909  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7910      Subtarget->is64Bit()) {
7911    return Op;
7912  }
7913
7914  DebugLoc dl = Op.getDebugLoc();
7915  unsigned Size = SrcVT.getSizeInBits()/8;
7916  MachineFunction &MF = DAG.getMachineFunction();
7917  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7918  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7919  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7920                               StackSlot,
7921                               MachinePointerInfo::getFixedStack(SSFI),
7922                               false, false, 0);
7923  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7924}
7925
7926SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7927                                     SDValue StackSlot,
7928                                     SelectionDAG &DAG) const {
7929  // Build the FILD
7930  DebugLoc DL = Op.getDebugLoc();
7931  SDVTList Tys;
7932  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7933  if (useSSE)
7934    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7935  else
7936    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7937
7938  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7939
7940  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7941  MachineMemOperand *MMO;
7942  if (FI) {
7943    int SSFI = FI->getIndex();
7944    MMO =
7945      DAG.getMachineFunction()
7946      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7947                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7948  } else {
7949    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7950    StackSlot = StackSlot.getOperand(1);
7951  }
7952  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7953  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7954                                           X86ISD::FILD, DL,
7955                                           Tys, Ops, array_lengthof(Ops),
7956                                           SrcVT, MMO);
7957
7958  if (useSSE) {
7959    Chain = Result.getValue(1);
7960    SDValue InFlag = Result.getValue(2);
7961
7962    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7963    // shouldn't be necessary except that RFP cannot be live across
7964    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7965    MachineFunction &MF = DAG.getMachineFunction();
7966    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7967    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7968    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7969    Tys = DAG.getVTList(MVT::Other);
7970    SDValue Ops[] = {
7971      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7972    };
7973    MachineMemOperand *MMO =
7974      DAG.getMachineFunction()
7975      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7976                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7977
7978    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7979                                    Ops, array_lengthof(Ops),
7980                                    Op.getValueType(), MMO);
7981    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7982                         MachinePointerInfo::getFixedStack(SSFI),
7983                         false, false, false, 0);
7984  }
7985
7986  return Result;
7987}
7988
7989// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7990SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7991                                               SelectionDAG &DAG) const {
7992  // This algorithm is not obvious. Here it is what we're trying to output:
7993  /*
7994     movq       %rax,  %xmm0
7995     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7996     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7997     #ifdef __SSE3__
7998       haddpd   %xmm0, %xmm0
7999     #else
8000       pshufd   $0x4e, %xmm0, %xmm1
8001       addpd    %xmm1, %xmm0
8002     #endif
8003  */
8004
8005  DebugLoc dl = Op.getDebugLoc();
8006  LLVMContext *Context = DAG.getContext();
8007
8008  // Build some magic constants.
8009  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8010  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8011  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8012
8013  SmallVector<Constant*,2> CV1;
8014  CV1.push_back(
8015        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
8016  CV1.push_back(
8017        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
8018  Constant *C1 = ConstantVector::get(CV1);
8019  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8020
8021  // Load the 64-bit value into an XMM register.
8022  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8023                            Op.getOperand(0));
8024  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8025                              MachinePointerInfo::getConstantPool(),
8026                              false, false, false, 16);
8027  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8028                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8029                              CLod0);
8030
8031  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8032                              MachinePointerInfo::getConstantPool(),
8033                              false, false, false, 16);
8034  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8035  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8036  SDValue Result;
8037
8038  if (Subtarget->hasSSE3()) {
8039    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8040    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8041  } else {
8042    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8043    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8044                                           S2F, 0x4E, DAG);
8045    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8046                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8047                         Sub);
8048  }
8049
8050  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8051                     DAG.getIntPtrConstant(0));
8052}
8053
8054// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8055SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8056                                               SelectionDAG &DAG) const {
8057  DebugLoc dl = Op.getDebugLoc();
8058  // FP constant to bias correct the final result.
8059  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8060                                   MVT::f64);
8061
8062  // Load the 32-bit value into an XMM register.
8063  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8064                             Op.getOperand(0));
8065
8066  // Zero out the upper parts of the register.
8067  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8068
8069  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8070                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8071                     DAG.getIntPtrConstant(0));
8072
8073  // Or the load with the bias.
8074  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8075                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8076                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8077                                                   MVT::v2f64, Load)),
8078                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8079                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8080                                                   MVT::v2f64, Bias)));
8081  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8082                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8083                   DAG.getIntPtrConstant(0));
8084
8085  // Subtract the bias.
8086  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8087
8088  // Handle final rounding.
8089  EVT DestVT = Op.getValueType();
8090
8091  if (DestVT.bitsLT(MVT::f64))
8092    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8093                       DAG.getIntPtrConstant(0));
8094  if (DestVT.bitsGT(MVT::f64))
8095    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8096
8097  // Handle final rounding.
8098  return Sub;
8099}
8100
8101SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8102                                               SelectionDAG &DAG) const {
8103  SDValue N0 = Op.getOperand(0);
8104  EVT SVT = N0.getValueType();
8105  DebugLoc dl = Op.getDebugLoc();
8106
8107  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8108          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8109         "Custom UINT_TO_FP is not supported!");
8110
8111  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, SVT.getVectorNumElements());
8112  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8113                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8114}
8115
8116SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8117                                           SelectionDAG &DAG) const {
8118  SDValue N0 = Op.getOperand(0);
8119  DebugLoc dl = Op.getDebugLoc();
8120
8121  if (Op.getValueType().isVector())
8122    return lowerUINT_TO_FP_vec(Op, DAG);
8123
8124  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8125  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8126  // the optimization here.
8127  if (DAG.SignBitIsZero(N0))
8128    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8129
8130  EVT SrcVT = N0.getValueType();
8131  EVT DstVT = Op.getValueType();
8132  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8133    return LowerUINT_TO_FP_i64(Op, DAG);
8134  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8135    return LowerUINT_TO_FP_i32(Op, DAG);
8136  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8137    return SDValue();
8138
8139  // Make a 64-bit buffer, and use it to build an FILD.
8140  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8141  if (SrcVT == MVT::i32) {
8142    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8143    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8144                                     getPointerTy(), StackSlot, WordOff);
8145    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8146                                  StackSlot, MachinePointerInfo(),
8147                                  false, false, 0);
8148    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8149                                  OffsetSlot, MachinePointerInfo(),
8150                                  false, false, 0);
8151    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8152    return Fild;
8153  }
8154
8155  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8156  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8157                               StackSlot, MachinePointerInfo(),
8158                               false, false, 0);
8159  // For i64 source, we need to add the appropriate power of 2 if the input
8160  // was negative.  This is the same as the optimization in
8161  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8162  // we must be careful to do the computation in x87 extended precision, not
8163  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8164  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8165  MachineMemOperand *MMO =
8166    DAG.getMachineFunction()
8167    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8168                          MachineMemOperand::MOLoad, 8, 8);
8169
8170  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8171  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8172  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8173                                         MVT::i64, MMO);
8174
8175  APInt FF(32, 0x5F800000ULL);
8176
8177  // Check whether the sign bit is set.
8178  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8179                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8180                                 ISD::SETLT);
8181
8182  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8183  SDValue FudgePtr = DAG.getConstantPool(
8184                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8185                                         getPointerTy());
8186
8187  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8188  SDValue Zero = DAG.getIntPtrConstant(0);
8189  SDValue Four = DAG.getIntPtrConstant(4);
8190  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8191                               Zero, Four);
8192  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8193
8194  // Load the value out, extending it from f32 to f80.
8195  // FIXME: Avoid the extend by constructing the right constant pool?
8196  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8197                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8198                                 MVT::f32, false, false, 4);
8199  // Extend everything to 80 bits to force it to be done on x87.
8200  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8201  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8202}
8203
8204std::pair<SDValue,SDValue> X86TargetLowering::
8205FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8206  DebugLoc DL = Op.getDebugLoc();
8207
8208  EVT DstTy = Op.getValueType();
8209
8210  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8211    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8212    DstTy = MVT::i64;
8213  }
8214
8215  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8216         DstTy.getSimpleVT() >= MVT::i16 &&
8217         "Unknown FP_TO_INT to lower!");
8218
8219  // These are really Legal.
8220  if (DstTy == MVT::i32 &&
8221      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8222    return std::make_pair(SDValue(), SDValue());
8223  if (Subtarget->is64Bit() &&
8224      DstTy == MVT::i64 &&
8225      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8226    return std::make_pair(SDValue(), SDValue());
8227
8228  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8229  // stack slot, or into the FTOL runtime function.
8230  MachineFunction &MF = DAG.getMachineFunction();
8231  unsigned MemSize = DstTy.getSizeInBits()/8;
8232  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8233  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8234
8235  unsigned Opc;
8236  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8237    Opc = X86ISD::WIN_FTOL;
8238  else
8239    switch (DstTy.getSimpleVT().SimpleTy) {
8240    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8241    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8242    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8243    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8244    }
8245
8246  SDValue Chain = DAG.getEntryNode();
8247  SDValue Value = Op.getOperand(0);
8248  EVT TheVT = Op.getOperand(0).getValueType();
8249  // FIXME This causes a redundant load/store if the SSE-class value is already
8250  // in memory, such as if it is on the callstack.
8251  if (isScalarFPTypeInSSEReg(TheVT)) {
8252    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8253    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8254                         MachinePointerInfo::getFixedStack(SSFI),
8255                         false, false, 0);
8256    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8257    SDValue Ops[] = {
8258      Chain, StackSlot, DAG.getValueType(TheVT)
8259    };
8260
8261    MachineMemOperand *MMO =
8262      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8263                              MachineMemOperand::MOLoad, MemSize, MemSize);
8264    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8265                                    DstTy, MMO);
8266    Chain = Value.getValue(1);
8267    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8268    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8269  }
8270
8271  MachineMemOperand *MMO =
8272    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8273                            MachineMemOperand::MOStore, MemSize, MemSize);
8274
8275  if (Opc != X86ISD::WIN_FTOL) {
8276    // Build the FP_TO_INT*_IN_MEM
8277    SDValue Ops[] = { Chain, Value, StackSlot };
8278    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8279                                           Ops, 3, DstTy, MMO);
8280    return std::make_pair(FIST, StackSlot);
8281  } else {
8282    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8283      DAG.getVTList(MVT::Other, MVT::Glue),
8284      Chain, Value);
8285    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8286      MVT::i32, ftol.getValue(1));
8287    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8288      MVT::i32, eax.getValue(2));
8289    SDValue Ops[] = { eax, edx };
8290    SDValue pair = IsReplace
8291      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8292      : DAG.getMergeValues(Ops, 2, DL);
8293    return std::make_pair(pair, SDValue());
8294  }
8295}
8296
8297static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8298                              const X86Subtarget *Subtarget) {
8299  EVT VT = Op->getValueType(0);
8300  SDValue In = Op->getOperand(0);
8301  EVT InVT = In.getValueType();
8302  DebugLoc dl = Op->getDebugLoc();
8303
8304  // Optimize vectors in AVX mode:
8305  //
8306  //   v8i16 -> v8i32
8307  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8308  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8309  //   Concat upper and lower parts.
8310  //
8311  //   v4i32 -> v4i64
8312  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8313  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8314  //   Concat upper and lower parts.
8315  //
8316
8317  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8318      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8319    return SDValue();
8320
8321  if (Subtarget->hasInt256())
8322    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8323
8324  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8325  SDValue Undef = DAG.getUNDEF(InVT);
8326  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8327  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8328  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8329
8330  EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8331                             VT.getVectorNumElements()/2);
8332
8333  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8334  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8335
8336  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8337}
8338
8339SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8340                                           SelectionDAG &DAG) const {
8341  if (Subtarget->hasFp256()) {
8342    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8343    if (Res.getNode())
8344      return Res;
8345  }
8346
8347  return SDValue();
8348}
8349SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8350                                            SelectionDAG &DAG) const {
8351  DebugLoc DL = Op.getDebugLoc();
8352  EVT VT = Op.getValueType();
8353  SDValue In = Op.getOperand(0);
8354  EVT SVT = In.getValueType();
8355
8356  if (Subtarget->hasFp256()) {
8357    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8358    if (Res.getNode())
8359      return Res;
8360  }
8361
8362  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8363      VT.getVectorNumElements() != SVT.getVectorNumElements())
8364    return SDValue();
8365
8366  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8367
8368  // AVX2 has better support of integer extending.
8369  if (Subtarget->hasInt256())
8370    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8371
8372  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8373  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8374  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8375                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8376                                                DAG.getUNDEF(MVT::v8i16),
8377                                                &Mask[0]));
8378
8379  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8380}
8381
8382SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8383  DebugLoc DL = Op.getDebugLoc();
8384  EVT VT = Op.getValueType();
8385  SDValue In = Op.getOperand(0);
8386  EVT SVT = In.getValueType();
8387
8388  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8389    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8390    if (Subtarget->hasInt256()) {
8391      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8392      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8393      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8394                                ShufMask);
8395      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8396                         DAG.getIntPtrConstant(0));
8397    }
8398
8399    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8400    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8401                               DAG.getIntPtrConstant(0));
8402    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8403                               DAG.getIntPtrConstant(2));
8404
8405    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8406    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8407
8408    // The PSHUFD mask:
8409    static const int ShufMask1[] = {0, 2, 0, 0};
8410    SDValue Undef = DAG.getUNDEF(VT);
8411    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8412    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8413
8414    // The MOVLHPS mask:
8415    static const int ShufMask2[] = {0, 1, 4, 5};
8416    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8417  }
8418
8419  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8420    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8421    if (Subtarget->hasInt256()) {
8422      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8423
8424      SmallVector<SDValue,32> pshufbMask;
8425      for (unsigned i = 0; i < 2; ++i) {
8426        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8427        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8428        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8429        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8430        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8431        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8432        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8433        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8434        for (unsigned j = 0; j < 8; ++j)
8435          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8436      }
8437      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8438                               &pshufbMask[0], 32);
8439      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8440      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8441
8442      static const int ShufMask[] = {0,  2,  -1,  -1};
8443      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8444                                &ShufMask[0]);
8445      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8446                       DAG.getIntPtrConstant(0));
8447      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8448    }
8449
8450    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8451                               DAG.getIntPtrConstant(0));
8452
8453    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8454                               DAG.getIntPtrConstant(4));
8455
8456    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8457    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8458
8459    // The PSHUFB mask:
8460    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8461                                   -1, -1, -1, -1, -1, -1, -1, -1};
8462
8463    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8464    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8465    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8466
8467    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8468    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8469
8470    // The MOVLHPS Mask:
8471    static const int ShufMask2[] = {0, 1, 4, 5};
8472    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8473    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8474  }
8475
8476  // Handle truncation of V256 to V128 using shuffles.
8477  if (!VT.is128BitVector() || !SVT.is256BitVector())
8478    return SDValue();
8479
8480  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8481         "Invalid op");
8482  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8483
8484  unsigned NumElems = VT.getVectorNumElements();
8485  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8486                             NumElems * 2);
8487
8488  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8489  // Prepare truncation shuffle mask
8490  for (unsigned i = 0; i != NumElems; ++i)
8491    MaskVec[i] = i * 2;
8492  SDValue V = DAG.getVectorShuffle(NVT, DL,
8493                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8494                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8495  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8496                     DAG.getIntPtrConstant(0));
8497}
8498
8499SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8500                                           SelectionDAG &DAG) const {
8501  if (Op.getValueType().isVector()) {
8502    if (Op.getValueType() == MVT::v8i16)
8503      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), Op.getValueType(),
8504                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8505                                     MVT::v8i32, Op.getOperand(0)));
8506    return SDValue();
8507  }
8508
8509  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8510    /*IsSigned=*/ true, /*IsReplace=*/ false);
8511  SDValue FIST = Vals.first, StackSlot = Vals.second;
8512  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8513  if (FIST.getNode() == 0) return Op;
8514
8515  if (StackSlot.getNode())
8516    // Load the result.
8517    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8518                       FIST, StackSlot, MachinePointerInfo(),
8519                       false, false, false, 0);
8520
8521  // The node is the result.
8522  return FIST;
8523}
8524
8525SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8526                                           SelectionDAG &DAG) const {
8527  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8528    /*IsSigned=*/ false, /*IsReplace=*/ false);
8529  SDValue FIST = Vals.first, StackSlot = Vals.second;
8530  assert(FIST.getNode() && "Unexpected failure");
8531
8532  if (StackSlot.getNode())
8533    // Load the result.
8534    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8535                       FIST, StackSlot, MachinePointerInfo(),
8536                       false, false, false, 0);
8537
8538  // The node is the result.
8539  return FIST;
8540}
8541
8542SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op,
8543                                          SelectionDAG &DAG) const {
8544  DebugLoc DL = Op.getDebugLoc();
8545  EVT VT = Op.getValueType();
8546  SDValue In = Op.getOperand(0);
8547  EVT SVT = In.getValueType();
8548
8549  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8550
8551  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8552                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8553                                 In, DAG.getUNDEF(SVT)));
8554}
8555
8556SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8557  LLVMContext *Context = DAG.getContext();
8558  DebugLoc dl = Op.getDebugLoc();
8559  EVT VT = Op.getValueType();
8560  EVT EltVT = VT;
8561  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8562  if (VT.isVector()) {
8563    EltVT = VT.getVectorElementType();
8564    NumElts = VT.getVectorNumElements();
8565  }
8566  Constant *C;
8567  if (EltVT == MVT::f64)
8568    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8569  else
8570    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8571  C = ConstantVector::getSplat(NumElts, C);
8572  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8573  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8574  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8575                             MachinePointerInfo::getConstantPool(),
8576                             false, false, false, Alignment);
8577  if (VT.isVector()) {
8578    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8579    return DAG.getNode(ISD::BITCAST, dl, VT,
8580                       DAG.getNode(ISD::AND, dl, ANDVT,
8581                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8582                                               Op.getOperand(0)),
8583                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8584  }
8585  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8586}
8587
8588SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8589  LLVMContext *Context = DAG.getContext();
8590  DebugLoc dl = Op.getDebugLoc();
8591  EVT VT = Op.getValueType();
8592  EVT EltVT = VT;
8593  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8594  if (VT.isVector()) {
8595    EltVT = VT.getVectorElementType();
8596    NumElts = VT.getVectorNumElements();
8597  }
8598  Constant *C;
8599  if (EltVT == MVT::f64)
8600    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8601  else
8602    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8603  C = ConstantVector::getSplat(NumElts, C);
8604  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8605  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8606  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8607                             MachinePointerInfo::getConstantPool(),
8608                             false, false, false, Alignment);
8609  if (VT.isVector()) {
8610    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8611    return DAG.getNode(ISD::BITCAST, dl, VT,
8612                       DAG.getNode(ISD::XOR, dl, XORVT,
8613                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8614                                               Op.getOperand(0)),
8615                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8616  }
8617
8618  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8619}
8620
8621SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8622  LLVMContext *Context = DAG.getContext();
8623  SDValue Op0 = Op.getOperand(0);
8624  SDValue Op1 = Op.getOperand(1);
8625  DebugLoc dl = Op.getDebugLoc();
8626  EVT VT = Op.getValueType();
8627  EVT SrcVT = Op1.getValueType();
8628
8629  // If second operand is smaller, extend it first.
8630  if (SrcVT.bitsLT(VT)) {
8631    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8632    SrcVT = VT;
8633  }
8634  // And if it is bigger, shrink it first.
8635  if (SrcVT.bitsGT(VT)) {
8636    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8637    SrcVT = VT;
8638  }
8639
8640  // At this point the operands and the result should have the same
8641  // type, and that won't be f80 since that is not custom lowered.
8642
8643  // First get the sign bit of second operand.
8644  SmallVector<Constant*,4> CV;
8645  if (SrcVT == MVT::f64) {
8646    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8647    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8648  } else {
8649    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8650    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8651    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8652    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8653  }
8654  Constant *C = ConstantVector::get(CV);
8655  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8656  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8657                              MachinePointerInfo::getConstantPool(),
8658                              false, false, false, 16);
8659  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8660
8661  // Shift sign bit right or left if the two operands have different types.
8662  if (SrcVT.bitsGT(VT)) {
8663    // Op0 is MVT::f32, Op1 is MVT::f64.
8664    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8665    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8666                          DAG.getConstant(32, MVT::i32));
8667    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8668    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8669                          DAG.getIntPtrConstant(0));
8670  }
8671
8672  // Clear first operand sign bit.
8673  CV.clear();
8674  if (VT == MVT::f64) {
8675    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8676    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8677  } else {
8678    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8679    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8680    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8681    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8682  }
8683  C = ConstantVector::get(CV);
8684  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8685  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8686                              MachinePointerInfo::getConstantPool(),
8687                              false, false, false, 16);
8688  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8689
8690  // Or the value with the sign bit.
8691  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8692}
8693
8694static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8695  SDValue N0 = Op.getOperand(0);
8696  DebugLoc dl = Op.getDebugLoc();
8697  EVT VT = Op.getValueType();
8698
8699  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8700  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8701                                  DAG.getConstant(1, VT));
8702  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8703}
8704
8705// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8706//
8707SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8708  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8709
8710  if (!Subtarget->hasSSE41())
8711    return SDValue();
8712
8713  if (!Op->hasOneUse())
8714    return SDValue();
8715
8716  SDNode *N = Op.getNode();
8717  DebugLoc DL = N->getDebugLoc();
8718
8719  SmallVector<SDValue, 8> Opnds;
8720  DenseMap<SDValue, unsigned> VecInMap;
8721  EVT VT = MVT::Other;
8722
8723  // Recognize a special case where a vector is casted into wide integer to
8724  // test all 0s.
8725  Opnds.push_back(N->getOperand(0));
8726  Opnds.push_back(N->getOperand(1));
8727
8728  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8729    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8730    // BFS traverse all OR'd operands.
8731    if (I->getOpcode() == ISD::OR) {
8732      Opnds.push_back(I->getOperand(0));
8733      Opnds.push_back(I->getOperand(1));
8734      // Re-evaluate the number of nodes to be traversed.
8735      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8736      continue;
8737    }
8738
8739    // Quit if a non-EXTRACT_VECTOR_ELT
8740    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8741      return SDValue();
8742
8743    // Quit if without a constant index.
8744    SDValue Idx = I->getOperand(1);
8745    if (!isa<ConstantSDNode>(Idx))
8746      return SDValue();
8747
8748    SDValue ExtractedFromVec = I->getOperand(0);
8749    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8750    if (M == VecInMap.end()) {
8751      VT = ExtractedFromVec.getValueType();
8752      // Quit if not 128/256-bit vector.
8753      if (!VT.is128BitVector() && !VT.is256BitVector())
8754        return SDValue();
8755      // Quit if not the same type.
8756      if (VecInMap.begin() != VecInMap.end() &&
8757          VT != VecInMap.begin()->first.getValueType())
8758        return SDValue();
8759      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8760    }
8761    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8762  }
8763
8764  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8765         "Not extracted from 128-/256-bit vector.");
8766
8767  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8768  SmallVector<SDValue, 8> VecIns;
8769
8770  for (DenseMap<SDValue, unsigned>::const_iterator
8771        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8772    // Quit if not all elements are used.
8773    if (I->second != FullMask)
8774      return SDValue();
8775    VecIns.push_back(I->first);
8776  }
8777
8778  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8779
8780  // Cast all vectors into TestVT for PTEST.
8781  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8782    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8783
8784  // If more than one full vectors are evaluated, OR them first before PTEST.
8785  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8786    // Each iteration will OR 2 nodes and append the result until there is only
8787    // 1 node left, i.e. the final OR'd value of all vectors.
8788    SDValue LHS = VecIns[Slot];
8789    SDValue RHS = VecIns[Slot + 1];
8790    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8791  }
8792
8793  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8794                     VecIns.back(), VecIns.back());
8795}
8796
8797/// Emit nodes that will be selected as "test Op0,Op0", or something
8798/// equivalent.
8799SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8800                                    SelectionDAG &DAG) const {
8801  DebugLoc dl = Op.getDebugLoc();
8802
8803  // CF and OF aren't always set the way we want. Determine which
8804  // of these we need.
8805  bool NeedCF = false;
8806  bool NeedOF = false;
8807  switch (X86CC) {
8808  default: break;
8809  case X86::COND_A: case X86::COND_AE:
8810  case X86::COND_B: case X86::COND_BE:
8811    NeedCF = true;
8812    break;
8813  case X86::COND_G: case X86::COND_GE:
8814  case X86::COND_L: case X86::COND_LE:
8815  case X86::COND_O: case X86::COND_NO:
8816    NeedOF = true;
8817    break;
8818  }
8819
8820  // See if we can use the EFLAGS value from the operand instead of
8821  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8822  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8823  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8824    // Emit a CMP with 0, which is the TEST pattern.
8825    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8826                       DAG.getConstant(0, Op.getValueType()));
8827
8828  unsigned Opcode = 0;
8829  unsigned NumOperands = 0;
8830
8831  // Truncate operations may prevent the merge of the SETCC instruction
8832  // and the arithmetic intruction before it. Attempt to truncate the operands
8833  // of the arithmetic instruction and use a reduced bit-width instruction.
8834  bool NeedTruncation = false;
8835  SDValue ArithOp = Op;
8836  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8837    SDValue Arith = Op->getOperand(0);
8838    // Both the trunc and the arithmetic op need to have one user each.
8839    if (Arith->hasOneUse())
8840      switch (Arith.getOpcode()) {
8841        default: break;
8842        case ISD::ADD:
8843        case ISD::SUB:
8844        case ISD::AND:
8845        case ISD::OR:
8846        case ISD::XOR: {
8847          NeedTruncation = true;
8848          ArithOp = Arith;
8849        }
8850      }
8851  }
8852
8853  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8854  // which may be the result of a CAST.  We use the variable 'Op', which is the
8855  // non-casted variable when we check for possible users.
8856  switch (ArithOp.getOpcode()) {
8857  case ISD::ADD:
8858    // Due to an isel shortcoming, be conservative if this add is likely to be
8859    // selected as part of a load-modify-store instruction. When the root node
8860    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8861    // uses of other nodes in the match, such as the ADD in this case. This
8862    // leads to the ADD being left around and reselected, with the result being
8863    // two adds in the output.  Alas, even if none our users are stores, that
8864    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8865    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8866    // climbing the DAG back to the root, and it doesn't seem to be worth the
8867    // effort.
8868    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8869         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8870      if (UI->getOpcode() != ISD::CopyToReg &&
8871          UI->getOpcode() != ISD::SETCC &&
8872          UI->getOpcode() != ISD::STORE)
8873        goto default_case;
8874
8875    if (ConstantSDNode *C =
8876        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8877      // An add of one will be selected as an INC.
8878      if (C->getAPIntValue() == 1) {
8879        Opcode = X86ISD::INC;
8880        NumOperands = 1;
8881        break;
8882      }
8883
8884      // An add of negative one (subtract of one) will be selected as a DEC.
8885      if (C->getAPIntValue().isAllOnesValue()) {
8886        Opcode = X86ISD::DEC;
8887        NumOperands = 1;
8888        break;
8889      }
8890    }
8891
8892    // Otherwise use a regular EFLAGS-setting add.
8893    Opcode = X86ISD::ADD;
8894    NumOperands = 2;
8895    break;
8896  case ISD::AND: {
8897    // If the primary and result isn't used, don't bother using X86ISD::AND,
8898    // because a TEST instruction will be better.
8899    bool NonFlagUse = false;
8900    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8901           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8902      SDNode *User = *UI;
8903      unsigned UOpNo = UI.getOperandNo();
8904      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8905        // Look pass truncate.
8906        UOpNo = User->use_begin().getOperandNo();
8907        User = *User->use_begin();
8908      }
8909
8910      if (User->getOpcode() != ISD::BRCOND &&
8911          User->getOpcode() != ISD::SETCC &&
8912          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8913        NonFlagUse = true;
8914        break;
8915      }
8916    }
8917
8918    if (!NonFlagUse)
8919      break;
8920  }
8921    // FALL THROUGH
8922  case ISD::SUB:
8923  case ISD::OR:
8924  case ISD::XOR:
8925    // Due to the ISEL shortcoming noted above, be conservative if this op is
8926    // likely to be selected as part of a load-modify-store instruction.
8927    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8928           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8929      if (UI->getOpcode() == ISD::STORE)
8930        goto default_case;
8931
8932    // Otherwise use a regular EFLAGS-setting instruction.
8933    switch (ArithOp.getOpcode()) {
8934    default: llvm_unreachable("unexpected operator!");
8935    case ISD::SUB: Opcode = X86ISD::SUB; break;
8936    case ISD::XOR: Opcode = X86ISD::XOR; break;
8937    case ISD::AND: Opcode = X86ISD::AND; break;
8938    case ISD::OR: {
8939      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8940        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8941        if (EFLAGS.getNode())
8942          return EFLAGS;
8943      }
8944      Opcode = X86ISD::OR;
8945      break;
8946    }
8947    }
8948
8949    NumOperands = 2;
8950    break;
8951  case X86ISD::ADD:
8952  case X86ISD::SUB:
8953  case X86ISD::INC:
8954  case X86ISD::DEC:
8955  case X86ISD::OR:
8956  case X86ISD::XOR:
8957  case X86ISD::AND:
8958    return SDValue(Op.getNode(), 1);
8959  default:
8960  default_case:
8961    break;
8962  }
8963
8964  // If we found that truncation is beneficial, perform the truncation and
8965  // update 'Op'.
8966  if (NeedTruncation) {
8967    EVT VT = Op.getValueType();
8968    SDValue WideVal = Op->getOperand(0);
8969    EVT WideVT = WideVal.getValueType();
8970    unsigned ConvertedOp = 0;
8971    // Use a target machine opcode to prevent further DAGCombine
8972    // optimizations that may separate the arithmetic operations
8973    // from the setcc node.
8974    switch (WideVal.getOpcode()) {
8975      default: break;
8976      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8977      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8978      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8979      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8980      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8981    }
8982
8983    if (ConvertedOp) {
8984      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8985      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8986        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8987        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8988        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8989      }
8990    }
8991  }
8992
8993  if (Opcode == 0)
8994    // Emit a CMP with 0, which is the TEST pattern.
8995    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8996                       DAG.getConstant(0, Op.getValueType()));
8997
8998  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8999  SmallVector<SDValue, 4> Ops;
9000  for (unsigned i = 0; i != NumOperands; ++i)
9001    Ops.push_back(Op.getOperand(i));
9002
9003  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9004  DAG.ReplaceAllUsesWith(Op, New);
9005  return SDValue(New.getNode(), 1);
9006}
9007
9008/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9009/// equivalent.
9010SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9011                                   SelectionDAG &DAG) const {
9012  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9013    if (C->getAPIntValue() == 0)
9014      return EmitTest(Op0, X86CC, DAG);
9015
9016  DebugLoc dl = Op0.getDebugLoc();
9017  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9018       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9019    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9020    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9021    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9022                              Op0, Op1);
9023    return SDValue(Sub.getNode(), 1);
9024  }
9025  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9026}
9027
9028/// Convert a comparison if required by the subtarget.
9029SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9030                                                 SelectionDAG &DAG) const {
9031  // If the subtarget does not support the FUCOMI instruction, floating-point
9032  // comparisons have to be converted.
9033  if (Subtarget->hasCMov() ||
9034      Cmp.getOpcode() != X86ISD::CMP ||
9035      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9036      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9037    return Cmp;
9038
9039  // The instruction selector will select an FUCOM instruction instead of
9040  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9041  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9042  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9043  DebugLoc dl = Cmp.getDebugLoc();
9044  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9045  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9046  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9047                            DAG.getConstant(8, MVT::i8));
9048  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9049  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9050}
9051
9052static bool isAllOnes(SDValue V) {
9053  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9054  return C && C->isAllOnesValue();
9055}
9056
9057/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9058/// if it's possible.
9059SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9060                                     DebugLoc dl, SelectionDAG &DAG) const {
9061  SDValue Op0 = And.getOperand(0);
9062  SDValue Op1 = And.getOperand(1);
9063  if (Op0.getOpcode() == ISD::TRUNCATE)
9064    Op0 = Op0.getOperand(0);
9065  if (Op1.getOpcode() == ISD::TRUNCATE)
9066    Op1 = Op1.getOperand(0);
9067
9068  SDValue LHS, RHS;
9069  if (Op1.getOpcode() == ISD::SHL)
9070    std::swap(Op0, Op1);
9071  if (Op0.getOpcode() == ISD::SHL) {
9072    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9073      if (And00C->getZExtValue() == 1) {
9074        // If we looked past a truncate, check that it's only truncating away
9075        // known zeros.
9076        unsigned BitWidth = Op0.getValueSizeInBits();
9077        unsigned AndBitWidth = And.getValueSizeInBits();
9078        if (BitWidth > AndBitWidth) {
9079          APInt Zeros, Ones;
9080          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9081          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9082            return SDValue();
9083        }
9084        LHS = Op1;
9085        RHS = Op0.getOperand(1);
9086      }
9087  } else if (Op1.getOpcode() == ISD::Constant) {
9088    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9089    uint64_t AndRHSVal = AndRHS->getZExtValue();
9090    SDValue AndLHS = Op0;
9091
9092    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9093      LHS = AndLHS.getOperand(0);
9094      RHS = AndLHS.getOperand(1);
9095    }
9096
9097    // Use BT if the immediate can't be encoded in a TEST instruction.
9098    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9099      LHS = AndLHS;
9100      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9101    }
9102  }
9103
9104  if (LHS.getNode()) {
9105    // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip
9106    // the condition code later.
9107    bool Invert = false;
9108    if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) {
9109      Invert = true;
9110      LHS = LHS.getOperand(0);
9111    }
9112
9113    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9114    // instruction.  Since the shift amount is in-range-or-undefined, we know
9115    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9116    // the encoding for the i16 version is larger than the i32 version.
9117    // Also promote i16 to i32 for performance / code size reason.
9118    if (LHS.getValueType() == MVT::i8 ||
9119        LHS.getValueType() == MVT::i16)
9120      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9121
9122    // If the operand types disagree, extend the shift amount to match.  Since
9123    // BT ignores high bits (like shifts) we can use anyextend.
9124    if (LHS.getValueType() != RHS.getValueType())
9125      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9126
9127    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9128    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9129    // Flip the condition if the LHS was a not instruction
9130    if (Invert)
9131      Cond = X86::GetOppositeBranchCondition(Cond);
9132    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9133                       DAG.getConstant(Cond, MVT::i8), BT);
9134  }
9135
9136  return SDValue();
9137}
9138
9139SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9140
9141  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
9142
9143  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
9144  SDValue Op0 = Op.getOperand(0);
9145  SDValue Op1 = Op.getOperand(1);
9146  DebugLoc dl = Op.getDebugLoc();
9147  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9148
9149  // Optimize to BT if possible.
9150  // Lower (X & (1 << N)) == 0 to BT(X, N).
9151  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9152  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9153  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9154      Op1.getOpcode() == ISD::Constant &&
9155      cast<ConstantSDNode>(Op1)->isNullValue() &&
9156      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9157    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9158    if (NewSetCC.getNode())
9159      return NewSetCC;
9160  }
9161
9162  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9163  // these.
9164  if (Op1.getOpcode() == ISD::Constant &&
9165      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9166       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9167      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9168
9169    // If the input is a setcc, then reuse the input setcc or use a new one with
9170    // the inverted condition.
9171    if (Op0.getOpcode() == X86ISD::SETCC) {
9172      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9173      bool Invert = (CC == ISD::SETNE) ^
9174        cast<ConstantSDNode>(Op1)->isNullValue();
9175      if (!Invert) return Op0;
9176
9177      CCode = X86::GetOppositeBranchCondition(CCode);
9178      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9179                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9180    }
9181  }
9182
9183  bool isFP = Op1.getValueType().isFloatingPoint();
9184  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9185  if (X86CC == X86::COND_INVALID)
9186    return SDValue();
9187
9188  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9189  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9190  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9191                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9192}
9193
9194// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9195// ones, and then concatenate the result back.
9196static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9197  EVT VT = Op.getValueType();
9198
9199  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9200         "Unsupported value type for operation");
9201
9202  unsigned NumElems = VT.getVectorNumElements();
9203  DebugLoc dl = Op.getDebugLoc();
9204  SDValue CC = Op.getOperand(2);
9205
9206  // Extract the LHS vectors
9207  SDValue LHS = Op.getOperand(0);
9208  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9209  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9210
9211  // Extract the RHS vectors
9212  SDValue RHS = Op.getOperand(1);
9213  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9214  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9215
9216  // Issue the operation on the smaller types and concatenate the result back
9217  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9218  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9219  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9220                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9221                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9222}
9223
9224SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
9225  SDValue Cond;
9226  SDValue Op0 = Op.getOperand(0);
9227  SDValue Op1 = Op.getOperand(1);
9228  SDValue CC = Op.getOperand(2);
9229  EVT VT = Op.getValueType();
9230  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9231  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
9232  DebugLoc dl = Op.getDebugLoc();
9233
9234  if (isFP) {
9235#ifndef NDEBUG
9236    EVT EltVT = Op0.getValueType().getVectorElementType();
9237    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9238#endif
9239
9240    unsigned SSECC;
9241    bool Swap = false;
9242
9243    // SSE Condition code mapping:
9244    //  0 - EQ
9245    //  1 - LT
9246    //  2 - LE
9247    //  3 - UNORD
9248    //  4 - NEQ
9249    //  5 - NLT
9250    //  6 - NLE
9251    //  7 - ORD
9252    switch (SetCCOpcode) {
9253    default: llvm_unreachable("Unexpected SETCC condition");
9254    case ISD::SETOEQ:
9255    case ISD::SETEQ:  SSECC = 0; break;
9256    case ISD::SETOGT:
9257    case ISD::SETGT: Swap = true; // Fallthrough
9258    case ISD::SETLT:
9259    case ISD::SETOLT: SSECC = 1; break;
9260    case ISD::SETOGE:
9261    case ISD::SETGE: Swap = true; // Fallthrough
9262    case ISD::SETLE:
9263    case ISD::SETOLE: SSECC = 2; break;
9264    case ISD::SETUO:  SSECC = 3; break;
9265    case ISD::SETUNE:
9266    case ISD::SETNE:  SSECC = 4; break;
9267    case ISD::SETULE: Swap = true; // Fallthrough
9268    case ISD::SETUGE: SSECC = 5; break;
9269    case ISD::SETULT: Swap = true; // Fallthrough
9270    case ISD::SETUGT: SSECC = 6; break;
9271    case ISD::SETO:   SSECC = 7; break;
9272    case ISD::SETUEQ:
9273    case ISD::SETONE: SSECC = 8; break;
9274    }
9275    if (Swap)
9276      std::swap(Op0, Op1);
9277
9278    // In the two special cases we can't handle, emit two comparisons.
9279    if (SSECC == 8) {
9280      unsigned CC0, CC1;
9281      unsigned CombineOpc;
9282      if (SetCCOpcode == ISD::SETUEQ) {
9283        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9284      } else {
9285        assert(SetCCOpcode == ISD::SETONE);
9286        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9287      }
9288
9289      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9290                                 DAG.getConstant(CC0, MVT::i8));
9291      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9292                                 DAG.getConstant(CC1, MVT::i8));
9293      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9294    }
9295    // Handle all other FP comparisons here.
9296    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9297                       DAG.getConstant(SSECC, MVT::i8));
9298  }
9299
9300  // Break 256-bit integer vector compare into smaller ones.
9301  if (VT.is256BitVector() && !Subtarget->hasInt256())
9302    return Lower256IntVSETCC(Op, DAG);
9303
9304  // We are handling one of the integer comparisons here.  Since SSE only has
9305  // GT and EQ comparisons for integer, swapping operands and multiple
9306  // operations may be required for some comparisons.
9307  unsigned Opc;
9308  bool Swap = false, Invert = false, FlipSigns = false;
9309
9310  switch (SetCCOpcode) {
9311  default: llvm_unreachable("Unexpected SETCC condition");
9312  case ISD::SETNE:  Invert = true;
9313  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9314  case ISD::SETLT:  Swap = true;
9315  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9316  case ISD::SETGE:  Swap = true;
9317  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9318  case ISD::SETULT: Swap = true;
9319  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9320  case ISD::SETUGE: Swap = true;
9321  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9322  }
9323  if (Swap)
9324    std::swap(Op0, Op1);
9325
9326  // Check that the operation in question is available (most are plain SSE2,
9327  // but PCMPGTQ and PCMPEQQ have different requirements).
9328  if (VT == MVT::v2i64) {
9329    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9330      return SDValue();
9331    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9332      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9333      // pcmpeqd + pshufd + pand.
9334      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9335
9336      // First cast everything to the right type,
9337      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9338      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9339
9340      // Do the compare.
9341      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9342
9343      // Make sure the lower and upper halves are both all-ones.
9344      const int Mask[] = { 1, 0, 3, 2 };
9345      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9346      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9347
9348      if (Invert)
9349        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9350
9351      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9352    }
9353  }
9354
9355  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9356  // bits of the inputs before performing those operations.
9357  if (FlipSigns) {
9358    EVT EltVT = VT.getVectorElementType();
9359    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9360                                      EltVT);
9361    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9362    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9363                                    SignBits.size());
9364    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9365    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9366  }
9367
9368  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9369
9370  // If the logical-not of the result is required, perform that now.
9371  if (Invert)
9372    Result = DAG.getNOT(dl, Result, VT);
9373
9374  return Result;
9375}
9376
9377// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9378static bool isX86LogicalCmp(SDValue Op) {
9379  unsigned Opc = Op.getNode()->getOpcode();
9380  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9381      Opc == X86ISD::SAHF)
9382    return true;
9383  if (Op.getResNo() == 1 &&
9384      (Opc == X86ISD::ADD ||
9385       Opc == X86ISD::SUB ||
9386       Opc == X86ISD::ADC ||
9387       Opc == X86ISD::SBB ||
9388       Opc == X86ISD::SMUL ||
9389       Opc == X86ISD::UMUL ||
9390       Opc == X86ISD::INC ||
9391       Opc == X86ISD::DEC ||
9392       Opc == X86ISD::OR ||
9393       Opc == X86ISD::XOR ||
9394       Opc == X86ISD::AND))
9395    return true;
9396
9397  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9398    return true;
9399
9400  return false;
9401}
9402
9403static bool isZero(SDValue V) {
9404  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9405  return C && C->isNullValue();
9406}
9407
9408static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9409  if (V.getOpcode() != ISD::TRUNCATE)
9410    return false;
9411
9412  SDValue VOp0 = V.getOperand(0);
9413  unsigned InBits = VOp0.getValueSizeInBits();
9414  unsigned Bits = V.getValueSizeInBits();
9415  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9416}
9417
9418SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9419  bool addTest = true;
9420  SDValue Cond  = Op.getOperand(0);
9421  SDValue Op1 = Op.getOperand(1);
9422  SDValue Op2 = Op.getOperand(2);
9423  DebugLoc DL = Op.getDebugLoc();
9424  SDValue CC;
9425
9426  if (Cond.getOpcode() == ISD::SETCC) {
9427    SDValue NewCond = LowerSETCC(Cond, DAG);
9428    if (NewCond.getNode())
9429      Cond = NewCond;
9430  }
9431
9432  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9433  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9434  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9435  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9436  if (Cond.getOpcode() == X86ISD::SETCC &&
9437      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9438      isZero(Cond.getOperand(1).getOperand(1))) {
9439    SDValue Cmp = Cond.getOperand(1);
9440
9441    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9442
9443    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9444        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9445      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9446
9447      SDValue CmpOp0 = Cmp.getOperand(0);
9448      // Apply further optimizations for special cases
9449      // (select (x != 0), -1, 0) -> neg & sbb
9450      // (select (x == 0), 0, -1) -> neg & sbb
9451      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9452        if (YC->isNullValue() &&
9453            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9454          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9455          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9456                                    DAG.getConstant(0, CmpOp0.getValueType()),
9457                                    CmpOp0);
9458          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9459                                    DAG.getConstant(X86::COND_B, MVT::i8),
9460                                    SDValue(Neg.getNode(), 1));
9461          return Res;
9462        }
9463
9464      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9465                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9466      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9467
9468      SDValue Res =   // Res = 0 or -1.
9469        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9470                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9471
9472      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9473        Res = DAG.getNOT(DL, Res, Res.getValueType());
9474
9475      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9476      if (N2C == 0 || !N2C->isNullValue())
9477        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9478      return Res;
9479    }
9480  }
9481
9482  // Look past (and (setcc_carry (cmp ...)), 1).
9483  if (Cond.getOpcode() == ISD::AND &&
9484      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9485    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9486    if (C && C->getAPIntValue() == 1)
9487      Cond = Cond.getOperand(0);
9488  }
9489
9490  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9491  // setting operand in place of the X86ISD::SETCC.
9492  unsigned CondOpcode = Cond.getOpcode();
9493  if (CondOpcode == X86ISD::SETCC ||
9494      CondOpcode == X86ISD::SETCC_CARRY) {
9495    CC = Cond.getOperand(0);
9496
9497    SDValue Cmp = Cond.getOperand(1);
9498    unsigned Opc = Cmp.getOpcode();
9499    EVT VT = Op.getValueType();
9500
9501    bool IllegalFPCMov = false;
9502    if (VT.isFloatingPoint() && !VT.isVector() &&
9503        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9504      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9505
9506    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9507        Opc == X86ISD::BT) { // FIXME
9508      Cond = Cmp;
9509      addTest = false;
9510    }
9511  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9512             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9513             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9514              Cond.getOperand(0).getValueType() != MVT::i8)) {
9515    SDValue LHS = Cond.getOperand(0);
9516    SDValue RHS = Cond.getOperand(1);
9517    unsigned X86Opcode;
9518    unsigned X86Cond;
9519    SDVTList VTs;
9520    switch (CondOpcode) {
9521    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9522    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9523    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9524    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9525    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9526    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9527    default: llvm_unreachable("unexpected overflowing operator");
9528    }
9529    if (CondOpcode == ISD::UMULO)
9530      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9531                          MVT::i32);
9532    else
9533      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9534
9535    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9536
9537    if (CondOpcode == ISD::UMULO)
9538      Cond = X86Op.getValue(2);
9539    else
9540      Cond = X86Op.getValue(1);
9541
9542    CC = DAG.getConstant(X86Cond, MVT::i8);
9543    addTest = false;
9544  }
9545
9546  if (addTest) {
9547    // Look pass the truncate if the high bits are known zero.
9548    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9549        Cond = Cond.getOperand(0);
9550
9551    // We know the result of AND is compared against zero. Try to match
9552    // it to BT.
9553    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9554      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9555      if (NewSetCC.getNode()) {
9556        CC = NewSetCC.getOperand(0);
9557        Cond = NewSetCC.getOperand(1);
9558        addTest = false;
9559      }
9560    }
9561  }
9562
9563  if (addTest) {
9564    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9565    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9566  }
9567
9568  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9569  // a <  b ?  0 : -1 -> RES = setcc_carry
9570  // a >= b ? -1 :  0 -> RES = setcc_carry
9571  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9572  if (Cond.getOpcode() == X86ISD::SUB) {
9573    Cond = ConvertCmpIfNecessary(Cond, DAG);
9574    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9575
9576    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9577        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9578      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9579                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9580      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9581        return DAG.getNOT(DL, Res, Res.getValueType());
9582      return Res;
9583    }
9584  }
9585
9586  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9587  // widen the cmov and push the truncate through. This avoids introducing a new
9588  // branch during isel and doesn't add any extensions.
9589  if (Op.getValueType() == MVT::i8 &&
9590      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9591    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9592    if (T1.getValueType() == T2.getValueType() &&
9593        // Blacklist CopyFromReg to avoid partial register stalls.
9594        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9595      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9596      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9597      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9598    }
9599  }
9600
9601  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9602  // condition is true.
9603  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9604  SDValue Ops[] = { Op2, Op1, CC, Cond };
9605  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9606}
9607
9608SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9609                                            SelectionDAG &DAG) const {
9610  EVT VT = Op->getValueType(0);
9611  SDValue In = Op->getOperand(0);
9612  EVT InVT = In.getValueType();
9613  DebugLoc dl = Op->getDebugLoc();
9614
9615  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9616      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9617    return SDValue();
9618
9619  if (Subtarget->hasInt256())
9620    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9621
9622  // Optimize vectors in AVX mode
9623  // Sign extend  v8i16 to v8i32 and
9624  //              v4i32 to v4i64
9625  //
9626  // Divide input vector into two parts
9627  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9628  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9629  // concat the vectors to original VT
9630
9631  unsigned NumElems = InVT.getVectorNumElements();
9632  SDValue Undef = DAG.getUNDEF(InVT);
9633
9634  SmallVector<int,8> ShufMask1(NumElems, -1);
9635  for (unsigned i = 0; i != NumElems/2; ++i)
9636    ShufMask1[i] = i;
9637
9638  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9639
9640  SmallVector<int,8> ShufMask2(NumElems, -1);
9641  for (unsigned i = 0; i != NumElems/2; ++i)
9642    ShufMask2[i] = i + NumElems/2;
9643
9644  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9645
9646  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
9647                                VT.getVectorNumElements()/2);
9648
9649  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9650  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9651
9652  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9653}
9654
9655// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9656// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9657// from the AND / OR.
9658static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9659  Opc = Op.getOpcode();
9660  if (Opc != ISD::OR && Opc != ISD::AND)
9661    return false;
9662  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9663          Op.getOperand(0).hasOneUse() &&
9664          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9665          Op.getOperand(1).hasOneUse());
9666}
9667
9668// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9669// 1 and that the SETCC node has a single use.
9670static bool isXor1OfSetCC(SDValue Op) {
9671  if (Op.getOpcode() != ISD::XOR)
9672    return false;
9673  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9674  if (N1C && N1C->getAPIntValue() == 1) {
9675    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9676      Op.getOperand(0).hasOneUse();
9677  }
9678  return false;
9679}
9680
9681SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9682  bool addTest = true;
9683  SDValue Chain = Op.getOperand(0);
9684  SDValue Cond  = Op.getOperand(1);
9685  SDValue Dest  = Op.getOperand(2);
9686  DebugLoc dl = Op.getDebugLoc();
9687  SDValue CC;
9688  bool Inverted = false;
9689
9690  if (Cond.getOpcode() == ISD::SETCC) {
9691    // Check for setcc([su]{add,sub,mul}o == 0).
9692    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9693        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9694        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9695        Cond.getOperand(0).getResNo() == 1 &&
9696        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9697         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9698         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9699         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9700         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9701         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9702      Inverted = true;
9703      Cond = Cond.getOperand(0);
9704    } else {
9705      SDValue NewCond = LowerSETCC(Cond, DAG);
9706      if (NewCond.getNode())
9707        Cond = NewCond;
9708    }
9709  }
9710#if 0
9711  // FIXME: LowerXALUO doesn't handle these!!
9712  else if (Cond.getOpcode() == X86ISD::ADD  ||
9713           Cond.getOpcode() == X86ISD::SUB  ||
9714           Cond.getOpcode() == X86ISD::SMUL ||
9715           Cond.getOpcode() == X86ISD::UMUL)
9716    Cond = LowerXALUO(Cond, DAG);
9717#endif
9718
9719  // Look pass (and (setcc_carry (cmp ...)), 1).
9720  if (Cond.getOpcode() == ISD::AND &&
9721      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9722    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9723    if (C && C->getAPIntValue() == 1)
9724      Cond = Cond.getOperand(0);
9725  }
9726
9727  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9728  // setting operand in place of the X86ISD::SETCC.
9729  unsigned CondOpcode = Cond.getOpcode();
9730  if (CondOpcode == X86ISD::SETCC ||
9731      CondOpcode == X86ISD::SETCC_CARRY) {
9732    CC = Cond.getOperand(0);
9733
9734    SDValue Cmp = Cond.getOperand(1);
9735    unsigned Opc = Cmp.getOpcode();
9736    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9737    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9738      Cond = Cmp;
9739      addTest = false;
9740    } else {
9741      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9742      default: break;
9743      case X86::COND_O:
9744      case X86::COND_B:
9745        // These can only come from an arithmetic instruction with overflow,
9746        // e.g. SADDO, UADDO.
9747        Cond = Cond.getNode()->getOperand(1);
9748        addTest = false;
9749        break;
9750      }
9751    }
9752  }
9753  CondOpcode = Cond.getOpcode();
9754  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9755      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9756      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9757       Cond.getOperand(0).getValueType() != MVT::i8)) {
9758    SDValue LHS = Cond.getOperand(0);
9759    SDValue RHS = Cond.getOperand(1);
9760    unsigned X86Opcode;
9761    unsigned X86Cond;
9762    SDVTList VTs;
9763    switch (CondOpcode) {
9764    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9765    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9766    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9767    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9768    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9769    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9770    default: llvm_unreachable("unexpected overflowing operator");
9771    }
9772    if (Inverted)
9773      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9774    if (CondOpcode == ISD::UMULO)
9775      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9776                          MVT::i32);
9777    else
9778      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9779
9780    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9781
9782    if (CondOpcode == ISD::UMULO)
9783      Cond = X86Op.getValue(2);
9784    else
9785      Cond = X86Op.getValue(1);
9786
9787    CC = DAG.getConstant(X86Cond, MVT::i8);
9788    addTest = false;
9789  } else {
9790    unsigned CondOpc;
9791    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9792      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9793      if (CondOpc == ISD::OR) {
9794        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9795        // two branches instead of an explicit OR instruction with a
9796        // separate test.
9797        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9798            isX86LogicalCmp(Cmp)) {
9799          CC = Cond.getOperand(0).getOperand(0);
9800          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9801                              Chain, Dest, CC, Cmp);
9802          CC = Cond.getOperand(1).getOperand(0);
9803          Cond = Cmp;
9804          addTest = false;
9805        }
9806      } else { // ISD::AND
9807        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9808        // two branches instead of an explicit AND instruction with a
9809        // separate test. However, we only do this if this block doesn't
9810        // have a fall-through edge, because this requires an explicit
9811        // jmp when the condition is false.
9812        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9813            isX86LogicalCmp(Cmp) &&
9814            Op.getNode()->hasOneUse()) {
9815          X86::CondCode CCode =
9816            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9817          CCode = X86::GetOppositeBranchCondition(CCode);
9818          CC = DAG.getConstant(CCode, MVT::i8);
9819          SDNode *User = *Op.getNode()->use_begin();
9820          // Look for an unconditional branch following this conditional branch.
9821          // We need this because we need to reverse the successors in order
9822          // to implement FCMP_OEQ.
9823          if (User->getOpcode() == ISD::BR) {
9824            SDValue FalseBB = User->getOperand(1);
9825            SDNode *NewBR =
9826              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9827            assert(NewBR == User);
9828            (void)NewBR;
9829            Dest = FalseBB;
9830
9831            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9832                                Chain, Dest, CC, Cmp);
9833            X86::CondCode CCode =
9834              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9835            CCode = X86::GetOppositeBranchCondition(CCode);
9836            CC = DAG.getConstant(CCode, MVT::i8);
9837            Cond = Cmp;
9838            addTest = false;
9839          }
9840        }
9841      }
9842    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9843      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9844      // It should be transformed during dag combiner except when the condition
9845      // is set by a arithmetics with overflow node.
9846      X86::CondCode CCode =
9847        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9848      CCode = X86::GetOppositeBranchCondition(CCode);
9849      CC = DAG.getConstant(CCode, MVT::i8);
9850      Cond = Cond.getOperand(0).getOperand(1);
9851      addTest = false;
9852    } else if (Cond.getOpcode() == ISD::SETCC &&
9853               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9854      // For FCMP_OEQ, we can emit
9855      // two branches instead of an explicit AND instruction with a
9856      // separate test. However, we only do this if this block doesn't
9857      // have a fall-through edge, because this requires an explicit
9858      // jmp when the condition is false.
9859      if (Op.getNode()->hasOneUse()) {
9860        SDNode *User = *Op.getNode()->use_begin();
9861        // Look for an unconditional branch following this conditional branch.
9862        // We need this because we need to reverse the successors in order
9863        // to implement FCMP_OEQ.
9864        if (User->getOpcode() == ISD::BR) {
9865          SDValue FalseBB = User->getOperand(1);
9866          SDNode *NewBR =
9867            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9868          assert(NewBR == User);
9869          (void)NewBR;
9870          Dest = FalseBB;
9871
9872          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9873                                    Cond.getOperand(0), Cond.getOperand(1));
9874          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9875          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9876          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9877                              Chain, Dest, CC, Cmp);
9878          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9879          Cond = Cmp;
9880          addTest = false;
9881        }
9882      }
9883    } else if (Cond.getOpcode() == ISD::SETCC &&
9884               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9885      // For FCMP_UNE, we can emit
9886      // two branches instead of an explicit AND instruction with a
9887      // separate test. However, we only do this if this block doesn't
9888      // have a fall-through edge, because this requires an explicit
9889      // jmp when the condition is false.
9890      if (Op.getNode()->hasOneUse()) {
9891        SDNode *User = *Op.getNode()->use_begin();
9892        // Look for an unconditional branch following this conditional branch.
9893        // We need this because we need to reverse the successors in order
9894        // to implement FCMP_UNE.
9895        if (User->getOpcode() == ISD::BR) {
9896          SDValue FalseBB = User->getOperand(1);
9897          SDNode *NewBR =
9898            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9899          assert(NewBR == User);
9900          (void)NewBR;
9901
9902          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9903                                    Cond.getOperand(0), Cond.getOperand(1));
9904          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9905          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9906          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9907                              Chain, Dest, CC, Cmp);
9908          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9909          Cond = Cmp;
9910          addTest = false;
9911          Dest = FalseBB;
9912        }
9913      }
9914    }
9915  }
9916
9917  if (addTest) {
9918    // Look pass the truncate if the high bits are known zero.
9919    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9920        Cond = Cond.getOperand(0);
9921
9922    // We know the result of AND is compared against zero. Try to match
9923    // it to BT.
9924    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9925      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9926      if (NewSetCC.getNode()) {
9927        CC = NewSetCC.getOperand(0);
9928        Cond = NewSetCC.getOperand(1);
9929        addTest = false;
9930      }
9931    }
9932  }
9933
9934  if (addTest) {
9935    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9936    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9937  }
9938  Cond = ConvertCmpIfNecessary(Cond, DAG);
9939  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9940                     Chain, Dest, CC, Cond);
9941}
9942
9943// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9944// Calls to _alloca is needed to probe the stack when allocating more than 4k
9945// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9946// that the guard pages used by the OS virtual memory manager are allocated in
9947// correct sequence.
9948SDValue
9949X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9950                                           SelectionDAG &DAG) const {
9951  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9952          getTargetMachine().Options.EnableSegmentedStacks) &&
9953         "This should be used only on Windows targets or when segmented stacks "
9954         "are being used");
9955  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9956  DebugLoc dl = Op.getDebugLoc();
9957
9958  // Get the inputs.
9959  SDValue Chain = Op.getOperand(0);
9960  SDValue Size  = Op.getOperand(1);
9961  // FIXME: Ensure alignment here
9962
9963  bool Is64Bit = Subtarget->is64Bit();
9964  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9965
9966  if (getTargetMachine().Options.EnableSegmentedStacks) {
9967    MachineFunction &MF = DAG.getMachineFunction();
9968    MachineRegisterInfo &MRI = MF.getRegInfo();
9969
9970    if (Is64Bit) {
9971      // The 64 bit implementation of segmented stacks needs to clobber both r10
9972      // r11. This makes it impossible to use it along with nested parameters.
9973      const Function *F = MF.getFunction();
9974
9975      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9976           I != E; ++I)
9977        if (I->hasNestAttr())
9978          report_fatal_error("Cannot use segmented stacks with functions that "
9979                             "have nested arguments.");
9980    }
9981
9982    const TargetRegisterClass *AddrRegClass =
9983      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9984    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9985    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9986    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9987                                DAG.getRegister(Vreg, SPTy));
9988    SDValue Ops1[2] = { Value, Chain };
9989    return DAG.getMergeValues(Ops1, 2, dl);
9990  } else {
9991    SDValue Flag;
9992    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9993
9994    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9995    Flag = Chain.getValue(1);
9996    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9997
9998    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9999    Flag = Chain.getValue(1);
10000
10001    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10002                               SPTy).getValue(1);
10003
10004    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10005    return DAG.getMergeValues(Ops1, 2, dl);
10006  }
10007}
10008
10009SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10010  MachineFunction &MF = DAG.getMachineFunction();
10011  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10012
10013  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10014  DebugLoc DL = Op.getDebugLoc();
10015
10016  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10017    // vastart just stores the address of the VarArgsFrameIndex slot into the
10018    // memory location argument.
10019    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10020                                   getPointerTy());
10021    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10022                        MachinePointerInfo(SV), false, false, 0);
10023  }
10024
10025  // __va_list_tag:
10026  //   gp_offset         (0 - 6 * 8)
10027  //   fp_offset         (48 - 48 + 8 * 16)
10028  //   overflow_arg_area (point to parameters coming in memory).
10029  //   reg_save_area
10030  SmallVector<SDValue, 8> MemOps;
10031  SDValue FIN = Op.getOperand(1);
10032  // Store gp_offset
10033  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10034                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10035                                               MVT::i32),
10036                               FIN, MachinePointerInfo(SV), false, false, 0);
10037  MemOps.push_back(Store);
10038
10039  // Store fp_offset
10040  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10041                    FIN, DAG.getIntPtrConstant(4));
10042  Store = DAG.getStore(Op.getOperand(0), DL,
10043                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10044                                       MVT::i32),
10045                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10046  MemOps.push_back(Store);
10047
10048  // Store ptr to overflow_arg_area
10049  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10050                    FIN, DAG.getIntPtrConstant(4));
10051  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10052                                    getPointerTy());
10053  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10054                       MachinePointerInfo(SV, 8),
10055                       false, false, 0);
10056  MemOps.push_back(Store);
10057
10058  // Store ptr to reg_save_area.
10059  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10060                    FIN, DAG.getIntPtrConstant(8));
10061  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10062                                    getPointerTy());
10063  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10064                       MachinePointerInfo(SV, 16), false, false, 0);
10065  MemOps.push_back(Store);
10066  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10067                     &MemOps[0], MemOps.size());
10068}
10069
10070SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10071  assert(Subtarget->is64Bit() &&
10072         "LowerVAARG only handles 64-bit va_arg!");
10073  assert((Subtarget->isTargetLinux() ||
10074          Subtarget->isTargetDarwin()) &&
10075          "Unhandled target in LowerVAARG");
10076  assert(Op.getNode()->getNumOperands() == 4);
10077  SDValue Chain = Op.getOperand(0);
10078  SDValue SrcPtr = Op.getOperand(1);
10079  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10080  unsigned Align = Op.getConstantOperandVal(3);
10081  DebugLoc dl = Op.getDebugLoc();
10082
10083  EVT ArgVT = Op.getNode()->getValueType(0);
10084  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10085  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10086  uint8_t ArgMode;
10087
10088  // Decide which area this value should be read from.
10089  // TODO: Implement the AMD64 ABI in its entirety. This simple
10090  // selection mechanism works only for the basic types.
10091  if (ArgVT == MVT::f80) {
10092    llvm_unreachable("va_arg for f80 not yet implemented");
10093  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10094    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10095  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10096    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10097  } else {
10098    llvm_unreachable("Unhandled argument type in LowerVAARG");
10099  }
10100
10101  if (ArgMode == 2) {
10102    // Sanity Check: Make sure using fp_offset makes sense.
10103    assert(!getTargetMachine().Options.UseSoftFloat &&
10104           !(DAG.getMachineFunction()
10105                .getFunction()->getAttributes()
10106                .hasAttribute(AttributeSet::FunctionIndex,
10107                              Attribute::NoImplicitFloat)) &&
10108           Subtarget->hasSSE1());
10109  }
10110
10111  // Insert VAARG_64 node into the DAG
10112  // VAARG_64 returns two values: Variable Argument Address, Chain
10113  SmallVector<SDValue, 11> InstOps;
10114  InstOps.push_back(Chain);
10115  InstOps.push_back(SrcPtr);
10116  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10117  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10118  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10119  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10120  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10121                                          VTs, &InstOps[0], InstOps.size(),
10122                                          MVT::i64,
10123                                          MachinePointerInfo(SV),
10124                                          /*Align=*/0,
10125                                          /*Volatile=*/false,
10126                                          /*ReadMem=*/true,
10127                                          /*WriteMem=*/true);
10128  Chain = VAARG.getValue(1);
10129
10130  // Load the next argument and return it
10131  return DAG.getLoad(ArgVT, dl,
10132                     Chain,
10133                     VAARG,
10134                     MachinePointerInfo(),
10135                     false, false, false, 0);
10136}
10137
10138static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10139                           SelectionDAG &DAG) {
10140  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10141  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10142  SDValue Chain = Op.getOperand(0);
10143  SDValue DstPtr = Op.getOperand(1);
10144  SDValue SrcPtr = Op.getOperand(2);
10145  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10146  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10147  DebugLoc DL = Op.getDebugLoc();
10148
10149  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10150                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10151                       false,
10152                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10153}
10154
10155// getTargetVShiftNOde - Handle vector element shifts where the shift amount
10156// may or may not be a constant. Takes immediate version of shift as input.
10157static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10158                                   SDValue SrcOp, SDValue ShAmt,
10159                                   SelectionDAG &DAG) {
10160  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10161
10162  if (isa<ConstantSDNode>(ShAmt)) {
10163    // Constant may be a TargetConstant. Use a regular constant.
10164    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10165    switch (Opc) {
10166      default: llvm_unreachable("Unknown target vector shift node");
10167      case X86ISD::VSHLI:
10168      case X86ISD::VSRLI:
10169      case X86ISD::VSRAI:
10170        return DAG.getNode(Opc, dl, VT, SrcOp,
10171                           DAG.getConstant(ShiftAmt, MVT::i32));
10172    }
10173  }
10174
10175  // Change opcode to non-immediate version
10176  switch (Opc) {
10177    default: llvm_unreachable("Unknown target vector shift node");
10178    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10179    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10180    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10181  }
10182
10183  // Need to build a vector containing shift amount
10184  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10185  SDValue ShOps[4];
10186  ShOps[0] = ShAmt;
10187  ShOps[1] = DAG.getConstant(0, MVT::i32);
10188  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10189  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10190
10191  // The return type has to be a 128-bit type with the same element
10192  // type as the input type.
10193  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10194  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10195
10196  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10197  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10198}
10199
10200static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10201  DebugLoc dl = Op.getDebugLoc();
10202  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10203  switch (IntNo) {
10204  default: return SDValue();    // Don't custom lower most intrinsics.
10205  // Comparison intrinsics.
10206  case Intrinsic::x86_sse_comieq_ss:
10207  case Intrinsic::x86_sse_comilt_ss:
10208  case Intrinsic::x86_sse_comile_ss:
10209  case Intrinsic::x86_sse_comigt_ss:
10210  case Intrinsic::x86_sse_comige_ss:
10211  case Intrinsic::x86_sse_comineq_ss:
10212  case Intrinsic::x86_sse_ucomieq_ss:
10213  case Intrinsic::x86_sse_ucomilt_ss:
10214  case Intrinsic::x86_sse_ucomile_ss:
10215  case Intrinsic::x86_sse_ucomigt_ss:
10216  case Intrinsic::x86_sse_ucomige_ss:
10217  case Intrinsic::x86_sse_ucomineq_ss:
10218  case Intrinsic::x86_sse2_comieq_sd:
10219  case Intrinsic::x86_sse2_comilt_sd:
10220  case Intrinsic::x86_sse2_comile_sd:
10221  case Intrinsic::x86_sse2_comigt_sd:
10222  case Intrinsic::x86_sse2_comige_sd:
10223  case Intrinsic::x86_sse2_comineq_sd:
10224  case Intrinsic::x86_sse2_ucomieq_sd:
10225  case Intrinsic::x86_sse2_ucomilt_sd:
10226  case Intrinsic::x86_sse2_ucomile_sd:
10227  case Intrinsic::x86_sse2_ucomigt_sd:
10228  case Intrinsic::x86_sse2_ucomige_sd:
10229  case Intrinsic::x86_sse2_ucomineq_sd: {
10230    unsigned Opc;
10231    ISD::CondCode CC;
10232    switch (IntNo) {
10233    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10234    case Intrinsic::x86_sse_comieq_ss:
10235    case Intrinsic::x86_sse2_comieq_sd:
10236      Opc = X86ISD::COMI;
10237      CC = ISD::SETEQ;
10238      break;
10239    case Intrinsic::x86_sse_comilt_ss:
10240    case Intrinsic::x86_sse2_comilt_sd:
10241      Opc = X86ISD::COMI;
10242      CC = ISD::SETLT;
10243      break;
10244    case Intrinsic::x86_sse_comile_ss:
10245    case Intrinsic::x86_sse2_comile_sd:
10246      Opc = X86ISD::COMI;
10247      CC = ISD::SETLE;
10248      break;
10249    case Intrinsic::x86_sse_comigt_ss:
10250    case Intrinsic::x86_sse2_comigt_sd:
10251      Opc = X86ISD::COMI;
10252      CC = ISD::SETGT;
10253      break;
10254    case Intrinsic::x86_sse_comige_ss:
10255    case Intrinsic::x86_sse2_comige_sd:
10256      Opc = X86ISD::COMI;
10257      CC = ISD::SETGE;
10258      break;
10259    case Intrinsic::x86_sse_comineq_ss:
10260    case Intrinsic::x86_sse2_comineq_sd:
10261      Opc = X86ISD::COMI;
10262      CC = ISD::SETNE;
10263      break;
10264    case Intrinsic::x86_sse_ucomieq_ss:
10265    case Intrinsic::x86_sse2_ucomieq_sd:
10266      Opc = X86ISD::UCOMI;
10267      CC = ISD::SETEQ;
10268      break;
10269    case Intrinsic::x86_sse_ucomilt_ss:
10270    case Intrinsic::x86_sse2_ucomilt_sd:
10271      Opc = X86ISD::UCOMI;
10272      CC = ISD::SETLT;
10273      break;
10274    case Intrinsic::x86_sse_ucomile_ss:
10275    case Intrinsic::x86_sse2_ucomile_sd:
10276      Opc = X86ISD::UCOMI;
10277      CC = ISD::SETLE;
10278      break;
10279    case Intrinsic::x86_sse_ucomigt_ss:
10280    case Intrinsic::x86_sse2_ucomigt_sd:
10281      Opc = X86ISD::UCOMI;
10282      CC = ISD::SETGT;
10283      break;
10284    case Intrinsic::x86_sse_ucomige_ss:
10285    case Intrinsic::x86_sse2_ucomige_sd:
10286      Opc = X86ISD::UCOMI;
10287      CC = ISD::SETGE;
10288      break;
10289    case Intrinsic::x86_sse_ucomineq_ss:
10290    case Intrinsic::x86_sse2_ucomineq_sd:
10291      Opc = X86ISD::UCOMI;
10292      CC = ISD::SETNE;
10293      break;
10294    }
10295
10296    SDValue LHS = Op.getOperand(1);
10297    SDValue RHS = Op.getOperand(2);
10298    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10299    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10300    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10301    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10302                                DAG.getConstant(X86CC, MVT::i8), Cond);
10303    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10304  }
10305
10306  // Arithmetic intrinsics.
10307  case Intrinsic::x86_sse2_pmulu_dq:
10308  case Intrinsic::x86_avx2_pmulu_dq:
10309    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10310                       Op.getOperand(1), Op.getOperand(2));
10311
10312  // SSE2/AVX2 sub with unsigned saturation intrinsics
10313  case Intrinsic::x86_sse2_psubus_b:
10314  case Intrinsic::x86_sse2_psubus_w:
10315  case Intrinsic::x86_avx2_psubus_b:
10316  case Intrinsic::x86_avx2_psubus_w:
10317    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10318                       Op.getOperand(1), Op.getOperand(2));
10319
10320  // SSE3/AVX horizontal add/sub intrinsics
10321  case Intrinsic::x86_sse3_hadd_ps:
10322  case Intrinsic::x86_sse3_hadd_pd:
10323  case Intrinsic::x86_avx_hadd_ps_256:
10324  case Intrinsic::x86_avx_hadd_pd_256:
10325  case Intrinsic::x86_sse3_hsub_ps:
10326  case Intrinsic::x86_sse3_hsub_pd:
10327  case Intrinsic::x86_avx_hsub_ps_256:
10328  case Intrinsic::x86_avx_hsub_pd_256:
10329  case Intrinsic::x86_ssse3_phadd_w_128:
10330  case Intrinsic::x86_ssse3_phadd_d_128:
10331  case Intrinsic::x86_avx2_phadd_w:
10332  case Intrinsic::x86_avx2_phadd_d:
10333  case Intrinsic::x86_ssse3_phsub_w_128:
10334  case Intrinsic::x86_ssse3_phsub_d_128:
10335  case Intrinsic::x86_avx2_phsub_w:
10336  case Intrinsic::x86_avx2_phsub_d: {
10337    unsigned Opcode;
10338    switch (IntNo) {
10339    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10340    case Intrinsic::x86_sse3_hadd_ps:
10341    case Intrinsic::x86_sse3_hadd_pd:
10342    case Intrinsic::x86_avx_hadd_ps_256:
10343    case Intrinsic::x86_avx_hadd_pd_256:
10344      Opcode = X86ISD::FHADD;
10345      break;
10346    case Intrinsic::x86_sse3_hsub_ps:
10347    case Intrinsic::x86_sse3_hsub_pd:
10348    case Intrinsic::x86_avx_hsub_ps_256:
10349    case Intrinsic::x86_avx_hsub_pd_256:
10350      Opcode = X86ISD::FHSUB;
10351      break;
10352    case Intrinsic::x86_ssse3_phadd_w_128:
10353    case Intrinsic::x86_ssse3_phadd_d_128:
10354    case Intrinsic::x86_avx2_phadd_w:
10355    case Intrinsic::x86_avx2_phadd_d:
10356      Opcode = X86ISD::HADD;
10357      break;
10358    case Intrinsic::x86_ssse3_phsub_w_128:
10359    case Intrinsic::x86_ssse3_phsub_d_128:
10360    case Intrinsic::x86_avx2_phsub_w:
10361    case Intrinsic::x86_avx2_phsub_d:
10362      Opcode = X86ISD::HSUB;
10363      break;
10364    }
10365    return DAG.getNode(Opcode, dl, Op.getValueType(),
10366                       Op.getOperand(1), Op.getOperand(2));
10367  }
10368
10369  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10370  case Intrinsic::x86_sse2_pmaxu_b:
10371  case Intrinsic::x86_sse41_pmaxuw:
10372  case Intrinsic::x86_sse41_pmaxud:
10373  case Intrinsic::x86_avx2_pmaxu_b:
10374  case Intrinsic::x86_avx2_pmaxu_w:
10375  case Intrinsic::x86_avx2_pmaxu_d:
10376  case Intrinsic::x86_sse2_pminu_b:
10377  case Intrinsic::x86_sse41_pminuw:
10378  case Intrinsic::x86_sse41_pminud:
10379  case Intrinsic::x86_avx2_pminu_b:
10380  case Intrinsic::x86_avx2_pminu_w:
10381  case Intrinsic::x86_avx2_pminu_d:
10382  case Intrinsic::x86_sse41_pmaxsb:
10383  case Intrinsic::x86_sse2_pmaxs_w:
10384  case Intrinsic::x86_sse41_pmaxsd:
10385  case Intrinsic::x86_avx2_pmaxs_b:
10386  case Intrinsic::x86_avx2_pmaxs_w:
10387  case Intrinsic::x86_avx2_pmaxs_d:
10388  case Intrinsic::x86_sse41_pminsb:
10389  case Intrinsic::x86_sse2_pmins_w:
10390  case Intrinsic::x86_sse41_pminsd:
10391  case Intrinsic::x86_avx2_pmins_b:
10392  case Intrinsic::x86_avx2_pmins_w:
10393  case Intrinsic::x86_avx2_pmins_d: {
10394    unsigned Opcode;
10395    switch (IntNo) {
10396    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10397    case Intrinsic::x86_sse2_pmaxu_b:
10398    case Intrinsic::x86_sse41_pmaxuw:
10399    case Intrinsic::x86_sse41_pmaxud:
10400    case Intrinsic::x86_avx2_pmaxu_b:
10401    case Intrinsic::x86_avx2_pmaxu_w:
10402    case Intrinsic::x86_avx2_pmaxu_d:
10403      Opcode = X86ISD::UMAX;
10404      break;
10405    case Intrinsic::x86_sse2_pminu_b:
10406    case Intrinsic::x86_sse41_pminuw:
10407    case Intrinsic::x86_sse41_pminud:
10408    case Intrinsic::x86_avx2_pminu_b:
10409    case Intrinsic::x86_avx2_pminu_w:
10410    case Intrinsic::x86_avx2_pminu_d:
10411      Opcode = X86ISD::UMIN;
10412      break;
10413    case Intrinsic::x86_sse41_pmaxsb:
10414    case Intrinsic::x86_sse2_pmaxs_w:
10415    case Intrinsic::x86_sse41_pmaxsd:
10416    case Intrinsic::x86_avx2_pmaxs_b:
10417    case Intrinsic::x86_avx2_pmaxs_w:
10418    case Intrinsic::x86_avx2_pmaxs_d:
10419      Opcode = X86ISD::SMAX;
10420      break;
10421    case Intrinsic::x86_sse41_pminsb:
10422    case Intrinsic::x86_sse2_pmins_w:
10423    case Intrinsic::x86_sse41_pminsd:
10424    case Intrinsic::x86_avx2_pmins_b:
10425    case Intrinsic::x86_avx2_pmins_w:
10426    case Intrinsic::x86_avx2_pmins_d:
10427      Opcode = X86ISD::SMIN;
10428      break;
10429    }
10430    return DAG.getNode(Opcode, dl, Op.getValueType(),
10431                       Op.getOperand(1), Op.getOperand(2));
10432  }
10433
10434  // SSE/SSE2/AVX floating point max/min intrinsics.
10435  case Intrinsic::x86_sse_max_ps:
10436  case Intrinsic::x86_sse2_max_pd:
10437  case Intrinsic::x86_avx_max_ps_256:
10438  case Intrinsic::x86_avx_max_pd_256:
10439  case Intrinsic::x86_sse_min_ps:
10440  case Intrinsic::x86_sse2_min_pd:
10441  case Intrinsic::x86_avx_min_ps_256:
10442  case Intrinsic::x86_avx_min_pd_256: {
10443    unsigned Opcode;
10444    switch (IntNo) {
10445    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10446    case Intrinsic::x86_sse_max_ps:
10447    case Intrinsic::x86_sse2_max_pd:
10448    case Intrinsic::x86_avx_max_ps_256:
10449    case Intrinsic::x86_avx_max_pd_256:
10450      Opcode = X86ISD::FMAX;
10451      break;
10452    case Intrinsic::x86_sse_min_ps:
10453    case Intrinsic::x86_sse2_min_pd:
10454    case Intrinsic::x86_avx_min_ps_256:
10455    case Intrinsic::x86_avx_min_pd_256:
10456      Opcode = X86ISD::FMIN;
10457      break;
10458    }
10459    return DAG.getNode(Opcode, dl, Op.getValueType(),
10460                       Op.getOperand(1), Op.getOperand(2));
10461  }
10462
10463  // AVX2 variable shift intrinsics
10464  case Intrinsic::x86_avx2_psllv_d:
10465  case Intrinsic::x86_avx2_psllv_q:
10466  case Intrinsic::x86_avx2_psllv_d_256:
10467  case Intrinsic::x86_avx2_psllv_q_256:
10468  case Intrinsic::x86_avx2_psrlv_d:
10469  case Intrinsic::x86_avx2_psrlv_q:
10470  case Intrinsic::x86_avx2_psrlv_d_256:
10471  case Intrinsic::x86_avx2_psrlv_q_256:
10472  case Intrinsic::x86_avx2_psrav_d:
10473  case Intrinsic::x86_avx2_psrav_d_256: {
10474    unsigned Opcode;
10475    switch (IntNo) {
10476    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10477    case Intrinsic::x86_avx2_psllv_d:
10478    case Intrinsic::x86_avx2_psllv_q:
10479    case Intrinsic::x86_avx2_psllv_d_256:
10480    case Intrinsic::x86_avx2_psllv_q_256:
10481      Opcode = ISD::SHL;
10482      break;
10483    case Intrinsic::x86_avx2_psrlv_d:
10484    case Intrinsic::x86_avx2_psrlv_q:
10485    case Intrinsic::x86_avx2_psrlv_d_256:
10486    case Intrinsic::x86_avx2_psrlv_q_256:
10487      Opcode = ISD::SRL;
10488      break;
10489    case Intrinsic::x86_avx2_psrav_d:
10490    case Intrinsic::x86_avx2_psrav_d_256:
10491      Opcode = ISD::SRA;
10492      break;
10493    }
10494    return DAG.getNode(Opcode, dl, Op.getValueType(),
10495                       Op.getOperand(1), Op.getOperand(2));
10496  }
10497
10498  case Intrinsic::x86_ssse3_pshuf_b_128:
10499  case Intrinsic::x86_avx2_pshuf_b:
10500    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10501                       Op.getOperand(1), Op.getOperand(2));
10502
10503  case Intrinsic::x86_ssse3_psign_b_128:
10504  case Intrinsic::x86_ssse3_psign_w_128:
10505  case Intrinsic::x86_ssse3_psign_d_128:
10506  case Intrinsic::x86_avx2_psign_b:
10507  case Intrinsic::x86_avx2_psign_w:
10508  case Intrinsic::x86_avx2_psign_d:
10509    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10510                       Op.getOperand(1), Op.getOperand(2));
10511
10512  case Intrinsic::x86_sse41_insertps:
10513    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10514                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10515
10516  case Intrinsic::x86_avx_vperm2f128_ps_256:
10517  case Intrinsic::x86_avx_vperm2f128_pd_256:
10518  case Intrinsic::x86_avx_vperm2f128_si_256:
10519  case Intrinsic::x86_avx2_vperm2i128:
10520    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10521                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10522
10523  case Intrinsic::x86_avx2_permd:
10524  case Intrinsic::x86_avx2_permps:
10525    // Operands intentionally swapped. Mask is last operand to intrinsic,
10526    // but second operand for node/intruction.
10527    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10528                       Op.getOperand(2), Op.getOperand(1));
10529
10530  case Intrinsic::x86_sse_sqrt_ps:
10531  case Intrinsic::x86_sse2_sqrt_pd:
10532  case Intrinsic::x86_avx_sqrt_ps_256:
10533  case Intrinsic::x86_avx_sqrt_pd_256:
10534    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10535
10536  // ptest and testp intrinsics. The intrinsic these come from are designed to
10537  // return an integer value, not just an instruction so lower it to the ptest
10538  // or testp pattern and a setcc for the result.
10539  case Intrinsic::x86_sse41_ptestz:
10540  case Intrinsic::x86_sse41_ptestc:
10541  case Intrinsic::x86_sse41_ptestnzc:
10542  case Intrinsic::x86_avx_ptestz_256:
10543  case Intrinsic::x86_avx_ptestc_256:
10544  case Intrinsic::x86_avx_ptestnzc_256:
10545  case Intrinsic::x86_avx_vtestz_ps:
10546  case Intrinsic::x86_avx_vtestc_ps:
10547  case Intrinsic::x86_avx_vtestnzc_ps:
10548  case Intrinsic::x86_avx_vtestz_pd:
10549  case Intrinsic::x86_avx_vtestc_pd:
10550  case Intrinsic::x86_avx_vtestnzc_pd:
10551  case Intrinsic::x86_avx_vtestz_ps_256:
10552  case Intrinsic::x86_avx_vtestc_ps_256:
10553  case Intrinsic::x86_avx_vtestnzc_ps_256:
10554  case Intrinsic::x86_avx_vtestz_pd_256:
10555  case Intrinsic::x86_avx_vtestc_pd_256:
10556  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10557    bool IsTestPacked = false;
10558    unsigned X86CC;
10559    switch (IntNo) {
10560    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10561    case Intrinsic::x86_avx_vtestz_ps:
10562    case Intrinsic::x86_avx_vtestz_pd:
10563    case Intrinsic::x86_avx_vtestz_ps_256:
10564    case Intrinsic::x86_avx_vtestz_pd_256:
10565      IsTestPacked = true; // Fallthrough
10566    case Intrinsic::x86_sse41_ptestz:
10567    case Intrinsic::x86_avx_ptestz_256:
10568      // ZF = 1
10569      X86CC = X86::COND_E;
10570      break;
10571    case Intrinsic::x86_avx_vtestc_ps:
10572    case Intrinsic::x86_avx_vtestc_pd:
10573    case Intrinsic::x86_avx_vtestc_ps_256:
10574    case Intrinsic::x86_avx_vtestc_pd_256:
10575      IsTestPacked = true; // Fallthrough
10576    case Intrinsic::x86_sse41_ptestc:
10577    case Intrinsic::x86_avx_ptestc_256:
10578      // CF = 1
10579      X86CC = X86::COND_B;
10580      break;
10581    case Intrinsic::x86_avx_vtestnzc_ps:
10582    case Intrinsic::x86_avx_vtestnzc_pd:
10583    case Intrinsic::x86_avx_vtestnzc_ps_256:
10584    case Intrinsic::x86_avx_vtestnzc_pd_256:
10585      IsTestPacked = true; // Fallthrough
10586    case Intrinsic::x86_sse41_ptestnzc:
10587    case Intrinsic::x86_avx_ptestnzc_256:
10588      // ZF and CF = 0
10589      X86CC = X86::COND_A;
10590      break;
10591    }
10592
10593    SDValue LHS = Op.getOperand(1);
10594    SDValue RHS = Op.getOperand(2);
10595    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10596    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10597    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10598    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10599    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10600  }
10601
10602  // SSE/AVX shift intrinsics
10603  case Intrinsic::x86_sse2_psll_w:
10604  case Intrinsic::x86_sse2_psll_d:
10605  case Intrinsic::x86_sse2_psll_q:
10606  case Intrinsic::x86_avx2_psll_w:
10607  case Intrinsic::x86_avx2_psll_d:
10608  case Intrinsic::x86_avx2_psll_q:
10609  case Intrinsic::x86_sse2_psrl_w:
10610  case Intrinsic::x86_sse2_psrl_d:
10611  case Intrinsic::x86_sse2_psrl_q:
10612  case Intrinsic::x86_avx2_psrl_w:
10613  case Intrinsic::x86_avx2_psrl_d:
10614  case Intrinsic::x86_avx2_psrl_q:
10615  case Intrinsic::x86_sse2_psra_w:
10616  case Intrinsic::x86_sse2_psra_d:
10617  case Intrinsic::x86_avx2_psra_w:
10618  case Intrinsic::x86_avx2_psra_d: {
10619    unsigned Opcode;
10620    switch (IntNo) {
10621    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10622    case Intrinsic::x86_sse2_psll_w:
10623    case Intrinsic::x86_sse2_psll_d:
10624    case Intrinsic::x86_sse2_psll_q:
10625    case Intrinsic::x86_avx2_psll_w:
10626    case Intrinsic::x86_avx2_psll_d:
10627    case Intrinsic::x86_avx2_psll_q:
10628      Opcode = X86ISD::VSHL;
10629      break;
10630    case Intrinsic::x86_sse2_psrl_w:
10631    case Intrinsic::x86_sse2_psrl_d:
10632    case Intrinsic::x86_sse2_psrl_q:
10633    case Intrinsic::x86_avx2_psrl_w:
10634    case Intrinsic::x86_avx2_psrl_d:
10635    case Intrinsic::x86_avx2_psrl_q:
10636      Opcode = X86ISD::VSRL;
10637      break;
10638    case Intrinsic::x86_sse2_psra_w:
10639    case Intrinsic::x86_sse2_psra_d:
10640    case Intrinsic::x86_avx2_psra_w:
10641    case Intrinsic::x86_avx2_psra_d:
10642      Opcode = X86ISD::VSRA;
10643      break;
10644    }
10645    return DAG.getNode(Opcode, dl, Op.getValueType(),
10646                       Op.getOperand(1), Op.getOperand(2));
10647  }
10648
10649  // SSE/AVX immediate shift intrinsics
10650  case Intrinsic::x86_sse2_pslli_w:
10651  case Intrinsic::x86_sse2_pslli_d:
10652  case Intrinsic::x86_sse2_pslli_q:
10653  case Intrinsic::x86_avx2_pslli_w:
10654  case Intrinsic::x86_avx2_pslli_d:
10655  case Intrinsic::x86_avx2_pslli_q:
10656  case Intrinsic::x86_sse2_psrli_w:
10657  case Intrinsic::x86_sse2_psrli_d:
10658  case Intrinsic::x86_sse2_psrli_q:
10659  case Intrinsic::x86_avx2_psrli_w:
10660  case Intrinsic::x86_avx2_psrli_d:
10661  case Intrinsic::x86_avx2_psrli_q:
10662  case Intrinsic::x86_sse2_psrai_w:
10663  case Intrinsic::x86_sse2_psrai_d:
10664  case Intrinsic::x86_avx2_psrai_w:
10665  case Intrinsic::x86_avx2_psrai_d: {
10666    unsigned Opcode;
10667    switch (IntNo) {
10668    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10669    case Intrinsic::x86_sse2_pslli_w:
10670    case Intrinsic::x86_sse2_pslli_d:
10671    case Intrinsic::x86_sse2_pslli_q:
10672    case Intrinsic::x86_avx2_pslli_w:
10673    case Intrinsic::x86_avx2_pslli_d:
10674    case Intrinsic::x86_avx2_pslli_q:
10675      Opcode = X86ISD::VSHLI;
10676      break;
10677    case Intrinsic::x86_sse2_psrli_w:
10678    case Intrinsic::x86_sse2_psrli_d:
10679    case Intrinsic::x86_sse2_psrli_q:
10680    case Intrinsic::x86_avx2_psrli_w:
10681    case Intrinsic::x86_avx2_psrli_d:
10682    case Intrinsic::x86_avx2_psrli_q:
10683      Opcode = X86ISD::VSRLI;
10684      break;
10685    case Intrinsic::x86_sse2_psrai_w:
10686    case Intrinsic::x86_sse2_psrai_d:
10687    case Intrinsic::x86_avx2_psrai_w:
10688    case Intrinsic::x86_avx2_psrai_d:
10689      Opcode = X86ISD::VSRAI;
10690      break;
10691    }
10692    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10693                               Op.getOperand(1), Op.getOperand(2), DAG);
10694  }
10695
10696  case Intrinsic::x86_sse42_pcmpistria128:
10697  case Intrinsic::x86_sse42_pcmpestria128:
10698  case Intrinsic::x86_sse42_pcmpistric128:
10699  case Intrinsic::x86_sse42_pcmpestric128:
10700  case Intrinsic::x86_sse42_pcmpistrio128:
10701  case Intrinsic::x86_sse42_pcmpestrio128:
10702  case Intrinsic::x86_sse42_pcmpistris128:
10703  case Intrinsic::x86_sse42_pcmpestris128:
10704  case Intrinsic::x86_sse42_pcmpistriz128:
10705  case Intrinsic::x86_sse42_pcmpestriz128: {
10706    unsigned Opcode;
10707    unsigned X86CC;
10708    switch (IntNo) {
10709    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10710    case Intrinsic::x86_sse42_pcmpistria128:
10711      Opcode = X86ISD::PCMPISTRI;
10712      X86CC = X86::COND_A;
10713      break;
10714    case Intrinsic::x86_sse42_pcmpestria128:
10715      Opcode = X86ISD::PCMPESTRI;
10716      X86CC = X86::COND_A;
10717      break;
10718    case Intrinsic::x86_sse42_pcmpistric128:
10719      Opcode = X86ISD::PCMPISTRI;
10720      X86CC = X86::COND_B;
10721      break;
10722    case Intrinsic::x86_sse42_pcmpestric128:
10723      Opcode = X86ISD::PCMPESTRI;
10724      X86CC = X86::COND_B;
10725      break;
10726    case Intrinsic::x86_sse42_pcmpistrio128:
10727      Opcode = X86ISD::PCMPISTRI;
10728      X86CC = X86::COND_O;
10729      break;
10730    case Intrinsic::x86_sse42_pcmpestrio128:
10731      Opcode = X86ISD::PCMPESTRI;
10732      X86CC = X86::COND_O;
10733      break;
10734    case Intrinsic::x86_sse42_pcmpistris128:
10735      Opcode = X86ISD::PCMPISTRI;
10736      X86CC = X86::COND_S;
10737      break;
10738    case Intrinsic::x86_sse42_pcmpestris128:
10739      Opcode = X86ISD::PCMPESTRI;
10740      X86CC = X86::COND_S;
10741      break;
10742    case Intrinsic::x86_sse42_pcmpistriz128:
10743      Opcode = X86ISD::PCMPISTRI;
10744      X86CC = X86::COND_E;
10745      break;
10746    case Intrinsic::x86_sse42_pcmpestriz128:
10747      Opcode = X86ISD::PCMPESTRI;
10748      X86CC = X86::COND_E;
10749      break;
10750    }
10751    SmallVector<SDValue, 5> NewOps;
10752    NewOps.append(Op->op_begin()+1, Op->op_end());
10753    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10754    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10755    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10756                                DAG.getConstant(X86CC, MVT::i8),
10757                                SDValue(PCMP.getNode(), 1));
10758    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10759  }
10760
10761  case Intrinsic::x86_sse42_pcmpistri128:
10762  case Intrinsic::x86_sse42_pcmpestri128: {
10763    unsigned Opcode;
10764    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10765      Opcode = X86ISD::PCMPISTRI;
10766    else
10767      Opcode = X86ISD::PCMPESTRI;
10768
10769    SmallVector<SDValue, 5> NewOps;
10770    NewOps.append(Op->op_begin()+1, Op->op_end());
10771    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10772    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10773  }
10774  case Intrinsic::x86_fma_vfmadd_ps:
10775  case Intrinsic::x86_fma_vfmadd_pd:
10776  case Intrinsic::x86_fma_vfmsub_ps:
10777  case Intrinsic::x86_fma_vfmsub_pd:
10778  case Intrinsic::x86_fma_vfnmadd_ps:
10779  case Intrinsic::x86_fma_vfnmadd_pd:
10780  case Intrinsic::x86_fma_vfnmsub_ps:
10781  case Intrinsic::x86_fma_vfnmsub_pd:
10782  case Intrinsic::x86_fma_vfmaddsub_ps:
10783  case Intrinsic::x86_fma_vfmaddsub_pd:
10784  case Intrinsic::x86_fma_vfmsubadd_ps:
10785  case Intrinsic::x86_fma_vfmsubadd_pd:
10786  case Intrinsic::x86_fma_vfmadd_ps_256:
10787  case Intrinsic::x86_fma_vfmadd_pd_256:
10788  case Intrinsic::x86_fma_vfmsub_ps_256:
10789  case Intrinsic::x86_fma_vfmsub_pd_256:
10790  case Intrinsic::x86_fma_vfnmadd_ps_256:
10791  case Intrinsic::x86_fma_vfnmadd_pd_256:
10792  case Intrinsic::x86_fma_vfnmsub_ps_256:
10793  case Intrinsic::x86_fma_vfnmsub_pd_256:
10794  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10795  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10796  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10797  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10798    unsigned Opc;
10799    switch (IntNo) {
10800    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10801    case Intrinsic::x86_fma_vfmadd_ps:
10802    case Intrinsic::x86_fma_vfmadd_pd:
10803    case Intrinsic::x86_fma_vfmadd_ps_256:
10804    case Intrinsic::x86_fma_vfmadd_pd_256:
10805      Opc = X86ISD::FMADD;
10806      break;
10807    case Intrinsic::x86_fma_vfmsub_ps:
10808    case Intrinsic::x86_fma_vfmsub_pd:
10809    case Intrinsic::x86_fma_vfmsub_ps_256:
10810    case Intrinsic::x86_fma_vfmsub_pd_256:
10811      Opc = X86ISD::FMSUB;
10812      break;
10813    case Intrinsic::x86_fma_vfnmadd_ps:
10814    case Intrinsic::x86_fma_vfnmadd_pd:
10815    case Intrinsic::x86_fma_vfnmadd_ps_256:
10816    case Intrinsic::x86_fma_vfnmadd_pd_256:
10817      Opc = X86ISD::FNMADD;
10818      break;
10819    case Intrinsic::x86_fma_vfnmsub_ps:
10820    case Intrinsic::x86_fma_vfnmsub_pd:
10821    case Intrinsic::x86_fma_vfnmsub_ps_256:
10822    case Intrinsic::x86_fma_vfnmsub_pd_256:
10823      Opc = X86ISD::FNMSUB;
10824      break;
10825    case Intrinsic::x86_fma_vfmaddsub_ps:
10826    case Intrinsic::x86_fma_vfmaddsub_pd:
10827    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10828    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10829      Opc = X86ISD::FMADDSUB;
10830      break;
10831    case Intrinsic::x86_fma_vfmsubadd_ps:
10832    case Intrinsic::x86_fma_vfmsubadd_pd:
10833    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10834    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10835      Opc = X86ISD::FMSUBADD;
10836      break;
10837    }
10838
10839    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10840                       Op.getOperand(2), Op.getOperand(3));
10841  }
10842  }
10843}
10844
10845static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10846  DebugLoc dl = Op.getDebugLoc();
10847  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10848  switch (IntNo) {
10849  default: return SDValue();    // Don't custom lower most intrinsics.
10850
10851  // RDRAND intrinsics.
10852  case Intrinsic::x86_rdrand_16:
10853  case Intrinsic::x86_rdrand_32:
10854  case Intrinsic::x86_rdrand_64: {
10855    // Emit the node with the right value type.
10856    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10857    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10858
10859    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10860    // return the value from Rand, which is always 0, casted to i32.
10861    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10862                      DAG.getConstant(1, Op->getValueType(1)),
10863                      DAG.getConstant(X86::COND_B, MVT::i32),
10864                      SDValue(Result.getNode(), 1) };
10865    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10866                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10867                                  Ops, 4);
10868
10869    // Return { result, isValid, chain }.
10870    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10871                       SDValue(Result.getNode(), 2));
10872  }
10873  }
10874}
10875
10876SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10877                                           SelectionDAG &DAG) const {
10878  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10879  MFI->setReturnAddressIsTaken(true);
10880
10881  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10882  DebugLoc dl = Op.getDebugLoc();
10883  EVT PtrVT = getPointerTy();
10884
10885  if (Depth > 0) {
10886    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10887    SDValue Offset =
10888      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10889    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10890                       DAG.getNode(ISD::ADD, dl, PtrVT,
10891                                   FrameAddr, Offset),
10892                       MachinePointerInfo(), false, false, false, 0);
10893  }
10894
10895  // Just load the return address.
10896  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10897  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10898                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10899}
10900
10901SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10902  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10903  MFI->setFrameAddressIsTaken(true);
10904
10905  EVT VT = Op.getValueType();
10906  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10907  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10908  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10909  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10910  while (Depth--)
10911    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10912                            MachinePointerInfo(),
10913                            false, false, false, 0);
10914  return FrameAddr;
10915}
10916
10917SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10918                                                     SelectionDAG &DAG) const {
10919  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10920}
10921
10922SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10923  SDValue Chain     = Op.getOperand(0);
10924  SDValue Offset    = Op.getOperand(1);
10925  SDValue Handler   = Op.getOperand(2);
10926  DebugLoc dl       = Op.getDebugLoc();
10927
10928  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10929                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10930                                     getPointerTy());
10931  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10932
10933  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10934                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
10935  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10936  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10937                       false, false, 0);
10938  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10939
10940  return DAG.getNode(X86ISD::EH_RETURN, dl,
10941                     MVT::Other,
10942                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10943}
10944
10945SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
10946                                               SelectionDAG &DAG) const {
10947  DebugLoc DL = Op.getDebugLoc();
10948  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
10949                     DAG.getVTList(MVT::i32, MVT::Other),
10950                     Op.getOperand(0), Op.getOperand(1));
10951}
10952
10953SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
10954                                                SelectionDAG &DAG) const {
10955  DebugLoc DL = Op.getDebugLoc();
10956  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
10957                     Op.getOperand(0), Op.getOperand(1));
10958}
10959
10960static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10961  return Op.getOperand(0);
10962}
10963
10964SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10965                                                SelectionDAG &DAG) const {
10966  SDValue Root = Op.getOperand(0);
10967  SDValue Trmp = Op.getOperand(1); // trampoline
10968  SDValue FPtr = Op.getOperand(2); // nested function
10969  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10970  DebugLoc dl  = Op.getDebugLoc();
10971
10972  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10973  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
10974
10975  if (Subtarget->is64Bit()) {
10976    SDValue OutChains[6];
10977
10978    // Large code-model.
10979    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10980    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10981
10982    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
10983    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
10984
10985    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10986
10987    // Load the pointer to the nested function into R11.
10988    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10989    SDValue Addr = Trmp;
10990    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10991                                Addr, MachinePointerInfo(TrmpAddr),
10992                                false, false, 0);
10993
10994    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10995                       DAG.getConstant(2, MVT::i64));
10996    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10997                                MachinePointerInfo(TrmpAddr, 2),
10998                                false, false, 2);
10999
11000    // Load the 'nest' parameter value into R10.
11001    // R10 is specified in X86CallingConv.td
11002    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11003    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11004                       DAG.getConstant(10, MVT::i64));
11005    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11006                                Addr, MachinePointerInfo(TrmpAddr, 10),
11007                                false, false, 0);
11008
11009    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11010                       DAG.getConstant(12, MVT::i64));
11011    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11012                                MachinePointerInfo(TrmpAddr, 12),
11013                                false, false, 2);
11014
11015    // Jump to the nested function.
11016    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11017    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11018                       DAG.getConstant(20, MVT::i64));
11019    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11020                                Addr, MachinePointerInfo(TrmpAddr, 20),
11021                                false, false, 0);
11022
11023    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11024    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11025                       DAG.getConstant(22, MVT::i64));
11026    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11027                                MachinePointerInfo(TrmpAddr, 22),
11028                                false, false, 0);
11029
11030    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11031  } else {
11032    const Function *Func =
11033      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11034    CallingConv::ID CC = Func->getCallingConv();
11035    unsigned NestReg;
11036
11037    switch (CC) {
11038    default:
11039      llvm_unreachable("Unsupported calling convention");
11040    case CallingConv::C:
11041    case CallingConv::X86_StdCall: {
11042      // Pass 'nest' parameter in ECX.
11043      // Must be kept in sync with X86CallingConv.td
11044      NestReg = X86::ECX;
11045
11046      // Check that ECX wasn't needed by an 'inreg' parameter.
11047      FunctionType *FTy = Func->getFunctionType();
11048      const AttributeSet &Attrs = Func->getAttributes();
11049
11050      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11051        unsigned InRegCount = 0;
11052        unsigned Idx = 1;
11053
11054        for (FunctionType::param_iterator I = FTy->param_begin(),
11055             E = FTy->param_end(); I != E; ++I, ++Idx)
11056          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11057            // FIXME: should only count parameters that are lowered to integers.
11058            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11059
11060        if (InRegCount > 2) {
11061          report_fatal_error("Nest register in use - reduce number of inreg"
11062                             " parameters!");
11063        }
11064      }
11065      break;
11066    }
11067    case CallingConv::X86_FastCall:
11068    case CallingConv::X86_ThisCall:
11069    case CallingConv::Fast:
11070      // Pass 'nest' parameter in EAX.
11071      // Must be kept in sync with X86CallingConv.td
11072      NestReg = X86::EAX;
11073      break;
11074    }
11075
11076    SDValue OutChains[4];
11077    SDValue Addr, Disp;
11078
11079    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11080                       DAG.getConstant(10, MVT::i32));
11081    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11082
11083    // This is storing the opcode for MOV32ri.
11084    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11085    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11086    OutChains[0] = DAG.getStore(Root, dl,
11087                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11088                                Trmp, MachinePointerInfo(TrmpAddr),
11089                                false, false, 0);
11090
11091    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11092                       DAG.getConstant(1, MVT::i32));
11093    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11094                                MachinePointerInfo(TrmpAddr, 1),
11095                                false, false, 1);
11096
11097    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11098    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11099                       DAG.getConstant(5, MVT::i32));
11100    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11101                                MachinePointerInfo(TrmpAddr, 5),
11102                                false, false, 1);
11103
11104    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11105                       DAG.getConstant(6, MVT::i32));
11106    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11107                                MachinePointerInfo(TrmpAddr, 6),
11108                                false, false, 1);
11109
11110    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11111  }
11112}
11113
11114SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11115                                            SelectionDAG &DAG) const {
11116  /*
11117   The rounding mode is in bits 11:10 of FPSR, and has the following
11118   settings:
11119     00 Round to nearest
11120     01 Round to -inf
11121     10 Round to +inf
11122     11 Round to 0
11123
11124  FLT_ROUNDS, on the other hand, expects the following:
11125    -1 Undefined
11126     0 Round to 0
11127     1 Round to nearest
11128     2 Round to +inf
11129     3 Round to -inf
11130
11131  To perform the conversion, we do:
11132    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11133  */
11134
11135  MachineFunction &MF = DAG.getMachineFunction();
11136  const TargetMachine &TM = MF.getTarget();
11137  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11138  unsigned StackAlignment = TFI.getStackAlignment();
11139  EVT VT = Op.getValueType();
11140  DebugLoc DL = Op.getDebugLoc();
11141
11142  // Save FP Control Word to stack slot
11143  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11144  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11145
11146  MachineMemOperand *MMO =
11147   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11148                           MachineMemOperand::MOStore, 2, 2);
11149
11150  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11151  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11152                                          DAG.getVTList(MVT::Other),
11153                                          Ops, 2, MVT::i16, MMO);
11154
11155  // Load FP Control Word from stack slot
11156  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11157                            MachinePointerInfo(), false, false, false, 0);
11158
11159  // Transform as necessary
11160  SDValue CWD1 =
11161    DAG.getNode(ISD::SRL, DL, MVT::i16,
11162                DAG.getNode(ISD::AND, DL, MVT::i16,
11163                            CWD, DAG.getConstant(0x800, MVT::i16)),
11164                DAG.getConstant(11, MVT::i8));
11165  SDValue CWD2 =
11166    DAG.getNode(ISD::SRL, DL, MVT::i16,
11167                DAG.getNode(ISD::AND, DL, MVT::i16,
11168                            CWD, DAG.getConstant(0x400, MVT::i16)),
11169                DAG.getConstant(9, MVT::i8));
11170
11171  SDValue RetVal =
11172    DAG.getNode(ISD::AND, DL, MVT::i16,
11173                DAG.getNode(ISD::ADD, DL, MVT::i16,
11174                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11175                            DAG.getConstant(1, MVT::i16)),
11176                DAG.getConstant(3, MVT::i16));
11177
11178  return DAG.getNode((VT.getSizeInBits() < 16 ?
11179                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11180}
11181
11182static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11183  EVT VT = Op.getValueType();
11184  EVT OpVT = VT;
11185  unsigned NumBits = VT.getSizeInBits();
11186  DebugLoc dl = Op.getDebugLoc();
11187
11188  Op = Op.getOperand(0);
11189  if (VT == MVT::i8) {
11190    // Zero extend to i32 since there is not an i8 bsr.
11191    OpVT = MVT::i32;
11192    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11193  }
11194
11195  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11196  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11197  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11198
11199  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11200  SDValue Ops[] = {
11201    Op,
11202    DAG.getConstant(NumBits+NumBits-1, OpVT),
11203    DAG.getConstant(X86::COND_E, MVT::i8),
11204    Op.getValue(1)
11205  };
11206  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11207
11208  // Finally xor with NumBits-1.
11209  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11210
11211  if (VT == MVT::i8)
11212    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11213  return Op;
11214}
11215
11216static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11217  EVT VT = Op.getValueType();
11218  EVT OpVT = VT;
11219  unsigned NumBits = VT.getSizeInBits();
11220  DebugLoc dl = Op.getDebugLoc();
11221
11222  Op = Op.getOperand(0);
11223  if (VT == MVT::i8) {
11224    // Zero extend to i32 since there is not an i8 bsr.
11225    OpVT = MVT::i32;
11226    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11227  }
11228
11229  // Issue a bsr (scan bits in reverse).
11230  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11231  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11232
11233  // And xor with NumBits-1.
11234  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11235
11236  if (VT == MVT::i8)
11237    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11238  return Op;
11239}
11240
11241static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11242  EVT VT = Op.getValueType();
11243  unsigned NumBits = VT.getSizeInBits();
11244  DebugLoc dl = Op.getDebugLoc();
11245  Op = Op.getOperand(0);
11246
11247  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11248  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11249  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11250
11251  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11252  SDValue Ops[] = {
11253    Op,
11254    DAG.getConstant(NumBits, VT),
11255    DAG.getConstant(X86::COND_E, MVT::i8),
11256    Op.getValue(1)
11257  };
11258  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11259}
11260
11261// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11262// ones, and then concatenate the result back.
11263static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11264  EVT VT = Op.getValueType();
11265
11266  assert(VT.is256BitVector() && VT.isInteger() &&
11267         "Unsupported value type for operation");
11268
11269  unsigned NumElems = VT.getVectorNumElements();
11270  DebugLoc dl = Op.getDebugLoc();
11271
11272  // Extract the LHS vectors
11273  SDValue LHS = Op.getOperand(0);
11274  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11275  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11276
11277  // Extract the RHS vectors
11278  SDValue RHS = Op.getOperand(1);
11279  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11280  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11281
11282  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11283  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11284
11285  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11286                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11287                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11288}
11289
11290static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11291  assert(Op.getValueType().is256BitVector() &&
11292         Op.getValueType().isInteger() &&
11293         "Only handle AVX 256-bit vector integer operation");
11294  return Lower256IntArith(Op, DAG);
11295}
11296
11297static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11298  assert(Op.getValueType().is256BitVector() &&
11299         Op.getValueType().isInteger() &&
11300         "Only handle AVX 256-bit vector integer operation");
11301  return Lower256IntArith(Op, DAG);
11302}
11303
11304static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11305                        SelectionDAG &DAG) {
11306  DebugLoc dl = Op.getDebugLoc();
11307  EVT VT = Op.getValueType();
11308
11309  // Decompose 256-bit ops into smaller 128-bit ops.
11310  if (VT.is256BitVector() && !Subtarget->hasInt256())
11311    return Lower256IntArith(Op, DAG);
11312
11313  SDValue A = Op.getOperand(0);
11314  SDValue B = Op.getOperand(1);
11315
11316  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11317  if (VT == MVT::v4i32) {
11318    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11319           "Should not custom lower when pmuldq is available!");
11320
11321    // Extract the odd parts.
11322    const int UnpackMask[] = { 1, -1, 3, -1 };
11323    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11324    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11325
11326    // Multiply the even parts.
11327    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11328    // Now multiply odd parts.
11329    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11330
11331    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11332    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11333
11334    // Merge the two vectors back together with a shuffle. This expands into 2
11335    // shuffles.
11336    const int ShufMask[] = { 0, 4, 2, 6 };
11337    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11338  }
11339
11340  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11341         "Only know how to lower V2I64/V4I64 multiply");
11342
11343  //  Ahi = psrlqi(a, 32);
11344  //  Bhi = psrlqi(b, 32);
11345  //
11346  //  AloBlo = pmuludq(a, b);
11347  //  AloBhi = pmuludq(a, Bhi);
11348  //  AhiBlo = pmuludq(Ahi, b);
11349
11350  //  AloBhi = psllqi(AloBhi, 32);
11351  //  AhiBlo = psllqi(AhiBlo, 32);
11352  //  return AloBlo + AloBhi + AhiBlo;
11353
11354  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11355
11356  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11357  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11358
11359  // Bit cast to 32-bit vectors for MULUDQ
11360  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11361  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11362  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11363  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11364  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11365
11366  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11367  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11368  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11369
11370  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11371  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11372
11373  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11374  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11375}
11376
11377SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11378  EVT VT = Op.getValueType();
11379  EVT EltTy = VT.getVectorElementType();
11380  unsigned NumElts = VT.getVectorNumElements();
11381  SDValue N0 = Op.getOperand(0);
11382  DebugLoc dl = Op.getDebugLoc();
11383
11384  // Lower sdiv X, pow2-const.
11385  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11386  if (!C)
11387    return SDValue();
11388
11389  APInt SplatValue, SplatUndef;
11390  unsigned MinSplatBits;
11391  bool HasAnyUndefs;
11392  if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
11393    return SDValue();
11394
11395  if ((SplatValue != 0) &&
11396      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11397    unsigned lg2 = SplatValue.countTrailingZeros();
11398    // Splat the sign bit.
11399    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11400    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11401    // Add (N0 < 0) ? abs2 - 1 : 0;
11402    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11403    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11404    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11405    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11406    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11407
11408    // If we're dividing by a positive value, we're done.  Otherwise, we must
11409    // negate the result.
11410    if (SplatValue.isNonNegative())
11411      return SRA;
11412
11413    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11414    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11415    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11416  }
11417  return SDValue();
11418}
11419
11420SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11421
11422  EVT VT = Op.getValueType();
11423  DebugLoc dl = Op.getDebugLoc();
11424  SDValue R = Op.getOperand(0);
11425  SDValue Amt = Op.getOperand(1);
11426  LLVMContext *Context = DAG.getContext();
11427
11428  if (!Subtarget->hasSSE2())
11429    return SDValue();
11430
11431  // Optimize shl/srl/sra with constant shift amount.
11432  if (isSplatVector(Amt.getNode())) {
11433    SDValue SclrAmt = Amt->getOperand(0);
11434    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11435      uint64_t ShiftAmt = C->getZExtValue();
11436
11437      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11438          (Subtarget->hasInt256() &&
11439           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11440        if (Op.getOpcode() == ISD::SHL)
11441          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11442                             DAG.getConstant(ShiftAmt, MVT::i32));
11443        if (Op.getOpcode() == ISD::SRL)
11444          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11445                             DAG.getConstant(ShiftAmt, MVT::i32));
11446        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11447          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11448                             DAG.getConstant(ShiftAmt, MVT::i32));
11449      }
11450
11451      if (VT == MVT::v16i8) {
11452        if (Op.getOpcode() == ISD::SHL) {
11453          // Make a large shift.
11454          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11455                                    DAG.getConstant(ShiftAmt, MVT::i32));
11456          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11457          // Zero out the rightmost bits.
11458          SmallVector<SDValue, 16> V(16,
11459                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11460                                                     MVT::i8));
11461          return DAG.getNode(ISD::AND, dl, VT, SHL,
11462                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11463        }
11464        if (Op.getOpcode() == ISD::SRL) {
11465          // Make a large shift.
11466          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11467                                    DAG.getConstant(ShiftAmt, MVT::i32));
11468          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11469          // Zero out the leftmost bits.
11470          SmallVector<SDValue, 16> V(16,
11471                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11472                                                     MVT::i8));
11473          return DAG.getNode(ISD::AND, dl, VT, SRL,
11474                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11475        }
11476        if (Op.getOpcode() == ISD::SRA) {
11477          if (ShiftAmt == 7) {
11478            // R s>> 7  ===  R s< 0
11479            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11480            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11481          }
11482
11483          // R s>> a === ((R u>> a) ^ m) - m
11484          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11485          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11486                                                         MVT::i8));
11487          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11488          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11489          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11490          return Res;
11491        }
11492        llvm_unreachable("Unknown shift opcode.");
11493      }
11494
11495      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11496        if (Op.getOpcode() == ISD::SHL) {
11497          // Make a large shift.
11498          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11499                                    DAG.getConstant(ShiftAmt, MVT::i32));
11500          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11501          // Zero out the rightmost bits.
11502          SmallVector<SDValue, 32> V(32,
11503                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11504                                                     MVT::i8));
11505          return DAG.getNode(ISD::AND, dl, VT, SHL,
11506                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11507        }
11508        if (Op.getOpcode() == ISD::SRL) {
11509          // Make a large shift.
11510          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11511                                    DAG.getConstant(ShiftAmt, MVT::i32));
11512          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11513          // Zero out the leftmost bits.
11514          SmallVector<SDValue, 32> V(32,
11515                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11516                                                     MVT::i8));
11517          return DAG.getNode(ISD::AND, dl, VT, SRL,
11518                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11519        }
11520        if (Op.getOpcode() == ISD::SRA) {
11521          if (ShiftAmt == 7) {
11522            // R s>> 7  ===  R s< 0
11523            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11524            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11525          }
11526
11527          // R s>> a === ((R u>> a) ^ m) - m
11528          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11529          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11530                                                         MVT::i8));
11531          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11532          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11533          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11534          return Res;
11535        }
11536        llvm_unreachable("Unknown shift opcode.");
11537      }
11538    }
11539  }
11540
11541  // Lower SHL with variable shift amount.
11542  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11543    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
11544                     DAG.getConstant(23, MVT::i32));
11545
11546    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
11547    Constant *C = ConstantDataVector::get(*Context, CV);
11548    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
11549    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11550                                 MachinePointerInfo::getConstantPool(),
11551                                 false, false, false, 16);
11552
11553    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
11554    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11555    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11556    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11557  }
11558  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11559    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11560
11561    // a = a << 5;
11562    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
11563                     DAG.getConstant(5, MVT::i32));
11564    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11565
11566    // Turn 'a' into a mask suitable for VSELECT
11567    SDValue VSelM = DAG.getConstant(0x80, VT);
11568    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11569    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11570
11571    SDValue CM1 = DAG.getConstant(0x0f, VT);
11572    SDValue CM2 = DAG.getConstant(0x3f, VT);
11573
11574    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11575    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11576    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11577                            DAG.getConstant(4, MVT::i32), DAG);
11578    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11579    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11580
11581    // a += a
11582    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11583    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11584    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11585
11586    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11587    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11588    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11589                            DAG.getConstant(2, MVT::i32), DAG);
11590    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11591    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11592
11593    // a += a
11594    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11595    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11596    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11597
11598    // return VSELECT(r, r+r, a);
11599    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11600                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11601    return R;
11602  }
11603
11604  // Decompose 256-bit shifts into smaller 128-bit shifts.
11605  if (VT.is256BitVector()) {
11606    unsigned NumElems = VT.getVectorNumElements();
11607    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11608    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11609
11610    // Extract the two vectors
11611    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11612    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11613
11614    // Recreate the shift amount vectors
11615    SDValue Amt1, Amt2;
11616    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11617      // Constant shift amount
11618      SmallVector<SDValue, 4> Amt1Csts;
11619      SmallVector<SDValue, 4> Amt2Csts;
11620      for (unsigned i = 0; i != NumElems/2; ++i)
11621        Amt1Csts.push_back(Amt->getOperand(i));
11622      for (unsigned i = NumElems/2; i != NumElems; ++i)
11623        Amt2Csts.push_back(Amt->getOperand(i));
11624
11625      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11626                                 &Amt1Csts[0], NumElems/2);
11627      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11628                                 &Amt2Csts[0], NumElems/2);
11629    } else {
11630      // Variable shift amount
11631      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11632      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11633    }
11634
11635    // Issue new vector shifts for the smaller types
11636    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11637    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11638
11639    // Concatenate the result back
11640    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11641  }
11642
11643  return SDValue();
11644}
11645
11646static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11647  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11648  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11649  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11650  // has only one use.
11651  SDNode *N = Op.getNode();
11652  SDValue LHS = N->getOperand(0);
11653  SDValue RHS = N->getOperand(1);
11654  unsigned BaseOp = 0;
11655  unsigned Cond = 0;
11656  DebugLoc DL = Op.getDebugLoc();
11657  switch (Op.getOpcode()) {
11658  default: llvm_unreachable("Unknown ovf instruction!");
11659  case ISD::SADDO:
11660    // A subtract of one will be selected as a INC. Note that INC doesn't
11661    // set CF, so we can't do this for UADDO.
11662    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11663      if (C->isOne()) {
11664        BaseOp = X86ISD::INC;
11665        Cond = X86::COND_O;
11666        break;
11667      }
11668    BaseOp = X86ISD::ADD;
11669    Cond = X86::COND_O;
11670    break;
11671  case ISD::UADDO:
11672    BaseOp = X86ISD::ADD;
11673    Cond = X86::COND_B;
11674    break;
11675  case ISD::SSUBO:
11676    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11677    // set CF, so we can't do this for USUBO.
11678    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11679      if (C->isOne()) {
11680        BaseOp = X86ISD::DEC;
11681        Cond = X86::COND_O;
11682        break;
11683      }
11684    BaseOp = X86ISD::SUB;
11685    Cond = X86::COND_O;
11686    break;
11687  case ISD::USUBO:
11688    BaseOp = X86ISD::SUB;
11689    Cond = X86::COND_B;
11690    break;
11691  case ISD::SMULO:
11692    BaseOp = X86ISD::SMUL;
11693    Cond = X86::COND_O;
11694    break;
11695  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11696    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11697                                 MVT::i32);
11698    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11699
11700    SDValue SetCC =
11701      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11702                  DAG.getConstant(X86::COND_O, MVT::i32),
11703                  SDValue(Sum.getNode(), 2));
11704
11705    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11706  }
11707  }
11708
11709  // Also sets EFLAGS.
11710  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11711  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11712
11713  SDValue SetCC =
11714    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11715                DAG.getConstant(Cond, MVT::i32),
11716                SDValue(Sum.getNode(), 1));
11717
11718  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11719}
11720
11721SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11722                                                  SelectionDAG &DAG) const {
11723  DebugLoc dl = Op.getDebugLoc();
11724  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11725  EVT VT = Op.getValueType();
11726
11727  if (!Subtarget->hasSSE2() || !VT.isVector())
11728    return SDValue();
11729
11730  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11731                      ExtraVT.getScalarType().getSizeInBits();
11732  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11733
11734  switch (VT.getSimpleVT().SimpleTy) {
11735    default: return SDValue();
11736    case MVT::v8i32:
11737    case MVT::v16i16:
11738      if (!Subtarget->hasFp256())
11739        return SDValue();
11740      if (!Subtarget->hasInt256()) {
11741        // needs to be split
11742        unsigned NumElems = VT.getVectorNumElements();
11743
11744        // Extract the LHS vectors
11745        SDValue LHS = Op.getOperand(0);
11746        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11747        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11748
11749        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11750        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11751
11752        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11753        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11754        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11755                                   ExtraNumElems/2);
11756        SDValue Extra = DAG.getValueType(ExtraVT);
11757
11758        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11759        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11760
11761        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11762      }
11763      // fall through
11764    case MVT::v4i32:
11765    case MVT::v8i16: {
11766      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11767                                         Op.getOperand(0), ShAmt, DAG);
11768      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11769    }
11770  }
11771}
11772
11773static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11774                              SelectionDAG &DAG) {
11775  DebugLoc dl = Op.getDebugLoc();
11776
11777  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11778  // There isn't any reason to disable it if the target processor supports it.
11779  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11780    SDValue Chain = Op.getOperand(0);
11781    SDValue Zero = DAG.getConstant(0, MVT::i32);
11782    SDValue Ops[] = {
11783      DAG.getRegister(X86::ESP, MVT::i32), // Base
11784      DAG.getTargetConstant(1, MVT::i8),   // Scale
11785      DAG.getRegister(0, MVT::i32),        // Index
11786      DAG.getTargetConstant(0, MVT::i32),  // Disp
11787      DAG.getRegister(0, MVT::i32),        // Segment.
11788      Zero,
11789      Chain
11790    };
11791    SDNode *Res =
11792      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11793                          array_lengthof(Ops));
11794    return SDValue(Res, 0);
11795  }
11796
11797  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11798  if (!isDev)
11799    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11800
11801  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11802  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11803  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11804  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11805
11806  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11807  if (!Op1 && !Op2 && !Op3 && Op4)
11808    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11809
11810  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11811  if (Op1 && !Op2 && !Op3 && !Op4)
11812    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11813
11814  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11815  //           (MFENCE)>;
11816  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11817}
11818
11819static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11820                                 SelectionDAG &DAG) {
11821  DebugLoc dl = Op.getDebugLoc();
11822  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11823    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11824  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11825    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11826
11827  // The only fence that needs an instruction is a sequentially-consistent
11828  // cross-thread fence.
11829  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11830    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11831    // no-sse2). There isn't any reason to disable it if the target processor
11832    // supports it.
11833    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11834      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11835
11836    SDValue Chain = Op.getOperand(0);
11837    SDValue Zero = DAG.getConstant(0, MVT::i32);
11838    SDValue Ops[] = {
11839      DAG.getRegister(X86::ESP, MVT::i32), // Base
11840      DAG.getTargetConstant(1, MVT::i8),   // Scale
11841      DAG.getRegister(0, MVT::i32),        // Index
11842      DAG.getTargetConstant(0, MVT::i32),  // Disp
11843      DAG.getRegister(0, MVT::i32),        // Segment.
11844      Zero,
11845      Chain
11846    };
11847    SDNode *Res =
11848      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11849                         array_lengthof(Ops));
11850    return SDValue(Res, 0);
11851  }
11852
11853  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11854  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11855}
11856
11857static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11858                             SelectionDAG &DAG) {
11859  EVT T = Op.getValueType();
11860  DebugLoc DL = Op.getDebugLoc();
11861  unsigned Reg = 0;
11862  unsigned size = 0;
11863  switch(T.getSimpleVT().SimpleTy) {
11864  default: llvm_unreachable("Invalid value type!");
11865  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11866  case MVT::i16: Reg = X86::AX;  size = 2; break;
11867  case MVT::i32: Reg = X86::EAX; size = 4; break;
11868  case MVT::i64:
11869    assert(Subtarget->is64Bit() && "Node not type legal!");
11870    Reg = X86::RAX; size = 8;
11871    break;
11872  }
11873  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11874                                    Op.getOperand(2), SDValue());
11875  SDValue Ops[] = { cpIn.getValue(0),
11876                    Op.getOperand(1),
11877                    Op.getOperand(3),
11878                    DAG.getTargetConstant(size, MVT::i8),
11879                    cpIn.getValue(1) };
11880  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11881  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11882  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11883                                           Ops, 5, T, MMO);
11884  SDValue cpOut =
11885    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11886  return cpOut;
11887}
11888
11889static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11890                                     SelectionDAG &DAG) {
11891  assert(Subtarget->is64Bit() && "Result not type legalized?");
11892  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11893  SDValue TheChain = Op.getOperand(0);
11894  DebugLoc dl = Op.getDebugLoc();
11895  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11896  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11897  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11898                                   rax.getValue(2));
11899  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11900                            DAG.getConstant(32, MVT::i8));
11901  SDValue Ops[] = {
11902    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11903    rdx.getValue(1)
11904  };
11905  return DAG.getMergeValues(Ops, 2, dl);
11906}
11907
11908SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11909  EVT SrcVT = Op.getOperand(0).getValueType();
11910  EVT DstVT = Op.getValueType();
11911  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11912         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11913  assert((DstVT == MVT::i64 ||
11914          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11915         "Unexpected custom BITCAST");
11916  // i64 <=> MMX conversions are Legal.
11917  if (SrcVT==MVT::i64 && DstVT.isVector())
11918    return Op;
11919  if (DstVT==MVT::i64 && SrcVT.isVector())
11920    return Op;
11921  // MMX <=> MMX conversions are Legal.
11922  if (SrcVT.isVector() && DstVT.isVector())
11923    return Op;
11924  // All other conversions need to be expanded.
11925  return SDValue();
11926}
11927
11928static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11929  SDNode *Node = Op.getNode();
11930  DebugLoc dl = Node->getDebugLoc();
11931  EVT T = Node->getValueType(0);
11932  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11933                              DAG.getConstant(0, T), Node->getOperand(2));
11934  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11935                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11936                       Node->getOperand(0),
11937                       Node->getOperand(1), negOp,
11938                       cast<AtomicSDNode>(Node)->getSrcValue(),
11939                       cast<AtomicSDNode>(Node)->getAlignment(),
11940                       cast<AtomicSDNode>(Node)->getOrdering(),
11941                       cast<AtomicSDNode>(Node)->getSynchScope());
11942}
11943
11944static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11945  SDNode *Node = Op.getNode();
11946  DebugLoc dl = Node->getDebugLoc();
11947  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11948
11949  // Convert seq_cst store -> xchg
11950  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11951  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11952  //        (The only way to get a 16-byte store is cmpxchg16b)
11953  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11954  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11955      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11956    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11957                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11958                                 Node->getOperand(0),
11959                                 Node->getOperand(1), Node->getOperand(2),
11960                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11961                                 cast<AtomicSDNode>(Node)->getOrdering(),
11962                                 cast<AtomicSDNode>(Node)->getSynchScope());
11963    return Swap.getValue(1);
11964  }
11965  // Other atomic stores have a simple pattern.
11966  return Op;
11967}
11968
11969static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11970  EVT VT = Op.getNode()->getValueType(0);
11971
11972  // Let legalize expand this if it isn't a legal type yet.
11973  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11974    return SDValue();
11975
11976  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11977
11978  unsigned Opc;
11979  bool ExtraOp = false;
11980  switch (Op.getOpcode()) {
11981  default: llvm_unreachable("Invalid code");
11982  case ISD::ADDC: Opc = X86ISD::ADD; break;
11983  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11984  case ISD::SUBC: Opc = X86ISD::SUB; break;
11985  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11986  }
11987
11988  if (!ExtraOp)
11989    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11990                       Op.getOperand(1));
11991  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11992                     Op.getOperand(1), Op.getOperand(2));
11993}
11994
11995/// LowerOperation - Provide custom lowering hooks for some operations.
11996///
11997SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11998  switch (Op.getOpcode()) {
11999  default: llvm_unreachable("Should not custom lower this!");
12000  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12001  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
12002  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12003  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12004  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12005  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12006  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12007  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12008  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12009  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12010  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12011  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12012  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12013  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12014  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12015  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12016  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12017  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12018  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12019  case ISD::SHL_PARTS:
12020  case ISD::SRA_PARTS:
12021  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12022  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12023  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12024  case ISD::TRUNCATE:           return lowerTRUNCATE(Op, DAG);
12025  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12026  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12027  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12028  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12029  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12030  case ISD::FP_EXTEND:          return lowerFP_EXTEND(Op, DAG);
12031  case ISD::FABS:               return LowerFABS(Op, DAG);
12032  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12033  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12034  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12035  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12036  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12037  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12038  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12039  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12040  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12041  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12042  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12043  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12044  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12045  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12046  case ISD::FRAME_TO_ARGS_OFFSET:
12047                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12048  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12049  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12050  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12051  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12052  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12053  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12054  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12055  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12056  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12057  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12058  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12059  case ISD::SRA:
12060  case ISD::SRL:
12061  case ISD::SHL:                return LowerShift(Op, DAG);
12062  case ISD::SADDO:
12063  case ISD::UADDO:
12064  case ISD::SSUBO:
12065  case ISD::USUBO:
12066  case ISD::SMULO:
12067  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12068  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12069  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12070  case ISD::ADDC:
12071  case ISD::ADDE:
12072  case ISD::SUBC:
12073  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12074  case ISD::ADD:                return LowerADD(Op, DAG);
12075  case ISD::SUB:                return LowerSUB(Op, DAG);
12076  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12077  }
12078}
12079
12080static void ReplaceATOMIC_LOAD(SDNode *Node,
12081                                  SmallVectorImpl<SDValue> &Results,
12082                                  SelectionDAG &DAG) {
12083  DebugLoc dl = Node->getDebugLoc();
12084  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12085
12086  // Convert wide load -> cmpxchg8b/cmpxchg16b
12087  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12088  //        (The only way to get a 16-byte load is cmpxchg16b)
12089  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12090  SDValue Zero = DAG.getConstant(0, VT);
12091  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12092                               Node->getOperand(0),
12093                               Node->getOperand(1), Zero, Zero,
12094                               cast<AtomicSDNode>(Node)->getMemOperand(),
12095                               cast<AtomicSDNode>(Node)->getOrdering(),
12096                               cast<AtomicSDNode>(Node)->getSynchScope());
12097  Results.push_back(Swap.getValue(0));
12098  Results.push_back(Swap.getValue(1));
12099}
12100
12101static void
12102ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12103                        SelectionDAG &DAG, unsigned NewOp) {
12104  DebugLoc dl = Node->getDebugLoc();
12105  assert (Node->getValueType(0) == MVT::i64 &&
12106          "Only know how to expand i64 atomics");
12107
12108  SDValue Chain = Node->getOperand(0);
12109  SDValue In1 = Node->getOperand(1);
12110  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12111                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12112  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12113                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12114  SDValue Ops[] = { Chain, In1, In2L, In2H };
12115  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12116  SDValue Result =
12117    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
12118                            cast<MemSDNode>(Node)->getMemOperand());
12119  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12120  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12121  Results.push_back(Result.getValue(2));
12122}
12123
12124/// ReplaceNodeResults - Replace a node with an illegal result type
12125/// with a new node built out of custom code.
12126void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12127                                           SmallVectorImpl<SDValue>&Results,
12128                                           SelectionDAG &DAG) const {
12129  DebugLoc dl = N->getDebugLoc();
12130  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12131  switch (N->getOpcode()) {
12132  default:
12133    llvm_unreachable("Do not know how to custom type legalize this operation!");
12134  case ISD::SIGN_EXTEND_INREG:
12135  case ISD::ADDC:
12136  case ISD::ADDE:
12137  case ISD::SUBC:
12138  case ISD::SUBE:
12139    // We don't want to expand or promote these.
12140    return;
12141  case ISD::FP_TO_SINT:
12142  case ISD::FP_TO_UINT: {
12143    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12144
12145    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12146      return;
12147
12148    std::pair<SDValue,SDValue> Vals =
12149        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12150    SDValue FIST = Vals.first, StackSlot = Vals.second;
12151    if (FIST.getNode() != 0) {
12152      EVT VT = N->getValueType(0);
12153      // Return a load from the stack slot.
12154      if (StackSlot.getNode() != 0)
12155        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12156                                      MachinePointerInfo(),
12157                                      false, false, false, 0));
12158      else
12159        Results.push_back(FIST);
12160    }
12161    return;
12162  }
12163  case ISD::UINT_TO_FP: {
12164    if (N->getOperand(0).getValueType() != MVT::v2i32 &&
12165        N->getValueType(0) != MVT::v2f32)
12166      return;
12167    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12168                                 N->getOperand(0));
12169    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12170                                     MVT::f64);
12171    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12172    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12173                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12174    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12175    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12176    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12177    return;
12178  }
12179  case ISD::FP_ROUND: {
12180    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12181        return;
12182    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12183    Results.push_back(V);
12184    return;
12185  }
12186  case ISD::READCYCLECOUNTER: {
12187    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12188    SDValue TheChain = N->getOperand(0);
12189    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12190    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12191                                     rd.getValue(1));
12192    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12193                                     eax.getValue(2));
12194    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12195    SDValue Ops[] = { eax, edx };
12196    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
12197    Results.push_back(edx.getValue(1));
12198    return;
12199  }
12200  case ISD::ATOMIC_CMP_SWAP: {
12201    EVT T = N->getValueType(0);
12202    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12203    bool Regs64bit = T == MVT::i128;
12204    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12205    SDValue cpInL, cpInH;
12206    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12207                        DAG.getConstant(0, HalfT));
12208    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12209                        DAG.getConstant(1, HalfT));
12210    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12211                             Regs64bit ? X86::RAX : X86::EAX,
12212                             cpInL, SDValue());
12213    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12214                             Regs64bit ? X86::RDX : X86::EDX,
12215                             cpInH, cpInL.getValue(1));
12216    SDValue swapInL, swapInH;
12217    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12218                          DAG.getConstant(0, HalfT));
12219    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12220                          DAG.getConstant(1, HalfT));
12221    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12222                               Regs64bit ? X86::RBX : X86::EBX,
12223                               swapInL, cpInH.getValue(1));
12224    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12225                               Regs64bit ? X86::RCX : X86::ECX,
12226                               swapInH, swapInL.getValue(1));
12227    SDValue Ops[] = { swapInH.getValue(0),
12228                      N->getOperand(1),
12229                      swapInH.getValue(1) };
12230    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12231    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12232    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12233                                  X86ISD::LCMPXCHG8_DAG;
12234    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12235                                             Ops, 3, T, MMO);
12236    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12237                                        Regs64bit ? X86::RAX : X86::EAX,
12238                                        HalfT, Result.getValue(1));
12239    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12240                                        Regs64bit ? X86::RDX : X86::EDX,
12241                                        HalfT, cpOutL.getValue(2));
12242    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12243    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12244    Results.push_back(cpOutH.getValue(1));
12245    return;
12246  }
12247  case ISD::ATOMIC_LOAD_ADD:
12248  case ISD::ATOMIC_LOAD_AND:
12249  case ISD::ATOMIC_LOAD_NAND:
12250  case ISD::ATOMIC_LOAD_OR:
12251  case ISD::ATOMIC_LOAD_SUB:
12252  case ISD::ATOMIC_LOAD_XOR:
12253  case ISD::ATOMIC_LOAD_MAX:
12254  case ISD::ATOMIC_LOAD_MIN:
12255  case ISD::ATOMIC_LOAD_UMAX:
12256  case ISD::ATOMIC_LOAD_UMIN:
12257  case ISD::ATOMIC_SWAP: {
12258    unsigned Opc;
12259    switch (N->getOpcode()) {
12260    default: llvm_unreachable("Unexpected opcode");
12261    case ISD::ATOMIC_LOAD_ADD:
12262      Opc = X86ISD::ATOMADD64_DAG;
12263      break;
12264    case ISD::ATOMIC_LOAD_AND:
12265      Opc = X86ISD::ATOMAND64_DAG;
12266      break;
12267    case ISD::ATOMIC_LOAD_NAND:
12268      Opc = X86ISD::ATOMNAND64_DAG;
12269      break;
12270    case ISD::ATOMIC_LOAD_OR:
12271      Opc = X86ISD::ATOMOR64_DAG;
12272      break;
12273    case ISD::ATOMIC_LOAD_SUB:
12274      Opc = X86ISD::ATOMSUB64_DAG;
12275      break;
12276    case ISD::ATOMIC_LOAD_XOR:
12277      Opc = X86ISD::ATOMXOR64_DAG;
12278      break;
12279    case ISD::ATOMIC_LOAD_MAX:
12280      Opc = X86ISD::ATOMMAX64_DAG;
12281      break;
12282    case ISD::ATOMIC_LOAD_MIN:
12283      Opc = X86ISD::ATOMMIN64_DAG;
12284      break;
12285    case ISD::ATOMIC_LOAD_UMAX:
12286      Opc = X86ISD::ATOMUMAX64_DAG;
12287      break;
12288    case ISD::ATOMIC_LOAD_UMIN:
12289      Opc = X86ISD::ATOMUMIN64_DAG;
12290      break;
12291    case ISD::ATOMIC_SWAP:
12292      Opc = X86ISD::ATOMSWAP64_DAG;
12293      break;
12294    }
12295    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12296    return;
12297  }
12298  case ISD::ATOMIC_LOAD:
12299    ReplaceATOMIC_LOAD(N, Results, DAG);
12300  }
12301}
12302
12303const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12304  switch (Opcode) {
12305  default: return NULL;
12306  case X86ISD::BSF:                return "X86ISD::BSF";
12307  case X86ISD::BSR:                return "X86ISD::BSR";
12308  case X86ISD::SHLD:               return "X86ISD::SHLD";
12309  case X86ISD::SHRD:               return "X86ISD::SHRD";
12310  case X86ISD::FAND:               return "X86ISD::FAND";
12311  case X86ISD::FOR:                return "X86ISD::FOR";
12312  case X86ISD::FXOR:               return "X86ISD::FXOR";
12313  case X86ISD::FSRL:               return "X86ISD::FSRL";
12314  case X86ISD::FILD:               return "X86ISD::FILD";
12315  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12316  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12317  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12318  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12319  case X86ISD::FLD:                return "X86ISD::FLD";
12320  case X86ISD::FST:                return "X86ISD::FST";
12321  case X86ISD::CALL:               return "X86ISD::CALL";
12322  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12323  case X86ISD::BT:                 return "X86ISD::BT";
12324  case X86ISD::CMP:                return "X86ISD::CMP";
12325  case X86ISD::COMI:               return "X86ISD::COMI";
12326  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12327  case X86ISD::SETCC:              return "X86ISD::SETCC";
12328  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12329  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12330  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12331  case X86ISD::CMOV:               return "X86ISD::CMOV";
12332  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12333  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12334  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12335  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12336  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12337  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12338  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12339  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12340  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12341  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12342  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12343  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12344  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12345  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12346  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12347  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12348  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12349  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12350  case X86ISD::HADD:               return "X86ISD::HADD";
12351  case X86ISD::HSUB:               return "X86ISD::HSUB";
12352  case X86ISD::FHADD:              return "X86ISD::FHADD";
12353  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12354  case X86ISD::UMAX:               return "X86ISD::UMAX";
12355  case X86ISD::UMIN:               return "X86ISD::UMIN";
12356  case X86ISD::SMAX:               return "X86ISD::SMAX";
12357  case X86ISD::SMIN:               return "X86ISD::SMIN";
12358  case X86ISD::FMAX:               return "X86ISD::FMAX";
12359  case X86ISD::FMIN:               return "X86ISD::FMIN";
12360  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12361  case X86ISD::FMINC:              return "X86ISD::FMINC";
12362  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12363  case X86ISD::FRCP:               return "X86ISD::FRCP";
12364  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12365  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12366  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12367  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12368  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12369  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12370  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12371  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12372  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12373  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12374  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12375  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12376  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12377  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12378  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12379  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12380  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12381  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12382  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12383  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12384  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12385  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12386  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12387  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12388  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12389  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12390  case X86ISD::VSHL:               return "X86ISD::VSHL";
12391  case X86ISD::VSRL:               return "X86ISD::VSRL";
12392  case X86ISD::VSRA:               return "X86ISD::VSRA";
12393  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12394  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12395  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12396  case X86ISD::CMPP:               return "X86ISD::CMPP";
12397  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12398  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12399  case X86ISD::ADD:                return "X86ISD::ADD";
12400  case X86ISD::SUB:                return "X86ISD::SUB";
12401  case X86ISD::ADC:                return "X86ISD::ADC";
12402  case X86ISD::SBB:                return "X86ISD::SBB";
12403  case X86ISD::SMUL:               return "X86ISD::SMUL";
12404  case X86ISD::UMUL:               return "X86ISD::UMUL";
12405  case X86ISD::INC:                return "X86ISD::INC";
12406  case X86ISD::DEC:                return "X86ISD::DEC";
12407  case X86ISD::OR:                 return "X86ISD::OR";
12408  case X86ISD::XOR:                return "X86ISD::XOR";
12409  case X86ISD::AND:                return "X86ISD::AND";
12410  case X86ISD::BLSI:               return "X86ISD::BLSI";
12411  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12412  case X86ISD::BLSR:               return "X86ISD::BLSR";
12413  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12414  case X86ISD::PTEST:              return "X86ISD::PTEST";
12415  case X86ISD::TESTP:              return "X86ISD::TESTP";
12416  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
12417  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12418  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12419  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12420  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12421  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12422  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12423  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12424  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12425  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12426  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12427  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12428  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12429  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12430  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12431  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12432  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12433  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12434  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12435  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12436  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12437  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12438  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12439  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12440  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12441  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12442  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12443  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12444  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12445  case X86ISD::SAHF:               return "X86ISD::SAHF";
12446  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12447  case X86ISD::FMADD:              return "X86ISD::FMADD";
12448  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12449  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12450  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12451  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12452  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12453  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12454  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12455  }
12456}
12457
12458// isLegalAddressingMode - Return true if the addressing mode represented
12459// by AM is legal for this target, for a load/store of the specified type.
12460bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12461                                              Type *Ty) const {
12462  // X86 supports extremely general addressing modes.
12463  CodeModel::Model M = getTargetMachine().getCodeModel();
12464  Reloc::Model R = getTargetMachine().getRelocationModel();
12465
12466  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12467  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12468    return false;
12469
12470  if (AM.BaseGV) {
12471    unsigned GVFlags =
12472      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12473
12474    // If a reference to this global requires an extra load, we can't fold it.
12475    if (isGlobalStubReference(GVFlags))
12476      return false;
12477
12478    // If BaseGV requires a register for the PIC base, we cannot also have a
12479    // BaseReg specified.
12480    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12481      return false;
12482
12483    // If lower 4G is not available, then we must use rip-relative addressing.
12484    if ((M != CodeModel::Small || R != Reloc::Static) &&
12485        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12486      return false;
12487  }
12488
12489  switch (AM.Scale) {
12490  case 0:
12491  case 1:
12492  case 2:
12493  case 4:
12494  case 8:
12495    // These scales always work.
12496    break;
12497  case 3:
12498  case 5:
12499  case 9:
12500    // These scales are formed with basereg+scalereg.  Only accept if there is
12501    // no basereg yet.
12502    if (AM.HasBaseReg)
12503      return false;
12504    break;
12505  default:  // Other stuff never works.
12506    return false;
12507  }
12508
12509  return true;
12510}
12511
12512bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12513  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12514    return false;
12515  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12516  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12517  return NumBits1 > NumBits2;
12518}
12519
12520bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12521  return isInt<32>(Imm);
12522}
12523
12524bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12525  // Can also use sub to handle negated immediates.
12526  return isInt<32>(Imm);
12527}
12528
12529bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12530  if (!VT1.isInteger() || !VT2.isInteger())
12531    return false;
12532  unsigned NumBits1 = VT1.getSizeInBits();
12533  unsigned NumBits2 = VT2.getSizeInBits();
12534  return NumBits1 > NumBits2;
12535}
12536
12537bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12538  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12539  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12540}
12541
12542bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12543  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12544  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12545}
12546
12547bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12548  EVT VT1 = Val.getValueType();
12549  if (isZExtFree(VT1, VT2))
12550    return true;
12551
12552  if (Val.getOpcode() != ISD::LOAD)
12553    return false;
12554
12555  if (!VT1.isSimple() || !VT1.isInteger() ||
12556      !VT2.isSimple() || !VT2.isInteger())
12557    return false;
12558
12559  switch (VT1.getSimpleVT().SimpleTy) {
12560  default: break;
12561  case MVT::i8:
12562  case MVT::i16:
12563  case MVT::i32:
12564    // X86 has 8, 16, and 32-bit zero-extending loads.
12565    return true;
12566  }
12567
12568  return false;
12569}
12570
12571bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12572  // i16 instructions are longer (0x66 prefix) and potentially slower.
12573  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12574}
12575
12576/// isShuffleMaskLegal - Targets can use this to indicate that they only
12577/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12578/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12579/// are assumed to be legal.
12580bool
12581X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12582                                      EVT VT) const {
12583  // Very little shuffling can be done for 64-bit vectors right now.
12584  if (VT.getSizeInBits() == 64)
12585    return false;
12586
12587  // FIXME: pshufb, blends, shifts.
12588  return (VT.getVectorNumElements() == 2 ||
12589          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12590          isMOVLMask(M, VT) ||
12591          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12592          isPSHUFDMask(M, VT) ||
12593          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12594          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12595          isPALIGNRMask(M, VT, Subtarget) ||
12596          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12597          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12598          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12599          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12600}
12601
12602bool
12603X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12604                                          EVT VT) const {
12605  unsigned NumElts = VT.getVectorNumElements();
12606  // FIXME: This collection of masks seems suspect.
12607  if (NumElts == 2)
12608    return true;
12609  if (NumElts == 4 && VT.is128BitVector()) {
12610    return (isMOVLMask(Mask, VT)  ||
12611            isCommutedMOVLMask(Mask, VT, true) ||
12612            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12613            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12614  }
12615  return false;
12616}
12617
12618//===----------------------------------------------------------------------===//
12619//                           X86 Scheduler Hooks
12620//===----------------------------------------------------------------------===//
12621
12622/// Utility function to emit xbegin specifying the start of an RTM region.
12623static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12624                                     const TargetInstrInfo *TII) {
12625  DebugLoc DL = MI->getDebugLoc();
12626
12627  const BasicBlock *BB = MBB->getBasicBlock();
12628  MachineFunction::iterator I = MBB;
12629  ++I;
12630
12631  // For the v = xbegin(), we generate
12632  //
12633  // thisMBB:
12634  //  xbegin sinkMBB
12635  //
12636  // mainMBB:
12637  //  eax = -1
12638  //
12639  // sinkMBB:
12640  //  v = eax
12641
12642  MachineBasicBlock *thisMBB = MBB;
12643  MachineFunction *MF = MBB->getParent();
12644  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12645  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12646  MF->insert(I, mainMBB);
12647  MF->insert(I, sinkMBB);
12648
12649  // Transfer the remainder of BB and its successor edges to sinkMBB.
12650  sinkMBB->splice(sinkMBB->begin(), MBB,
12651                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12652  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12653
12654  // thisMBB:
12655  //  xbegin sinkMBB
12656  //  # fallthrough to mainMBB
12657  //  # abortion to sinkMBB
12658  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
12659  thisMBB->addSuccessor(mainMBB);
12660  thisMBB->addSuccessor(sinkMBB);
12661
12662  // mainMBB:
12663  //  EAX = -1
12664  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
12665  mainMBB->addSuccessor(sinkMBB);
12666
12667  // sinkMBB:
12668  // EAX is live into the sinkMBB
12669  sinkMBB->addLiveIn(X86::EAX);
12670  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12671          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12672    .addReg(X86::EAX);
12673
12674  MI->eraseFromParent();
12675  return sinkMBB;
12676}
12677
12678// Get CMPXCHG opcode for the specified data type.
12679static unsigned getCmpXChgOpcode(EVT VT) {
12680  switch (VT.getSimpleVT().SimpleTy) {
12681  case MVT::i8:  return X86::LCMPXCHG8;
12682  case MVT::i16: return X86::LCMPXCHG16;
12683  case MVT::i32: return X86::LCMPXCHG32;
12684  case MVT::i64: return X86::LCMPXCHG64;
12685  default:
12686    break;
12687  }
12688  llvm_unreachable("Invalid operand size!");
12689}
12690
12691// Get LOAD opcode for the specified data type.
12692static unsigned getLoadOpcode(EVT VT) {
12693  switch (VT.getSimpleVT().SimpleTy) {
12694  case MVT::i8:  return X86::MOV8rm;
12695  case MVT::i16: return X86::MOV16rm;
12696  case MVT::i32: return X86::MOV32rm;
12697  case MVT::i64: return X86::MOV64rm;
12698  default:
12699    break;
12700  }
12701  llvm_unreachable("Invalid operand size!");
12702}
12703
12704// Get opcode of the non-atomic one from the specified atomic instruction.
12705static unsigned getNonAtomicOpcode(unsigned Opc) {
12706  switch (Opc) {
12707  case X86::ATOMAND8:  return X86::AND8rr;
12708  case X86::ATOMAND16: return X86::AND16rr;
12709  case X86::ATOMAND32: return X86::AND32rr;
12710  case X86::ATOMAND64: return X86::AND64rr;
12711  case X86::ATOMOR8:   return X86::OR8rr;
12712  case X86::ATOMOR16:  return X86::OR16rr;
12713  case X86::ATOMOR32:  return X86::OR32rr;
12714  case X86::ATOMOR64:  return X86::OR64rr;
12715  case X86::ATOMXOR8:  return X86::XOR8rr;
12716  case X86::ATOMXOR16: return X86::XOR16rr;
12717  case X86::ATOMXOR32: return X86::XOR32rr;
12718  case X86::ATOMXOR64: return X86::XOR64rr;
12719  }
12720  llvm_unreachable("Unhandled atomic-load-op opcode!");
12721}
12722
12723// Get opcode of the non-atomic one from the specified atomic instruction with
12724// extra opcode.
12725static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12726                                               unsigned &ExtraOpc) {
12727  switch (Opc) {
12728  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12729  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12730  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12731  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12732  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12733  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12734  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12735  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12736  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12737  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12738  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12739  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12740  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12741  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12742  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12743  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12744  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12745  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12746  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12747  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12748  }
12749  llvm_unreachable("Unhandled atomic-load-op opcode!");
12750}
12751
12752// Get opcode of the non-atomic one from the specified atomic instruction for
12753// 64-bit data type on 32-bit target.
12754static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12755  switch (Opc) {
12756  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12757  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12758  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12759  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12760  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12761  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12762  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12763  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12764  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12765  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12766  }
12767  llvm_unreachable("Unhandled atomic-load-op opcode!");
12768}
12769
12770// Get opcode of the non-atomic one from the specified atomic instruction for
12771// 64-bit data type on 32-bit target with extra opcode.
12772static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12773                                                   unsigned &HiOpc,
12774                                                   unsigned &ExtraOpc) {
12775  switch (Opc) {
12776  case X86::ATOMNAND6432:
12777    ExtraOpc = X86::NOT32r;
12778    HiOpc = X86::AND32rr;
12779    return X86::AND32rr;
12780  }
12781  llvm_unreachable("Unhandled atomic-load-op opcode!");
12782}
12783
12784// Get pseudo CMOV opcode from the specified data type.
12785static unsigned getPseudoCMOVOpc(EVT VT) {
12786  switch (VT.getSimpleVT().SimpleTy) {
12787  case MVT::i8:  return X86::CMOV_GR8;
12788  case MVT::i16: return X86::CMOV_GR16;
12789  case MVT::i32: return X86::CMOV_GR32;
12790  default:
12791    break;
12792  }
12793  llvm_unreachable("Unknown CMOV opcode!");
12794}
12795
12796// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12797// They will be translated into a spin-loop or compare-exchange loop from
12798//
12799//    ...
12800//    dst = atomic-fetch-op MI.addr, MI.val
12801//    ...
12802//
12803// to
12804//
12805//    ...
12806//    EAX = LOAD MI.addr
12807// loop:
12808//    t1 = OP MI.val, EAX
12809//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12810//    JNE loop
12811// sink:
12812//    dst = EAX
12813//    ...
12814MachineBasicBlock *
12815X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12816                                       MachineBasicBlock *MBB) const {
12817  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12818  DebugLoc DL = MI->getDebugLoc();
12819
12820  MachineFunction *MF = MBB->getParent();
12821  MachineRegisterInfo &MRI = MF->getRegInfo();
12822
12823  const BasicBlock *BB = MBB->getBasicBlock();
12824  MachineFunction::iterator I = MBB;
12825  ++I;
12826
12827  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12828         "Unexpected number of operands");
12829
12830  assert(MI->hasOneMemOperand() &&
12831         "Expected atomic-load-op to have one memoperand");
12832
12833  // Memory Reference
12834  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12835  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12836
12837  unsigned DstReg, SrcReg;
12838  unsigned MemOpndSlot;
12839
12840  unsigned CurOp = 0;
12841
12842  DstReg = MI->getOperand(CurOp++).getReg();
12843  MemOpndSlot = CurOp;
12844  CurOp += X86::AddrNumOperands;
12845  SrcReg = MI->getOperand(CurOp++).getReg();
12846
12847  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12848  MVT::SimpleValueType VT = *RC->vt_begin();
12849  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12850
12851  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12852  unsigned LOADOpc = getLoadOpcode(VT);
12853
12854  // For the atomic load-arith operator, we generate
12855  //
12856  //  thisMBB:
12857  //    EAX = LOAD [MI.addr]
12858  //  mainMBB:
12859  //    t1 = OP MI.val, EAX
12860  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12861  //    JNE mainMBB
12862  //  sinkMBB:
12863
12864  MachineBasicBlock *thisMBB = MBB;
12865  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12866  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12867  MF->insert(I, mainMBB);
12868  MF->insert(I, sinkMBB);
12869
12870  MachineInstrBuilder MIB;
12871
12872  // Transfer the remainder of BB and its successor edges to sinkMBB.
12873  sinkMBB->splice(sinkMBB->begin(), MBB,
12874                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12875  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12876
12877  // thisMBB:
12878  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12879  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12880    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12881  MIB.setMemRefs(MMOBegin, MMOEnd);
12882
12883  thisMBB->addSuccessor(mainMBB);
12884
12885  // mainMBB:
12886  MachineBasicBlock *origMainMBB = mainMBB;
12887  mainMBB->addLiveIn(AccPhyReg);
12888
12889  // Copy AccPhyReg as it is used more than once.
12890  unsigned AccReg = MRI.createVirtualRegister(RC);
12891  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12892    .addReg(AccPhyReg);
12893
12894  unsigned t1 = MRI.createVirtualRegister(RC);
12895  unsigned Opc = MI->getOpcode();
12896  switch (Opc) {
12897  default:
12898    llvm_unreachable("Unhandled atomic-load-op opcode!");
12899  case X86::ATOMAND8:
12900  case X86::ATOMAND16:
12901  case X86::ATOMAND32:
12902  case X86::ATOMAND64:
12903  case X86::ATOMOR8:
12904  case X86::ATOMOR16:
12905  case X86::ATOMOR32:
12906  case X86::ATOMOR64:
12907  case X86::ATOMXOR8:
12908  case X86::ATOMXOR16:
12909  case X86::ATOMXOR32:
12910  case X86::ATOMXOR64: {
12911    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12912    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12913      .addReg(AccReg);
12914    break;
12915  }
12916  case X86::ATOMNAND8:
12917  case X86::ATOMNAND16:
12918  case X86::ATOMNAND32:
12919  case X86::ATOMNAND64: {
12920    unsigned t2 = MRI.createVirtualRegister(RC);
12921    unsigned NOTOpc;
12922    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12923    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12924      .addReg(AccReg);
12925    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12926    break;
12927  }
12928  case X86::ATOMMAX8:
12929  case X86::ATOMMAX16:
12930  case X86::ATOMMAX32:
12931  case X86::ATOMMAX64:
12932  case X86::ATOMMIN8:
12933  case X86::ATOMMIN16:
12934  case X86::ATOMMIN32:
12935  case X86::ATOMMIN64:
12936  case X86::ATOMUMAX8:
12937  case X86::ATOMUMAX16:
12938  case X86::ATOMUMAX32:
12939  case X86::ATOMUMAX64:
12940  case X86::ATOMUMIN8:
12941  case X86::ATOMUMIN16:
12942  case X86::ATOMUMIN32:
12943  case X86::ATOMUMIN64: {
12944    unsigned CMPOpc;
12945    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12946
12947    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12948      .addReg(SrcReg)
12949      .addReg(AccReg);
12950
12951    if (Subtarget->hasCMov()) {
12952      if (VT != MVT::i8) {
12953        // Native support
12954        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12955          .addReg(SrcReg)
12956          .addReg(AccReg);
12957      } else {
12958        // Promote i8 to i32 to use CMOV32
12959        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12960        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12961        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12962        unsigned t2 = MRI.createVirtualRegister(RC32);
12963
12964        unsigned Undef = MRI.createVirtualRegister(RC32);
12965        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12966
12967        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12968          .addReg(Undef)
12969          .addReg(SrcReg)
12970          .addImm(X86::sub_8bit);
12971        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12972          .addReg(Undef)
12973          .addReg(AccReg)
12974          .addImm(X86::sub_8bit);
12975
12976        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12977          .addReg(SrcReg32)
12978          .addReg(AccReg32);
12979
12980        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12981          .addReg(t2, 0, X86::sub_8bit);
12982      }
12983    } else {
12984      // Use pseudo select and lower them.
12985      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12986             "Invalid atomic-load-op transformation!");
12987      unsigned SelOpc = getPseudoCMOVOpc(VT);
12988      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12989      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12990      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12991              .addReg(SrcReg).addReg(AccReg)
12992              .addImm(CC);
12993      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12994    }
12995    break;
12996  }
12997  }
12998
12999  // Copy AccPhyReg back from virtual register.
13000  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
13001    .addReg(AccReg);
13002
13003  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13004  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13005    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13006  MIB.addReg(t1);
13007  MIB.setMemRefs(MMOBegin, MMOEnd);
13008
13009  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13010
13011  mainMBB->addSuccessor(origMainMBB);
13012  mainMBB->addSuccessor(sinkMBB);
13013
13014  // sinkMBB:
13015  sinkMBB->addLiveIn(AccPhyReg);
13016
13017  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13018          TII->get(TargetOpcode::COPY), DstReg)
13019    .addReg(AccPhyReg);
13020
13021  MI->eraseFromParent();
13022  return sinkMBB;
13023}
13024
13025// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13026// instructions. They will be translated into a spin-loop or compare-exchange
13027// loop from
13028//
13029//    ...
13030//    dst = atomic-fetch-op MI.addr, MI.val
13031//    ...
13032//
13033// to
13034//
13035//    ...
13036//    EAX = LOAD [MI.addr + 0]
13037//    EDX = LOAD [MI.addr + 4]
13038// loop:
13039//    EBX = OP MI.val.lo, EAX
13040//    ECX = OP MI.val.hi, EDX
13041//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13042//    JNE loop
13043// sink:
13044//    dst = EDX:EAX
13045//    ...
13046MachineBasicBlock *
13047X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13048                                           MachineBasicBlock *MBB) const {
13049  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13050  DebugLoc DL = MI->getDebugLoc();
13051
13052  MachineFunction *MF = MBB->getParent();
13053  MachineRegisterInfo &MRI = MF->getRegInfo();
13054
13055  const BasicBlock *BB = MBB->getBasicBlock();
13056  MachineFunction::iterator I = MBB;
13057  ++I;
13058
13059  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
13060         "Unexpected number of operands");
13061
13062  assert(MI->hasOneMemOperand() &&
13063         "Expected atomic-load-op32 to have one memoperand");
13064
13065  // Memory Reference
13066  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13067  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13068
13069  unsigned DstLoReg, DstHiReg;
13070  unsigned SrcLoReg, SrcHiReg;
13071  unsigned MemOpndSlot;
13072
13073  unsigned CurOp = 0;
13074
13075  DstLoReg = MI->getOperand(CurOp++).getReg();
13076  DstHiReg = MI->getOperand(CurOp++).getReg();
13077  MemOpndSlot = CurOp;
13078  CurOp += X86::AddrNumOperands;
13079  SrcLoReg = MI->getOperand(CurOp++).getReg();
13080  SrcHiReg = MI->getOperand(CurOp++).getReg();
13081
13082  const TargetRegisterClass *RC = &X86::GR32RegClass;
13083  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13084
13085  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13086  unsigned LOADOpc = X86::MOV32rm;
13087
13088  // For the atomic load-arith operator, we generate
13089  //
13090  //  thisMBB:
13091  //    EAX = LOAD [MI.addr + 0]
13092  //    EDX = LOAD [MI.addr + 4]
13093  //  mainMBB:
13094  //    EBX = OP MI.vallo, EAX
13095  //    ECX = OP MI.valhi, EDX
13096  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13097  //    JNE mainMBB
13098  //  sinkMBB:
13099
13100  MachineBasicBlock *thisMBB = MBB;
13101  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13102  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13103  MF->insert(I, mainMBB);
13104  MF->insert(I, sinkMBB);
13105
13106  MachineInstrBuilder MIB;
13107
13108  // Transfer the remainder of BB and its successor edges to sinkMBB.
13109  sinkMBB->splice(sinkMBB->begin(), MBB,
13110                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13111  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13112
13113  // thisMBB:
13114  // Lo
13115  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
13116  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13117    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13118  MIB.setMemRefs(MMOBegin, MMOEnd);
13119  // Hi
13120  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
13121  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13122    if (i == X86::AddrDisp)
13123      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13124    else
13125      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13126  }
13127  MIB.setMemRefs(MMOBegin, MMOEnd);
13128
13129  thisMBB->addSuccessor(mainMBB);
13130
13131  // mainMBB:
13132  MachineBasicBlock *origMainMBB = mainMBB;
13133  mainMBB->addLiveIn(X86::EAX);
13134  mainMBB->addLiveIn(X86::EDX);
13135
13136  // Copy EDX:EAX as they are used more than once.
13137  unsigned LoReg = MRI.createVirtualRegister(RC);
13138  unsigned HiReg = MRI.createVirtualRegister(RC);
13139  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
13140  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
13141
13142  unsigned t1L = MRI.createVirtualRegister(RC);
13143  unsigned t1H = MRI.createVirtualRegister(RC);
13144
13145  unsigned Opc = MI->getOpcode();
13146  switch (Opc) {
13147  default:
13148    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13149  case X86::ATOMAND6432:
13150  case X86::ATOMOR6432:
13151  case X86::ATOMXOR6432:
13152  case X86::ATOMADD6432:
13153  case X86::ATOMSUB6432: {
13154    unsigned HiOpc;
13155    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13156    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(LoReg).addReg(SrcLoReg);
13157    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(HiReg).addReg(SrcHiReg);
13158    break;
13159  }
13160  case X86::ATOMNAND6432: {
13161    unsigned HiOpc, NOTOpc;
13162    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13163    unsigned t2L = MRI.createVirtualRegister(RC);
13164    unsigned t2H = MRI.createVirtualRegister(RC);
13165    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
13166    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
13167    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
13168    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
13169    break;
13170  }
13171  case X86::ATOMMAX6432:
13172  case X86::ATOMMIN6432:
13173  case X86::ATOMUMAX6432:
13174  case X86::ATOMUMIN6432: {
13175    unsigned HiOpc;
13176    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13177    unsigned cL = MRI.createVirtualRegister(RC8);
13178    unsigned cH = MRI.createVirtualRegister(RC8);
13179    unsigned cL32 = MRI.createVirtualRegister(RC);
13180    unsigned cH32 = MRI.createVirtualRegister(RC);
13181    unsigned cc = MRI.createVirtualRegister(RC);
13182    // cl := cmp src_lo, lo
13183    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13184      .addReg(SrcLoReg).addReg(LoReg);
13185    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13186    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13187    // ch := cmp src_hi, hi
13188    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13189      .addReg(SrcHiReg).addReg(HiReg);
13190    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13191    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13192    // cc := if (src_hi == hi) ? cl : ch;
13193    if (Subtarget->hasCMov()) {
13194      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13195        .addReg(cH32).addReg(cL32);
13196    } else {
13197      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13198              .addReg(cH32).addReg(cL32)
13199              .addImm(X86::COND_E);
13200      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13201    }
13202    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13203    if (Subtarget->hasCMov()) {
13204      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
13205        .addReg(SrcLoReg).addReg(LoReg);
13206      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
13207        .addReg(SrcHiReg).addReg(HiReg);
13208    } else {
13209      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
13210              .addReg(SrcLoReg).addReg(LoReg)
13211              .addImm(X86::COND_NE);
13212      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13213      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
13214              .addReg(SrcHiReg).addReg(HiReg)
13215              .addImm(X86::COND_NE);
13216      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13217    }
13218    break;
13219  }
13220  case X86::ATOMSWAP6432: {
13221    unsigned HiOpc;
13222    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13223    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
13224    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
13225    break;
13226  }
13227  }
13228
13229  // Copy EDX:EAX back from HiReg:LoReg
13230  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
13231  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
13232  // Copy ECX:EBX from t1H:t1L
13233  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
13234  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
13235
13236  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13237  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13238    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13239  MIB.setMemRefs(MMOBegin, MMOEnd);
13240
13241  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13242
13243  mainMBB->addSuccessor(origMainMBB);
13244  mainMBB->addSuccessor(sinkMBB);
13245
13246  // sinkMBB:
13247  sinkMBB->addLiveIn(X86::EAX);
13248  sinkMBB->addLiveIn(X86::EDX);
13249
13250  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13251          TII->get(TargetOpcode::COPY), DstLoReg)
13252    .addReg(X86::EAX);
13253  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13254          TII->get(TargetOpcode::COPY), DstHiReg)
13255    .addReg(X86::EDX);
13256
13257  MI->eraseFromParent();
13258  return sinkMBB;
13259}
13260
13261// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13262// or XMM0_V32I8 in AVX all of this code can be replaced with that
13263// in the .td file.
13264static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13265                                       const TargetInstrInfo *TII) {
13266  unsigned Opc;
13267  switch (MI->getOpcode()) {
13268  default: llvm_unreachable("illegal opcode!");
13269  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13270  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13271  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13272  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13273  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13274  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13275  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13276  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13277  }
13278
13279  DebugLoc dl = MI->getDebugLoc();
13280  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13281
13282  unsigned NumArgs = MI->getNumOperands();
13283  for (unsigned i = 1; i < NumArgs; ++i) {
13284    MachineOperand &Op = MI->getOperand(i);
13285    if (!(Op.isReg() && Op.isImplicit()))
13286      MIB.addOperand(Op);
13287  }
13288  if (MI->hasOneMemOperand())
13289    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13290
13291  BuildMI(*BB, MI, dl,
13292    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13293    .addReg(X86::XMM0);
13294
13295  MI->eraseFromParent();
13296  return BB;
13297}
13298
13299// FIXME: Custom handling because TableGen doesn't support multiple implicit
13300// defs in an instruction pattern
13301static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13302                                       const TargetInstrInfo *TII) {
13303  unsigned Opc;
13304  switch (MI->getOpcode()) {
13305  default: llvm_unreachable("illegal opcode!");
13306  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13307  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13308  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13309  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13310  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13311  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13312  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13313  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13314  }
13315
13316  DebugLoc dl = MI->getDebugLoc();
13317  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13318
13319  unsigned NumArgs = MI->getNumOperands(); // remove the results
13320  for (unsigned i = 1; i < NumArgs; ++i) {
13321    MachineOperand &Op = MI->getOperand(i);
13322    if (!(Op.isReg() && Op.isImplicit()))
13323      MIB.addOperand(Op);
13324  }
13325  if (MI->hasOneMemOperand())
13326    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13327
13328  BuildMI(*BB, MI, dl,
13329    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13330    .addReg(X86::ECX);
13331
13332  MI->eraseFromParent();
13333  return BB;
13334}
13335
13336static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13337                                       const TargetInstrInfo *TII,
13338                                       const X86Subtarget* Subtarget) {
13339  DebugLoc dl = MI->getDebugLoc();
13340
13341  // Address into RAX/EAX, other two args into ECX, EDX.
13342  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13343  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13344  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13345  for (int i = 0; i < X86::AddrNumOperands; ++i)
13346    MIB.addOperand(MI->getOperand(i));
13347
13348  unsigned ValOps = X86::AddrNumOperands;
13349  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13350    .addReg(MI->getOperand(ValOps).getReg());
13351  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13352    .addReg(MI->getOperand(ValOps+1).getReg());
13353
13354  // The instruction doesn't actually take any operands though.
13355  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13356
13357  MI->eraseFromParent(); // The pseudo is gone now.
13358  return BB;
13359}
13360
13361MachineBasicBlock *
13362X86TargetLowering::EmitVAARG64WithCustomInserter(
13363                   MachineInstr *MI,
13364                   MachineBasicBlock *MBB) const {
13365  // Emit va_arg instruction on X86-64.
13366
13367  // Operands to this pseudo-instruction:
13368  // 0  ) Output        : destination address (reg)
13369  // 1-5) Input         : va_list address (addr, i64mem)
13370  // 6  ) ArgSize       : Size (in bytes) of vararg type
13371  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13372  // 8  ) Align         : Alignment of type
13373  // 9  ) EFLAGS (implicit-def)
13374
13375  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13376  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13377
13378  unsigned DestReg = MI->getOperand(0).getReg();
13379  MachineOperand &Base = MI->getOperand(1);
13380  MachineOperand &Scale = MI->getOperand(2);
13381  MachineOperand &Index = MI->getOperand(3);
13382  MachineOperand &Disp = MI->getOperand(4);
13383  MachineOperand &Segment = MI->getOperand(5);
13384  unsigned ArgSize = MI->getOperand(6).getImm();
13385  unsigned ArgMode = MI->getOperand(7).getImm();
13386  unsigned Align = MI->getOperand(8).getImm();
13387
13388  // Memory Reference
13389  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13390  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13391  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13392
13393  // Machine Information
13394  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13395  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13396  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13397  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13398  DebugLoc DL = MI->getDebugLoc();
13399
13400  // struct va_list {
13401  //   i32   gp_offset
13402  //   i32   fp_offset
13403  //   i64   overflow_area (address)
13404  //   i64   reg_save_area (address)
13405  // }
13406  // sizeof(va_list) = 24
13407  // alignment(va_list) = 8
13408
13409  unsigned TotalNumIntRegs = 6;
13410  unsigned TotalNumXMMRegs = 8;
13411  bool UseGPOffset = (ArgMode == 1);
13412  bool UseFPOffset = (ArgMode == 2);
13413  unsigned MaxOffset = TotalNumIntRegs * 8 +
13414                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13415
13416  /* Align ArgSize to a multiple of 8 */
13417  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13418  bool NeedsAlign = (Align > 8);
13419
13420  MachineBasicBlock *thisMBB = MBB;
13421  MachineBasicBlock *overflowMBB;
13422  MachineBasicBlock *offsetMBB;
13423  MachineBasicBlock *endMBB;
13424
13425  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13426  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13427  unsigned OffsetReg = 0;
13428
13429  if (!UseGPOffset && !UseFPOffset) {
13430    // If we only pull from the overflow region, we don't create a branch.
13431    // We don't need to alter control flow.
13432    OffsetDestReg = 0; // unused
13433    OverflowDestReg = DestReg;
13434
13435    offsetMBB = NULL;
13436    overflowMBB = thisMBB;
13437    endMBB = thisMBB;
13438  } else {
13439    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13440    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13441    // If not, pull from overflow_area. (branch to overflowMBB)
13442    //
13443    //       thisMBB
13444    //         |     .
13445    //         |        .
13446    //     offsetMBB   overflowMBB
13447    //         |        .
13448    //         |     .
13449    //        endMBB
13450
13451    // Registers for the PHI in endMBB
13452    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13453    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13454
13455    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13456    MachineFunction *MF = MBB->getParent();
13457    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13458    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13459    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13460
13461    MachineFunction::iterator MBBIter = MBB;
13462    ++MBBIter;
13463
13464    // Insert the new basic blocks
13465    MF->insert(MBBIter, offsetMBB);
13466    MF->insert(MBBIter, overflowMBB);
13467    MF->insert(MBBIter, endMBB);
13468
13469    // Transfer the remainder of MBB and its successor edges to endMBB.
13470    endMBB->splice(endMBB->begin(), thisMBB,
13471                    llvm::next(MachineBasicBlock::iterator(MI)),
13472                    thisMBB->end());
13473    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13474
13475    // Make offsetMBB and overflowMBB successors of thisMBB
13476    thisMBB->addSuccessor(offsetMBB);
13477    thisMBB->addSuccessor(overflowMBB);
13478
13479    // endMBB is a successor of both offsetMBB and overflowMBB
13480    offsetMBB->addSuccessor(endMBB);
13481    overflowMBB->addSuccessor(endMBB);
13482
13483    // Load the offset value into a register
13484    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13485    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13486      .addOperand(Base)
13487      .addOperand(Scale)
13488      .addOperand(Index)
13489      .addDisp(Disp, UseFPOffset ? 4 : 0)
13490      .addOperand(Segment)
13491      .setMemRefs(MMOBegin, MMOEnd);
13492
13493    // Check if there is enough room left to pull this argument.
13494    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13495      .addReg(OffsetReg)
13496      .addImm(MaxOffset + 8 - ArgSizeA8);
13497
13498    // Branch to "overflowMBB" if offset >= max
13499    // Fall through to "offsetMBB" otherwise
13500    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13501      .addMBB(overflowMBB);
13502  }
13503
13504  // In offsetMBB, emit code to use the reg_save_area.
13505  if (offsetMBB) {
13506    assert(OffsetReg != 0);
13507
13508    // Read the reg_save_area address.
13509    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13510    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13511      .addOperand(Base)
13512      .addOperand(Scale)
13513      .addOperand(Index)
13514      .addDisp(Disp, 16)
13515      .addOperand(Segment)
13516      .setMemRefs(MMOBegin, MMOEnd);
13517
13518    // Zero-extend the offset
13519    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13520      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13521        .addImm(0)
13522        .addReg(OffsetReg)
13523        .addImm(X86::sub_32bit);
13524
13525    // Add the offset to the reg_save_area to get the final address.
13526    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13527      .addReg(OffsetReg64)
13528      .addReg(RegSaveReg);
13529
13530    // Compute the offset for the next argument
13531    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13532    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13533      .addReg(OffsetReg)
13534      .addImm(UseFPOffset ? 16 : 8);
13535
13536    // Store it back into the va_list.
13537    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13538      .addOperand(Base)
13539      .addOperand(Scale)
13540      .addOperand(Index)
13541      .addDisp(Disp, UseFPOffset ? 4 : 0)
13542      .addOperand(Segment)
13543      .addReg(NextOffsetReg)
13544      .setMemRefs(MMOBegin, MMOEnd);
13545
13546    // Jump to endMBB
13547    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13548      .addMBB(endMBB);
13549  }
13550
13551  //
13552  // Emit code to use overflow area
13553  //
13554
13555  // Load the overflow_area address into a register.
13556  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13557  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13558    .addOperand(Base)
13559    .addOperand(Scale)
13560    .addOperand(Index)
13561    .addDisp(Disp, 8)
13562    .addOperand(Segment)
13563    .setMemRefs(MMOBegin, MMOEnd);
13564
13565  // If we need to align it, do so. Otherwise, just copy the address
13566  // to OverflowDestReg.
13567  if (NeedsAlign) {
13568    // Align the overflow address
13569    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13570    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
13571
13572    // aligned_addr = (addr + (align-1)) & ~(align-1)
13573    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
13574      .addReg(OverflowAddrReg)
13575      .addImm(Align-1);
13576
13577    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
13578      .addReg(TmpReg)
13579      .addImm(~(uint64_t)(Align-1));
13580  } else {
13581    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
13582      .addReg(OverflowAddrReg);
13583  }
13584
13585  // Compute the next overflow address after this argument.
13586  // (the overflow address should be kept 8-byte aligned)
13587  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
13588  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
13589    .addReg(OverflowDestReg)
13590    .addImm(ArgSizeA8);
13591
13592  // Store the new overflow address.
13593  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
13594    .addOperand(Base)
13595    .addOperand(Scale)
13596    .addOperand(Index)
13597    .addDisp(Disp, 8)
13598    .addOperand(Segment)
13599    .addReg(NextAddrReg)
13600    .setMemRefs(MMOBegin, MMOEnd);
13601
13602  // If we branched, emit the PHI to the front of endMBB.
13603  if (offsetMBB) {
13604    BuildMI(*endMBB, endMBB->begin(), DL,
13605            TII->get(X86::PHI), DestReg)
13606      .addReg(OffsetDestReg).addMBB(offsetMBB)
13607      .addReg(OverflowDestReg).addMBB(overflowMBB);
13608  }
13609
13610  // Erase the pseudo instruction
13611  MI->eraseFromParent();
13612
13613  return endMBB;
13614}
13615
13616MachineBasicBlock *
13617X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
13618                                                 MachineInstr *MI,
13619                                                 MachineBasicBlock *MBB) const {
13620  // Emit code to save XMM registers to the stack. The ABI says that the
13621  // number of registers to save is given in %al, so it's theoretically
13622  // possible to do an indirect jump trick to avoid saving all of them,
13623  // however this code takes a simpler approach and just executes all
13624  // of the stores if %al is non-zero. It's less code, and it's probably
13625  // easier on the hardware branch predictor, and stores aren't all that
13626  // expensive anyway.
13627
13628  // Create the new basic blocks. One block contains all the XMM stores,
13629  // and one block is the final destination regardless of whether any
13630  // stores were performed.
13631  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13632  MachineFunction *F = MBB->getParent();
13633  MachineFunction::iterator MBBIter = MBB;
13634  ++MBBIter;
13635  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
13636  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
13637  F->insert(MBBIter, XMMSaveMBB);
13638  F->insert(MBBIter, EndMBB);
13639
13640  // Transfer the remainder of MBB and its successor edges to EndMBB.
13641  EndMBB->splice(EndMBB->begin(), MBB,
13642                 llvm::next(MachineBasicBlock::iterator(MI)),
13643                 MBB->end());
13644  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
13645
13646  // The original block will now fall through to the XMM save block.
13647  MBB->addSuccessor(XMMSaveMBB);
13648  // The XMMSaveMBB will fall through to the end block.
13649  XMMSaveMBB->addSuccessor(EndMBB);
13650
13651  // Now add the instructions.
13652  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13653  DebugLoc DL = MI->getDebugLoc();
13654
13655  unsigned CountReg = MI->getOperand(0).getReg();
13656  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
13657  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
13658
13659  if (!Subtarget->isTargetWin64()) {
13660    // If %al is 0, branch around the XMM save block.
13661    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
13662    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
13663    MBB->addSuccessor(EndMBB);
13664  }
13665
13666  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
13667  // In the XMM save block, save all the XMM argument registers.
13668  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
13669    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
13670    MachineMemOperand *MMO =
13671      F->getMachineMemOperand(
13672          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
13673        MachineMemOperand::MOStore,
13674        /*Size=*/16, /*Align=*/16);
13675    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
13676      .addFrameIndex(RegSaveFrameIndex)
13677      .addImm(/*Scale=*/1)
13678      .addReg(/*IndexReg=*/0)
13679      .addImm(/*Disp=*/Offset)
13680      .addReg(/*Segment=*/0)
13681      .addReg(MI->getOperand(i).getReg())
13682      .addMemOperand(MMO);
13683  }
13684
13685  MI->eraseFromParent();   // The pseudo instruction is gone now.
13686
13687  return EndMBB;
13688}
13689
13690// The EFLAGS operand of SelectItr might be missing a kill marker
13691// because there were multiple uses of EFLAGS, and ISel didn't know
13692// which to mark. Figure out whether SelectItr should have had a
13693// kill marker, and set it if it should. Returns the correct kill
13694// marker value.
13695static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
13696                                     MachineBasicBlock* BB,
13697                                     const TargetRegisterInfo* TRI) {
13698  // Scan forward through BB for a use/def of EFLAGS.
13699  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
13700  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
13701    const MachineInstr& mi = *miI;
13702    if (mi.readsRegister(X86::EFLAGS))
13703      return false;
13704    if (mi.definesRegister(X86::EFLAGS))
13705      break; // Should have kill-flag - update below.
13706  }
13707
13708  // If we hit the end of the block, check whether EFLAGS is live into a
13709  // successor.
13710  if (miI == BB->end()) {
13711    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
13712                                          sEnd = BB->succ_end();
13713         sItr != sEnd; ++sItr) {
13714      MachineBasicBlock* succ = *sItr;
13715      if (succ->isLiveIn(X86::EFLAGS))
13716        return false;
13717    }
13718  }
13719
13720  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
13721  // out. SelectMI should have a kill flag on EFLAGS.
13722  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
13723  return true;
13724}
13725
13726MachineBasicBlock *
13727X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
13728                                     MachineBasicBlock *BB) const {
13729  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13730  DebugLoc DL = MI->getDebugLoc();
13731
13732  // To "insert" a SELECT_CC instruction, we actually have to insert the
13733  // diamond control-flow pattern.  The incoming instruction knows the
13734  // destination vreg to set, the condition code register to branch on, the
13735  // true/false values to select between, and a branch opcode to use.
13736  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13737  MachineFunction::iterator It = BB;
13738  ++It;
13739
13740  //  thisMBB:
13741  //  ...
13742  //   TrueVal = ...
13743  //   cmpTY ccX, r1, r2
13744  //   bCC copy1MBB
13745  //   fallthrough --> copy0MBB
13746  MachineBasicBlock *thisMBB = BB;
13747  MachineFunction *F = BB->getParent();
13748  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13749  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13750  F->insert(It, copy0MBB);
13751  F->insert(It, sinkMBB);
13752
13753  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13754  // live into the sink and copy blocks.
13755  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13756  if (!MI->killsRegister(X86::EFLAGS) &&
13757      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13758    copy0MBB->addLiveIn(X86::EFLAGS);
13759    sinkMBB->addLiveIn(X86::EFLAGS);
13760  }
13761
13762  // Transfer the remainder of BB and its successor edges to sinkMBB.
13763  sinkMBB->splice(sinkMBB->begin(), BB,
13764                  llvm::next(MachineBasicBlock::iterator(MI)),
13765                  BB->end());
13766  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13767
13768  // Add the true and fallthrough blocks as its successors.
13769  BB->addSuccessor(copy0MBB);
13770  BB->addSuccessor(sinkMBB);
13771
13772  // Create the conditional branch instruction.
13773  unsigned Opc =
13774    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13775  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13776
13777  //  copy0MBB:
13778  //   %FalseValue = ...
13779  //   # fallthrough to sinkMBB
13780  copy0MBB->addSuccessor(sinkMBB);
13781
13782  //  sinkMBB:
13783  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13784  //  ...
13785  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13786          TII->get(X86::PHI), MI->getOperand(0).getReg())
13787    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13788    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13789
13790  MI->eraseFromParent();   // The pseudo instruction is gone now.
13791  return sinkMBB;
13792}
13793
13794MachineBasicBlock *
13795X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13796                                        bool Is64Bit) const {
13797  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13798  DebugLoc DL = MI->getDebugLoc();
13799  MachineFunction *MF = BB->getParent();
13800  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13801
13802  assert(getTargetMachine().Options.EnableSegmentedStacks);
13803
13804  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13805  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13806
13807  // BB:
13808  //  ... [Till the alloca]
13809  // If stacklet is not large enough, jump to mallocMBB
13810  //
13811  // bumpMBB:
13812  //  Allocate by subtracting from RSP
13813  //  Jump to continueMBB
13814  //
13815  // mallocMBB:
13816  //  Allocate by call to runtime
13817  //
13818  // continueMBB:
13819  //  ...
13820  //  [rest of original BB]
13821  //
13822
13823  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13824  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13825  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13826
13827  MachineRegisterInfo &MRI = MF->getRegInfo();
13828  const TargetRegisterClass *AddrRegClass =
13829    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13830
13831  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13832    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13833    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13834    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13835    sizeVReg = MI->getOperand(1).getReg(),
13836    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13837
13838  MachineFunction::iterator MBBIter = BB;
13839  ++MBBIter;
13840
13841  MF->insert(MBBIter, bumpMBB);
13842  MF->insert(MBBIter, mallocMBB);
13843  MF->insert(MBBIter, continueMBB);
13844
13845  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13846                      (MachineBasicBlock::iterator(MI)), BB->end());
13847  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13848
13849  // Add code to the main basic block to check if the stack limit has been hit,
13850  // and if so, jump to mallocMBB otherwise to bumpMBB.
13851  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13852  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13853    .addReg(tmpSPVReg).addReg(sizeVReg);
13854  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13855    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13856    .addReg(SPLimitVReg);
13857  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13858
13859  // bumpMBB simply decreases the stack pointer, since we know the current
13860  // stacklet has enough space.
13861  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13862    .addReg(SPLimitVReg);
13863  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13864    .addReg(SPLimitVReg);
13865  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13866
13867  // Calls into a routine in libgcc to allocate more space from the heap.
13868  const uint32_t *RegMask =
13869    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13870  if (Is64Bit) {
13871    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13872      .addReg(sizeVReg);
13873    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13874      .addExternalSymbol("__morestack_allocate_stack_space")
13875      .addRegMask(RegMask)
13876      .addReg(X86::RDI, RegState::Implicit)
13877      .addReg(X86::RAX, RegState::ImplicitDefine);
13878  } else {
13879    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13880      .addImm(12);
13881    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13882    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13883      .addExternalSymbol("__morestack_allocate_stack_space")
13884      .addRegMask(RegMask)
13885      .addReg(X86::EAX, RegState::ImplicitDefine);
13886  }
13887
13888  if (!Is64Bit)
13889    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13890      .addImm(16);
13891
13892  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13893    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13894  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13895
13896  // Set up the CFG correctly.
13897  BB->addSuccessor(bumpMBB);
13898  BB->addSuccessor(mallocMBB);
13899  mallocMBB->addSuccessor(continueMBB);
13900  bumpMBB->addSuccessor(continueMBB);
13901
13902  // Take care of the PHI nodes.
13903  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13904          MI->getOperand(0).getReg())
13905    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13906    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13907
13908  // Delete the original pseudo instruction.
13909  MI->eraseFromParent();
13910
13911  // And we're done.
13912  return continueMBB;
13913}
13914
13915MachineBasicBlock *
13916X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13917                                          MachineBasicBlock *BB) const {
13918  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13919  DebugLoc DL = MI->getDebugLoc();
13920
13921  assert(!Subtarget->isTargetEnvMacho());
13922
13923  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13924  // non-trivial part is impdef of ESP.
13925
13926  if (Subtarget->isTargetWin64()) {
13927    if (Subtarget->isTargetCygMing()) {
13928      // ___chkstk(Mingw64):
13929      // Clobbers R10, R11, RAX and EFLAGS.
13930      // Updates RSP.
13931      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13932        .addExternalSymbol("___chkstk")
13933        .addReg(X86::RAX, RegState::Implicit)
13934        .addReg(X86::RSP, RegState::Implicit)
13935        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13936        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13937        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13938    } else {
13939      // __chkstk(MSVCRT): does not update stack pointer.
13940      // Clobbers R10, R11 and EFLAGS.
13941      // FIXME: RAX(allocated size) might be reused and not killed.
13942      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13943        .addExternalSymbol("__chkstk")
13944        .addReg(X86::RAX, RegState::Implicit)
13945        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13946      // RAX has the offset to subtracted from RSP.
13947      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13948        .addReg(X86::RSP)
13949        .addReg(X86::RAX);
13950    }
13951  } else {
13952    const char *StackProbeSymbol =
13953      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13954
13955    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13956      .addExternalSymbol(StackProbeSymbol)
13957      .addReg(X86::EAX, RegState::Implicit)
13958      .addReg(X86::ESP, RegState::Implicit)
13959      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13960      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13961      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13962  }
13963
13964  MI->eraseFromParent();   // The pseudo instruction is gone now.
13965  return BB;
13966}
13967
13968MachineBasicBlock *
13969X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13970                                      MachineBasicBlock *BB) const {
13971  // This is pretty easy.  We're taking the value that we received from
13972  // our load from the relocation, sticking it in either RDI (x86-64)
13973  // or EAX and doing an indirect call.  The return value will then
13974  // be in the normal return register.
13975  const X86InstrInfo *TII
13976    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13977  DebugLoc DL = MI->getDebugLoc();
13978  MachineFunction *F = BB->getParent();
13979
13980  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13981  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13982
13983  // Get a register mask for the lowered call.
13984  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13985  // proper register mask.
13986  const uint32_t *RegMask =
13987    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13988  if (Subtarget->is64Bit()) {
13989    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13990                                      TII->get(X86::MOV64rm), X86::RDI)
13991    .addReg(X86::RIP)
13992    .addImm(0).addReg(0)
13993    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13994                      MI->getOperand(3).getTargetFlags())
13995    .addReg(0);
13996    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
13997    addDirectMem(MIB, X86::RDI);
13998    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
13999  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14000    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14001                                      TII->get(X86::MOV32rm), X86::EAX)
14002    .addReg(0)
14003    .addImm(0).addReg(0)
14004    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14005                      MI->getOperand(3).getTargetFlags())
14006    .addReg(0);
14007    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14008    addDirectMem(MIB, X86::EAX);
14009    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14010  } else {
14011    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14012                                      TII->get(X86::MOV32rm), X86::EAX)
14013    .addReg(TII->getGlobalBaseReg(F))
14014    .addImm(0).addReg(0)
14015    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14016                      MI->getOperand(3).getTargetFlags())
14017    .addReg(0);
14018    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14019    addDirectMem(MIB, X86::EAX);
14020    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14021  }
14022
14023  MI->eraseFromParent(); // The pseudo instruction is gone now.
14024  return BB;
14025}
14026
14027MachineBasicBlock *
14028X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14029                                    MachineBasicBlock *MBB) const {
14030  DebugLoc DL = MI->getDebugLoc();
14031  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14032
14033  MachineFunction *MF = MBB->getParent();
14034  MachineRegisterInfo &MRI = MF->getRegInfo();
14035
14036  const BasicBlock *BB = MBB->getBasicBlock();
14037  MachineFunction::iterator I = MBB;
14038  ++I;
14039
14040  // Memory Reference
14041  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14042  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14043
14044  unsigned DstReg;
14045  unsigned MemOpndSlot = 0;
14046
14047  unsigned CurOp = 0;
14048
14049  DstReg = MI->getOperand(CurOp++).getReg();
14050  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14051  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14052  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14053  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14054
14055  MemOpndSlot = CurOp;
14056
14057  MVT PVT = getPointerTy();
14058  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14059         "Invalid Pointer Size!");
14060
14061  // For v = setjmp(buf), we generate
14062  //
14063  // thisMBB:
14064  //  buf[LabelOffset] = restoreMBB
14065  //  SjLjSetup restoreMBB
14066  //
14067  // mainMBB:
14068  //  v_main = 0
14069  //
14070  // sinkMBB:
14071  //  v = phi(main, restore)
14072  //
14073  // restoreMBB:
14074  //  v_restore = 1
14075
14076  MachineBasicBlock *thisMBB = MBB;
14077  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14078  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14079  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14080  MF->insert(I, mainMBB);
14081  MF->insert(I, sinkMBB);
14082  MF->push_back(restoreMBB);
14083
14084  MachineInstrBuilder MIB;
14085
14086  // Transfer the remainder of BB and its successor edges to sinkMBB.
14087  sinkMBB->splice(sinkMBB->begin(), MBB,
14088                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14089  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14090
14091  // thisMBB:
14092  unsigned PtrStoreOpc = 0;
14093  unsigned LabelReg = 0;
14094  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14095  Reloc::Model RM = getTargetMachine().getRelocationModel();
14096  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14097                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14098
14099  // Prepare IP either in reg or imm.
14100  if (!UseImmLabel) {
14101    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14102    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14103    LabelReg = MRI.createVirtualRegister(PtrRC);
14104    if (Subtarget->is64Bit()) {
14105      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14106              .addReg(X86::RIP)
14107              .addImm(0)
14108              .addReg(0)
14109              .addMBB(restoreMBB)
14110              .addReg(0);
14111    } else {
14112      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14113      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14114              .addReg(XII->getGlobalBaseReg(MF))
14115              .addImm(0)
14116              .addReg(0)
14117              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14118              .addReg(0);
14119    }
14120  } else
14121    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14122  // Store IP
14123  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14124  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14125    if (i == X86::AddrDisp)
14126      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14127    else
14128      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14129  }
14130  if (!UseImmLabel)
14131    MIB.addReg(LabelReg);
14132  else
14133    MIB.addMBB(restoreMBB);
14134  MIB.setMemRefs(MMOBegin, MMOEnd);
14135  // Setup
14136  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14137          .addMBB(restoreMBB);
14138  MIB.addRegMask(RegInfo->getNoPreservedMask());
14139  thisMBB->addSuccessor(mainMBB);
14140  thisMBB->addSuccessor(restoreMBB);
14141
14142  // mainMBB:
14143  //  EAX = 0
14144  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14145  mainMBB->addSuccessor(sinkMBB);
14146
14147  // sinkMBB:
14148  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14149          TII->get(X86::PHI), DstReg)
14150    .addReg(mainDstReg).addMBB(mainMBB)
14151    .addReg(restoreDstReg).addMBB(restoreMBB);
14152
14153  // restoreMBB:
14154  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14155  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14156  restoreMBB->addSuccessor(sinkMBB);
14157
14158  MI->eraseFromParent();
14159  return sinkMBB;
14160}
14161
14162MachineBasicBlock *
14163X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14164                                     MachineBasicBlock *MBB) const {
14165  DebugLoc DL = MI->getDebugLoc();
14166  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14167
14168  MachineFunction *MF = MBB->getParent();
14169  MachineRegisterInfo &MRI = MF->getRegInfo();
14170
14171  // Memory Reference
14172  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14173  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14174
14175  MVT PVT = getPointerTy();
14176  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14177         "Invalid Pointer Size!");
14178
14179  const TargetRegisterClass *RC =
14180    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14181  unsigned Tmp = MRI.createVirtualRegister(RC);
14182  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14183  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14184  unsigned SP = RegInfo->getStackRegister();
14185
14186  MachineInstrBuilder MIB;
14187
14188  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14189  const int64_t SPOffset = 2 * PVT.getStoreSize();
14190
14191  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14192  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14193
14194  // Reload FP
14195  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14196  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14197    MIB.addOperand(MI->getOperand(i));
14198  MIB.setMemRefs(MMOBegin, MMOEnd);
14199  // Reload IP
14200  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14201  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14202    if (i == X86::AddrDisp)
14203      MIB.addDisp(MI->getOperand(i), LabelOffset);
14204    else
14205      MIB.addOperand(MI->getOperand(i));
14206  }
14207  MIB.setMemRefs(MMOBegin, MMOEnd);
14208  // Reload SP
14209  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14210  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14211    if (i == X86::AddrDisp)
14212      MIB.addDisp(MI->getOperand(i), SPOffset);
14213    else
14214      MIB.addOperand(MI->getOperand(i));
14215  }
14216  MIB.setMemRefs(MMOBegin, MMOEnd);
14217  // Jump
14218  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14219
14220  MI->eraseFromParent();
14221  return MBB;
14222}
14223
14224MachineBasicBlock *
14225X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14226                                               MachineBasicBlock *BB) const {
14227  switch (MI->getOpcode()) {
14228  default: llvm_unreachable("Unexpected instr type to insert");
14229  case X86::TAILJMPd64:
14230  case X86::TAILJMPr64:
14231  case X86::TAILJMPm64:
14232    llvm_unreachable("TAILJMP64 would not be touched here.");
14233  case X86::TCRETURNdi64:
14234  case X86::TCRETURNri64:
14235  case X86::TCRETURNmi64:
14236    return BB;
14237  case X86::WIN_ALLOCA:
14238    return EmitLoweredWinAlloca(MI, BB);
14239  case X86::SEG_ALLOCA_32:
14240    return EmitLoweredSegAlloca(MI, BB, false);
14241  case X86::SEG_ALLOCA_64:
14242    return EmitLoweredSegAlloca(MI, BB, true);
14243  case X86::TLSCall_32:
14244  case X86::TLSCall_64:
14245    return EmitLoweredTLSCall(MI, BB);
14246  case X86::CMOV_GR8:
14247  case X86::CMOV_FR32:
14248  case X86::CMOV_FR64:
14249  case X86::CMOV_V4F32:
14250  case X86::CMOV_V2F64:
14251  case X86::CMOV_V2I64:
14252  case X86::CMOV_V8F32:
14253  case X86::CMOV_V4F64:
14254  case X86::CMOV_V4I64:
14255  case X86::CMOV_GR16:
14256  case X86::CMOV_GR32:
14257  case X86::CMOV_RFP32:
14258  case X86::CMOV_RFP64:
14259  case X86::CMOV_RFP80:
14260    return EmitLoweredSelect(MI, BB);
14261
14262  case X86::FP32_TO_INT16_IN_MEM:
14263  case X86::FP32_TO_INT32_IN_MEM:
14264  case X86::FP32_TO_INT64_IN_MEM:
14265  case X86::FP64_TO_INT16_IN_MEM:
14266  case X86::FP64_TO_INT32_IN_MEM:
14267  case X86::FP64_TO_INT64_IN_MEM:
14268  case X86::FP80_TO_INT16_IN_MEM:
14269  case X86::FP80_TO_INT32_IN_MEM:
14270  case X86::FP80_TO_INT64_IN_MEM: {
14271    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14272    DebugLoc DL = MI->getDebugLoc();
14273
14274    // Change the floating point control register to use "round towards zero"
14275    // mode when truncating to an integer value.
14276    MachineFunction *F = BB->getParent();
14277    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14278    addFrameReference(BuildMI(*BB, MI, DL,
14279                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14280
14281    // Load the old value of the high byte of the control word...
14282    unsigned OldCW =
14283      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14284    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14285                      CWFrameIdx);
14286
14287    // Set the high part to be round to zero...
14288    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14289      .addImm(0xC7F);
14290
14291    // Reload the modified control word now...
14292    addFrameReference(BuildMI(*BB, MI, DL,
14293                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14294
14295    // Restore the memory image of control word to original value
14296    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14297      .addReg(OldCW);
14298
14299    // Get the X86 opcode to use.
14300    unsigned Opc;
14301    switch (MI->getOpcode()) {
14302    default: llvm_unreachable("illegal opcode!");
14303    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14304    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14305    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14306    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14307    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14308    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14309    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14310    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14311    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14312    }
14313
14314    X86AddressMode AM;
14315    MachineOperand &Op = MI->getOperand(0);
14316    if (Op.isReg()) {
14317      AM.BaseType = X86AddressMode::RegBase;
14318      AM.Base.Reg = Op.getReg();
14319    } else {
14320      AM.BaseType = X86AddressMode::FrameIndexBase;
14321      AM.Base.FrameIndex = Op.getIndex();
14322    }
14323    Op = MI->getOperand(1);
14324    if (Op.isImm())
14325      AM.Scale = Op.getImm();
14326    Op = MI->getOperand(2);
14327    if (Op.isImm())
14328      AM.IndexReg = Op.getImm();
14329    Op = MI->getOperand(3);
14330    if (Op.isGlobal()) {
14331      AM.GV = Op.getGlobal();
14332    } else {
14333      AM.Disp = Op.getImm();
14334    }
14335    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14336                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14337
14338    // Reload the original control word now.
14339    addFrameReference(BuildMI(*BB, MI, DL,
14340                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14341
14342    MI->eraseFromParent();   // The pseudo instruction is gone now.
14343    return BB;
14344  }
14345    // String/text processing lowering.
14346  case X86::PCMPISTRM128REG:
14347  case X86::VPCMPISTRM128REG:
14348  case X86::PCMPISTRM128MEM:
14349  case X86::VPCMPISTRM128MEM:
14350  case X86::PCMPESTRM128REG:
14351  case X86::VPCMPESTRM128REG:
14352  case X86::PCMPESTRM128MEM:
14353  case X86::VPCMPESTRM128MEM:
14354    assert(Subtarget->hasSSE42() &&
14355           "Target must have SSE4.2 or AVX features enabled");
14356    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14357
14358  // String/text processing lowering.
14359  case X86::PCMPISTRIREG:
14360  case X86::VPCMPISTRIREG:
14361  case X86::PCMPISTRIMEM:
14362  case X86::VPCMPISTRIMEM:
14363  case X86::PCMPESTRIREG:
14364  case X86::VPCMPESTRIREG:
14365  case X86::PCMPESTRIMEM:
14366  case X86::VPCMPESTRIMEM:
14367    assert(Subtarget->hasSSE42() &&
14368           "Target must have SSE4.2 or AVX features enabled");
14369    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14370
14371  // Thread synchronization.
14372  case X86::MONITOR:
14373    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14374
14375  // xbegin
14376  case X86::XBEGIN:
14377    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14378
14379  // Atomic Lowering.
14380  case X86::ATOMAND8:
14381  case X86::ATOMAND16:
14382  case X86::ATOMAND32:
14383  case X86::ATOMAND64:
14384    // Fall through
14385  case X86::ATOMOR8:
14386  case X86::ATOMOR16:
14387  case X86::ATOMOR32:
14388  case X86::ATOMOR64:
14389    // Fall through
14390  case X86::ATOMXOR16:
14391  case X86::ATOMXOR8:
14392  case X86::ATOMXOR32:
14393  case X86::ATOMXOR64:
14394    // Fall through
14395  case X86::ATOMNAND8:
14396  case X86::ATOMNAND16:
14397  case X86::ATOMNAND32:
14398  case X86::ATOMNAND64:
14399    // Fall through
14400  case X86::ATOMMAX8:
14401  case X86::ATOMMAX16:
14402  case X86::ATOMMAX32:
14403  case X86::ATOMMAX64:
14404    // Fall through
14405  case X86::ATOMMIN8:
14406  case X86::ATOMMIN16:
14407  case X86::ATOMMIN32:
14408  case X86::ATOMMIN64:
14409    // Fall through
14410  case X86::ATOMUMAX8:
14411  case X86::ATOMUMAX16:
14412  case X86::ATOMUMAX32:
14413  case X86::ATOMUMAX64:
14414    // Fall through
14415  case X86::ATOMUMIN8:
14416  case X86::ATOMUMIN16:
14417  case X86::ATOMUMIN32:
14418  case X86::ATOMUMIN64:
14419    return EmitAtomicLoadArith(MI, BB);
14420
14421  // This group does 64-bit operations on a 32-bit host.
14422  case X86::ATOMAND6432:
14423  case X86::ATOMOR6432:
14424  case X86::ATOMXOR6432:
14425  case X86::ATOMNAND6432:
14426  case X86::ATOMADD6432:
14427  case X86::ATOMSUB6432:
14428  case X86::ATOMMAX6432:
14429  case X86::ATOMMIN6432:
14430  case X86::ATOMUMAX6432:
14431  case X86::ATOMUMIN6432:
14432  case X86::ATOMSWAP6432:
14433    return EmitAtomicLoadArith6432(MI, BB);
14434
14435  case X86::VASTART_SAVE_XMM_REGS:
14436    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14437
14438  case X86::VAARG_64:
14439    return EmitVAARG64WithCustomInserter(MI, BB);
14440
14441  case X86::EH_SjLj_SetJmp32:
14442  case X86::EH_SjLj_SetJmp64:
14443    return emitEHSjLjSetJmp(MI, BB);
14444
14445  case X86::EH_SjLj_LongJmp32:
14446  case X86::EH_SjLj_LongJmp64:
14447    return emitEHSjLjLongJmp(MI, BB);
14448  }
14449}
14450
14451//===----------------------------------------------------------------------===//
14452//                           X86 Optimization Hooks
14453//===----------------------------------------------------------------------===//
14454
14455void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14456                                                       APInt &KnownZero,
14457                                                       APInt &KnownOne,
14458                                                       const SelectionDAG &DAG,
14459                                                       unsigned Depth) const {
14460  unsigned BitWidth = KnownZero.getBitWidth();
14461  unsigned Opc = Op.getOpcode();
14462  assert((Opc >= ISD::BUILTIN_OP_END ||
14463          Opc == ISD::INTRINSIC_WO_CHAIN ||
14464          Opc == ISD::INTRINSIC_W_CHAIN ||
14465          Opc == ISD::INTRINSIC_VOID) &&
14466         "Should use MaskedValueIsZero if you don't know whether Op"
14467         " is a target node!");
14468
14469  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14470  switch (Opc) {
14471  default: break;
14472  case X86ISD::ADD:
14473  case X86ISD::SUB:
14474  case X86ISD::ADC:
14475  case X86ISD::SBB:
14476  case X86ISD::SMUL:
14477  case X86ISD::UMUL:
14478  case X86ISD::INC:
14479  case X86ISD::DEC:
14480  case X86ISD::OR:
14481  case X86ISD::XOR:
14482  case X86ISD::AND:
14483    // These nodes' second result is a boolean.
14484    if (Op.getResNo() == 0)
14485      break;
14486    // Fallthrough
14487  case X86ISD::SETCC:
14488    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14489    break;
14490  case ISD::INTRINSIC_WO_CHAIN: {
14491    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14492    unsigned NumLoBits = 0;
14493    switch (IntId) {
14494    default: break;
14495    case Intrinsic::x86_sse_movmsk_ps:
14496    case Intrinsic::x86_avx_movmsk_ps_256:
14497    case Intrinsic::x86_sse2_movmsk_pd:
14498    case Intrinsic::x86_avx_movmsk_pd_256:
14499    case Intrinsic::x86_mmx_pmovmskb:
14500    case Intrinsic::x86_sse2_pmovmskb_128:
14501    case Intrinsic::x86_avx2_pmovmskb: {
14502      // High bits of movmskp{s|d}, pmovmskb are known zero.
14503      switch (IntId) {
14504        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14505        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14506        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14507        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14508        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14509        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14510        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14511        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14512      }
14513      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14514      break;
14515    }
14516    }
14517    break;
14518  }
14519  }
14520}
14521
14522unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14523                                                         unsigned Depth) const {
14524  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14525  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14526    return Op.getValueType().getScalarType().getSizeInBits();
14527
14528  // Fallback case.
14529  return 1;
14530}
14531
14532/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14533/// node is a GlobalAddress + offset.
14534bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14535                                       const GlobalValue* &GA,
14536                                       int64_t &Offset) const {
14537  if (N->getOpcode() == X86ISD::Wrapper) {
14538    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14539      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14540      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14541      return true;
14542    }
14543  }
14544  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14545}
14546
14547/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14548/// same as extracting the high 128-bit part of 256-bit vector and then
14549/// inserting the result into the low part of a new 256-bit vector
14550static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14551  EVT VT = SVOp->getValueType(0);
14552  unsigned NumElems = VT.getVectorNumElements();
14553
14554  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14555  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14556    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14557        SVOp->getMaskElt(j) >= 0)
14558      return false;
14559
14560  return true;
14561}
14562
14563/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14564/// same as extracting the low 128-bit part of 256-bit vector and then
14565/// inserting the result into the high part of a new 256-bit vector
14566static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14567  EVT VT = SVOp->getValueType(0);
14568  unsigned NumElems = VT.getVectorNumElements();
14569
14570  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14571  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
14572    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14573        SVOp->getMaskElt(j) >= 0)
14574      return false;
14575
14576  return true;
14577}
14578
14579/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
14580static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
14581                                        TargetLowering::DAGCombinerInfo &DCI,
14582                                        const X86Subtarget* Subtarget) {
14583  DebugLoc dl = N->getDebugLoc();
14584  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
14585  SDValue V1 = SVOp->getOperand(0);
14586  SDValue V2 = SVOp->getOperand(1);
14587  EVT VT = SVOp->getValueType(0);
14588  unsigned NumElems = VT.getVectorNumElements();
14589
14590  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
14591      V2.getOpcode() == ISD::CONCAT_VECTORS) {
14592    //
14593    //                   0,0,0,...
14594    //                      |
14595    //    V      UNDEF    BUILD_VECTOR    UNDEF
14596    //     \      /           \           /
14597    //  CONCAT_VECTOR         CONCAT_VECTOR
14598    //         \                  /
14599    //          \                /
14600    //          RESULT: V + zero extended
14601    //
14602    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
14603        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
14604        V1.getOperand(1).getOpcode() != ISD::UNDEF)
14605      return SDValue();
14606
14607    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
14608      return SDValue();
14609
14610    // To match the shuffle mask, the first half of the mask should
14611    // be exactly the first vector, and all the rest a splat with the
14612    // first element of the second one.
14613    for (unsigned i = 0; i != NumElems/2; ++i)
14614      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
14615          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
14616        return SDValue();
14617
14618    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
14619    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
14620      if (Ld->hasNUsesOfValue(1, 0)) {
14621        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
14622        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
14623        SDValue ResNode =
14624          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
14625                                  Ld->getMemoryVT(),
14626                                  Ld->getPointerInfo(),
14627                                  Ld->getAlignment(),
14628                                  false/*isVolatile*/, true/*ReadMem*/,
14629                                  false/*WriteMem*/);
14630
14631        // Make sure the newly-created LOAD is in the same position as Ld in
14632        // terms of dependency. We create a TokenFactor for Ld and ResNode,
14633        // and update uses of Ld's output chain to use the TokenFactor.
14634        if (Ld->hasAnyUseOfValue(1)) {
14635          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14636                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
14637          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
14638          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
14639                                 SDValue(ResNode.getNode(), 1));
14640        }
14641
14642        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
14643      }
14644    }
14645
14646    // Emit a zeroed vector and insert the desired subvector on its
14647    // first half.
14648    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
14649    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
14650    return DCI.CombineTo(N, InsV);
14651  }
14652
14653  //===--------------------------------------------------------------------===//
14654  // Combine some shuffles into subvector extracts and inserts:
14655  //
14656
14657  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14658  if (isShuffleHigh128VectorInsertLow(SVOp)) {
14659    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
14660    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
14661    return DCI.CombineTo(N, InsV);
14662  }
14663
14664  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14665  if (isShuffleLow128VectorInsertHigh(SVOp)) {
14666    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
14667    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
14668    return DCI.CombineTo(N, InsV);
14669  }
14670
14671  return SDValue();
14672}
14673
14674/// PerformShuffleCombine - Performs several different shuffle combines.
14675static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
14676                                     TargetLowering::DAGCombinerInfo &DCI,
14677                                     const X86Subtarget *Subtarget) {
14678  DebugLoc dl = N->getDebugLoc();
14679  EVT VT = N->getValueType(0);
14680
14681  // Don't create instructions with illegal types after legalize types has run.
14682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14683  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
14684    return SDValue();
14685
14686  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
14687  if (Subtarget->hasFp256() && VT.is256BitVector() &&
14688      N->getOpcode() == ISD::VECTOR_SHUFFLE)
14689    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
14690
14691  // Only handle 128 wide vector from here on.
14692  if (!VT.is128BitVector())
14693    return SDValue();
14694
14695  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
14696  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
14697  // consecutive, non-overlapping, and in the right order.
14698  SmallVector<SDValue, 16> Elts;
14699  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
14700    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
14701
14702  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
14703}
14704
14705/// PerformTruncateCombine - Converts truncate operation to
14706/// a sequence of vector shuffle operations.
14707/// It is possible when we truncate 256-bit vector to 128-bit vector
14708static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
14709                                      TargetLowering::DAGCombinerInfo &DCI,
14710                                      const X86Subtarget *Subtarget)  {
14711  return SDValue();
14712}
14713
14714/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14715/// specific shuffle of a load can be folded into a single element load.
14716/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14717/// shuffles have been customed lowered so we need to handle those here.
14718static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14719                                         TargetLowering::DAGCombinerInfo &DCI) {
14720  if (DCI.isBeforeLegalizeOps())
14721    return SDValue();
14722
14723  SDValue InVec = N->getOperand(0);
14724  SDValue EltNo = N->getOperand(1);
14725
14726  if (!isa<ConstantSDNode>(EltNo))
14727    return SDValue();
14728
14729  EVT VT = InVec.getValueType();
14730
14731  bool HasShuffleIntoBitcast = false;
14732  if (InVec.getOpcode() == ISD::BITCAST) {
14733    // Don't duplicate a load with other uses.
14734    if (!InVec.hasOneUse())
14735      return SDValue();
14736    EVT BCVT = InVec.getOperand(0).getValueType();
14737    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14738      return SDValue();
14739    InVec = InVec.getOperand(0);
14740    HasShuffleIntoBitcast = true;
14741  }
14742
14743  if (!isTargetShuffle(InVec.getOpcode()))
14744    return SDValue();
14745
14746  // Don't duplicate a load with other uses.
14747  if (!InVec.hasOneUse())
14748    return SDValue();
14749
14750  SmallVector<int, 16> ShuffleMask;
14751  bool UnaryShuffle;
14752  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14753                            UnaryShuffle))
14754    return SDValue();
14755
14756  // Select the input vector, guarding against out of range extract vector.
14757  unsigned NumElems = VT.getVectorNumElements();
14758  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14759  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14760  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14761                                         : InVec.getOperand(1);
14762
14763  // If inputs to shuffle are the same for both ops, then allow 2 uses
14764  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14765
14766  if (LdNode.getOpcode() == ISD::BITCAST) {
14767    // Don't duplicate a load with other uses.
14768    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14769      return SDValue();
14770
14771    AllowedUses = 1; // only allow 1 load use if we have a bitcast
14772    LdNode = LdNode.getOperand(0);
14773  }
14774
14775  if (!ISD::isNormalLoad(LdNode.getNode()))
14776    return SDValue();
14777
14778  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
14779
14780  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
14781    return SDValue();
14782
14783  if (HasShuffleIntoBitcast) {
14784    // If there's a bitcast before the shuffle, check if the load type and
14785    // alignment is valid.
14786    unsigned Align = LN0->getAlignment();
14787    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14788    unsigned NewAlign = TLI.getDataLayout()->
14789      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
14790
14791    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
14792      return SDValue();
14793  }
14794
14795  // All checks match so transform back to vector_shuffle so that DAG combiner
14796  // can finish the job
14797  DebugLoc dl = N->getDebugLoc();
14798
14799  // Create shuffle node taking into account the case that its a unary shuffle
14800  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
14801  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
14802                                 InVec.getOperand(0), Shuffle,
14803                                 &ShuffleMask[0]);
14804  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
14805  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
14806                     EltNo);
14807}
14808
14809/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
14810/// generation and convert it from being a bunch of shuffles and extracts
14811/// to a simple store and scalar loads to extract the elements.
14812static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
14813                                         TargetLowering::DAGCombinerInfo &DCI) {
14814  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
14815  if (NewOp.getNode())
14816    return NewOp;
14817
14818  SDValue InputVector = N->getOperand(0);
14819  // Detect whether we are trying to convert from mmx to i32 and the bitcast
14820  // from mmx to v2i32 has a single usage.
14821  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
14822      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
14823      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
14824    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
14825                       N->getValueType(0),
14826                       InputVector.getNode()->getOperand(0));
14827
14828  // Only operate on vectors of 4 elements, where the alternative shuffling
14829  // gets to be more expensive.
14830  if (InputVector.getValueType() != MVT::v4i32)
14831    return SDValue();
14832
14833  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
14834  // single use which is a sign-extend or zero-extend, and all elements are
14835  // used.
14836  SmallVector<SDNode *, 4> Uses;
14837  unsigned ExtractedElements = 0;
14838  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
14839       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
14840    if (UI.getUse().getResNo() != InputVector.getResNo())
14841      return SDValue();
14842
14843    SDNode *Extract = *UI;
14844    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14845      return SDValue();
14846
14847    if (Extract->getValueType(0) != MVT::i32)
14848      return SDValue();
14849    if (!Extract->hasOneUse())
14850      return SDValue();
14851    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
14852        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
14853      return SDValue();
14854    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
14855      return SDValue();
14856
14857    // Record which element was extracted.
14858    ExtractedElements |=
14859      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
14860
14861    Uses.push_back(Extract);
14862  }
14863
14864  // If not all the elements were used, this may not be worthwhile.
14865  if (ExtractedElements != 15)
14866    return SDValue();
14867
14868  // Ok, we've now decided to do the transformation.
14869  DebugLoc dl = InputVector.getDebugLoc();
14870
14871  // Store the value to a temporary stack slot.
14872  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
14873  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
14874                            MachinePointerInfo(), false, false, 0);
14875
14876  // Replace each use (extract) with a load of the appropriate element.
14877  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
14878       UE = Uses.end(); UI != UE; ++UI) {
14879    SDNode *Extract = *UI;
14880
14881    // cOMpute the element's address.
14882    SDValue Idx = Extract->getOperand(1);
14883    unsigned EltSize =
14884        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
14885    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
14886    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14887    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
14888
14889    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
14890                                     StackPtr, OffsetVal);
14891
14892    // Load the scalar.
14893    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
14894                                     ScalarAddr, MachinePointerInfo(),
14895                                     false, false, false, 0);
14896
14897    // Replace the exact with the load.
14898    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
14899  }
14900
14901  // The replacement was made in place; don't return anything.
14902  return SDValue();
14903}
14904
14905/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
14906static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
14907                                   SDValue RHS, SelectionDAG &DAG,
14908                                   const X86Subtarget *Subtarget) {
14909  if (!VT.isVector())
14910    return 0;
14911
14912  switch (VT.getSimpleVT().SimpleTy) {
14913  default: return 0;
14914  case MVT::v32i8:
14915  case MVT::v16i16:
14916  case MVT::v8i32:
14917    if (!Subtarget->hasAVX2())
14918      return 0;
14919  case MVT::v16i8:
14920  case MVT::v8i16:
14921  case MVT::v4i32:
14922    if (!Subtarget->hasSSE2())
14923      return 0;
14924  }
14925
14926  // SSE2 has only a small subset of the operations.
14927  bool hasUnsigned = Subtarget->hasSSE41() ||
14928                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
14929  bool hasSigned = Subtarget->hasSSE41() ||
14930                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
14931
14932  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14933
14934  // Check for x CC y ? x : y.
14935  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14936      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14937    switch (CC) {
14938    default: break;
14939    case ISD::SETULT:
14940    case ISD::SETULE:
14941      return hasUnsigned ? X86ISD::UMIN : 0;
14942    case ISD::SETUGT:
14943    case ISD::SETUGE:
14944      return hasUnsigned ? X86ISD::UMAX : 0;
14945    case ISD::SETLT:
14946    case ISD::SETLE:
14947      return hasSigned ? X86ISD::SMIN : 0;
14948    case ISD::SETGT:
14949    case ISD::SETGE:
14950      return hasSigned ? X86ISD::SMAX : 0;
14951    }
14952  // Check for x CC y ? y : x -- a min/max with reversed arms.
14953  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14954             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14955    switch (CC) {
14956    default: break;
14957    case ISD::SETULT:
14958    case ISD::SETULE:
14959      return hasUnsigned ? X86ISD::UMAX : 0;
14960    case ISD::SETUGT:
14961    case ISD::SETUGE:
14962      return hasUnsigned ? X86ISD::UMIN : 0;
14963    case ISD::SETLT:
14964    case ISD::SETLE:
14965      return hasSigned ? X86ISD::SMAX : 0;
14966    case ISD::SETGT:
14967    case ISD::SETGE:
14968      return hasSigned ? X86ISD::SMIN : 0;
14969    }
14970  }
14971
14972  return 0;
14973}
14974
14975/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
14976/// nodes.
14977static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
14978                                    TargetLowering::DAGCombinerInfo &DCI,
14979                                    const X86Subtarget *Subtarget) {
14980  DebugLoc DL = N->getDebugLoc();
14981  SDValue Cond = N->getOperand(0);
14982  // Get the LHS/RHS of the select.
14983  SDValue LHS = N->getOperand(1);
14984  SDValue RHS = N->getOperand(2);
14985  EVT VT = LHS.getValueType();
14986
14987  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
14988  // instructions match the semantics of the common C idiom x<y?x:y but not
14989  // x<=y?x:y, because of how they handle negative zero (which can be
14990  // ignored in unsafe-math mode).
14991  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
14992      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
14993      (Subtarget->hasSSE2() ||
14994       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
14995    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14996
14997    unsigned Opcode = 0;
14998    // Check for x CC y ? x : y.
14999    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15000        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15001      switch (CC) {
15002      default: break;
15003      case ISD::SETULT:
15004        // Converting this to a min would handle NaNs incorrectly, and swapping
15005        // the operands would cause it to handle comparisons between positive
15006        // and negative zero incorrectly.
15007        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15008          if (!DAG.getTarget().Options.UnsafeFPMath &&
15009              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15010            break;
15011          std::swap(LHS, RHS);
15012        }
15013        Opcode = X86ISD::FMIN;
15014        break;
15015      case ISD::SETOLE:
15016        // Converting this to a min would handle comparisons between positive
15017        // and negative zero incorrectly.
15018        if (!DAG.getTarget().Options.UnsafeFPMath &&
15019            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15020          break;
15021        Opcode = X86ISD::FMIN;
15022        break;
15023      case ISD::SETULE:
15024        // Converting this to a min would handle both negative zeros and NaNs
15025        // incorrectly, but we can swap the operands to fix both.
15026        std::swap(LHS, RHS);
15027      case ISD::SETOLT:
15028      case ISD::SETLT:
15029      case ISD::SETLE:
15030        Opcode = X86ISD::FMIN;
15031        break;
15032
15033      case ISD::SETOGE:
15034        // Converting this to a max would handle comparisons between positive
15035        // and negative zero incorrectly.
15036        if (!DAG.getTarget().Options.UnsafeFPMath &&
15037            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15038          break;
15039        Opcode = X86ISD::FMAX;
15040        break;
15041      case ISD::SETUGT:
15042        // Converting this to a max would handle NaNs incorrectly, and swapping
15043        // the operands would cause it to handle comparisons between positive
15044        // and negative zero incorrectly.
15045        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15046          if (!DAG.getTarget().Options.UnsafeFPMath &&
15047              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15048            break;
15049          std::swap(LHS, RHS);
15050        }
15051        Opcode = X86ISD::FMAX;
15052        break;
15053      case ISD::SETUGE:
15054        // Converting this to a max would handle both negative zeros and NaNs
15055        // incorrectly, but we can swap the operands to fix both.
15056        std::swap(LHS, RHS);
15057      case ISD::SETOGT:
15058      case ISD::SETGT:
15059      case ISD::SETGE:
15060        Opcode = X86ISD::FMAX;
15061        break;
15062      }
15063    // Check for x CC y ? y : x -- a min/max with reversed arms.
15064    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15065               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15066      switch (CC) {
15067      default: break;
15068      case ISD::SETOGE:
15069        // Converting this to a min would handle comparisons between positive
15070        // and negative zero incorrectly, and swapping the operands would
15071        // cause it to handle NaNs incorrectly.
15072        if (!DAG.getTarget().Options.UnsafeFPMath &&
15073            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15074          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15075            break;
15076          std::swap(LHS, RHS);
15077        }
15078        Opcode = X86ISD::FMIN;
15079        break;
15080      case ISD::SETUGT:
15081        // Converting this to a min would handle NaNs incorrectly.
15082        if (!DAG.getTarget().Options.UnsafeFPMath &&
15083            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15084          break;
15085        Opcode = X86ISD::FMIN;
15086        break;
15087      case ISD::SETUGE:
15088        // Converting this to a min would handle both negative zeros and NaNs
15089        // incorrectly, but we can swap the operands to fix both.
15090        std::swap(LHS, RHS);
15091      case ISD::SETOGT:
15092      case ISD::SETGT:
15093      case ISD::SETGE:
15094        Opcode = X86ISD::FMIN;
15095        break;
15096
15097      case ISD::SETULT:
15098        // Converting this to a max would handle NaNs incorrectly.
15099        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15100          break;
15101        Opcode = X86ISD::FMAX;
15102        break;
15103      case ISD::SETOLE:
15104        // Converting this to a max would handle comparisons between positive
15105        // and negative zero incorrectly, and swapping the operands would
15106        // cause it to handle NaNs incorrectly.
15107        if (!DAG.getTarget().Options.UnsafeFPMath &&
15108            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15109          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15110            break;
15111          std::swap(LHS, RHS);
15112        }
15113        Opcode = X86ISD::FMAX;
15114        break;
15115      case ISD::SETULE:
15116        // Converting this to a max would handle both negative zeros and NaNs
15117        // incorrectly, but we can swap the operands to fix both.
15118        std::swap(LHS, RHS);
15119      case ISD::SETOLT:
15120      case ISD::SETLT:
15121      case ISD::SETLE:
15122        Opcode = X86ISD::FMAX;
15123        break;
15124      }
15125    }
15126
15127    if (Opcode)
15128      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15129  }
15130
15131  // If this is a select between two integer constants, try to do some
15132  // optimizations.
15133  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15134    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15135      // Don't do this for crazy integer types.
15136      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15137        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15138        // so that TrueC (the true value) is larger than FalseC.
15139        bool NeedsCondInvert = false;
15140
15141        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15142            // Efficiently invertible.
15143            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15144             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15145              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15146          NeedsCondInvert = true;
15147          std::swap(TrueC, FalseC);
15148        }
15149
15150        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15151        if (FalseC->getAPIntValue() == 0 &&
15152            TrueC->getAPIntValue().isPowerOf2()) {
15153          if (NeedsCondInvert) // Invert the condition if needed.
15154            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15155                               DAG.getConstant(1, Cond.getValueType()));
15156
15157          // Zero extend the condition if needed.
15158          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15159
15160          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15161          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15162                             DAG.getConstant(ShAmt, MVT::i8));
15163        }
15164
15165        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15166        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15167          if (NeedsCondInvert) // Invert the condition if needed.
15168            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15169                               DAG.getConstant(1, Cond.getValueType()));
15170
15171          // Zero extend the condition if needed.
15172          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15173                             FalseC->getValueType(0), Cond);
15174          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15175                             SDValue(FalseC, 0));
15176        }
15177
15178        // Optimize cases that will turn into an LEA instruction.  This requires
15179        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15180        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15181          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15182          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15183
15184          bool isFastMultiplier = false;
15185          if (Diff < 10) {
15186            switch ((unsigned char)Diff) {
15187              default: break;
15188              case 1:  // result = add base, cond
15189              case 2:  // result = lea base(    , cond*2)
15190              case 3:  // result = lea base(cond, cond*2)
15191              case 4:  // result = lea base(    , cond*4)
15192              case 5:  // result = lea base(cond, cond*4)
15193              case 8:  // result = lea base(    , cond*8)
15194              case 9:  // result = lea base(cond, cond*8)
15195                isFastMultiplier = true;
15196                break;
15197            }
15198          }
15199
15200          if (isFastMultiplier) {
15201            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15202            if (NeedsCondInvert) // Invert the condition if needed.
15203              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15204                                 DAG.getConstant(1, Cond.getValueType()));
15205
15206            // Zero extend the condition if needed.
15207            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15208                               Cond);
15209            // Scale the condition by the difference.
15210            if (Diff != 1)
15211              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15212                                 DAG.getConstant(Diff, Cond.getValueType()));
15213
15214            // Add the base if non-zero.
15215            if (FalseC->getAPIntValue() != 0)
15216              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15217                                 SDValue(FalseC, 0));
15218            return Cond;
15219          }
15220        }
15221      }
15222  }
15223
15224  // Canonicalize max and min:
15225  // (x > y) ? x : y -> (x >= y) ? x : y
15226  // (x < y) ? x : y -> (x <= y) ? x : y
15227  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15228  // the need for an extra compare
15229  // against zero. e.g.
15230  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15231  // subl   %esi, %edi
15232  // testl  %edi, %edi
15233  // movl   $0, %eax
15234  // cmovgl %edi, %eax
15235  // =>
15236  // xorl   %eax, %eax
15237  // subl   %esi, $edi
15238  // cmovsl %eax, %edi
15239  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15240      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15241      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15242    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15243    switch (CC) {
15244    default: break;
15245    case ISD::SETLT:
15246    case ISD::SETGT: {
15247      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15248      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
15249                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15250      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15251    }
15252    }
15253  }
15254
15255  // Match VSELECTs into subs with unsigned saturation.
15256  if (!DCI.isBeforeLegalize() &&
15257      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15258      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15259      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15260       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15261    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15262
15263    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15264    // left side invert the predicate to simplify logic below.
15265    SDValue Other;
15266    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15267      Other = RHS;
15268      CC = ISD::getSetCCInverse(CC, true);
15269    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15270      Other = LHS;
15271    }
15272
15273    if (Other.getNode() && Other->getNumOperands() == 2 &&
15274        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15275      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15276      SDValue CondRHS = Cond->getOperand(1);
15277
15278      // Look for a general sub with unsigned saturation first.
15279      // x >= y ? x-y : 0 --> subus x, y
15280      // x >  y ? x-y : 0 --> subus x, y
15281      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15282          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15283        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15284
15285      // If the RHS is a constant we have to reverse the const canonicalization.
15286      // x > C-1 ? x+-C : 0 --> subus x, C
15287      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15288          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15289        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15290        if (CondRHS.getConstantOperandVal(0) == -A-1) {
15291          SmallVector<SDValue, 32> V(VT.getVectorNumElements(),
15292                                     DAG.getConstant(-A, VT.getScalarType()));
15293          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15294                             DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
15295                                         V.data(), V.size()));
15296        }
15297      }
15298
15299      // Another special case: If C was a sign bit, the sub has been
15300      // canonicalized into a xor.
15301      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15302      //        it's safe to decanonicalize the xor?
15303      // x s< 0 ? x^C : 0 --> subus x, C
15304      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15305          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15306          isSplatVector(OpRHS.getNode())) {
15307        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15308        if (A.isSignBit())
15309          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15310      }
15311    }
15312  }
15313
15314  // Try to match a min/max vector operation.
15315  if (!DCI.isBeforeLegalize() &&
15316      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15317    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15318      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15319
15320  // If we know that this node is legal then we know that it is going to be
15321  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15322  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15323  // to simplify previous instructions.
15324  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15325  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15326      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15327    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15328
15329    // Don't optimize vector selects that map to mask-registers.
15330    if (BitWidth == 1)
15331      return SDValue();
15332
15333    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15334    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15335
15336    APInt KnownZero, KnownOne;
15337    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15338                                          DCI.isBeforeLegalizeOps());
15339    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15340        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15341      DCI.CommitTargetLoweringOpt(TLO);
15342  }
15343
15344  return SDValue();
15345}
15346
15347// Check whether a boolean test is testing a boolean value generated by
15348// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15349// code.
15350//
15351// Simplify the following patterns:
15352// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15353// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15354// to (Op EFLAGS Cond)
15355//
15356// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15357// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15358// to (Op EFLAGS !Cond)
15359//
15360// where Op could be BRCOND or CMOV.
15361//
15362static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15363  // Quit if not CMP and SUB with its value result used.
15364  if (Cmp.getOpcode() != X86ISD::CMP &&
15365      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15366      return SDValue();
15367
15368  // Quit if not used as a boolean value.
15369  if (CC != X86::COND_E && CC != X86::COND_NE)
15370    return SDValue();
15371
15372  // Check CMP operands. One of them should be 0 or 1 and the other should be
15373  // an SetCC or extended from it.
15374  SDValue Op1 = Cmp.getOperand(0);
15375  SDValue Op2 = Cmp.getOperand(1);
15376
15377  SDValue SetCC;
15378  const ConstantSDNode* C = 0;
15379  bool needOppositeCond = (CC == X86::COND_E);
15380
15381  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15382    SetCC = Op2;
15383  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15384    SetCC = Op1;
15385  else // Quit if all operands are not constants.
15386    return SDValue();
15387
15388  if (C->getZExtValue() == 1)
15389    needOppositeCond = !needOppositeCond;
15390  else if (C->getZExtValue() != 0)
15391    // Quit if the constant is neither 0 or 1.
15392    return SDValue();
15393
15394  // Skip 'zext' node.
15395  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
15396    SetCC = SetCC.getOperand(0);
15397
15398  switch (SetCC.getOpcode()) {
15399  case X86ISD::SETCC:
15400    // Set the condition code or opposite one if necessary.
15401    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
15402    if (needOppositeCond)
15403      CC = X86::GetOppositeBranchCondition(CC);
15404    return SetCC.getOperand(1);
15405  case X86ISD::CMOV: {
15406    // Check whether false/true value has canonical one, i.e. 0 or 1.
15407    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
15408    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
15409    // Quit if true value is not a constant.
15410    if (!TVal)
15411      return SDValue();
15412    // Quit if false value is not a constant.
15413    if (!FVal) {
15414      // A special case for rdrand, where 0 is set if false cond is found.
15415      SDValue Op = SetCC.getOperand(0);
15416      if (Op.getOpcode() != X86ISD::RDRAND)
15417        return SDValue();
15418    }
15419    // Quit if false value is not the constant 0 or 1.
15420    bool FValIsFalse = true;
15421    if (FVal && FVal->getZExtValue() != 0) {
15422      if (FVal->getZExtValue() != 1)
15423        return SDValue();
15424      // If FVal is 1, opposite cond is needed.
15425      needOppositeCond = !needOppositeCond;
15426      FValIsFalse = false;
15427    }
15428    // Quit if TVal is not the constant opposite of FVal.
15429    if (FValIsFalse && TVal->getZExtValue() != 1)
15430      return SDValue();
15431    if (!FValIsFalse && TVal->getZExtValue() != 0)
15432      return SDValue();
15433    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15434    if (needOppositeCond)
15435      CC = X86::GetOppositeBranchCondition(CC);
15436    return SetCC.getOperand(3);
15437  }
15438  }
15439
15440  return SDValue();
15441}
15442
15443/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15444static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15445                                  TargetLowering::DAGCombinerInfo &DCI,
15446                                  const X86Subtarget *Subtarget) {
15447  DebugLoc DL = N->getDebugLoc();
15448
15449  // If the flag operand isn't dead, don't touch this CMOV.
15450  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15451    return SDValue();
15452
15453  SDValue FalseOp = N->getOperand(0);
15454  SDValue TrueOp = N->getOperand(1);
15455  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15456  SDValue Cond = N->getOperand(3);
15457
15458  if (CC == X86::COND_E || CC == X86::COND_NE) {
15459    switch (Cond.getOpcode()) {
15460    default: break;
15461    case X86ISD::BSR:
15462    case X86ISD::BSF:
15463      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
15464      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
15465        return (CC == X86::COND_E) ? FalseOp : TrueOp;
15466    }
15467  }
15468
15469  SDValue Flags;
15470
15471  Flags = checkBoolTestSetCCCombine(Cond, CC);
15472  if (Flags.getNode() &&
15473      // Extra check as FCMOV only supports a subset of X86 cond.
15474      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
15475    SDValue Ops[] = { FalseOp, TrueOp,
15476                      DAG.getConstant(CC, MVT::i8), Flags };
15477    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
15478                       Ops, array_lengthof(Ops));
15479  }
15480
15481  // If this is a select between two integer constants, try to do some
15482  // optimizations.  Note that the operands are ordered the opposite of SELECT
15483  // operands.
15484  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
15485    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
15486      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
15487      // larger than FalseC (the false value).
15488      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
15489        CC = X86::GetOppositeBranchCondition(CC);
15490        std::swap(TrueC, FalseC);
15491        std::swap(TrueOp, FalseOp);
15492      }
15493
15494      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
15495      // This is efficient for any integer data type (including i8/i16) and
15496      // shift amount.
15497      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
15498        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15499                           DAG.getConstant(CC, MVT::i8), Cond);
15500
15501        // Zero extend the condition if needed.
15502        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
15503
15504        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15505        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
15506                           DAG.getConstant(ShAmt, MVT::i8));
15507        if (N->getNumValues() == 2)  // Dead flag value?
15508          return DCI.CombineTo(N, Cond, SDValue());
15509        return Cond;
15510      }
15511
15512      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
15513      // for any integer data type, including i8/i16.
15514      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15515        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15516                           DAG.getConstant(CC, MVT::i8), Cond);
15517
15518        // Zero extend the condition if needed.
15519        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15520                           FalseC->getValueType(0), Cond);
15521        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15522                           SDValue(FalseC, 0));
15523
15524        if (N->getNumValues() == 2)  // Dead flag value?
15525          return DCI.CombineTo(N, Cond, SDValue());
15526        return Cond;
15527      }
15528
15529      // Optimize cases that will turn into an LEA instruction.  This requires
15530      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15531      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15532        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15533        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15534
15535        bool isFastMultiplier = false;
15536        if (Diff < 10) {
15537          switch ((unsigned char)Diff) {
15538          default: break;
15539          case 1:  // result = add base, cond
15540          case 2:  // result = lea base(    , cond*2)
15541          case 3:  // result = lea base(cond, cond*2)
15542          case 4:  // result = lea base(    , cond*4)
15543          case 5:  // result = lea base(cond, cond*4)
15544          case 8:  // result = lea base(    , cond*8)
15545          case 9:  // result = lea base(cond, cond*8)
15546            isFastMultiplier = true;
15547            break;
15548          }
15549        }
15550
15551        if (isFastMultiplier) {
15552          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15553          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15554                             DAG.getConstant(CC, MVT::i8), Cond);
15555          // Zero extend the condition if needed.
15556          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15557                             Cond);
15558          // Scale the condition by the difference.
15559          if (Diff != 1)
15560            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15561                               DAG.getConstant(Diff, Cond.getValueType()));
15562
15563          // Add the base if non-zero.
15564          if (FalseC->getAPIntValue() != 0)
15565            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15566                               SDValue(FalseC, 0));
15567          if (N->getNumValues() == 2)  // Dead flag value?
15568            return DCI.CombineTo(N, Cond, SDValue());
15569          return Cond;
15570        }
15571      }
15572    }
15573  }
15574
15575  // Handle these cases:
15576  //   (select (x != c), e, c) -> select (x != c), e, x),
15577  //   (select (x == c), c, e) -> select (x == c), x, e)
15578  // where the c is an integer constant, and the "select" is the combination
15579  // of CMOV and CMP.
15580  //
15581  // The rationale for this change is that the conditional-move from a constant
15582  // needs two instructions, however, conditional-move from a register needs
15583  // only one instruction.
15584  //
15585  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
15586  //  some instruction-combining opportunities. This opt needs to be
15587  //  postponed as late as possible.
15588  //
15589  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
15590    // the DCI.xxxx conditions are provided to postpone the optimization as
15591    // late as possible.
15592
15593    ConstantSDNode *CmpAgainst = 0;
15594    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
15595        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
15596        dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) {
15597
15598      if (CC == X86::COND_NE &&
15599          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
15600        CC = X86::GetOppositeBranchCondition(CC);
15601        std::swap(TrueOp, FalseOp);
15602      }
15603
15604      if (CC == X86::COND_E &&
15605          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
15606        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
15607                          DAG.getConstant(CC, MVT::i8), Cond };
15608        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
15609                           array_lengthof(Ops));
15610      }
15611    }
15612  }
15613
15614  return SDValue();
15615}
15616
15617/// PerformMulCombine - Optimize a single multiply with constant into two
15618/// in order to implement it with two cheaper instructions, e.g.
15619/// LEA + SHL, LEA + LEA.
15620static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
15621                                 TargetLowering::DAGCombinerInfo &DCI) {
15622  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15623    return SDValue();
15624
15625  EVT VT = N->getValueType(0);
15626  if (VT != MVT::i64)
15627    return SDValue();
15628
15629  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15630  if (!C)
15631    return SDValue();
15632  uint64_t MulAmt = C->getZExtValue();
15633  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
15634    return SDValue();
15635
15636  uint64_t MulAmt1 = 0;
15637  uint64_t MulAmt2 = 0;
15638  if ((MulAmt % 9) == 0) {
15639    MulAmt1 = 9;
15640    MulAmt2 = MulAmt / 9;
15641  } else if ((MulAmt % 5) == 0) {
15642    MulAmt1 = 5;
15643    MulAmt2 = MulAmt / 5;
15644  } else if ((MulAmt % 3) == 0) {
15645    MulAmt1 = 3;
15646    MulAmt2 = MulAmt / 3;
15647  }
15648  if (MulAmt2 &&
15649      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
15650    DebugLoc DL = N->getDebugLoc();
15651
15652    if (isPowerOf2_64(MulAmt2) &&
15653        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
15654      // If second multiplifer is pow2, issue it first. We want the multiply by
15655      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
15656      // is an add.
15657      std::swap(MulAmt1, MulAmt2);
15658
15659    SDValue NewMul;
15660    if (isPowerOf2_64(MulAmt1))
15661      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15662                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
15663    else
15664      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
15665                           DAG.getConstant(MulAmt1, VT));
15666
15667    if (isPowerOf2_64(MulAmt2))
15668      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
15669                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
15670    else
15671      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
15672                           DAG.getConstant(MulAmt2, VT));
15673
15674    // Do not add new nodes to DAG combiner worklist.
15675    DCI.CombineTo(N, NewMul, false);
15676  }
15677  return SDValue();
15678}
15679
15680static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
15681  SDValue N0 = N->getOperand(0);
15682  SDValue N1 = N->getOperand(1);
15683  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
15684  EVT VT = N0.getValueType();
15685
15686  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
15687  // since the result of setcc_c is all zero's or all ones.
15688  if (VT.isInteger() && !VT.isVector() &&
15689      N1C && N0.getOpcode() == ISD::AND &&
15690      N0.getOperand(1).getOpcode() == ISD::Constant) {
15691    SDValue N00 = N0.getOperand(0);
15692    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
15693        ((N00.getOpcode() == ISD::ANY_EXTEND ||
15694          N00.getOpcode() == ISD::ZERO_EXTEND) &&
15695         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
15696      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
15697      APInt ShAmt = N1C->getAPIntValue();
15698      Mask = Mask.shl(ShAmt);
15699      if (Mask != 0)
15700        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
15701                           N00, DAG.getConstant(Mask, VT));
15702    }
15703  }
15704
15705  // Hardware support for vector shifts is sparse which makes us scalarize the
15706  // vector operations in many cases. Also, on sandybridge ADD is faster than
15707  // shl.
15708  // (shl V, 1) -> add V,V
15709  if (isSplatVector(N1.getNode())) {
15710    assert(N0.getValueType().isVector() && "Invalid vector shift type");
15711    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
15712    // We shift all of the values by one. In many cases we do not have
15713    // hardware support for this operation. This is better expressed as an ADD
15714    // of two values.
15715    if (N1C && (1 == N1C->getZExtValue())) {
15716      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
15717    }
15718  }
15719
15720  return SDValue();
15721}
15722
15723/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
15724///                       when possible.
15725static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
15726                                   TargetLowering::DAGCombinerInfo &DCI,
15727                                   const X86Subtarget *Subtarget) {
15728  EVT VT = N->getValueType(0);
15729  if (N->getOpcode() == ISD::SHL) {
15730    SDValue V = PerformSHLCombine(N, DAG);
15731    if (V.getNode()) return V;
15732  }
15733
15734  // On X86 with SSE2 support, we can transform this to a vector shift if
15735  // all elements are shifted by the same amount.  We can't do this in legalize
15736  // because the a constant vector is typically transformed to a constant pool
15737  // so we have no knowledge of the shift amount.
15738  if (!Subtarget->hasSSE2())
15739    return SDValue();
15740
15741  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
15742      (!Subtarget->hasInt256() ||
15743       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
15744    return SDValue();
15745
15746  SDValue ShAmtOp = N->getOperand(1);
15747  EVT EltVT = VT.getVectorElementType();
15748  DebugLoc DL = N->getDebugLoc();
15749  SDValue BaseShAmt = SDValue();
15750  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
15751    unsigned NumElts = VT.getVectorNumElements();
15752    unsigned i = 0;
15753    for (; i != NumElts; ++i) {
15754      SDValue Arg = ShAmtOp.getOperand(i);
15755      if (Arg.getOpcode() == ISD::UNDEF) continue;
15756      BaseShAmt = Arg;
15757      break;
15758    }
15759    // Handle the case where the build_vector is all undef
15760    // FIXME: Should DAG allow this?
15761    if (i == NumElts)
15762      return SDValue();
15763
15764    for (; i != NumElts; ++i) {
15765      SDValue Arg = ShAmtOp.getOperand(i);
15766      if (Arg.getOpcode() == ISD::UNDEF) continue;
15767      if (Arg != BaseShAmt) {
15768        return SDValue();
15769      }
15770    }
15771  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
15772             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
15773    SDValue InVec = ShAmtOp.getOperand(0);
15774    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
15775      unsigned NumElts = InVec.getValueType().getVectorNumElements();
15776      unsigned i = 0;
15777      for (; i != NumElts; ++i) {
15778        SDValue Arg = InVec.getOperand(i);
15779        if (Arg.getOpcode() == ISD::UNDEF) continue;
15780        BaseShAmt = Arg;
15781        break;
15782      }
15783    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15784       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
15785         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
15786         if (C->getZExtValue() == SplatIdx)
15787           BaseShAmt = InVec.getOperand(1);
15788       }
15789    }
15790    if (BaseShAmt.getNode() == 0) {
15791      // Don't create instructions with illegal types after legalize
15792      // types has run.
15793      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
15794          !DCI.isBeforeLegalize())
15795        return SDValue();
15796
15797      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
15798                              DAG.getIntPtrConstant(0));
15799    }
15800  } else
15801    return SDValue();
15802
15803  // The shift amount is an i32.
15804  if (EltVT.bitsGT(MVT::i32))
15805    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
15806  else if (EltVT.bitsLT(MVT::i32))
15807    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
15808
15809  // The shift amount is identical so we can do a vector shift.
15810  SDValue  ValOp = N->getOperand(0);
15811  switch (N->getOpcode()) {
15812  default:
15813    llvm_unreachable("Unknown shift opcode!");
15814  case ISD::SHL:
15815    switch (VT.getSimpleVT().SimpleTy) {
15816    default: return SDValue();
15817    case MVT::v2i64:
15818    case MVT::v4i32:
15819    case MVT::v8i16:
15820    case MVT::v4i64:
15821    case MVT::v8i32:
15822    case MVT::v16i16:
15823      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
15824    }
15825  case ISD::SRA:
15826    switch (VT.getSimpleVT().SimpleTy) {
15827    default: return SDValue();
15828    case MVT::v4i32:
15829    case MVT::v8i16:
15830    case MVT::v8i32:
15831    case MVT::v16i16:
15832      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
15833    }
15834  case ISD::SRL:
15835    switch (VT.getSimpleVT().SimpleTy) {
15836    default: return SDValue();
15837    case MVT::v2i64:
15838    case MVT::v4i32:
15839    case MVT::v8i16:
15840    case MVT::v4i64:
15841    case MVT::v8i32:
15842    case MVT::v16i16:
15843      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
15844    }
15845  }
15846}
15847
15848// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
15849// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
15850// and friends.  Likewise for OR -> CMPNEQSS.
15851static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
15852                            TargetLowering::DAGCombinerInfo &DCI,
15853                            const X86Subtarget *Subtarget) {
15854  unsigned opcode;
15855
15856  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
15857  // we're requiring SSE2 for both.
15858  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
15859    SDValue N0 = N->getOperand(0);
15860    SDValue N1 = N->getOperand(1);
15861    SDValue CMP0 = N0->getOperand(1);
15862    SDValue CMP1 = N1->getOperand(1);
15863    DebugLoc DL = N->getDebugLoc();
15864
15865    // The SETCCs should both refer to the same CMP.
15866    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
15867      return SDValue();
15868
15869    SDValue CMP00 = CMP0->getOperand(0);
15870    SDValue CMP01 = CMP0->getOperand(1);
15871    EVT     VT    = CMP00.getValueType();
15872
15873    if (VT == MVT::f32 || VT == MVT::f64) {
15874      bool ExpectingFlags = false;
15875      // Check for any users that want flags:
15876      for (SDNode::use_iterator UI = N->use_begin(),
15877             UE = N->use_end();
15878           !ExpectingFlags && UI != UE; ++UI)
15879        switch (UI->getOpcode()) {
15880        default:
15881        case ISD::BR_CC:
15882        case ISD::BRCOND:
15883        case ISD::SELECT:
15884          ExpectingFlags = true;
15885          break;
15886        case ISD::CopyToReg:
15887        case ISD::SIGN_EXTEND:
15888        case ISD::ZERO_EXTEND:
15889        case ISD::ANY_EXTEND:
15890          break;
15891        }
15892
15893      if (!ExpectingFlags) {
15894        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
15895        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
15896
15897        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
15898          X86::CondCode tmp = cc0;
15899          cc0 = cc1;
15900          cc1 = tmp;
15901        }
15902
15903        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
15904            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
15905          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
15906          X86ISD::NodeType NTOperator = is64BitFP ?
15907            X86ISD::FSETCCsd : X86ISD::FSETCCss;
15908          // FIXME: need symbolic constants for these magic numbers.
15909          // See X86ATTInstPrinter.cpp:printSSECC().
15910          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
15911          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
15912                                              DAG.getConstant(x86cc, MVT::i8));
15913          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
15914                                              OnesOrZeroesF);
15915          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
15916                                      DAG.getConstant(1, MVT::i32));
15917          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
15918          return OneBitOfTruth;
15919        }
15920      }
15921    }
15922  }
15923  return SDValue();
15924}
15925
15926/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
15927/// so it can be folded inside ANDNP.
15928static bool CanFoldXORWithAllOnes(const SDNode *N) {
15929  EVT VT = N->getValueType(0);
15930
15931  // Match direct AllOnes for 128 and 256-bit vectors
15932  if (ISD::isBuildVectorAllOnes(N))
15933    return true;
15934
15935  // Look through a bit convert.
15936  if (N->getOpcode() == ISD::BITCAST)
15937    N = N->getOperand(0).getNode();
15938
15939  // Sometimes the operand may come from a insert_subvector building a 256-bit
15940  // allones vector
15941  if (VT.is256BitVector() &&
15942      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
15943    SDValue V1 = N->getOperand(0);
15944    SDValue V2 = N->getOperand(1);
15945
15946    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
15947        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
15948        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
15949        ISD::isBuildVectorAllOnes(V2.getNode()))
15950      return true;
15951  }
15952
15953  return false;
15954}
15955
15956// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
15957// register. In most cases we actually compare or select YMM-sized registers
15958// and mixing the two types creates horrible code. This method optimizes
15959// some of the transition sequences.
15960static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
15961                                 TargetLowering::DAGCombinerInfo &DCI,
15962                                 const X86Subtarget *Subtarget) {
15963  EVT VT = N->getValueType(0);
15964  if (!VT.is256BitVector())
15965    return SDValue();
15966
15967  assert((N->getOpcode() == ISD::ANY_EXTEND ||
15968          N->getOpcode() == ISD::ZERO_EXTEND ||
15969          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
15970
15971  SDValue Narrow = N->getOperand(0);
15972  EVT NarrowVT = Narrow->getValueType(0);
15973  if (!NarrowVT.is128BitVector())
15974    return SDValue();
15975
15976  if (Narrow->getOpcode() != ISD::XOR &&
15977      Narrow->getOpcode() != ISD::AND &&
15978      Narrow->getOpcode() != ISD::OR)
15979    return SDValue();
15980
15981  SDValue N0  = Narrow->getOperand(0);
15982  SDValue N1  = Narrow->getOperand(1);
15983  DebugLoc DL = Narrow->getDebugLoc();
15984
15985  // The Left side has to be a trunc.
15986  if (N0.getOpcode() != ISD::TRUNCATE)
15987    return SDValue();
15988
15989  // The type of the truncated inputs.
15990  EVT WideVT = N0->getOperand(0)->getValueType(0);
15991  if (WideVT != VT)
15992    return SDValue();
15993
15994  // The right side has to be a 'trunc' or a constant vector.
15995  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
15996  bool RHSConst = (isSplatVector(N1.getNode()) &&
15997                   isa<ConstantSDNode>(N1->getOperand(0)));
15998  if (!RHSTrunc && !RHSConst)
15999    return SDValue();
16000
16001  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16002
16003  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16004    return SDValue();
16005
16006  // Set N0 and N1 to hold the inputs to the new wide operation.
16007  N0 = N0->getOperand(0);
16008  if (RHSConst) {
16009    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16010                     N1->getOperand(0));
16011    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16012    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16013  } else if (RHSTrunc) {
16014    N1 = N1->getOperand(0);
16015  }
16016
16017  // Generate the wide operation.
16018  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16019  unsigned Opcode = N->getOpcode();
16020  switch (Opcode) {
16021  case ISD::ANY_EXTEND:
16022    return Op;
16023  case ISD::ZERO_EXTEND: {
16024    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16025    APInt Mask = APInt::getAllOnesValue(InBits);
16026    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16027    return DAG.getNode(ISD::AND, DL, VT,
16028                       Op, DAG.getConstant(Mask, VT));
16029  }
16030  case ISD::SIGN_EXTEND:
16031    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16032                       Op, DAG.getValueType(NarrowVT));
16033  default:
16034    llvm_unreachable("Unexpected opcode");
16035  }
16036}
16037
16038static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16039                                 TargetLowering::DAGCombinerInfo &DCI,
16040                                 const X86Subtarget *Subtarget) {
16041  EVT VT = N->getValueType(0);
16042  if (DCI.isBeforeLegalizeOps())
16043    return SDValue();
16044
16045  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16046  if (R.getNode())
16047    return R;
16048
16049  // Create BLSI, and BLSR instructions
16050  // BLSI is X & (-X)
16051  // BLSR is X & (X-1)
16052  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16053    SDValue N0 = N->getOperand(0);
16054    SDValue N1 = N->getOperand(1);
16055    DebugLoc DL = N->getDebugLoc();
16056
16057    // Check LHS for neg
16058    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16059        isZero(N0.getOperand(0)))
16060      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16061
16062    // Check RHS for neg
16063    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16064        isZero(N1.getOperand(0)))
16065      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16066
16067    // Check LHS for X-1
16068    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16069        isAllOnes(N0.getOperand(1)))
16070      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16071
16072    // Check RHS for X-1
16073    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16074        isAllOnes(N1.getOperand(1)))
16075      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16076
16077    return SDValue();
16078  }
16079
16080  // Want to form ANDNP nodes:
16081  // 1) In the hopes of then easily combining them with OR and AND nodes
16082  //    to form PBLEND/PSIGN.
16083  // 2) To match ANDN packed intrinsics
16084  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16085    return SDValue();
16086
16087  SDValue N0 = N->getOperand(0);
16088  SDValue N1 = N->getOperand(1);
16089  DebugLoc DL = N->getDebugLoc();
16090
16091  // Check LHS for vnot
16092  if (N0.getOpcode() == ISD::XOR &&
16093      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16094      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16095    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16096
16097  // Check RHS for vnot
16098  if (N1.getOpcode() == ISD::XOR &&
16099      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16100      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16101    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16102
16103  return SDValue();
16104}
16105
16106static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16107                                TargetLowering::DAGCombinerInfo &DCI,
16108                                const X86Subtarget *Subtarget) {
16109  EVT VT = N->getValueType(0);
16110  if (DCI.isBeforeLegalizeOps())
16111    return SDValue();
16112
16113  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16114  if (R.getNode())
16115    return R;
16116
16117  SDValue N0 = N->getOperand(0);
16118  SDValue N1 = N->getOperand(1);
16119
16120  // look for psign/blend
16121  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16122    if (!Subtarget->hasSSSE3() ||
16123        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16124      return SDValue();
16125
16126    // Canonicalize pandn to RHS
16127    if (N0.getOpcode() == X86ISD::ANDNP)
16128      std::swap(N0, N1);
16129    // or (and (m, y), (pandn m, x))
16130    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16131      SDValue Mask = N1.getOperand(0);
16132      SDValue X    = N1.getOperand(1);
16133      SDValue Y;
16134      if (N0.getOperand(0) == Mask)
16135        Y = N0.getOperand(1);
16136      if (N0.getOperand(1) == Mask)
16137        Y = N0.getOperand(0);
16138
16139      // Check to see if the mask appeared in both the AND and ANDNP and
16140      if (!Y.getNode())
16141        return SDValue();
16142
16143      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16144      // Look through mask bitcast.
16145      if (Mask.getOpcode() == ISD::BITCAST)
16146        Mask = Mask.getOperand(0);
16147      if (X.getOpcode() == ISD::BITCAST)
16148        X = X.getOperand(0);
16149      if (Y.getOpcode() == ISD::BITCAST)
16150        Y = Y.getOperand(0);
16151
16152      EVT MaskVT = Mask.getValueType();
16153
16154      // Validate that the Mask operand is a vector sra node.
16155      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16156      // there is no psrai.b
16157      if (Mask.getOpcode() != X86ISD::VSRAI)
16158        return SDValue();
16159
16160      // Check that the SRA is all signbits.
16161      SDValue SraC = Mask.getOperand(1);
16162      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16163      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16164      if ((SraAmt + 1) != EltBits)
16165        return SDValue();
16166
16167      DebugLoc DL = N->getDebugLoc();
16168
16169      // We are going to replace the AND, OR, NAND with either BLEND
16170      // or PSIGN, which only look at the MSB. The VSRAI instruction
16171      // does not affect the highest bit, so we can get rid of it.
16172      Mask = Mask.getOperand(0);
16173
16174      // Now we know we at least have a plendvb with the mask val.  See if
16175      // we can form a psignb/w/d.
16176      // psign = x.type == y.type == mask.type && y = sub(0, x);
16177      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16178          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16179          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16180        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16181               "Unsupported VT for PSIGN");
16182        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask);
16183        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16184      }
16185      // PBLENDVB only available on SSE 4.1
16186      if (!Subtarget->hasSSE41())
16187        return SDValue();
16188
16189      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16190
16191      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16192      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16193      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16194      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16195      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16196    }
16197  }
16198
16199  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16200    return SDValue();
16201
16202  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16203  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16204    std::swap(N0, N1);
16205  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16206    return SDValue();
16207  if (!N0.hasOneUse() || !N1.hasOneUse())
16208    return SDValue();
16209
16210  SDValue ShAmt0 = N0.getOperand(1);
16211  if (ShAmt0.getValueType() != MVT::i8)
16212    return SDValue();
16213  SDValue ShAmt1 = N1.getOperand(1);
16214  if (ShAmt1.getValueType() != MVT::i8)
16215    return SDValue();
16216  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16217    ShAmt0 = ShAmt0.getOperand(0);
16218  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16219    ShAmt1 = ShAmt1.getOperand(0);
16220
16221  DebugLoc DL = N->getDebugLoc();
16222  unsigned Opc = X86ISD::SHLD;
16223  SDValue Op0 = N0.getOperand(0);
16224  SDValue Op1 = N1.getOperand(0);
16225  if (ShAmt0.getOpcode() == ISD::SUB) {
16226    Opc = X86ISD::SHRD;
16227    std::swap(Op0, Op1);
16228    std::swap(ShAmt0, ShAmt1);
16229  }
16230
16231  unsigned Bits = VT.getSizeInBits();
16232  if (ShAmt1.getOpcode() == ISD::SUB) {
16233    SDValue Sum = ShAmt1.getOperand(0);
16234    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16235      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16236      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16237        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16238      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16239        return DAG.getNode(Opc, DL, VT,
16240                           Op0, Op1,
16241                           DAG.getNode(ISD::TRUNCATE, DL,
16242                                       MVT::i8, ShAmt0));
16243    }
16244  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16245    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16246    if (ShAmt0C &&
16247        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16248      return DAG.getNode(Opc, DL, VT,
16249                         N0.getOperand(0), N1.getOperand(0),
16250                         DAG.getNode(ISD::TRUNCATE, DL,
16251                                       MVT::i8, ShAmt0));
16252  }
16253
16254  return SDValue();
16255}
16256
16257// Generate NEG and CMOV for integer abs.
16258static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16259  EVT VT = N->getValueType(0);
16260
16261  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16262  // 8-bit integer abs to NEG and CMOV.
16263  if (VT.isInteger() && VT.getSizeInBits() == 8)
16264    return SDValue();
16265
16266  SDValue N0 = N->getOperand(0);
16267  SDValue N1 = N->getOperand(1);
16268  DebugLoc DL = N->getDebugLoc();
16269
16270  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16271  // and change it to SUB and CMOV.
16272  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16273      N0.getOpcode() == ISD::ADD &&
16274      N0.getOperand(1) == N1 &&
16275      N1.getOpcode() == ISD::SRA &&
16276      N1.getOperand(0) == N0.getOperand(0))
16277    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16278      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16279        // Generate SUB & CMOV.
16280        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16281                                  DAG.getConstant(0, VT), N0.getOperand(0));
16282
16283        SDValue Ops[] = { N0.getOperand(0), Neg,
16284                          DAG.getConstant(X86::COND_GE, MVT::i8),
16285                          SDValue(Neg.getNode(), 1) };
16286        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16287                           Ops, array_lengthof(Ops));
16288      }
16289  return SDValue();
16290}
16291
16292// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16293static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16294                                 TargetLowering::DAGCombinerInfo &DCI,
16295                                 const X86Subtarget *Subtarget) {
16296  EVT VT = N->getValueType(0);
16297  if (DCI.isBeforeLegalizeOps())
16298    return SDValue();
16299
16300  if (Subtarget->hasCMov()) {
16301    SDValue RV = performIntegerAbsCombine(N, DAG);
16302    if (RV.getNode())
16303      return RV;
16304  }
16305
16306  // Try forming BMI if it is available.
16307  if (!Subtarget->hasBMI())
16308    return SDValue();
16309
16310  if (VT != MVT::i32 && VT != MVT::i64)
16311    return SDValue();
16312
16313  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16314
16315  // Create BLSMSK instructions by finding X ^ (X-1)
16316  SDValue N0 = N->getOperand(0);
16317  SDValue N1 = N->getOperand(1);
16318  DebugLoc DL = N->getDebugLoc();
16319
16320  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16321      isAllOnes(N0.getOperand(1)))
16322    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16323
16324  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16325      isAllOnes(N1.getOperand(1)))
16326    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16327
16328  return SDValue();
16329}
16330
16331/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16332static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16333                                  TargetLowering::DAGCombinerInfo &DCI,
16334                                  const X86Subtarget *Subtarget) {
16335  LoadSDNode *Ld = cast<LoadSDNode>(N);
16336  EVT RegVT = Ld->getValueType(0);
16337  EVT MemVT = Ld->getMemoryVT();
16338  DebugLoc dl = Ld->getDebugLoc();
16339  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16340  unsigned RegSz = RegVT.getSizeInBits();
16341
16342  ISD::LoadExtType Ext = Ld->getExtensionType();
16343  unsigned Alignment = Ld->getAlignment();
16344  bool IsAligned = Alignment == 0 || Alignment == MemVT.getSizeInBits()/8;
16345
16346  // On Sandybridge unaligned 256bit loads are inefficient.
16347  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
16348      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
16349    unsigned NumElems = RegVT.getVectorNumElements();
16350    if (NumElems < 2)
16351      return SDValue();
16352
16353    SDValue Ptr = Ld->getBasePtr();
16354    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
16355
16356    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16357                                  NumElems/2);
16358    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16359                                Ld->getPointerInfo(), Ld->isVolatile(),
16360                                Ld->isNonTemporal(), Ld->isInvariant(),
16361                                Alignment);
16362    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16363    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16364                                Ld->getPointerInfo(), Ld->isVolatile(),
16365                                Ld->isNonTemporal(), Ld->isInvariant(),
16366                                std::max(Alignment/2U, 1U));
16367    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16368                             Load1.getValue(1),
16369                             Load2.getValue(1));
16370
16371    SDValue NewVec = DAG.getUNDEF(RegVT);
16372    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
16373    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
16374    return DCI.CombineTo(N, NewVec, TF, true);
16375  }
16376
16377  // If this is a vector EXT Load then attempt to optimize it using a
16378  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16379  // expansion is still better than scalar code.
16380  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16381  // emit a shuffle and a arithmetic shift.
16382  // TODO: It is possible to support ZExt by zeroing the undef values
16383  // during the shuffle phase or after the shuffle.
16384  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16385      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16386    assert(MemVT != RegVT && "Cannot extend to the same type");
16387    assert(MemVT.isVector() && "Must load a vector from memory");
16388
16389    unsigned NumElems = RegVT.getVectorNumElements();
16390    unsigned MemSz = MemVT.getSizeInBits();
16391    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16392
16393    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16394      return SDValue();
16395
16396    // All sizes must be a power of two.
16397    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16398      return SDValue();
16399
16400    // Attempt to load the original value using scalar loads.
16401    // Find the largest scalar type that divides the total loaded size.
16402    MVT SclrLoadTy = MVT::i8;
16403    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16404         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16405      MVT Tp = (MVT::SimpleValueType)tp;
16406      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16407        SclrLoadTy = Tp;
16408      }
16409    }
16410
16411    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16412    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16413        (64 <= MemSz))
16414      SclrLoadTy = MVT::f64;
16415
16416    // Calculate the number of scalar loads that we need to perform
16417    // in order to load our vector from memory.
16418    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16419    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16420      return SDValue();
16421
16422    unsigned loadRegZize = RegSz;
16423    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16424      loadRegZize /= 2;
16425
16426    // Represent our vector as a sequence of elements which are the
16427    // largest scalar that we can load.
16428    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16429      loadRegZize/SclrLoadTy.getSizeInBits());
16430
16431    // Represent the data using the same element type that is stored in
16432    // memory. In practice, we ''widen'' MemVT.
16433    EVT WideVecVT =
16434	  EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16435                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16436
16437    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16438      "Invalid vector type");
16439
16440    // We can't shuffle using an illegal type.
16441    if (!TLI.isTypeLegal(WideVecVT))
16442      return SDValue();
16443
16444    SmallVector<SDValue, 8> Chains;
16445    SDValue Ptr = Ld->getBasePtr();
16446    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16447                                        TLI.getPointerTy());
16448    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16449
16450    for (unsigned i = 0; i < NumLoads; ++i) {
16451      // Perform a single load.
16452      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16453                                       Ptr, Ld->getPointerInfo(),
16454                                       Ld->isVolatile(), Ld->isNonTemporal(),
16455                                       Ld->isInvariant(), Ld->getAlignment());
16456      Chains.push_back(ScalarLoad.getValue(1));
16457      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
16458      // another round of DAGCombining.
16459      if (i == 0)
16460        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
16461      else
16462        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
16463                          ScalarLoad, DAG.getIntPtrConstant(i));
16464
16465      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16466    }
16467
16468    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16469                               Chains.size());
16470
16471    // Bitcast the loaded value to a vector of the original element type, in
16472    // the size of the target vector type.
16473    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
16474    unsigned SizeRatio = RegSz/MemSz;
16475
16476    if (Ext == ISD::SEXTLOAD) {
16477      // If we have SSE4.1 we can directly emit a VSEXT node.
16478      if (Subtarget->hasSSE41()) {
16479        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
16480        return DCI.CombineTo(N, Sext, TF, true);
16481      }
16482
16483      // Otherwise we'll shuffle the small elements in the high bits of the
16484      // larger type and perform an arithmetic shift. If the shift is not legal
16485      // it's better to scalarize.
16486      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
16487        return SDValue();
16488
16489      // Redistribute the loaded elements into the different locations.
16490      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16491      for (unsigned i = 0; i != NumElems; ++i)
16492        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
16493
16494      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16495                                           DAG.getUNDEF(WideVecVT),
16496                                           &ShuffleVec[0]);
16497
16498      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16499
16500      // Build the arithmetic shift.
16501      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
16502                     MemVT.getVectorElementType().getSizeInBits();
16503      SmallVector<SDValue, 8> C(NumElems,
16504                                DAG.getConstant(Amt, RegVT.getScalarType()));
16505      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, RegVT, &C[0], C.size());
16506      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff, BV);
16507
16508      return DCI.CombineTo(N, Shuff, TF, true);
16509    }
16510
16511    // Redistribute the loaded elements into the different locations.
16512    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16513    for (unsigned i = 0; i != NumElems; ++i)
16514      ShuffleVec[i*SizeRatio] = i;
16515
16516    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16517                                         DAG.getUNDEF(WideVecVT),
16518                                         &ShuffleVec[0]);
16519
16520    // Bitcast to the requested type.
16521    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16522    // Replace the original load with the new sequence
16523    // and return the new chain.
16524    return DCI.CombineTo(N, Shuff, TF, true);
16525  }
16526
16527  return SDValue();
16528}
16529
16530/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
16531static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
16532                                   const X86Subtarget *Subtarget) {
16533  StoreSDNode *St = cast<StoreSDNode>(N);
16534  EVT VT = St->getValue().getValueType();
16535  EVT StVT = St->getMemoryVT();
16536  DebugLoc dl = St->getDebugLoc();
16537  SDValue StoredVal = St->getOperand(1);
16538  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16539  unsigned Alignment = St->getAlignment();
16540  bool IsAligned = Alignment == 0 || Alignment == VT.getSizeInBits()/8;
16541
16542  // If we are saving a concatenation of two XMM registers, perform two stores.
16543  // On Sandy Bridge, 256-bit memory operations are executed by two
16544  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
16545  // memory  operation.
16546  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
16547      StVT == VT && !IsAligned) {
16548    unsigned NumElems = VT.getVectorNumElements();
16549    if (NumElems < 2)
16550      return SDValue();
16551
16552    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
16553    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
16554
16555    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
16556    SDValue Ptr0 = St->getBasePtr();
16557    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
16558
16559    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
16560                                St->getPointerInfo(), St->isVolatile(),
16561                                St->isNonTemporal(), Alignment);
16562    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
16563                                St->getPointerInfo(), St->isVolatile(),
16564                                St->isNonTemporal(),
16565                                std::max(Alignment/2U, 1U));
16566    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
16567  }
16568
16569  // Optimize trunc store (of multiple scalars) to shuffle and store.
16570  // First, pack all of the elements in one place. Next, store to memory
16571  // in fewer chunks.
16572  if (St->isTruncatingStore() && VT.isVector()) {
16573    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16574    unsigned NumElems = VT.getVectorNumElements();
16575    assert(StVT != VT && "Cannot truncate to the same type");
16576    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
16577    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
16578
16579    // From, To sizes and ElemCount must be pow of two
16580    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
16581    // We are going to use the original vector elt for storing.
16582    // Accumulated smaller vector elements must be a multiple of the store size.
16583    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
16584
16585    unsigned SizeRatio  = FromSz / ToSz;
16586
16587    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
16588
16589    // Create a type on which we perform the shuffle
16590    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
16591            StVT.getScalarType(), NumElems*SizeRatio);
16592
16593    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16594
16595    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
16596    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16597    for (unsigned i = 0; i != NumElems; ++i)
16598      ShuffleVec[i] = i * SizeRatio;
16599
16600    // Can't shuffle using an illegal type.
16601    if (!TLI.isTypeLegal(WideVecVT))
16602      return SDValue();
16603
16604    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
16605                                         DAG.getUNDEF(WideVecVT),
16606                                         &ShuffleVec[0]);
16607    // At this point all of the data is stored at the bottom of the
16608    // register. We now need to save it to mem.
16609
16610    // Find the largest store unit
16611    MVT StoreType = MVT::i8;
16612    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16613         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16614      MVT Tp = (MVT::SimpleValueType)tp;
16615      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
16616        StoreType = Tp;
16617    }
16618
16619    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16620    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
16621        (64 <= NumElems * ToSz))
16622      StoreType = MVT::f64;
16623
16624    // Bitcast the original vector into a vector of store-size units
16625    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
16626            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
16627    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16628    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
16629    SmallVector<SDValue, 8> Chains;
16630    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
16631                                        TLI.getPointerTy());
16632    SDValue Ptr = St->getBasePtr();
16633
16634    // Perform one or more big stores into memory.
16635    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
16636      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16637                                   StoreType, ShuffWide,
16638                                   DAG.getIntPtrConstant(i));
16639      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
16640                                St->getPointerInfo(), St->isVolatile(),
16641                                St->isNonTemporal(), St->getAlignment());
16642      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16643      Chains.push_back(Ch);
16644    }
16645
16646    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16647                               Chains.size());
16648  }
16649
16650  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
16651  // the FP state in cases where an emms may be missing.
16652  // A preferable solution to the general problem is to figure out the right
16653  // places to insert EMMS.  This qualifies as a quick hack.
16654
16655  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
16656  if (VT.getSizeInBits() != 64)
16657    return SDValue();
16658
16659  const Function *F = DAG.getMachineFunction().getFunction();
16660  bool NoImplicitFloatOps = F->getAttributes().
16661    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
16662  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
16663                     && Subtarget->hasSSE2();
16664  if ((VT.isVector() ||
16665       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
16666      isa<LoadSDNode>(St->getValue()) &&
16667      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
16668      St->getChain().hasOneUse() && !St->isVolatile()) {
16669    SDNode* LdVal = St->getValue().getNode();
16670    LoadSDNode *Ld = 0;
16671    int TokenFactorIndex = -1;
16672    SmallVector<SDValue, 8> Ops;
16673    SDNode* ChainVal = St->getChain().getNode();
16674    // Must be a store of a load.  We currently handle two cases:  the load
16675    // is a direct child, and it's under an intervening TokenFactor.  It is
16676    // possible to dig deeper under nested TokenFactors.
16677    if (ChainVal == LdVal)
16678      Ld = cast<LoadSDNode>(St->getChain());
16679    else if (St->getValue().hasOneUse() &&
16680             ChainVal->getOpcode() == ISD::TokenFactor) {
16681      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
16682        if (ChainVal->getOperand(i).getNode() == LdVal) {
16683          TokenFactorIndex = i;
16684          Ld = cast<LoadSDNode>(St->getValue());
16685        } else
16686          Ops.push_back(ChainVal->getOperand(i));
16687      }
16688    }
16689
16690    if (!Ld || !ISD::isNormalLoad(Ld))
16691      return SDValue();
16692
16693    // If this is not the MMX case, i.e. we are just turning i64 load/store
16694    // into f64 load/store, avoid the transformation if there are multiple
16695    // uses of the loaded value.
16696    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
16697      return SDValue();
16698
16699    DebugLoc LdDL = Ld->getDebugLoc();
16700    DebugLoc StDL = N->getDebugLoc();
16701    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
16702    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
16703    // pair instead.
16704    if (Subtarget->is64Bit() || F64IsLegal) {
16705      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
16706      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
16707                                  Ld->getPointerInfo(), Ld->isVolatile(),
16708                                  Ld->isNonTemporal(), Ld->isInvariant(),
16709                                  Ld->getAlignment());
16710      SDValue NewChain = NewLd.getValue(1);
16711      if (TokenFactorIndex != -1) {
16712        Ops.push_back(NewChain);
16713        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16714                               Ops.size());
16715      }
16716      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
16717                          St->getPointerInfo(),
16718                          St->isVolatile(), St->isNonTemporal(),
16719                          St->getAlignment());
16720    }
16721
16722    // Otherwise, lower to two pairs of 32-bit loads / stores.
16723    SDValue LoAddr = Ld->getBasePtr();
16724    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
16725                                 DAG.getConstant(4, MVT::i32));
16726
16727    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
16728                               Ld->getPointerInfo(),
16729                               Ld->isVolatile(), Ld->isNonTemporal(),
16730                               Ld->isInvariant(), Ld->getAlignment());
16731    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
16732                               Ld->getPointerInfo().getWithOffset(4),
16733                               Ld->isVolatile(), Ld->isNonTemporal(),
16734                               Ld->isInvariant(),
16735                               MinAlign(Ld->getAlignment(), 4));
16736
16737    SDValue NewChain = LoLd.getValue(1);
16738    if (TokenFactorIndex != -1) {
16739      Ops.push_back(LoLd);
16740      Ops.push_back(HiLd);
16741      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16742                             Ops.size());
16743    }
16744
16745    LoAddr = St->getBasePtr();
16746    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
16747                         DAG.getConstant(4, MVT::i32));
16748
16749    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
16750                                St->getPointerInfo(),
16751                                St->isVolatile(), St->isNonTemporal(),
16752                                St->getAlignment());
16753    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
16754                                St->getPointerInfo().getWithOffset(4),
16755                                St->isVolatile(),
16756                                St->isNonTemporal(),
16757                                MinAlign(St->getAlignment(), 4));
16758    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
16759  }
16760  return SDValue();
16761}
16762
16763/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
16764/// and return the operands for the horizontal operation in LHS and RHS.  A
16765/// horizontal operation performs the binary operation on successive elements
16766/// of its first operand, then on successive elements of its second operand,
16767/// returning the resulting values in a vector.  For example, if
16768///   A = < float a0, float a1, float a2, float a3 >
16769/// and
16770///   B = < float b0, float b1, float b2, float b3 >
16771/// then the result of doing a horizontal operation on A and B is
16772///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
16773/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
16774/// A horizontal-op B, for some already available A and B, and if so then LHS is
16775/// set to A, RHS to B, and the routine returns 'true'.
16776/// Note that the binary operation should have the property that if one of the
16777/// operands is UNDEF then the result is UNDEF.
16778static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
16779  // Look for the following pattern: if
16780  //   A = < float a0, float a1, float a2, float a3 >
16781  //   B = < float b0, float b1, float b2, float b3 >
16782  // and
16783  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
16784  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
16785  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
16786  // which is A horizontal-op B.
16787
16788  // At least one of the operands should be a vector shuffle.
16789  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
16790      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
16791    return false;
16792
16793  EVT VT = LHS.getValueType();
16794
16795  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16796         "Unsupported vector type for horizontal add/sub");
16797
16798  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
16799  // operate independently on 128-bit lanes.
16800  unsigned NumElts = VT.getVectorNumElements();
16801  unsigned NumLanes = VT.getSizeInBits()/128;
16802  unsigned NumLaneElts = NumElts / NumLanes;
16803  assert((NumLaneElts % 2 == 0) &&
16804         "Vector type should have an even number of elements in each lane");
16805  unsigned HalfLaneElts = NumLaneElts/2;
16806
16807  // View LHS in the form
16808  //   LHS = VECTOR_SHUFFLE A, B, LMask
16809  // If LHS is not a shuffle then pretend it is the shuffle
16810  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
16811  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
16812  // type VT.
16813  SDValue A, B;
16814  SmallVector<int, 16> LMask(NumElts);
16815  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16816    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
16817      A = LHS.getOperand(0);
16818    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
16819      B = LHS.getOperand(1);
16820    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
16821    std::copy(Mask.begin(), Mask.end(), LMask.begin());
16822  } else {
16823    if (LHS.getOpcode() != ISD::UNDEF)
16824      A = LHS;
16825    for (unsigned i = 0; i != NumElts; ++i)
16826      LMask[i] = i;
16827  }
16828
16829  // Likewise, view RHS in the form
16830  //   RHS = VECTOR_SHUFFLE C, D, RMask
16831  SDValue C, D;
16832  SmallVector<int, 16> RMask(NumElts);
16833  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16834    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
16835      C = RHS.getOperand(0);
16836    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
16837      D = RHS.getOperand(1);
16838    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
16839    std::copy(Mask.begin(), Mask.end(), RMask.begin());
16840  } else {
16841    if (RHS.getOpcode() != ISD::UNDEF)
16842      C = RHS;
16843    for (unsigned i = 0; i != NumElts; ++i)
16844      RMask[i] = i;
16845  }
16846
16847  // Check that the shuffles are both shuffling the same vectors.
16848  if (!(A == C && B == D) && !(A == D && B == C))
16849    return false;
16850
16851  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
16852  if (!A.getNode() && !B.getNode())
16853    return false;
16854
16855  // If A and B occur in reverse order in RHS, then "swap" them (which means
16856  // rewriting the mask).
16857  if (A != C)
16858    CommuteVectorShuffleMask(RMask, NumElts);
16859
16860  // At this point LHS and RHS are equivalent to
16861  //   LHS = VECTOR_SHUFFLE A, B, LMask
16862  //   RHS = VECTOR_SHUFFLE A, B, RMask
16863  // Check that the masks correspond to performing a horizontal operation.
16864  for (unsigned i = 0; i != NumElts; ++i) {
16865    int LIdx = LMask[i], RIdx = RMask[i];
16866
16867    // Ignore any UNDEF components.
16868    if (LIdx < 0 || RIdx < 0 ||
16869        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
16870        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
16871      continue;
16872
16873    // Check that successive elements are being operated on.  If not, this is
16874    // not a horizontal operation.
16875    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
16876    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
16877    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
16878    if (!(LIdx == Index && RIdx == Index + 1) &&
16879        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
16880      return false;
16881  }
16882
16883  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
16884  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
16885  return true;
16886}
16887
16888/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
16889static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
16890                                  const X86Subtarget *Subtarget) {
16891  EVT VT = N->getValueType(0);
16892  SDValue LHS = N->getOperand(0);
16893  SDValue RHS = N->getOperand(1);
16894
16895  // Try to synthesize horizontal adds from adds of shuffles.
16896  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16897       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16898      isHorizontalBinOp(LHS, RHS, true))
16899    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
16900  return SDValue();
16901}
16902
16903/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
16904static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
16905                                  const X86Subtarget *Subtarget) {
16906  EVT VT = N->getValueType(0);
16907  SDValue LHS = N->getOperand(0);
16908  SDValue RHS = N->getOperand(1);
16909
16910  // Try to synthesize horizontal subs from subs of shuffles.
16911  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16912       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16913      isHorizontalBinOp(LHS, RHS, false))
16914    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
16915  return SDValue();
16916}
16917
16918/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
16919/// X86ISD::FXOR nodes.
16920static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
16921  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
16922  // F[X]OR(0.0, x) -> x
16923  // F[X]OR(x, 0.0) -> x
16924  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16925    if (C->getValueAPF().isPosZero())
16926      return N->getOperand(1);
16927  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16928    if (C->getValueAPF().isPosZero())
16929      return N->getOperand(0);
16930  return SDValue();
16931}
16932
16933/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
16934/// X86ISD::FMAX nodes.
16935static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
16936  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
16937
16938  // Only perform optimizations if UnsafeMath is used.
16939  if (!DAG.getTarget().Options.UnsafeFPMath)
16940    return SDValue();
16941
16942  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
16943  // into FMINC and FMAXC, which are Commutative operations.
16944  unsigned NewOp = 0;
16945  switch (N->getOpcode()) {
16946    default: llvm_unreachable("unknown opcode");
16947    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
16948    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
16949  }
16950
16951  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
16952                     N->getOperand(0), N->getOperand(1));
16953}
16954
16955/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
16956static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
16957  // FAND(0.0, x) -> 0.0
16958  // FAND(x, 0.0) -> 0.0
16959  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16960    if (C->getValueAPF().isPosZero())
16961      return N->getOperand(0);
16962  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16963    if (C->getValueAPF().isPosZero())
16964      return N->getOperand(1);
16965  return SDValue();
16966}
16967
16968static SDValue PerformBTCombine(SDNode *N,
16969                                SelectionDAG &DAG,
16970                                TargetLowering::DAGCombinerInfo &DCI) {
16971  // BT ignores high bits in the bit index operand.
16972  SDValue Op1 = N->getOperand(1);
16973  if (Op1.hasOneUse()) {
16974    unsigned BitWidth = Op1.getValueSizeInBits();
16975    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
16976    APInt KnownZero, KnownOne;
16977    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
16978                                          !DCI.isBeforeLegalizeOps());
16979    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16980    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
16981        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
16982      DCI.CommitTargetLoweringOpt(TLO);
16983  }
16984  return SDValue();
16985}
16986
16987static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
16988  SDValue Op = N->getOperand(0);
16989  if (Op.getOpcode() == ISD::BITCAST)
16990    Op = Op.getOperand(0);
16991  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
16992  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
16993      VT.getVectorElementType().getSizeInBits() ==
16994      OpVT.getVectorElementType().getSizeInBits()) {
16995    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
16996  }
16997  return SDValue();
16998}
16999
17000static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
17001                                  TargetLowering::DAGCombinerInfo &DCI,
17002                                  const X86Subtarget *Subtarget) {
17003  if (!DCI.isBeforeLegalizeOps())
17004    return SDValue();
17005
17006  if (!Subtarget->hasFp256())
17007    return SDValue();
17008
17009  EVT VT = N->getValueType(0);
17010  if (VT.isVector() && VT.getSizeInBits() == 256) {
17011    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17012    if (R.getNode())
17013      return R;
17014  }
17015
17016  return SDValue();
17017}
17018
17019static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17020                                 const X86Subtarget* Subtarget) {
17021  DebugLoc dl = N->getDebugLoc();
17022  EVT VT = N->getValueType(0);
17023
17024  // Let legalize expand this if it isn't a legal type yet.
17025  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17026    return SDValue();
17027
17028  EVT ScalarVT = VT.getScalarType();
17029  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17030      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17031    return SDValue();
17032
17033  SDValue A = N->getOperand(0);
17034  SDValue B = N->getOperand(1);
17035  SDValue C = N->getOperand(2);
17036
17037  bool NegA = (A.getOpcode() == ISD::FNEG);
17038  bool NegB = (B.getOpcode() == ISD::FNEG);
17039  bool NegC = (C.getOpcode() == ISD::FNEG);
17040
17041  // Negative multiplication when NegA xor NegB
17042  bool NegMul = (NegA != NegB);
17043  if (NegA)
17044    A = A.getOperand(0);
17045  if (NegB)
17046    B = B.getOperand(0);
17047  if (NegC)
17048    C = C.getOperand(0);
17049
17050  unsigned Opcode;
17051  if (!NegMul)
17052    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17053  else
17054    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17055
17056  return DAG.getNode(Opcode, dl, VT, A, B, C);
17057}
17058
17059static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17060                                  TargetLowering::DAGCombinerInfo &DCI,
17061                                  const X86Subtarget *Subtarget) {
17062  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17063  //           (and (i32 x86isd::setcc_carry), 1)
17064  // This eliminates the zext. This transformation is necessary because
17065  // ISD::SETCC is always legalized to i8.
17066  DebugLoc dl = N->getDebugLoc();
17067  SDValue N0 = N->getOperand(0);
17068  EVT VT = N->getValueType(0);
17069
17070  if (N0.getOpcode() == ISD::AND &&
17071      N0.hasOneUse() &&
17072      N0.getOperand(0).hasOneUse()) {
17073    SDValue N00 = N0.getOperand(0);
17074    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17075      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17076      if (!C || C->getZExtValue() != 1)
17077        return SDValue();
17078      return DAG.getNode(ISD::AND, dl, VT,
17079                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17080                                     N00.getOperand(0), N00.getOperand(1)),
17081                         DAG.getConstant(1, VT));
17082    }
17083  }
17084
17085  if (VT.is256BitVector()) {
17086    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17087    if (R.getNode())
17088      return R;
17089  }
17090
17091  return SDValue();
17092}
17093
17094// Optimize x == -y --> x+y == 0
17095//          x != -y --> x+y != 0
17096static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17097  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17098  SDValue LHS = N->getOperand(0);
17099  SDValue RHS = N->getOperand(1);
17100
17101  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17102    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17103      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17104        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17105                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17106        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17107                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17108      }
17109  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17110    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17111      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17112        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17113                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17114        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17115                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17116      }
17117  return SDValue();
17118}
17119
17120// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17121// as "sbb reg,reg", since it can be extended without zext and produces
17122// an all-ones bit which is more useful than 0/1 in some cases.
17123static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17124  return DAG.getNode(ISD::AND, DL, MVT::i8,
17125                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17126                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17127                     DAG.getConstant(1, MVT::i8));
17128}
17129
17130// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17131static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17132                                   TargetLowering::DAGCombinerInfo &DCI,
17133                                   const X86Subtarget *Subtarget) {
17134  DebugLoc DL = N->getDebugLoc();
17135  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17136  SDValue EFLAGS = N->getOperand(1);
17137
17138  if (CC == X86::COND_A) {
17139    // Try to convert COND_A into COND_B in an attempt to facilitate
17140    // materializing "setb reg".
17141    //
17142    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17143    // cannot take an immediate as its first operand.
17144    //
17145    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17146        EFLAGS.getValueType().isInteger() &&
17147        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17148      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
17149                                   EFLAGS.getNode()->getVTList(),
17150                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17151      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17152      return MaterializeSETB(DL, NewEFLAGS, DAG);
17153    }
17154  }
17155
17156  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17157  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17158  // cases.
17159  if (CC == X86::COND_B)
17160    return MaterializeSETB(DL, EFLAGS, DAG);
17161
17162  SDValue Flags;
17163
17164  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17165  if (Flags.getNode()) {
17166    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17167    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17168  }
17169
17170  return SDValue();
17171}
17172
17173// Optimize branch condition evaluation.
17174//
17175static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17176                                    TargetLowering::DAGCombinerInfo &DCI,
17177                                    const X86Subtarget *Subtarget) {
17178  DebugLoc DL = N->getDebugLoc();
17179  SDValue Chain = N->getOperand(0);
17180  SDValue Dest = N->getOperand(1);
17181  SDValue EFLAGS = N->getOperand(3);
17182  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17183
17184  SDValue Flags;
17185
17186  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17187  if (Flags.getNode()) {
17188    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17189    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17190                       Flags);
17191  }
17192
17193  return SDValue();
17194}
17195
17196static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17197                                        const X86TargetLowering *XTLI) {
17198  SDValue Op0 = N->getOperand(0);
17199  EVT InVT = Op0->getValueType(0);
17200
17201  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17202  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17203    DebugLoc dl = N->getDebugLoc();
17204    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17205    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17206    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17207  }
17208
17209  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17210  // a 32-bit target where SSE doesn't support i64->FP operations.
17211  if (Op0.getOpcode() == ISD::LOAD) {
17212    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17213    EVT VT = Ld->getValueType(0);
17214    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17215        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17216        !XTLI->getSubtarget()->is64Bit() &&
17217        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17218      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17219                                          Ld->getChain(), Op0, DAG);
17220      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17221      return FILDChain;
17222    }
17223  }
17224  return SDValue();
17225}
17226
17227// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17228static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17229                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17230  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17231  // the result is either zero or one (depending on the input carry bit).
17232  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17233  if (X86::isZeroNode(N->getOperand(0)) &&
17234      X86::isZeroNode(N->getOperand(1)) &&
17235      // We don't have a good way to replace an EFLAGS use, so only do this when
17236      // dead right now.
17237      SDValue(N, 1).use_empty()) {
17238    DebugLoc DL = N->getDebugLoc();
17239    EVT VT = N->getValueType(0);
17240    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17241    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17242                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17243                                           DAG.getConstant(X86::COND_B,MVT::i8),
17244                                           N->getOperand(2)),
17245                               DAG.getConstant(1, VT));
17246    return DCI.CombineTo(N, Res1, CarryOut);
17247  }
17248
17249  return SDValue();
17250}
17251
17252// fold (add Y, (sete  X, 0)) -> adc  0, Y
17253//      (add Y, (setne X, 0)) -> sbb -1, Y
17254//      (sub (sete  X, 0), Y) -> sbb  0, Y
17255//      (sub (setne X, 0), Y) -> adc -1, Y
17256static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17257  DebugLoc DL = N->getDebugLoc();
17258
17259  // Look through ZExts.
17260  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17261  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17262    return SDValue();
17263
17264  SDValue SetCC = Ext.getOperand(0);
17265  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17266    return SDValue();
17267
17268  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17269  if (CC != X86::COND_E && CC != X86::COND_NE)
17270    return SDValue();
17271
17272  SDValue Cmp = SetCC.getOperand(1);
17273  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17274      !X86::isZeroNode(Cmp.getOperand(1)) ||
17275      !Cmp.getOperand(0).getValueType().isInteger())
17276    return SDValue();
17277
17278  SDValue CmpOp0 = Cmp.getOperand(0);
17279  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17280                               DAG.getConstant(1, CmpOp0.getValueType()));
17281
17282  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17283  if (CC == X86::COND_NE)
17284    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17285                       DL, OtherVal.getValueType(), OtherVal,
17286                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17287  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17288                     DL, OtherVal.getValueType(), OtherVal,
17289                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17290}
17291
17292/// PerformADDCombine - Do target-specific dag combines on integer adds.
17293static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17294                                 const X86Subtarget *Subtarget) {
17295  EVT VT = N->getValueType(0);
17296  SDValue Op0 = N->getOperand(0);
17297  SDValue Op1 = N->getOperand(1);
17298
17299  // Try to synthesize horizontal adds from adds of shuffles.
17300  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17301       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17302      isHorizontalBinOp(Op0, Op1, true))
17303    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
17304
17305  return OptimizeConditionalInDecrement(N, DAG);
17306}
17307
17308static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17309                                 const X86Subtarget *Subtarget) {
17310  SDValue Op0 = N->getOperand(0);
17311  SDValue Op1 = N->getOperand(1);
17312
17313  // X86 can't encode an immediate LHS of a sub. See if we can push the
17314  // negation into a preceding instruction.
17315  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17316    // If the RHS of the sub is a XOR with one use and a constant, invert the
17317    // immediate. Then add one to the LHS of the sub so we can turn
17318    // X-Y -> X+~Y+1, saving one register.
17319    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17320        isa<ConstantSDNode>(Op1.getOperand(1))) {
17321      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17322      EVT VT = Op0.getValueType();
17323      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
17324                                   Op1.getOperand(0),
17325                                   DAG.getConstant(~XorC, VT));
17326      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
17327                         DAG.getConstant(C->getAPIntValue()+1, VT));
17328    }
17329  }
17330
17331  // Try to synthesize horizontal adds from adds of shuffles.
17332  EVT VT = N->getValueType(0);
17333  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17334       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17335      isHorizontalBinOp(Op0, Op1, true))
17336    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
17337
17338  return OptimizeConditionalInDecrement(N, DAG);
17339}
17340
17341/// performVZEXTCombine - Performs build vector combines
17342static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17343                                        TargetLowering::DAGCombinerInfo &DCI,
17344                                        const X86Subtarget *Subtarget) {
17345  // (vzext (bitcast (vzext (x)) -> (vzext x)
17346  SDValue In = N->getOperand(0);
17347  while (In.getOpcode() == ISD::BITCAST)
17348    In = In.getOperand(0);
17349
17350  if (In.getOpcode() != X86ISD::VZEXT)
17351    return SDValue();
17352
17353  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), In.getOperand(0));
17354}
17355
17356SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17357                                             DAGCombinerInfo &DCI) const {
17358  SelectionDAG &DAG = DCI.DAG;
17359  switch (N->getOpcode()) {
17360  default: break;
17361  case ISD::EXTRACT_VECTOR_ELT:
17362    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17363  case ISD::VSELECT:
17364  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17365  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17366  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17367  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17368  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17369  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17370  case ISD::SHL:
17371  case ISD::SRA:
17372  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17373  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17374  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17375  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17376  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17377  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17378  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17379  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17380  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17381  case X86ISD::FXOR:
17382  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17383  case X86ISD::FMIN:
17384  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17385  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17386  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17387  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17388  case ISD::ANY_EXTEND:
17389  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17390  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17391  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17392  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17393  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17394  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17395  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17396  case X86ISD::SHUFP:       // Handle all target specific shuffles
17397  case X86ISD::PALIGN:
17398  case X86ISD::UNPCKH:
17399  case X86ISD::UNPCKL:
17400  case X86ISD::MOVHLPS:
17401  case X86ISD::MOVLHPS:
17402  case X86ISD::PSHUFD:
17403  case X86ISD::PSHUFHW:
17404  case X86ISD::PSHUFLW:
17405  case X86ISD::MOVSS:
17406  case X86ISD::MOVSD:
17407  case X86ISD::VPERMILP:
17408  case X86ISD::VPERM2X128:
17409  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17410  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17411  }
17412
17413  return SDValue();
17414}
17415
17416/// isTypeDesirableForOp - Return true if the target has native support for
17417/// the specified value type and it is 'desirable' to use the type for the
17418/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17419/// instruction encodings are longer and some i16 instructions are slow.
17420bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
17421  if (!isTypeLegal(VT))
17422    return false;
17423  if (VT != MVT::i16)
17424    return true;
17425
17426  switch (Opc) {
17427  default:
17428    return true;
17429  case ISD::LOAD:
17430  case ISD::SIGN_EXTEND:
17431  case ISD::ZERO_EXTEND:
17432  case ISD::ANY_EXTEND:
17433  case ISD::SHL:
17434  case ISD::SRL:
17435  case ISD::SUB:
17436  case ISD::ADD:
17437  case ISD::MUL:
17438  case ISD::AND:
17439  case ISD::OR:
17440  case ISD::XOR:
17441    return false;
17442  }
17443}
17444
17445/// IsDesirableToPromoteOp - This method query the target whether it is
17446/// beneficial for dag combiner to promote the specified node. If true, it
17447/// should return the desired promotion type by reference.
17448bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
17449  EVT VT = Op.getValueType();
17450  if (VT != MVT::i16)
17451    return false;
17452
17453  bool Promote = false;
17454  bool Commute = false;
17455  switch (Op.getOpcode()) {
17456  default: break;
17457  case ISD::LOAD: {
17458    LoadSDNode *LD = cast<LoadSDNode>(Op);
17459    // If the non-extending load has a single use and it's not live out, then it
17460    // might be folded.
17461    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
17462                                                     Op.hasOneUse()*/) {
17463      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
17464             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
17465        // The only case where we'd want to promote LOAD (rather then it being
17466        // promoted as an operand is when it's only use is liveout.
17467        if (UI->getOpcode() != ISD::CopyToReg)
17468          return false;
17469      }
17470    }
17471    Promote = true;
17472    break;
17473  }
17474  case ISD::SIGN_EXTEND:
17475  case ISD::ZERO_EXTEND:
17476  case ISD::ANY_EXTEND:
17477    Promote = true;
17478    break;
17479  case ISD::SHL:
17480  case ISD::SRL: {
17481    SDValue N0 = Op.getOperand(0);
17482    // Look out for (store (shl (load), x)).
17483    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
17484      return false;
17485    Promote = true;
17486    break;
17487  }
17488  case ISD::ADD:
17489  case ISD::MUL:
17490  case ISD::AND:
17491  case ISD::OR:
17492  case ISD::XOR:
17493    Commute = true;
17494    // fallthrough
17495  case ISD::SUB: {
17496    SDValue N0 = Op.getOperand(0);
17497    SDValue N1 = Op.getOperand(1);
17498    if (!Commute && MayFoldLoad(N1))
17499      return false;
17500    // Avoid disabling potential load folding opportunities.
17501    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
17502      return false;
17503    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
17504      return false;
17505    Promote = true;
17506  }
17507  }
17508
17509  PVT = MVT::i32;
17510  return Promote;
17511}
17512
17513//===----------------------------------------------------------------------===//
17514//                           X86 Inline Assembly Support
17515//===----------------------------------------------------------------------===//
17516
17517namespace {
17518  // Helper to match a string separated by whitespace.
17519  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17520    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17521
17522    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17523      StringRef piece(*args[i]);
17524      if (!s.startswith(piece)) // Check if the piece matches.
17525        return false;
17526
17527      s = s.substr(piece.size());
17528      StringRef::size_type pos = s.find_first_not_of(" \t");
17529      if (pos == 0) // We matched a prefix.
17530        return false;
17531
17532      s = s.substr(pos);
17533    }
17534
17535    return s.empty();
17536  }
17537  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
17538}
17539
17540bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
17541  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
17542
17543  std::string AsmStr = IA->getAsmString();
17544
17545  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17546  if (!Ty || Ty->getBitWidth() % 16 != 0)
17547    return false;
17548
17549  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
17550  SmallVector<StringRef, 4> AsmPieces;
17551  SplitString(AsmStr, AsmPieces, ";\n");
17552
17553  switch (AsmPieces.size()) {
17554  default: return false;
17555  case 1:
17556    // FIXME: this should verify that we are targeting a 486 or better.  If not,
17557    // we will turn this bswap into something that will be lowered to logical
17558    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
17559    // lower so don't worry about this.
17560    // bswap $0
17561    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
17562        matchAsm(AsmPieces[0], "bswapl", "$0") ||
17563        matchAsm(AsmPieces[0], "bswapq", "$0") ||
17564        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
17565        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
17566        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
17567      // No need to check constraints, nothing other than the equivalent of
17568      // "=r,0" would be valid here.
17569      return IntrinsicLowering::LowerToByteSwap(CI);
17570    }
17571
17572    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
17573    if (CI->getType()->isIntegerTy(16) &&
17574        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17575        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
17576         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
17577      AsmPieces.clear();
17578      const std::string &ConstraintsStr = IA->getConstraintString();
17579      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17580      std::sort(AsmPieces.begin(), AsmPieces.end());
17581      if (AsmPieces.size() == 4 &&
17582          AsmPieces[0] == "~{cc}" &&
17583          AsmPieces[1] == "~{dirflag}" &&
17584          AsmPieces[2] == "~{flags}" &&
17585          AsmPieces[3] == "~{fpsr}")
17586      return IntrinsicLowering::LowerToByteSwap(CI);
17587    }
17588    break;
17589  case 3:
17590    if (CI->getType()->isIntegerTy(32) &&
17591        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17592        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
17593        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
17594        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
17595      AsmPieces.clear();
17596      const std::string &ConstraintsStr = IA->getConstraintString();
17597      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17598      std::sort(AsmPieces.begin(), AsmPieces.end());
17599      if (AsmPieces.size() == 4 &&
17600          AsmPieces[0] == "~{cc}" &&
17601          AsmPieces[1] == "~{dirflag}" &&
17602          AsmPieces[2] == "~{flags}" &&
17603          AsmPieces[3] == "~{fpsr}")
17604        return IntrinsicLowering::LowerToByteSwap(CI);
17605    }
17606
17607    if (CI->getType()->isIntegerTy(64)) {
17608      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
17609      if (Constraints.size() >= 2 &&
17610          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
17611          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
17612        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
17613        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
17614            matchAsm(AsmPieces[1], "bswap", "%edx") &&
17615            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
17616          return IntrinsicLowering::LowerToByteSwap(CI);
17617      }
17618    }
17619    break;
17620  }
17621  return false;
17622}
17623
17624/// getConstraintType - Given a constraint letter, return the type of
17625/// constraint it is for this target.
17626X86TargetLowering::ConstraintType
17627X86TargetLowering::getConstraintType(const std::string &Constraint) const {
17628  if (Constraint.size() == 1) {
17629    switch (Constraint[0]) {
17630    case 'R':
17631    case 'q':
17632    case 'Q':
17633    case 'f':
17634    case 't':
17635    case 'u':
17636    case 'y':
17637    case 'x':
17638    case 'Y':
17639    case 'l':
17640      return C_RegisterClass;
17641    case 'a':
17642    case 'b':
17643    case 'c':
17644    case 'd':
17645    case 'S':
17646    case 'D':
17647    case 'A':
17648      return C_Register;
17649    case 'I':
17650    case 'J':
17651    case 'K':
17652    case 'L':
17653    case 'M':
17654    case 'N':
17655    case 'G':
17656    case 'C':
17657    case 'e':
17658    case 'Z':
17659      return C_Other;
17660    default:
17661      break;
17662    }
17663  }
17664  return TargetLowering::getConstraintType(Constraint);
17665}
17666
17667/// Examine constraint type and operand type and determine a weight value.
17668/// This object must already have been set up with the operand type
17669/// and the current alternative constraint selected.
17670TargetLowering::ConstraintWeight
17671  X86TargetLowering::getSingleConstraintMatchWeight(
17672    AsmOperandInfo &info, const char *constraint) const {
17673  ConstraintWeight weight = CW_Invalid;
17674  Value *CallOperandVal = info.CallOperandVal;
17675    // If we don't have a value, we can't do a match,
17676    // but allow it at the lowest weight.
17677  if (CallOperandVal == NULL)
17678    return CW_Default;
17679  Type *type = CallOperandVal->getType();
17680  // Look at the constraint type.
17681  switch (*constraint) {
17682  default:
17683    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17684  case 'R':
17685  case 'q':
17686  case 'Q':
17687  case 'a':
17688  case 'b':
17689  case 'c':
17690  case 'd':
17691  case 'S':
17692  case 'D':
17693  case 'A':
17694    if (CallOperandVal->getType()->isIntegerTy())
17695      weight = CW_SpecificReg;
17696    break;
17697  case 'f':
17698  case 't':
17699  case 'u':
17700    if (type->isFloatingPointTy())
17701      weight = CW_SpecificReg;
17702    break;
17703  case 'y':
17704    if (type->isX86_MMXTy() && Subtarget->hasMMX())
17705      weight = CW_SpecificReg;
17706    break;
17707  case 'x':
17708  case 'Y':
17709    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
17710        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
17711      weight = CW_Register;
17712    break;
17713  case 'I':
17714    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
17715      if (C->getZExtValue() <= 31)
17716        weight = CW_Constant;
17717    }
17718    break;
17719  case 'J':
17720    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17721      if (C->getZExtValue() <= 63)
17722        weight = CW_Constant;
17723    }
17724    break;
17725  case 'K':
17726    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17727      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
17728        weight = CW_Constant;
17729    }
17730    break;
17731  case 'L':
17732    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17733      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
17734        weight = CW_Constant;
17735    }
17736    break;
17737  case 'M':
17738    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17739      if (C->getZExtValue() <= 3)
17740        weight = CW_Constant;
17741    }
17742    break;
17743  case 'N':
17744    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17745      if (C->getZExtValue() <= 0xff)
17746        weight = CW_Constant;
17747    }
17748    break;
17749  case 'G':
17750  case 'C':
17751    if (dyn_cast<ConstantFP>(CallOperandVal)) {
17752      weight = CW_Constant;
17753    }
17754    break;
17755  case 'e':
17756    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17757      if ((C->getSExtValue() >= -0x80000000LL) &&
17758          (C->getSExtValue() <= 0x7fffffffLL))
17759        weight = CW_Constant;
17760    }
17761    break;
17762  case 'Z':
17763    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17764      if (C->getZExtValue() <= 0xffffffff)
17765        weight = CW_Constant;
17766    }
17767    break;
17768  }
17769  return weight;
17770}
17771
17772/// LowerXConstraint - try to replace an X constraint, which matches anything,
17773/// with another that has more specific requirements based on the type of the
17774/// corresponding operand.
17775const char *X86TargetLowering::
17776LowerXConstraint(EVT ConstraintVT) const {
17777  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
17778  // 'f' like normal targets.
17779  if (ConstraintVT.isFloatingPoint()) {
17780    if (Subtarget->hasSSE2())
17781      return "Y";
17782    if (Subtarget->hasSSE1())
17783      return "x";
17784  }
17785
17786  return TargetLowering::LowerXConstraint(ConstraintVT);
17787}
17788
17789/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
17790/// vector.  If it is invalid, don't add anything to Ops.
17791void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
17792                                                     std::string &Constraint,
17793                                                     std::vector<SDValue>&Ops,
17794                                                     SelectionDAG &DAG) const {
17795  SDValue Result(0, 0);
17796
17797  // Only support length 1 constraints for now.
17798  if (Constraint.length() > 1) return;
17799
17800  char ConstraintLetter = Constraint[0];
17801  switch (ConstraintLetter) {
17802  default: break;
17803  case 'I':
17804    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17805      if (C->getZExtValue() <= 31) {
17806        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17807        break;
17808      }
17809    }
17810    return;
17811  case 'J':
17812    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17813      if (C->getZExtValue() <= 63) {
17814        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17815        break;
17816      }
17817    }
17818    return;
17819  case 'K':
17820    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17821      if (isInt<8>(C->getSExtValue())) {
17822        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17823        break;
17824      }
17825    }
17826    return;
17827  case 'N':
17828    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17829      if (C->getZExtValue() <= 255) {
17830        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17831        break;
17832      }
17833    }
17834    return;
17835  case 'e': {
17836    // 32-bit signed value
17837    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17838      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17839                                           C->getSExtValue())) {
17840        // Widen to 64 bits here to get it sign extended.
17841        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
17842        break;
17843      }
17844    // FIXME gcc accepts some relocatable values here too, but only in certain
17845    // memory models; it's complicated.
17846    }
17847    return;
17848  }
17849  case 'Z': {
17850    // 32-bit unsigned value
17851    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17852      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17853                                           C->getZExtValue())) {
17854        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17855        break;
17856      }
17857    }
17858    // FIXME gcc accepts some relocatable values here too, but only in certain
17859    // memory models; it's complicated.
17860    return;
17861  }
17862  case 'i': {
17863    // Literal immediates are always ok.
17864    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
17865      // Widen to 64 bits here to get it sign extended.
17866      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
17867      break;
17868    }
17869
17870    // In any sort of PIC mode addresses need to be computed at runtime by
17871    // adding in a register or some sort of table lookup.  These can't
17872    // be used as immediates.
17873    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
17874      return;
17875
17876    // If we are in non-pic codegen mode, we allow the address of a global (with
17877    // an optional displacement) to be used with 'i'.
17878    GlobalAddressSDNode *GA = 0;
17879    int64_t Offset = 0;
17880
17881    // Match either (GA), (GA+C), (GA+C1+C2), etc.
17882    while (1) {
17883      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
17884        Offset += GA->getOffset();
17885        break;
17886      } else if (Op.getOpcode() == ISD::ADD) {
17887        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17888          Offset += C->getZExtValue();
17889          Op = Op.getOperand(0);
17890          continue;
17891        }
17892      } else if (Op.getOpcode() == ISD::SUB) {
17893        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17894          Offset += -C->getZExtValue();
17895          Op = Op.getOperand(0);
17896          continue;
17897        }
17898      }
17899
17900      // Otherwise, this isn't something we can handle, reject it.
17901      return;
17902    }
17903
17904    const GlobalValue *GV = GA->getGlobal();
17905    // If we require an extra load to get this address, as in PIC mode, we
17906    // can't accept it.
17907    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
17908                                                        getTargetMachine())))
17909      return;
17910
17911    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
17912                                        GA->getValueType(0), Offset);
17913    break;
17914  }
17915  }
17916
17917  if (Result.getNode()) {
17918    Ops.push_back(Result);
17919    return;
17920  }
17921  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
17922}
17923
17924std::pair<unsigned, const TargetRegisterClass*>
17925X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
17926                                                EVT VT) const {
17927  // First, see if this is a constraint that directly corresponds to an LLVM
17928  // register class.
17929  if (Constraint.size() == 1) {
17930    // GCC Constraint Letters
17931    switch (Constraint[0]) {
17932    default: break;
17933      // TODO: Slight differences here in allocation order and leaving
17934      // RIP in the class. Do they matter any more here than they do
17935      // in the normal allocation?
17936    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
17937      if (Subtarget->is64Bit()) {
17938        if (VT == MVT::i32 || VT == MVT::f32)
17939          return std::make_pair(0U, &X86::GR32RegClass);
17940        if (VT == MVT::i16)
17941          return std::make_pair(0U, &X86::GR16RegClass);
17942        if (VT == MVT::i8 || VT == MVT::i1)
17943          return std::make_pair(0U, &X86::GR8RegClass);
17944        if (VT == MVT::i64 || VT == MVT::f64)
17945          return std::make_pair(0U, &X86::GR64RegClass);
17946        break;
17947      }
17948      // 32-bit fallthrough
17949    case 'Q':   // Q_REGS
17950      if (VT == MVT::i32 || VT == MVT::f32)
17951        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
17952      if (VT == MVT::i16)
17953        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
17954      if (VT == MVT::i8 || VT == MVT::i1)
17955        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
17956      if (VT == MVT::i64)
17957        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
17958      break;
17959    case 'r':   // GENERAL_REGS
17960    case 'l':   // INDEX_REGS
17961      if (VT == MVT::i8 || VT == MVT::i1)
17962        return std::make_pair(0U, &X86::GR8RegClass);
17963      if (VT == MVT::i16)
17964        return std::make_pair(0U, &X86::GR16RegClass);
17965      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
17966        return std::make_pair(0U, &X86::GR32RegClass);
17967      return std::make_pair(0U, &X86::GR64RegClass);
17968    case 'R':   // LEGACY_REGS
17969      if (VT == MVT::i8 || VT == MVT::i1)
17970        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
17971      if (VT == MVT::i16)
17972        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
17973      if (VT == MVT::i32 || !Subtarget->is64Bit())
17974        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
17975      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
17976    case 'f':  // FP Stack registers.
17977      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
17978      // value to the correct fpstack register class.
17979      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
17980        return std::make_pair(0U, &X86::RFP32RegClass);
17981      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
17982        return std::make_pair(0U, &X86::RFP64RegClass);
17983      return std::make_pair(0U, &X86::RFP80RegClass);
17984    case 'y':   // MMX_REGS if MMX allowed.
17985      if (!Subtarget->hasMMX()) break;
17986      return std::make_pair(0U, &X86::VR64RegClass);
17987    case 'Y':   // SSE_REGS if SSE2 allowed
17988      if (!Subtarget->hasSSE2()) break;
17989      // FALL THROUGH.
17990    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
17991      if (!Subtarget->hasSSE1()) break;
17992
17993      switch (VT.getSimpleVT().SimpleTy) {
17994      default: break;
17995      // Scalar SSE types.
17996      case MVT::f32:
17997      case MVT::i32:
17998        return std::make_pair(0U, &X86::FR32RegClass);
17999      case MVT::f64:
18000      case MVT::i64:
18001        return std::make_pair(0U, &X86::FR64RegClass);
18002      // Vector types.
18003      case MVT::v16i8:
18004      case MVT::v8i16:
18005      case MVT::v4i32:
18006      case MVT::v2i64:
18007      case MVT::v4f32:
18008      case MVT::v2f64:
18009        return std::make_pair(0U, &X86::VR128RegClass);
18010      // AVX types.
18011      case MVT::v32i8:
18012      case MVT::v16i16:
18013      case MVT::v8i32:
18014      case MVT::v4i64:
18015      case MVT::v8f32:
18016      case MVT::v4f64:
18017        return std::make_pair(0U, &X86::VR256RegClass);
18018      }
18019      break;
18020    }
18021  }
18022
18023  // Use the default implementation in TargetLowering to convert the register
18024  // constraint into a member of a register class.
18025  std::pair<unsigned, const TargetRegisterClass*> Res;
18026  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18027
18028  // Not found as a standard register?
18029  if (Res.second == 0) {
18030    // Map st(0) -> st(7) -> ST0
18031    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18032        tolower(Constraint[1]) == 's' &&
18033        tolower(Constraint[2]) == 't' &&
18034        Constraint[3] == '(' &&
18035        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18036        Constraint[5] == ')' &&
18037        Constraint[6] == '}') {
18038
18039      Res.first = X86::ST0+Constraint[4]-'0';
18040      Res.second = &X86::RFP80RegClass;
18041      return Res;
18042    }
18043
18044    // GCC allows "st(0)" to be called just plain "st".
18045    if (StringRef("{st}").equals_lower(Constraint)) {
18046      Res.first = X86::ST0;
18047      Res.second = &X86::RFP80RegClass;
18048      return Res;
18049    }
18050
18051    // flags -> EFLAGS
18052    if (StringRef("{flags}").equals_lower(Constraint)) {
18053      Res.first = X86::EFLAGS;
18054      Res.second = &X86::CCRRegClass;
18055      return Res;
18056    }
18057
18058    // 'A' means EAX + EDX.
18059    if (Constraint == "A") {
18060      Res.first = X86::EAX;
18061      Res.second = &X86::GR32_ADRegClass;
18062      return Res;
18063    }
18064    return Res;
18065  }
18066
18067  // Otherwise, check to see if this is a register class of the wrong value
18068  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18069  // turn into {ax},{dx}.
18070  if (Res.second->hasType(VT))
18071    return Res;   // Correct type already, nothing to do.
18072
18073  // All of the single-register GCC register classes map their values onto
18074  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18075  // really want an 8-bit or 32-bit register, map to the appropriate register
18076  // class and return the appropriate register.
18077  if (Res.second == &X86::GR16RegClass) {
18078    if (VT == MVT::i8) {
18079      unsigned DestReg = 0;
18080      switch (Res.first) {
18081      default: break;
18082      case X86::AX: DestReg = X86::AL; break;
18083      case X86::DX: DestReg = X86::DL; break;
18084      case X86::CX: DestReg = X86::CL; break;
18085      case X86::BX: DestReg = X86::BL; break;
18086      }
18087      if (DestReg) {
18088        Res.first = DestReg;
18089        Res.second = &X86::GR8RegClass;
18090      }
18091    } else if (VT == MVT::i32) {
18092      unsigned DestReg = 0;
18093      switch (Res.first) {
18094      default: break;
18095      case X86::AX: DestReg = X86::EAX; break;
18096      case X86::DX: DestReg = X86::EDX; break;
18097      case X86::CX: DestReg = X86::ECX; break;
18098      case X86::BX: DestReg = X86::EBX; break;
18099      case X86::SI: DestReg = X86::ESI; break;
18100      case X86::DI: DestReg = X86::EDI; break;
18101      case X86::BP: DestReg = X86::EBP; break;
18102      case X86::SP: DestReg = X86::ESP; break;
18103      }
18104      if (DestReg) {
18105        Res.first = DestReg;
18106        Res.second = &X86::GR32RegClass;
18107      }
18108    } else if (VT == MVT::i64) {
18109      unsigned DestReg = 0;
18110      switch (Res.first) {
18111      default: break;
18112      case X86::AX: DestReg = X86::RAX; break;
18113      case X86::DX: DestReg = X86::RDX; break;
18114      case X86::CX: DestReg = X86::RCX; break;
18115      case X86::BX: DestReg = X86::RBX; break;
18116      case X86::SI: DestReg = X86::RSI; break;
18117      case X86::DI: DestReg = X86::RDI; break;
18118      case X86::BP: DestReg = X86::RBP; break;
18119      case X86::SP: DestReg = X86::RSP; break;
18120      }
18121      if (DestReg) {
18122        Res.first = DestReg;
18123        Res.second = &X86::GR64RegClass;
18124      }
18125    }
18126  } else if (Res.second == &X86::FR32RegClass ||
18127             Res.second == &X86::FR64RegClass ||
18128             Res.second == &X86::VR128RegClass) {
18129    // Handle references to XMM physical registers that got mapped into the
18130    // wrong class.  This can happen with constraints like {xmm0} where the
18131    // target independent register mapper will just pick the first match it can
18132    // find, ignoring the required type.
18133
18134    if (VT == MVT::f32 || VT == MVT::i32)
18135      Res.second = &X86::FR32RegClass;
18136    else if (VT == MVT::f64 || VT == MVT::i64)
18137      Res.second = &X86::FR64RegClass;
18138    else if (X86::VR128RegClass.hasType(VT))
18139      Res.second = &X86::VR128RegClass;
18140    else if (X86::VR256RegClass.hasType(VT))
18141      Res.second = &X86::VR256RegClass;
18142  }
18143
18144  return Res;
18145}
18146