X86ISelLowering.cpp revision 0ef701e6ae816b0360e0a66e8b815ff875fe2a32
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MCTargetExpr.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54
55static cl::opt<bool>
56DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
57
58// Disable16Bit - 16-bit operations typically have a larger encoding than
59// corresponding 32-bit instructions, and 16-bit code is slow on some
60// processors. This is an experimental flag to disable 16-bit operations
61// (which forces them to be Legalized to 32-bit operations).
62static cl::opt<bool>
63Disable16Bit("disable-16bit", cl::Hidden,
64             cl::desc("Disable use of 16-bit instructions"));
65
66// Forward declarations.
67static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
68                       SDValue V2);
69
70static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
71  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
72  default: llvm_unreachable("unknown subtarget type");
73  case X86Subtarget::isDarwin:
74    if (TM.getSubtarget<X86Subtarget>().is64Bit())
75      return new X8664_MachoTargetObjectFile();
76    return new TargetLoweringObjectFileMachO();
77  case X86Subtarget::isELF:
78   if (TM.getSubtarget<X86Subtarget>().is64Bit())
79     return new X8664_ELFTargetObjectFile(TM);
80    return new X8632_ELFTargetObjectFile(TM);
81  case X86Subtarget::isMingw:
82  case X86Subtarget::isCygwin:
83  case X86Subtarget::isWindows:
84    return new TargetLoweringObjectFileCOFF();
85  }
86}
87
88X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
89  : TargetLowering(TM, createTLOF(TM)) {
90  Subtarget = &TM.getSubtarget<X86Subtarget>();
91  X86ScalarSSEf64 = Subtarget->hasSSE2();
92  X86ScalarSSEf32 = Subtarget->hasSSE1();
93  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
94
95  RegInfo = TM.getRegisterInfo();
96  TD = getTargetData();
97
98  // Set up the TargetLowering object.
99
100  // X86 is weird, it always uses i8 for shift amounts and setcc results.
101  setShiftAmountType(MVT::i8);
102  setBooleanContents(ZeroOrOneBooleanContent);
103  setSchedulingPreference(SchedulingForRegPressure);
104  setStackPointerRegisterToSaveRestore(X86StackPtr);
105
106  if (Subtarget->isTargetDarwin()) {
107    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
108    setUseUnderscoreSetJmp(false);
109    setUseUnderscoreLongJmp(false);
110  } else if (Subtarget->isTargetMingw()) {
111    // MS runtime is weird: it exports _setjmp, but longjmp!
112    setUseUnderscoreSetJmp(true);
113    setUseUnderscoreLongJmp(false);
114  } else {
115    setUseUnderscoreSetJmp(true);
116    setUseUnderscoreLongJmp(true);
117  }
118
119  // Set up the register classes.
120  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
121  if (!Disable16Bit)
122    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
123  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
124  if (Subtarget->is64Bit())
125    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
126
127  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
128
129  // We don't accept any truncstore of integer registers.
130  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
131  if (!Disable16Bit)
132    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
133  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
134  if (!Disable16Bit)
135    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
136  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
137  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
138
139  // SETOEQ and SETUNE require checking two conditions.
140  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
141  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
142  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
143  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
144  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
146
147  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
148  // operation.
149  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
150  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
152
153  if (Subtarget->is64Bit()) {
154    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
155    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
156  } else if (!UseSoftFloat) {
157    if (X86ScalarSSEf64) {
158      // We have an impenetrably clever algorithm for ui64->double only.
159      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
160    }
161    // We have an algorithm for SSE2, and we turn this into a 64-bit
162    // FILD for other targets.
163    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
164  }
165
166  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
167  // this operation.
168  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
169  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
170
171  if (!UseSoftFloat) {
172    // SSE has no i16 to fp conversion, only i32
173    if (X86ScalarSSEf32) {
174      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
175      // f32 and f64 cases are Legal, f80 case is not
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
177    } else {
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
180    }
181  } else {
182    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
183    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
184  }
185
186  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
187  // are Legal, f80 is custom lowered.
188  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
189  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
190
191  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
192  // this operation.
193  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
194  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
195
196  if (X86ScalarSSEf32) {
197    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
198    // f32 and f64 cases are Legal, f80 case is not
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
200  } else {
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
203  }
204
205  // Handle FP_TO_UINT by promoting the destination to a larger signed
206  // conversion.
207  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
210
211  if (Subtarget->is64Bit()) {
212    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
213    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
214  } else if (!UseSoftFloat) {
215    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
216      // Expand FP_TO_UINT into a select.
217      // FIXME: We would like to use a Custom expander here eventually to do
218      // the optimal thing for SSE vs. the default expansion in the legalizer.
219      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
220    else
221      // With SSE3 we can use fisttpll to convert to a signed i64; without
222      // SSE, we're stuck with a fistpll.
223      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
224  }
225
226  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
227  if (!X86ScalarSSEf64) {
228    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
229    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
230  }
231
232  // Scalar integer divide and remainder are lowered to use operations that
233  // produce two results, to match the available instructions. This exposes
234  // the two-result form to trivial CSE, which is able to combine x/y and x%y
235  // into a single instruction.
236  //
237  // Scalar integer multiply-high is also lowered to use two-result
238  // operations, to match the available instructions. However, plain multiply
239  // (low) operations are left as Legal, as there are single-result
240  // instructions for this in x86. Using the two-result multiply instructions
241  // when both high and low results are needed must be arranged by dagcombine.
242  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
243  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
244  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
245  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
246  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
247  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
248  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
249  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
250  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
251  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
252  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
253  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
254  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
255  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
256  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
257  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
258  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
259  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
260  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
261  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
262  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
263  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
264  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
265  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
266
267  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
268  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
269  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
270  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
271  if (Subtarget->is64Bit())
272    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
273  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
274  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
276  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
277  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
278  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
280  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
281
282  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
283  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
284  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
285  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
286  if (Disable16Bit) {
287    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
288    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
289  } else {
290    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
291    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
292  }
293  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
294  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
295  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
296  if (Subtarget->is64Bit()) {
297    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
298    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
299    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
300  }
301
302  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
303  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
304
305  // These should be promoted to a larger select which is supported.
306  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
307  // X86 wants to expand cmov itself.
308  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
309  if (Disable16Bit)
310    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
311  else
312    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
317  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
318  if (Disable16Bit)
319    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
320  else
321    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
322  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
323  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
328    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
329  }
330  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
331
332  // Darwin ABI issue.
333  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
334  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
335  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
336  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
337  if (Subtarget->is64Bit())
338    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
339  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
340  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
341  if (Subtarget->is64Bit()) {
342    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
343    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
344    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
345    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
346    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
347  }
348  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
349  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
350  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
351  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
352  if (Subtarget->is64Bit()) {
353    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
354    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
355    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
356  }
357
358  if (Subtarget->hasSSE1())
359    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
360
361  if (!Subtarget->hasSSE2())
362    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
363
364  // Expand certain atomics
365  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
366  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
369
370  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
371  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
374
375  if (!Subtarget->is64Bit()) {
376    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
377    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
378    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
383  }
384
385  // FIXME - use subtarget debug flags
386  if (!Subtarget->isTargetDarwin() &&
387      !Subtarget->isTargetELF() &&
388      !Subtarget->isTargetCygMing()) {
389    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
390  }
391
392  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
393  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
396  if (Subtarget->is64Bit()) {
397    setExceptionPointerRegister(X86::RAX);
398    setExceptionSelectorRegister(X86::RDX);
399  } else {
400    setExceptionPointerRegister(X86::EAX);
401    setExceptionSelectorRegister(X86::EDX);
402  }
403  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
404  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
405
406  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
407
408  setOperationAction(ISD::TRAP, MVT::Other, Legal);
409
410  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
411  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
412  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
413  if (Subtarget->is64Bit()) {
414    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
415    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
416  } else {
417    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
418    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
419  }
420
421  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
422  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
423  if (Subtarget->is64Bit())
424    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
425  if (Subtarget->isTargetCygMing())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
427  else
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
429
430  if (!UseSoftFloat && X86ScalarSSEf64) {
431    // f32 and f64 use SSE.
432    // Set up the FP register classes.
433    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
434    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
435
436    // Use ANDPD to simulate FABS.
437    setOperationAction(ISD::FABS , MVT::f64, Custom);
438    setOperationAction(ISD::FABS , MVT::f32, Custom);
439
440    // Use XORP to simulate FNEG.
441    setOperationAction(ISD::FNEG , MVT::f64, Custom);
442    setOperationAction(ISD::FNEG , MVT::f32, Custom);
443
444    // Use ANDPD and ORPD to simulate FCOPYSIGN.
445    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
446    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
447
448    // We don't support sin/cos/fmod
449    setOperationAction(ISD::FSIN , MVT::f64, Expand);
450    setOperationAction(ISD::FCOS , MVT::f64, Expand);
451    setOperationAction(ISD::FSIN , MVT::f32, Expand);
452    setOperationAction(ISD::FCOS , MVT::f32, Expand);
453
454    // Expand FP immediates into loads from the stack, except for the special
455    // cases we handle.
456    addLegalFPImmediate(APFloat(+0.0)); // xorpd
457    addLegalFPImmediate(APFloat(+0.0f)); // xorps
458  } else if (!UseSoftFloat && X86ScalarSSEf32) {
459    // Use SSE for f32, x87 for f64.
460    // Set up the FP register classes.
461    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
462    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
463
464    // Use ANDPS to simulate FABS.
465    setOperationAction(ISD::FABS , MVT::f32, Custom);
466
467    // Use XORP to simulate FNEG.
468    setOperationAction(ISD::FNEG , MVT::f32, Custom);
469
470    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
471
472    // Use ANDPS and ORPS to simulate FCOPYSIGN.
473    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
474    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
475
476    // We don't support sin/cos/fmod
477    setOperationAction(ISD::FSIN , MVT::f32, Expand);
478    setOperationAction(ISD::FCOS , MVT::f32, Expand);
479
480    // Special cases we handle for FP constants.
481    addLegalFPImmediate(APFloat(+0.0f)); // xorps
482    addLegalFPImmediate(APFloat(+0.0)); // FLD0
483    addLegalFPImmediate(APFloat(+1.0)); // FLD1
484    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
485    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
486
487    if (!UnsafeFPMath) {
488      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
489      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
490    }
491  } else if (!UseSoftFloat) {
492    // f32 and f64 in x87.
493    // Set up the FP register classes.
494    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
495    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
496
497    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
498    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
499    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
500    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
501
502    if (!UnsafeFPMath) {
503      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
504      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
505    }
506    addLegalFPImmediate(APFloat(+0.0)); // FLD0
507    addLegalFPImmediate(APFloat(+1.0)); // FLD1
508    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
509    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
510    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
511    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
512    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
513    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
514  }
515
516  // Long double always uses X87.
517  if (!UseSoftFloat) {
518    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
519    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
520    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
521    {
522      bool ignored;
523      APFloat TmpFlt(+0.0);
524      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
525                     &ignored);
526      addLegalFPImmediate(TmpFlt);  // FLD0
527      TmpFlt.changeSign();
528      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
529      APFloat TmpFlt2(+1.0);
530      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
531                      &ignored);
532      addLegalFPImmediate(TmpFlt2);  // FLD1
533      TmpFlt2.changeSign();
534      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
535    }
536
537    if (!UnsafeFPMath) {
538      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
539      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
540    }
541  }
542
543  // Always use a library call for pow.
544  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
545  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
546  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
547
548  setOperationAction(ISD::FLOG, MVT::f80, Expand);
549  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
550  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
551  setOperationAction(ISD::FEXP, MVT::f80, Expand);
552  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
553
554  // First set operation action for all vector types to either promote
555  // (for widening) or expand (for scalarization). Then we will selectively
556  // turn on ones that can be effectively codegen'd.
557  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
558       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
559    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
574    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
575    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
608    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
610    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
613         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
614      setTruncStoreAction((MVT::SimpleValueType)VT,
615                          (MVT::SimpleValueType)InnerVT, Expand);
616    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
617    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
618    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
619  }
620
621  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
622  // with -msoft-float, disable use of MMX as well.
623  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
624    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
625    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
626    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
627    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
628    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
629
630    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
631    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
632    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
633    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
634
635    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
636    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
637    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
638    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
639
640    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
641    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
642
643    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
646    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
650
651    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
658
659    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
666
667    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
668    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
669    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
676
677    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
678    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
682
683    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
684    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
687
688    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
689    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
692
693    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
694
695    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
696    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
697    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
699    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
700    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
702  }
703
704  if (!UseSoftFloat && Subtarget->hasSSE1()) {
705    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
706
707    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
708    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
709    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
712    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
713    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
714    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
715    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
716    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
717    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
718    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
719  }
720
721  if (!UseSoftFloat && Subtarget->hasSSE2()) {
722    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
723
724    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
725    // registers cannot be used even for integer operations.
726    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
727    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
728    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
730
731    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
732    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
733    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
734    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
736    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
737    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
738    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
739    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
740    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
741    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
742    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
743    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
746    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
747
748    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
749    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
750    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
752
753    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
754    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
755    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
756    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
758
759    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
760    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
764
765    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
766    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
767      EVT VT = (MVT::SimpleValueType)i;
768      // Do not attempt to custom lower non-power-of-2 vectors
769      if (!isPowerOf2_32(VT.getVectorNumElements()))
770        continue;
771      // Do not attempt to custom lower non-128-bit vectors
772      if (!VT.is128BitVector())
773        continue;
774      setOperationAction(ISD::BUILD_VECTOR,
775                         VT.getSimpleVT().SimpleTy, Custom);
776      setOperationAction(ISD::VECTOR_SHUFFLE,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
779                         VT.getSimpleVT().SimpleTy, Custom);
780    }
781
782    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
783    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
784    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
785    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
786    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
787    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
788
789    if (Subtarget->is64Bit()) {
790      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
791      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
792    }
793
794    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
795    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
796      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
797      EVT VT = SVT;
798
799      // Do not attempt to promote non-128-bit vectors
800      if (!VT.is128BitVector()) {
801        continue;
802      }
803      setOperationAction(ISD::AND,    SVT, Promote);
804      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
805      setOperationAction(ISD::OR,     SVT, Promote);
806      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
807      setOperationAction(ISD::XOR,    SVT, Promote);
808      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
809      setOperationAction(ISD::LOAD,   SVT, Promote);
810      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
811      setOperationAction(ISD::SELECT, SVT, Promote);
812      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
813    }
814
815    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
816
817    // Custom lower v2i64 and v2f64 selects.
818    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
819    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
820    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
821    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
822
823    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
824    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
825    if (!DisableMMX && Subtarget->hasMMX()) {
826      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
827      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
828    }
829  }
830
831  if (Subtarget->hasSSE41()) {
832    // FIXME: Do we need to handle scalar-to-vector here?
833    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
834
835    // i8 and i16 vectors are custom , because the source register and source
836    // source memory operand types are not the same width.  f32 vectors are
837    // custom since the immediate controlling the insert encodes additional
838    // information.
839    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843
844    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
845    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
847    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
848
849    if (Subtarget->is64Bit()) {
850      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
851      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
852    }
853  }
854
855  if (Subtarget->hasSSE42()) {
856    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
857  }
858
859  if (!UseSoftFloat && Subtarget->hasAVX()) {
860    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
861    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
862    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
863    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
864
865    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
866    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
867    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
868    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
869    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
870    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
871    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
872    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
873    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
874    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
875    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
876    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
877    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
878    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
879    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
880
881    // Operations to consider commented out -v16i16 v32i8
882    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
883    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
884    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
885    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
886    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
887    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
888    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
889    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
890    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
891    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
892    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
893    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
894    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
895    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
896
897    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
898    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
899    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
900    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
901
902    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
903    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
904    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
905    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
906    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
907
908    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
909    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
910    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
911    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
913    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
914
915#if 0
916    // Not sure we want to do this since there are no 256-bit integer
917    // operations in AVX
918
919    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
920    // This includes 256-bit vectors
921    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
922      EVT VT = (MVT::SimpleValueType)i;
923
924      // Do not attempt to custom lower non-power-of-2 vectors
925      if (!isPowerOf2_32(VT.getVectorNumElements()))
926        continue;
927
928      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
929      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
930      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
931    }
932
933    if (Subtarget->is64Bit()) {
934      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
935      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
936    }
937#endif
938
939#if 0
940    // Not sure we want to do this since there are no 256-bit integer
941    // operations in AVX
942
943    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
944    // Including 256-bit vectors
945    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
946      EVT VT = (MVT::SimpleValueType)i;
947
948      if (!VT.is256BitVector()) {
949        continue;
950      }
951      setOperationAction(ISD::AND,    VT, Promote);
952      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
953      setOperationAction(ISD::OR,     VT, Promote);
954      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
955      setOperationAction(ISD::XOR,    VT, Promote);
956      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
957      setOperationAction(ISD::LOAD,   VT, Promote);
958      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
959      setOperationAction(ISD::SELECT, VT, Promote);
960      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
961    }
962
963    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
964#endif
965  }
966
967  // We want to custom lower some of our intrinsics.
968  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
969
970  // Add/Sub/Mul with overflow operations are custom lowered.
971  setOperationAction(ISD::SADDO, MVT::i32, Custom);
972  setOperationAction(ISD::SADDO, MVT::i64, Custom);
973  setOperationAction(ISD::UADDO, MVT::i32, Custom);
974  setOperationAction(ISD::UADDO, MVT::i64, Custom);
975  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
976  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
977  setOperationAction(ISD::USUBO, MVT::i32, Custom);
978  setOperationAction(ISD::USUBO, MVT::i64, Custom);
979  setOperationAction(ISD::SMULO, MVT::i32, Custom);
980  setOperationAction(ISD::SMULO, MVT::i64, Custom);
981
982  if (!Subtarget->is64Bit()) {
983    // These libcalls are not available in 32-bit.
984    setLibcallName(RTLIB::SHL_I128, 0);
985    setLibcallName(RTLIB::SRL_I128, 0);
986    setLibcallName(RTLIB::SRA_I128, 0);
987  }
988
989  // We have target-specific dag combine patterns for the following nodes:
990  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
991  setTargetDAGCombine(ISD::BUILD_VECTOR);
992  setTargetDAGCombine(ISD::SELECT);
993  setTargetDAGCombine(ISD::AND);
994  setTargetDAGCombine(ISD::SHL);
995  setTargetDAGCombine(ISD::SRA);
996  setTargetDAGCombine(ISD::SRL);
997  setTargetDAGCombine(ISD::OR);
998  setTargetDAGCombine(ISD::STORE);
999  setTargetDAGCombine(ISD::MEMBARRIER);
1000  setTargetDAGCombine(ISD::ZERO_EXTEND);
1001  if (Subtarget->is64Bit())
1002    setTargetDAGCombine(ISD::MUL);
1003
1004  computeRegisterProperties();
1005
1006  // FIXME: These should be based on subtarget info. Plus, the values should
1007  // be smaller when we are in optimizing for size mode.
1008  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1009  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
1010  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1011  setPrefLoopAlignment(16);
1012  benefitFromCodePlacementOpt = true;
1013}
1014
1015
1016MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1017  return MVT::i8;
1018}
1019
1020
1021/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1022/// the desired ByVal argument alignment.
1023static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1024  if (MaxAlign == 16)
1025    return;
1026  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1027    if (VTy->getBitWidth() == 128)
1028      MaxAlign = 16;
1029  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1030    unsigned EltAlign = 0;
1031    getMaxByValAlign(ATy->getElementType(), EltAlign);
1032    if (EltAlign > MaxAlign)
1033      MaxAlign = EltAlign;
1034  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1035    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1036      unsigned EltAlign = 0;
1037      getMaxByValAlign(STy->getElementType(i), EltAlign);
1038      if (EltAlign > MaxAlign)
1039        MaxAlign = EltAlign;
1040      if (MaxAlign == 16)
1041        break;
1042    }
1043  }
1044  return;
1045}
1046
1047/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1048/// function arguments in the caller parameter area. For X86, aggregates
1049/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1050/// are at 4-byte boundaries.
1051unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1052  if (Subtarget->is64Bit()) {
1053    // Max of 8 and alignment of type.
1054    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1055    if (TyAlign > 8)
1056      return TyAlign;
1057    return 8;
1058  }
1059
1060  unsigned Align = 4;
1061  if (Subtarget->hasSSE1())
1062    getMaxByValAlign(Ty, Align);
1063  return Align;
1064}
1065
1066/// getOptimalMemOpType - Returns the target specific optimal type for load
1067/// and store operations as a result of memset, memcpy, and memmove
1068/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1069/// determining it.
1070EVT
1071X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1072                                       bool isSrcConst, bool isSrcStr,
1073                                       SelectionDAG &DAG) const {
1074  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1075  // linux.  This is because the stack realignment code can't handle certain
1076  // cases like PR2962.  This should be removed when PR2962 is fixed.
1077  const Function *F = DAG.getMachineFunction().getFunction();
1078  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1079  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1080    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1081      return MVT::v4i32;
1082    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1083      return MVT::v4f32;
1084  }
1085  if (Subtarget->is64Bit() && Size >= 8)
1086    return MVT::i64;
1087  return MVT::i32;
1088}
1089
1090/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1091/// current function.  The returned value is a member of the
1092/// MachineJumpTableInfo::JTEntryKind enum.
1093unsigned X86TargetLowering::getJumpTableEncoding() const {
1094  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1095  // symbol.
1096  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1097      Subtarget->isPICStyleGOT())
1098    return MachineJumpTableInfo::EK_Custom32;
1099
1100  // Otherwise, use the normal jump table encoding heuristics.
1101  return TargetLowering::getJumpTableEncoding();
1102}
1103
1104/// getPICBaseSymbol - Return the X86-32 PIC base.
1105MCSymbol *
1106X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1107                                    MCContext &Ctx) const {
1108  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1109  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1110                               Twine(MF->getFunctionNumber())+"$pb");
1111}
1112
1113
1114const MCExpr *
1115X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1116                                             const MachineBasicBlock *MBB,
1117                                             unsigned uid,MCContext &Ctx) const{
1118  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1119         Subtarget->isPICStyleGOT());
1120  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1121  // entries.
1122  return X86MCTargetExpr::Create(MBB->getSymbol(Ctx),
1123                                 X86MCTargetExpr::GOTOFF, Ctx);
1124}
1125
1126/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1127/// jumptable.
1128SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1129                                                    SelectionDAG &DAG) const {
1130  if (!Subtarget->is64Bit())
1131    // This doesn't have DebugLoc associated with it, but is not really the
1132    // same as a Register.
1133    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1134                       getPointerTy());
1135  return Table;
1136}
1137
1138/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1139/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1140/// MCExpr.
1141const MCExpr *X86TargetLowering::
1142getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1143                             MCContext &Ctx) const {
1144  // X86-64 uses RIP relative addressing based on the jump table label.
1145  if (Subtarget->isPICStyleRIPRel())
1146    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1147
1148  // Otherwise, the reference is relative to the PIC base.
1149  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1150}
1151
1152/// getFunctionAlignment - Return the Log2 alignment of this function.
1153unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1154  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1155}
1156
1157//===----------------------------------------------------------------------===//
1158//               Return Value Calling Convention Implementation
1159//===----------------------------------------------------------------------===//
1160
1161#include "X86GenCallingConv.inc"
1162
1163bool
1164X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1165                        const SmallVectorImpl<EVT> &OutTys,
1166                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1167                        SelectionDAG &DAG) {
1168  SmallVector<CCValAssign, 16> RVLocs;
1169  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1170                 RVLocs, *DAG.getContext());
1171  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1172}
1173
1174SDValue
1175X86TargetLowering::LowerReturn(SDValue Chain,
1176                               CallingConv::ID CallConv, bool isVarArg,
1177                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1178                               DebugLoc dl, SelectionDAG &DAG) {
1179
1180  SmallVector<CCValAssign, 16> RVLocs;
1181  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1182                 RVLocs, *DAG.getContext());
1183  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1184
1185  // Add the regs to the liveout set for the function.
1186  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1187  for (unsigned i = 0; i != RVLocs.size(); ++i)
1188    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1189      MRI.addLiveOut(RVLocs[i].getLocReg());
1190
1191  SDValue Flag;
1192
1193  SmallVector<SDValue, 6> RetOps;
1194  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1195  // Operand #1 = Bytes To Pop
1196  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1197
1198  // Copy the result values into the output registers.
1199  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1200    CCValAssign &VA = RVLocs[i];
1201    assert(VA.isRegLoc() && "Can only return in registers!");
1202    SDValue ValToCopy = Outs[i].Val;
1203
1204    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1205    // the RET instruction and handled by the FP Stackifier.
1206    if (VA.getLocReg() == X86::ST0 ||
1207        VA.getLocReg() == X86::ST1) {
1208      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1209      // change the value to the FP stack register class.
1210      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1211        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1212      RetOps.push_back(ValToCopy);
1213      // Don't emit a copytoreg.
1214      continue;
1215    }
1216
1217    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1218    // which is returned in RAX / RDX.
1219    if (Subtarget->is64Bit()) {
1220      EVT ValVT = ValToCopy.getValueType();
1221      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1222        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1223        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1224          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1225      }
1226    }
1227
1228    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1229    Flag = Chain.getValue(1);
1230  }
1231
1232  // The x86-64 ABI for returning structs by value requires that we copy
1233  // the sret argument into %rax for the return. We saved the argument into
1234  // a virtual register in the entry block, so now we copy the value out
1235  // and into %rax.
1236  if (Subtarget->is64Bit() &&
1237      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1238    MachineFunction &MF = DAG.getMachineFunction();
1239    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1240    unsigned Reg = FuncInfo->getSRetReturnReg();
1241    if (!Reg) {
1242      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1243      FuncInfo->setSRetReturnReg(Reg);
1244    }
1245    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1246
1247    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1248    Flag = Chain.getValue(1);
1249
1250    // RAX now acts like a return value.
1251    MRI.addLiveOut(X86::RAX);
1252  }
1253
1254  RetOps[0] = Chain;  // Update chain.
1255
1256  // Add the flag if we have it.
1257  if (Flag.getNode())
1258    RetOps.push_back(Flag);
1259
1260  return DAG.getNode(X86ISD::RET_FLAG, dl,
1261                     MVT::Other, &RetOps[0], RetOps.size());
1262}
1263
1264/// LowerCallResult - Lower the result values of a call into the
1265/// appropriate copies out of appropriate physical registers.
1266///
1267SDValue
1268X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1269                                   CallingConv::ID CallConv, bool isVarArg,
1270                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1271                                   DebugLoc dl, SelectionDAG &DAG,
1272                                   SmallVectorImpl<SDValue> &InVals) {
1273
1274  // Assign locations to each value returned by this call.
1275  SmallVector<CCValAssign, 16> RVLocs;
1276  bool Is64Bit = Subtarget->is64Bit();
1277  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1278                 RVLocs, *DAG.getContext());
1279  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1280
1281  // Copy all of the result registers out of their specified physreg.
1282  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1283    CCValAssign &VA = RVLocs[i];
1284    EVT CopyVT = VA.getValVT();
1285
1286    // If this is x86-64, and we disabled SSE, we can't return FP values
1287    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1288        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1289      llvm_report_error("SSE register return with SSE disabled");
1290    }
1291
1292    // If this is a call to a function that returns an fp value on the floating
1293    // point stack, but where we prefer to use the value in xmm registers, copy
1294    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1295    if ((VA.getLocReg() == X86::ST0 ||
1296         VA.getLocReg() == X86::ST1) &&
1297        isScalarFPTypeInSSEReg(VA.getValVT())) {
1298      CopyVT = MVT::f80;
1299    }
1300
1301    SDValue Val;
1302    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1303      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1304      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1305        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1306                                   MVT::v2i64, InFlag).getValue(1);
1307        Val = Chain.getValue(0);
1308        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1309                          Val, DAG.getConstant(0, MVT::i64));
1310      } else {
1311        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1312                                   MVT::i64, InFlag).getValue(1);
1313        Val = Chain.getValue(0);
1314      }
1315      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1316    } else {
1317      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1318                                 CopyVT, InFlag).getValue(1);
1319      Val = Chain.getValue(0);
1320    }
1321    InFlag = Chain.getValue(2);
1322
1323    if (CopyVT != VA.getValVT()) {
1324      // Round the F80 the right size, which also moves to the appropriate xmm
1325      // register.
1326      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1327                        // This truncation won't change the value.
1328                        DAG.getIntPtrConstant(1));
1329    }
1330
1331    InVals.push_back(Val);
1332  }
1333
1334  return Chain;
1335}
1336
1337
1338//===----------------------------------------------------------------------===//
1339//                C & StdCall & Fast Calling Convention implementation
1340//===----------------------------------------------------------------------===//
1341//  StdCall calling convention seems to be standard for many Windows' API
1342//  routines and around. It differs from C calling convention just a little:
1343//  callee should clean up the stack, not caller. Symbols should be also
1344//  decorated in some fancy way :) It doesn't support any vector arguments.
1345//  For info on fast calling convention see Fast Calling Convention (tail call)
1346//  implementation LowerX86_32FastCCCallTo.
1347
1348/// CallIsStructReturn - Determines whether a call uses struct return
1349/// semantics.
1350static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1351  if (Outs.empty())
1352    return false;
1353
1354  return Outs[0].Flags.isSRet();
1355}
1356
1357/// ArgsAreStructReturn - Determines whether a function uses struct
1358/// return semantics.
1359static bool
1360ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1361  if (Ins.empty())
1362    return false;
1363
1364  return Ins[0].Flags.isSRet();
1365}
1366
1367/// IsCalleePop - Determines whether the callee is required to pop its
1368/// own arguments. Callee pop is necessary to support tail calls.
1369bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1370  if (IsVarArg)
1371    return false;
1372
1373  switch (CallingConv) {
1374  default:
1375    return false;
1376  case CallingConv::X86_StdCall:
1377    return !Subtarget->is64Bit();
1378  case CallingConv::X86_FastCall:
1379    return !Subtarget->is64Bit();
1380  case CallingConv::Fast:
1381    return GuaranteedTailCallOpt;
1382  }
1383}
1384
1385/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1386/// given CallingConvention value.
1387CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1388  if (Subtarget->is64Bit()) {
1389    if (Subtarget->isTargetWin64())
1390      return CC_X86_Win64_C;
1391    else
1392      return CC_X86_64_C;
1393  }
1394
1395  if (CC == CallingConv::X86_FastCall)
1396    return CC_X86_32_FastCall;
1397  else if (CC == CallingConv::Fast)
1398    return CC_X86_32_FastCC;
1399  else
1400    return CC_X86_32_C;
1401}
1402
1403/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1404/// by "Src" to address "Dst" with size and alignment information specified by
1405/// the specific parameter attribute. The copy will be passed as a byval
1406/// function parameter.
1407static SDValue
1408CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1409                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1410                          DebugLoc dl) {
1411  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1412  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1413                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1414}
1415
1416/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1417/// a tailcall target by changing its ABI.
1418static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1419  return GuaranteedTailCallOpt && CC == CallingConv::Fast;
1420}
1421
1422SDValue
1423X86TargetLowering::LowerMemArgument(SDValue Chain,
1424                                    CallingConv::ID CallConv,
1425                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1426                                    DebugLoc dl, SelectionDAG &DAG,
1427                                    const CCValAssign &VA,
1428                                    MachineFrameInfo *MFI,
1429                                    unsigned i) {
1430  // Create the nodes corresponding to a load from this parameter slot.
1431  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1432  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1433  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1434  EVT ValVT;
1435
1436  // If value is passed by pointer we have address passed instead of the value
1437  // itself.
1438  if (VA.getLocInfo() == CCValAssign::Indirect)
1439    ValVT = VA.getLocVT();
1440  else
1441    ValVT = VA.getValVT();
1442
1443  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1444  // changed with more analysis.
1445  // In case of tail call optimization mark all arguments mutable. Since they
1446  // could be overwritten by lowering of arguments in case of a tail call.
1447  if (Flags.isByVal()) {
1448    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1449                                    VA.getLocMemOffset(), isImmutable, false);
1450    return DAG.getFrameIndex(FI, getPointerTy());
1451  } else {
1452    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1453                                    VA.getLocMemOffset(), isImmutable, false);
1454    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1455    return DAG.getLoad(ValVT, dl, Chain, FIN,
1456                       PseudoSourceValue::getFixedStack(FI), 0,
1457                       false, false, 0);
1458  }
1459}
1460
1461SDValue
1462X86TargetLowering::LowerFormalArguments(SDValue Chain,
1463                                        CallingConv::ID CallConv,
1464                                        bool isVarArg,
1465                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1466                                        DebugLoc dl,
1467                                        SelectionDAG &DAG,
1468                                        SmallVectorImpl<SDValue> &InVals) {
1469
1470  MachineFunction &MF = DAG.getMachineFunction();
1471  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1472
1473  const Function* Fn = MF.getFunction();
1474  if (Fn->hasExternalLinkage() &&
1475      Subtarget->isTargetCygMing() &&
1476      Fn->getName() == "main")
1477    FuncInfo->setForceFramePointer(true);
1478
1479  MachineFrameInfo *MFI = MF.getFrameInfo();
1480  bool Is64Bit = Subtarget->is64Bit();
1481  bool IsWin64 = Subtarget->isTargetWin64();
1482
1483  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1484         "Var args not supported with calling convention fastcc");
1485
1486  // Assign locations to all of the incoming arguments.
1487  SmallVector<CCValAssign, 16> ArgLocs;
1488  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1489                 ArgLocs, *DAG.getContext());
1490  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1491
1492  unsigned LastVal = ~0U;
1493  SDValue ArgValue;
1494  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1495    CCValAssign &VA = ArgLocs[i];
1496    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1497    // places.
1498    assert(VA.getValNo() != LastVal &&
1499           "Don't support value assigned to multiple locs yet");
1500    LastVal = VA.getValNo();
1501
1502    if (VA.isRegLoc()) {
1503      EVT RegVT = VA.getLocVT();
1504      TargetRegisterClass *RC = NULL;
1505      if (RegVT == MVT::i32)
1506        RC = X86::GR32RegisterClass;
1507      else if (Is64Bit && RegVT == MVT::i64)
1508        RC = X86::GR64RegisterClass;
1509      else if (RegVT == MVT::f32)
1510        RC = X86::FR32RegisterClass;
1511      else if (RegVT == MVT::f64)
1512        RC = X86::FR64RegisterClass;
1513      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1514        RC = X86::VR128RegisterClass;
1515      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1516        RC = X86::VR64RegisterClass;
1517      else
1518        llvm_unreachable("Unknown argument type!");
1519
1520      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1521      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1522
1523      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1524      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1525      // right size.
1526      if (VA.getLocInfo() == CCValAssign::SExt)
1527        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1528                               DAG.getValueType(VA.getValVT()));
1529      else if (VA.getLocInfo() == CCValAssign::ZExt)
1530        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1531                               DAG.getValueType(VA.getValVT()));
1532      else if (VA.getLocInfo() == CCValAssign::BCvt)
1533        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1534
1535      if (VA.isExtInLoc()) {
1536        // Handle MMX values passed in XMM regs.
1537        if (RegVT.isVector()) {
1538          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1539                                 ArgValue, DAG.getConstant(0, MVT::i64));
1540          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1541        } else
1542          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1543      }
1544    } else {
1545      assert(VA.isMemLoc());
1546      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1547    }
1548
1549    // If value is passed via pointer - do a load.
1550    if (VA.getLocInfo() == CCValAssign::Indirect)
1551      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1552                             false, false, 0);
1553
1554    InVals.push_back(ArgValue);
1555  }
1556
1557  // The x86-64 ABI for returning structs by value requires that we copy
1558  // the sret argument into %rax for the return. Save the argument into
1559  // a virtual register so that we can access it from the return points.
1560  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1561    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1562    unsigned Reg = FuncInfo->getSRetReturnReg();
1563    if (!Reg) {
1564      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1565      FuncInfo->setSRetReturnReg(Reg);
1566    }
1567    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1568    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1569  }
1570
1571  unsigned StackSize = CCInfo.getNextStackOffset();
1572  // Align stack specially for tail calls.
1573  if (FuncIsMadeTailCallSafe(CallConv))
1574    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1575
1576  // If the function takes variable number of arguments, make a frame index for
1577  // the start of the first vararg value... for expansion of llvm.va_start.
1578  if (isVarArg) {
1579    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1580      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1581    }
1582    if (Is64Bit) {
1583      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1584
1585      // FIXME: We should really autogenerate these arrays
1586      static const unsigned GPR64ArgRegsWin64[] = {
1587        X86::RCX, X86::RDX, X86::R8,  X86::R9
1588      };
1589      static const unsigned XMMArgRegsWin64[] = {
1590        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1591      };
1592      static const unsigned GPR64ArgRegs64Bit[] = {
1593        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1594      };
1595      static const unsigned XMMArgRegs64Bit[] = {
1596        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1597        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1598      };
1599      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1600
1601      if (IsWin64) {
1602        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1603        GPR64ArgRegs = GPR64ArgRegsWin64;
1604        XMMArgRegs = XMMArgRegsWin64;
1605      } else {
1606        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1607        GPR64ArgRegs = GPR64ArgRegs64Bit;
1608        XMMArgRegs = XMMArgRegs64Bit;
1609      }
1610      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1611                                                       TotalNumIntRegs);
1612      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1613                                                       TotalNumXMMRegs);
1614
1615      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1616      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1617             "SSE register cannot be used when SSE is disabled!");
1618      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1619             "SSE register cannot be used when SSE is disabled!");
1620      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1621        // Kernel mode asks for SSE to be disabled, so don't push them
1622        // on the stack.
1623        TotalNumXMMRegs = 0;
1624
1625      // For X86-64, if there are vararg parameters that are passed via
1626      // registers, then we must store them to their spots on the stack so they
1627      // may be loaded by deferencing the result of va_next.
1628      VarArgsGPOffset = NumIntRegs * 8;
1629      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1630      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1631                                                 TotalNumXMMRegs * 16, 16,
1632                                                 false);
1633
1634      // Store the integer parameter registers.
1635      SmallVector<SDValue, 8> MemOps;
1636      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1637      unsigned Offset = VarArgsGPOffset;
1638      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1639        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1640                                  DAG.getIntPtrConstant(Offset));
1641        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1642                                     X86::GR64RegisterClass);
1643        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1644        SDValue Store =
1645          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1646                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1647                       Offset, false, false, 0);
1648        MemOps.push_back(Store);
1649        Offset += 8;
1650      }
1651
1652      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1653        // Now store the XMM (fp + vector) parameter registers.
1654        SmallVector<SDValue, 11> SaveXMMOps;
1655        SaveXMMOps.push_back(Chain);
1656
1657        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1658        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1659        SaveXMMOps.push_back(ALVal);
1660
1661        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1662        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1663
1664        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1665          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1666                                       X86::VR128RegisterClass);
1667          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1668          SaveXMMOps.push_back(Val);
1669        }
1670        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1671                                     MVT::Other,
1672                                     &SaveXMMOps[0], SaveXMMOps.size()));
1673      }
1674
1675      if (!MemOps.empty())
1676        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1677                            &MemOps[0], MemOps.size());
1678    }
1679  }
1680
1681  // Some CCs need callee pop.
1682  if (IsCalleePop(isVarArg, CallConv)) {
1683    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1684  } else {
1685    BytesToPopOnReturn  = 0; // Callee pops nothing.
1686    // If this is an sret function, the return should pop the hidden pointer.
1687    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1688      BytesToPopOnReturn = 4;
1689  }
1690
1691  if (!Is64Bit) {
1692    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1693    if (CallConv == CallingConv::X86_FastCall)
1694      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1695  }
1696
1697  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1698
1699  return Chain;
1700}
1701
1702SDValue
1703X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1704                                    SDValue StackPtr, SDValue Arg,
1705                                    DebugLoc dl, SelectionDAG &DAG,
1706                                    const CCValAssign &VA,
1707                                    ISD::ArgFlagsTy Flags) {
1708  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1709  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1710  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1711  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1712  if (Flags.isByVal()) {
1713    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1714  }
1715  return DAG.getStore(Chain, dl, Arg, PtrOff,
1716                      PseudoSourceValue::getStack(), LocMemOffset,
1717                      false, false, 0);
1718}
1719
1720/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1721/// optimization is performed and it is required.
1722SDValue
1723X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1724                                           SDValue &OutRetAddr, SDValue Chain,
1725                                           bool IsTailCall, bool Is64Bit,
1726                                           int FPDiff, DebugLoc dl) {
1727  // Adjust the Return address stack slot.
1728  EVT VT = getPointerTy();
1729  OutRetAddr = getReturnAddressFrameIndex(DAG);
1730
1731  // Load the "old" Return address.
1732  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1733  return SDValue(OutRetAddr.getNode(), 1);
1734}
1735
1736/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1737/// optimization is performed and it is required (FPDiff!=0).
1738static SDValue
1739EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1740                         SDValue Chain, SDValue RetAddrFrIdx,
1741                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1742  // Store the return address to the appropriate stack slot.
1743  if (!FPDiff) return Chain;
1744  // Calculate the new stack slot for the return address.
1745  int SlotSize = Is64Bit ? 8 : 4;
1746  int NewReturnAddrFI =
1747    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
1748  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1749  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1750  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1751                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1752                       false, false, 0);
1753  return Chain;
1754}
1755
1756SDValue
1757X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1758                             CallingConv::ID CallConv, bool isVarArg,
1759                             bool &isTailCall,
1760                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1761                             const SmallVectorImpl<ISD::InputArg> &Ins,
1762                             DebugLoc dl, SelectionDAG &DAG,
1763                             SmallVectorImpl<SDValue> &InVals) {
1764  MachineFunction &MF = DAG.getMachineFunction();
1765  bool Is64Bit        = Subtarget->is64Bit();
1766  bool IsStructRet    = CallIsStructReturn(Outs);
1767  bool IsSibcall      = false;
1768
1769  if (isTailCall) {
1770    // Check if it's really possible to do a tail call.
1771    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
1772                                                   Outs, Ins, DAG);
1773
1774    // Sibcalls are automatically detected tailcalls which do not require
1775    // ABI changes.
1776    if (!GuaranteedTailCallOpt && isTailCall)
1777      IsSibcall = true;
1778
1779    if (isTailCall)
1780      ++NumTailCalls;
1781  }
1782
1783  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1784         "Var args not supported with calling convention fastcc");
1785
1786  // Analyze operands of the call, assigning locations to each operand.
1787  SmallVector<CCValAssign, 16> ArgLocs;
1788  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1789                 ArgLocs, *DAG.getContext());
1790  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1791
1792  // Get a count of how many bytes are to be pushed on the stack.
1793  unsigned NumBytes = CCInfo.getNextStackOffset();
1794  if (IsSibcall)
1795    // This is a sibcall. The memory operands are available in caller's
1796    // own caller's stack.
1797    NumBytes = 0;
1798  else if (GuaranteedTailCallOpt && CallConv == CallingConv::Fast)
1799    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1800
1801  int FPDiff = 0;
1802  if (isTailCall && !IsSibcall) {
1803    // Lower arguments at fp - stackoffset + fpdiff.
1804    unsigned NumBytesCallerPushed =
1805      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1806    FPDiff = NumBytesCallerPushed - NumBytes;
1807
1808    // Set the delta of movement of the returnaddr stackslot.
1809    // But only set if delta is greater than previous delta.
1810    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1811      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1812  }
1813
1814  if (!IsSibcall)
1815    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1816
1817  SDValue RetAddrFrIdx;
1818  // Load return adress for tail calls.
1819  if (isTailCall && FPDiff)
1820    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1821                                    Is64Bit, FPDiff, dl);
1822
1823  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1824  SmallVector<SDValue, 8> MemOpChains;
1825  SDValue StackPtr;
1826
1827  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1828  // of tail call optimization arguments are handle later.
1829  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1830    CCValAssign &VA = ArgLocs[i];
1831    EVT RegVT = VA.getLocVT();
1832    SDValue Arg = Outs[i].Val;
1833    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1834    bool isByVal = Flags.isByVal();
1835
1836    // Promote the value if needed.
1837    switch (VA.getLocInfo()) {
1838    default: llvm_unreachable("Unknown loc info!");
1839    case CCValAssign::Full: break;
1840    case CCValAssign::SExt:
1841      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1842      break;
1843    case CCValAssign::ZExt:
1844      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1845      break;
1846    case CCValAssign::AExt:
1847      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1848        // Special case: passing MMX values in XMM registers.
1849        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1850        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1851        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1852      } else
1853        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1854      break;
1855    case CCValAssign::BCvt:
1856      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1857      break;
1858    case CCValAssign::Indirect: {
1859      // Store the argument.
1860      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1861      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1862      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1863                           PseudoSourceValue::getFixedStack(FI), 0,
1864                           false, false, 0);
1865      Arg = SpillSlot;
1866      break;
1867    }
1868    }
1869
1870    if (VA.isRegLoc()) {
1871      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1872    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1873      assert(VA.isMemLoc());
1874      if (StackPtr.getNode() == 0)
1875        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1876      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1877                                             dl, DAG, VA, Flags));
1878    }
1879  }
1880
1881  if (!MemOpChains.empty())
1882    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1883                        &MemOpChains[0], MemOpChains.size());
1884
1885  // Build a sequence of copy-to-reg nodes chained together with token chain
1886  // and flag operands which copy the outgoing args into registers.
1887  SDValue InFlag;
1888  // Tail call byval lowering might overwrite argument registers so in case of
1889  // tail call optimization the copies to registers are lowered later.
1890  if (!isTailCall)
1891    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1892      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1893                               RegsToPass[i].second, InFlag);
1894      InFlag = Chain.getValue(1);
1895    }
1896
1897  if (Subtarget->isPICStyleGOT()) {
1898    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1899    // GOT pointer.
1900    if (!isTailCall) {
1901      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1902                               DAG.getNode(X86ISD::GlobalBaseReg,
1903                                           DebugLoc::getUnknownLoc(),
1904                                           getPointerTy()),
1905                               InFlag);
1906      InFlag = Chain.getValue(1);
1907    } else {
1908      // If we are tail calling and generating PIC/GOT style code load the
1909      // address of the callee into ECX. The value in ecx is used as target of
1910      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1911      // for tail calls on PIC/GOT architectures. Normally we would just put the
1912      // address of GOT into ebx and then call target@PLT. But for tail calls
1913      // ebx would be restored (since ebx is callee saved) before jumping to the
1914      // target@PLT.
1915
1916      // Note: The actual moving to ECX is done further down.
1917      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1918      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1919          !G->getGlobal()->hasProtectedVisibility())
1920        Callee = LowerGlobalAddress(Callee, DAG);
1921      else if (isa<ExternalSymbolSDNode>(Callee))
1922        Callee = LowerExternalSymbol(Callee, DAG);
1923    }
1924  }
1925
1926  if (Is64Bit && isVarArg) {
1927    // From AMD64 ABI document:
1928    // For calls that may call functions that use varargs or stdargs
1929    // (prototype-less calls or calls to functions containing ellipsis (...) in
1930    // the declaration) %al is used as hidden argument to specify the number
1931    // of SSE registers used. The contents of %al do not need to match exactly
1932    // the number of registers, but must be an ubound on the number of SSE
1933    // registers used and is in the range 0 - 8 inclusive.
1934
1935    // FIXME: Verify this on Win64
1936    // Count the number of XMM registers allocated.
1937    static const unsigned XMMArgRegs[] = {
1938      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1939      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1940    };
1941    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1942    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1943           && "SSE registers cannot be used when SSE is disabled");
1944
1945    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1946                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1947    InFlag = Chain.getValue(1);
1948  }
1949
1950
1951  // For tail calls lower the arguments to the 'real' stack slot.
1952  if (isTailCall) {
1953    // Force all the incoming stack arguments to be loaded from the stack
1954    // before any new outgoing arguments are stored to the stack, because the
1955    // outgoing stack slots may alias the incoming argument stack slots, and
1956    // the alias isn't otherwise explicit. This is slightly more conservative
1957    // than necessary, because it means that each store effectively depends
1958    // on every argument instead of just those arguments it would clobber.
1959    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1960
1961    SmallVector<SDValue, 8> MemOpChains2;
1962    SDValue FIN;
1963    int FI = 0;
1964    // Do not flag preceeding copytoreg stuff together with the following stuff.
1965    InFlag = SDValue();
1966    if (GuaranteedTailCallOpt) {
1967      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1968        CCValAssign &VA = ArgLocs[i];
1969        if (VA.isRegLoc())
1970          continue;
1971        assert(VA.isMemLoc());
1972        SDValue Arg = Outs[i].Val;
1973        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1974        // Create frame index.
1975        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1976        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1977        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1978        FIN = DAG.getFrameIndex(FI, getPointerTy());
1979
1980        if (Flags.isByVal()) {
1981          // Copy relative to framepointer.
1982          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1983          if (StackPtr.getNode() == 0)
1984            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1985                                          getPointerTy());
1986          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1987
1988          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1989                                                           ArgChain,
1990                                                           Flags, DAG, dl));
1991        } else {
1992          // Store relative to framepointer.
1993          MemOpChains2.push_back(
1994            DAG.getStore(ArgChain, dl, Arg, FIN,
1995                         PseudoSourceValue::getFixedStack(FI), 0,
1996                         false, false, 0));
1997        }
1998      }
1999    }
2000
2001    if (!MemOpChains2.empty())
2002      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2003                          &MemOpChains2[0], MemOpChains2.size());
2004
2005    // Copy arguments to their registers.
2006    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2007      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2008                               RegsToPass[i].second, InFlag);
2009      InFlag = Chain.getValue(1);
2010    }
2011    InFlag =SDValue();
2012
2013    // Store the return address to the appropriate stack slot.
2014    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2015                                     FPDiff, dl);
2016  }
2017
2018  bool WasGlobalOrExternal = false;
2019  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2020    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2021    // In the 64-bit large code model, we have to make all calls
2022    // through a register, since the call instruction's 32-bit
2023    // pc-relative offset may not be large enough to hold the whole
2024    // address.
2025  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2026    WasGlobalOrExternal = true;
2027    // If the callee is a GlobalAddress node (quite common, every direct call
2028    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2029    // it.
2030
2031    // We should use extra load for direct calls to dllimported functions in
2032    // non-JIT mode.
2033    GlobalValue *GV = G->getGlobal();
2034    if (!GV->hasDLLImportLinkage()) {
2035      unsigned char OpFlags = 0;
2036
2037      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2038      // external symbols most go through the PLT in PIC mode.  If the symbol
2039      // has hidden or protected visibility, or if it is static or local, then
2040      // we don't need to use the PLT - we can directly call it.
2041      if (Subtarget->isTargetELF() &&
2042          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2043          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2044        OpFlags = X86II::MO_PLT;
2045      } else if (Subtarget->isPICStyleStubAny() &&
2046               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2047               Subtarget->getDarwinVers() < 9) {
2048        // PC-relative references to external symbols should go through $stub,
2049        // unless we're building with the leopard linker or later, which
2050        // automatically synthesizes these stubs.
2051        OpFlags = X86II::MO_DARWIN_STUB;
2052      }
2053
2054      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2055                                          G->getOffset(), OpFlags);
2056    }
2057  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2058    WasGlobalOrExternal = true;
2059    unsigned char OpFlags = 0;
2060
2061    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2062    // symbols should go through the PLT.
2063    if (Subtarget->isTargetELF() &&
2064        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2065      OpFlags = X86II::MO_PLT;
2066    } else if (Subtarget->isPICStyleStubAny() &&
2067             Subtarget->getDarwinVers() < 9) {
2068      // PC-relative references to external symbols should go through $stub,
2069      // unless we're building with the leopard linker or later, which
2070      // automatically synthesizes these stubs.
2071      OpFlags = X86II::MO_DARWIN_STUB;
2072    }
2073
2074    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2075                                         OpFlags);
2076  }
2077
2078  if (isTailCall && !WasGlobalOrExternal) {
2079    // Force the address into a (call preserved) caller-saved register since
2080    // tailcall must happen after callee-saved registers are poped.
2081    // FIXME: Give it a special register class that contains caller-saved
2082    // register instead?
2083    unsigned TCReg = Is64Bit ? X86::R11 : X86::EAX;
2084    Chain = DAG.getCopyToReg(Chain,  dl,
2085                             DAG.getRegister(TCReg, getPointerTy()),
2086                             Callee,InFlag);
2087    Callee = DAG.getRegister(TCReg, getPointerTy());
2088  }
2089
2090  // Returns a chain & a flag for retval copy to use.
2091  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2092  SmallVector<SDValue, 8> Ops;
2093
2094  if (!IsSibcall && isTailCall) {
2095    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2096                           DAG.getIntPtrConstant(0, true), InFlag);
2097    InFlag = Chain.getValue(1);
2098  }
2099
2100  Ops.push_back(Chain);
2101  Ops.push_back(Callee);
2102
2103  if (isTailCall)
2104    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2105
2106  // Add argument registers to the end of the list so that they are known live
2107  // into the call.
2108  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2109    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2110                                  RegsToPass[i].second.getValueType()));
2111
2112  // Add an implicit use GOT pointer in EBX.
2113  if (!isTailCall && Subtarget->isPICStyleGOT())
2114    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2115
2116  // Add an implicit use of AL for x86 vararg functions.
2117  if (Is64Bit && isVarArg)
2118    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2119
2120  if (InFlag.getNode())
2121    Ops.push_back(InFlag);
2122
2123  if (isTailCall) {
2124    // If this is the first return lowered for this function, add the regs
2125    // to the liveout set for the function.
2126    if (MF.getRegInfo().liveout_empty()) {
2127      SmallVector<CCValAssign, 16> RVLocs;
2128      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2129                     *DAG.getContext());
2130      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2131      for (unsigned i = 0; i != RVLocs.size(); ++i)
2132        if (RVLocs[i].isRegLoc())
2133          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2134    }
2135
2136    assert(((Callee.getOpcode() == ISD::Register &&
2137               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2138                cast<RegisterSDNode>(Callee)->getReg() == X86::R11)) ||
2139              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2140              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2141           "Expecting a global address, external symbol, or scratch register");
2142
2143    return DAG.getNode(X86ISD::TC_RETURN, dl,
2144                       NodeTys, &Ops[0], Ops.size());
2145  }
2146
2147  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2148  InFlag = Chain.getValue(1);
2149
2150  // Create the CALLSEQ_END node.
2151  unsigned NumBytesForCalleeToPush;
2152  if (IsCalleePop(isVarArg, CallConv))
2153    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2154  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2155    // If this is a call to a struct-return function, the callee
2156    // pops the hidden struct pointer, so we have to push it back.
2157    // This is common for Darwin/X86, Linux & Mingw32 targets.
2158    NumBytesForCalleeToPush = 4;
2159  else
2160    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2161
2162  // Returns a flag for retval copy to use.
2163  if (!IsSibcall) {
2164    Chain = DAG.getCALLSEQ_END(Chain,
2165                               DAG.getIntPtrConstant(NumBytes, true),
2166                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2167                                                     true),
2168                               InFlag);
2169    InFlag = Chain.getValue(1);
2170  }
2171
2172  // Handle result values, copying them out of physregs into vregs that we
2173  // return.
2174  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2175                         Ins, dl, DAG, InVals);
2176}
2177
2178
2179//===----------------------------------------------------------------------===//
2180//                Fast Calling Convention (tail call) implementation
2181//===----------------------------------------------------------------------===//
2182
2183//  Like std call, callee cleans arguments, convention except that ECX is
2184//  reserved for storing the tail called function address. Only 2 registers are
2185//  free for argument passing (inreg). Tail call optimization is performed
2186//  provided:
2187//                * tailcallopt is enabled
2188//                * caller/callee are fastcc
2189//  On X86_64 architecture with GOT-style position independent code only local
2190//  (within module) calls are supported at the moment.
2191//  To keep the stack aligned according to platform abi the function
2192//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2193//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2194//  If a tail called function callee has more arguments than the caller the
2195//  caller needs to make sure that there is room to move the RETADDR to. This is
2196//  achieved by reserving an area the size of the argument delta right after the
2197//  original REtADDR, but before the saved framepointer or the spilled registers
2198//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2199//  stack layout:
2200//    arg1
2201//    arg2
2202//    RETADDR
2203//    [ new RETADDR
2204//      move area ]
2205//    (possible EBP)
2206//    ESI
2207//    EDI
2208//    local1 ..
2209
2210/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2211/// for a 16 byte align requirement.
2212unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2213                                                        SelectionDAG& DAG) {
2214  MachineFunction &MF = DAG.getMachineFunction();
2215  const TargetMachine &TM = MF.getTarget();
2216  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2217  unsigned StackAlignment = TFI.getStackAlignment();
2218  uint64_t AlignMask = StackAlignment - 1;
2219  int64_t Offset = StackSize;
2220  uint64_t SlotSize = TD->getPointerSize();
2221  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2222    // Number smaller than 12 so just add the difference.
2223    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2224  } else {
2225    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2226    Offset = ((~AlignMask) & Offset) + StackAlignment +
2227      (StackAlignment-SlotSize);
2228  }
2229  return Offset;
2230}
2231
2232/// MatchingStackOffset - Return true if the given stack call argument is
2233/// already available in the same position (relatively) of the caller's
2234/// incoming argument stack.
2235static
2236bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2237                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2238                         const X86InstrInfo *TII) {
2239  int FI;
2240  if (Arg.getOpcode() == ISD::CopyFromReg) {
2241    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2242    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2243      return false;
2244    MachineInstr *Def = MRI->getVRegDef(VR);
2245    if (!Def)
2246      return false;
2247    if (!Flags.isByVal()) {
2248      if (!TII->isLoadFromStackSlot(Def, FI))
2249        return false;
2250    } else {
2251      unsigned Opcode = Def->getOpcode();
2252      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2253          Def->getOperand(1).isFI()) {
2254        FI = Def->getOperand(1).getIndex();
2255        if (MFI->getObjectSize(FI) != Flags.getByValSize())
2256          return false;
2257      } else
2258        return false;
2259    }
2260  } else {
2261    LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg);
2262    if (!Ld)
2263      return false;
2264    SDValue Ptr = Ld->getBasePtr();
2265    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2266    if (!FINode)
2267      return false;
2268    FI = FINode->getIndex();
2269  }
2270
2271  if (!MFI->isFixedObjectIndex(FI))
2272    return false;
2273  return Offset == MFI->getObjectOffset(FI);
2274}
2275
2276/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2277/// for tail call optimization. Targets which want to do tail call
2278/// optimization should implement this function.
2279bool
2280X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2281                                                     CallingConv::ID CalleeCC,
2282                                                     bool isVarArg,
2283                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2284                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2285                                                     SelectionDAG& DAG) const {
2286  if (CalleeCC != CallingConv::Fast &&
2287      CalleeCC != CallingConv::C)
2288    return false;
2289
2290  // If -tailcallopt is specified, make fastcc functions tail-callable.
2291  const Function *CallerF = DAG.getMachineFunction().getFunction();
2292  if (GuaranteedTailCallOpt) {
2293    if (CalleeCC == CallingConv::Fast &&
2294        CallerF->getCallingConv() == CalleeCC)
2295      return true;
2296    return false;
2297  }
2298
2299  // Look for obvious safe cases to perform tail call optimization that does not
2300  // requite ABI changes. This is what gcc calls sibcall.
2301
2302  // Do not tail call optimize vararg calls for now.
2303  if (isVarArg)
2304    return false;
2305
2306  // If the callee takes no arguments then go on to check the results of the
2307  // call.
2308  if (!Outs.empty()) {
2309    // Check if stack adjustment is needed. For now, do not do this if any
2310    // argument is passed on the stack.
2311    SmallVector<CCValAssign, 16> ArgLocs;
2312    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2313                   ArgLocs, *DAG.getContext());
2314    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2315    if (CCInfo.getNextStackOffset()) {
2316      MachineFunction &MF = DAG.getMachineFunction();
2317      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2318        return false;
2319      if (Subtarget->isTargetWin64())
2320        // Win64 ABI has additional complications.
2321        return false;
2322
2323      // Check if the arguments are already laid out in the right way as
2324      // the caller's fixed stack objects.
2325      MachineFrameInfo *MFI = MF.getFrameInfo();
2326      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2327      const X86InstrInfo *TII =
2328        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2329      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2330        CCValAssign &VA = ArgLocs[i];
2331        EVT RegVT = VA.getLocVT();
2332        SDValue Arg = Outs[i].Val;
2333        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2334        if (VA.getLocInfo() == CCValAssign::Indirect)
2335          return false;
2336        if (!VA.isRegLoc()) {
2337          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2338                                   MFI, MRI, TII))
2339            return false;
2340        }
2341      }
2342    }
2343  }
2344
2345  return true;
2346}
2347
2348FastISel *
2349X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2350                            DwarfWriter *dw,
2351                            DenseMap<const Value *, unsigned> &vm,
2352                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2353                            DenseMap<const AllocaInst *, int> &am
2354#ifndef NDEBUG
2355                          , SmallSet<Instruction*, 8> &cil
2356#endif
2357                                  ) {
2358  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2359#ifndef NDEBUG
2360                             , cil
2361#endif
2362                             );
2363}
2364
2365
2366//===----------------------------------------------------------------------===//
2367//                           Other Lowering Hooks
2368//===----------------------------------------------------------------------===//
2369
2370
2371SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2372  MachineFunction &MF = DAG.getMachineFunction();
2373  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2374  int ReturnAddrIndex = FuncInfo->getRAIndex();
2375
2376  if (ReturnAddrIndex == 0) {
2377    // Set up a frame object for the return address.
2378    uint64_t SlotSize = TD->getPointerSize();
2379    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2380                                                           false, false);
2381    FuncInfo->setRAIndex(ReturnAddrIndex);
2382  }
2383
2384  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2385}
2386
2387
2388bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2389                                       bool hasSymbolicDisplacement) {
2390  // Offset should fit into 32 bit immediate field.
2391  if (!isInt32(Offset))
2392    return false;
2393
2394  // If we don't have a symbolic displacement - we don't have any extra
2395  // restrictions.
2396  if (!hasSymbolicDisplacement)
2397    return true;
2398
2399  // FIXME: Some tweaks might be needed for medium code model.
2400  if (M != CodeModel::Small && M != CodeModel::Kernel)
2401    return false;
2402
2403  // For small code model we assume that latest object is 16MB before end of 31
2404  // bits boundary. We may also accept pretty large negative constants knowing
2405  // that all objects are in the positive half of address space.
2406  if (M == CodeModel::Small && Offset < 16*1024*1024)
2407    return true;
2408
2409  // For kernel code model we know that all object resist in the negative half
2410  // of 32bits address space. We may not accept negative offsets, since they may
2411  // be just off and we may accept pretty large positive ones.
2412  if (M == CodeModel::Kernel && Offset > 0)
2413    return true;
2414
2415  return false;
2416}
2417
2418/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2419/// specific condition code, returning the condition code and the LHS/RHS of the
2420/// comparison to make.
2421static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2422                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2423  if (!isFP) {
2424    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2425      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2426        // X > -1   -> X == 0, jump !sign.
2427        RHS = DAG.getConstant(0, RHS.getValueType());
2428        return X86::COND_NS;
2429      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2430        // X < 0   -> X == 0, jump on sign.
2431        return X86::COND_S;
2432      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2433        // X < 1   -> X <= 0
2434        RHS = DAG.getConstant(0, RHS.getValueType());
2435        return X86::COND_LE;
2436      }
2437    }
2438
2439    switch (SetCCOpcode) {
2440    default: llvm_unreachable("Invalid integer condition!");
2441    case ISD::SETEQ:  return X86::COND_E;
2442    case ISD::SETGT:  return X86::COND_G;
2443    case ISD::SETGE:  return X86::COND_GE;
2444    case ISD::SETLT:  return X86::COND_L;
2445    case ISD::SETLE:  return X86::COND_LE;
2446    case ISD::SETNE:  return X86::COND_NE;
2447    case ISD::SETULT: return X86::COND_B;
2448    case ISD::SETUGT: return X86::COND_A;
2449    case ISD::SETULE: return X86::COND_BE;
2450    case ISD::SETUGE: return X86::COND_AE;
2451    }
2452  }
2453
2454  // First determine if it is required or is profitable to flip the operands.
2455
2456  // If LHS is a foldable load, but RHS is not, flip the condition.
2457  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2458      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2459    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2460    std::swap(LHS, RHS);
2461  }
2462
2463  switch (SetCCOpcode) {
2464  default: break;
2465  case ISD::SETOLT:
2466  case ISD::SETOLE:
2467  case ISD::SETUGT:
2468  case ISD::SETUGE:
2469    std::swap(LHS, RHS);
2470    break;
2471  }
2472
2473  // On a floating point condition, the flags are set as follows:
2474  // ZF  PF  CF   op
2475  //  0 | 0 | 0 | X > Y
2476  //  0 | 0 | 1 | X < Y
2477  //  1 | 0 | 0 | X == Y
2478  //  1 | 1 | 1 | unordered
2479  switch (SetCCOpcode) {
2480  default: llvm_unreachable("Condcode should be pre-legalized away");
2481  case ISD::SETUEQ:
2482  case ISD::SETEQ:   return X86::COND_E;
2483  case ISD::SETOLT:              // flipped
2484  case ISD::SETOGT:
2485  case ISD::SETGT:   return X86::COND_A;
2486  case ISD::SETOLE:              // flipped
2487  case ISD::SETOGE:
2488  case ISD::SETGE:   return X86::COND_AE;
2489  case ISD::SETUGT:              // flipped
2490  case ISD::SETULT:
2491  case ISD::SETLT:   return X86::COND_B;
2492  case ISD::SETUGE:              // flipped
2493  case ISD::SETULE:
2494  case ISD::SETLE:   return X86::COND_BE;
2495  case ISD::SETONE:
2496  case ISD::SETNE:   return X86::COND_NE;
2497  case ISD::SETUO:   return X86::COND_P;
2498  case ISD::SETO:    return X86::COND_NP;
2499  case ISD::SETOEQ:
2500  case ISD::SETUNE:  return X86::COND_INVALID;
2501  }
2502}
2503
2504/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2505/// code. Current x86 isa includes the following FP cmov instructions:
2506/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2507static bool hasFPCMov(unsigned X86CC) {
2508  switch (X86CC) {
2509  default:
2510    return false;
2511  case X86::COND_B:
2512  case X86::COND_BE:
2513  case X86::COND_E:
2514  case X86::COND_P:
2515  case X86::COND_A:
2516  case X86::COND_AE:
2517  case X86::COND_NE:
2518  case X86::COND_NP:
2519    return true;
2520  }
2521}
2522
2523/// isFPImmLegal - Returns true if the target can instruction select the
2524/// specified FP immediate natively. If false, the legalizer will
2525/// materialize the FP immediate as a load from a constant pool.
2526bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2527  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2528    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2529      return true;
2530  }
2531  return false;
2532}
2533
2534/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2535/// the specified range (L, H].
2536static bool isUndefOrInRange(int Val, int Low, int Hi) {
2537  return (Val < 0) || (Val >= Low && Val < Hi);
2538}
2539
2540/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2541/// specified value.
2542static bool isUndefOrEqual(int Val, int CmpVal) {
2543  if (Val < 0 || Val == CmpVal)
2544    return true;
2545  return false;
2546}
2547
2548/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2549/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2550/// the second operand.
2551static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2552  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2553    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2554  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2555    return (Mask[0] < 2 && Mask[1] < 2);
2556  return false;
2557}
2558
2559bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2560  SmallVector<int, 8> M;
2561  N->getMask(M);
2562  return ::isPSHUFDMask(M, N->getValueType(0));
2563}
2564
2565/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2566/// is suitable for input to PSHUFHW.
2567static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2568  if (VT != MVT::v8i16)
2569    return false;
2570
2571  // Lower quadword copied in order or undef.
2572  for (int i = 0; i != 4; ++i)
2573    if (Mask[i] >= 0 && Mask[i] != i)
2574      return false;
2575
2576  // Upper quadword shuffled.
2577  for (int i = 4; i != 8; ++i)
2578    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2579      return false;
2580
2581  return true;
2582}
2583
2584bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2585  SmallVector<int, 8> M;
2586  N->getMask(M);
2587  return ::isPSHUFHWMask(M, N->getValueType(0));
2588}
2589
2590/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2591/// is suitable for input to PSHUFLW.
2592static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2593  if (VT != MVT::v8i16)
2594    return false;
2595
2596  // Upper quadword copied in order.
2597  for (int i = 4; i != 8; ++i)
2598    if (Mask[i] >= 0 && Mask[i] != i)
2599      return false;
2600
2601  // Lower quadword shuffled.
2602  for (int i = 0; i != 4; ++i)
2603    if (Mask[i] >= 4)
2604      return false;
2605
2606  return true;
2607}
2608
2609bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2610  SmallVector<int, 8> M;
2611  N->getMask(M);
2612  return ::isPSHUFLWMask(M, N->getValueType(0));
2613}
2614
2615/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2616/// is suitable for input to PALIGNR.
2617static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2618                          bool hasSSSE3) {
2619  int i, e = VT.getVectorNumElements();
2620
2621  // Do not handle v2i64 / v2f64 shuffles with palignr.
2622  if (e < 4 || !hasSSSE3)
2623    return false;
2624
2625  for (i = 0; i != e; ++i)
2626    if (Mask[i] >= 0)
2627      break;
2628
2629  // All undef, not a palignr.
2630  if (i == e)
2631    return false;
2632
2633  // Determine if it's ok to perform a palignr with only the LHS, since we
2634  // don't have access to the actual shuffle elements to see if RHS is undef.
2635  bool Unary = Mask[i] < (int)e;
2636  bool NeedsUnary = false;
2637
2638  int s = Mask[i] - i;
2639
2640  // Check the rest of the elements to see if they are consecutive.
2641  for (++i; i != e; ++i) {
2642    int m = Mask[i];
2643    if (m < 0)
2644      continue;
2645
2646    Unary = Unary && (m < (int)e);
2647    NeedsUnary = NeedsUnary || (m < s);
2648
2649    if (NeedsUnary && !Unary)
2650      return false;
2651    if (Unary && m != ((s+i) & (e-1)))
2652      return false;
2653    if (!Unary && m != (s+i))
2654      return false;
2655  }
2656  return true;
2657}
2658
2659bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2660  SmallVector<int, 8> M;
2661  N->getMask(M);
2662  return ::isPALIGNRMask(M, N->getValueType(0), true);
2663}
2664
2665/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2666/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2667static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2668  int NumElems = VT.getVectorNumElements();
2669  if (NumElems != 2 && NumElems != 4)
2670    return false;
2671
2672  int Half = NumElems / 2;
2673  for (int i = 0; i < Half; ++i)
2674    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2675      return false;
2676  for (int i = Half; i < NumElems; ++i)
2677    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2678      return false;
2679
2680  return true;
2681}
2682
2683bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2684  SmallVector<int, 8> M;
2685  N->getMask(M);
2686  return ::isSHUFPMask(M, N->getValueType(0));
2687}
2688
2689/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2690/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2691/// half elements to come from vector 1 (which would equal the dest.) and
2692/// the upper half to come from vector 2.
2693static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2694  int NumElems = VT.getVectorNumElements();
2695
2696  if (NumElems != 2 && NumElems != 4)
2697    return false;
2698
2699  int Half = NumElems / 2;
2700  for (int i = 0; i < Half; ++i)
2701    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2702      return false;
2703  for (int i = Half; i < NumElems; ++i)
2704    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2705      return false;
2706  return true;
2707}
2708
2709static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2710  SmallVector<int, 8> M;
2711  N->getMask(M);
2712  return isCommutedSHUFPMask(M, N->getValueType(0));
2713}
2714
2715/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2716/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2717bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2718  if (N->getValueType(0).getVectorNumElements() != 4)
2719    return false;
2720
2721  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2722  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2723         isUndefOrEqual(N->getMaskElt(1), 7) &&
2724         isUndefOrEqual(N->getMaskElt(2), 2) &&
2725         isUndefOrEqual(N->getMaskElt(3), 3);
2726}
2727
2728/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2729/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2730/// <2, 3, 2, 3>
2731bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2732  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2733
2734  if (NumElems != 4)
2735    return false;
2736
2737  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2738  isUndefOrEqual(N->getMaskElt(1), 3) &&
2739  isUndefOrEqual(N->getMaskElt(2), 2) &&
2740  isUndefOrEqual(N->getMaskElt(3), 3);
2741}
2742
2743/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2744/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2745bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2746  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2747
2748  if (NumElems != 2 && NumElems != 4)
2749    return false;
2750
2751  for (unsigned i = 0; i < NumElems/2; ++i)
2752    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2753      return false;
2754
2755  for (unsigned i = NumElems/2; i < NumElems; ++i)
2756    if (!isUndefOrEqual(N->getMaskElt(i), i))
2757      return false;
2758
2759  return true;
2760}
2761
2762/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2763/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2764bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2765  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2766
2767  if (NumElems != 2 && NumElems != 4)
2768    return false;
2769
2770  for (unsigned i = 0; i < NumElems/2; ++i)
2771    if (!isUndefOrEqual(N->getMaskElt(i), i))
2772      return false;
2773
2774  for (unsigned i = 0; i < NumElems/2; ++i)
2775    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2776      return false;
2777
2778  return true;
2779}
2780
2781/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2782/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2783static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2784                         bool V2IsSplat = false) {
2785  int NumElts = VT.getVectorNumElements();
2786  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2787    return false;
2788
2789  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2790    int BitI  = Mask[i];
2791    int BitI1 = Mask[i+1];
2792    if (!isUndefOrEqual(BitI, j))
2793      return false;
2794    if (V2IsSplat) {
2795      if (!isUndefOrEqual(BitI1, NumElts))
2796        return false;
2797    } else {
2798      if (!isUndefOrEqual(BitI1, j + NumElts))
2799        return false;
2800    }
2801  }
2802  return true;
2803}
2804
2805bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2806  SmallVector<int, 8> M;
2807  N->getMask(M);
2808  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2809}
2810
2811/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2812/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2813static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2814                         bool V2IsSplat = false) {
2815  int NumElts = VT.getVectorNumElements();
2816  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2817    return false;
2818
2819  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2820    int BitI  = Mask[i];
2821    int BitI1 = Mask[i+1];
2822    if (!isUndefOrEqual(BitI, j + NumElts/2))
2823      return false;
2824    if (V2IsSplat) {
2825      if (isUndefOrEqual(BitI1, NumElts))
2826        return false;
2827    } else {
2828      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2829        return false;
2830    }
2831  }
2832  return true;
2833}
2834
2835bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2836  SmallVector<int, 8> M;
2837  N->getMask(M);
2838  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2839}
2840
2841/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2842/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2843/// <0, 0, 1, 1>
2844static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2845  int NumElems = VT.getVectorNumElements();
2846  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2847    return false;
2848
2849  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2850    int BitI  = Mask[i];
2851    int BitI1 = Mask[i+1];
2852    if (!isUndefOrEqual(BitI, j))
2853      return false;
2854    if (!isUndefOrEqual(BitI1, j))
2855      return false;
2856  }
2857  return true;
2858}
2859
2860bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2861  SmallVector<int, 8> M;
2862  N->getMask(M);
2863  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2864}
2865
2866/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2867/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2868/// <2, 2, 3, 3>
2869static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2870  int NumElems = VT.getVectorNumElements();
2871  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2872    return false;
2873
2874  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2875    int BitI  = Mask[i];
2876    int BitI1 = Mask[i+1];
2877    if (!isUndefOrEqual(BitI, j))
2878      return false;
2879    if (!isUndefOrEqual(BitI1, j))
2880      return false;
2881  }
2882  return true;
2883}
2884
2885bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2886  SmallVector<int, 8> M;
2887  N->getMask(M);
2888  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2889}
2890
2891/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2892/// specifies a shuffle of elements that is suitable for input to MOVSS,
2893/// MOVSD, and MOVD, i.e. setting the lowest element.
2894static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2895  if (VT.getVectorElementType().getSizeInBits() < 32)
2896    return false;
2897
2898  int NumElts = VT.getVectorNumElements();
2899
2900  if (!isUndefOrEqual(Mask[0], NumElts))
2901    return false;
2902
2903  for (int i = 1; i < NumElts; ++i)
2904    if (!isUndefOrEqual(Mask[i], i))
2905      return false;
2906
2907  return true;
2908}
2909
2910bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2911  SmallVector<int, 8> M;
2912  N->getMask(M);
2913  return ::isMOVLMask(M, N->getValueType(0));
2914}
2915
2916/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2917/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2918/// element of vector 2 and the other elements to come from vector 1 in order.
2919static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2920                               bool V2IsSplat = false, bool V2IsUndef = false) {
2921  int NumOps = VT.getVectorNumElements();
2922  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2923    return false;
2924
2925  if (!isUndefOrEqual(Mask[0], 0))
2926    return false;
2927
2928  for (int i = 1; i < NumOps; ++i)
2929    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2930          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2931          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2932      return false;
2933
2934  return true;
2935}
2936
2937static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2938                           bool V2IsUndef = false) {
2939  SmallVector<int, 8> M;
2940  N->getMask(M);
2941  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2942}
2943
2944/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2945/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2946bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2947  if (N->getValueType(0).getVectorNumElements() != 4)
2948    return false;
2949
2950  // Expect 1, 1, 3, 3
2951  for (unsigned i = 0; i < 2; ++i) {
2952    int Elt = N->getMaskElt(i);
2953    if (Elt >= 0 && Elt != 1)
2954      return false;
2955  }
2956
2957  bool HasHi = false;
2958  for (unsigned i = 2; i < 4; ++i) {
2959    int Elt = N->getMaskElt(i);
2960    if (Elt >= 0 && Elt != 3)
2961      return false;
2962    if (Elt == 3)
2963      HasHi = true;
2964  }
2965  // Don't use movshdup if it can be done with a shufps.
2966  // FIXME: verify that matching u, u, 3, 3 is what we want.
2967  return HasHi;
2968}
2969
2970/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2971/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2972bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2973  if (N->getValueType(0).getVectorNumElements() != 4)
2974    return false;
2975
2976  // Expect 0, 0, 2, 2
2977  for (unsigned i = 0; i < 2; ++i)
2978    if (N->getMaskElt(i) > 0)
2979      return false;
2980
2981  bool HasHi = false;
2982  for (unsigned i = 2; i < 4; ++i) {
2983    int Elt = N->getMaskElt(i);
2984    if (Elt >= 0 && Elt != 2)
2985      return false;
2986    if (Elt == 2)
2987      HasHi = true;
2988  }
2989  // Don't use movsldup if it can be done with a shufps.
2990  return HasHi;
2991}
2992
2993/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2994/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2995bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2996  int e = N->getValueType(0).getVectorNumElements() / 2;
2997
2998  for (int i = 0; i < e; ++i)
2999    if (!isUndefOrEqual(N->getMaskElt(i), i))
3000      return false;
3001  for (int i = 0; i < e; ++i)
3002    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3003      return false;
3004  return true;
3005}
3006
3007/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3008/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3009unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3010  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3011  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3012
3013  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3014  unsigned Mask = 0;
3015  for (int i = 0; i < NumOperands; ++i) {
3016    int Val = SVOp->getMaskElt(NumOperands-i-1);
3017    if (Val < 0) Val = 0;
3018    if (Val >= NumOperands) Val -= NumOperands;
3019    Mask |= Val;
3020    if (i != NumOperands - 1)
3021      Mask <<= Shift;
3022  }
3023  return Mask;
3024}
3025
3026/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3027/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3028unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3029  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3030  unsigned Mask = 0;
3031  // 8 nodes, but we only care about the last 4.
3032  for (unsigned i = 7; i >= 4; --i) {
3033    int Val = SVOp->getMaskElt(i);
3034    if (Val >= 0)
3035      Mask |= (Val - 4);
3036    if (i != 4)
3037      Mask <<= 2;
3038  }
3039  return Mask;
3040}
3041
3042/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3043/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3044unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3045  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3046  unsigned Mask = 0;
3047  // 8 nodes, but we only care about the first 4.
3048  for (int i = 3; i >= 0; --i) {
3049    int Val = SVOp->getMaskElt(i);
3050    if (Val >= 0)
3051      Mask |= Val;
3052    if (i != 0)
3053      Mask <<= 2;
3054  }
3055  return Mask;
3056}
3057
3058/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3059/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3060unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3061  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3062  EVT VVT = N->getValueType(0);
3063  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3064  int Val = 0;
3065
3066  unsigned i, e;
3067  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3068    Val = SVOp->getMaskElt(i);
3069    if (Val >= 0)
3070      break;
3071  }
3072  return (Val - i) * EltSize;
3073}
3074
3075/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3076/// constant +0.0.
3077bool X86::isZeroNode(SDValue Elt) {
3078  return ((isa<ConstantSDNode>(Elt) &&
3079           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3080          (isa<ConstantFPSDNode>(Elt) &&
3081           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3082}
3083
3084/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3085/// their permute mask.
3086static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3087                                    SelectionDAG &DAG) {
3088  EVT VT = SVOp->getValueType(0);
3089  unsigned NumElems = VT.getVectorNumElements();
3090  SmallVector<int, 8> MaskVec;
3091
3092  for (unsigned i = 0; i != NumElems; ++i) {
3093    int idx = SVOp->getMaskElt(i);
3094    if (idx < 0)
3095      MaskVec.push_back(idx);
3096    else if (idx < (int)NumElems)
3097      MaskVec.push_back(idx + NumElems);
3098    else
3099      MaskVec.push_back(idx - NumElems);
3100  }
3101  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3102                              SVOp->getOperand(0), &MaskVec[0]);
3103}
3104
3105/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3106/// the two vector operands have swapped position.
3107static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3108  unsigned NumElems = VT.getVectorNumElements();
3109  for (unsigned i = 0; i != NumElems; ++i) {
3110    int idx = Mask[i];
3111    if (idx < 0)
3112      continue;
3113    else if (idx < (int)NumElems)
3114      Mask[i] = idx + NumElems;
3115    else
3116      Mask[i] = idx - NumElems;
3117  }
3118}
3119
3120/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3121/// match movhlps. The lower half elements should come from upper half of
3122/// V1 (and in order), and the upper half elements should come from the upper
3123/// half of V2 (and in order).
3124static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3125  if (Op->getValueType(0).getVectorNumElements() != 4)
3126    return false;
3127  for (unsigned i = 0, e = 2; i != e; ++i)
3128    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3129      return false;
3130  for (unsigned i = 2; i != 4; ++i)
3131    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3132      return false;
3133  return true;
3134}
3135
3136/// isScalarLoadToVector - Returns true if the node is a scalar load that
3137/// is promoted to a vector. It also returns the LoadSDNode by reference if
3138/// required.
3139static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3140  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3141    return false;
3142  N = N->getOperand(0).getNode();
3143  if (!ISD::isNON_EXTLoad(N))
3144    return false;
3145  if (LD)
3146    *LD = cast<LoadSDNode>(N);
3147  return true;
3148}
3149
3150/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3151/// match movlp{s|d}. The lower half elements should come from lower half of
3152/// V1 (and in order), and the upper half elements should come from the upper
3153/// half of V2 (and in order). And since V1 will become the source of the
3154/// MOVLP, it must be either a vector load or a scalar load to vector.
3155static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3156                               ShuffleVectorSDNode *Op) {
3157  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3158    return false;
3159  // Is V2 is a vector load, don't do this transformation. We will try to use
3160  // load folding shufps op.
3161  if (ISD::isNON_EXTLoad(V2))
3162    return false;
3163
3164  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3165
3166  if (NumElems != 2 && NumElems != 4)
3167    return false;
3168  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3169    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3170      return false;
3171  for (unsigned i = NumElems/2; i != NumElems; ++i)
3172    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3173      return false;
3174  return true;
3175}
3176
3177/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3178/// all the same.
3179static bool isSplatVector(SDNode *N) {
3180  if (N->getOpcode() != ISD::BUILD_VECTOR)
3181    return false;
3182
3183  SDValue SplatValue = N->getOperand(0);
3184  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3185    if (N->getOperand(i) != SplatValue)
3186      return false;
3187  return true;
3188}
3189
3190/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3191/// to an zero vector.
3192/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3193static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3194  SDValue V1 = N->getOperand(0);
3195  SDValue V2 = N->getOperand(1);
3196  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3197  for (unsigned i = 0; i != NumElems; ++i) {
3198    int Idx = N->getMaskElt(i);
3199    if (Idx >= (int)NumElems) {
3200      unsigned Opc = V2.getOpcode();
3201      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3202        continue;
3203      if (Opc != ISD::BUILD_VECTOR ||
3204          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3205        return false;
3206    } else if (Idx >= 0) {
3207      unsigned Opc = V1.getOpcode();
3208      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3209        continue;
3210      if (Opc != ISD::BUILD_VECTOR ||
3211          !X86::isZeroNode(V1.getOperand(Idx)))
3212        return false;
3213    }
3214  }
3215  return true;
3216}
3217
3218/// getZeroVector - Returns a vector of specified type with all zero elements.
3219///
3220static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3221                             DebugLoc dl) {
3222  assert(VT.isVector() && "Expected a vector type");
3223
3224  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3225  // type.  This ensures they get CSE'd.
3226  SDValue Vec;
3227  if (VT.getSizeInBits() == 64) { // MMX
3228    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3229    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3230  } else if (HasSSE2) {  // SSE2
3231    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3232    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3233  } else { // SSE1
3234    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3235    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3236  }
3237  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3238}
3239
3240/// getOnesVector - Returns a vector of specified type with all bits set.
3241///
3242static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3243  assert(VT.isVector() && "Expected a vector type");
3244
3245  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3246  // type.  This ensures they get CSE'd.
3247  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3248  SDValue Vec;
3249  if (VT.getSizeInBits() == 64)  // MMX
3250    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3251  else                                              // SSE
3252    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3253  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3254}
3255
3256
3257/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3258/// that point to V2 points to its first element.
3259static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3260  EVT VT = SVOp->getValueType(0);
3261  unsigned NumElems = VT.getVectorNumElements();
3262
3263  bool Changed = false;
3264  SmallVector<int, 8> MaskVec;
3265  SVOp->getMask(MaskVec);
3266
3267  for (unsigned i = 0; i != NumElems; ++i) {
3268    if (MaskVec[i] > (int)NumElems) {
3269      MaskVec[i] = NumElems;
3270      Changed = true;
3271    }
3272  }
3273  if (Changed)
3274    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3275                                SVOp->getOperand(1), &MaskVec[0]);
3276  return SDValue(SVOp, 0);
3277}
3278
3279/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3280/// operation of specified width.
3281static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3282                       SDValue V2) {
3283  unsigned NumElems = VT.getVectorNumElements();
3284  SmallVector<int, 8> Mask;
3285  Mask.push_back(NumElems);
3286  for (unsigned i = 1; i != NumElems; ++i)
3287    Mask.push_back(i);
3288  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3289}
3290
3291/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3292static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3293                          SDValue V2) {
3294  unsigned NumElems = VT.getVectorNumElements();
3295  SmallVector<int, 8> Mask;
3296  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3297    Mask.push_back(i);
3298    Mask.push_back(i + NumElems);
3299  }
3300  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3301}
3302
3303/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3304static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3305                          SDValue V2) {
3306  unsigned NumElems = VT.getVectorNumElements();
3307  unsigned Half = NumElems/2;
3308  SmallVector<int, 8> Mask;
3309  for (unsigned i = 0; i != Half; ++i) {
3310    Mask.push_back(i + Half);
3311    Mask.push_back(i + NumElems + Half);
3312  }
3313  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3314}
3315
3316/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3317static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3318                            bool HasSSE2) {
3319  if (SV->getValueType(0).getVectorNumElements() <= 4)
3320    return SDValue(SV, 0);
3321
3322  EVT PVT = MVT::v4f32;
3323  EVT VT = SV->getValueType(0);
3324  DebugLoc dl = SV->getDebugLoc();
3325  SDValue V1 = SV->getOperand(0);
3326  int NumElems = VT.getVectorNumElements();
3327  int EltNo = SV->getSplatIndex();
3328
3329  // unpack elements to the correct location
3330  while (NumElems > 4) {
3331    if (EltNo < NumElems/2) {
3332      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3333    } else {
3334      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3335      EltNo -= NumElems/2;
3336    }
3337    NumElems >>= 1;
3338  }
3339
3340  // Perform the splat.
3341  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3342  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3343  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3344  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3345}
3346
3347/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3348/// vector of zero or undef vector.  This produces a shuffle where the low
3349/// element of V2 is swizzled into the zero/undef vector, landing at element
3350/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3351static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3352                                             bool isZero, bool HasSSE2,
3353                                             SelectionDAG &DAG) {
3354  EVT VT = V2.getValueType();
3355  SDValue V1 = isZero
3356    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3357  unsigned NumElems = VT.getVectorNumElements();
3358  SmallVector<int, 16> MaskVec;
3359  for (unsigned i = 0; i != NumElems; ++i)
3360    // If this is the insertion idx, put the low elt of V2 here.
3361    MaskVec.push_back(i == Idx ? NumElems : i);
3362  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3363}
3364
3365/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3366/// a shuffle that is zero.
3367static
3368unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3369                                  bool Low, SelectionDAG &DAG) {
3370  unsigned NumZeros = 0;
3371  for (int i = 0; i < NumElems; ++i) {
3372    unsigned Index = Low ? i : NumElems-i-1;
3373    int Idx = SVOp->getMaskElt(Index);
3374    if (Idx < 0) {
3375      ++NumZeros;
3376      continue;
3377    }
3378    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3379    if (Elt.getNode() && X86::isZeroNode(Elt))
3380      ++NumZeros;
3381    else
3382      break;
3383  }
3384  return NumZeros;
3385}
3386
3387/// isVectorShift - Returns true if the shuffle can be implemented as a
3388/// logical left or right shift of a vector.
3389/// FIXME: split into pslldqi, psrldqi, palignr variants.
3390static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3391                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3392  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3393
3394  isLeft = true;
3395  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3396  if (!NumZeros) {
3397    isLeft = false;
3398    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3399    if (!NumZeros)
3400      return false;
3401  }
3402  bool SeenV1 = false;
3403  bool SeenV2 = false;
3404  for (int i = NumZeros; i < NumElems; ++i) {
3405    int Val = isLeft ? (i - NumZeros) : i;
3406    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3407    if (Idx < 0)
3408      continue;
3409    if (Idx < NumElems)
3410      SeenV1 = true;
3411    else {
3412      Idx -= NumElems;
3413      SeenV2 = true;
3414    }
3415    if (Idx != Val)
3416      return false;
3417  }
3418  if (SeenV1 && SeenV2)
3419    return false;
3420
3421  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3422  ShAmt = NumZeros;
3423  return true;
3424}
3425
3426
3427/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3428///
3429static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3430                                       unsigned NumNonZero, unsigned NumZero,
3431                                       SelectionDAG &DAG, TargetLowering &TLI) {
3432  if (NumNonZero > 8)
3433    return SDValue();
3434
3435  DebugLoc dl = Op.getDebugLoc();
3436  SDValue V(0, 0);
3437  bool First = true;
3438  for (unsigned i = 0; i < 16; ++i) {
3439    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3440    if (ThisIsNonZero && First) {
3441      if (NumZero)
3442        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3443      else
3444        V = DAG.getUNDEF(MVT::v8i16);
3445      First = false;
3446    }
3447
3448    if ((i & 1) != 0) {
3449      SDValue ThisElt(0, 0), LastElt(0, 0);
3450      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3451      if (LastIsNonZero) {
3452        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3453                              MVT::i16, Op.getOperand(i-1));
3454      }
3455      if (ThisIsNonZero) {
3456        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3457        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3458                              ThisElt, DAG.getConstant(8, MVT::i8));
3459        if (LastIsNonZero)
3460          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3461      } else
3462        ThisElt = LastElt;
3463
3464      if (ThisElt.getNode())
3465        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3466                        DAG.getIntPtrConstant(i/2));
3467    }
3468  }
3469
3470  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3471}
3472
3473/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3474///
3475static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3476                                       unsigned NumNonZero, unsigned NumZero,
3477                                       SelectionDAG &DAG, TargetLowering &TLI) {
3478  if (NumNonZero > 4)
3479    return SDValue();
3480
3481  DebugLoc dl = Op.getDebugLoc();
3482  SDValue V(0, 0);
3483  bool First = true;
3484  for (unsigned i = 0; i < 8; ++i) {
3485    bool isNonZero = (NonZeros & (1 << i)) != 0;
3486    if (isNonZero) {
3487      if (First) {
3488        if (NumZero)
3489          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3490        else
3491          V = DAG.getUNDEF(MVT::v8i16);
3492        First = false;
3493      }
3494      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3495                      MVT::v8i16, V, Op.getOperand(i),
3496                      DAG.getIntPtrConstant(i));
3497    }
3498  }
3499
3500  return V;
3501}
3502
3503/// getVShift - Return a vector logical shift node.
3504///
3505static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3506                         unsigned NumBits, SelectionDAG &DAG,
3507                         const TargetLowering &TLI, DebugLoc dl) {
3508  bool isMMX = VT.getSizeInBits() == 64;
3509  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3510  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3511  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3512  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3513                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3514                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3515}
3516
3517SDValue
3518X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3519                                          SelectionDAG &DAG) {
3520
3521  // Check if the scalar load can be widened into a vector load. And if
3522  // the address is "base + cst" see if the cst can be "absorbed" into
3523  // the shuffle mask.
3524  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3525    SDValue Ptr = LD->getBasePtr();
3526    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3527      return SDValue();
3528    EVT PVT = LD->getValueType(0);
3529    if (PVT != MVT::i32 && PVT != MVT::f32)
3530      return SDValue();
3531
3532    int FI = -1;
3533    int64_t Offset = 0;
3534    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3535      FI = FINode->getIndex();
3536      Offset = 0;
3537    } else if (Ptr.getOpcode() == ISD::ADD &&
3538               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3539               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3540      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3541      Offset = Ptr.getConstantOperandVal(1);
3542      Ptr = Ptr.getOperand(0);
3543    } else {
3544      return SDValue();
3545    }
3546
3547    SDValue Chain = LD->getChain();
3548    // Make sure the stack object alignment is at least 16.
3549    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3550    if (DAG.InferPtrAlignment(Ptr) < 16) {
3551      if (MFI->isFixedObjectIndex(FI)) {
3552        // Can't change the alignment. FIXME: It's possible to compute
3553        // the exact stack offset and reference FI + adjust offset instead.
3554        // If someone *really* cares about this. That's the way to implement it.
3555        return SDValue();
3556      } else {
3557        MFI->setObjectAlignment(FI, 16);
3558      }
3559    }
3560
3561    // (Offset % 16) must be multiple of 4. Then address is then
3562    // Ptr + (Offset & ~15).
3563    if (Offset < 0)
3564      return SDValue();
3565    if ((Offset % 16) & 3)
3566      return SDValue();
3567    int64_t StartOffset = Offset & ~15;
3568    if (StartOffset)
3569      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3570                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3571
3572    int EltNo = (Offset - StartOffset) >> 2;
3573    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3574    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3575    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3576                             false, false, 0);
3577    // Canonicalize it to a v4i32 shuffle.
3578    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3579    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3580                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3581                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3582  }
3583
3584  return SDValue();
3585}
3586
3587SDValue
3588X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3589  DebugLoc dl = Op.getDebugLoc();
3590  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3591  if (ISD::isBuildVectorAllZeros(Op.getNode())
3592      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3593    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3594    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3595    // eliminated on x86-32 hosts.
3596    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3597      return Op;
3598
3599    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3600      return getOnesVector(Op.getValueType(), DAG, dl);
3601    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3602  }
3603
3604  EVT VT = Op.getValueType();
3605  EVT ExtVT = VT.getVectorElementType();
3606  unsigned EVTBits = ExtVT.getSizeInBits();
3607
3608  unsigned NumElems = Op.getNumOperands();
3609  unsigned NumZero  = 0;
3610  unsigned NumNonZero = 0;
3611  unsigned NonZeros = 0;
3612  bool IsAllConstants = true;
3613  SmallSet<SDValue, 8> Values;
3614  for (unsigned i = 0; i < NumElems; ++i) {
3615    SDValue Elt = Op.getOperand(i);
3616    if (Elt.getOpcode() == ISD::UNDEF)
3617      continue;
3618    Values.insert(Elt);
3619    if (Elt.getOpcode() != ISD::Constant &&
3620        Elt.getOpcode() != ISD::ConstantFP)
3621      IsAllConstants = false;
3622    if (X86::isZeroNode(Elt))
3623      NumZero++;
3624    else {
3625      NonZeros |= (1 << i);
3626      NumNonZero++;
3627    }
3628  }
3629
3630  if (NumNonZero == 0) {
3631    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3632    return DAG.getUNDEF(VT);
3633  }
3634
3635  // Special case for single non-zero, non-undef, element.
3636  if (NumNonZero == 1) {
3637    unsigned Idx = CountTrailingZeros_32(NonZeros);
3638    SDValue Item = Op.getOperand(Idx);
3639
3640    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3641    // the value are obviously zero, truncate the value to i32 and do the
3642    // insertion that way.  Only do this if the value is non-constant or if the
3643    // value is a constant being inserted into element 0.  It is cheaper to do
3644    // a constant pool load than it is to do a movd + shuffle.
3645    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3646        (!IsAllConstants || Idx == 0)) {
3647      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3648        // Handle MMX and SSE both.
3649        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3650        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3651
3652        // Truncate the value (which may itself be a constant) to i32, and
3653        // convert it to a vector with movd (S2V+shuffle to zero extend).
3654        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3655        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3656        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3657                                           Subtarget->hasSSE2(), DAG);
3658
3659        // Now we have our 32-bit value zero extended in the low element of
3660        // a vector.  If Idx != 0, swizzle it into place.
3661        if (Idx != 0) {
3662          SmallVector<int, 4> Mask;
3663          Mask.push_back(Idx);
3664          for (unsigned i = 1; i != VecElts; ++i)
3665            Mask.push_back(i);
3666          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3667                                      DAG.getUNDEF(Item.getValueType()),
3668                                      &Mask[0]);
3669        }
3670        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3671      }
3672    }
3673
3674    // If we have a constant or non-constant insertion into the low element of
3675    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3676    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3677    // depending on what the source datatype is.
3678    if (Idx == 0) {
3679      if (NumZero == 0) {
3680        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3681      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3682          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3683        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3684        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3685        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3686                                           DAG);
3687      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3688        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3689        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3690        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3691        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3692                                           Subtarget->hasSSE2(), DAG);
3693        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3694      }
3695    }
3696
3697    // Is it a vector logical left shift?
3698    if (NumElems == 2 && Idx == 1 &&
3699        X86::isZeroNode(Op.getOperand(0)) &&
3700        !X86::isZeroNode(Op.getOperand(1))) {
3701      unsigned NumBits = VT.getSizeInBits();
3702      return getVShift(true, VT,
3703                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3704                                   VT, Op.getOperand(1)),
3705                       NumBits/2, DAG, *this, dl);
3706    }
3707
3708    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3709      return SDValue();
3710
3711    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3712    // is a non-constant being inserted into an element other than the low one,
3713    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3714    // movd/movss) to move this into the low element, then shuffle it into
3715    // place.
3716    if (EVTBits == 32) {
3717      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3718
3719      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3720      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3721                                         Subtarget->hasSSE2(), DAG);
3722      SmallVector<int, 8> MaskVec;
3723      for (unsigned i = 0; i < NumElems; i++)
3724        MaskVec.push_back(i == Idx ? 0 : 1);
3725      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3726    }
3727  }
3728
3729  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3730  if (Values.size() == 1) {
3731    if (EVTBits == 32) {
3732      // Instead of a shuffle like this:
3733      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3734      // Check if it's possible to issue this instead.
3735      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3736      unsigned Idx = CountTrailingZeros_32(NonZeros);
3737      SDValue Item = Op.getOperand(Idx);
3738      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3739        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3740    }
3741    return SDValue();
3742  }
3743
3744  // A vector full of immediates; various special cases are already
3745  // handled, so this is best done with a single constant-pool load.
3746  if (IsAllConstants)
3747    return SDValue();
3748
3749  // Let legalizer expand 2-wide build_vectors.
3750  if (EVTBits == 64) {
3751    if (NumNonZero == 1) {
3752      // One half is zero or undef.
3753      unsigned Idx = CountTrailingZeros_32(NonZeros);
3754      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3755                                 Op.getOperand(Idx));
3756      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3757                                         Subtarget->hasSSE2(), DAG);
3758    }
3759    return SDValue();
3760  }
3761
3762  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3763  if (EVTBits == 8 && NumElems == 16) {
3764    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3765                                        *this);
3766    if (V.getNode()) return V;
3767  }
3768
3769  if (EVTBits == 16 && NumElems == 8) {
3770    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3771                                        *this);
3772    if (V.getNode()) return V;
3773  }
3774
3775  // If element VT is == 32 bits, turn it into a number of shuffles.
3776  SmallVector<SDValue, 8> V;
3777  V.resize(NumElems);
3778  if (NumElems == 4 && NumZero > 0) {
3779    for (unsigned i = 0; i < 4; ++i) {
3780      bool isZero = !(NonZeros & (1 << i));
3781      if (isZero)
3782        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3783      else
3784        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3785    }
3786
3787    for (unsigned i = 0; i < 2; ++i) {
3788      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3789        default: break;
3790        case 0:
3791          V[i] = V[i*2];  // Must be a zero vector.
3792          break;
3793        case 1:
3794          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3795          break;
3796        case 2:
3797          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3798          break;
3799        case 3:
3800          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3801          break;
3802      }
3803    }
3804
3805    SmallVector<int, 8> MaskVec;
3806    bool Reverse = (NonZeros & 0x3) == 2;
3807    for (unsigned i = 0; i < 2; ++i)
3808      MaskVec.push_back(Reverse ? 1-i : i);
3809    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3810    for (unsigned i = 0; i < 2; ++i)
3811      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3812    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3813  }
3814
3815  if (Values.size() > 2) {
3816    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3817    // values to be inserted is equal to the number of elements, in which case
3818    // use the unpack code below in the hopes of matching the consecutive elts
3819    // load merge pattern for shuffles.
3820    // FIXME: We could probably just check that here directly.
3821    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3822        getSubtarget()->hasSSE41()) {
3823      V[0] = DAG.getUNDEF(VT);
3824      for (unsigned i = 0; i < NumElems; ++i)
3825        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3826          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3827                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3828      return V[0];
3829    }
3830    // Expand into a number of unpckl*.
3831    // e.g. for v4f32
3832    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3833    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3834    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3835    for (unsigned i = 0; i < NumElems; ++i)
3836      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3837    NumElems >>= 1;
3838    while (NumElems != 0) {
3839      for (unsigned i = 0; i < NumElems; ++i)
3840        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3841      NumElems >>= 1;
3842    }
3843    return V[0];
3844  }
3845
3846  return SDValue();
3847}
3848
3849SDValue
3850X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3851  // We support concatenate two MMX registers and place them in a MMX
3852  // register.  This is better than doing a stack convert.
3853  DebugLoc dl = Op.getDebugLoc();
3854  EVT ResVT = Op.getValueType();
3855  assert(Op.getNumOperands() == 2);
3856  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3857         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3858  int Mask[2];
3859  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3860  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3861  InVec = Op.getOperand(1);
3862  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3863    unsigned NumElts = ResVT.getVectorNumElements();
3864    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3865    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3866                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3867  } else {
3868    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3869    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3870    Mask[0] = 0; Mask[1] = 2;
3871    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3872  }
3873  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3874}
3875
3876// v8i16 shuffles - Prefer shuffles in the following order:
3877// 1. [all]   pshuflw, pshufhw, optional move
3878// 2. [ssse3] 1 x pshufb
3879// 3. [ssse3] 2 x pshufb + 1 x por
3880// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3881static
3882SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3883                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3884  SDValue V1 = SVOp->getOperand(0);
3885  SDValue V2 = SVOp->getOperand(1);
3886  DebugLoc dl = SVOp->getDebugLoc();
3887  SmallVector<int, 8> MaskVals;
3888
3889  // Determine if more than 1 of the words in each of the low and high quadwords
3890  // of the result come from the same quadword of one of the two inputs.  Undef
3891  // mask values count as coming from any quadword, for better codegen.
3892  SmallVector<unsigned, 4> LoQuad(4);
3893  SmallVector<unsigned, 4> HiQuad(4);
3894  BitVector InputQuads(4);
3895  for (unsigned i = 0; i < 8; ++i) {
3896    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3897    int EltIdx = SVOp->getMaskElt(i);
3898    MaskVals.push_back(EltIdx);
3899    if (EltIdx < 0) {
3900      ++Quad[0];
3901      ++Quad[1];
3902      ++Quad[2];
3903      ++Quad[3];
3904      continue;
3905    }
3906    ++Quad[EltIdx / 4];
3907    InputQuads.set(EltIdx / 4);
3908  }
3909
3910  int BestLoQuad = -1;
3911  unsigned MaxQuad = 1;
3912  for (unsigned i = 0; i < 4; ++i) {
3913    if (LoQuad[i] > MaxQuad) {
3914      BestLoQuad = i;
3915      MaxQuad = LoQuad[i];
3916    }
3917  }
3918
3919  int BestHiQuad = -1;
3920  MaxQuad = 1;
3921  for (unsigned i = 0; i < 4; ++i) {
3922    if (HiQuad[i] > MaxQuad) {
3923      BestHiQuad = i;
3924      MaxQuad = HiQuad[i];
3925    }
3926  }
3927
3928  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3929  // of the two input vectors, shuffle them into one input vector so only a
3930  // single pshufb instruction is necessary. If There are more than 2 input
3931  // quads, disable the next transformation since it does not help SSSE3.
3932  bool V1Used = InputQuads[0] || InputQuads[1];
3933  bool V2Used = InputQuads[2] || InputQuads[3];
3934  if (TLI.getSubtarget()->hasSSSE3()) {
3935    if (InputQuads.count() == 2 && V1Used && V2Used) {
3936      BestLoQuad = InputQuads.find_first();
3937      BestHiQuad = InputQuads.find_next(BestLoQuad);
3938    }
3939    if (InputQuads.count() > 2) {
3940      BestLoQuad = -1;
3941      BestHiQuad = -1;
3942    }
3943  }
3944
3945  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3946  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3947  // words from all 4 input quadwords.
3948  SDValue NewV;
3949  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3950    SmallVector<int, 8> MaskV;
3951    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3952    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3953    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3954                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3955                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3956    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3957
3958    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3959    // source words for the shuffle, to aid later transformations.
3960    bool AllWordsInNewV = true;
3961    bool InOrder[2] = { true, true };
3962    for (unsigned i = 0; i != 8; ++i) {
3963      int idx = MaskVals[i];
3964      if (idx != (int)i)
3965        InOrder[i/4] = false;
3966      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3967        continue;
3968      AllWordsInNewV = false;
3969      break;
3970    }
3971
3972    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3973    if (AllWordsInNewV) {
3974      for (int i = 0; i != 8; ++i) {
3975        int idx = MaskVals[i];
3976        if (idx < 0)
3977          continue;
3978        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3979        if ((idx != i) && idx < 4)
3980          pshufhw = false;
3981        if ((idx != i) && idx > 3)
3982          pshuflw = false;
3983      }
3984      V1 = NewV;
3985      V2Used = false;
3986      BestLoQuad = 0;
3987      BestHiQuad = 1;
3988    }
3989
3990    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3991    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3992    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3993      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3994                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3995    }
3996  }
3997
3998  // If we have SSSE3, and all words of the result are from 1 input vector,
3999  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4000  // is present, fall back to case 4.
4001  if (TLI.getSubtarget()->hasSSSE3()) {
4002    SmallVector<SDValue,16> pshufbMask;
4003
4004    // If we have elements from both input vectors, set the high bit of the
4005    // shuffle mask element to zero out elements that come from V2 in the V1
4006    // mask, and elements that come from V1 in the V2 mask, so that the two
4007    // results can be OR'd together.
4008    bool TwoInputs = V1Used && V2Used;
4009    for (unsigned i = 0; i != 8; ++i) {
4010      int EltIdx = MaskVals[i] * 2;
4011      if (TwoInputs && (EltIdx >= 16)) {
4012        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4013        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4014        continue;
4015      }
4016      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4017      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4018    }
4019    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4020    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4021                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4022                                 MVT::v16i8, &pshufbMask[0], 16));
4023    if (!TwoInputs)
4024      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4025
4026    // Calculate the shuffle mask for the second input, shuffle it, and
4027    // OR it with the first shuffled input.
4028    pshufbMask.clear();
4029    for (unsigned i = 0; i != 8; ++i) {
4030      int EltIdx = MaskVals[i] * 2;
4031      if (EltIdx < 16) {
4032        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4033        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4034        continue;
4035      }
4036      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4037      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4038    }
4039    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4040    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4041                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4042                                 MVT::v16i8, &pshufbMask[0], 16));
4043    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4044    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4045  }
4046
4047  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4048  // and update MaskVals with new element order.
4049  BitVector InOrder(8);
4050  if (BestLoQuad >= 0) {
4051    SmallVector<int, 8> MaskV;
4052    for (int i = 0; i != 4; ++i) {
4053      int idx = MaskVals[i];
4054      if (idx < 0) {
4055        MaskV.push_back(-1);
4056        InOrder.set(i);
4057      } else if ((idx / 4) == BestLoQuad) {
4058        MaskV.push_back(idx & 3);
4059        InOrder.set(i);
4060      } else {
4061        MaskV.push_back(-1);
4062      }
4063    }
4064    for (unsigned i = 4; i != 8; ++i)
4065      MaskV.push_back(i);
4066    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4067                                &MaskV[0]);
4068  }
4069
4070  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4071  // and update MaskVals with the new element order.
4072  if (BestHiQuad >= 0) {
4073    SmallVector<int, 8> MaskV;
4074    for (unsigned i = 0; i != 4; ++i)
4075      MaskV.push_back(i);
4076    for (unsigned i = 4; i != 8; ++i) {
4077      int idx = MaskVals[i];
4078      if (idx < 0) {
4079        MaskV.push_back(-1);
4080        InOrder.set(i);
4081      } else if ((idx / 4) == BestHiQuad) {
4082        MaskV.push_back((idx & 3) + 4);
4083        InOrder.set(i);
4084      } else {
4085        MaskV.push_back(-1);
4086      }
4087    }
4088    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4089                                &MaskV[0]);
4090  }
4091
4092  // In case BestHi & BestLo were both -1, which means each quadword has a word
4093  // from each of the four input quadwords, calculate the InOrder bitvector now
4094  // before falling through to the insert/extract cleanup.
4095  if (BestLoQuad == -1 && BestHiQuad == -1) {
4096    NewV = V1;
4097    for (int i = 0; i != 8; ++i)
4098      if (MaskVals[i] < 0 || MaskVals[i] == i)
4099        InOrder.set(i);
4100  }
4101
4102  // The other elements are put in the right place using pextrw and pinsrw.
4103  for (unsigned i = 0; i != 8; ++i) {
4104    if (InOrder[i])
4105      continue;
4106    int EltIdx = MaskVals[i];
4107    if (EltIdx < 0)
4108      continue;
4109    SDValue ExtOp = (EltIdx < 8)
4110    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4111                  DAG.getIntPtrConstant(EltIdx))
4112    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4113                  DAG.getIntPtrConstant(EltIdx - 8));
4114    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4115                       DAG.getIntPtrConstant(i));
4116  }
4117  return NewV;
4118}
4119
4120// v16i8 shuffles - Prefer shuffles in the following order:
4121// 1. [ssse3] 1 x pshufb
4122// 2. [ssse3] 2 x pshufb + 1 x por
4123// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4124static
4125SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4126                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4127  SDValue V1 = SVOp->getOperand(0);
4128  SDValue V2 = SVOp->getOperand(1);
4129  DebugLoc dl = SVOp->getDebugLoc();
4130  SmallVector<int, 16> MaskVals;
4131  SVOp->getMask(MaskVals);
4132
4133  // If we have SSSE3, case 1 is generated when all result bytes come from
4134  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4135  // present, fall back to case 3.
4136  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4137  bool V1Only = true;
4138  bool V2Only = true;
4139  for (unsigned i = 0; i < 16; ++i) {
4140    int EltIdx = MaskVals[i];
4141    if (EltIdx < 0)
4142      continue;
4143    if (EltIdx < 16)
4144      V2Only = false;
4145    else
4146      V1Only = false;
4147  }
4148
4149  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4150  if (TLI.getSubtarget()->hasSSSE3()) {
4151    SmallVector<SDValue,16> pshufbMask;
4152
4153    // If all result elements are from one input vector, then only translate
4154    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4155    //
4156    // Otherwise, we have elements from both input vectors, and must zero out
4157    // elements that come from V2 in the first mask, and V1 in the second mask
4158    // so that we can OR them together.
4159    bool TwoInputs = !(V1Only || V2Only);
4160    for (unsigned i = 0; i != 16; ++i) {
4161      int EltIdx = MaskVals[i];
4162      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4163        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4164        continue;
4165      }
4166      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4167    }
4168    // If all the elements are from V2, assign it to V1 and return after
4169    // building the first pshufb.
4170    if (V2Only)
4171      V1 = V2;
4172    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4173                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4174                                 MVT::v16i8, &pshufbMask[0], 16));
4175    if (!TwoInputs)
4176      return V1;
4177
4178    // Calculate the shuffle mask for the second input, shuffle it, and
4179    // OR it with the first shuffled input.
4180    pshufbMask.clear();
4181    for (unsigned i = 0; i != 16; ++i) {
4182      int EltIdx = MaskVals[i];
4183      if (EltIdx < 16) {
4184        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4185        continue;
4186      }
4187      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4188    }
4189    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4190                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4191                                 MVT::v16i8, &pshufbMask[0], 16));
4192    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4193  }
4194
4195  // No SSSE3 - Calculate in place words and then fix all out of place words
4196  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4197  // the 16 different words that comprise the two doublequadword input vectors.
4198  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4199  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4200  SDValue NewV = V2Only ? V2 : V1;
4201  for (int i = 0; i != 8; ++i) {
4202    int Elt0 = MaskVals[i*2];
4203    int Elt1 = MaskVals[i*2+1];
4204
4205    // This word of the result is all undef, skip it.
4206    if (Elt0 < 0 && Elt1 < 0)
4207      continue;
4208
4209    // This word of the result is already in the correct place, skip it.
4210    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4211      continue;
4212    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4213      continue;
4214
4215    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4216    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4217    SDValue InsElt;
4218
4219    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4220    // using a single extract together, load it and store it.
4221    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4222      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4223                           DAG.getIntPtrConstant(Elt1 / 2));
4224      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4225                        DAG.getIntPtrConstant(i));
4226      continue;
4227    }
4228
4229    // If Elt1 is defined, extract it from the appropriate source.  If the
4230    // source byte is not also odd, shift the extracted word left 8 bits
4231    // otherwise clear the bottom 8 bits if we need to do an or.
4232    if (Elt1 >= 0) {
4233      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4234                           DAG.getIntPtrConstant(Elt1 / 2));
4235      if ((Elt1 & 1) == 0)
4236        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4237                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4238      else if (Elt0 >= 0)
4239        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4240                             DAG.getConstant(0xFF00, MVT::i16));
4241    }
4242    // If Elt0 is defined, extract it from the appropriate source.  If the
4243    // source byte is not also even, shift the extracted word right 8 bits. If
4244    // Elt1 was also defined, OR the extracted values together before
4245    // inserting them in the result.
4246    if (Elt0 >= 0) {
4247      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4248                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4249      if ((Elt0 & 1) != 0)
4250        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4251                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4252      else if (Elt1 >= 0)
4253        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4254                             DAG.getConstant(0x00FF, MVT::i16));
4255      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4256                         : InsElt0;
4257    }
4258    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4259                       DAG.getIntPtrConstant(i));
4260  }
4261  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4262}
4263
4264/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4265/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4266/// done when every pair / quad of shuffle mask elements point to elements in
4267/// the right sequence. e.g.
4268/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4269static
4270SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4271                                 SelectionDAG &DAG,
4272                                 TargetLowering &TLI, DebugLoc dl) {
4273  EVT VT = SVOp->getValueType(0);
4274  SDValue V1 = SVOp->getOperand(0);
4275  SDValue V2 = SVOp->getOperand(1);
4276  unsigned NumElems = VT.getVectorNumElements();
4277  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4278  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4279  EVT MaskEltVT = MaskVT.getVectorElementType();
4280  EVT NewVT = MaskVT;
4281  switch (VT.getSimpleVT().SimpleTy) {
4282  default: assert(false && "Unexpected!");
4283  case MVT::v4f32: NewVT = MVT::v2f64; break;
4284  case MVT::v4i32: NewVT = MVT::v2i64; break;
4285  case MVT::v8i16: NewVT = MVT::v4i32; break;
4286  case MVT::v16i8: NewVT = MVT::v4i32; break;
4287  }
4288
4289  if (NewWidth == 2) {
4290    if (VT.isInteger())
4291      NewVT = MVT::v2i64;
4292    else
4293      NewVT = MVT::v2f64;
4294  }
4295  int Scale = NumElems / NewWidth;
4296  SmallVector<int, 8> MaskVec;
4297  for (unsigned i = 0; i < NumElems; i += Scale) {
4298    int StartIdx = -1;
4299    for (int j = 0; j < Scale; ++j) {
4300      int EltIdx = SVOp->getMaskElt(i+j);
4301      if (EltIdx < 0)
4302        continue;
4303      if (StartIdx == -1)
4304        StartIdx = EltIdx - (EltIdx % Scale);
4305      if (EltIdx != StartIdx + j)
4306        return SDValue();
4307    }
4308    if (StartIdx == -1)
4309      MaskVec.push_back(-1);
4310    else
4311      MaskVec.push_back(StartIdx / Scale);
4312  }
4313
4314  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4315  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4316  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4317}
4318
4319/// getVZextMovL - Return a zero-extending vector move low node.
4320///
4321static SDValue getVZextMovL(EVT VT, EVT OpVT,
4322                            SDValue SrcOp, SelectionDAG &DAG,
4323                            const X86Subtarget *Subtarget, DebugLoc dl) {
4324  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4325    LoadSDNode *LD = NULL;
4326    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4327      LD = dyn_cast<LoadSDNode>(SrcOp);
4328    if (!LD) {
4329      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4330      // instead.
4331      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4332      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4333          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4334          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4335          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4336        // PR2108
4337        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4338        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4339                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4340                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4341                                                   OpVT,
4342                                                   SrcOp.getOperand(0)
4343                                                          .getOperand(0))));
4344      }
4345    }
4346  }
4347
4348  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4349                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4350                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4351                                             OpVT, SrcOp)));
4352}
4353
4354/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4355/// shuffles.
4356static SDValue
4357LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4358  SDValue V1 = SVOp->getOperand(0);
4359  SDValue V2 = SVOp->getOperand(1);
4360  DebugLoc dl = SVOp->getDebugLoc();
4361  EVT VT = SVOp->getValueType(0);
4362
4363  SmallVector<std::pair<int, int>, 8> Locs;
4364  Locs.resize(4);
4365  SmallVector<int, 8> Mask1(4U, -1);
4366  SmallVector<int, 8> PermMask;
4367  SVOp->getMask(PermMask);
4368
4369  unsigned NumHi = 0;
4370  unsigned NumLo = 0;
4371  for (unsigned i = 0; i != 4; ++i) {
4372    int Idx = PermMask[i];
4373    if (Idx < 0) {
4374      Locs[i] = std::make_pair(-1, -1);
4375    } else {
4376      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4377      if (Idx < 4) {
4378        Locs[i] = std::make_pair(0, NumLo);
4379        Mask1[NumLo] = Idx;
4380        NumLo++;
4381      } else {
4382        Locs[i] = std::make_pair(1, NumHi);
4383        if (2+NumHi < 4)
4384          Mask1[2+NumHi] = Idx;
4385        NumHi++;
4386      }
4387    }
4388  }
4389
4390  if (NumLo <= 2 && NumHi <= 2) {
4391    // If no more than two elements come from either vector. This can be
4392    // implemented with two shuffles. First shuffle gather the elements.
4393    // The second shuffle, which takes the first shuffle as both of its
4394    // vector operands, put the elements into the right order.
4395    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4396
4397    SmallVector<int, 8> Mask2(4U, -1);
4398
4399    for (unsigned i = 0; i != 4; ++i) {
4400      if (Locs[i].first == -1)
4401        continue;
4402      else {
4403        unsigned Idx = (i < 2) ? 0 : 4;
4404        Idx += Locs[i].first * 2 + Locs[i].second;
4405        Mask2[i] = Idx;
4406      }
4407    }
4408
4409    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4410  } else if (NumLo == 3 || NumHi == 3) {
4411    // Otherwise, we must have three elements from one vector, call it X, and
4412    // one element from the other, call it Y.  First, use a shufps to build an
4413    // intermediate vector with the one element from Y and the element from X
4414    // that will be in the same half in the final destination (the indexes don't
4415    // matter). Then, use a shufps to build the final vector, taking the half
4416    // containing the element from Y from the intermediate, and the other half
4417    // from X.
4418    if (NumHi == 3) {
4419      // Normalize it so the 3 elements come from V1.
4420      CommuteVectorShuffleMask(PermMask, VT);
4421      std::swap(V1, V2);
4422    }
4423
4424    // Find the element from V2.
4425    unsigned HiIndex;
4426    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4427      int Val = PermMask[HiIndex];
4428      if (Val < 0)
4429        continue;
4430      if (Val >= 4)
4431        break;
4432    }
4433
4434    Mask1[0] = PermMask[HiIndex];
4435    Mask1[1] = -1;
4436    Mask1[2] = PermMask[HiIndex^1];
4437    Mask1[3] = -1;
4438    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4439
4440    if (HiIndex >= 2) {
4441      Mask1[0] = PermMask[0];
4442      Mask1[1] = PermMask[1];
4443      Mask1[2] = HiIndex & 1 ? 6 : 4;
4444      Mask1[3] = HiIndex & 1 ? 4 : 6;
4445      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4446    } else {
4447      Mask1[0] = HiIndex & 1 ? 2 : 0;
4448      Mask1[1] = HiIndex & 1 ? 0 : 2;
4449      Mask1[2] = PermMask[2];
4450      Mask1[3] = PermMask[3];
4451      if (Mask1[2] >= 0)
4452        Mask1[2] += 4;
4453      if (Mask1[3] >= 0)
4454        Mask1[3] += 4;
4455      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4456    }
4457  }
4458
4459  // Break it into (shuffle shuffle_hi, shuffle_lo).
4460  Locs.clear();
4461  SmallVector<int,8> LoMask(4U, -1);
4462  SmallVector<int,8> HiMask(4U, -1);
4463
4464  SmallVector<int,8> *MaskPtr = &LoMask;
4465  unsigned MaskIdx = 0;
4466  unsigned LoIdx = 0;
4467  unsigned HiIdx = 2;
4468  for (unsigned i = 0; i != 4; ++i) {
4469    if (i == 2) {
4470      MaskPtr = &HiMask;
4471      MaskIdx = 1;
4472      LoIdx = 0;
4473      HiIdx = 2;
4474    }
4475    int Idx = PermMask[i];
4476    if (Idx < 0) {
4477      Locs[i] = std::make_pair(-1, -1);
4478    } else if (Idx < 4) {
4479      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4480      (*MaskPtr)[LoIdx] = Idx;
4481      LoIdx++;
4482    } else {
4483      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4484      (*MaskPtr)[HiIdx] = Idx;
4485      HiIdx++;
4486    }
4487  }
4488
4489  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4490  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4491  SmallVector<int, 8> MaskOps;
4492  for (unsigned i = 0; i != 4; ++i) {
4493    if (Locs[i].first == -1) {
4494      MaskOps.push_back(-1);
4495    } else {
4496      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4497      MaskOps.push_back(Idx);
4498    }
4499  }
4500  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4501}
4502
4503SDValue
4504X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4505  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4506  SDValue V1 = Op.getOperand(0);
4507  SDValue V2 = Op.getOperand(1);
4508  EVT VT = Op.getValueType();
4509  DebugLoc dl = Op.getDebugLoc();
4510  unsigned NumElems = VT.getVectorNumElements();
4511  bool isMMX = VT.getSizeInBits() == 64;
4512  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4513  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4514  bool V1IsSplat = false;
4515  bool V2IsSplat = false;
4516
4517  if (isZeroShuffle(SVOp))
4518    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4519
4520  // Promote splats to v4f32.
4521  if (SVOp->isSplat()) {
4522    if (isMMX || NumElems < 4)
4523      return Op;
4524    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4525  }
4526
4527  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4528  // do it!
4529  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4530    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4531    if (NewOp.getNode())
4532      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4533                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4534  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4535    // FIXME: Figure out a cleaner way to do this.
4536    // Try to make use of movq to zero out the top part.
4537    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4538      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4539      if (NewOp.getNode()) {
4540        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4541          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4542                              DAG, Subtarget, dl);
4543      }
4544    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4545      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4546      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4547        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4548                            DAG, Subtarget, dl);
4549    }
4550  }
4551
4552  if (X86::isPSHUFDMask(SVOp))
4553    return Op;
4554
4555  // Check if this can be converted into a logical shift.
4556  bool isLeft = false;
4557  unsigned ShAmt = 0;
4558  SDValue ShVal;
4559  bool isShift = getSubtarget()->hasSSE2() &&
4560    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4561  if (isShift && ShVal.hasOneUse()) {
4562    // If the shifted value has multiple uses, it may be cheaper to use
4563    // v_set0 + movlhps or movhlps, etc.
4564    EVT EltVT = VT.getVectorElementType();
4565    ShAmt *= EltVT.getSizeInBits();
4566    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4567  }
4568
4569  if (X86::isMOVLMask(SVOp)) {
4570    if (V1IsUndef)
4571      return V2;
4572    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4573      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4574    if (!isMMX)
4575      return Op;
4576  }
4577
4578  // FIXME: fold these into legal mask.
4579  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4580                 X86::isMOVSLDUPMask(SVOp) ||
4581                 X86::isMOVHLPSMask(SVOp) ||
4582                 X86::isMOVLHPSMask(SVOp) ||
4583                 X86::isMOVLPMask(SVOp)))
4584    return Op;
4585
4586  if (ShouldXformToMOVHLPS(SVOp) ||
4587      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4588    return CommuteVectorShuffle(SVOp, DAG);
4589
4590  if (isShift) {
4591    // No better options. Use a vshl / vsrl.
4592    EVT EltVT = VT.getVectorElementType();
4593    ShAmt *= EltVT.getSizeInBits();
4594    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4595  }
4596
4597  bool Commuted = false;
4598  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4599  // 1,1,1,1 -> v8i16 though.
4600  V1IsSplat = isSplatVector(V1.getNode());
4601  V2IsSplat = isSplatVector(V2.getNode());
4602
4603  // Canonicalize the splat or undef, if present, to be on the RHS.
4604  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4605    Op = CommuteVectorShuffle(SVOp, DAG);
4606    SVOp = cast<ShuffleVectorSDNode>(Op);
4607    V1 = SVOp->getOperand(0);
4608    V2 = SVOp->getOperand(1);
4609    std::swap(V1IsSplat, V2IsSplat);
4610    std::swap(V1IsUndef, V2IsUndef);
4611    Commuted = true;
4612  }
4613
4614  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4615    // Shuffling low element of v1 into undef, just return v1.
4616    if (V2IsUndef)
4617      return V1;
4618    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4619    // the instruction selector will not match, so get a canonical MOVL with
4620    // swapped operands to undo the commute.
4621    return getMOVL(DAG, dl, VT, V2, V1);
4622  }
4623
4624  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4625      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4626      X86::isUNPCKLMask(SVOp) ||
4627      X86::isUNPCKHMask(SVOp))
4628    return Op;
4629
4630  if (V2IsSplat) {
4631    // Normalize mask so all entries that point to V2 points to its first
4632    // element then try to match unpck{h|l} again. If match, return a
4633    // new vector_shuffle with the corrected mask.
4634    SDValue NewMask = NormalizeMask(SVOp, DAG);
4635    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4636    if (NSVOp != SVOp) {
4637      if (X86::isUNPCKLMask(NSVOp, true)) {
4638        return NewMask;
4639      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4640        return NewMask;
4641      }
4642    }
4643  }
4644
4645  if (Commuted) {
4646    // Commute is back and try unpck* again.
4647    // FIXME: this seems wrong.
4648    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4649    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4650    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4651        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4652        X86::isUNPCKLMask(NewSVOp) ||
4653        X86::isUNPCKHMask(NewSVOp))
4654      return NewOp;
4655  }
4656
4657  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4658
4659  // Normalize the node to match x86 shuffle ops if needed
4660  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4661    return CommuteVectorShuffle(SVOp, DAG);
4662
4663  // Check for legal shuffle and return?
4664  SmallVector<int, 16> PermMask;
4665  SVOp->getMask(PermMask);
4666  if (isShuffleMaskLegal(PermMask, VT))
4667    return Op;
4668
4669  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4670  if (VT == MVT::v8i16) {
4671    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4672    if (NewOp.getNode())
4673      return NewOp;
4674  }
4675
4676  if (VT == MVT::v16i8) {
4677    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4678    if (NewOp.getNode())
4679      return NewOp;
4680  }
4681
4682  // Handle all 4 wide cases with a number of shuffles except for MMX.
4683  if (NumElems == 4 && !isMMX)
4684    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4685
4686  return SDValue();
4687}
4688
4689SDValue
4690X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4691                                                SelectionDAG &DAG) {
4692  EVT VT = Op.getValueType();
4693  DebugLoc dl = Op.getDebugLoc();
4694  if (VT.getSizeInBits() == 8) {
4695    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4696                                    Op.getOperand(0), Op.getOperand(1));
4697    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4698                                    DAG.getValueType(VT));
4699    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4700  } else if (VT.getSizeInBits() == 16) {
4701    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4702    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4703    if (Idx == 0)
4704      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4705                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4706                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4707                                                 MVT::v4i32,
4708                                                 Op.getOperand(0)),
4709                                     Op.getOperand(1)));
4710    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4711                                    Op.getOperand(0), Op.getOperand(1));
4712    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4713                                    DAG.getValueType(VT));
4714    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4715  } else if (VT == MVT::f32) {
4716    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4717    // the result back to FR32 register. It's only worth matching if the
4718    // result has a single use which is a store or a bitcast to i32.  And in
4719    // the case of a store, it's not worth it if the index is a constant 0,
4720    // because a MOVSSmr can be used instead, which is smaller and faster.
4721    if (!Op.hasOneUse())
4722      return SDValue();
4723    SDNode *User = *Op.getNode()->use_begin();
4724    if ((User->getOpcode() != ISD::STORE ||
4725         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4726          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4727        (User->getOpcode() != ISD::BIT_CONVERT ||
4728         User->getValueType(0) != MVT::i32))
4729      return SDValue();
4730    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4731                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4732                                              Op.getOperand(0)),
4733                                              Op.getOperand(1));
4734    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4735  } else if (VT == MVT::i32) {
4736    // ExtractPS works with constant index.
4737    if (isa<ConstantSDNode>(Op.getOperand(1)))
4738      return Op;
4739  }
4740  return SDValue();
4741}
4742
4743
4744SDValue
4745X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4746  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4747    return SDValue();
4748
4749  if (Subtarget->hasSSE41()) {
4750    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4751    if (Res.getNode())
4752      return Res;
4753  }
4754
4755  EVT VT = Op.getValueType();
4756  DebugLoc dl = Op.getDebugLoc();
4757  // TODO: handle v16i8.
4758  if (VT.getSizeInBits() == 16) {
4759    SDValue Vec = Op.getOperand(0);
4760    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4761    if (Idx == 0)
4762      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4763                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4764                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4765                                                 MVT::v4i32, Vec),
4766                                     Op.getOperand(1)));
4767    // Transform it so it match pextrw which produces a 32-bit result.
4768    EVT EltVT = MVT::i32;
4769    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4770                                    Op.getOperand(0), Op.getOperand(1));
4771    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4772                                    DAG.getValueType(VT));
4773    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4774  } else if (VT.getSizeInBits() == 32) {
4775    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4776    if (Idx == 0)
4777      return Op;
4778
4779    // SHUFPS the element to the lowest double word, then movss.
4780    int Mask[4] = { Idx, -1, -1, -1 };
4781    EVT VVT = Op.getOperand(0).getValueType();
4782    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4783                                       DAG.getUNDEF(VVT), Mask);
4784    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4785                       DAG.getIntPtrConstant(0));
4786  } else if (VT.getSizeInBits() == 64) {
4787    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4788    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4789    //        to match extract_elt for f64.
4790    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4791    if (Idx == 0)
4792      return Op;
4793
4794    // UNPCKHPD the element to the lowest double word, then movsd.
4795    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4796    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4797    int Mask[2] = { 1, -1 };
4798    EVT VVT = Op.getOperand(0).getValueType();
4799    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4800                                       DAG.getUNDEF(VVT), Mask);
4801    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4802                       DAG.getIntPtrConstant(0));
4803  }
4804
4805  return SDValue();
4806}
4807
4808SDValue
4809X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4810  EVT VT = Op.getValueType();
4811  EVT EltVT = VT.getVectorElementType();
4812  DebugLoc dl = Op.getDebugLoc();
4813
4814  SDValue N0 = Op.getOperand(0);
4815  SDValue N1 = Op.getOperand(1);
4816  SDValue N2 = Op.getOperand(2);
4817
4818  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4819      isa<ConstantSDNode>(N2)) {
4820    unsigned Opc;
4821    if (VT == MVT::v8i16)
4822      Opc = X86ISD::PINSRW;
4823    else if (VT == MVT::v4i16)
4824      Opc = X86ISD::MMX_PINSRW;
4825    else if (VT == MVT::v16i8)
4826      Opc = X86ISD::PINSRB;
4827    else
4828      Opc = X86ISD::PINSRB;
4829
4830    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4831    // argument.
4832    if (N1.getValueType() != MVT::i32)
4833      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4834    if (N2.getValueType() != MVT::i32)
4835      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4836    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4837  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4838    // Bits [7:6] of the constant are the source select.  This will always be
4839    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4840    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4841    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4842    // Bits [5:4] of the constant are the destination select.  This is the
4843    //  value of the incoming immediate.
4844    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4845    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4846    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4847    // Create this as a scalar to vector..
4848    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4849    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4850  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4851    // PINSR* works with constant index.
4852    return Op;
4853  }
4854  return SDValue();
4855}
4856
4857SDValue
4858X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4859  EVT VT = Op.getValueType();
4860  EVT EltVT = VT.getVectorElementType();
4861
4862  if (Subtarget->hasSSE41())
4863    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4864
4865  if (EltVT == MVT::i8)
4866    return SDValue();
4867
4868  DebugLoc dl = Op.getDebugLoc();
4869  SDValue N0 = Op.getOperand(0);
4870  SDValue N1 = Op.getOperand(1);
4871  SDValue N2 = Op.getOperand(2);
4872
4873  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4874    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4875    // as its second argument.
4876    if (N1.getValueType() != MVT::i32)
4877      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4878    if (N2.getValueType() != MVT::i32)
4879      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4880    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
4881                       dl, VT, N0, N1, N2);
4882  }
4883  return SDValue();
4884}
4885
4886SDValue
4887X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4888  DebugLoc dl = Op.getDebugLoc();
4889  if (Op.getValueType() == MVT::v2f32)
4890    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4891                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4892                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4893                                               Op.getOperand(0))));
4894
4895  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4896    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4897
4898  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4899  EVT VT = MVT::v2i32;
4900  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4901  default: break;
4902  case MVT::v16i8:
4903  case MVT::v8i16:
4904    VT = MVT::v4i32;
4905    break;
4906  }
4907  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4908                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4909}
4910
4911// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4912// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4913// one of the above mentioned nodes. It has to be wrapped because otherwise
4914// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4915// be used to form addressing mode. These wrapped nodes will be selected
4916// into MOV32ri.
4917SDValue
4918X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4919  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4920
4921  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4922  // global base reg.
4923  unsigned char OpFlag = 0;
4924  unsigned WrapperKind = X86ISD::Wrapper;
4925  CodeModel::Model M = getTargetMachine().getCodeModel();
4926
4927  if (Subtarget->isPICStyleRIPRel() &&
4928      (M == CodeModel::Small || M == CodeModel::Kernel))
4929    WrapperKind = X86ISD::WrapperRIP;
4930  else if (Subtarget->isPICStyleGOT())
4931    OpFlag = X86II::MO_GOTOFF;
4932  else if (Subtarget->isPICStyleStubPIC())
4933    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4934
4935  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4936                                             CP->getAlignment(),
4937                                             CP->getOffset(), OpFlag);
4938  DebugLoc DL = CP->getDebugLoc();
4939  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4940  // With PIC, the address is actually $g + Offset.
4941  if (OpFlag) {
4942    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4943                         DAG.getNode(X86ISD::GlobalBaseReg,
4944                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4945                         Result);
4946  }
4947
4948  return Result;
4949}
4950
4951SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4952  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4953
4954  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4955  // global base reg.
4956  unsigned char OpFlag = 0;
4957  unsigned WrapperKind = X86ISD::Wrapper;
4958  CodeModel::Model M = getTargetMachine().getCodeModel();
4959
4960  if (Subtarget->isPICStyleRIPRel() &&
4961      (M == CodeModel::Small || M == CodeModel::Kernel))
4962    WrapperKind = X86ISD::WrapperRIP;
4963  else if (Subtarget->isPICStyleGOT())
4964    OpFlag = X86II::MO_GOTOFF;
4965  else if (Subtarget->isPICStyleStubPIC())
4966    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4967
4968  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4969                                          OpFlag);
4970  DebugLoc DL = JT->getDebugLoc();
4971  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4972
4973  // With PIC, the address is actually $g + Offset.
4974  if (OpFlag) {
4975    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4976                         DAG.getNode(X86ISD::GlobalBaseReg,
4977                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4978                         Result);
4979  }
4980
4981  return Result;
4982}
4983
4984SDValue
4985X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4986  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4987
4988  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4989  // global base reg.
4990  unsigned char OpFlag = 0;
4991  unsigned WrapperKind = X86ISD::Wrapper;
4992  CodeModel::Model M = getTargetMachine().getCodeModel();
4993
4994  if (Subtarget->isPICStyleRIPRel() &&
4995      (M == CodeModel::Small || M == CodeModel::Kernel))
4996    WrapperKind = X86ISD::WrapperRIP;
4997  else if (Subtarget->isPICStyleGOT())
4998    OpFlag = X86II::MO_GOTOFF;
4999  else if (Subtarget->isPICStyleStubPIC())
5000    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5001
5002  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5003
5004  DebugLoc DL = Op.getDebugLoc();
5005  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5006
5007
5008  // With PIC, the address is actually $g + Offset.
5009  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5010      !Subtarget->is64Bit()) {
5011    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5012                         DAG.getNode(X86ISD::GlobalBaseReg,
5013                                     DebugLoc::getUnknownLoc(),
5014                                     getPointerTy()),
5015                         Result);
5016  }
5017
5018  return Result;
5019}
5020
5021SDValue
5022X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5023  // Create the TargetBlockAddressAddress node.
5024  unsigned char OpFlags =
5025    Subtarget->ClassifyBlockAddressReference();
5026  CodeModel::Model M = getTargetMachine().getCodeModel();
5027  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5028  DebugLoc dl = Op.getDebugLoc();
5029  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5030                                       /*isTarget=*/true, OpFlags);
5031
5032  if (Subtarget->isPICStyleRIPRel() &&
5033      (M == CodeModel::Small || M == CodeModel::Kernel))
5034    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5035  else
5036    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5037
5038  // With PIC, the address is actually $g + Offset.
5039  if (isGlobalRelativeToPICBase(OpFlags)) {
5040    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5041                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5042                         Result);
5043  }
5044
5045  return Result;
5046}
5047
5048SDValue
5049X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5050                                      int64_t Offset,
5051                                      SelectionDAG &DAG) const {
5052  // Create the TargetGlobalAddress node, folding in the constant
5053  // offset if it is legal.
5054  unsigned char OpFlags =
5055    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5056  CodeModel::Model M = getTargetMachine().getCodeModel();
5057  SDValue Result;
5058  if (OpFlags == X86II::MO_NO_FLAG &&
5059      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5060    // A direct static reference to a global.
5061    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5062    Offset = 0;
5063  } else {
5064    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5065  }
5066
5067  if (Subtarget->isPICStyleRIPRel() &&
5068      (M == CodeModel::Small || M == CodeModel::Kernel))
5069    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5070  else
5071    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5072
5073  // With PIC, the address is actually $g + Offset.
5074  if (isGlobalRelativeToPICBase(OpFlags)) {
5075    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5076                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5077                         Result);
5078  }
5079
5080  // For globals that require a load from a stub to get the address, emit the
5081  // load.
5082  if (isGlobalStubReference(OpFlags))
5083    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5084                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5085
5086  // If there was a non-zero offset that we didn't fold, create an explicit
5087  // addition for it.
5088  if (Offset != 0)
5089    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5090                         DAG.getConstant(Offset, getPointerTy()));
5091
5092  return Result;
5093}
5094
5095SDValue
5096X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5097  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5098  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5099  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5100}
5101
5102static SDValue
5103GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5104           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5105           unsigned char OperandFlags) {
5106  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5107  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5108  DebugLoc dl = GA->getDebugLoc();
5109  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5110                                           GA->getValueType(0),
5111                                           GA->getOffset(),
5112                                           OperandFlags);
5113  if (InFlag) {
5114    SDValue Ops[] = { Chain,  TGA, *InFlag };
5115    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5116  } else {
5117    SDValue Ops[]  = { Chain, TGA };
5118    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5119  }
5120
5121  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5122  MFI->setHasCalls(true);
5123
5124  SDValue Flag = Chain.getValue(1);
5125  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5126}
5127
5128// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5129static SDValue
5130LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5131                                const EVT PtrVT) {
5132  SDValue InFlag;
5133  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5134  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5135                                     DAG.getNode(X86ISD::GlobalBaseReg,
5136                                                 DebugLoc::getUnknownLoc(),
5137                                                 PtrVT), InFlag);
5138  InFlag = Chain.getValue(1);
5139
5140  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5141}
5142
5143// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5144static SDValue
5145LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5146                                const EVT PtrVT) {
5147  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5148                    X86::RAX, X86II::MO_TLSGD);
5149}
5150
5151// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5152// "local exec" model.
5153static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5154                                   const EVT PtrVT, TLSModel::Model model,
5155                                   bool is64Bit) {
5156  DebugLoc dl = GA->getDebugLoc();
5157  // Get the Thread Pointer
5158  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5159                             DebugLoc::getUnknownLoc(), PtrVT,
5160                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5161                                             MVT::i32));
5162
5163  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5164                                      NULL, 0, false, false, 0);
5165
5166  unsigned char OperandFlags = 0;
5167  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5168  // initialexec.
5169  unsigned WrapperKind = X86ISD::Wrapper;
5170  if (model == TLSModel::LocalExec) {
5171    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5172  } else if (is64Bit) {
5173    assert(model == TLSModel::InitialExec);
5174    OperandFlags = X86II::MO_GOTTPOFF;
5175    WrapperKind = X86ISD::WrapperRIP;
5176  } else {
5177    assert(model == TLSModel::InitialExec);
5178    OperandFlags = X86II::MO_INDNTPOFF;
5179  }
5180
5181  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5182  // exec)
5183  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5184                                           GA->getOffset(), OperandFlags);
5185  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5186
5187  if (model == TLSModel::InitialExec)
5188    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5189                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5190
5191  // The address of the thread local variable is the add of the thread
5192  // pointer with the offset of the variable.
5193  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5194}
5195
5196SDValue
5197X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5198  // TODO: implement the "local dynamic" model
5199  // TODO: implement the "initial exec"model for pic executables
5200  assert(Subtarget->isTargetELF() &&
5201         "TLS not implemented for non-ELF targets");
5202  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5203  const GlobalValue *GV = GA->getGlobal();
5204
5205  // If GV is an alias then use the aliasee for determining
5206  // thread-localness.
5207  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5208    GV = GA->resolveAliasedGlobal(false);
5209
5210  TLSModel::Model model = getTLSModel(GV,
5211                                      getTargetMachine().getRelocationModel());
5212
5213  switch (model) {
5214  case TLSModel::GeneralDynamic:
5215  case TLSModel::LocalDynamic: // not implemented
5216    if (Subtarget->is64Bit())
5217      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5218    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5219
5220  case TLSModel::InitialExec:
5221  case TLSModel::LocalExec:
5222    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5223                               Subtarget->is64Bit());
5224  }
5225
5226  llvm_unreachable("Unreachable");
5227  return SDValue();
5228}
5229
5230
5231/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5232/// take a 2 x i32 value to shift plus a shift amount.
5233SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5234  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5235  EVT VT = Op.getValueType();
5236  unsigned VTBits = VT.getSizeInBits();
5237  DebugLoc dl = Op.getDebugLoc();
5238  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5239  SDValue ShOpLo = Op.getOperand(0);
5240  SDValue ShOpHi = Op.getOperand(1);
5241  SDValue ShAmt  = Op.getOperand(2);
5242  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5243                                     DAG.getConstant(VTBits - 1, MVT::i8))
5244                       : DAG.getConstant(0, VT);
5245
5246  SDValue Tmp2, Tmp3;
5247  if (Op.getOpcode() == ISD::SHL_PARTS) {
5248    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5249    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5250  } else {
5251    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5252    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5253  }
5254
5255  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5256                                DAG.getConstant(VTBits, MVT::i8));
5257  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5258                             AndNode, DAG.getConstant(0, MVT::i8));
5259
5260  SDValue Hi, Lo;
5261  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5262  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5263  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5264
5265  if (Op.getOpcode() == ISD::SHL_PARTS) {
5266    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5267    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5268  } else {
5269    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5270    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5271  }
5272
5273  SDValue Ops[2] = { Lo, Hi };
5274  return DAG.getMergeValues(Ops, 2, dl);
5275}
5276
5277SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5278  EVT SrcVT = Op.getOperand(0).getValueType();
5279
5280  if (SrcVT.isVector()) {
5281    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5282      return Op;
5283    }
5284    return SDValue();
5285  }
5286
5287  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5288         "Unknown SINT_TO_FP to lower!");
5289
5290  // These are really Legal; return the operand so the caller accepts it as
5291  // Legal.
5292  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5293    return Op;
5294  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5295      Subtarget->is64Bit()) {
5296    return Op;
5297  }
5298
5299  DebugLoc dl = Op.getDebugLoc();
5300  unsigned Size = SrcVT.getSizeInBits()/8;
5301  MachineFunction &MF = DAG.getMachineFunction();
5302  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5303  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5304  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5305                               StackSlot,
5306                               PseudoSourceValue::getFixedStack(SSFI), 0,
5307                               false, false, 0);
5308  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5309}
5310
5311SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5312                                     SDValue StackSlot,
5313                                     SelectionDAG &DAG) {
5314  // Build the FILD
5315  DebugLoc dl = Op.getDebugLoc();
5316  SDVTList Tys;
5317  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5318  if (useSSE)
5319    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5320  else
5321    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5322  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5323  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5324                               Tys, Ops, array_lengthof(Ops));
5325
5326  if (useSSE) {
5327    Chain = Result.getValue(1);
5328    SDValue InFlag = Result.getValue(2);
5329
5330    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5331    // shouldn't be necessary except that RFP cannot be live across
5332    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5333    MachineFunction &MF = DAG.getMachineFunction();
5334    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5335    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5336    Tys = DAG.getVTList(MVT::Other);
5337    SDValue Ops[] = {
5338      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5339    };
5340    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5341    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5342                         PseudoSourceValue::getFixedStack(SSFI), 0,
5343                         false, false, 0);
5344  }
5345
5346  return Result;
5347}
5348
5349// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5350SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5351  // This algorithm is not obvious. Here it is in C code, more or less:
5352  /*
5353    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5354      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5355      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5356
5357      // Copy ints to xmm registers.
5358      __m128i xh = _mm_cvtsi32_si128( hi );
5359      __m128i xl = _mm_cvtsi32_si128( lo );
5360
5361      // Combine into low half of a single xmm register.
5362      __m128i x = _mm_unpacklo_epi32( xh, xl );
5363      __m128d d;
5364      double sd;
5365
5366      // Merge in appropriate exponents to give the integer bits the right
5367      // magnitude.
5368      x = _mm_unpacklo_epi32( x, exp );
5369
5370      // Subtract away the biases to deal with the IEEE-754 double precision
5371      // implicit 1.
5372      d = _mm_sub_pd( (__m128d) x, bias );
5373
5374      // All conversions up to here are exact. The correctly rounded result is
5375      // calculated using the current rounding mode using the following
5376      // horizontal add.
5377      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5378      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5379                                // store doesn't really need to be here (except
5380                                // maybe to zero the other double)
5381      return sd;
5382    }
5383  */
5384
5385  DebugLoc dl = Op.getDebugLoc();
5386  LLVMContext *Context = DAG.getContext();
5387
5388  // Build some magic constants.
5389  std::vector<Constant*> CV0;
5390  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5391  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5392  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5393  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5394  Constant *C0 = ConstantVector::get(CV0);
5395  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5396
5397  std::vector<Constant*> CV1;
5398  CV1.push_back(
5399    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5400  CV1.push_back(
5401    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5402  Constant *C1 = ConstantVector::get(CV1);
5403  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5404
5405  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5406                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5407                                        Op.getOperand(0),
5408                                        DAG.getIntPtrConstant(1)));
5409  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5410                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5411                                        Op.getOperand(0),
5412                                        DAG.getIntPtrConstant(0)));
5413  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5414  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5415                              PseudoSourceValue::getConstantPool(), 0,
5416                              false, false, 16);
5417  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5418  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5419  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5420                              PseudoSourceValue::getConstantPool(), 0,
5421                              false, false, 16);
5422  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5423
5424  // Add the halves; easiest way is to swap them into another reg first.
5425  int ShufMask[2] = { 1, -1 };
5426  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5427                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5428  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5429  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5430                     DAG.getIntPtrConstant(0));
5431}
5432
5433// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5434SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5435  DebugLoc dl = Op.getDebugLoc();
5436  // FP constant to bias correct the final result.
5437  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5438                                   MVT::f64);
5439
5440  // Load the 32-bit value into an XMM register.
5441  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5442                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5443                                         Op.getOperand(0),
5444                                         DAG.getIntPtrConstant(0)));
5445
5446  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5447                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5448                     DAG.getIntPtrConstant(0));
5449
5450  // Or the load with the bias.
5451  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5452                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5453                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5454                                                   MVT::v2f64, Load)),
5455                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5456                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5457                                                   MVT::v2f64, Bias)));
5458  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5459                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5460                   DAG.getIntPtrConstant(0));
5461
5462  // Subtract the bias.
5463  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5464
5465  // Handle final rounding.
5466  EVT DestVT = Op.getValueType();
5467
5468  if (DestVT.bitsLT(MVT::f64)) {
5469    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5470                       DAG.getIntPtrConstant(0));
5471  } else if (DestVT.bitsGT(MVT::f64)) {
5472    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5473  }
5474
5475  // Handle final rounding.
5476  return Sub;
5477}
5478
5479SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5480  SDValue N0 = Op.getOperand(0);
5481  DebugLoc dl = Op.getDebugLoc();
5482
5483  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5484  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5485  // the optimization here.
5486  if (DAG.SignBitIsZero(N0))
5487    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5488
5489  EVT SrcVT = N0.getValueType();
5490  if (SrcVT == MVT::i64) {
5491    // We only handle SSE2 f64 target here; caller can expand the rest.
5492    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5493      return SDValue();
5494
5495    return LowerUINT_TO_FP_i64(Op, DAG);
5496  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5497    return LowerUINT_TO_FP_i32(Op, DAG);
5498  }
5499
5500  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5501
5502  // Make a 64-bit buffer, and use it to build an FILD.
5503  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5504  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5505  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5506                                   getPointerTy(), StackSlot, WordOff);
5507  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5508                                StackSlot, NULL, 0, false, false, 0);
5509  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5510                                OffsetSlot, NULL, 0, false, false, 0);
5511  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5512}
5513
5514std::pair<SDValue,SDValue> X86TargetLowering::
5515FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5516  DebugLoc dl = Op.getDebugLoc();
5517
5518  EVT DstTy = Op.getValueType();
5519
5520  if (!IsSigned) {
5521    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5522    DstTy = MVT::i64;
5523  }
5524
5525  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5526         DstTy.getSimpleVT() >= MVT::i16 &&
5527         "Unknown FP_TO_SINT to lower!");
5528
5529  // These are really Legal.
5530  if (DstTy == MVT::i32 &&
5531      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5532    return std::make_pair(SDValue(), SDValue());
5533  if (Subtarget->is64Bit() &&
5534      DstTy == MVT::i64 &&
5535      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5536    return std::make_pair(SDValue(), SDValue());
5537
5538  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5539  // stack slot.
5540  MachineFunction &MF = DAG.getMachineFunction();
5541  unsigned MemSize = DstTy.getSizeInBits()/8;
5542  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5543  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5544
5545  unsigned Opc;
5546  switch (DstTy.getSimpleVT().SimpleTy) {
5547  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5548  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5549  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5550  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5551  }
5552
5553  SDValue Chain = DAG.getEntryNode();
5554  SDValue Value = Op.getOperand(0);
5555  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5556    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5557    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5558                         PseudoSourceValue::getFixedStack(SSFI), 0,
5559                         false, false, 0);
5560    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5561    SDValue Ops[] = {
5562      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5563    };
5564    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5565    Chain = Value.getValue(1);
5566    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5567    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5568  }
5569
5570  // Build the FP_TO_INT*_IN_MEM
5571  SDValue Ops[] = { Chain, Value, StackSlot };
5572  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5573
5574  return std::make_pair(FIST, StackSlot);
5575}
5576
5577SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5578  if (Op.getValueType().isVector()) {
5579    if (Op.getValueType() == MVT::v2i32 &&
5580        Op.getOperand(0).getValueType() == MVT::v2f64) {
5581      return Op;
5582    }
5583    return SDValue();
5584  }
5585
5586  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5587  SDValue FIST = Vals.first, StackSlot = Vals.second;
5588  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5589  if (FIST.getNode() == 0) return Op;
5590
5591  // Load the result.
5592  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5593                     FIST, StackSlot, NULL, 0, false, false, 0);
5594}
5595
5596SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5597  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5598  SDValue FIST = Vals.first, StackSlot = Vals.second;
5599  assert(FIST.getNode() && "Unexpected failure");
5600
5601  // Load the result.
5602  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5603                     FIST, StackSlot, NULL, 0, false, false, 0);
5604}
5605
5606SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5607  LLVMContext *Context = DAG.getContext();
5608  DebugLoc dl = Op.getDebugLoc();
5609  EVT VT = Op.getValueType();
5610  EVT EltVT = VT;
5611  if (VT.isVector())
5612    EltVT = VT.getVectorElementType();
5613  std::vector<Constant*> CV;
5614  if (EltVT == MVT::f64) {
5615    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5616    CV.push_back(C);
5617    CV.push_back(C);
5618  } else {
5619    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5620    CV.push_back(C);
5621    CV.push_back(C);
5622    CV.push_back(C);
5623    CV.push_back(C);
5624  }
5625  Constant *C = ConstantVector::get(CV);
5626  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5627  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5628                             PseudoSourceValue::getConstantPool(), 0,
5629                             false, false, 16);
5630  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5631}
5632
5633SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5634  LLVMContext *Context = DAG.getContext();
5635  DebugLoc dl = Op.getDebugLoc();
5636  EVT VT = Op.getValueType();
5637  EVT EltVT = VT;
5638  if (VT.isVector())
5639    EltVT = VT.getVectorElementType();
5640  std::vector<Constant*> CV;
5641  if (EltVT == MVT::f64) {
5642    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5643    CV.push_back(C);
5644    CV.push_back(C);
5645  } else {
5646    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5647    CV.push_back(C);
5648    CV.push_back(C);
5649    CV.push_back(C);
5650    CV.push_back(C);
5651  }
5652  Constant *C = ConstantVector::get(CV);
5653  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5654  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5655                             PseudoSourceValue::getConstantPool(), 0,
5656                             false, false, 16);
5657  if (VT.isVector()) {
5658    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5659                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5660                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5661                                Op.getOperand(0)),
5662                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5663  } else {
5664    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5665  }
5666}
5667
5668SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5669  LLVMContext *Context = DAG.getContext();
5670  SDValue Op0 = Op.getOperand(0);
5671  SDValue Op1 = Op.getOperand(1);
5672  DebugLoc dl = Op.getDebugLoc();
5673  EVT VT = Op.getValueType();
5674  EVT SrcVT = Op1.getValueType();
5675
5676  // If second operand is smaller, extend it first.
5677  if (SrcVT.bitsLT(VT)) {
5678    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5679    SrcVT = VT;
5680  }
5681  // And if it is bigger, shrink it first.
5682  if (SrcVT.bitsGT(VT)) {
5683    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5684    SrcVT = VT;
5685  }
5686
5687  // At this point the operands and the result should have the same
5688  // type, and that won't be f80 since that is not custom lowered.
5689
5690  // First get the sign bit of second operand.
5691  std::vector<Constant*> CV;
5692  if (SrcVT == MVT::f64) {
5693    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5694    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5695  } else {
5696    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5697    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5698    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5699    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5700  }
5701  Constant *C = ConstantVector::get(CV);
5702  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5703  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5704                              PseudoSourceValue::getConstantPool(), 0,
5705                              false, false, 16);
5706  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5707
5708  // Shift sign bit right or left if the two operands have different types.
5709  if (SrcVT.bitsGT(VT)) {
5710    // Op0 is MVT::f32, Op1 is MVT::f64.
5711    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5712    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5713                          DAG.getConstant(32, MVT::i32));
5714    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5715    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5716                          DAG.getIntPtrConstant(0));
5717  }
5718
5719  // Clear first operand sign bit.
5720  CV.clear();
5721  if (VT == MVT::f64) {
5722    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5723    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5724  } else {
5725    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5726    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5727    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5728    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5729  }
5730  C = ConstantVector::get(CV);
5731  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5732  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5733                              PseudoSourceValue::getConstantPool(), 0,
5734                              false, false, 16);
5735  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5736
5737  // Or the value with the sign bit.
5738  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5739}
5740
5741/// Emit nodes that will be selected as "test Op0,Op0", or something
5742/// equivalent.
5743SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5744                                    SelectionDAG &DAG) {
5745  DebugLoc dl = Op.getDebugLoc();
5746
5747  // CF and OF aren't always set the way we want. Determine which
5748  // of these we need.
5749  bool NeedCF = false;
5750  bool NeedOF = false;
5751  switch (X86CC) {
5752  case X86::COND_A: case X86::COND_AE:
5753  case X86::COND_B: case X86::COND_BE:
5754    NeedCF = true;
5755    break;
5756  case X86::COND_G: case X86::COND_GE:
5757  case X86::COND_L: case X86::COND_LE:
5758  case X86::COND_O: case X86::COND_NO:
5759    NeedOF = true;
5760    break;
5761  default: break;
5762  }
5763
5764  // See if we can use the EFLAGS value from the operand instead of
5765  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5766  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5767  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5768    unsigned Opcode = 0;
5769    unsigned NumOperands = 0;
5770    switch (Op.getNode()->getOpcode()) {
5771    case ISD::ADD:
5772      // Due to an isel shortcoming, be conservative if this add is likely to
5773      // be selected as part of a load-modify-store instruction. When the root
5774      // node in a match is a store, isel doesn't know how to remap non-chain
5775      // non-flag uses of other nodes in the match, such as the ADD in this
5776      // case. This leads to the ADD being left around and reselected, with
5777      // the result being two adds in the output.
5778      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5779           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5780        if (UI->getOpcode() == ISD::STORE)
5781          goto default_case;
5782      if (ConstantSDNode *C =
5783            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5784        // An add of one will be selected as an INC.
5785        if (C->getAPIntValue() == 1) {
5786          Opcode = X86ISD::INC;
5787          NumOperands = 1;
5788          break;
5789        }
5790        // An add of negative one (subtract of one) will be selected as a DEC.
5791        if (C->getAPIntValue().isAllOnesValue()) {
5792          Opcode = X86ISD::DEC;
5793          NumOperands = 1;
5794          break;
5795        }
5796      }
5797      // Otherwise use a regular EFLAGS-setting add.
5798      Opcode = X86ISD::ADD;
5799      NumOperands = 2;
5800      break;
5801    case ISD::AND: {
5802      // If the primary and result isn't used, don't bother using X86ISD::AND,
5803      // because a TEST instruction will be better.
5804      bool NonFlagUse = false;
5805      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5806             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5807        SDNode *User = *UI;
5808        unsigned UOpNo = UI.getOperandNo();
5809        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5810          // Look pass truncate.
5811          UOpNo = User->use_begin().getOperandNo();
5812          User = *User->use_begin();
5813        }
5814        if (User->getOpcode() != ISD::BRCOND &&
5815            User->getOpcode() != ISD::SETCC &&
5816            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5817          NonFlagUse = true;
5818          break;
5819        }
5820      }
5821      if (!NonFlagUse)
5822        break;
5823    }
5824    // FALL THROUGH
5825    case ISD::SUB:
5826    case ISD::OR:
5827    case ISD::XOR:
5828      // Due to the ISEL shortcoming noted above, be conservative if this op is
5829      // likely to be selected as part of a load-modify-store instruction.
5830      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5831           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5832        if (UI->getOpcode() == ISD::STORE)
5833          goto default_case;
5834      // Otherwise use a regular EFLAGS-setting instruction.
5835      switch (Op.getNode()->getOpcode()) {
5836      case ISD::SUB: Opcode = X86ISD::SUB; break;
5837      case ISD::OR:  Opcode = X86ISD::OR;  break;
5838      case ISD::XOR: Opcode = X86ISD::XOR; break;
5839      case ISD::AND: Opcode = X86ISD::AND; break;
5840      default: llvm_unreachable("unexpected operator!");
5841      }
5842      NumOperands = 2;
5843      break;
5844    case X86ISD::ADD:
5845    case X86ISD::SUB:
5846    case X86ISD::INC:
5847    case X86ISD::DEC:
5848    case X86ISD::OR:
5849    case X86ISD::XOR:
5850    case X86ISD::AND:
5851      return SDValue(Op.getNode(), 1);
5852    default:
5853    default_case:
5854      break;
5855    }
5856    if (Opcode != 0) {
5857      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5858      SmallVector<SDValue, 4> Ops;
5859      for (unsigned i = 0; i != NumOperands; ++i)
5860        Ops.push_back(Op.getOperand(i));
5861      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5862      DAG.ReplaceAllUsesWith(Op, New);
5863      return SDValue(New.getNode(), 1);
5864    }
5865  }
5866
5867  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5868  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5869                     DAG.getConstant(0, Op.getValueType()));
5870}
5871
5872/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5873/// equivalent.
5874SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5875                                   SelectionDAG &DAG) {
5876  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5877    if (C->getAPIntValue() == 0)
5878      return EmitTest(Op0, X86CC, DAG);
5879
5880  DebugLoc dl = Op0.getDebugLoc();
5881  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5882}
5883
5884/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
5885/// if it's possible.
5886static SDValue LowerToBT(SDValue And, ISD::CondCode CC,
5887                         DebugLoc dl, SelectionDAG &DAG) {
5888  SDValue Op0 = And.getOperand(0);
5889  SDValue Op1 = And.getOperand(1);
5890  if (Op0.getOpcode() == ISD::TRUNCATE)
5891    Op0 = Op0.getOperand(0);
5892  if (Op1.getOpcode() == ISD::TRUNCATE)
5893    Op1 = Op1.getOperand(0);
5894
5895  SDValue LHS, RHS;
5896  if (Op1.getOpcode() == ISD::SHL) {
5897    if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
5898      if (And10C->getZExtValue() == 1) {
5899        LHS = Op0;
5900        RHS = Op1.getOperand(1);
5901      }
5902  } else if (Op0.getOpcode() == ISD::SHL) {
5903    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
5904      if (And00C->getZExtValue() == 1) {
5905        LHS = Op1;
5906        RHS = Op0.getOperand(1);
5907      }
5908  } else if (Op1.getOpcode() == ISD::Constant) {
5909    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
5910    SDValue AndLHS = Op0;
5911    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5912      LHS = AndLHS.getOperand(0);
5913      RHS = AndLHS.getOperand(1);
5914    }
5915  }
5916
5917  if (LHS.getNode()) {
5918    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5919    // instruction.  Since the shift amount is in-range-or-undefined, we know
5920    // that doing a bittest on the i16 value is ok.  We extend to i32 because
5921    // the encoding for the i16 version is larger than the i32 version.
5922    if (LHS.getValueType() == MVT::i8)
5923      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5924
5925    // If the operand types disagree, extend the shift amount to match.  Since
5926    // BT ignores high bits (like shifts) we can use anyextend.
5927    if (LHS.getValueType() != RHS.getValueType())
5928      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5929
5930    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5931    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5932    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5933                       DAG.getConstant(Cond, MVT::i8), BT);
5934  }
5935
5936  return SDValue();
5937}
5938
5939SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5940  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5941  SDValue Op0 = Op.getOperand(0);
5942  SDValue Op1 = Op.getOperand(1);
5943  DebugLoc dl = Op.getDebugLoc();
5944  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5945
5946  // Optimize to BT if possible.
5947  // Lower (X & (1 << N)) == 0 to BT(X, N).
5948  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5949  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5950  if (Op0.getOpcode() == ISD::AND &&
5951      Op0.hasOneUse() &&
5952      Op1.getOpcode() == ISD::Constant &&
5953      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5954      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5955    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
5956    if (NewSetCC.getNode())
5957      return NewSetCC;
5958  }
5959
5960  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
5961  if (Op0.getOpcode() == X86ISD::SETCC &&
5962      Op1.getOpcode() == ISD::Constant &&
5963      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
5964       cast<ConstantSDNode>(Op1)->isNullValue()) &&
5965      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5966    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
5967    bool Invert = (CC == ISD::SETNE) ^
5968      cast<ConstantSDNode>(Op1)->isNullValue();
5969    if (Invert)
5970      CCode = X86::GetOppositeBranchCondition(CCode);
5971    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5972                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
5973  }
5974
5975  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5976  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5977  if (X86CC == X86::COND_INVALID)
5978    return SDValue();
5979
5980  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5981
5982  // Use sbb x, x to materialize carry bit into a GPR.
5983  if (X86CC == X86::COND_B)
5984    return DAG.getNode(ISD::AND, dl, MVT::i8,
5985                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
5986                                   DAG.getConstant(X86CC, MVT::i8), Cond),
5987                       DAG.getConstant(1, MVT::i8));
5988
5989  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5990                     DAG.getConstant(X86CC, MVT::i8), Cond);
5991}
5992
5993SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5994  SDValue Cond;
5995  SDValue Op0 = Op.getOperand(0);
5996  SDValue Op1 = Op.getOperand(1);
5997  SDValue CC = Op.getOperand(2);
5998  EVT VT = Op.getValueType();
5999  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6000  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6001  DebugLoc dl = Op.getDebugLoc();
6002
6003  if (isFP) {
6004    unsigned SSECC = 8;
6005    EVT VT0 = Op0.getValueType();
6006    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6007    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6008    bool Swap = false;
6009
6010    switch (SetCCOpcode) {
6011    default: break;
6012    case ISD::SETOEQ:
6013    case ISD::SETEQ:  SSECC = 0; break;
6014    case ISD::SETOGT:
6015    case ISD::SETGT: Swap = true; // Fallthrough
6016    case ISD::SETLT:
6017    case ISD::SETOLT: SSECC = 1; break;
6018    case ISD::SETOGE:
6019    case ISD::SETGE: Swap = true; // Fallthrough
6020    case ISD::SETLE:
6021    case ISD::SETOLE: SSECC = 2; break;
6022    case ISD::SETUO:  SSECC = 3; break;
6023    case ISD::SETUNE:
6024    case ISD::SETNE:  SSECC = 4; break;
6025    case ISD::SETULE: Swap = true;
6026    case ISD::SETUGE: SSECC = 5; break;
6027    case ISD::SETULT: Swap = true;
6028    case ISD::SETUGT: SSECC = 6; break;
6029    case ISD::SETO:   SSECC = 7; break;
6030    }
6031    if (Swap)
6032      std::swap(Op0, Op1);
6033
6034    // In the two special cases we can't handle, emit two comparisons.
6035    if (SSECC == 8) {
6036      if (SetCCOpcode == ISD::SETUEQ) {
6037        SDValue UNORD, EQ;
6038        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6039        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6040        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6041      }
6042      else if (SetCCOpcode == ISD::SETONE) {
6043        SDValue ORD, NEQ;
6044        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6045        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6046        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6047      }
6048      llvm_unreachable("Illegal FP comparison");
6049    }
6050    // Handle all other FP comparisons here.
6051    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6052  }
6053
6054  // We are handling one of the integer comparisons here.  Since SSE only has
6055  // GT and EQ comparisons for integer, swapping operands and multiple
6056  // operations may be required for some comparisons.
6057  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6058  bool Swap = false, Invert = false, FlipSigns = false;
6059
6060  switch (VT.getSimpleVT().SimpleTy) {
6061  default: break;
6062  case MVT::v8i8:
6063  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6064  case MVT::v4i16:
6065  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6066  case MVT::v2i32:
6067  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6068  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6069  }
6070
6071  switch (SetCCOpcode) {
6072  default: break;
6073  case ISD::SETNE:  Invert = true;
6074  case ISD::SETEQ:  Opc = EQOpc; break;
6075  case ISD::SETLT:  Swap = true;
6076  case ISD::SETGT:  Opc = GTOpc; break;
6077  case ISD::SETGE:  Swap = true;
6078  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6079  case ISD::SETULT: Swap = true;
6080  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6081  case ISD::SETUGE: Swap = true;
6082  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6083  }
6084  if (Swap)
6085    std::swap(Op0, Op1);
6086
6087  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6088  // bits of the inputs before performing those operations.
6089  if (FlipSigns) {
6090    EVT EltVT = VT.getVectorElementType();
6091    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6092                                      EltVT);
6093    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6094    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6095                                    SignBits.size());
6096    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6097    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6098  }
6099
6100  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6101
6102  // If the logical-not of the result is required, perform that now.
6103  if (Invert)
6104    Result = DAG.getNOT(dl, Result, VT);
6105
6106  return Result;
6107}
6108
6109// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6110static bool isX86LogicalCmp(SDValue Op) {
6111  unsigned Opc = Op.getNode()->getOpcode();
6112  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6113    return true;
6114  if (Op.getResNo() == 1 &&
6115      (Opc == X86ISD::ADD ||
6116       Opc == X86ISD::SUB ||
6117       Opc == X86ISD::SMUL ||
6118       Opc == X86ISD::UMUL ||
6119       Opc == X86ISD::INC ||
6120       Opc == X86ISD::DEC ||
6121       Opc == X86ISD::OR ||
6122       Opc == X86ISD::XOR ||
6123       Opc == X86ISD::AND))
6124    return true;
6125
6126  return false;
6127}
6128
6129SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6130  bool addTest = true;
6131  SDValue Cond  = Op.getOperand(0);
6132  DebugLoc dl = Op.getDebugLoc();
6133  SDValue CC;
6134
6135  if (Cond.getOpcode() == ISD::SETCC) {
6136    SDValue NewCond = LowerSETCC(Cond, DAG);
6137    if (NewCond.getNode())
6138      Cond = NewCond;
6139  }
6140
6141  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6142  SDValue Op1 = Op.getOperand(1);
6143  SDValue Op2 = Op.getOperand(2);
6144  if (Cond.getOpcode() == X86ISD::SETCC &&
6145      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6146    SDValue Cmp = Cond.getOperand(1);
6147    if (Cmp.getOpcode() == X86ISD::CMP) {
6148      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6149      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6150      ConstantSDNode *RHSC =
6151        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6152      if (N1C && N1C->isAllOnesValue() &&
6153          N2C && N2C->isNullValue() &&
6154          RHSC && RHSC->isNullValue()) {
6155        SDValue CmpOp0 = Cmp.getOperand(0);
6156        Cmp = DAG.getNode(X86ISD::CMP, dl, CmpOp0.getValueType(),
6157                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6158        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6159                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6160      }
6161    }
6162  }
6163
6164  // Look pass (and (setcc_carry (cmp ...)), 1).
6165  if (Cond.getOpcode() == ISD::AND &&
6166      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6167    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6168    if (C && C->getAPIntValue() == 1)
6169      Cond = Cond.getOperand(0);
6170  }
6171
6172  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6173  // setting operand in place of the X86ISD::SETCC.
6174  if (Cond.getOpcode() == X86ISD::SETCC ||
6175      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6176    CC = Cond.getOperand(0);
6177
6178    SDValue Cmp = Cond.getOperand(1);
6179    unsigned Opc = Cmp.getOpcode();
6180    EVT VT = Op.getValueType();
6181
6182    bool IllegalFPCMov = false;
6183    if (VT.isFloatingPoint() && !VT.isVector() &&
6184        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6185      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6186
6187    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6188        Opc == X86ISD::BT) { // FIXME
6189      Cond = Cmp;
6190      addTest = false;
6191    }
6192  }
6193
6194  if (addTest) {
6195    // Look pass the truncate.
6196    if (Cond.getOpcode() == ISD::TRUNCATE)
6197      Cond = Cond.getOperand(0);
6198
6199    // We know the result of AND is compared against zero. Try to match
6200    // it to BT.
6201    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6202      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6203      if (NewSetCC.getNode()) {
6204        CC = NewSetCC.getOperand(0);
6205        Cond = NewSetCC.getOperand(1);
6206        addTest = false;
6207      }
6208    }
6209  }
6210
6211  if (addTest) {
6212    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6213    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6214  }
6215
6216  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6217  // condition is true.
6218  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6219  SDValue Ops[] = { Op2, Op1, CC, Cond };
6220  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6221}
6222
6223// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6224// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6225// from the AND / OR.
6226static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6227  Opc = Op.getOpcode();
6228  if (Opc != ISD::OR && Opc != ISD::AND)
6229    return false;
6230  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6231          Op.getOperand(0).hasOneUse() &&
6232          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6233          Op.getOperand(1).hasOneUse());
6234}
6235
6236// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6237// 1 and that the SETCC node has a single use.
6238static bool isXor1OfSetCC(SDValue Op) {
6239  if (Op.getOpcode() != ISD::XOR)
6240    return false;
6241  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6242  if (N1C && N1C->getAPIntValue() == 1) {
6243    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6244      Op.getOperand(0).hasOneUse();
6245  }
6246  return false;
6247}
6248
6249SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6250  bool addTest = true;
6251  SDValue Chain = Op.getOperand(0);
6252  SDValue Cond  = Op.getOperand(1);
6253  SDValue Dest  = Op.getOperand(2);
6254  DebugLoc dl = Op.getDebugLoc();
6255  SDValue CC;
6256
6257  if (Cond.getOpcode() == ISD::SETCC) {
6258    SDValue NewCond = LowerSETCC(Cond, DAG);
6259    if (NewCond.getNode())
6260      Cond = NewCond;
6261  }
6262#if 0
6263  // FIXME: LowerXALUO doesn't handle these!!
6264  else if (Cond.getOpcode() == X86ISD::ADD  ||
6265           Cond.getOpcode() == X86ISD::SUB  ||
6266           Cond.getOpcode() == X86ISD::SMUL ||
6267           Cond.getOpcode() == X86ISD::UMUL)
6268    Cond = LowerXALUO(Cond, DAG);
6269#endif
6270
6271  // Look pass (and (setcc_carry (cmp ...)), 1).
6272  if (Cond.getOpcode() == ISD::AND &&
6273      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6274    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6275    if (C && C->getAPIntValue() == 1)
6276      Cond = Cond.getOperand(0);
6277  }
6278
6279  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6280  // setting operand in place of the X86ISD::SETCC.
6281  if (Cond.getOpcode() == X86ISD::SETCC ||
6282      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6283    CC = Cond.getOperand(0);
6284
6285    SDValue Cmp = Cond.getOperand(1);
6286    unsigned Opc = Cmp.getOpcode();
6287    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6288    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6289      Cond = Cmp;
6290      addTest = false;
6291    } else {
6292      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6293      default: break;
6294      case X86::COND_O:
6295      case X86::COND_B:
6296        // These can only come from an arithmetic instruction with overflow,
6297        // e.g. SADDO, UADDO.
6298        Cond = Cond.getNode()->getOperand(1);
6299        addTest = false;
6300        break;
6301      }
6302    }
6303  } else {
6304    unsigned CondOpc;
6305    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6306      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6307      if (CondOpc == ISD::OR) {
6308        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6309        // two branches instead of an explicit OR instruction with a
6310        // separate test.
6311        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6312            isX86LogicalCmp(Cmp)) {
6313          CC = Cond.getOperand(0).getOperand(0);
6314          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6315                              Chain, Dest, CC, Cmp);
6316          CC = Cond.getOperand(1).getOperand(0);
6317          Cond = Cmp;
6318          addTest = false;
6319        }
6320      } else { // ISD::AND
6321        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6322        // two branches instead of an explicit AND instruction with a
6323        // separate test. However, we only do this if this block doesn't
6324        // have a fall-through edge, because this requires an explicit
6325        // jmp when the condition is false.
6326        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6327            isX86LogicalCmp(Cmp) &&
6328            Op.getNode()->hasOneUse()) {
6329          X86::CondCode CCode =
6330            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6331          CCode = X86::GetOppositeBranchCondition(CCode);
6332          CC = DAG.getConstant(CCode, MVT::i8);
6333          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6334          // Look for an unconditional branch following this conditional branch.
6335          // We need this because we need to reverse the successors in order
6336          // to implement FCMP_OEQ.
6337          if (User.getOpcode() == ISD::BR) {
6338            SDValue FalseBB = User.getOperand(1);
6339            SDValue NewBR =
6340              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6341            assert(NewBR == User);
6342            Dest = FalseBB;
6343
6344            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6345                                Chain, Dest, CC, Cmp);
6346            X86::CondCode CCode =
6347              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6348            CCode = X86::GetOppositeBranchCondition(CCode);
6349            CC = DAG.getConstant(CCode, MVT::i8);
6350            Cond = Cmp;
6351            addTest = false;
6352          }
6353        }
6354      }
6355    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6356      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6357      // It should be transformed during dag combiner except when the condition
6358      // is set by a arithmetics with overflow node.
6359      X86::CondCode CCode =
6360        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6361      CCode = X86::GetOppositeBranchCondition(CCode);
6362      CC = DAG.getConstant(CCode, MVT::i8);
6363      Cond = Cond.getOperand(0).getOperand(1);
6364      addTest = false;
6365    }
6366  }
6367
6368  if (addTest) {
6369    // Look pass the truncate.
6370    if (Cond.getOpcode() == ISD::TRUNCATE)
6371      Cond = Cond.getOperand(0);
6372
6373    // We know the result of AND is compared against zero. Try to match
6374    // it to BT.
6375    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6376      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6377      if (NewSetCC.getNode()) {
6378        CC = NewSetCC.getOperand(0);
6379        Cond = NewSetCC.getOperand(1);
6380        addTest = false;
6381      }
6382    }
6383  }
6384
6385  if (addTest) {
6386    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6387    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6388  }
6389  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6390                     Chain, Dest, CC, Cond);
6391}
6392
6393
6394// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6395// Calls to _alloca is needed to probe the stack when allocating more than 4k
6396// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6397// that the guard pages used by the OS virtual memory manager are allocated in
6398// correct sequence.
6399SDValue
6400X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6401                                           SelectionDAG &DAG) {
6402  assert(Subtarget->isTargetCygMing() &&
6403         "This should be used only on Cygwin/Mingw targets");
6404  DebugLoc dl = Op.getDebugLoc();
6405
6406  // Get the inputs.
6407  SDValue Chain = Op.getOperand(0);
6408  SDValue Size  = Op.getOperand(1);
6409  // FIXME: Ensure alignment here
6410
6411  SDValue Flag;
6412
6413  EVT IntPtr = getPointerTy();
6414  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6415
6416  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
6417
6418  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6419  Flag = Chain.getValue(1);
6420
6421  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6422  SDValue Ops[] = { Chain,
6423                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
6424                      DAG.getRegister(X86::EAX, IntPtr),
6425                      DAG.getRegister(X86StackPtr, SPTy),
6426                      Flag };
6427  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
6428  Flag = Chain.getValue(1);
6429
6430  Chain = DAG.getCALLSEQ_END(Chain,
6431                             DAG.getIntPtrConstant(0, true),
6432                             DAG.getIntPtrConstant(0, true),
6433                             Flag);
6434
6435  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6436
6437  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6438  return DAG.getMergeValues(Ops1, 2, dl);
6439}
6440
6441SDValue
6442X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6443                                           SDValue Chain,
6444                                           SDValue Dst, SDValue Src,
6445                                           SDValue Size, unsigned Align,
6446                                           const Value *DstSV,
6447                                           uint64_t DstSVOff) {
6448  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6449
6450  // If not DWORD aligned or size is more than the threshold, call the library.
6451  // The libc version is likely to be faster for these cases. It can use the
6452  // address value and run time information about the CPU.
6453  if ((Align & 3) != 0 ||
6454      !ConstantSize ||
6455      ConstantSize->getZExtValue() >
6456        getSubtarget()->getMaxInlineSizeThreshold()) {
6457    SDValue InFlag(0, 0);
6458
6459    // Check to see if there is a specialized entry-point for memory zeroing.
6460    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6461
6462    if (const char *bzeroEntry =  V &&
6463        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6464      EVT IntPtr = getPointerTy();
6465      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6466      TargetLowering::ArgListTy Args;
6467      TargetLowering::ArgListEntry Entry;
6468      Entry.Node = Dst;
6469      Entry.Ty = IntPtrTy;
6470      Args.push_back(Entry);
6471      Entry.Node = Size;
6472      Args.push_back(Entry);
6473      std::pair<SDValue,SDValue> CallResult =
6474        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6475                    false, false, false, false,
6476                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6477                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6478      return CallResult.second;
6479    }
6480
6481    // Otherwise have the target-independent code call memset.
6482    return SDValue();
6483  }
6484
6485  uint64_t SizeVal = ConstantSize->getZExtValue();
6486  SDValue InFlag(0, 0);
6487  EVT AVT;
6488  SDValue Count;
6489  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6490  unsigned BytesLeft = 0;
6491  bool TwoRepStos = false;
6492  if (ValC) {
6493    unsigned ValReg;
6494    uint64_t Val = ValC->getZExtValue() & 255;
6495
6496    // If the value is a constant, then we can potentially use larger sets.
6497    switch (Align & 3) {
6498    case 2:   // WORD aligned
6499      AVT = MVT::i16;
6500      ValReg = X86::AX;
6501      Val = (Val << 8) | Val;
6502      break;
6503    case 0:  // DWORD aligned
6504      AVT = MVT::i32;
6505      ValReg = X86::EAX;
6506      Val = (Val << 8)  | Val;
6507      Val = (Val << 16) | Val;
6508      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6509        AVT = MVT::i64;
6510        ValReg = X86::RAX;
6511        Val = (Val << 32) | Val;
6512      }
6513      break;
6514    default:  // Byte aligned
6515      AVT = MVT::i8;
6516      ValReg = X86::AL;
6517      Count = DAG.getIntPtrConstant(SizeVal);
6518      break;
6519    }
6520
6521    if (AVT.bitsGT(MVT::i8)) {
6522      unsigned UBytes = AVT.getSizeInBits() / 8;
6523      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6524      BytesLeft = SizeVal % UBytes;
6525    }
6526
6527    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6528                              InFlag);
6529    InFlag = Chain.getValue(1);
6530  } else {
6531    AVT = MVT::i8;
6532    Count  = DAG.getIntPtrConstant(SizeVal);
6533    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6534    InFlag = Chain.getValue(1);
6535  }
6536
6537  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6538                                                              X86::ECX,
6539                            Count, InFlag);
6540  InFlag = Chain.getValue(1);
6541  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6542                                                              X86::EDI,
6543                            Dst, InFlag);
6544  InFlag = Chain.getValue(1);
6545
6546  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6547  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6548  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6549
6550  if (TwoRepStos) {
6551    InFlag = Chain.getValue(1);
6552    Count  = Size;
6553    EVT CVT = Count.getValueType();
6554    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6555                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6556    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6557                                                             X86::ECX,
6558                              Left, InFlag);
6559    InFlag = Chain.getValue(1);
6560    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6561    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6562    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6563  } else if (BytesLeft) {
6564    // Handle the last 1 - 7 bytes.
6565    unsigned Offset = SizeVal - BytesLeft;
6566    EVT AddrVT = Dst.getValueType();
6567    EVT SizeVT = Size.getValueType();
6568
6569    Chain = DAG.getMemset(Chain, dl,
6570                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6571                                      DAG.getConstant(Offset, AddrVT)),
6572                          Src,
6573                          DAG.getConstant(BytesLeft, SizeVT),
6574                          Align, DstSV, DstSVOff + Offset);
6575  }
6576
6577  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6578  return Chain;
6579}
6580
6581SDValue
6582X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6583                                      SDValue Chain, SDValue Dst, SDValue Src,
6584                                      SDValue Size, unsigned Align,
6585                                      bool AlwaysInline,
6586                                      const Value *DstSV, uint64_t DstSVOff,
6587                                      const Value *SrcSV, uint64_t SrcSVOff) {
6588  // This requires the copy size to be a constant, preferrably
6589  // within a subtarget-specific limit.
6590  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6591  if (!ConstantSize)
6592    return SDValue();
6593  uint64_t SizeVal = ConstantSize->getZExtValue();
6594  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6595    return SDValue();
6596
6597  /// If not DWORD aligned, call the library.
6598  if ((Align & 3) != 0)
6599    return SDValue();
6600
6601  // DWORD aligned
6602  EVT AVT = MVT::i32;
6603  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6604    AVT = MVT::i64;
6605
6606  unsigned UBytes = AVT.getSizeInBits() / 8;
6607  unsigned CountVal = SizeVal / UBytes;
6608  SDValue Count = DAG.getIntPtrConstant(CountVal);
6609  unsigned BytesLeft = SizeVal % UBytes;
6610
6611  SDValue InFlag(0, 0);
6612  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6613                                                              X86::ECX,
6614                            Count, InFlag);
6615  InFlag = Chain.getValue(1);
6616  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6617                                                             X86::EDI,
6618                            Dst, InFlag);
6619  InFlag = Chain.getValue(1);
6620  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6621                                                              X86::ESI,
6622                            Src, InFlag);
6623  InFlag = Chain.getValue(1);
6624
6625  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6626  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6627  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6628                                array_lengthof(Ops));
6629
6630  SmallVector<SDValue, 4> Results;
6631  Results.push_back(RepMovs);
6632  if (BytesLeft) {
6633    // Handle the last 1 - 7 bytes.
6634    unsigned Offset = SizeVal - BytesLeft;
6635    EVT DstVT = Dst.getValueType();
6636    EVT SrcVT = Src.getValueType();
6637    EVT SizeVT = Size.getValueType();
6638    Results.push_back(DAG.getMemcpy(Chain, dl,
6639                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6640                                                DAG.getConstant(Offset, DstVT)),
6641                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6642                                                DAG.getConstant(Offset, SrcVT)),
6643                                    DAG.getConstant(BytesLeft, SizeVT),
6644                                    Align, AlwaysInline,
6645                                    DstSV, DstSVOff + Offset,
6646                                    SrcSV, SrcSVOff + Offset));
6647  }
6648
6649  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6650                     &Results[0], Results.size());
6651}
6652
6653SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6654  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6655  DebugLoc dl = Op.getDebugLoc();
6656
6657  if (!Subtarget->is64Bit()) {
6658    // vastart just stores the address of the VarArgsFrameIndex slot into the
6659    // memory location argument.
6660    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6661    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6662                        false, false, 0);
6663  }
6664
6665  // __va_list_tag:
6666  //   gp_offset         (0 - 6 * 8)
6667  //   fp_offset         (48 - 48 + 8 * 16)
6668  //   overflow_arg_area (point to parameters coming in memory).
6669  //   reg_save_area
6670  SmallVector<SDValue, 8> MemOps;
6671  SDValue FIN = Op.getOperand(1);
6672  // Store gp_offset
6673  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6674                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6675                               FIN, SV, 0, false, false, 0);
6676  MemOps.push_back(Store);
6677
6678  // Store fp_offset
6679  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6680                    FIN, DAG.getIntPtrConstant(4));
6681  Store = DAG.getStore(Op.getOperand(0), dl,
6682                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6683                       FIN, SV, 0, false, false, 0);
6684  MemOps.push_back(Store);
6685
6686  // Store ptr to overflow_arg_area
6687  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6688                    FIN, DAG.getIntPtrConstant(4));
6689  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6690  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6691                       false, false, 0);
6692  MemOps.push_back(Store);
6693
6694  // Store ptr to reg_save_area.
6695  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6696                    FIN, DAG.getIntPtrConstant(8));
6697  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6698  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6699                       false, false, 0);
6700  MemOps.push_back(Store);
6701  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6702                     &MemOps[0], MemOps.size());
6703}
6704
6705SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6706  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6707  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6708  SDValue Chain = Op.getOperand(0);
6709  SDValue SrcPtr = Op.getOperand(1);
6710  SDValue SrcSV = Op.getOperand(2);
6711
6712  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6713  return SDValue();
6714}
6715
6716SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6717  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6718  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6719  SDValue Chain = Op.getOperand(0);
6720  SDValue DstPtr = Op.getOperand(1);
6721  SDValue SrcPtr = Op.getOperand(2);
6722  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6723  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6724  DebugLoc dl = Op.getDebugLoc();
6725
6726  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6727                       DAG.getIntPtrConstant(24), 8, false,
6728                       DstSV, 0, SrcSV, 0);
6729}
6730
6731SDValue
6732X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6733  DebugLoc dl = Op.getDebugLoc();
6734  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6735  switch (IntNo) {
6736  default: return SDValue();    // Don't custom lower most intrinsics.
6737  // Comparison intrinsics.
6738  case Intrinsic::x86_sse_comieq_ss:
6739  case Intrinsic::x86_sse_comilt_ss:
6740  case Intrinsic::x86_sse_comile_ss:
6741  case Intrinsic::x86_sse_comigt_ss:
6742  case Intrinsic::x86_sse_comige_ss:
6743  case Intrinsic::x86_sse_comineq_ss:
6744  case Intrinsic::x86_sse_ucomieq_ss:
6745  case Intrinsic::x86_sse_ucomilt_ss:
6746  case Intrinsic::x86_sse_ucomile_ss:
6747  case Intrinsic::x86_sse_ucomigt_ss:
6748  case Intrinsic::x86_sse_ucomige_ss:
6749  case Intrinsic::x86_sse_ucomineq_ss:
6750  case Intrinsic::x86_sse2_comieq_sd:
6751  case Intrinsic::x86_sse2_comilt_sd:
6752  case Intrinsic::x86_sse2_comile_sd:
6753  case Intrinsic::x86_sse2_comigt_sd:
6754  case Intrinsic::x86_sse2_comige_sd:
6755  case Intrinsic::x86_sse2_comineq_sd:
6756  case Intrinsic::x86_sse2_ucomieq_sd:
6757  case Intrinsic::x86_sse2_ucomilt_sd:
6758  case Intrinsic::x86_sse2_ucomile_sd:
6759  case Intrinsic::x86_sse2_ucomigt_sd:
6760  case Intrinsic::x86_sse2_ucomige_sd:
6761  case Intrinsic::x86_sse2_ucomineq_sd: {
6762    unsigned Opc = 0;
6763    ISD::CondCode CC = ISD::SETCC_INVALID;
6764    switch (IntNo) {
6765    default: break;
6766    case Intrinsic::x86_sse_comieq_ss:
6767    case Intrinsic::x86_sse2_comieq_sd:
6768      Opc = X86ISD::COMI;
6769      CC = ISD::SETEQ;
6770      break;
6771    case Intrinsic::x86_sse_comilt_ss:
6772    case Intrinsic::x86_sse2_comilt_sd:
6773      Opc = X86ISD::COMI;
6774      CC = ISD::SETLT;
6775      break;
6776    case Intrinsic::x86_sse_comile_ss:
6777    case Intrinsic::x86_sse2_comile_sd:
6778      Opc = X86ISD::COMI;
6779      CC = ISD::SETLE;
6780      break;
6781    case Intrinsic::x86_sse_comigt_ss:
6782    case Intrinsic::x86_sse2_comigt_sd:
6783      Opc = X86ISD::COMI;
6784      CC = ISD::SETGT;
6785      break;
6786    case Intrinsic::x86_sse_comige_ss:
6787    case Intrinsic::x86_sse2_comige_sd:
6788      Opc = X86ISD::COMI;
6789      CC = ISD::SETGE;
6790      break;
6791    case Intrinsic::x86_sse_comineq_ss:
6792    case Intrinsic::x86_sse2_comineq_sd:
6793      Opc = X86ISD::COMI;
6794      CC = ISD::SETNE;
6795      break;
6796    case Intrinsic::x86_sse_ucomieq_ss:
6797    case Intrinsic::x86_sse2_ucomieq_sd:
6798      Opc = X86ISD::UCOMI;
6799      CC = ISD::SETEQ;
6800      break;
6801    case Intrinsic::x86_sse_ucomilt_ss:
6802    case Intrinsic::x86_sse2_ucomilt_sd:
6803      Opc = X86ISD::UCOMI;
6804      CC = ISD::SETLT;
6805      break;
6806    case Intrinsic::x86_sse_ucomile_ss:
6807    case Intrinsic::x86_sse2_ucomile_sd:
6808      Opc = X86ISD::UCOMI;
6809      CC = ISD::SETLE;
6810      break;
6811    case Intrinsic::x86_sse_ucomigt_ss:
6812    case Intrinsic::x86_sse2_ucomigt_sd:
6813      Opc = X86ISD::UCOMI;
6814      CC = ISD::SETGT;
6815      break;
6816    case Intrinsic::x86_sse_ucomige_ss:
6817    case Intrinsic::x86_sse2_ucomige_sd:
6818      Opc = X86ISD::UCOMI;
6819      CC = ISD::SETGE;
6820      break;
6821    case Intrinsic::x86_sse_ucomineq_ss:
6822    case Intrinsic::x86_sse2_ucomineq_sd:
6823      Opc = X86ISD::UCOMI;
6824      CC = ISD::SETNE;
6825      break;
6826    }
6827
6828    SDValue LHS = Op.getOperand(1);
6829    SDValue RHS = Op.getOperand(2);
6830    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6831    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6832    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6833    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6834                                DAG.getConstant(X86CC, MVT::i8), Cond);
6835    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6836  }
6837  // ptest intrinsics. The intrinsic these come from are designed to return
6838  // an integer value, not just an instruction so lower it to the ptest
6839  // pattern and a setcc for the result.
6840  case Intrinsic::x86_sse41_ptestz:
6841  case Intrinsic::x86_sse41_ptestc:
6842  case Intrinsic::x86_sse41_ptestnzc:{
6843    unsigned X86CC = 0;
6844    switch (IntNo) {
6845    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6846    case Intrinsic::x86_sse41_ptestz:
6847      // ZF = 1
6848      X86CC = X86::COND_E;
6849      break;
6850    case Intrinsic::x86_sse41_ptestc:
6851      // CF = 1
6852      X86CC = X86::COND_B;
6853      break;
6854    case Intrinsic::x86_sse41_ptestnzc:
6855      // ZF and CF = 0
6856      X86CC = X86::COND_A;
6857      break;
6858    }
6859
6860    SDValue LHS = Op.getOperand(1);
6861    SDValue RHS = Op.getOperand(2);
6862    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6863    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6864    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6865    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6866  }
6867
6868  // Fix vector shift instructions where the last operand is a non-immediate
6869  // i32 value.
6870  case Intrinsic::x86_sse2_pslli_w:
6871  case Intrinsic::x86_sse2_pslli_d:
6872  case Intrinsic::x86_sse2_pslli_q:
6873  case Intrinsic::x86_sse2_psrli_w:
6874  case Intrinsic::x86_sse2_psrli_d:
6875  case Intrinsic::x86_sse2_psrli_q:
6876  case Intrinsic::x86_sse2_psrai_w:
6877  case Intrinsic::x86_sse2_psrai_d:
6878  case Intrinsic::x86_mmx_pslli_w:
6879  case Intrinsic::x86_mmx_pslli_d:
6880  case Intrinsic::x86_mmx_pslli_q:
6881  case Intrinsic::x86_mmx_psrli_w:
6882  case Intrinsic::x86_mmx_psrli_d:
6883  case Intrinsic::x86_mmx_psrli_q:
6884  case Intrinsic::x86_mmx_psrai_w:
6885  case Intrinsic::x86_mmx_psrai_d: {
6886    SDValue ShAmt = Op.getOperand(2);
6887    if (isa<ConstantSDNode>(ShAmt))
6888      return SDValue();
6889
6890    unsigned NewIntNo = 0;
6891    EVT ShAmtVT = MVT::v4i32;
6892    switch (IntNo) {
6893    case Intrinsic::x86_sse2_pslli_w:
6894      NewIntNo = Intrinsic::x86_sse2_psll_w;
6895      break;
6896    case Intrinsic::x86_sse2_pslli_d:
6897      NewIntNo = Intrinsic::x86_sse2_psll_d;
6898      break;
6899    case Intrinsic::x86_sse2_pslli_q:
6900      NewIntNo = Intrinsic::x86_sse2_psll_q;
6901      break;
6902    case Intrinsic::x86_sse2_psrli_w:
6903      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6904      break;
6905    case Intrinsic::x86_sse2_psrli_d:
6906      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6907      break;
6908    case Intrinsic::x86_sse2_psrli_q:
6909      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6910      break;
6911    case Intrinsic::x86_sse2_psrai_w:
6912      NewIntNo = Intrinsic::x86_sse2_psra_w;
6913      break;
6914    case Intrinsic::x86_sse2_psrai_d:
6915      NewIntNo = Intrinsic::x86_sse2_psra_d;
6916      break;
6917    default: {
6918      ShAmtVT = MVT::v2i32;
6919      switch (IntNo) {
6920      case Intrinsic::x86_mmx_pslli_w:
6921        NewIntNo = Intrinsic::x86_mmx_psll_w;
6922        break;
6923      case Intrinsic::x86_mmx_pslli_d:
6924        NewIntNo = Intrinsic::x86_mmx_psll_d;
6925        break;
6926      case Intrinsic::x86_mmx_pslli_q:
6927        NewIntNo = Intrinsic::x86_mmx_psll_q;
6928        break;
6929      case Intrinsic::x86_mmx_psrli_w:
6930        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6931        break;
6932      case Intrinsic::x86_mmx_psrli_d:
6933        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6934        break;
6935      case Intrinsic::x86_mmx_psrli_q:
6936        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6937        break;
6938      case Intrinsic::x86_mmx_psrai_w:
6939        NewIntNo = Intrinsic::x86_mmx_psra_w;
6940        break;
6941      case Intrinsic::x86_mmx_psrai_d:
6942        NewIntNo = Intrinsic::x86_mmx_psra_d;
6943        break;
6944      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6945      }
6946      break;
6947    }
6948    }
6949
6950    // The vector shift intrinsics with scalars uses 32b shift amounts but
6951    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6952    // to be zero.
6953    SDValue ShOps[4];
6954    ShOps[0] = ShAmt;
6955    ShOps[1] = DAG.getConstant(0, MVT::i32);
6956    if (ShAmtVT == MVT::v4i32) {
6957      ShOps[2] = DAG.getUNDEF(MVT::i32);
6958      ShOps[3] = DAG.getUNDEF(MVT::i32);
6959      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6960    } else {
6961      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6962    }
6963
6964    EVT VT = Op.getValueType();
6965    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6966    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6967                       DAG.getConstant(NewIntNo, MVT::i32),
6968                       Op.getOperand(1), ShAmt);
6969  }
6970  }
6971}
6972
6973SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6974  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6975  DebugLoc dl = Op.getDebugLoc();
6976
6977  if (Depth > 0) {
6978    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6979    SDValue Offset =
6980      DAG.getConstant(TD->getPointerSize(),
6981                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6982    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6983                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6984                                   FrameAddr, Offset),
6985                       NULL, 0, false, false, 0);
6986  }
6987
6988  // Just load the return address.
6989  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6990  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6991                     RetAddrFI, NULL, 0, false, false, 0);
6992}
6993
6994SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6995  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6996  MFI->setFrameAddressIsTaken(true);
6997  EVT VT = Op.getValueType();
6998  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6999  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7000  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7001  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7002  while (Depth--)
7003    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7004                            false, false, 0);
7005  return FrameAddr;
7006}
7007
7008SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7009                                                     SelectionDAG &DAG) {
7010  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7011}
7012
7013SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
7014{
7015  MachineFunction &MF = DAG.getMachineFunction();
7016  SDValue Chain     = Op.getOperand(0);
7017  SDValue Offset    = Op.getOperand(1);
7018  SDValue Handler   = Op.getOperand(2);
7019  DebugLoc dl       = Op.getDebugLoc();
7020
7021  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7022                                  getPointerTy());
7023  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7024
7025  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7026                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7027  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7028  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7029  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7030  MF.getRegInfo().addLiveOut(StoreAddrReg);
7031
7032  return DAG.getNode(X86ISD::EH_RETURN, dl,
7033                     MVT::Other,
7034                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7035}
7036
7037SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7038                                             SelectionDAG &DAG) {
7039  SDValue Root = Op.getOperand(0);
7040  SDValue Trmp = Op.getOperand(1); // trampoline
7041  SDValue FPtr = Op.getOperand(2); // nested function
7042  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7043  DebugLoc dl  = Op.getDebugLoc();
7044
7045  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7046
7047  if (Subtarget->is64Bit()) {
7048    SDValue OutChains[6];
7049
7050    // Large code-model.
7051    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7052    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7053
7054    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7055    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7056
7057    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7058
7059    // Load the pointer to the nested function into R11.
7060    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7061    SDValue Addr = Trmp;
7062    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7063                                Addr, TrmpAddr, 0, false, false, 0);
7064
7065    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7066                       DAG.getConstant(2, MVT::i64));
7067    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7068                                false, false, 2);
7069
7070    // Load the 'nest' parameter value into R10.
7071    // R10 is specified in X86CallingConv.td
7072    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7073    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7074                       DAG.getConstant(10, MVT::i64));
7075    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7076                                Addr, TrmpAddr, 10, false, false, 0);
7077
7078    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7079                       DAG.getConstant(12, MVT::i64));
7080    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7081                                false, false, 2);
7082
7083    // Jump to the nested function.
7084    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7085    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7086                       DAG.getConstant(20, MVT::i64));
7087    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7088                                Addr, TrmpAddr, 20, false, false, 0);
7089
7090    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7091    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7092                       DAG.getConstant(22, MVT::i64));
7093    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7094                                TrmpAddr, 22, false, false, 0);
7095
7096    SDValue Ops[] =
7097      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7098    return DAG.getMergeValues(Ops, 2, dl);
7099  } else {
7100    const Function *Func =
7101      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7102    CallingConv::ID CC = Func->getCallingConv();
7103    unsigned NestReg;
7104
7105    switch (CC) {
7106    default:
7107      llvm_unreachable("Unsupported calling convention");
7108    case CallingConv::C:
7109    case CallingConv::X86_StdCall: {
7110      // Pass 'nest' parameter in ECX.
7111      // Must be kept in sync with X86CallingConv.td
7112      NestReg = X86::ECX;
7113
7114      // Check that ECX wasn't needed by an 'inreg' parameter.
7115      const FunctionType *FTy = Func->getFunctionType();
7116      const AttrListPtr &Attrs = Func->getAttributes();
7117
7118      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7119        unsigned InRegCount = 0;
7120        unsigned Idx = 1;
7121
7122        for (FunctionType::param_iterator I = FTy->param_begin(),
7123             E = FTy->param_end(); I != E; ++I, ++Idx)
7124          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7125            // FIXME: should only count parameters that are lowered to integers.
7126            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7127
7128        if (InRegCount > 2) {
7129          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7130        }
7131      }
7132      break;
7133    }
7134    case CallingConv::X86_FastCall:
7135    case CallingConv::Fast:
7136      // Pass 'nest' parameter in EAX.
7137      // Must be kept in sync with X86CallingConv.td
7138      NestReg = X86::EAX;
7139      break;
7140    }
7141
7142    SDValue OutChains[4];
7143    SDValue Addr, Disp;
7144
7145    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7146                       DAG.getConstant(10, MVT::i32));
7147    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7148
7149    // This is storing the opcode for MOV32ri.
7150    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7151    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7152    OutChains[0] = DAG.getStore(Root, dl,
7153                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7154                                Trmp, TrmpAddr, 0, false, false, 0);
7155
7156    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7157                       DAG.getConstant(1, MVT::i32));
7158    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7159                                false, false, 1);
7160
7161    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7162    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7163                       DAG.getConstant(5, MVT::i32));
7164    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7165                                TrmpAddr, 5, false, false, 1);
7166
7167    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7168                       DAG.getConstant(6, MVT::i32));
7169    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7170                                false, false, 1);
7171
7172    SDValue Ops[] =
7173      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7174    return DAG.getMergeValues(Ops, 2, dl);
7175  }
7176}
7177
7178SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7179  /*
7180   The rounding mode is in bits 11:10 of FPSR, and has the following
7181   settings:
7182     00 Round to nearest
7183     01 Round to -inf
7184     10 Round to +inf
7185     11 Round to 0
7186
7187  FLT_ROUNDS, on the other hand, expects the following:
7188    -1 Undefined
7189     0 Round to 0
7190     1 Round to nearest
7191     2 Round to +inf
7192     3 Round to -inf
7193
7194  To perform the conversion, we do:
7195    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7196  */
7197
7198  MachineFunction &MF = DAG.getMachineFunction();
7199  const TargetMachine &TM = MF.getTarget();
7200  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7201  unsigned StackAlignment = TFI.getStackAlignment();
7202  EVT VT = Op.getValueType();
7203  DebugLoc dl = Op.getDebugLoc();
7204
7205  // Save FP Control Word to stack slot
7206  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7207  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7208
7209  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7210                              DAG.getEntryNode(), StackSlot);
7211
7212  // Load FP Control Word from stack slot
7213  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7214                            false, false, 0);
7215
7216  // Transform as necessary
7217  SDValue CWD1 =
7218    DAG.getNode(ISD::SRL, dl, MVT::i16,
7219                DAG.getNode(ISD::AND, dl, MVT::i16,
7220                            CWD, DAG.getConstant(0x800, MVT::i16)),
7221                DAG.getConstant(11, MVT::i8));
7222  SDValue CWD2 =
7223    DAG.getNode(ISD::SRL, dl, MVT::i16,
7224                DAG.getNode(ISD::AND, dl, MVT::i16,
7225                            CWD, DAG.getConstant(0x400, MVT::i16)),
7226                DAG.getConstant(9, MVT::i8));
7227
7228  SDValue RetVal =
7229    DAG.getNode(ISD::AND, dl, MVT::i16,
7230                DAG.getNode(ISD::ADD, dl, MVT::i16,
7231                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7232                            DAG.getConstant(1, MVT::i16)),
7233                DAG.getConstant(3, MVT::i16));
7234
7235
7236  return DAG.getNode((VT.getSizeInBits() < 16 ?
7237                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7238}
7239
7240SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7241  EVT VT = Op.getValueType();
7242  EVT OpVT = VT;
7243  unsigned NumBits = VT.getSizeInBits();
7244  DebugLoc dl = Op.getDebugLoc();
7245
7246  Op = Op.getOperand(0);
7247  if (VT == MVT::i8) {
7248    // Zero extend to i32 since there is not an i8 bsr.
7249    OpVT = MVT::i32;
7250    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7251  }
7252
7253  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7254  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7255  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7256
7257  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7258  SDValue Ops[] = {
7259    Op,
7260    DAG.getConstant(NumBits+NumBits-1, OpVT),
7261    DAG.getConstant(X86::COND_E, MVT::i8),
7262    Op.getValue(1)
7263  };
7264  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7265
7266  // Finally xor with NumBits-1.
7267  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7268
7269  if (VT == MVT::i8)
7270    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7271  return Op;
7272}
7273
7274SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7275  EVT VT = Op.getValueType();
7276  EVT OpVT = VT;
7277  unsigned NumBits = VT.getSizeInBits();
7278  DebugLoc dl = Op.getDebugLoc();
7279
7280  Op = Op.getOperand(0);
7281  if (VT == MVT::i8) {
7282    OpVT = MVT::i32;
7283    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7284  }
7285
7286  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7287  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7288  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7289
7290  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7291  SDValue Ops[] = {
7292    Op,
7293    DAG.getConstant(NumBits, OpVT),
7294    DAG.getConstant(X86::COND_E, MVT::i8),
7295    Op.getValue(1)
7296  };
7297  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7298
7299  if (VT == MVT::i8)
7300    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7301  return Op;
7302}
7303
7304SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7305  EVT VT = Op.getValueType();
7306  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7307  DebugLoc dl = Op.getDebugLoc();
7308
7309  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7310  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7311  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7312  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7313  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7314  //
7315  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7316  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7317  //  return AloBlo + AloBhi + AhiBlo;
7318
7319  SDValue A = Op.getOperand(0);
7320  SDValue B = Op.getOperand(1);
7321
7322  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7323                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7324                       A, DAG.getConstant(32, MVT::i32));
7325  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7326                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7327                       B, DAG.getConstant(32, MVT::i32));
7328  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7329                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7330                       A, B);
7331  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7332                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7333                       A, Bhi);
7334  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7335                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7336                       Ahi, B);
7337  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7338                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7339                       AloBhi, DAG.getConstant(32, MVT::i32));
7340  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7341                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7342                       AhiBlo, DAG.getConstant(32, MVT::i32));
7343  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7344  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7345  return Res;
7346}
7347
7348
7349SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7350  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7351  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7352  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7353  // has only one use.
7354  SDNode *N = Op.getNode();
7355  SDValue LHS = N->getOperand(0);
7356  SDValue RHS = N->getOperand(1);
7357  unsigned BaseOp = 0;
7358  unsigned Cond = 0;
7359  DebugLoc dl = Op.getDebugLoc();
7360
7361  switch (Op.getOpcode()) {
7362  default: llvm_unreachable("Unknown ovf instruction!");
7363  case ISD::SADDO:
7364    // A subtract of one will be selected as a INC. Note that INC doesn't
7365    // set CF, so we can't do this for UADDO.
7366    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7367      if (C->getAPIntValue() == 1) {
7368        BaseOp = X86ISD::INC;
7369        Cond = X86::COND_O;
7370        break;
7371      }
7372    BaseOp = X86ISD::ADD;
7373    Cond = X86::COND_O;
7374    break;
7375  case ISD::UADDO:
7376    BaseOp = X86ISD::ADD;
7377    Cond = X86::COND_B;
7378    break;
7379  case ISD::SSUBO:
7380    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7381    // set CF, so we can't do this for USUBO.
7382    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7383      if (C->getAPIntValue() == 1) {
7384        BaseOp = X86ISD::DEC;
7385        Cond = X86::COND_O;
7386        break;
7387      }
7388    BaseOp = X86ISD::SUB;
7389    Cond = X86::COND_O;
7390    break;
7391  case ISD::USUBO:
7392    BaseOp = X86ISD::SUB;
7393    Cond = X86::COND_B;
7394    break;
7395  case ISD::SMULO:
7396    BaseOp = X86ISD::SMUL;
7397    Cond = X86::COND_O;
7398    break;
7399  case ISD::UMULO:
7400    BaseOp = X86ISD::UMUL;
7401    Cond = X86::COND_B;
7402    break;
7403  }
7404
7405  // Also sets EFLAGS.
7406  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7407  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7408
7409  SDValue SetCC =
7410    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7411                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7412
7413  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7414  return Sum;
7415}
7416
7417SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7418  EVT T = Op.getValueType();
7419  DebugLoc dl = Op.getDebugLoc();
7420  unsigned Reg = 0;
7421  unsigned size = 0;
7422  switch(T.getSimpleVT().SimpleTy) {
7423  default:
7424    assert(false && "Invalid value type!");
7425  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7426  case MVT::i16: Reg = X86::AX;  size = 2; break;
7427  case MVT::i32: Reg = X86::EAX; size = 4; break;
7428  case MVT::i64:
7429    assert(Subtarget->is64Bit() && "Node not type legal!");
7430    Reg = X86::RAX; size = 8;
7431    break;
7432  }
7433  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7434                                    Op.getOperand(2), SDValue());
7435  SDValue Ops[] = { cpIn.getValue(0),
7436                    Op.getOperand(1),
7437                    Op.getOperand(3),
7438                    DAG.getTargetConstant(size, MVT::i8),
7439                    cpIn.getValue(1) };
7440  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7441  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7442  SDValue cpOut =
7443    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7444  return cpOut;
7445}
7446
7447SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7448                                                 SelectionDAG &DAG) {
7449  assert(Subtarget->is64Bit() && "Result not type legalized?");
7450  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7451  SDValue TheChain = Op.getOperand(0);
7452  DebugLoc dl = Op.getDebugLoc();
7453  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7454  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7455  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7456                                   rax.getValue(2));
7457  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7458                            DAG.getConstant(32, MVT::i8));
7459  SDValue Ops[] = {
7460    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7461    rdx.getValue(1)
7462  };
7463  return DAG.getMergeValues(Ops, 2, dl);
7464}
7465
7466SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7467  SDNode *Node = Op.getNode();
7468  DebugLoc dl = Node->getDebugLoc();
7469  EVT T = Node->getValueType(0);
7470  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7471                              DAG.getConstant(0, T), Node->getOperand(2));
7472  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7473                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7474                       Node->getOperand(0),
7475                       Node->getOperand(1), negOp,
7476                       cast<AtomicSDNode>(Node)->getSrcValue(),
7477                       cast<AtomicSDNode>(Node)->getAlignment());
7478}
7479
7480/// LowerOperation - Provide custom lowering hooks for some operations.
7481///
7482SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7483  switch (Op.getOpcode()) {
7484  default: llvm_unreachable("Should not custom lower this!");
7485  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7486  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7487  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7488  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7489  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7490  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7491  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7492  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7493  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7494  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7495  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7496  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7497  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7498  case ISD::SHL_PARTS:
7499  case ISD::SRA_PARTS:
7500  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7501  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7502  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7503  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7504  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7505  case ISD::FABS:               return LowerFABS(Op, DAG);
7506  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7507  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7508  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7509  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7510  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7511  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7512  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7513  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7514  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7515  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7516  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7517  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7518  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7519  case ISD::FRAME_TO_ARGS_OFFSET:
7520                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7521  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7522  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7523  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7524  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7525  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7526  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7527  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7528  case ISD::SADDO:
7529  case ISD::UADDO:
7530  case ISD::SSUBO:
7531  case ISD::USUBO:
7532  case ISD::SMULO:
7533  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7534  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7535  }
7536}
7537
7538void X86TargetLowering::
7539ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7540                        SelectionDAG &DAG, unsigned NewOp) {
7541  EVT T = Node->getValueType(0);
7542  DebugLoc dl = Node->getDebugLoc();
7543  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7544
7545  SDValue Chain = Node->getOperand(0);
7546  SDValue In1 = Node->getOperand(1);
7547  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7548                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7549  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7550                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7551  SDValue Ops[] = { Chain, In1, In2L, In2H };
7552  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7553  SDValue Result =
7554    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7555                            cast<MemSDNode>(Node)->getMemOperand());
7556  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7557  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7558  Results.push_back(Result.getValue(2));
7559}
7560
7561/// ReplaceNodeResults - Replace a node with an illegal result type
7562/// with a new node built out of custom code.
7563void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7564                                           SmallVectorImpl<SDValue>&Results,
7565                                           SelectionDAG &DAG) {
7566  DebugLoc dl = N->getDebugLoc();
7567  switch (N->getOpcode()) {
7568  default:
7569    assert(false && "Do not know how to custom type legalize this operation!");
7570    return;
7571  case ISD::FP_TO_SINT: {
7572    std::pair<SDValue,SDValue> Vals =
7573        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7574    SDValue FIST = Vals.first, StackSlot = Vals.second;
7575    if (FIST.getNode() != 0) {
7576      EVT VT = N->getValueType(0);
7577      // Return a load from the stack slot.
7578      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7579                                    false, false, 0));
7580    }
7581    return;
7582  }
7583  case ISD::READCYCLECOUNTER: {
7584    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7585    SDValue TheChain = N->getOperand(0);
7586    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7587    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7588                                     rd.getValue(1));
7589    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7590                                     eax.getValue(2));
7591    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7592    SDValue Ops[] = { eax, edx };
7593    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7594    Results.push_back(edx.getValue(1));
7595    return;
7596  }
7597  case ISD::ATOMIC_CMP_SWAP: {
7598    EVT T = N->getValueType(0);
7599    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7600    SDValue cpInL, cpInH;
7601    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7602                        DAG.getConstant(0, MVT::i32));
7603    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7604                        DAG.getConstant(1, MVT::i32));
7605    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7606    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7607                             cpInL.getValue(1));
7608    SDValue swapInL, swapInH;
7609    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7610                          DAG.getConstant(0, MVT::i32));
7611    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7612                          DAG.getConstant(1, MVT::i32));
7613    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7614                               cpInH.getValue(1));
7615    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7616                               swapInL.getValue(1));
7617    SDValue Ops[] = { swapInH.getValue(0),
7618                      N->getOperand(1),
7619                      swapInH.getValue(1) };
7620    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7621    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7622    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7623                                        MVT::i32, Result.getValue(1));
7624    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7625                                        MVT::i32, cpOutL.getValue(2));
7626    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7627    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7628    Results.push_back(cpOutH.getValue(1));
7629    return;
7630  }
7631  case ISD::ATOMIC_LOAD_ADD:
7632    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7633    return;
7634  case ISD::ATOMIC_LOAD_AND:
7635    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7636    return;
7637  case ISD::ATOMIC_LOAD_NAND:
7638    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7639    return;
7640  case ISD::ATOMIC_LOAD_OR:
7641    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7642    return;
7643  case ISD::ATOMIC_LOAD_SUB:
7644    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7645    return;
7646  case ISD::ATOMIC_LOAD_XOR:
7647    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7648    return;
7649  case ISD::ATOMIC_SWAP:
7650    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7651    return;
7652  }
7653}
7654
7655const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7656  switch (Opcode) {
7657  default: return NULL;
7658  case X86ISD::BSF:                return "X86ISD::BSF";
7659  case X86ISD::BSR:                return "X86ISD::BSR";
7660  case X86ISD::SHLD:               return "X86ISD::SHLD";
7661  case X86ISD::SHRD:               return "X86ISD::SHRD";
7662  case X86ISD::FAND:               return "X86ISD::FAND";
7663  case X86ISD::FOR:                return "X86ISD::FOR";
7664  case X86ISD::FXOR:               return "X86ISD::FXOR";
7665  case X86ISD::FSRL:               return "X86ISD::FSRL";
7666  case X86ISD::FILD:               return "X86ISD::FILD";
7667  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7668  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7669  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7670  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7671  case X86ISD::FLD:                return "X86ISD::FLD";
7672  case X86ISD::FST:                return "X86ISD::FST";
7673  case X86ISD::CALL:               return "X86ISD::CALL";
7674  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7675  case X86ISD::BT:                 return "X86ISD::BT";
7676  case X86ISD::CMP:                return "X86ISD::CMP";
7677  case X86ISD::COMI:               return "X86ISD::COMI";
7678  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7679  case X86ISD::SETCC:              return "X86ISD::SETCC";
7680  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7681  case X86ISD::CMOV:               return "X86ISD::CMOV";
7682  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7683  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7684  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7685  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7686  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7687  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7688  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7689  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7690  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7691  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7692  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7693  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7694  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7695  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7696  case X86ISD::FMAX:               return "X86ISD::FMAX";
7697  case X86ISD::FMIN:               return "X86ISD::FMIN";
7698  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7699  case X86ISD::FRCP:               return "X86ISD::FRCP";
7700  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7701  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7702  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7703  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7704  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7705  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7706  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7707  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7708  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7709  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7710  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7711  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7712  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7713  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7714  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7715  case X86ISD::VSHL:               return "X86ISD::VSHL";
7716  case X86ISD::VSRL:               return "X86ISD::VSRL";
7717  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7718  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7719  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7720  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7721  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7722  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7723  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7724  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7725  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7726  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7727  case X86ISD::ADD:                return "X86ISD::ADD";
7728  case X86ISD::SUB:                return "X86ISD::SUB";
7729  case X86ISD::SMUL:               return "X86ISD::SMUL";
7730  case X86ISD::UMUL:               return "X86ISD::UMUL";
7731  case X86ISD::INC:                return "X86ISD::INC";
7732  case X86ISD::DEC:                return "X86ISD::DEC";
7733  case X86ISD::OR:                 return "X86ISD::OR";
7734  case X86ISD::XOR:                return "X86ISD::XOR";
7735  case X86ISD::AND:                return "X86ISD::AND";
7736  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7737  case X86ISD::PTEST:              return "X86ISD::PTEST";
7738  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7739  }
7740}
7741
7742// isLegalAddressingMode - Return true if the addressing mode represented
7743// by AM is legal for this target, for a load/store of the specified type.
7744bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7745                                              const Type *Ty) const {
7746  // X86 supports extremely general addressing modes.
7747  CodeModel::Model M = getTargetMachine().getCodeModel();
7748
7749  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7750  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7751    return false;
7752
7753  if (AM.BaseGV) {
7754    unsigned GVFlags =
7755      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7756
7757    // If a reference to this global requires an extra load, we can't fold it.
7758    if (isGlobalStubReference(GVFlags))
7759      return false;
7760
7761    // If BaseGV requires a register for the PIC base, we cannot also have a
7762    // BaseReg specified.
7763    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7764      return false;
7765
7766    // If lower 4G is not available, then we must use rip-relative addressing.
7767    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7768      return false;
7769  }
7770
7771  switch (AM.Scale) {
7772  case 0:
7773  case 1:
7774  case 2:
7775  case 4:
7776  case 8:
7777    // These scales always work.
7778    break;
7779  case 3:
7780  case 5:
7781  case 9:
7782    // These scales are formed with basereg+scalereg.  Only accept if there is
7783    // no basereg yet.
7784    if (AM.HasBaseReg)
7785      return false;
7786    break;
7787  default:  // Other stuff never works.
7788    return false;
7789  }
7790
7791  return true;
7792}
7793
7794
7795bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7796  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7797    return false;
7798  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7799  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7800  if (NumBits1 <= NumBits2)
7801    return false;
7802  return true;
7803}
7804
7805bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7806  if (!VT1.isInteger() || !VT2.isInteger())
7807    return false;
7808  unsigned NumBits1 = VT1.getSizeInBits();
7809  unsigned NumBits2 = VT2.getSizeInBits();
7810  if (NumBits1 <= NumBits2)
7811    return false;
7812  return true;
7813}
7814
7815bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7816  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7817  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7818}
7819
7820bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7821  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7822  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7823}
7824
7825bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7826  // i16 instructions are longer (0x66 prefix) and potentially slower.
7827  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7828}
7829
7830/// isShuffleMaskLegal - Targets can use this to indicate that they only
7831/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7832/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7833/// are assumed to be legal.
7834bool
7835X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7836                                      EVT VT) const {
7837  // Only do shuffles on 128-bit vector types for now.
7838  if (VT.getSizeInBits() == 64)
7839    return false;
7840
7841  // FIXME: pshufb, blends, shifts.
7842  return (VT.getVectorNumElements() == 2 ||
7843          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7844          isMOVLMask(M, VT) ||
7845          isSHUFPMask(M, VT) ||
7846          isPSHUFDMask(M, VT) ||
7847          isPSHUFHWMask(M, VT) ||
7848          isPSHUFLWMask(M, VT) ||
7849          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7850          isUNPCKLMask(M, VT) ||
7851          isUNPCKHMask(M, VT) ||
7852          isUNPCKL_v_undef_Mask(M, VT) ||
7853          isUNPCKH_v_undef_Mask(M, VT));
7854}
7855
7856bool
7857X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7858                                          EVT VT) const {
7859  unsigned NumElts = VT.getVectorNumElements();
7860  // FIXME: This collection of masks seems suspect.
7861  if (NumElts == 2)
7862    return true;
7863  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7864    return (isMOVLMask(Mask, VT)  ||
7865            isCommutedMOVLMask(Mask, VT, true) ||
7866            isSHUFPMask(Mask, VT) ||
7867            isCommutedSHUFPMask(Mask, VT));
7868  }
7869  return false;
7870}
7871
7872//===----------------------------------------------------------------------===//
7873//                           X86 Scheduler Hooks
7874//===----------------------------------------------------------------------===//
7875
7876// private utility function
7877MachineBasicBlock *
7878X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7879                                                       MachineBasicBlock *MBB,
7880                                                       unsigned regOpc,
7881                                                       unsigned immOpc,
7882                                                       unsigned LoadOpc,
7883                                                       unsigned CXchgOpc,
7884                                                       unsigned copyOpc,
7885                                                       unsigned notOpc,
7886                                                       unsigned EAXreg,
7887                                                       TargetRegisterClass *RC,
7888                                                       bool invSrc) const {
7889  // For the atomic bitwise operator, we generate
7890  //   thisMBB:
7891  //   newMBB:
7892  //     ld  t1 = [bitinstr.addr]
7893  //     op  t2 = t1, [bitinstr.val]
7894  //     mov EAX = t1
7895  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7896  //     bz  newMBB
7897  //     fallthrough -->nextMBB
7898  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7899  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7900  MachineFunction::iterator MBBIter = MBB;
7901  ++MBBIter;
7902
7903  /// First build the CFG
7904  MachineFunction *F = MBB->getParent();
7905  MachineBasicBlock *thisMBB = MBB;
7906  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7907  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7908  F->insert(MBBIter, newMBB);
7909  F->insert(MBBIter, nextMBB);
7910
7911  // Move all successors to thisMBB to nextMBB
7912  nextMBB->transferSuccessors(thisMBB);
7913
7914  // Update thisMBB to fall through to newMBB
7915  thisMBB->addSuccessor(newMBB);
7916
7917  // newMBB jumps to itself and fall through to nextMBB
7918  newMBB->addSuccessor(nextMBB);
7919  newMBB->addSuccessor(newMBB);
7920
7921  // Insert instructions into newMBB based on incoming instruction
7922  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7923         "unexpected number of operands");
7924  DebugLoc dl = bInstr->getDebugLoc();
7925  MachineOperand& destOper = bInstr->getOperand(0);
7926  MachineOperand* argOpers[2 + X86AddrNumOperands];
7927  int numArgs = bInstr->getNumOperands() - 1;
7928  for (int i=0; i < numArgs; ++i)
7929    argOpers[i] = &bInstr->getOperand(i+1);
7930
7931  // x86 address has 4 operands: base, index, scale, and displacement
7932  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7933  int valArgIndx = lastAddrIndx + 1;
7934
7935  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7936  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7937  for (int i=0; i <= lastAddrIndx; ++i)
7938    (*MIB).addOperand(*argOpers[i]);
7939
7940  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7941  if (invSrc) {
7942    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7943  }
7944  else
7945    tt = t1;
7946
7947  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7948  assert((argOpers[valArgIndx]->isReg() ||
7949          argOpers[valArgIndx]->isImm()) &&
7950         "invalid operand");
7951  if (argOpers[valArgIndx]->isReg())
7952    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7953  else
7954    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7955  MIB.addReg(tt);
7956  (*MIB).addOperand(*argOpers[valArgIndx]);
7957
7958  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7959  MIB.addReg(t1);
7960
7961  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7962  for (int i=0; i <= lastAddrIndx; ++i)
7963    (*MIB).addOperand(*argOpers[i]);
7964  MIB.addReg(t2);
7965  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7966  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7967                    bInstr->memoperands_end());
7968
7969  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7970  MIB.addReg(EAXreg);
7971
7972  // insert branch
7973  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
7974
7975  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7976  return nextMBB;
7977}
7978
7979// private utility function:  64 bit atomics on 32 bit host.
7980MachineBasicBlock *
7981X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7982                                                       MachineBasicBlock *MBB,
7983                                                       unsigned regOpcL,
7984                                                       unsigned regOpcH,
7985                                                       unsigned immOpcL,
7986                                                       unsigned immOpcH,
7987                                                       bool invSrc) const {
7988  // For the atomic bitwise operator, we generate
7989  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7990  //     ld t1,t2 = [bitinstr.addr]
7991  //   newMBB:
7992  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7993  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7994  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7995  //     mov ECX, EBX <- t5, t6
7996  //     mov EAX, EDX <- t1, t2
7997  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7998  //     mov t3, t4 <- EAX, EDX
7999  //     bz  newMBB
8000  //     result in out1, out2
8001  //     fallthrough -->nextMBB
8002
8003  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8004  const unsigned LoadOpc = X86::MOV32rm;
8005  const unsigned copyOpc = X86::MOV32rr;
8006  const unsigned NotOpc = X86::NOT32r;
8007  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8008  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8009  MachineFunction::iterator MBBIter = MBB;
8010  ++MBBIter;
8011
8012  /// First build the CFG
8013  MachineFunction *F = MBB->getParent();
8014  MachineBasicBlock *thisMBB = MBB;
8015  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8016  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8017  F->insert(MBBIter, newMBB);
8018  F->insert(MBBIter, nextMBB);
8019
8020  // Move all successors to thisMBB to nextMBB
8021  nextMBB->transferSuccessors(thisMBB);
8022
8023  // Update thisMBB to fall through to newMBB
8024  thisMBB->addSuccessor(newMBB);
8025
8026  // newMBB jumps to itself and fall through to nextMBB
8027  newMBB->addSuccessor(nextMBB);
8028  newMBB->addSuccessor(newMBB);
8029
8030  DebugLoc dl = bInstr->getDebugLoc();
8031  // Insert instructions into newMBB based on incoming instruction
8032  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8033  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8034         "unexpected number of operands");
8035  MachineOperand& dest1Oper = bInstr->getOperand(0);
8036  MachineOperand& dest2Oper = bInstr->getOperand(1);
8037  MachineOperand* argOpers[2 + X86AddrNumOperands];
8038  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8039    argOpers[i] = &bInstr->getOperand(i+2);
8040
8041  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8042  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8043
8044  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8045  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8046  for (int i=0; i <= lastAddrIndx; ++i)
8047    (*MIB).addOperand(*argOpers[i]);
8048  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8049  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8050  // add 4 to displacement.
8051  for (int i=0; i <= lastAddrIndx-2; ++i)
8052    (*MIB).addOperand(*argOpers[i]);
8053  MachineOperand newOp3 = *(argOpers[3]);
8054  if (newOp3.isImm())
8055    newOp3.setImm(newOp3.getImm()+4);
8056  else
8057    newOp3.setOffset(newOp3.getOffset()+4);
8058  (*MIB).addOperand(newOp3);
8059  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8060
8061  // t3/4 are defined later, at the bottom of the loop
8062  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8063  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8064  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8065    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8066  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8067    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8068
8069  // The subsequent operations should be using the destination registers of
8070  //the PHI instructions.
8071  if (invSrc) {
8072    t1 = F->getRegInfo().createVirtualRegister(RC);
8073    t2 = F->getRegInfo().createVirtualRegister(RC);
8074    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8075    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8076  } else {
8077    t1 = dest1Oper.getReg();
8078    t2 = dest2Oper.getReg();
8079  }
8080
8081  int valArgIndx = lastAddrIndx + 1;
8082  assert((argOpers[valArgIndx]->isReg() ||
8083          argOpers[valArgIndx]->isImm()) &&
8084         "invalid operand");
8085  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8086  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8087  if (argOpers[valArgIndx]->isReg())
8088    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8089  else
8090    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8091  if (regOpcL != X86::MOV32rr)
8092    MIB.addReg(t1);
8093  (*MIB).addOperand(*argOpers[valArgIndx]);
8094  assert(argOpers[valArgIndx + 1]->isReg() ==
8095         argOpers[valArgIndx]->isReg());
8096  assert(argOpers[valArgIndx + 1]->isImm() ==
8097         argOpers[valArgIndx]->isImm());
8098  if (argOpers[valArgIndx + 1]->isReg())
8099    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8100  else
8101    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8102  if (regOpcH != X86::MOV32rr)
8103    MIB.addReg(t2);
8104  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8105
8106  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8107  MIB.addReg(t1);
8108  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8109  MIB.addReg(t2);
8110
8111  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8112  MIB.addReg(t5);
8113  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8114  MIB.addReg(t6);
8115
8116  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8117  for (int i=0; i <= lastAddrIndx; ++i)
8118    (*MIB).addOperand(*argOpers[i]);
8119
8120  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8121  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8122                    bInstr->memoperands_end());
8123
8124  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8125  MIB.addReg(X86::EAX);
8126  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8127  MIB.addReg(X86::EDX);
8128
8129  // insert branch
8130  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8131
8132  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8133  return nextMBB;
8134}
8135
8136// private utility function
8137MachineBasicBlock *
8138X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8139                                                      MachineBasicBlock *MBB,
8140                                                      unsigned cmovOpc) const {
8141  // For the atomic min/max operator, we generate
8142  //   thisMBB:
8143  //   newMBB:
8144  //     ld t1 = [min/max.addr]
8145  //     mov t2 = [min/max.val]
8146  //     cmp  t1, t2
8147  //     cmov[cond] t2 = t1
8148  //     mov EAX = t1
8149  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8150  //     bz   newMBB
8151  //     fallthrough -->nextMBB
8152  //
8153  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8154  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8155  MachineFunction::iterator MBBIter = MBB;
8156  ++MBBIter;
8157
8158  /// First build the CFG
8159  MachineFunction *F = MBB->getParent();
8160  MachineBasicBlock *thisMBB = MBB;
8161  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8162  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8163  F->insert(MBBIter, newMBB);
8164  F->insert(MBBIter, nextMBB);
8165
8166  // Move all successors of thisMBB to nextMBB
8167  nextMBB->transferSuccessors(thisMBB);
8168
8169  // Update thisMBB to fall through to newMBB
8170  thisMBB->addSuccessor(newMBB);
8171
8172  // newMBB jumps to newMBB and fall through to nextMBB
8173  newMBB->addSuccessor(nextMBB);
8174  newMBB->addSuccessor(newMBB);
8175
8176  DebugLoc dl = mInstr->getDebugLoc();
8177  // Insert instructions into newMBB based on incoming instruction
8178  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8179         "unexpected number of operands");
8180  MachineOperand& destOper = mInstr->getOperand(0);
8181  MachineOperand* argOpers[2 + X86AddrNumOperands];
8182  int numArgs = mInstr->getNumOperands() - 1;
8183  for (int i=0; i < numArgs; ++i)
8184    argOpers[i] = &mInstr->getOperand(i+1);
8185
8186  // x86 address has 4 operands: base, index, scale, and displacement
8187  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8188  int valArgIndx = lastAddrIndx + 1;
8189
8190  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8191  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8192  for (int i=0; i <= lastAddrIndx; ++i)
8193    (*MIB).addOperand(*argOpers[i]);
8194
8195  // We only support register and immediate values
8196  assert((argOpers[valArgIndx]->isReg() ||
8197          argOpers[valArgIndx]->isImm()) &&
8198         "invalid operand");
8199
8200  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8201  if (argOpers[valArgIndx]->isReg())
8202    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8203  else
8204    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8205  (*MIB).addOperand(*argOpers[valArgIndx]);
8206
8207  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8208  MIB.addReg(t1);
8209
8210  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8211  MIB.addReg(t1);
8212  MIB.addReg(t2);
8213
8214  // Generate movc
8215  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8216  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8217  MIB.addReg(t2);
8218  MIB.addReg(t1);
8219
8220  // Cmp and exchange if none has modified the memory location
8221  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8222  for (int i=0; i <= lastAddrIndx; ++i)
8223    (*MIB).addOperand(*argOpers[i]);
8224  MIB.addReg(t3);
8225  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8226  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8227                    mInstr->memoperands_end());
8228
8229  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8230  MIB.addReg(X86::EAX);
8231
8232  // insert branch
8233  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8234
8235  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8236  return nextMBB;
8237}
8238
8239// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8240// all of this code can be replaced with that in the .td file.
8241MachineBasicBlock *
8242X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8243                            unsigned numArgs, bool memArg) const {
8244
8245  MachineFunction *F = BB->getParent();
8246  DebugLoc dl = MI->getDebugLoc();
8247  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8248
8249  unsigned Opc;
8250  if (memArg)
8251    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8252  else
8253    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8254
8255  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8256
8257  for (unsigned i = 0; i < numArgs; ++i) {
8258    MachineOperand &Op = MI->getOperand(i+1);
8259
8260    if (!(Op.isReg() && Op.isImplicit()))
8261      MIB.addOperand(Op);
8262  }
8263
8264  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8265    .addReg(X86::XMM0);
8266
8267  F->DeleteMachineInstr(MI);
8268
8269  return BB;
8270}
8271
8272MachineBasicBlock *
8273X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8274                                                 MachineInstr *MI,
8275                                                 MachineBasicBlock *MBB) const {
8276  // Emit code to save XMM registers to the stack. The ABI says that the
8277  // number of registers to save is given in %al, so it's theoretically
8278  // possible to do an indirect jump trick to avoid saving all of them,
8279  // however this code takes a simpler approach and just executes all
8280  // of the stores if %al is non-zero. It's less code, and it's probably
8281  // easier on the hardware branch predictor, and stores aren't all that
8282  // expensive anyway.
8283
8284  // Create the new basic blocks. One block contains all the XMM stores,
8285  // and one block is the final destination regardless of whether any
8286  // stores were performed.
8287  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8288  MachineFunction *F = MBB->getParent();
8289  MachineFunction::iterator MBBIter = MBB;
8290  ++MBBIter;
8291  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8292  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8293  F->insert(MBBIter, XMMSaveMBB);
8294  F->insert(MBBIter, EndMBB);
8295
8296  // Set up the CFG.
8297  // Move any original successors of MBB to the end block.
8298  EndMBB->transferSuccessors(MBB);
8299  // The original block will now fall through to the XMM save block.
8300  MBB->addSuccessor(XMMSaveMBB);
8301  // The XMMSaveMBB will fall through to the end block.
8302  XMMSaveMBB->addSuccessor(EndMBB);
8303
8304  // Now add the instructions.
8305  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8306  DebugLoc DL = MI->getDebugLoc();
8307
8308  unsigned CountReg = MI->getOperand(0).getReg();
8309  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8310  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8311
8312  if (!Subtarget->isTargetWin64()) {
8313    // If %al is 0, branch around the XMM save block.
8314    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8315    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8316    MBB->addSuccessor(EndMBB);
8317  }
8318
8319  // In the XMM save block, save all the XMM argument registers.
8320  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8321    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8322    MachineMemOperand *MMO =
8323      F->getMachineMemOperand(
8324        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8325        MachineMemOperand::MOStore, Offset,
8326        /*Size=*/16, /*Align=*/16);
8327    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8328      .addFrameIndex(RegSaveFrameIndex)
8329      .addImm(/*Scale=*/1)
8330      .addReg(/*IndexReg=*/0)
8331      .addImm(/*Disp=*/Offset)
8332      .addReg(/*Segment=*/0)
8333      .addReg(MI->getOperand(i).getReg())
8334      .addMemOperand(MMO);
8335  }
8336
8337  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8338
8339  return EndMBB;
8340}
8341
8342MachineBasicBlock *
8343X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8344                                     MachineBasicBlock *BB,
8345                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8346  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8347  DebugLoc DL = MI->getDebugLoc();
8348
8349  // To "insert" a SELECT_CC instruction, we actually have to insert the
8350  // diamond control-flow pattern.  The incoming instruction knows the
8351  // destination vreg to set, the condition code register to branch on, the
8352  // true/false values to select between, and a branch opcode to use.
8353  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8354  MachineFunction::iterator It = BB;
8355  ++It;
8356
8357  //  thisMBB:
8358  //  ...
8359  //   TrueVal = ...
8360  //   cmpTY ccX, r1, r2
8361  //   bCC copy1MBB
8362  //   fallthrough --> copy0MBB
8363  MachineBasicBlock *thisMBB = BB;
8364  MachineFunction *F = BB->getParent();
8365  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8366  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8367  unsigned Opc =
8368    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8369  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8370  F->insert(It, copy0MBB);
8371  F->insert(It, sinkMBB);
8372  // Update machine-CFG edges by first adding all successors of the current
8373  // block to the new block which will contain the Phi node for the select.
8374  // Also inform sdisel of the edge changes.
8375  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8376         E = BB->succ_end(); I != E; ++I) {
8377    EM->insert(std::make_pair(*I, sinkMBB));
8378    sinkMBB->addSuccessor(*I);
8379  }
8380  // Next, remove all successors of the current block, and add the true
8381  // and fallthrough blocks as its successors.
8382  while (!BB->succ_empty())
8383    BB->removeSuccessor(BB->succ_begin());
8384  // Add the true and fallthrough blocks as its successors.
8385  BB->addSuccessor(copy0MBB);
8386  BB->addSuccessor(sinkMBB);
8387
8388  //  copy0MBB:
8389  //   %FalseValue = ...
8390  //   # fallthrough to sinkMBB
8391  BB = copy0MBB;
8392
8393  // Update machine-CFG edges
8394  BB->addSuccessor(sinkMBB);
8395
8396  //  sinkMBB:
8397  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8398  //  ...
8399  BB = sinkMBB;
8400  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8401    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8402    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8403
8404  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8405  return BB;
8406}
8407
8408
8409MachineBasicBlock *
8410X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8411                                               MachineBasicBlock *BB,
8412                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8413  switch (MI->getOpcode()) {
8414  default: assert(false && "Unexpected instr type to insert");
8415  case X86::CMOV_GR8:
8416  case X86::CMOV_V1I64:
8417  case X86::CMOV_FR32:
8418  case X86::CMOV_FR64:
8419  case X86::CMOV_V4F32:
8420  case X86::CMOV_V2F64:
8421  case X86::CMOV_V2I64:
8422    return EmitLoweredSelect(MI, BB, EM);
8423
8424  case X86::FP32_TO_INT16_IN_MEM:
8425  case X86::FP32_TO_INT32_IN_MEM:
8426  case X86::FP32_TO_INT64_IN_MEM:
8427  case X86::FP64_TO_INT16_IN_MEM:
8428  case X86::FP64_TO_INT32_IN_MEM:
8429  case X86::FP64_TO_INT64_IN_MEM:
8430  case X86::FP80_TO_INT16_IN_MEM:
8431  case X86::FP80_TO_INT32_IN_MEM:
8432  case X86::FP80_TO_INT64_IN_MEM: {
8433    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8434    DebugLoc DL = MI->getDebugLoc();
8435
8436    // Change the floating point control register to use "round towards zero"
8437    // mode when truncating to an integer value.
8438    MachineFunction *F = BB->getParent();
8439    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8440    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8441
8442    // Load the old value of the high byte of the control word...
8443    unsigned OldCW =
8444      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8445    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8446                      CWFrameIdx);
8447
8448    // Set the high part to be round to zero...
8449    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8450      .addImm(0xC7F);
8451
8452    // Reload the modified control word now...
8453    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8454
8455    // Restore the memory image of control word to original value
8456    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8457      .addReg(OldCW);
8458
8459    // Get the X86 opcode to use.
8460    unsigned Opc;
8461    switch (MI->getOpcode()) {
8462    default: llvm_unreachable("illegal opcode!");
8463    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8464    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8465    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8466    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8467    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8468    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8469    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8470    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8471    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8472    }
8473
8474    X86AddressMode AM;
8475    MachineOperand &Op = MI->getOperand(0);
8476    if (Op.isReg()) {
8477      AM.BaseType = X86AddressMode::RegBase;
8478      AM.Base.Reg = Op.getReg();
8479    } else {
8480      AM.BaseType = X86AddressMode::FrameIndexBase;
8481      AM.Base.FrameIndex = Op.getIndex();
8482    }
8483    Op = MI->getOperand(1);
8484    if (Op.isImm())
8485      AM.Scale = Op.getImm();
8486    Op = MI->getOperand(2);
8487    if (Op.isImm())
8488      AM.IndexReg = Op.getImm();
8489    Op = MI->getOperand(3);
8490    if (Op.isGlobal()) {
8491      AM.GV = Op.getGlobal();
8492    } else {
8493      AM.Disp = Op.getImm();
8494    }
8495    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8496                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8497
8498    // Reload the original control word now.
8499    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8500
8501    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8502    return BB;
8503  }
8504    // String/text processing lowering.
8505  case X86::PCMPISTRM128REG:
8506    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8507  case X86::PCMPISTRM128MEM:
8508    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8509  case X86::PCMPESTRM128REG:
8510    return EmitPCMP(MI, BB, 5, false /* in mem */);
8511  case X86::PCMPESTRM128MEM:
8512    return EmitPCMP(MI, BB, 5, true /* in mem */);
8513
8514    // Atomic Lowering.
8515  case X86::ATOMAND32:
8516    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8517                                               X86::AND32ri, X86::MOV32rm,
8518                                               X86::LCMPXCHG32, X86::MOV32rr,
8519                                               X86::NOT32r, X86::EAX,
8520                                               X86::GR32RegisterClass);
8521  case X86::ATOMOR32:
8522    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8523                                               X86::OR32ri, X86::MOV32rm,
8524                                               X86::LCMPXCHG32, X86::MOV32rr,
8525                                               X86::NOT32r, X86::EAX,
8526                                               X86::GR32RegisterClass);
8527  case X86::ATOMXOR32:
8528    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8529                                               X86::XOR32ri, X86::MOV32rm,
8530                                               X86::LCMPXCHG32, X86::MOV32rr,
8531                                               X86::NOT32r, X86::EAX,
8532                                               X86::GR32RegisterClass);
8533  case X86::ATOMNAND32:
8534    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8535                                               X86::AND32ri, X86::MOV32rm,
8536                                               X86::LCMPXCHG32, X86::MOV32rr,
8537                                               X86::NOT32r, X86::EAX,
8538                                               X86::GR32RegisterClass, true);
8539  case X86::ATOMMIN32:
8540    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8541  case X86::ATOMMAX32:
8542    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8543  case X86::ATOMUMIN32:
8544    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8545  case X86::ATOMUMAX32:
8546    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8547
8548  case X86::ATOMAND16:
8549    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8550                                               X86::AND16ri, X86::MOV16rm,
8551                                               X86::LCMPXCHG16, X86::MOV16rr,
8552                                               X86::NOT16r, X86::AX,
8553                                               X86::GR16RegisterClass);
8554  case X86::ATOMOR16:
8555    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8556                                               X86::OR16ri, X86::MOV16rm,
8557                                               X86::LCMPXCHG16, X86::MOV16rr,
8558                                               X86::NOT16r, X86::AX,
8559                                               X86::GR16RegisterClass);
8560  case X86::ATOMXOR16:
8561    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8562                                               X86::XOR16ri, X86::MOV16rm,
8563                                               X86::LCMPXCHG16, X86::MOV16rr,
8564                                               X86::NOT16r, X86::AX,
8565                                               X86::GR16RegisterClass);
8566  case X86::ATOMNAND16:
8567    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8568                                               X86::AND16ri, X86::MOV16rm,
8569                                               X86::LCMPXCHG16, X86::MOV16rr,
8570                                               X86::NOT16r, X86::AX,
8571                                               X86::GR16RegisterClass, true);
8572  case X86::ATOMMIN16:
8573    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8574  case X86::ATOMMAX16:
8575    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8576  case X86::ATOMUMIN16:
8577    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8578  case X86::ATOMUMAX16:
8579    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8580
8581  case X86::ATOMAND8:
8582    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8583                                               X86::AND8ri, X86::MOV8rm,
8584                                               X86::LCMPXCHG8, X86::MOV8rr,
8585                                               X86::NOT8r, X86::AL,
8586                                               X86::GR8RegisterClass);
8587  case X86::ATOMOR8:
8588    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8589                                               X86::OR8ri, X86::MOV8rm,
8590                                               X86::LCMPXCHG8, X86::MOV8rr,
8591                                               X86::NOT8r, X86::AL,
8592                                               X86::GR8RegisterClass);
8593  case X86::ATOMXOR8:
8594    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8595                                               X86::XOR8ri, X86::MOV8rm,
8596                                               X86::LCMPXCHG8, X86::MOV8rr,
8597                                               X86::NOT8r, X86::AL,
8598                                               X86::GR8RegisterClass);
8599  case X86::ATOMNAND8:
8600    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8601                                               X86::AND8ri, X86::MOV8rm,
8602                                               X86::LCMPXCHG8, X86::MOV8rr,
8603                                               X86::NOT8r, X86::AL,
8604                                               X86::GR8RegisterClass, true);
8605  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8606  // This group is for 64-bit host.
8607  case X86::ATOMAND64:
8608    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8609                                               X86::AND64ri32, X86::MOV64rm,
8610                                               X86::LCMPXCHG64, X86::MOV64rr,
8611                                               X86::NOT64r, X86::RAX,
8612                                               X86::GR64RegisterClass);
8613  case X86::ATOMOR64:
8614    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8615                                               X86::OR64ri32, X86::MOV64rm,
8616                                               X86::LCMPXCHG64, X86::MOV64rr,
8617                                               X86::NOT64r, X86::RAX,
8618                                               X86::GR64RegisterClass);
8619  case X86::ATOMXOR64:
8620    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8621                                               X86::XOR64ri32, X86::MOV64rm,
8622                                               X86::LCMPXCHG64, X86::MOV64rr,
8623                                               X86::NOT64r, X86::RAX,
8624                                               X86::GR64RegisterClass);
8625  case X86::ATOMNAND64:
8626    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8627                                               X86::AND64ri32, X86::MOV64rm,
8628                                               X86::LCMPXCHG64, X86::MOV64rr,
8629                                               X86::NOT64r, X86::RAX,
8630                                               X86::GR64RegisterClass, true);
8631  case X86::ATOMMIN64:
8632    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8633  case X86::ATOMMAX64:
8634    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8635  case X86::ATOMUMIN64:
8636    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8637  case X86::ATOMUMAX64:
8638    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8639
8640  // This group does 64-bit operations on a 32-bit host.
8641  case X86::ATOMAND6432:
8642    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8643                                               X86::AND32rr, X86::AND32rr,
8644                                               X86::AND32ri, X86::AND32ri,
8645                                               false);
8646  case X86::ATOMOR6432:
8647    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8648                                               X86::OR32rr, X86::OR32rr,
8649                                               X86::OR32ri, X86::OR32ri,
8650                                               false);
8651  case X86::ATOMXOR6432:
8652    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8653                                               X86::XOR32rr, X86::XOR32rr,
8654                                               X86::XOR32ri, X86::XOR32ri,
8655                                               false);
8656  case X86::ATOMNAND6432:
8657    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8658                                               X86::AND32rr, X86::AND32rr,
8659                                               X86::AND32ri, X86::AND32ri,
8660                                               true);
8661  case X86::ATOMADD6432:
8662    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8663                                               X86::ADD32rr, X86::ADC32rr,
8664                                               X86::ADD32ri, X86::ADC32ri,
8665                                               false);
8666  case X86::ATOMSUB6432:
8667    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8668                                               X86::SUB32rr, X86::SBB32rr,
8669                                               X86::SUB32ri, X86::SBB32ri,
8670                                               false);
8671  case X86::ATOMSWAP6432:
8672    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8673                                               X86::MOV32rr, X86::MOV32rr,
8674                                               X86::MOV32ri, X86::MOV32ri,
8675                                               false);
8676  case X86::VASTART_SAVE_XMM_REGS:
8677    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8678  }
8679}
8680
8681//===----------------------------------------------------------------------===//
8682//                           X86 Optimization Hooks
8683//===----------------------------------------------------------------------===//
8684
8685void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8686                                                       const APInt &Mask,
8687                                                       APInt &KnownZero,
8688                                                       APInt &KnownOne,
8689                                                       const SelectionDAG &DAG,
8690                                                       unsigned Depth) const {
8691  unsigned Opc = Op.getOpcode();
8692  assert((Opc >= ISD::BUILTIN_OP_END ||
8693          Opc == ISD::INTRINSIC_WO_CHAIN ||
8694          Opc == ISD::INTRINSIC_W_CHAIN ||
8695          Opc == ISD::INTRINSIC_VOID) &&
8696         "Should use MaskedValueIsZero if you don't know whether Op"
8697         " is a target node!");
8698
8699  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8700  switch (Opc) {
8701  default: break;
8702  case X86ISD::ADD:
8703  case X86ISD::SUB:
8704  case X86ISD::SMUL:
8705  case X86ISD::UMUL:
8706  case X86ISD::INC:
8707  case X86ISD::DEC:
8708  case X86ISD::OR:
8709  case X86ISD::XOR:
8710  case X86ISD::AND:
8711    // These nodes' second result is a boolean.
8712    if (Op.getResNo() == 0)
8713      break;
8714    // Fallthrough
8715  case X86ISD::SETCC:
8716    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8717                                       Mask.getBitWidth() - 1);
8718    break;
8719  }
8720}
8721
8722/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8723/// node is a GlobalAddress + offset.
8724bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8725                                       GlobalValue* &GA, int64_t &Offset) const{
8726  if (N->getOpcode() == X86ISD::Wrapper) {
8727    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8728      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8729      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8730      return true;
8731    }
8732  }
8733  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8734}
8735
8736static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8737                                     EVT EltVT, LoadSDNode *&LDBase,
8738                                     unsigned &LastLoadedElt,
8739                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8740                                     const TargetLowering &TLI) {
8741  LDBase = NULL;
8742  LastLoadedElt = -1U;
8743  for (unsigned i = 0; i < NumElems; ++i) {
8744    if (N->getMaskElt(i) < 0) {
8745      if (!LDBase)
8746        return false;
8747      continue;
8748    }
8749
8750    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8751    if (!Elt.getNode() ||
8752        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8753      return false;
8754    if (!LDBase) {
8755      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8756        return false;
8757      LDBase = cast<LoadSDNode>(Elt.getNode());
8758      LastLoadedElt = i;
8759      continue;
8760    }
8761    if (Elt.getOpcode() == ISD::UNDEF)
8762      continue;
8763
8764    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8765    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
8766      return false;
8767    LastLoadedElt = i;
8768  }
8769  return true;
8770}
8771
8772/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8773/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8774/// if the load addresses are consecutive, non-overlapping, and in the right
8775/// order.  In the case of v2i64, it will see if it can rewrite the
8776/// shuffle to be an appropriate build vector so it can take advantage of
8777// performBuildVectorCombine.
8778static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8779                                     const TargetLowering &TLI) {
8780  DebugLoc dl = N->getDebugLoc();
8781  EVT VT = N->getValueType(0);
8782  EVT EltVT = VT.getVectorElementType();
8783  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8784  unsigned NumElems = VT.getVectorNumElements();
8785
8786  if (VT.getSizeInBits() != 128)
8787    return SDValue();
8788
8789  // Try to combine a vector_shuffle into a 128-bit load.
8790  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8791  LoadSDNode *LD = NULL;
8792  unsigned LastLoadedElt;
8793  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8794                                MFI, TLI))
8795    return SDValue();
8796
8797  if (LastLoadedElt == NumElems - 1) {
8798    if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16)
8799      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8800                         LD->getSrcValue(), LD->getSrcValueOffset(),
8801                         LD->isVolatile(), LD->isNonTemporal(), 0);
8802    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8803                       LD->getSrcValue(), LD->getSrcValueOffset(),
8804                       LD->isVolatile(), LD->isNonTemporal(),
8805                       LD->getAlignment());
8806  } else if (NumElems == 4 && LastLoadedElt == 1) {
8807    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8808    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8809    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8810    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8811  }
8812  return SDValue();
8813}
8814
8815/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8816static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8817                                    const X86Subtarget *Subtarget) {
8818  DebugLoc DL = N->getDebugLoc();
8819  SDValue Cond = N->getOperand(0);
8820  // Get the LHS/RHS of the select.
8821  SDValue LHS = N->getOperand(1);
8822  SDValue RHS = N->getOperand(2);
8823
8824  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8825  // instructions match the semantics of the common C idiom x<y?x:y but not
8826  // x<=y?x:y, because of how they handle negative zero (which can be
8827  // ignored in unsafe-math mode).
8828  if (Subtarget->hasSSE2() &&
8829      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8830      Cond.getOpcode() == ISD::SETCC) {
8831    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8832
8833    unsigned Opcode = 0;
8834    // Check for x CC y ? x : y.
8835    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
8836        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
8837      switch (CC) {
8838      default: break;
8839      case ISD::SETULT:
8840        // Converting this to a min would handle NaNs incorrectly, and swapping
8841        // the operands would cause it to handle comparisons between positive
8842        // and negative zero incorrectly.
8843        if (!FiniteOnlyFPMath() &&
8844            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
8845          if (!UnsafeFPMath &&
8846              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8847            break;
8848          std::swap(LHS, RHS);
8849        }
8850        Opcode = X86ISD::FMIN;
8851        break;
8852      case ISD::SETOLE:
8853        // Converting this to a min would handle comparisons between positive
8854        // and negative zero incorrectly.
8855        if (!UnsafeFPMath &&
8856            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
8857          break;
8858        Opcode = X86ISD::FMIN;
8859        break;
8860      case ISD::SETULE:
8861        // Converting this to a min would handle both negative zeros and NaNs
8862        // incorrectly, but we can swap the operands to fix both.
8863        std::swap(LHS, RHS);
8864      case ISD::SETOLT:
8865      case ISD::SETLT:
8866      case ISD::SETLE:
8867        Opcode = X86ISD::FMIN;
8868        break;
8869
8870      case ISD::SETOGE:
8871        // Converting this to a max would handle comparisons between positive
8872        // and negative zero incorrectly.
8873        if (!UnsafeFPMath &&
8874            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
8875          break;
8876        Opcode = X86ISD::FMAX;
8877        break;
8878      case ISD::SETUGT:
8879        // Converting this to a max would handle NaNs incorrectly, and swapping
8880        // the operands would cause it to handle comparisons between positive
8881        // and negative zero incorrectly.
8882        if (!FiniteOnlyFPMath() &&
8883            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
8884          if (!UnsafeFPMath &&
8885              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8886            break;
8887          std::swap(LHS, RHS);
8888        }
8889        Opcode = X86ISD::FMAX;
8890        break;
8891      case ISD::SETUGE:
8892        // Converting this to a max would handle both negative zeros and NaNs
8893        // incorrectly, but we can swap the operands to fix both.
8894        std::swap(LHS, RHS);
8895      case ISD::SETOGT:
8896      case ISD::SETGT:
8897      case ISD::SETGE:
8898        Opcode = X86ISD::FMAX;
8899        break;
8900      }
8901    // Check for x CC y ? y : x -- a min/max with reversed arms.
8902    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
8903               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
8904      switch (CC) {
8905      default: break;
8906      case ISD::SETOGE:
8907        // Converting this to a min would handle comparisons between positive
8908        // and negative zero incorrectly, and swapping the operands would
8909        // cause it to handle NaNs incorrectly.
8910        if (!UnsafeFPMath &&
8911            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
8912          if (!FiniteOnlyFPMath() &&
8913              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
8914            break;
8915          std::swap(LHS, RHS);
8916        }
8917        Opcode = X86ISD::FMIN;
8918        break;
8919      case ISD::SETUGT:
8920        // Converting this to a min would handle NaNs incorrectly.
8921        if (!UnsafeFPMath &&
8922            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
8923          break;
8924        Opcode = X86ISD::FMIN;
8925        break;
8926      case ISD::SETUGE:
8927        // Converting this to a min would handle both negative zeros and NaNs
8928        // incorrectly, but we can swap the operands to fix both.
8929        std::swap(LHS, RHS);
8930      case ISD::SETOGT:
8931      case ISD::SETGT:
8932      case ISD::SETGE:
8933        Opcode = X86ISD::FMIN;
8934        break;
8935
8936      case ISD::SETULT:
8937        // Converting this to a max would handle NaNs incorrectly.
8938        if (!FiniteOnlyFPMath() &&
8939            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
8940          break;
8941        Opcode = X86ISD::FMAX;
8942        break;
8943      case ISD::SETOLE:
8944        // Converting this to a max would handle comparisons between positive
8945        // and negative zero incorrectly, and swapping the operands would
8946        // cause it to handle NaNs incorrectly.
8947        if (!UnsafeFPMath &&
8948            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
8949          if (!FiniteOnlyFPMath() &&
8950              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
8951            break;
8952          std::swap(LHS, RHS);
8953        }
8954        Opcode = X86ISD::FMAX;
8955        break;
8956      case ISD::SETULE:
8957        // Converting this to a max would handle both negative zeros and NaNs
8958        // incorrectly, but we can swap the operands to fix both.
8959        std::swap(LHS, RHS);
8960      case ISD::SETOLT:
8961      case ISD::SETLT:
8962      case ISD::SETLE:
8963        Opcode = X86ISD::FMAX;
8964        break;
8965      }
8966    }
8967
8968    if (Opcode)
8969      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8970  }
8971
8972  // If this is a select between two integer constants, try to do some
8973  // optimizations.
8974  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8975    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8976      // Don't do this for crazy integer types.
8977      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8978        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8979        // so that TrueC (the true value) is larger than FalseC.
8980        bool NeedsCondInvert = false;
8981
8982        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8983            // Efficiently invertible.
8984            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8985             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8986              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8987          NeedsCondInvert = true;
8988          std::swap(TrueC, FalseC);
8989        }
8990
8991        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8992        if (FalseC->getAPIntValue() == 0 &&
8993            TrueC->getAPIntValue().isPowerOf2()) {
8994          if (NeedsCondInvert) // Invert the condition if needed.
8995            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8996                               DAG.getConstant(1, Cond.getValueType()));
8997
8998          // Zero extend the condition if needed.
8999          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9000
9001          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9002          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9003                             DAG.getConstant(ShAmt, MVT::i8));
9004        }
9005
9006        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9007        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9008          if (NeedsCondInvert) // Invert the condition if needed.
9009            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9010                               DAG.getConstant(1, Cond.getValueType()));
9011
9012          // Zero extend the condition if needed.
9013          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9014                             FalseC->getValueType(0), Cond);
9015          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9016                             SDValue(FalseC, 0));
9017        }
9018
9019        // Optimize cases that will turn into an LEA instruction.  This requires
9020        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9021        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9022          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9023          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9024
9025          bool isFastMultiplier = false;
9026          if (Diff < 10) {
9027            switch ((unsigned char)Diff) {
9028              default: break;
9029              case 1:  // result = add base, cond
9030              case 2:  // result = lea base(    , cond*2)
9031              case 3:  // result = lea base(cond, cond*2)
9032              case 4:  // result = lea base(    , cond*4)
9033              case 5:  // result = lea base(cond, cond*4)
9034              case 8:  // result = lea base(    , cond*8)
9035              case 9:  // result = lea base(cond, cond*8)
9036                isFastMultiplier = true;
9037                break;
9038            }
9039          }
9040
9041          if (isFastMultiplier) {
9042            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9043            if (NeedsCondInvert) // Invert the condition if needed.
9044              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9045                                 DAG.getConstant(1, Cond.getValueType()));
9046
9047            // Zero extend the condition if needed.
9048            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9049                               Cond);
9050            // Scale the condition by the difference.
9051            if (Diff != 1)
9052              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9053                                 DAG.getConstant(Diff, Cond.getValueType()));
9054
9055            // Add the base if non-zero.
9056            if (FalseC->getAPIntValue() != 0)
9057              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9058                                 SDValue(FalseC, 0));
9059            return Cond;
9060          }
9061        }
9062      }
9063  }
9064
9065  return SDValue();
9066}
9067
9068/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9069static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9070                                  TargetLowering::DAGCombinerInfo &DCI) {
9071  DebugLoc DL = N->getDebugLoc();
9072
9073  // If the flag operand isn't dead, don't touch this CMOV.
9074  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9075    return SDValue();
9076
9077  // If this is a select between two integer constants, try to do some
9078  // optimizations.  Note that the operands are ordered the opposite of SELECT
9079  // operands.
9080  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9081    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9082      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9083      // larger than FalseC (the false value).
9084      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9085
9086      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9087        CC = X86::GetOppositeBranchCondition(CC);
9088        std::swap(TrueC, FalseC);
9089      }
9090
9091      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9092      // This is efficient for any integer data type (including i8/i16) and
9093      // shift amount.
9094      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9095        SDValue Cond = N->getOperand(3);
9096        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9097                           DAG.getConstant(CC, MVT::i8), Cond);
9098
9099        // Zero extend the condition if needed.
9100        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9101
9102        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9103        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9104                           DAG.getConstant(ShAmt, MVT::i8));
9105        if (N->getNumValues() == 2)  // Dead flag value?
9106          return DCI.CombineTo(N, Cond, SDValue());
9107        return Cond;
9108      }
9109
9110      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9111      // for any integer data type, including i8/i16.
9112      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9113        SDValue Cond = N->getOperand(3);
9114        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9115                           DAG.getConstant(CC, MVT::i8), Cond);
9116
9117        // Zero extend the condition if needed.
9118        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9119                           FalseC->getValueType(0), Cond);
9120        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9121                           SDValue(FalseC, 0));
9122
9123        if (N->getNumValues() == 2)  // Dead flag value?
9124          return DCI.CombineTo(N, Cond, SDValue());
9125        return Cond;
9126      }
9127
9128      // Optimize cases that will turn into an LEA instruction.  This requires
9129      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9130      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9131        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9132        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9133
9134        bool isFastMultiplier = false;
9135        if (Diff < 10) {
9136          switch ((unsigned char)Diff) {
9137          default: break;
9138          case 1:  // result = add base, cond
9139          case 2:  // result = lea base(    , cond*2)
9140          case 3:  // result = lea base(cond, cond*2)
9141          case 4:  // result = lea base(    , cond*4)
9142          case 5:  // result = lea base(cond, cond*4)
9143          case 8:  // result = lea base(    , cond*8)
9144          case 9:  // result = lea base(cond, cond*8)
9145            isFastMultiplier = true;
9146            break;
9147          }
9148        }
9149
9150        if (isFastMultiplier) {
9151          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9152          SDValue Cond = N->getOperand(3);
9153          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9154                             DAG.getConstant(CC, MVT::i8), Cond);
9155          // Zero extend the condition if needed.
9156          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9157                             Cond);
9158          // Scale the condition by the difference.
9159          if (Diff != 1)
9160            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9161                               DAG.getConstant(Diff, Cond.getValueType()));
9162
9163          // Add the base if non-zero.
9164          if (FalseC->getAPIntValue() != 0)
9165            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9166                               SDValue(FalseC, 0));
9167          if (N->getNumValues() == 2)  // Dead flag value?
9168            return DCI.CombineTo(N, Cond, SDValue());
9169          return Cond;
9170        }
9171      }
9172    }
9173  }
9174  return SDValue();
9175}
9176
9177/// PerformANDCombine - Look for SSE and instructions of this form:
9178/// (and x, (build_vector signbit,signbit,signbit,signbit)). If there
9179/// exists a use of a build_vector that's the bitwise complement of the mask,
9180/// then transform the node to
9181/// (and (xor x, (build_vector -1,-1,-1,-1)), (build_vector ~sb,~sb,~sb,~sb)).
9182static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
9183                                 TargetLowering::DAGCombinerInfo &DCI) {
9184  EVT VT = N->getValueType(0);
9185  if (!VT.isVector() || !VT.isInteger())
9186    return SDValue();
9187
9188  SDValue N0 = N->getOperand(0);
9189  SDValue N1 = N->getOperand(1);
9190  if (N0.getOpcode() == ISD::XOR || !N1.hasOneUse())
9191    return SDValue();
9192
9193  if (N1.getOpcode() == ISD::BUILD_VECTOR) {
9194    unsigned NumElts = VT.getVectorNumElements();
9195    EVT EltVT = VT.getVectorElementType();
9196    SmallVector<SDValue, 8> Mask;
9197    Mask.reserve(NumElts);
9198    for (unsigned i = 0; i != NumElts; ++i) {
9199      SDValue Arg = N1.getOperand(i);
9200      if (Arg.getOpcode() == ISD::UNDEF) {
9201        Mask.push_back(Arg);
9202        continue;
9203      }
9204      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Arg);
9205      if (!C)
9206        return SDValue();
9207      if (!C->getAPIntValue().isSignBit() &&
9208          !C->getAPIntValue().isMaxSignedValue())
9209        return SDValue();
9210      Mask.push_back(DAG.getConstant(~C->getAPIntValue(), EltVT));
9211    }
9212    N1 = DAG.getNode(ISD::BUILD_VECTOR, N1.getDebugLoc(), VT,
9213                     &Mask[0], NumElts);
9214    if (!N1.use_empty()) {
9215      unsigned Bits = EltVT.getSizeInBits();
9216      Mask.clear();
9217      for (unsigned i = 0; i != NumElts; ++i)
9218        Mask.push_back(DAG.getConstant(APInt::getAllOnesValue(Bits), EltVT));
9219      SDValue NewMask = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9220                                    VT, &Mask[0], NumElts);
9221      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9222                         DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
9223                                     N0, NewMask), N1);
9224    }
9225  }
9226
9227  return SDValue();
9228}
9229
9230/// PerformMulCombine - Optimize a single multiply with constant into two
9231/// in order to implement it with two cheaper instructions, e.g.
9232/// LEA + SHL, LEA + LEA.
9233static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9234                                 TargetLowering::DAGCombinerInfo &DCI) {
9235  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9236    return SDValue();
9237
9238  EVT VT = N->getValueType(0);
9239  if (VT != MVT::i64)
9240    return SDValue();
9241
9242  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9243  if (!C)
9244    return SDValue();
9245  uint64_t MulAmt = C->getZExtValue();
9246  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9247    return SDValue();
9248
9249  uint64_t MulAmt1 = 0;
9250  uint64_t MulAmt2 = 0;
9251  if ((MulAmt % 9) == 0) {
9252    MulAmt1 = 9;
9253    MulAmt2 = MulAmt / 9;
9254  } else if ((MulAmt % 5) == 0) {
9255    MulAmt1 = 5;
9256    MulAmt2 = MulAmt / 5;
9257  } else if ((MulAmt % 3) == 0) {
9258    MulAmt1 = 3;
9259    MulAmt2 = MulAmt / 3;
9260  }
9261  if (MulAmt2 &&
9262      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9263    DebugLoc DL = N->getDebugLoc();
9264
9265    if (isPowerOf2_64(MulAmt2) &&
9266        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9267      // If second multiplifer is pow2, issue it first. We want the multiply by
9268      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9269      // is an add.
9270      std::swap(MulAmt1, MulAmt2);
9271
9272    SDValue NewMul;
9273    if (isPowerOf2_64(MulAmt1))
9274      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9275                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9276    else
9277      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9278                           DAG.getConstant(MulAmt1, VT));
9279
9280    if (isPowerOf2_64(MulAmt2))
9281      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9282                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9283    else
9284      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9285                           DAG.getConstant(MulAmt2, VT));
9286
9287    // Do not add new nodes to DAG combiner worklist.
9288    DCI.CombineTo(N, NewMul, false);
9289  }
9290  return SDValue();
9291}
9292
9293static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9294  SDValue N0 = N->getOperand(0);
9295  SDValue N1 = N->getOperand(1);
9296  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9297  EVT VT = N0.getValueType();
9298
9299  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9300  // since the result of setcc_c is all zero's or all ones.
9301  if (N1C && N0.getOpcode() == ISD::AND &&
9302      N0.getOperand(1).getOpcode() == ISD::Constant) {
9303    SDValue N00 = N0.getOperand(0);
9304    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9305        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9306          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9307         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9308      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9309      APInt ShAmt = N1C->getAPIntValue();
9310      Mask = Mask.shl(ShAmt);
9311      if (Mask != 0)
9312        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9313                           N00, DAG.getConstant(Mask, VT));
9314    }
9315  }
9316
9317  return SDValue();
9318}
9319
9320/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9321///                       when possible.
9322static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9323                                   const X86Subtarget *Subtarget) {
9324  EVT VT = N->getValueType(0);
9325  if (!VT.isVector() && VT.isInteger() &&
9326      N->getOpcode() == ISD::SHL)
9327    return PerformSHLCombine(N, DAG);
9328
9329  // On X86 with SSE2 support, we can transform this to a vector shift if
9330  // all elements are shifted by the same amount.  We can't do this in legalize
9331  // because the a constant vector is typically transformed to a constant pool
9332  // so we have no knowledge of the shift amount.
9333  if (!Subtarget->hasSSE2())
9334    return SDValue();
9335
9336  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9337    return SDValue();
9338
9339  SDValue ShAmtOp = N->getOperand(1);
9340  EVT EltVT = VT.getVectorElementType();
9341  DebugLoc DL = N->getDebugLoc();
9342  SDValue BaseShAmt = SDValue();
9343  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9344    unsigned NumElts = VT.getVectorNumElements();
9345    unsigned i = 0;
9346    for (; i != NumElts; ++i) {
9347      SDValue Arg = ShAmtOp.getOperand(i);
9348      if (Arg.getOpcode() == ISD::UNDEF) continue;
9349      BaseShAmt = Arg;
9350      break;
9351    }
9352    for (; i != NumElts; ++i) {
9353      SDValue Arg = ShAmtOp.getOperand(i);
9354      if (Arg.getOpcode() == ISD::UNDEF) continue;
9355      if (Arg != BaseShAmt) {
9356        return SDValue();
9357      }
9358    }
9359  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9360             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9361    SDValue InVec = ShAmtOp.getOperand(0);
9362    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9363      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9364      unsigned i = 0;
9365      for (; i != NumElts; ++i) {
9366        SDValue Arg = InVec.getOperand(i);
9367        if (Arg.getOpcode() == ISD::UNDEF) continue;
9368        BaseShAmt = Arg;
9369        break;
9370      }
9371    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9372       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9373         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9374         if (C->getZExtValue() == SplatIdx)
9375           BaseShAmt = InVec.getOperand(1);
9376       }
9377    }
9378    if (BaseShAmt.getNode() == 0)
9379      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9380                              DAG.getIntPtrConstant(0));
9381  } else
9382    return SDValue();
9383
9384  // The shift amount is an i32.
9385  if (EltVT.bitsGT(MVT::i32))
9386    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9387  else if (EltVT.bitsLT(MVT::i32))
9388    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9389
9390  // The shift amount is identical so we can do a vector shift.
9391  SDValue  ValOp = N->getOperand(0);
9392  switch (N->getOpcode()) {
9393  default:
9394    llvm_unreachable("Unknown shift opcode!");
9395    break;
9396  case ISD::SHL:
9397    if (VT == MVT::v2i64)
9398      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9399                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9400                         ValOp, BaseShAmt);
9401    if (VT == MVT::v4i32)
9402      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9403                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9404                         ValOp, BaseShAmt);
9405    if (VT == MVT::v8i16)
9406      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9407                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9408                         ValOp, BaseShAmt);
9409    break;
9410  case ISD::SRA:
9411    if (VT == MVT::v4i32)
9412      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9413                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9414                         ValOp, BaseShAmt);
9415    if (VT == MVT::v8i16)
9416      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9417                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9418                         ValOp, BaseShAmt);
9419    break;
9420  case ISD::SRL:
9421    if (VT == MVT::v2i64)
9422      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9423                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9424                         ValOp, BaseShAmt);
9425    if (VT == MVT::v4i32)
9426      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9427                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9428                         ValOp, BaseShAmt);
9429    if (VT ==  MVT::v8i16)
9430      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9431                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9432                         ValOp, BaseShAmt);
9433    break;
9434  }
9435  return SDValue();
9436}
9437
9438static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9439                                const X86Subtarget *Subtarget) {
9440  EVT VT = N->getValueType(0);
9441  if (VT != MVT::i64 || !Subtarget->is64Bit())
9442    return SDValue();
9443
9444  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9445  SDValue N0 = N->getOperand(0);
9446  SDValue N1 = N->getOperand(1);
9447  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9448    std::swap(N0, N1);
9449  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9450    return SDValue();
9451
9452  SDValue ShAmt0 = N0.getOperand(1);
9453  if (ShAmt0.getValueType() != MVT::i8)
9454    return SDValue();
9455  SDValue ShAmt1 = N1.getOperand(1);
9456  if (ShAmt1.getValueType() != MVT::i8)
9457    return SDValue();
9458  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9459    ShAmt0 = ShAmt0.getOperand(0);
9460  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9461    ShAmt1 = ShAmt1.getOperand(0);
9462
9463  DebugLoc DL = N->getDebugLoc();
9464  unsigned Opc = X86ISD::SHLD;
9465  SDValue Op0 = N0.getOperand(0);
9466  SDValue Op1 = N1.getOperand(0);
9467  if (ShAmt0.getOpcode() == ISD::SUB) {
9468    Opc = X86ISD::SHRD;
9469    std::swap(Op0, Op1);
9470    std::swap(ShAmt0, ShAmt1);
9471  }
9472
9473  if (ShAmt1.getOpcode() == ISD::SUB) {
9474    SDValue Sum = ShAmt1.getOperand(0);
9475    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9476      if (SumC->getSExtValue() == 64 &&
9477          ShAmt1.getOperand(1) == ShAmt0)
9478        return DAG.getNode(Opc, DL, VT,
9479                           Op0, Op1,
9480                           DAG.getNode(ISD::TRUNCATE, DL,
9481                                       MVT::i8, ShAmt0));
9482    }
9483  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9484    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9485    if (ShAmt0C &&
9486        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9487      return DAG.getNode(Opc, DL, VT,
9488                         N0.getOperand(0), N1.getOperand(0),
9489                         DAG.getNode(ISD::TRUNCATE, DL,
9490                                       MVT::i8, ShAmt0));
9491  }
9492
9493  return SDValue();
9494}
9495
9496/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9497static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9498                                   const X86Subtarget *Subtarget) {
9499  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9500  // the FP state in cases where an emms may be missing.
9501  // A preferable solution to the general problem is to figure out the right
9502  // places to insert EMMS.  This qualifies as a quick hack.
9503
9504  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9505  StoreSDNode *St = cast<StoreSDNode>(N);
9506  EVT VT = St->getValue().getValueType();
9507  if (VT.getSizeInBits() != 64)
9508    return SDValue();
9509
9510  const Function *F = DAG.getMachineFunction().getFunction();
9511  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9512  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9513    && Subtarget->hasSSE2();
9514  if ((VT.isVector() ||
9515       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9516      isa<LoadSDNode>(St->getValue()) &&
9517      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9518      St->getChain().hasOneUse() && !St->isVolatile()) {
9519    SDNode* LdVal = St->getValue().getNode();
9520    LoadSDNode *Ld = 0;
9521    int TokenFactorIndex = -1;
9522    SmallVector<SDValue, 8> Ops;
9523    SDNode* ChainVal = St->getChain().getNode();
9524    // Must be a store of a load.  We currently handle two cases:  the load
9525    // is a direct child, and it's under an intervening TokenFactor.  It is
9526    // possible to dig deeper under nested TokenFactors.
9527    if (ChainVal == LdVal)
9528      Ld = cast<LoadSDNode>(St->getChain());
9529    else if (St->getValue().hasOneUse() &&
9530             ChainVal->getOpcode() == ISD::TokenFactor) {
9531      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9532        if (ChainVal->getOperand(i).getNode() == LdVal) {
9533          TokenFactorIndex = i;
9534          Ld = cast<LoadSDNode>(St->getValue());
9535        } else
9536          Ops.push_back(ChainVal->getOperand(i));
9537      }
9538    }
9539
9540    if (!Ld || !ISD::isNormalLoad(Ld))
9541      return SDValue();
9542
9543    // If this is not the MMX case, i.e. we are just turning i64 load/store
9544    // into f64 load/store, avoid the transformation if there are multiple
9545    // uses of the loaded value.
9546    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9547      return SDValue();
9548
9549    DebugLoc LdDL = Ld->getDebugLoc();
9550    DebugLoc StDL = N->getDebugLoc();
9551    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9552    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9553    // pair instead.
9554    if (Subtarget->is64Bit() || F64IsLegal) {
9555      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9556      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9557                                  Ld->getBasePtr(), Ld->getSrcValue(),
9558                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9559                                  Ld->isNonTemporal(), Ld->getAlignment());
9560      SDValue NewChain = NewLd.getValue(1);
9561      if (TokenFactorIndex != -1) {
9562        Ops.push_back(NewChain);
9563        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9564                               Ops.size());
9565      }
9566      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9567                          St->getSrcValue(), St->getSrcValueOffset(),
9568                          St->isVolatile(), St->isNonTemporal(),
9569                          St->getAlignment());
9570    }
9571
9572    // Otherwise, lower to two pairs of 32-bit loads / stores.
9573    SDValue LoAddr = Ld->getBasePtr();
9574    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9575                                 DAG.getConstant(4, MVT::i32));
9576
9577    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9578                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9579                               Ld->isVolatile(), Ld->isNonTemporal(),
9580                               Ld->getAlignment());
9581    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9582                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9583                               Ld->isVolatile(), Ld->isNonTemporal(),
9584                               MinAlign(Ld->getAlignment(), 4));
9585
9586    SDValue NewChain = LoLd.getValue(1);
9587    if (TokenFactorIndex != -1) {
9588      Ops.push_back(LoLd);
9589      Ops.push_back(HiLd);
9590      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9591                             Ops.size());
9592    }
9593
9594    LoAddr = St->getBasePtr();
9595    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9596                         DAG.getConstant(4, MVT::i32));
9597
9598    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9599                                St->getSrcValue(), St->getSrcValueOffset(),
9600                                St->isVolatile(), St->isNonTemporal(),
9601                                St->getAlignment());
9602    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9603                                St->getSrcValue(),
9604                                St->getSrcValueOffset() + 4,
9605                                St->isVolatile(),
9606                                St->isNonTemporal(),
9607                                MinAlign(St->getAlignment(), 4));
9608    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9609  }
9610  return SDValue();
9611}
9612
9613/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9614/// X86ISD::FXOR nodes.
9615static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9616  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9617  // F[X]OR(0.0, x) -> x
9618  // F[X]OR(x, 0.0) -> x
9619  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9620    if (C->getValueAPF().isPosZero())
9621      return N->getOperand(1);
9622  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9623    if (C->getValueAPF().isPosZero())
9624      return N->getOperand(0);
9625  return SDValue();
9626}
9627
9628/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9629static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9630  // FAND(0.0, x) -> 0.0
9631  // FAND(x, 0.0) -> 0.0
9632  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9633    if (C->getValueAPF().isPosZero())
9634      return N->getOperand(0);
9635  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9636    if (C->getValueAPF().isPosZero())
9637      return N->getOperand(1);
9638  return SDValue();
9639}
9640
9641static SDValue PerformBTCombine(SDNode *N,
9642                                SelectionDAG &DAG,
9643                                TargetLowering::DAGCombinerInfo &DCI) {
9644  // BT ignores high bits in the bit index operand.
9645  SDValue Op1 = N->getOperand(1);
9646  if (Op1.hasOneUse()) {
9647    unsigned BitWidth = Op1.getValueSizeInBits();
9648    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9649    APInt KnownZero, KnownOne;
9650    TargetLowering::TargetLoweringOpt TLO(DAG);
9651    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9652    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9653        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9654      DCI.CommitTargetLoweringOpt(TLO);
9655  }
9656  return SDValue();
9657}
9658
9659static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9660  SDValue Op = N->getOperand(0);
9661  if (Op.getOpcode() == ISD::BIT_CONVERT)
9662    Op = Op.getOperand(0);
9663  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9664  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9665      VT.getVectorElementType().getSizeInBits() ==
9666      OpVT.getVectorElementType().getSizeInBits()) {
9667    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9668  }
9669  return SDValue();
9670}
9671
9672// On X86 and X86-64, atomic operations are lowered to locked instructions.
9673// Locked instructions, in turn, have implicit fence semantics (all memory
9674// operations are flushed before issuing the locked instruction, and the
9675// are not buffered), so we can fold away the common pattern of
9676// fence-atomic-fence.
9677static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9678  SDValue atomic = N->getOperand(0);
9679  switch (atomic.getOpcode()) {
9680    case ISD::ATOMIC_CMP_SWAP:
9681    case ISD::ATOMIC_SWAP:
9682    case ISD::ATOMIC_LOAD_ADD:
9683    case ISD::ATOMIC_LOAD_SUB:
9684    case ISD::ATOMIC_LOAD_AND:
9685    case ISD::ATOMIC_LOAD_OR:
9686    case ISD::ATOMIC_LOAD_XOR:
9687    case ISD::ATOMIC_LOAD_NAND:
9688    case ISD::ATOMIC_LOAD_MIN:
9689    case ISD::ATOMIC_LOAD_MAX:
9690    case ISD::ATOMIC_LOAD_UMIN:
9691    case ISD::ATOMIC_LOAD_UMAX:
9692      break;
9693    default:
9694      return SDValue();
9695  }
9696
9697  SDValue fence = atomic.getOperand(0);
9698  if (fence.getOpcode() != ISD::MEMBARRIER)
9699    return SDValue();
9700
9701  switch (atomic.getOpcode()) {
9702    case ISD::ATOMIC_CMP_SWAP:
9703      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9704                                    atomic.getOperand(1), atomic.getOperand(2),
9705                                    atomic.getOperand(3));
9706    case ISD::ATOMIC_SWAP:
9707    case ISD::ATOMIC_LOAD_ADD:
9708    case ISD::ATOMIC_LOAD_SUB:
9709    case ISD::ATOMIC_LOAD_AND:
9710    case ISD::ATOMIC_LOAD_OR:
9711    case ISD::ATOMIC_LOAD_XOR:
9712    case ISD::ATOMIC_LOAD_NAND:
9713    case ISD::ATOMIC_LOAD_MIN:
9714    case ISD::ATOMIC_LOAD_MAX:
9715    case ISD::ATOMIC_LOAD_UMIN:
9716    case ISD::ATOMIC_LOAD_UMAX:
9717      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9718                                    atomic.getOperand(1), atomic.getOperand(2));
9719    default:
9720      return SDValue();
9721  }
9722}
9723
9724static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9725  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9726  //           (and (i32 x86isd::setcc_carry), 1)
9727  // This eliminates the zext. This transformation is necessary because
9728  // ISD::SETCC is always legalized to i8.
9729  DebugLoc dl = N->getDebugLoc();
9730  SDValue N0 = N->getOperand(0);
9731  EVT VT = N->getValueType(0);
9732  if (N0.getOpcode() == ISD::AND &&
9733      N0.hasOneUse() &&
9734      N0.getOperand(0).hasOneUse()) {
9735    SDValue N00 = N0.getOperand(0);
9736    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9737      return SDValue();
9738    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9739    if (!C || C->getZExtValue() != 1)
9740      return SDValue();
9741    return DAG.getNode(ISD::AND, dl, VT,
9742                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9743                                   N00.getOperand(0), N00.getOperand(1)),
9744                       DAG.getConstant(1, VT));
9745  }
9746
9747  return SDValue();
9748}
9749
9750SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9751                                             DAGCombinerInfo &DCI) const {
9752  SelectionDAG &DAG = DCI.DAG;
9753  switch (N->getOpcode()) {
9754  default: break;
9755  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9756  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9757  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9758  case ISD::AND:            return PerformANDCombine(N, DAG, DCI);
9759  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9760  case ISD::SHL:
9761  case ISD::SRA:
9762  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9763  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9764  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9765  case X86ISD::FXOR:
9766  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9767  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9768  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9769  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9770  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9771  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9772  }
9773
9774  return SDValue();
9775}
9776
9777//===----------------------------------------------------------------------===//
9778//                           X86 Inline Assembly Support
9779//===----------------------------------------------------------------------===//
9780
9781static bool LowerToBSwap(CallInst *CI) {
9782  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9783  // we will turn this bswap into something that will be lowered to logical ops
9784  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9785  // so don't worry about this.
9786
9787  // Verify this is a simple bswap.
9788  if (CI->getNumOperands() != 2 ||
9789      CI->getType() != CI->getOperand(1)->getType() ||
9790      !CI->getType()->isIntegerTy())
9791    return false;
9792
9793  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9794  if (!Ty || Ty->getBitWidth() % 16 != 0)
9795    return false;
9796
9797  // Okay, we can do this xform, do so now.
9798  const Type *Tys[] = { Ty };
9799  Module *M = CI->getParent()->getParent()->getParent();
9800  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9801
9802  Value *Op = CI->getOperand(1);
9803  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9804
9805  CI->replaceAllUsesWith(Op);
9806  CI->eraseFromParent();
9807  return true;
9808}
9809
9810bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9811  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9812  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9813
9814  std::string AsmStr = IA->getAsmString();
9815
9816  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9817  SmallVector<StringRef, 4> AsmPieces;
9818  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9819
9820  switch (AsmPieces.size()) {
9821  default: return false;
9822  case 1:
9823    AsmStr = AsmPieces[0];
9824    AsmPieces.clear();
9825    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9826
9827    // bswap $0
9828    if (AsmPieces.size() == 2 &&
9829        (AsmPieces[0] == "bswap" ||
9830         AsmPieces[0] == "bswapq" ||
9831         AsmPieces[0] == "bswapl") &&
9832        (AsmPieces[1] == "$0" ||
9833         AsmPieces[1] == "${0:q}")) {
9834      // No need to check constraints, nothing other than the equivalent of
9835      // "=r,0" would be valid here.
9836      return LowerToBSwap(CI);
9837    }
9838    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9839    if (CI->getType()->isIntegerTy(16) &&
9840        AsmPieces.size() == 3 &&
9841        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
9842        AsmPieces[1] == "$$8," &&
9843        AsmPieces[2] == "${0:w}" &&
9844        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
9845      AsmPieces.clear();
9846      SplitString(IA->getConstraintString().substr(5), AsmPieces, ",");
9847      std::sort(AsmPieces.begin(), AsmPieces.end());
9848      if (AsmPieces.size() == 4 &&
9849          AsmPieces[0] == "~{cc}" &&
9850          AsmPieces[1] == "~{dirflag}" &&
9851          AsmPieces[2] == "~{flags}" &&
9852          AsmPieces[3] == "~{fpsr}") {
9853        return LowerToBSwap(CI);
9854      }
9855    }
9856    break;
9857  case 3:
9858    if (CI->getType()->isIntegerTy(64) &&
9859        Constraints.size() >= 2 &&
9860        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9861        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9862      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9863      SmallVector<StringRef, 4> Words;
9864      SplitString(AsmPieces[0], Words, " \t");
9865      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9866        Words.clear();
9867        SplitString(AsmPieces[1], Words, " \t");
9868        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9869          Words.clear();
9870          SplitString(AsmPieces[2], Words, " \t,");
9871          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9872              Words[2] == "%edx") {
9873            return LowerToBSwap(CI);
9874          }
9875        }
9876      }
9877    }
9878    break;
9879  }
9880  return false;
9881}
9882
9883
9884
9885/// getConstraintType - Given a constraint letter, return the type of
9886/// constraint it is for this target.
9887X86TargetLowering::ConstraintType
9888X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9889  if (Constraint.size() == 1) {
9890    switch (Constraint[0]) {
9891    case 'A':
9892      return C_Register;
9893    case 'f':
9894    case 'r':
9895    case 'R':
9896    case 'l':
9897    case 'q':
9898    case 'Q':
9899    case 'x':
9900    case 'y':
9901    case 'Y':
9902      return C_RegisterClass;
9903    case 'e':
9904    case 'Z':
9905      return C_Other;
9906    default:
9907      break;
9908    }
9909  }
9910  return TargetLowering::getConstraintType(Constraint);
9911}
9912
9913/// LowerXConstraint - try to replace an X constraint, which matches anything,
9914/// with another that has more specific requirements based on the type of the
9915/// corresponding operand.
9916const char *X86TargetLowering::
9917LowerXConstraint(EVT ConstraintVT) const {
9918  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9919  // 'f' like normal targets.
9920  if (ConstraintVT.isFloatingPoint()) {
9921    if (Subtarget->hasSSE2())
9922      return "Y";
9923    if (Subtarget->hasSSE1())
9924      return "x";
9925  }
9926
9927  return TargetLowering::LowerXConstraint(ConstraintVT);
9928}
9929
9930/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9931/// vector.  If it is invalid, don't add anything to Ops.
9932void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9933                                                     char Constraint,
9934                                                     bool hasMemory,
9935                                                     std::vector<SDValue>&Ops,
9936                                                     SelectionDAG &DAG) const {
9937  SDValue Result(0, 0);
9938
9939  switch (Constraint) {
9940  default: break;
9941  case 'I':
9942    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9943      if (C->getZExtValue() <= 31) {
9944        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9945        break;
9946      }
9947    }
9948    return;
9949  case 'J':
9950    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9951      if (C->getZExtValue() <= 63) {
9952        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9953        break;
9954      }
9955    }
9956    return;
9957  case 'K':
9958    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9959      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9960        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9961        break;
9962      }
9963    }
9964    return;
9965  case 'N':
9966    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9967      if (C->getZExtValue() <= 255) {
9968        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9969        break;
9970      }
9971    }
9972    return;
9973  case 'e': {
9974    // 32-bit signed value
9975    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9976      const ConstantInt *CI = C->getConstantIntValue();
9977      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9978                                  C->getSExtValue())) {
9979        // Widen to 64 bits here to get it sign extended.
9980        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9981        break;
9982      }
9983    // FIXME gcc accepts some relocatable values here too, but only in certain
9984    // memory models; it's complicated.
9985    }
9986    return;
9987  }
9988  case 'Z': {
9989    // 32-bit unsigned value
9990    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9991      const ConstantInt *CI = C->getConstantIntValue();
9992      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9993                                  C->getZExtValue())) {
9994        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9995        break;
9996      }
9997    }
9998    // FIXME gcc accepts some relocatable values here too, but only in certain
9999    // memory models; it's complicated.
10000    return;
10001  }
10002  case 'i': {
10003    // Literal immediates are always ok.
10004    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10005      // Widen to 64 bits here to get it sign extended.
10006      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10007      break;
10008    }
10009
10010    // If we are in non-pic codegen mode, we allow the address of a global (with
10011    // an optional displacement) to be used with 'i'.
10012    GlobalAddressSDNode *GA = 0;
10013    int64_t Offset = 0;
10014
10015    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10016    while (1) {
10017      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10018        Offset += GA->getOffset();
10019        break;
10020      } else if (Op.getOpcode() == ISD::ADD) {
10021        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10022          Offset += C->getZExtValue();
10023          Op = Op.getOperand(0);
10024          continue;
10025        }
10026      } else if (Op.getOpcode() == ISD::SUB) {
10027        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10028          Offset += -C->getZExtValue();
10029          Op = Op.getOperand(0);
10030          continue;
10031        }
10032      }
10033
10034      // Otherwise, this isn't something we can handle, reject it.
10035      return;
10036    }
10037
10038    GlobalValue *GV = GA->getGlobal();
10039    // If we require an extra load to get this address, as in PIC mode, we
10040    // can't accept it.
10041    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10042                                                        getTargetMachine())))
10043      return;
10044
10045    if (hasMemory)
10046      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10047    else
10048      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10049    Result = Op;
10050    break;
10051  }
10052  }
10053
10054  if (Result.getNode()) {
10055    Ops.push_back(Result);
10056    return;
10057  }
10058  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10059                                                      Ops, DAG);
10060}
10061
10062std::vector<unsigned> X86TargetLowering::
10063getRegClassForInlineAsmConstraint(const std::string &Constraint,
10064                                  EVT VT) const {
10065  if (Constraint.size() == 1) {
10066    // FIXME: not handling fp-stack yet!
10067    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10068    default: break;  // Unknown constraint letter
10069    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10070      if (Subtarget->is64Bit()) {
10071        if (VT == MVT::i32)
10072          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10073                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10074                                       X86::R10D,X86::R11D,X86::R12D,
10075                                       X86::R13D,X86::R14D,X86::R15D,
10076                                       X86::EBP, X86::ESP, 0);
10077        else if (VT == MVT::i16)
10078          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10079                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10080                                       X86::R10W,X86::R11W,X86::R12W,
10081                                       X86::R13W,X86::R14W,X86::R15W,
10082                                       X86::BP,  X86::SP, 0);
10083        else if (VT == MVT::i8)
10084          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10085                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10086                                       X86::R10B,X86::R11B,X86::R12B,
10087                                       X86::R13B,X86::R14B,X86::R15B,
10088                                       X86::BPL, X86::SPL, 0);
10089
10090        else if (VT == MVT::i64)
10091          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10092                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10093                                       X86::R10, X86::R11, X86::R12,
10094                                       X86::R13, X86::R14, X86::R15,
10095                                       X86::RBP, X86::RSP, 0);
10096
10097        break;
10098      }
10099      // 32-bit fallthrough
10100    case 'Q':   // Q_REGS
10101      if (VT == MVT::i32)
10102        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10103      else if (VT == MVT::i16)
10104        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10105      else if (VT == MVT::i8)
10106        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10107      else if (VT == MVT::i64)
10108        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10109      break;
10110    }
10111  }
10112
10113  return std::vector<unsigned>();
10114}
10115
10116std::pair<unsigned, const TargetRegisterClass*>
10117X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10118                                                EVT VT) const {
10119  // First, see if this is a constraint that directly corresponds to an LLVM
10120  // register class.
10121  if (Constraint.size() == 1) {
10122    // GCC Constraint Letters
10123    switch (Constraint[0]) {
10124    default: break;
10125    case 'r':   // GENERAL_REGS
10126    case 'l':   // INDEX_REGS
10127      if (VT == MVT::i8)
10128        return std::make_pair(0U, X86::GR8RegisterClass);
10129      if (VT == MVT::i16)
10130        return std::make_pair(0U, X86::GR16RegisterClass);
10131      if (VT == MVT::i32 || !Subtarget->is64Bit())
10132        return std::make_pair(0U, X86::GR32RegisterClass);
10133      return std::make_pair(0U, X86::GR64RegisterClass);
10134    case 'R':   // LEGACY_REGS
10135      if (VT == MVT::i8)
10136        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10137      if (VT == MVT::i16)
10138        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10139      if (VT == MVT::i32 || !Subtarget->is64Bit())
10140        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10141      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10142    case 'f':  // FP Stack registers.
10143      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10144      // value to the correct fpstack register class.
10145      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10146        return std::make_pair(0U, X86::RFP32RegisterClass);
10147      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10148        return std::make_pair(0U, X86::RFP64RegisterClass);
10149      return std::make_pair(0U, X86::RFP80RegisterClass);
10150    case 'y':   // MMX_REGS if MMX allowed.
10151      if (!Subtarget->hasMMX()) break;
10152      return std::make_pair(0U, X86::VR64RegisterClass);
10153    case 'Y':   // SSE_REGS if SSE2 allowed
10154      if (!Subtarget->hasSSE2()) break;
10155      // FALL THROUGH.
10156    case 'x':   // SSE_REGS if SSE1 allowed
10157      if (!Subtarget->hasSSE1()) break;
10158
10159      switch (VT.getSimpleVT().SimpleTy) {
10160      default: break;
10161      // Scalar SSE types.
10162      case MVT::f32:
10163      case MVT::i32:
10164        return std::make_pair(0U, X86::FR32RegisterClass);
10165      case MVT::f64:
10166      case MVT::i64:
10167        return std::make_pair(0U, X86::FR64RegisterClass);
10168      // Vector types.
10169      case MVT::v16i8:
10170      case MVT::v8i16:
10171      case MVT::v4i32:
10172      case MVT::v2i64:
10173      case MVT::v4f32:
10174      case MVT::v2f64:
10175        return std::make_pair(0U, X86::VR128RegisterClass);
10176      }
10177      break;
10178    }
10179  }
10180
10181  // Use the default implementation in TargetLowering to convert the register
10182  // constraint into a member of a register class.
10183  std::pair<unsigned, const TargetRegisterClass*> Res;
10184  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10185
10186  // Not found as a standard register?
10187  if (Res.second == 0) {
10188    // Map st(0) -> st(7) -> ST0
10189    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10190        tolower(Constraint[1]) == 's' &&
10191        tolower(Constraint[2]) == 't' &&
10192        Constraint[3] == '(' &&
10193        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10194        Constraint[5] == ')' &&
10195        Constraint[6] == '}') {
10196
10197      Res.first = X86::ST0+Constraint[4]-'0';
10198      Res.second = X86::RFP80RegisterClass;
10199      return Res;
10200    }
10201
10202    // GCC allows "st(0)" to be called just plain "st".
10203    if (StringRef("{st}").equals_lower(Constraint)) {
10204      Res.first = X86::ST0;
10205      Res.second = X86::RFP80RegisterClass;
10206      return Res;
10207    }
10208
10209    // flags -> EFLAGS
10210    if (StringRef("{flags}").equals_lower(Constraint)) {
10211      Res.first = X86::EFLAGS;
10212      Res.second = X86::CCRRegisterClass;
10213      return Res;
10214    }
10215
10216    // 'A' means EAX + EDX.
10217    if (Constraint == "A") {
10218      Res.first = X86::EAX;
10219      Res.second = X86::GR32_ADRegisterClass;
10220      return Res;
10221    }
10222    return Res;
10223  }
10224
10225  // Otherwise, check to see if this is a register class of the wrong value
10226  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10227  // turn into {ax},{dx}.
10228  if (Res.second->hasType(VT))
10229    return Res;   // Correct type already, nothing to do.
10230
10231  // All of the single-register GCC register classes map their values onto
10232  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10233  // really want an 8-bit or 32-bit register, map to the appropriate register
10234  // class and return the appropriate register.
10235  if (Res.second == X86::GR16RegisterClass) {
10236    if (VT == MVT::i8) {
10237      unsigned DestReg = 0;
10238      switch (Res.first) {
10239      default: break;
10240      case X86::AX: DestReg = X86::AL; break;
10241      case X86::DX: DestReg = X86::DL; break;
10242      case X86::CX: DestReg = X86::CL; break;
10243      case X86::BX: DestReg = X86::BL; break;
10244      }
10245      if (DestReg) {
10246        Res.first = DestReg;
10247        Res.second = X86::GR8RegisterClass;
10248      }
10249    } else if (VT == MVT::i32) {
10250      unsigned DestReg = 0;
10251      switch (Res.first) {
10252      default: break;
10253      case X86::AX: DestReg = X86::EAX; break;
10254      case X86::DX: DestReg = X86::EDX; break;
10255      case X86::CX: DestReg = X86::ECX; break;
10256      case X86::BX: DestReg = X86::EBX; break;
10257      case X86::SI: DestReg = X86::ESI; break;
10258      case X86::DI: DestReg = X86::EDI; break;
10259      case X86::BP: DestReg = X86::EBP; break;
10260      case X86::SP: DestReg = X86::ESP; break;
10261      }
10262      if (DestReg) {
10263        Res.first = DestReg;
10264        Res.second = X86::GR32RegisterClass;
10265      }
10266    } else if (VT == MVT::i64) {
10267      unsigned DestReg = 0;
10268      switch (Res.first) {
10269      default: break;
10270      case X86::AX: DestReg = X86::RAX; break;
10271      case X86::DX: DestReg = X86::RDX; break;
10272      case X86::CX: DestReg = X86::RCX; break;
10273      case X86::BX: DestReg = X86::RBX; break;
10274      case X86::SI: DestReg = X86::RSI; break;
10275      case X86::DI: DestReg = X86::RDI; break;
10276      case X86::BP: DestReg = X86::RBP; break;
10277      case X86::SP: DestReg = X86::RSP; break;
10278      }
10279      if (DestReg) {
10280        Res.first = DestReg;
10281        Res.second = X86::GR64RegisterClass;
10282      }
10283    }
10284  } else if (Res.second == X86::FR32RegisterClass ||
10285             Res.second == X86::FR64RegisterClass ||
10286             Res.second == X86::VR128RegisterClass) {
10287    // Handle references to XMM physical registers that got mapped into the
10288    // wrong class.  This can happen with constraints like {xmm0} where the
10289    // target independent register mapper will just pick the first match it can
10290    // find, ignoring the required type.
10291    if (VT == MVT::f32)
10292      Res.second = X86::FR32RegisterClass;
10293    else if (VT == MVT::f64)
10294      Res.second = X86::FR64RegisterClass;
10295    else if (X86::VR128RegisterClass->hasType(VT))
10296      Res.second = X86::VR128RegisterClass;
10297  }
10298
10299  return Res;
10300}
10301
10302//===----------------------------------------------------------------------===//
10303//                           X86 Widen vector type
10304//===----------------------------------------------------------------------===//
10305
10306/// getWidenVectorType: given a vector type, returns the type to widen
10307/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
10308/// If there is no vector type that we want to widen to, returns MVT::Other
10309/// When and where to widen is target dependent based on the cost of
10310/// scalarizing vs using the wider vector type.
10311
10312EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
10313  assert(VT.isVector());
10314  if (isTypeLegal(VT))
10315    return VT;
10316
10317  // TODO: In computeRegisterProperty, we can compute the list of legal vector
10318  //       type based on element type.  This would speed up our search (though
10319  //       it may not be worth it since the size of the list is relatively
10320  //       small).
10321  EVT EltVT = VT.getVectorElementType();
10322  unsigned NElts = VT.getVectorNumElements();
10323
10324  // On X86, it make sense to widen any vector wider than 1
10325  if (NElts <= 1)
10326    return MVT::Other;
10327
10328  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
10329       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
10330    EVT SVT = (MVT::SimpleValueType)nVT;
10331
10332    if (isTypeLegal(SVT) &&
10333        SVT.getVectorElementType() == EltVT &&
10334        SVT.getVectorNumElements() > NElts)
10335      return SVT;
10336  }
10337  return MVT::Other;
10338}
10339